WO2005008784A1 - 電界効果型トランジスタおよびその製造方法 - Google Patents

電界効果型トランジスタおよびその製造方法 Download PDF

Info

Publication number
WO2005008784A1
WO2005008784A1 PCT/JP2004/010275 JP2004010275W WO2005008784A1 WO 2005008784 A1 WO2005008784 A1 WO 2005008784A1 JP 2004010275 W JP2004010275 W JP 2004010275W WO 2005008784 A1 WO2005008784 A1 WO 2005008784A1
Authority
WO
WIPO (PCT)
Prior art keywords
effect transistor
semiconductor layer
nanotubes
field
organic semiconductor
Prior art date
Application number
PCT/JP2004/010275
Other languages
English (en)
French (fr)
Inventor
Norishige Nanai
Naohide Wakita
Takayuki Takeuchi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/564,755 priority Critical patent/US7858968B2/en
Priority to CNB2004800205805A priority patent/CN100533770C/zh
Priority to KR1020067000982A priority patent/KR100757615B1/ko
Priority to JP2005511874A priority patent/JP4632952B2/ja
Publication of WO2005008784A1 publication Critical patent/WO2005008784A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/701Organic molecular electronic devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays

Definitions

  • the present invention relates to a field effect transistor and a method of manufacturing the same, and more particularly, to a thin film transistor and a method of manufacturing the same.
  • TFTs field-effect thin film transistors
  • a current flowing between a source electrode and a drain electrode provided in contact with the semiconductor layer is insulated from the semiconductor layer. It is configured to be controlled by a voltage applied to a gate electrode provided via a layer (that is, an electric field generated by the applied voltage).
  • TFT is manufactured by a thin film control process in which a layer on a substrate is precisely controlled and configured. Therefore, FT is required to have excellent electrical characteristics and high stability reliability.
  • amorphous silicon a-Si: H
  • low-temperature polysilicon silicon oxide / silicon nitride
  • AMLCDs active matrix liquid crystal displays
  • organic semiconductor TFT uses an organic semiconductor based on an organic material exhibiting the properties of a semiconductor in place of a semiconductor such as the above-mentioned amorphous silicon or low-temperature polysilicon.
  • organic materials makes it possible to manufacture these devices without the expensive equipment needed for silicon-based processes.
  • Improved mechanical flexibility making it possible to fabricate devices at room temperature or near low-temperature processes, using flexible plastic substrates and resin films, etc., for sheet-like or paper-like displays It can be used as a suitable substrate.
  • TFTs using a low molecular weight organic semiconductor material such as pen-semicene for a semiconductor layer use an organic semiconductor layer composed of a single crystal or polycrystalline crystal phase, but a silicon-based semiconductor layer is used.
  • small carrier mobility than the TFT having, only Tokura is a value of about 0. 1 ⁇ 0 ⁇ 6 cm 2ZV s .
  • Non-Patent Document 1 Polymer Semiconductor Active—Matrix Backplne Fabricatedby Ink—Jet Technique.
  • the carrier mobility of the channel is as low as 0.003 to 0.05 cm 2 ZVs. .
  • Non-Patent Document 1 A semiconductor layer with low carrier mobility as shown in Non-Patent Document 1 With a TFT that has an extremely large gate width, usually about several hundred meters, it is not practical. In addition, when a polymer organic semiconductor having a low carrier mobility is used, the distance between the source electrode and the drain electrode must be extremely short, and extremely fine processing is required, which is not practical. In addition, TFTs in which the semiconductor layer is made of only a polymer organic semiconductor such as a thiophene-based semiconductor have a high off-resistance and a high peel strength between the semiconductor layer and the insulating layer, but have a low carrier mobility in the channel and an on-conductivity. Is low.
  • Non-Patent Document 3 a configuration and a manufacturing method of a TFT using a semiconductor carbon nanotube, which is considered to have a high value of carrier mobility as shown in Non-Patent Document 2, as a semiconductor layer have been reported (for example, Phaedon Av ouris, Chem. Phys. 281, pp. 429-445 (2002), FIG. 6, "Carbonnanotubeelectronics" (Non-Patent Document 3)).
  • FIG. 15 is a cross-sectional view schematically showing a configuration of a conventional TFT having a semiconductor layer using carbon nanotubes.
  • a TFT 60 is formed on a P + silicon substrate 61 serving also as a gate electrode by a gate insulating layer of thermal silicon oxide having a thickness of 150 nm.
  • a semiconductor carbon nanotube having a diameter of 1.4 nm is dispersed and arranged at an appropriate dispersion density to form a semiconductor layer 63 having a thickness of 1.4 nm. Is formed.
  • (Ti) or cobalt (Co) metal is deposited, and the source electrode 64 and the drain electrode made of titanium carbide or cobalt are provided on both sides of the contact portions 66, 67 with the carbon nanotube. 65 are formed to form a TFT with low junction resistance and good transconductance.
  • the semiconductor layer 63 is formed only by placing the nanotube on the gate insulating layer 62.
  • its peel strength is weak and it is difficult to manufacture.
  • Non-Patent Document 3 in a process of dispersing and disposing nanotubes such as carbon nanotubes having a diameter of 1.4 nm at an appropriate dispersion density to form a semiconductor layer having a thickness of 1.4 nm, In practice, it is difficult to increase the dispersion density of this material and keep it constant. Furthermore, the process of arranging a large number of nanostructured nanotubes in parallel without overlapping them becomes an unstable factor, and there is a problem in that the variation in the electrical characteristics of TFTs increases.
  • the present invention has been made in view of such a problem, and is a field-effect transistor with high mechanical mobility and high carrier mobility, which is excellent in shock resistance, particularly a TFT, which requires an extremely small microstructure.
  • the primary objective is to provide a TFT with less variation in electrical characteristics and a method for manufacturing the TFT.
  • the present invention provides an active matrix display in which a plurality of the field-effect transistors are arranged, a wireless ID tag using the field-effect transistors in an integrated circuit portion, and a portable device. It has a secondary purpose.
  • the field-effect transistor according to the present invention is used.
  • the transistor has a semiconductor layer in which a carrier is injected from the source region and moves toward the drain region, and the semiconductor layer is formed of a composite material containing an organic semiconductor material and a nanotube.
  • a source region and a drain region refer to a concept including a source electrode and a drain electrode, a contact layer connecting the source electrode and the drain electrode to a semiconductor layer, a high-concentration impurity region, and the like.
  • the semiconductor layer includes, for example, a configuration in which the periphery of the nanotube is covered with the organic semiconductor material.
  • the semiconductor layer may have a configuration in which a plurality of the nanotubes are connected.
  • a plurality of the nanotubes may be connected by a chemical bond.
  • it is preferable that a portion where the nanotubes are connected is covered with the organic semiconductor material.
  • a carbon nanotube is preferably used as the nanotube.
  • organic semiconductor material for example, a polymer organic semiconductor material made of a thiophene-based material is preferably used.
  • organic semiconductor material a low molecular weight organic semiconductor material composed of, for example, an acene-based material is preferably used.
  • the nanotubes are substantially oriented in a predetermined direction.
  • the field effect type 1, Rungis, is preferably TFT.
  • the field effect transistor is preferably formed on a substrate.
  • the substrate can be formed of, for example, a plastic plate or a resin film.
  • the present invention also relates to a method for manufacturing a field-effect transistor having a semiconductor layer in which a carrier that is injected from a source region and moves toward a drain region moves, wherein a composite material containing an organic semiconductor material and a nanotube is prepared. Step (a), and step (b) of forming the semiconductor layer using the composite material; including.
  • the step (a) includes a step of preparing the composite material by mixing the organic semiconductor material and the nanotube.
  • the nanotube is mixed with a solution of the organic semiconductor material to prepare the composite material, and in the step (b), the composite material is dried to form a semiconductor layer. Form.
  • the composite material including the nanotubes coated with the organic semiconductor material is prepared.
  • a method of preparing the composite material by repeating a step of immersing the nanotubes in a solution of the organic semiconductor material and filtering the nanotubes can be adopted.
  • a carbon nanotube is preferably used as the nanotube.
  • a plurality of the connected nanotubes may be used.
  • a step (c) of linking a plurality of the nanotubes is included before the step (a).
  • a plurality of the nanotubes can be linked by a chemical bond.
  • an active matrix display includes a plurality of the field effect transistors according to any one of claims 1 to 15 arranged as switching elements for driving pixels. Become.
  • a wireless ID tag according to the present invention uses the field-effect transistor according to any one of claims 1 to 15 as a semiconductor element for forming an integrated circuit. .
  • a portable device uses the field-effect transistor according to any one of claims 1 to 15 as a semiconductor element for forming an integrated circuit.
  • FIG. 1 is a cross-sectional view schematically illustrating the configuration of the TFT according to the first embodiment.
  • FIG. 2 is a flowchart showing a method for forming a semiconductor layer.
  • FIG. 3 is a top view conceptually showing the relationship between the organic semiconductor material and the nanotubes in the TFT semiconductor layer of the first embodiment.
  • FIG. 4 is a cross-sectional view schematically illustrating the configuration of the TFT according to the second embodiment.
  • FIG. 5 is a top view conceptually showing the relationship between an organic semiconductor material and nanotubes in the TFT semiconductor layer of the second embodiment.
  • FIG. 6 is a cross-sectional view schematically illustrating the configuration of the TFT according to the third embodiment.
  • FIG. 7A is a top view conceptually showing a relationship between an organic semiconductor material and a nanotube in a semiconductor layer immediately after a composite material is applied in a process of manufacturing a TFT according to the third embodiment.
  • FIG. 7B is a top view conceptually showing the relationship between the organic semiconductor material and the nanotubes in the semiconductor layer where carbon nanotubes are deposited from the state of FIG. 7A.
  • FIG. 8 is a cross-sectional view schematically illustrating the configuration of the TFT according to the fourth embodiment.
  • FIG. 9 is a top view conceptually showing the relationship between an organic semiconductor material and nanotubes in the TFT semiconductor layer of the fourth embodiment.
  • FIG. 10 is a cross-sectional view schematically illustrating the configuration of the TFT according to the fifth embodiment.
  • FIG. 11 is a top view conceptually showing the relationship between an organic semiconductor material and nanotubes in the TFT semiconductor layer of the fifth embodiment.
  • FIG. 12 is a cross-sectional view schematically showing a configuration of an active matrix display according to the sixth embodiment.
  • FIG. 13 is a perspective view schematically showing a configuration of a wireless ID server using a TFT according to the sixth embodiment.
  • FIG. 14 is a front view schematically showing a configuration of a mobile phone using a TFT according to the sixth embodiment.
  • FIG. 15 is a cross-sectional view schematically showing a configuration of a conventional TFT having a semiconductor layer using carbon nanotubes.
  • the first embodiment relates to a TFT in which a semiconductor layer is formed of a composite material containing an organic semiconductor material and a nanotube.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of the TFT of the present embodiment.
  • TFT 1 has a gate electrode 5, a gate insulating layer 3, a semiconductor layer 4, a source electrode 6, and a drain electrode 7 on a substrate 2.
  • a gate electrode 5 is provided on the main surface of the substrate 2, and a gate insulating layer 3 is provided so as to cover the gate electrode 5.
  • the semiconductor layer 4 is provided on the gate insulating layer 3, and the source electrode 6 and the drain electrode 7 are provided on the semiconductor layer 4 so as to be separated from each other.
  • the gate electrode 5 is provided so as to be located between the source electrode 6 and the drain electrode 7 in plan view. With such a configuration, the gate electrode 5 is separated from the channel 8 that is electrically generated in the semiconductor layer 4 by the gate insulating layer 3.
  • the semiconductor layer 4 is formed using a composite material containing a polymer organic semiconductor material and carbon nanotubes.
  • a composite material a high-molecular-weight organic semiconductor material composed of a fluorene-bithiophene copolymer and a mixed-type mixture of a semiconductor-based and a metal-based compound obtained during the production of carbon nanotubes are usually used.
  • FIG. 2 is a flowchart showing a method for forming the semiconductor layer 4.
  • a composite material preparation step (St 1) for preparing a composite material in which a polymer organic semiconductor material composed of a fluorene-bithiophene copolymer and the above-mentioned mixed carbon nanotube material are prepared in advance.
  • the organic semiconductor material and the nanotube are desirably mixed at an adjusted mixing ratio.
  • the mixing ratio of nanotubes is preferably about 30 to 90% by volume with respect to the whole. If the volume ratio of the nanotubes is lower than 30%, it is difficult to obtain sufficient conductivity in the semiconductor layer 4. On the other hand, if the volume ratio of the nanotubes is larger than 90%, it is difficult to exert a sufficient binding action, and it is difficult to form a stable semiconductor layer 4.
  • the volume ratio of nanotubes is more preferably about 50 to 70%. Further, in the composite material preparation step, other steps and materials can be added so that the composite material preparation step and the semiconductor layer formation step can smoothly proceed.
  • the semiconductor layer 4 is formed using a composite material, a difficult process of forming a semiconductor layer by dispersing and arranging only a large number of nanotubes is not required, and the TFT 1 has excellent characteristics. TFTs can be easily and stably manufactured.
  • a method of manufacturing the entire TFT 1 will be described.
  • a predetermined electrode material and a desired shape are obtained.
  • a gate electrode 5 having a desired shape is formed on the substrate 2.
  • a predetermined insulating material is printed on the substrate 2 and the gate electrode 5 by using a screen stencil which has been patterned in advance, and is sufficiently dried.
  • the gate insulating layer 3 is formed on the substrate 2 and the gate electrode 5.
  • the semiconductor layer 4 is formed on the gate insulating layer 3 by the above-described semiconductor forming step. Specifically, the semiconductor layer 4 is formed by applying a composite material prepared by mixing an organic semiconductor material and nanotubes prepared in advance in the composite material preparation step onto the gate insulating layer 3.
  • a predetermined electrode material is deposited on the semiconductor layer 4 to form a source electrode 6 and a drain electrode 7.
  • FIG. 3 is a top view conceptually showing the relationship between an organic semiconductor material and nanotubes in the semiconductor layer 4 of the TFT 1 of the present embodiment.
  • the semiconductor layer 4 has a mixed force of about 0.1 to several m and a diameter of about 1 to several nm.
  • the circumference of each of the tubes 10 is covered with a polymer organic semiconductor material 1 made of a flexible fluorene-bitiophen copolymer. That is, in the semiconductor layer 4, the carbon nanotubes 10 are mixed and dispersed in the organic semiconductor material 11.
  • the mobility of the channel of TFT 1 of the present embodiment is 110 cm 2 / vs, which is much higher than that of TFT in which the semiconductor layer 4 is made only of an organic semiconductor material.
  • the TFT 1 When the TFT 1 is turned on, the current in the semiconductor layer 4 flows through the mixed-system force—the carbon nanotubes 10, and between the nanotubes 10 that are arranged in a short distance in close proximity, the current of the nanotubes 10 is reduced. A current flows through the polymer organic semiconductor material 11 surrounding the surroundings. Therefore, according to the present embodiment, a TFT whose semiconductor layer is made of only a polymer organic semiconductor material has a smaller size.
  • the TFT 1 can have a significantly improved carrier mobility and ON characteristics.
  • each of the carbon nanotubes 10 is covered with the organic semiconductor material 11 around the individual and does not come into direct contact with each other. It will be good.
  • the organic semiconductor material 11 existing at each contact portion of the carbon nanotubes 10 substantially serves as a switch portion, so that a fine structure can be formed without forming a difficult extremely fine pattern on a substrate. Since it has TF, it is easy to manufacture, and TF ⁇ with little characteristic variation can be obtained.
  • the characteristics of TF # 1 of the present embodiment have an intermediate value between the characteristics of TF # in which the semiconductor layer is formed of only the organic semiconductor material or only the nanotube material in both the ON state and the OFF state.
  • the gate width needs to be about several hundreds / im, and only a nanotube material with extremely high carrier mobility is used.
  • the gate width is as small as about 0.1 m, which is not practical.
  • the carrier mobility of the TFT 1 of this embodiment is an intermediate value between the two, and can be designed and manufactured with a practical gate width of about several meters, and a long and wide channel region can be used. The degree of freedom in designing the channel shape according to the electrical conductivity at the time increases.
  • the semiconductor layer 4 is formed using a composite material in which a nanotube and a polymer organic semiconductor material capable of forming the flexible semiconductor layer 4 are mixed.
  • the mechanical strength such as peeling strength is further improved, and a semiconductor layer made of only a polymer organic semiconductor material is provided.
  • the TFT has improved chemical stability and heat resistance, and can be easily manufactured and used.
  • the surface of the gate insulating layer 3 may be subjected to an orientation treatment in advance so that the semiconductor layer 4 is oriented.
  • the organic semiconductor material 11 can be oriented and the carbon nanotubes 10 can be arranged in the semiconductor layer 4 in a well-aligned direction, so that the characteristics can be further improved.
  • the composite material preparing step may be a step of immersing the nanotubes in a solution of a polymer organic semiconductor material, filtering the nanotubes, and repeating this to prepare a composite material. According to this step, the excess solution is roughly removed, and a composite material in which the organic semiconductor material is better coated around the nanotubes can be prepared. Using this composite material, the semiconductor layer 4 made of the composite material can be easily formed.
  • a composite material may be prepared by spraying a solution of a polymer organic semiconductor material in which nanotubes are dispersed and drying the solution.
  • a powdery composite material composed of nanotubes whose periphery is coated with an organic semiconductor material can be prepared.
  • the semiconductor layer 4 made of the composite material can be easily formed.
  • a paste-like composite material may be prepared by putting a large amount of nanotubes into a high-concentration solution of an organic semiconductor material and kneading them. Then, in the semiconductor layer forming step, a paste-like composite material may be applied or printed and dried to form a semiconductor layer.
  • a paste-like composite material in which an organic semiconductor material is coated around a nanotube can be prepared, and the composite material is applied or printed and dried in a semiconductor layer formation process, whereby The semiconductor layer can be easily formed.
  • the substrate 2 is made of, for example, a plastic made of poly-ponate.
  • a plate is used, but other flexible and bendable plastic plates, thin glass substrates, and thin resin films such as polyimide films having a thin property can also be used.
  • the TFT can be used for a vapor display or a sheet display.
  • substances that can be used for the gate electrode 5, the source electrode 6, and the drain electrode 7 can be used as long as they have electrical conductivity and do not react with the substrate 2 or the semiconductor layer 4.
  • Precious metals such as doped silicon, gold, silver, platinum, platinum, and palladium; alkali metals and alkaline earth metals such as lithium, cesium, calcium, and magnesium; copper, nickel, aluminum, titanium, and molybdenum And other alloys and their alloys can also be used.
  • conductive organic substances such as polypyrrole, polythiophene, polyaniline, and polyphenylenevinylene can also be used.
  • the gate electrode 5 can operate even if the electric resistance is higher than the other electrodes 6 and 7, use a different material from the source electrode 6 and the drain electrode 7 to facilitate manufacturing. It is also possible. These electrodes can be deposited at room temperature or near room temperature and can be processed at room temperature.
  • the gate insulating layer 3 can be used as long as it has electrical insulation properties and does not react with the substrate 2, the electrodes 5, 6, 7, and the semiconductor layer 4. Silicon can be used as the substrate 2 in addition to the flexible substrate exemplified above. A normal silicon oxide film may be formed on a substrate 2 made of silicon, and this may be used as the gate insulating layer 3. Further, even if a thin layer of resin or the like is provided after the oxide film is formed, it functions as the gate insulating layer 3.
  • the gate insulating layer can be formed by depositing a compound composed of elements different from those of the substrate 2 and the electrodes 5, 6, and 7 by CVD, vapor deposition, sputtering, or by applying, spraying, or electrolytically adhering. 3 may be formed.
  • a substance having a high dielectric constant is used as a gate insulating layer in order to reduce the gate voltage of a TFT.
  • Compounds other than dielectrics may be used.
  • the material is not limited to an inorganic material, and may be an organic material having a large dielectric constant, such as polyvinylidene fluoride or polyvinylidene cyanide.
  • a thiophene-based copolymer was used as the polymer-based organic semiconductor material included in the composite material.
  • a polymer-based organic semiconductor material having an appropriate carrier mobility It is possible.
  • a low molecular organic semiconductor material may be used instead of the high molecular organic semiconductor material.
  • an acene material having high carrier mobility can be preferably used.
  • nanotubes were used as nanotubes, there is a possibility that nanotubes made of materials other than carbon may be used in the future.
  • the alignment treatment allows the polymer organic semiconductor molecules to be arranged and the nanotubes to be further improved. They can be arranged.
  • the polymer organic semiconductor material itself may be an organic semiconductor material composed of a liquid crystalline polymer, and can be used after undergoing an alignment treatment and curing.
  • the orientation is further improved. By orienting the nanotubes, the nanotubes can be filled without gaps, the dispersion density of the nanotubes can be improved, and the carrier mobility can be further improved.
  • the TFT 1 of the present embodiment is of a pot type in which the gate electrode 5 is provided on the substrate.
  • the configuration of the TFT 1 is not limited to that shown in FIG. May be a top gate type TFT provided on the gate insulating layer on the side opposite to the substrate. (Second embodiment)
  • the second embodiment relates to a TFT in which a semiconductor layer is formed of a composite material containing an organic semiconductor material and a nanotube.
  • FIG. 4 is a cross-sectional view schematically showing the configuration of the TFT of the present embodiment.
  • the TFT 15 includes a gate electrode 5, a gate insulating layer 3, a source electrode 6, a drain electrode 7, and a semiconductor layer 16 on a substrate 2.
  • gate electrode 5 is provided on the main surface of substrate 2, and gate insulating layer 3 is provided so as to cover gate electrode 5.
  • a source electrode 6 and a drain electrode 7 are provided on the gate insulating layer 3 so as to be separated from each other, and a semiconductor is formed so as to cover the source electrode 6, the drain electrode 7, and the gate insulating layer 3.
  • Layer 16 is provided.
  • the gate electrode 5 is provided so as to be located between the source electrode 6 and the drain electrode 7 in plan view. With such a configuration, the gate electrode 5 is separated from the channel 8 that is electrically generated in the semiconductor layer 4 by the gate insulating layer 3.
  • the manufacturing method of the TFT 15 of the present embodiment is different from the manufacturing method of the TFT 1 of the first embodiment (see FIG. 1) except for the method of forming the semiconductor layer 16 in the stacking order of the constituent elements. Therefore, description other than the method of forming the semiconductor layer 16 is omitted.
  • the semiconductor layer 16 is formed using a composite material including a polymer organic semiconductor material and a semiconductor carbon nanotube. Specifically, a high molecular organic semiconductor material composed of a fluorene-bithiophene copolymer is mixed with a semiconductor carbon nanotube that is usually obtained by selecting a carbon nanotube obtained by mixing a semiconductor and a metal. To prepare a composite material.
  • the procedure for forming the semiconductor layer 16 is the same as the procedure shown in FIG. 2 of the first embodiment, and is a composite obtained by immersing a semiconductor-based carbon nanotube in a solution of the organic semiconductor material.
  • Composite material preparation process for preparing a solution of the material (Stl) and a solution of the composite material are applied onto the gate insulating layer 3 or sprayed by an ink jet method or the like, and the resulting solution is concentrated and the force of the semiconductor system coated with the organic semiconductor material is concentrated.
  • a semiconductor layer forming step (St 2) of forming a semiconductor layer 16 by depositing a carbon nanotube is provided.
  • FIG. 5 is a top view conceptually showing the relationship between the organic semiconductor material of the semiconductor layer 16 of the TFT 15 and the nanotubes of the present embodiment.
  • semiconductor-based carbon nanotubes are immersed in a polymer-based organic semiconductor solution, so that the surroundings of each of the semiconductor-based carbon nanotubes 17 are made of flexible fluorene-bitofiphene copolymer.
  • a solution of the organic semiconductor material in which the carbon nanotubes 17 and the polymer organic semiconductor material 18 are mixed is applied or sprayed to a desired position on the gate insulating layer 3 or the electrodes 6 and 7, and is adhered. This is concentrated and deposited to form a semiconductor layer 16.
  • the semiconductor layer 16 is a semiconductor-based material having a length of about 0.1 to several meters and a diameter of about 1 to several nm, each of which is covered with a flexible polymer organic semiconductor material 18.
  • the carbon nanotubes 17 are formed by stacking. As described above, the polymer organic semiconductor material 18 can easily and smoothly cover each periphery of the carbon nanotube 17.
  • a TFT 15 having a semiconductor layer 16 composed of a semiconductor tube 17 having a high Vs carrier mobility was fabricated.
  • the carrier mobility of channel 8 of this TFT 15 shows a value of 170 cm 2 / V s, and the TFT has high carrier mobility and excellent characteristics. I was able to.
  • the TFT 15 When the TFT 15 is turned on, most of the current in the semiconductor layer 16 flows through the semiconductor-based nanotubes 17, and between the nanotubes 17 arranged in a short distance in close proximity, the current of the nanotubes 17 Electric current flows through the high molecular organic semiconductor material formed around. Therefore, the carrier mobility and the on-state characteristics are significantly improved as compared with the TFT in which the semiconductor layer is formed using only the organic semiconductor material.
  • the semiconductor layer 16 is a composite of the individual nanotubes 17 and the polymer organic semiconductor material 18 formed around the nanotubes 17, so that the semiconductor layer 16 is This is better than the off-characteristics of a TFT consisting of nanotubes 17 only.
  • the semiconductor layer 16 can use a longer and wider channel region as compared with a TFT having only the nanotubes 17, the degree of freedom in designing the channel shape according to the conductivity at the time of ON and OFF is increased.
  • a semiconductor layer 16 composed of a composite material containing a polymer organic semiconductor material and a nanotube capable of forming a mechanically flexible film, it is possible to use only a polymer organic semiconductor material or a nanotube material.
  • the mechanical strength such as peel strength is further improved than in the case of, and the reliability is improved in terms of chemical and heat resistance compared to the case of using only the polymer organic semiconductor material, and it is easy to manufacture and easy to use It can be TFT.
  • the composite material preparing step is a step of preparing a composite material in which the nanotubes are dispersed
  • the semiconductor layer forming step is a step of spraying and drying the composite material to form a semiconductor layer. It may be a process.
  • a solution of the composite semiconductor material in which the nanotubes are dispersed so as to cover the periphery with the organic semiconductor material is prepared, and in the semiconductor layer forming step, the composite semiconductor material is placed at a predetermined position on the substrate.
  • the semiconductor layer can be easily formed by spraying or spraying the solution with an ink jet or the like, followed by drying.
  • the third embodiment relates to a TFT in which a semiconductor layer is formed of a composite material containing an organic semiconductor material and a nanotube.
  • FIG. 6 is a cross-sectional view schematically showing the configuration of the TFT of the present embodiment.
  • the TFT 20 is a top-gate type having a source electrode 6, a drain electrode 7, a semiconductor layer 13, a gate insulating layer 3, and a gate electrode 5 on a substrate 2.
  • TFT TFT.
  • a source electrode 6 and a drain electrode 7 are provided on the main surface of the substrate 2 so as to be separated from each other, and a semiconductor electrode 6 is provided so as to cover the source electrode 6, the drain electrode 7, and the substrate 2.
  • a layer 13 is provided, a gate insulating layer 3 is provided on the semiconductor layer 13, and a gate electrode 5 is provided on the gate insulating layer 3.
  • the gate electrode 5 is provided between the source electrode 6 and the drain electrode 7 in plan view. With such a configuration, the gate electrode 5 is separated from the channel electrically generated in the semiconductor layer 13 by the gate insulating layer 3.
  • the manufacturing method of the TFT 20 of the present embodiment is different from the manufacturing method of the TFT 1 of the first embodiment (see FIG. 1) except for the method of forming the semiconductor layer 13 in the order of lamination of the constituent elements. Therefore, description other than the method of forming the semiconductor layer 13 is omitted.
  • the composite material used to form the semiconductor layer 13 is the same as in the second embodiment.
  • the method of forming the semiconductor layer 13 is the same as that of the second embodiment except that the nanotubes 17 are oriented. That is, in the semiconductor layer forming step, an alignment film such as a polyimide film or a monomolecular film formed on the surface of the substrate 2 corresponding to at least the portion where the channel 8 is formed was subjected to an alignment treatment in a predetermined direction by a rubbing method or the like. Thereafter, a solution of the composite material is applied or sprayed on the gate insulating layer 3 and concentrated to precipitate semiconductor carbon nanotubes 17 coated with the organic semiconductor material, thereby forming the semiconductor layer 13. .
  • FIG. 7A is a top view conceptually showing a relationship between the organic semiconductor material and the nanotube in the semiconductor layer 13 immediately after the solution of the composite material is applied to the surface of the substrate 2 in the semiconductor layer forming step.
  • Figure 7B shows the relationship between the organic semiconductor material and the nanotubes in the semiconductor layer 13 in the state where the applied composite material is concentrated to deposit the semiconductor carbon nanotubes 17 coated with the organic semiconductor material. It is a top view shown notionally. As shown in Figure ⁇ A, the carbon nanotubes 17 in the composite material solution 19 are physically aligned roughly in the direction of the orientation treatment (arrow A) on the surface of the substrate (not shown). Is done. This alignment principle is clear from the liquid crystal alignment technology.
  • the carbon nanotubes 17 were well oriented while being covered with the polymer organic semiconductor material 18 as shown in FIG.7B. In this state, it is deposited on a substrate (not shown).
  • a direction that obtains desired electrical characteristics is selected with respect to a line connecting the source electrode and the drain electrode (not shown).
  • the direction in which the ON characteristics are improved is a direction parallel to a line connecting the source electrode and the drain electrode.
  • the polymer organic semiconductor molecules are aligned and the nanotubes can be more favorably arranged by the alignment treatment.
  • the nanotubes it is possible to form a semiconductor layer 13 having no gap and a high filling rate, so that the dispersion density can be improved, and a TFT having a high carrier mobility can be formed. can do.
  • the arrangement of the nanotubes has an effect that electrons flow more smoothly, and this effect contributes to an improvement in carrier mobility.
  • the fourth embodiment relates to a TFT in which a semiconductor layer is formed of a composite material containing an organic semiconductor material and a nanotube.
  • the nanotubes are multiple Includes several linked nanotubes.
  • FIG. 8 is a cross-sectional view schematically showing the configuration of the TFT of the present embodiment. As shown in FIG. 8, the configuration of the TFT 21 of this embodiment is the same as that of the first embodiment shown in FIG. 1 except for the semiconductor layer 22. Is omitted.
  • the semiconductor layer 22 is formed of a composite material including an organic semiconductor material and a plurality of connected nanotubes.
  • the composite material is composed of carbon nanotubes, which are made of carbon nanotubes with high carrier mobility and whose ends are chemically bonded to each other by covalent bonds, etc., and a fluorene-bithiophene copolymer. Polymer organic semiconductor.
  • the number of connected carbon nanotubes is not limited, and may include two connected ones or three or more connected ones.
  • FIG. 9 is a top view conceptually showing the relationship between the organic semiconductor material of the semiconductor layer 22 of the TFT and the nanotubes of the present embodiment.
  • a nanotube material including a carbon nanotube and an organic semiconductor material 26 including a unitary carbon nanotube 25 connected to each other by a connecting portion 27 between the unity of the carbon nanotube 25 are included.
  • a nanotube material linked by a method in which at least the ends between the carbon nanotubes 25 are chemically bonded by a covalent bond or the like is prepared in advance.
  • a typical example of a carbon nanotube unit is shown in the form of (Fig. 1).
  • the compound represented by the chemical formula (2) and an equimolar amount of the nanotube of the chemical formula (1) are refluxed and reacted with 1,2,4-trichlorobenzene solvent. After the reaction for about 20 hours, the compound shown in FIG. 3 in which the carbon nanotubes are connected to each other is generated.
  • the carbon nanotubes are connected by a chemical bond at their ends by bis-0-quinodiene groups.
  • a nanotube material in which the carbon nanotubes 25 are connected by a covalent bond is prepared.
  • a force composed of a nanostructure having a length of 0.2 to 3 / m and a diameter of about 1.5 nm (1.4 nm or more) is obtained by the above-described synthesis method.
  • the semiconductor layer 22 As shown in FIG. 9, at least the periphery of the carbon nanotubes 25 connected by the above-described synthesis method, the joints 27 and the periphery 28 of the joints 27, It is coated with a polymer-based organic semiconductor 26 of a fluorene-bithiophene copolymer which is amorphous and has high mechanical strength. That is, in FIG. 9, the semiconductor layer 22 has a structure in which the mutually connected carbon nanotubes 25 composed of nanostructures are dispersed in the organic semiconductor material 26, and the carbon nanotubes 25, the bonding portions 27 and the bonding portions The periphery 28 of the part 27 is covered with an organic semiconductor 26 made of a polymer organic semiconductor material that is amorphous and has high mechanical strength. As a result, a high-molecular organic semiconductor material, which is a flexible material between a large number of connected forces—bon nanotubes 25, is satisfactorily filled, and the whole can be held supple.
  • the carriers that have propagated through the carbon nanotubes 25 pass through the organic semiconductor material 26 around the bonding portions 27 between the carbon nanotubes 25, and pass through the carbon nanotubes 2. You can travel between the five. That is, the organic semiconductor material 26 can compensate for the decrease in the high carrier mobility of the carbon nanotubes 25 in the chemical bonding in the bonding portion 27, and can provide a TFT with high carrier mobility.
  • the carrier mobility of the channel 8 of the TFT 21 of the present embodiment is 210 cm 2 / Vs, which indicates that the TFT 21 has high carrier mobility.
  • the number of nanotubes 25 in the semiconductor layer 22 or the packing density can be further increased by using the nanotubes 25 bonded to each other and connected.
  • the electrical junction density between the nanotubes 25 can be further increased, and the carrier mobility can be further improved.
  • the semiconductor layers 22 include the nanotubes 25 chemically linked to each other, the mechanical strength of the semiconductor layers 22 is improved.
  • the carbon nanotubes 25 and the bonding portion 27 between the carbon nanotubes 25 are covered with the organic semiconductor material 26, preferably by covering with a polymer organic semiconductor material, Since the joints between the carbon nanotubes and the periphery of the joints are covered with a high molecular organic semiconductor that forms a strong film, the carbon nanotubes are firmly arranged and held, resulting in a TFT with high mechanical strength.
  • each of the nanotubes 25 is covered with the organic semiconductor material 26 and does not come into direct contact with the nanotube 25, so that the TFT 21 has good off characteristics.
  • the organic semiconductor material 26 existing at each junction of the nanotubes 25 becomes a switch, so that an extremely fine pattern, which is difficult to fabricate, is not formed on the substrate, and TFTs with small characteristic variations are formed. It can be.
  • the present embodiment is different from the first embodiment only in that interconnected nanotubes are prepared before the composite material preparation step and used for preparing the composite material.
  • the semiconductor layer is configured to be a composite semiconductor layer formed by mixing and mixing an organic semiconductor and a nanotube (NT).
  • NT nanotube
  • the number of carbon nanotubes arranged is increased, the density of electrical junctions between the nanotubes is increased, and the characteristics are higher.
  • a thin film transistor can be realized.
  • the fifth embodiment relates to a TFT in which a semiconductor layer is formed of a composite material containing an organic semiconductor material and a nanotube.
  • the nanotube includes a plurality of connected nanotubes.
  • FIG. 10 is a cross-sectional view schematically showing the configuration of the TFT of the present embodiment. As shown in FIG. 10, the configuration of the TFT 23 of this embodiment is the same as that of the second embodiment shown in FIG. 4 except for the semiconductor layer 24. Descriptions other than those described above are omitted.
  • the semiconductor layer 24 is formed of a composite material including an organic semiconductor material and a plurality of connected nanotubes.
  • the method of forming the semiconductor layer 24 includes: a composite material preparing step of preparing a composite material by immersing a plurality of connected carbon nanotubes in a solution of a polymer organic semiconductor material;
  • the gate insulating layer 3 is concentrated or dried by spraying or spraying by an ink jet method or the like, and then, a step of depositing a connected carbon nanotube coated with a polymer organic semiconductor material is performed.
  • FIG. 11 is a cross-sectional view conceptually showing the relationship between an organic semiconductor material and nanotubes in the semiconductor layer 24 of the TFT 23 of the present embodiment.
  • an organic semiconductor material 26 made of a polymer organic semiconductor material of a fluorene-bitiophen copolymer and a plurality of carbon nanotubes 2 made by a synthesis method described below. 5 uses a composite material composed of a composite with a linked nanotube material.
  • a method of synthesizing a plurality of nanotube materials in which a plurality of carbon nanotubes 25 are chemically bonded at least at their ends to each other is as follows.
  • the (trimethylsilyl) ethynyl derivative of the carbon nanotube shown in (Chemical Formula 4) is desilylated with a fluoride ion in THF to form a dispersion liquid of the (Chemical Formula 5) nanotube derivative.
  • the reaction proceeds and the nanotube alkyl derivative compound shown in (Chemical Formula 5) is sufficiently formed, the reaction is stopped with trifluoroacetic acid.
  • the formed compound of the formula (Chemical Formula 5) is oxidatively coupled with CuCl and TMEDA in air at room temperature for 6 hours, thereby obtaining the carbon represented by the formula (Chemical Formula 6).
  • a compound in which a plurality of nanotubes are linked is synthesized.
  • carbon nanotubes 25 consisting of nanostructures with a length of 0.2 to 3 iim and a diameter of about 1.5 nm (1.4 nm or more) were converted into 2 by the above-mentioned synthesis method.
  • Four to four carbon nanotubes 25 were connected by a covalent bond to form a semiconductor layer 16 composed of the connected carbon nanotubes 25 and a polymer organic semiconductor material 26.
  • the carbon nanotube can be placed closer to each other
  • connection portion 27 of the semiconductor element the number of electrical junctions at which the carrier can move via the organic semiconductor 26 increases, and the semiconductor layer 24 having a higher carrier mobility can be obtained.
  • An organic semiconductor material 2 6 Chiofen polymers having from about 0. 0 0 3 ⁇ 0. 0 2 cm 2 ZV s low carrier mobility, high about 1 0 0 0 ⁇ 1 5 0 0 cm 2 ZV s
  • a TFT 23 having a composite semiconductor layer 24 in which carbon nanotubes 25 each having a carrier mobility were linked to each other and carbon nanotubes were combined was produced.
  • the carrier mobility of the channel 8 of the TFT 23 was 240 cm 2 / Vs, and a TFT having excellent characteristics and high carrier mobility was obtained.
  • a polymer organic semiconductor film having high mechanical strength is formed on the peripheral surface of a force-bonded carbon nanotube formed by connecting a plurality of force-bonded carbon nanotubes having a nanostructure.
  • a plurality of connected carbon nanotubes coated with a polymer organic semiconductor film are stacked while concentrating and depositing the produced composite material, thereby forming a semiconductor layer 24. Is done. Since the polymer organic semiconductor material is a flexible film material, it maintains the connected carbon nanotubes at a high filling rate and propagates the carriers at the joints, so that TFTs with improved mechanical strength and characteristics can be used. It can be easily manufactured.
  • the composite material preparing step is a step of preparing a composite material solution in which the carbon nanotubes connected as described above are dispersed in an organic semiconductor material solution, and the semiconductor layer forming step is to spray the composite material solution. And drying.
  • the TFT 23 When the TFT 23 is on, most of the current in the semiconductor layer 24 flows through the nanotube 25, and the current flows between the nanotubes 25 that are connected by being connected in a short distance. An electric current flows through the coated polymer organic semiconductor material 26.
  • coupled nanotubes By using a tube, the frequency at which the nanotubes come close to each other in the semiconductor layer 24 is improved as compared with the case where they are not connected. Therefore, it has higher carrier mobility and ON characteristics than a TFT having a semiconductor layer consisting of only a polymer organic semiconductor material or a semiconductor layer in which nanotubes not connected to the polymer organic semiconductor material are dispersed. But an excellent TFT.
  • the semiconductor layer 24 is a composite of the connected nanotubes 25 and the polymer organic semiconductor material 26 coated around the nanotubes, a TFT having a semiconductor layer consisting only of nanotubes is used. Also, good off characteristics can be obtained.
  • the semiconductor layer of TFT according to the fourth and fifth embodiments includes at least connected nanotubes, and the amount of connected nanotubes may be 20 to 100% of the total amount of nanotubes. Desirably, 50% to 100% of the total amount of the nanotube is preferable.Since the larger the number of connected nanotubes, the higher the junction density of the nanotubes in the semiconductor layer, the higher the characteristics of the TFT. can do.
  • the nanotubes used in the fourth and fifth embodiments may have a length of 0.2 to 3 xm, a diameter of nml or more, and preferably a shape range of 1.4 nm or more. It is not limited to this range. Further, in the above-mentioned nanotubes, a mixed system containing metallicity and semiconductivity or a semiconducting nanotube containing no metallicity can be used. More preferably, all are semiconducting.
  • the TFTs of the first to fifth embodiments can be applied to a semiconductor circuit device, a portable device using the semiconductor circuit device, a disposable device, and other electronic devices.
  • a seat-like flexible display, a wireless ID tag, and a mobile phone will be described as application examples using the TFT of the first to fifth embodiments.
  • FIG. 12 is a cross-sectional view schematically showing the configuration of the active matrix display according to the present embodiment.
  • the active matrix display 111 of the present embodiment has a plurality of electrodes 113, 114 arranged in a matrix on a plastic substrate 112. .
  • One of the TFTs (not shown) according to any of the first to fifth embodiments is disposed at each intersection point 115 of the electrodes 113 and 114, and functions as a switching element of each pixel.
  • the TFTs of the first to fifth embodiments which serve as switching elements for each pixel, can turn on and off information signals with good characteristics, thus providing a highly reliable and rewritable active matrix display. be able to.
  • a display panel 118 is provided above the TFT.
  • the drive circuits 1 16a and 1 16b and the control circuit 1 17 can also be configured by the semiconductor circuits including the TFTs of the first to fifth embodiments.
  • the display panel 118, the driving circuits 116a, 116b, and the control circuit 117 can be integrally manufactured, so that the mechanical flexibility is improved.
  • a seat-like or paper-like display can be configured, but as a display panel, a liquid crystal display type, an electrophoretic display type, an organic EL type, an electoral chromic display type (ECD)
  • a display panel method such as an electrolytic deposition method, an electronic powder fluid method, and a collision type modulation (MEMS) method can be used.
  • FIG. 13 is a perspective view schematically showing a configuration of a wireless ID tag using the TFT according to the present embodiment.
  • a wireless ID tag 120 uses a film-shaped plastic substrate 121 as a base material.
  • An antenna section 122 and a memory IC section 123 are provided on the substrate 121.
  • the memory IC section 123 can be configured using any one of the TFTs of the first to fifth embodiments.
  • the wireless ID tag 120 can be used by attaching it to an uneven surface such as a confectionery bag or a drink can by giving an adhesive effect to the back surface. Note that a protective film is provided on the surface of the wireless ID tag 120 as necessary.
  • the effect of the present invention is not limited to the configuration of the wireless ID tag shown in FIG. Therefore, the arrangement and configuration of the antenna unit and the memory-IC unit can be set arbitrarily. Also, for example, an ethics circuit unit can be incorporated into a wireless ID tag.
  • the antenna section 122 and the memory IC section 123 are formed in advance on the plastic substrate 121.
  • the present invention is not limited to this embodiment, and it is also possible to directly form a wireless ID tag on a target object by using a method such as inkjet printing. Also in this case, by using the configuration of the TFT according to the present invention, a high-performance wireless ID tag excellent in mechanical flexibility and impact resistance can be manufactured.
  • FIG. 14 is a front view schematically showing a configuration of a mobile phone using the TFT according to the present embodiment.
  • a mobile phone 140 has a display unit 141 comprising a liquid crystal display device or the like for displaying a telephone number or the like, and a communication comprising a whip antenna which is housed here.
  • a transmitting / receiving unit 144 capable of transmitting and receiving radio waves, a voice output unit 144 including a speaker or the like for outputting communication voice, a camera unit 144 having a CCD element or the like capable of taking a picture, and a mobile phone 144 A movable part for folding to fold as necessary, a plurality of operation switches for inputting telephone numbers and characters, and a voice input unit comprising a condenser microphone for inputting communication voice 4 and 7 are provided.
  • the mobile phone 140 has an integrated circuit such as an ID or LSI therein. Then, the integrated circuit using the TFT according to the present invention is appropriately used as an arithmetic element, a storage element, a switching element, and the like that constitute the mobile phone 140. Thereby, the mobile phone 140 functions as a mobile communication terminal.
  • the present invention is useful as a high carrier mobility TFT having excellent mechanical flexibility and impact resistance and a method for producing the same. Further, the TFT according to the present invention is useful for manufacturing a seat-like or paper-like active matrix type display, a portable device such as a wireless ID tag, a mobile phone, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Thin Film Transistor (AREA)

Abstract

本発明の電界効果型トランジスタは、ソース領域から注入されドレーン領域へ向かうキャリアが移動する半導体層を有し、前記半導体層が有機半導体材料とナノチューブとを含む複合材料で形成されている。前記ナノチューブは、複数個のナノチューブが連結されているナノチューブであっても良い。

Description

明 細 書
電界効果型トランジス夕およびその製造方法
〔技術分野〕
本発明は、 電界効果型トランジスタ及びその製造方法、 特に薄膜トラ ンジス夕及びその製造方法に関する。
〔技術背景〕
現在、 電界効果型の薄膜トランジスタ (以下、 T F Tともいう) は、 フラッ トパネルディスプレイ等における駆動素子として好適に使用され ている。 この T F Tの構成としては種々の構成が提案されているが、 基 本的には、 半導体層に接触して設けられたソース電極とドレーン電極と の間に流れる電流を、 半導体層に対して絶縁層を介して設けられたゲー 卜電極に印加される電圧 (つまり、 印加される電圧で発生する電界) に より制御するように構成されている。 通常、 T F Tは、 基板上の層を精 密に制御加工構成する薄膜制御プロセスにより作製される。 これらので F Tには、 優れた電気特性や高い安定信頼性が求められる。 現在実用化 されている T F Tでは、 アモルファスシリコン ( a — S i : H ) や低温 ポリシリコンを半導体層に使用し、 酸化シリコンゃ窒化シリコンをゲー ト絶縁層として使用する。 アモルファスシリコン ( a— S i : H ) や低 温ポリシリコンのデバイスをベースにしたアクティブマトリックス型液 晶ディスプレイ (A M L C D ) を作製する数々の材料と処理方式は、 高 温での製造プロセスが多く必要とされるため、 他の場合であれば有用な 多くの基板物質が使用できなくなる。
フラッ トパネルディスプレイの技術発展の中、 基板の軽量化、 機械的 柔軟性、 耐衝撃性あるいは省資源に対する要求も出てきていて、 シート ライクな、 あるいはペーパーライクなディスプレイや携帯機器などの実 現が要求されている。 しかし、 これらに有用な A M L C D用のプラスチ ック板や樹脂フィルムを、 1 5 0 °C乃至 2 5 0 °Cを越える温度での製造 工程において使用することは困難である。
近年、 上記アモルファスシリコンや低温ポリシリコンなどの半導体に 代わって、 半導体の性質を示す有機材料ベースからなる有機半導体を利 用する有機半導体 T F Tも研究されている。 有機材料を用いることで、 シリコンを用いたプロセスで必要とされる高コストのかかる設備を準備 することなく、 これらのデバイスを製造することが可能となる。 機械的 フレキシピリティが向上し、 室温かそれに近い低温でのプロセスでデバ イスを作製することが可能となり、 しなやかなプラスチック基板や樹脂 フィルムなどを利用して、 シートライクな、 あるいはペーパーライクな ディスプレイなどに適する基板として使用することができる。
従来から知られている、 ペン夕センなどの低分子系有機半導体材料を 半導体層に用いた T F Tでは、 単結晶または多結晶の結晶相からなる有 機半導体層としているが、 シリコン系半導体層を有する T F Tに比べて キャリア移動度が小さく、 約 0. 1〜 0 · 6 c m 2ZV sの値しか得ら れない。 結晶粒界が増えたり結晶性が低下すると移動度はさらに小さく なり、 T F Tとして使用できなくなる。
また、 有機半導体材料としてチォフェン系などの高分子系有機半導体 材料を用いることも可能であるが、 非晶質であるのでキャリア移動度は 小さい (例えば、 T a k e o K awa s e、 他 2名、 I DW ' 0 2,
AMD 2 /E P 1 - 1、 p p . 2 1 9— 2 2 2、 "P o l yme r S e m i c o n d u c t o r A c t i v e— M a t r i x B a c k p l n e F a b r i c a t e d b y I n k— J e t T e c h n i q u e " (非特許文献 1 ) 参照) 。 非特許文献 1によれば、 フルォレ ンーピチォフェン共重合体を半導体層に使用した T F Tで、 チャネルの キャリア移動度は 0. 0 0 3〜 0. 0 0 5 c m 2Z V sのような低い値 である。
非特許文献 1に示されているような低いキヤリァ移動度の半導体層を 有する TF Tでは、 通常、 約数百 mもの極端に形状が大きいゲート幅 が必要となり、 実用的ではない。 また、 キャリア移動度が小さい高分子 系有機半導体を使用する場合、 ソース電極、 ドレーン電極間の距離を極 めて短くする必要があり、 極端な微細加工が必要となり、 現実的ではな い。 また、 半導体層がチォフェン系などの高分子系有機半導体のみから なる T F Tでは、 オフ抵抗は高く、 半導体層と絶縁層との剥離強度は強 いが、 チャネルのキャリア移動度は小さく、 オン伝導性は低い。
これに対して、 最近研究されている、 力一ボンから作製された、 導電 性が非常に良好で強靱な性質を有する、 ナノ構造からなる力一ボンナノ チューブを半導体層に用いた T F Tでは、 キャリア移動度が大きく、 約 1 0 0 0〜 1 5 0 0 c m 2/ v s程度の値が得られている (例えば、 S am i R o s e n b l a t t、 他 5名、 N a n o L e t t . 2、 ρ ρ . 8 6 9— 8 7 2 ( 2 0 0 2 ) 、 "H i g h P e r f o r m a n c e E l e c t r o l y t e G a t e d C a r b o n N a n o t u b e T r a n s i s t o r s " (非特許文献 2 ) 参照) 。 また、 非 特許文献 2に示されるような高い値のキヤリァ移動度を有すると考えら れる半導体系カーボンナノチューブを半導体層として用いた T F Tの構 成と製造方法が報告されている (例えば、 P h a e d o n Av o u r i s、 C h e m. P h y s . 2 8 1、 p p . 4 2 9 - 44 5 ( 2 0 0 2 )、 F i g. 6、 "C a r b o n n a n o t u b e e l e c t r o n i c s " (非特許文献 3) 参照) 。
図 1 5は、 カーボンナノチューブを使用した半導体層を有する従来例 の TF Tの構成を模式的に示す断面図である。 非特許文献 3によれば、 図 1 5に示すように、 T F T 6 0は、 ゲ一ト電極を兼ねる P+シリコン基 板 6 1上に、 熱酸化シリコンからなる厚さ 1 5 0 n mのゲート絶縁層 6 2上が形成され、 ゲート絶縁層 6 2上に直径 1. 4 nmの半導体系カー ボンナノチューブを適度の分散密度で分散して配置し、 厚さ 1. 4 nm の半導体層 6 3を形成されている。 そして、 半導体層 6 3の上に、 チタ ン (T i ) あるいはコバルト (C o ) 金属を蒸着し、 カーボンナノチュ ーブとのコンタク ト部 6 6、 6 7の両側に、 チタンカーバイ トあるいは コバルトからなるソース電極 6 4、 ドレーン電極 6 5を形成し、 接合抵 抗が小さく トランスコンダクタンスが良好な特性を有する T F Tを構成 している。
しかし、 半導体層がナノチューブのみからなる T F Tでは、 チャネル のキャリア移動度は大きく、 オン伝導性は高いが、 ゲート絶縁層 6 2上 にナノチューブを載せただけで半導体層 6 3を形成しているので、 その 剥離強度は弱く、 製造が困難である。
また、 非特許文献 3にあるように、 直径 1 . 4 n mのカーボンナノチ ユーブなどのナノチューブを適度の分散密度で分散配置し、 1 . 4 n m の厚さの半導体層を形成する工程において、 ナノチューブの分散密度を 高くし、 これを一定とすることは、 実際には困難である。 さらに、 ナノ 構造の多数本のナノチューブを重ねずに並列配列させるプロセスは不安 定な要素となり、 T F Tの電気特性のバラツキが大きくなるという問題 がある。
〔発明の開示〕
本発明は、 このような問題に鑑みなされたもので、 機械的柔軟性、 及 び耐衝撃性が優れた高キャリア移動度の電界効果型トランジスタ、 特に T F Tであって、 極小の微細構造を必要とせず、 電気特性のバラツキの 少ない T F Tと、 その T F Tの製造方法を提供することを第 1の目的と している。
また、 本発明は、 前記電界効果型トランジスタを複数個配置したァク ティブマトリクス型のディスプレイや、 前記電界効果型トランジスタを 集積回路部に用いた無線 I Dタグや、 携行用機器を提供することを第 2 の目的としている。
そして、 これらの目的を達成するために、 本発明に係る電界効果型ト ランジス夕は、 ソース領域から注入されドレーン領域へ向かうキヤリァ が移動する半導体層を有し、 前記半導体層が有機半導体材料とナノチュ —ブとを含む複合材料で形成されている。 本明細書において、 ソース領 域及びドレーン領域とは、 ソース電極及びドレーン電極、 並びに、 ソ一 ス電極及びドレーン電極を半導体層に接続するコンタク ト層又は高濃度 不純物領域等を含む概念をいう。
前記半導体層は、 例えば前記ナノチューブの周囲が前記有機半導体材 料で被覆されている構成を含む。
また、 前記半導体層において、 前記ナノチューブが複数個連結されて いる構成であっても良い。 例えば、 前記ナノチューブは化学結合により 複数個連結することができる。 この場合、 前記ナノチューブが連結され た部分が前記有機半導体材料で被覆されていることが好ましい。
前記ナノチューブとして、 力一ボンナノチューブが好ましく用いられ る。
前記有機半導体材料として、 例えばチォフェン系材料からなる高分子 系有機半導体材料が好ましく用いられる。
前記有機半導体材料として、 他には、 例えばァセン系材料からなる低 分子系有機半導体材料が好ましく用いられる。
前記半導体層において、 好ましくは前記ナノチューブが所定の方向に ほぼ配向しているような構成とする。
前記電界効果型 1、ランジス夕は、 好ましくは T F Tである。
また、 前記電界効果型トランジスタは、 好ましくは基板上に形成され ている。 前記基板は、 例えばプラスチック板または樹脂フィルムで形成 することができる。
また、 本発明は、 ソース領域から注入されドレーン領域へ向かうキヤ リァが移動する半導体層を有する電界効果型トランジス夕の製造方法で あって、 有機半導体材料とナノチューブとを含む複合材料を用意するェ 程( a )、および前記複合材料を用いて前記半導体層を形成する工程(b )、 を含む。
例えば、 前記工程 ( a ) は、 前記有機半導体材料と前記ナノチューブ を混合して前記複合材料を調製する工程を含む。
また、 例えば、 前記工程 ( a ) においては、 前記有機半導体材料の溶 液に前記ナノチューブを混合して前記複合材料を調製し、 前記工程(b ) において、 前記複合材料を乾燥させて半導体層を形成する。
また、 例えば、 前記工程 ( a ) において、 前記有機半導体材料で被覆 されている前記ナノチューブを含む前記複合材料を調製する。 このよう な方法として、 前記有機半導体材料の溶液中に前記ナノチューブを浸漬 して濾過する工程を繰り返して前記複合材料を調製する方法を採用する ことができる。
前記ナノチューブとして、 カーボンナノチューブが好ましく用いられ る。
また、 前記工程 ( a ) において、 複数個が連結されている前記ナノチ ユーブを用いても良い。 この場合、 例えば、 前記工程 ( a ) の前に、 複 数個の前記ナノチューブを連結させる工程 ( c ) を含む。 前記工程 (c ) においては、 例えば複数個の前記ナノチューブを化学結合により連結さ せることができる。
また、 本発明に係るアクティブマトリクス型ディスプレイは、 請求の 範囲第 1項乃至第 1 5項のいずれかに記載の電界効果型トランジスタが、 画素を駆動するためのスィツチング素子として複数個配設されてなる。
また、 本発明に係る無線 I Dタグは、 請求の範囲第 1項乃至第 1 5項 のいずれかに記載の電界効果型トランジス夕が、 集積回路を構成するた めの半導体素子として利用されてなる。
また、 本発明に係る携行用機器は、 請求の範囲第 1項乃至第 1 5項の いずれかに記載の電界効果型トランジス夕が、 集積回路を構成するため の半導体素子として利用されてなる。
本発明の上記目的、 他の目的、特徴、 及び利点は、 添付図面参照の下、 以下の好適な実施態様の詳細な説明から明らかにされる
〔図面の簡単な説明〕
図 1は、第 1の実施形態の T F Tの構成を模式的に示す断面図である。 図 2は、 半導体層を形成する方法を示すフローチヤ一トである。
図 3は、 第 1の実施形態の T F Tの半導体層における有機半導体材料 とナノチューブとの関係を概念的に示す上面図である。
図 4は、第 2の実施形態の T F Tの構成を模式的に示す断面図である。 図 5は、 第 2の実施形態の T F Tの半導体層における有機半導体材料 とナノチューブとの関係を概念的に示す上面図である。
図 6は、第 3の実施形態の T F Tの構成を模式的に示す断面図である。 図 7 Aは、 第 3の実施形態の T F Tの製造工程において、 複合材料を 塗布した直後の半導体層における有機半導体材料とナノチューブとの関 係を概念的に示す上面図である。
図 7 Bは、 図 7 Aの状態からカーボンナノチューブを析出させた状態 の半導体層における有機半導体材料とナノチューブとの関係を概念的に 示す上面図である。
図 8は、第 4の実施形態の T F Tの構成を模式的に示す断面図である。 図 9は、 第 4の実施形態の T F Tの半導体層における有機半導体材料 とナノチューブとの関係を概念的に示す上面図である。
図 1 0は、 第 5の実施形態の T F Tの構成を模式的に示す断面図であ る。
図 1 1は、 第 5の実施形態の T F Tの半導体層における有機半導体材 料とナノチューブとの関係を概念的に示す上面図である。
図 1 2は、 第 6の実施形態に係るァクティブマトリクス型ディスプレ ィの構成を模式的に示す断面図である。
図 1 3は、 第 6の実施形態に係る T F Tを用いた無線 I D夕グの構成 を模式的に示した斜視図である。 図 1 4は、 第 6の実施形態に係る T F Tを用いた携帯電話の構成を模 式的に示した正面図である。
図 1 5は、 カーボンナノチューブを使用した半導体層を有する従来例 の T F Tの構成を模式的に示す断面図である。
〔発明を実施するための最良の形態〕
以下、 本発明の実施の形態について、 図面を参照しながら説明する。 なお、 以下で説明する図面において、 同一要素については同じ番号を付 している。
(第 1の実施の形態)
第 1の実施形態は、 半導体層が有機半導体材料とナノチューブとを含 む複合材料によって形成された T F Tにかかる。
図 1は、 本実施形態の T F Tの構成を模式的に示す断面図である。 図 1に示すように、 T F T 1は、 基板 2上にゲート電極 5と、 ゲート絶縁 層 3と、 半導体層 4と、 ソ一ス電極 6と、 ドレーン電極 7とを有してい る。 具体的には、 基板 2の主面上にゲート電極 5が設けられており、 こ のゲート電極 5を覆うようにゲート絶縁層 3が設けられている。そして、 ゲート絶縁層 3上に、 半導体層 4が設けられており、 半導体層 4の上に ソース電極 6及びドレーン電極 7が、 互いに分離するように設けられて いる。 尚、 ゲート電極 5は、 平面視においてソース電極 6とドレ一ン電 極 7との間に位置するように設けられている。 このような構成により、 ゲート電極 5が、 ゲート絶縁層 3によって、 半導体層 4に電気的に生成 されるチャンネル 8から分離される構成となる。
半導体層 4は、 高分子系有機半導体材料とカーボンナノチューブとを 含む複合材料を用いて形成されている。 本実施形態において、 複合材料 として、 フルオレン一ビチォフェン共重合体からなる高分子系有機半導 体材料と、 通常、 カーボンナノチューブ作製時に得られる半導体系と金 属系が混在した混合系の力一ボンナノチューブとが複合されたものを使 用している。
以下、 · 本実施形態の T F T 1の製造方法について説明する。 図 2は、 半導体層 4を形成する方法を示すフローチヤ一トである。 図 2に示すよ うに、 フルオレン一ビチォフェン共重合体からなる高分子系有機半導体 材料と、 上記混合系のカーボンナノチューブ材料とを混合した複合材料 をあらかじめ調製する複合材料調製工程 (S t 1 ) と、 調製した複合材 料を使用して、 ゲート絶縁層 3の上に半導体層 4を形成する半導体層形 成工程 ( S t 2 ) を有する。
複合材料調製工程において、 望ましくは、 有機半導体材料とナノチュ —ブとを混合比率を調整して混合する。混合比率を調整することにより、 T F T 1のキヤリァ移動度を調整することができる。 ナノチューブの混 合比率は、 全体に対して体積比で約 3 0〜 9 0 %が良い。 ナノチューブ の体積比が 3 0 %より低いと、 半導体層 4において十分な導電率を得る ことが困難となる。また、ナノチューブの体積比が 9 0 %より大きいと、 十分な結着作用を発現させることが困難となり、 安定した半導体層 4の 形成が困難となる。 ナノチューブの体積比は、 約 5 0〜 7 0 %がさらに 良好である。 また、 複合材料調製工程において、 複合材料調製工程及び 半導体層形成工程が円滑に進むように、 他の工程や材料を加えることも 可能である。
尚、 上記においては、 複合材料調製工程 (S t 1 ) により複合材料を 用意することとしたが、 複合材料調製工程 (S t 1 ) に換えてすでに調 製が完了している複合材料を用意する工程であってもよい。
T F T 1は、 複合材料を用いて半導体層 4が形成されるので、 多数本 のナノチューブのみを分散して配列させることにより半導体層を形成す るという困難な工程が不要となり、 優れた特性を有する T F Tを容易に 安定して製造することができる。
次に、 T F T 1全体の製造方法を説明する。 まず、 基板 2上にゲート 電極 5を形成するため、 所定の電極材料を、 所望の形状が得られるよう. に予めパターニングされたスクリーン版を用いることによって印刷し、 十分に乾燥させる。 この工程によって、 基板 2上に所望の形状のゲート 電極 5が形成される。
次に、 ゲート絶縁層 3を形成するために、 所定の絶縁材料を予めパタ —ニングされたスクリーン版を用いることによって、 基板 2及びゲート 電極 5上に印刷し、 十分に乾燥させる。 この工程によって、 基板 2及び ゲート電極 5上にゲート絶縁層 3が形成される。
次に、 ゲート絶縁層 3上に上述の半導体形成工程により、 半導体層 4 を形成する。 具体的には、 複合材料調製工程であらかじめ調製した有機 半導体材料とナノチューブとを混合した複合材料を、 ゲート絶縁層 3上 に塗布することにより半導体層 4を形成する。
そして、 半導体層 4上に所定の電極材料を蒸着して、 ソース電極 6と ドレーン電極 7とを形成する。
図 3は、 本実施形態の T F T 1の半導体層 4における有機半導体材料 とナノチューブとの関係を概念的に示す上面図である。 図 3に示すよう に、 半導体層 4においては、 長さ約 0 . 1〜数 ^ m、 直径約 1〜数 n m からなる、 半導体系と金属系が混在した材料である混合系の力一ポンナ ノチューブ 1 0の 1本ずつの周囲が、 柔軟なフルオレン一ビチォフェン 共重合体からなる高分子系有機半導体材料 1で被覆されている。 すなわ ち、 半導体層 4においてカーボンナノチューブ 1 0が有機半導体材料 1 1の中に混合分散されている。 本実施形態の T F T 1のチャネルの移動 度は 1 1 0 c m 2 / v sであり、 半導体層 4が有機半導体材料のみから なる T F Tより大幅に向上している。
T F T 1 のオン時において、 半導体層 4における電流は、 混合系の力 —ボンナノチューブ 1 0の中を流れ、 近接した短距離間に配置されたナ ノチューブ 1 0間においては、 ナノチューブ 1 0の周囲を取り巻く高分 子系有機半導体材料 1 1の中を電流が流れる。 従って、 本実施形態によ ると、 半導体層が高分子系有機半導体材料のみからなる T F Tより、 キ ャリァ移動度やオン特性が大幅に改善した T F T 1 とすることができる。
T F T 1は、 オフ時において、 カーボンナノチューブ 1 0の個々がその 周囲を有機半導体材料 1 1により被覆されていて直接接触することがな いので、 半導体層がナノチューブのみからなる T F Tのオフ特性よりも 良好となる。 回路的にはカーボンナノチューブ 1 0の個々の接触部に存 在する有機半導体材料 1 1が実質的にスィッチ部となるので、 基板上に 困難な極端な微細パターンを形成しなくても微細構造を有しているので 製造し易く、 かつ特性バラツキの少ない T F Τとすることができる。 上述のように、 本実施形態の T F Τ 1の特性は、 オン状態、 オフ状態 とも、 有機半導体材料のみあるいはナノチューブ材料のみで半導体層が 形成された T F Τの特性の中間値になるので、 オン状態、 オフ状態での 片方の特性が不十分な場合の改善が可能となる。 例えば、 キャリア移動 度が低い有機半導体材料のみからなる半導体層を有する T F Τの場合、 そのゲート幅は約数百 /i mの形状が必要となり、 また、 キャリア移動度 が極めて高いナノチューブ材料のみからなる半導体層を有する T F Tの 場合、約 0 . 1 mの極微のゲ一ト幅となり、 どちらも実用的ではない。 これに対して、 本実施形態の T F T 1のキャリア移動度は、 両者の中間 値となり、 数 m程度の実用的なゲート幅で設計製作でき、 長く広いチ ャネル領域も使えるので、 オン時、 オフ時の導電率に合わせてチャネル 形状の設計の自由度が高くなる。
さらに、 本実施形態の T F T 1においては、 柔軟な半導体層 4を形成 できる高分子系有機半導体材料とナノチューブとを混合した複合材料を 用いて半導体層 4を形成したことにより、 高分子系有機半導体材料のみ からなる半導体層を有する T F Tや、 ナノチューブ材料のみのからなる 半導体層を有する T F丁より、 剥離強度などの機械的強度がさらに向上 し、高分子系有機半導体材料のみからなる半導体層を有する T F丁より、 化学的安定性、 耐熱性が向上し、 製造し易く利用に供し易い T F Tとす ることができる。 T F T 1の製造工程において、 半導体層 4を形成する時に、 あらかじ めゲ一ト絶縁層 3の表面を配向処理し、 半導体層 4に配向をもたせても よい。 配向処理の方法は液晶技術におけるラビング法など、 当該業者に 周知の方法を利用できる。 これらにより、 有機半導体材料 1 1を配向さ せるとともに、 カーボンナノチューブ 1 0を半導体層 4の内部で良好に 方向をそろえて配列させることができ、 さらに特性を改善することがで さる。
また、 T F Τ 1の製造方法において、 複合材料調製工程は、 高分子系 有機半導体材料の溶液中にナノチューブを浸漬して濾過し、 これを繰り 返すことにより複合材料を調製する工程としてもよい。 この工程による と、 余分な溶液がおおよそ取り除かれ、 ナノチューブの周囲に有機半導 体材料をさらに良好に被覆させた複合材料を調製することができる。 こ の複合材料を用いて、 容易に複合材料からなる半導体層 4を形成するこ とができる。
複合材料調製工程は、 ナノチューブを分散させた高分子系有機半導体 材料の溶液を噴霧し、 乾燥させて複合材料を調製してもよい。 この工程 により、 周囲が有機半導体材料で被覆されたナノチューブからなる粉体 状の複合材料を調製できる。 この複合材料を用いることにより、 容易に 複合材料からなる半導体層 4を形成することができる。
複合材料調製工程は、 有機半導体材料の高濃度溶液中に多量のナノチ ュ一ブを投入し練合してペースト状の複合材料を調製してもよい。 そし て、 半導体層形成工程において、 ペース ト状の複合材料を塗布あるいは 印刷し、 乾燥させて半導体層を形成してもよい。 このような複合材料調 製工程によると、 ナノチューブの周囲に有機半導体材料を被覆したぺ一 スト状の複合材料を調製でき、 半導体層形成工程でこの複合材料を塗布 あるいは印刷し乾燥させることで、 半導体層を容易に形成することがで きる。
上記基板 2 としては、 例えばポリ力一ポネートからなるプラスチック 板が用いられるが、 フレキシブルで曲げることが可能なその他のプラス チック板や薄いガラス基板、 薄い厚さのポリイミ ドフィルムなどのしな やかな性質を有する樹脂フィルムなども使用できる。 このような基板を 使用することにより、 T F Tをべ一パ一ディスプレイあるいはシートデ ィスプレイなどに利用することができる。
また、 上記ゲート電極 5、 ソース電極 6、 ドレーン電極 7に使用でき る物質は、 電気導電性を持ち、 基板 2や半導体層 4と反応しないものな らば使用可能である。 ド一プしたシリコンや金、 銀、 白金、 プラチナ、 パラジウムなどの貴金属や、 リチウム、 セシウム、 カルシウム、 マグネ シゥムなどのアルカリ金属やアルカリ土類金属の他に、 銅、 ニッケル、 アルミニウム、 チタン、 モリブデンなどの金属、 また、 それらの合金も 使用できる。 その他、 ポリピロール、 ポリチォフェン、 ポリア二リン、 ポリフエ二レンビニレンなどの導電性を持つ有機物も使用できる。特に、 ゲ一ト電極 5は他の電極 6 , 7よりも電気抵抗が大きくても動作可能で あるので、 製造を容易にするためにソース電極 6、 ドレ一ン電極 7とは 異なる材料を使用することも可能である。 これらの電極は、 室温あるい は室温に近い温度で被着形成する室温プロセスが可能である。
また、 上記ゲート絶縁層 3は、 電気絶縁性を持ち、 基板 2や電極 5 , 6 , 7、 半導体層 4と反応しないものならば、 使用可能である。 基板 2 として先に例示した柔軟なもの以外に、 シリコンを使用することができ る。 シリコンからなる基板 2上に通常のシリコン酸化膜を形成し、 これ をゲ一ト絶縁層 3としてもよい。 さらに、 酸化膜形成後に樹脂などの薄 層を設けてもゲート絶縁層 3として機能する。 また、 基板 2や電極 5 , 6, 7と異なる元素で構成される化合物を C V D、 蒸着、 スパッ夕など の方法で堆積することにより、 または塗布、 吹き付け、 電解付着などす ることによりゲート絶縁層 3を形成してもよい。 また、 T F Tのゲート 電圧を下げるために、 誘電率の高い物質をゲート絶縁層として用いるこ とも知られており、 誘電率の大きい化合物であって強誘電性化合物や強 誘電体以外の化合物を用いてもよい。 さらに、 無機物に限らず、 ポリフ ッ化ビニリデン系やポリシアン化ビニリデン系などの誘電率の大きな有 機物でもよい。
なお、 本実施形態では、 複合材料に含まれる高分子系有機半導体材料 としてチォフェン系共重合体を用いたが、 キャリア移動度が適度の値を 有する高分子系有機半導体材料であれば同様に実施可能である。 また、 高分子系有機半導体材料に代えて低分子系有機半導体材料を用いてもよ く、 例えば、 高いキャリア移動度を有するァセン系材料を好ましく用い ることができる。 このような有機半導体材料が含まれる複合材料で半導 体層を形成することにより、 優れた特性を有する T F Tとすることがで さる。
また、 ナノチューブとしてカーボンナノチューブを用いたが、 将来に おいて、 カーボン以外の材料からなるナノチューブも使用できる可能性 がある。
また、 高分子系有機半導体材料として、 液晶相を有している高分子系 有機半導体材料の溶液を用いる場合は、 配向処理により、 高分子系有機 半導体分子が並ぶとともに、 ナノチューブをもさらに良好に配列させる ことができる。 また、 高分子系有機半導体材料は、 それ自身が液晶性高 分子からなる有機半導体材料であってもよく、 配向処理し硬化させて用 いることができる。 液晶性高分子からなる有機半導体材料を使用した場 合は、さらに配向性が向上する。ナノチューブを配向させることにより、 より隙間なくナノチュ一ブを充填させることができ、 ナノチューブの分 散密度を向上させることができ、 キヤリァ移動度をより向上させること ができる。
また、 本実施形態の T F T 1は、 ゲート電極 5を基板上に設けたポト ムゲ一ト型としたが、 T F T 1の構成は図 1に示すものに限定されるこ とはなく、 例えばゲート電極をゲート絶縁層上に基板とは反対側に設け たトップゲート型の T F Tであっても良い。 (第 2の実施形態)
第 2の実施形態は、 半導体層が有機半導体材料とナノチューブとを含 む複合材料によって形成された T F Tにかかる。
図 4は、 本実施形態の T F Tの構成を模式的に示す断面図である。 図 4に示すように、 T F T 1 5は、 基板 2上にゲ一ト電極 5と、 ゲ一ト絶 縁層 3と、 ソース電極 6と、 ドレ一ン電極 7と、 半導体層 1 6とを有し ている。具体的には、基板 2の主面上にゲート電極 5が設けられており、 このゲ一ト電極 5を覆うようにゲート絶縁層 3が設けられている。 そし て、 ゲート絶縁層 3上に、 ソース電極 6及びドレーン電極 7が互いに分 離するように設けられており、 ソース電極 6、 ドレ一ン電極 7、 ゲ一ト 絶縁層 3を覆うように半導体層 1 6が設けられている。 尚、 ゲート電極 5は、 平面視においてソース電極 6とドレーン電極 7 との間に位置する ように設けられている。 このような構成により、 ゲート電極 5が、 ゲー ト絶縁層 3によって、 半導体層 4に電気的に生成されるチャンネル 8か ら分離される構成となる。
本実施形態の T F T 1 5の製造方法は、 半導体層 1 6の形成方法を除 いて、 第 1の実施形態の T F T 1 (図 1参照) の製造方法とは各構成要 素の積層順序が異なるのみなので、 半導体層 1 6の形成方法以外の説明 を省略する。
本実施形態では、 高分子系有機半導体材料と半導体系のカーボンナノ チューブとを含む複合材料を用いて半導体層 1 6を形成する。詳しくは、 フルオレン一ビチォフェン共重合体からなる高分子系有機半導体材料と、 通常、 半導体系と金属系が混在して得られるカーボンナノチューブから 選別して得られた半導体系のカーボンナノチューブとを混合して複合材 料を調製する。
半導体層 1 6を形成する手順は、 第 1の実施形態の図 2に示す手順と 同様であり、 上記有機半導体材料の溶液中に半導体系の力一ボンナノチ ュ一ブを浸漬して得られる複合材料の溶液を調製する複合材料調製工程 (S t l ) と、 その複合材料の溶液をゲート絶縁層 3の上に塗布し、 あ るいはインクジェッ ト法などによる吹き付けをし、 これを濃縮して有機 半導体材料が被覆された半導体系の力一ボンナノチューブを析出するこ とにより半導体層 1 6を形成する半導体層形成工程(S t 2)を有する。 かかる工程により、 ナノチューブの 1本ずつの配列を調整して分散配列 させるという困難な工程を有することなく、 多数本のナノチューブを分 散配列させることができ、 簡便な工程で半導体層 1 6を形成することが できる。
図 5は、 本実施形態の T F T 1 5の半導体層 1 6の有機半導体材料と ナノチューブとの関係を概念的に示す上面図である。 複合材料調製工程 において、 半導体系のカーボンナノチューブを高分子系有機半導体溶液 に浸漬することにより、 半導体系の力一ボンナノチューブ 1 7の 1本ず つの周囲は、 柔軟なフルオレン一ビチォフエン共重合体からなる高分子 系有機半導体材料 1 8で被覆される。 そして、 カーボンナノチューブ 1 7 と高分子系有機半導体材料 1 8とを混合した有機半導体材料の溶液を、 ゲ一ト絶縁層 3あるいは電極 6, 7上の所望の位置に塗布あるいは吹き 付け付着させ、 これを濃縮し析出することにより、 半導体層 1 6を形成 する。 すなわち、 半導体層 1 6は、 1本ずつの周囲が柔軟な高分子系有 機半導体材料 1 8で被覆された、 長さ約 0. 1〜数 m、 直径約 1〜数 nmの半導体系のカーボンナノチューブ 1 7が積み重なって形成される。 このように、 高分子系有機半導体材料 1 8は、 カーボンナノチューブ 1 7の各周囲を容易になめらかに被覆することができる。
ここで、 約 0. 0 0 3〜0. 0 1 c m 2/ y sの低いキヤリァ移動度 を有するチォフェン系高分子系有機半導体材料 1 8と、 約 1 0 0 0〜 1 5 0 0 c m 2ノ V sの高いキヤリァ移動度を有する半導体系力一ポンナ ノチューブ 1 7とからなる半導体層 1 6を有する TF T 1 5を作製した。 この T F T 1 5のチャネル 8のキャリア移動度は、 1 7 0 c m 2/ V s の値を示し、 高いキャリア移動度を有する、 優れた特性の T F Tとする ことができた。
T F T 1 5のオン時には、 半導体層 1 6における電流は、 半導体系の ナノチューブ 1 7の中を大部分が流れ、 近接した短距離間に配列したナ ノチューブ 1 7間においては、 ナノチューブ 1 7の周囲に形成された高 分子系有機半導体材料の中を電流が流れる。 従って、 キャリア移動度や オン特性が、 有機半導体材料のみで半導体層を形成した T F Tより大幅 に改善される。
また、 T F Tのオフ時においては、 ナノチューブ 1 7の個々とその周 囲に被覆形成された高分子系有機半導体材料 1 8とが複合した半導体層 1 6となっているので、 半導体層 1 6がナノチューブ 1 7のみからなる T F Tのオフ特性よりも良好となる。 また、 半導体層 1 6がナノチュー ブ 1 7のみからなる T F Tと比較して長く広いチヤンネル領域も使える ので、 オン時、 オフ時の導電率に合わせてチャンネル形状の設計の自由 度が高くなる。
さらに、 機械的に柔軟な膜を形成できる高分子系有機半導体材料とナ ノチューブとを含む複合材料からなる半導体層 1 6としたことにより、 高分子系有機半導体材料のみの場合やナノチューブ材料のみの場合より、 剥離強度などの機械的強度がさらに向上し、 高分子系有機半導体材料の みの場合より、 化学的にも耐熱的にもその信頼性は向上し、 製造し易く 利用に供し易い T F Tとすることができる。
また、 T F T 1 5の製造方法において、 複合材料調製工程がナノチュ ーブを分散した複合材料を調製する工程であって、半導体層形成工程が、 複合材料を噴霧し乾燥させて半導体層を形成する工程であってもよい。 これにより、 複合材料調製工程で、 有機半導体材料で周囲を被覆するよ うにナノチューブを分散した複合系半導体材料の溶液を用意し、 半導体 層形成工程で、基板上の所定の位置に複合系半導体材料の溶液を噴霧し、 あるいはィンクジエツ トの手段などで吹き付け塗布し、 乾燥させること により、 半導体層を容易に形成することができる。 (第 3の実施形態)
第 3の実施形態は、 半導体層が有機半導体材料とナノチューブとを含 む複合材料によって形成された T F Tにかかる。
図 6は、 本実施形態の T F Tの構成を模式的に示す断面図である。 図 6に示すように、 T F T 2 0は、 基板 2上にソース電極 6と、 ドレーン 電極 7 と、 半導体層 1 3と、 ゲート絶縁層 3と、 ゲート電極 5とを有す るトップゲート型の T F Tである。 具体的には、 基板 2の主面上にソ一 ス電極 6及びドレーン電極 7が互いに分離するように設けられており、 ソース電極 6、 ドレ一ン電極 7、 及び基板 2を覆うように半導体層 1 3 が設けられ、 半導体層 1 3上にゲート絶縁層 3が設けられ、 ゲート絶縁 層 3上にゲート電極 5が設けられている。 尚、 ゲート電極 5は、 平面視 においてソース電極 6とドレーン電極 7との間に位置するように設けら れている。 このような構成により、 ゲート電極 5が、 ゲート絶緣層 3に よって、 半導体層 1 3に電気的に生成されるチャンネルから分離される 構成となる。
本実施形態の T F T 2 0の製造方法は、 半導体層 1 3の形成方法を除 いて、 第 1の実施形態の T F T 1 (図 1参照) の製造方法とは各構成要 素の積層順序が異なるのみなので、 半導体層 1 3形成方法以外の説明を 省略する。
半導体層 1 3を形成するために用いられる複合材料は第 2の実施形態 と同様である。 また、 半導体層 1 3の形成方法は、 ナノチューブ 1 7を 配向させる点を除いて第 2の実施形態と同様である。 すなわち、 半導体 層形成工程において、 少なくともチャネル 8を形成する部分に相当する 基板 2の表面に形成したポリイミ ド膜ゃ単分子膜などの配向膜を、 ラビ ング法などで所定の方向に配向処理した後、 複合材料の溶液をゲート絶 縁層 3の上に塗布あるいは吹き付けし、 これを濃縮して有機半導体材料 が被覆された半導体系のカーボンナノチューブ 1 7を析出させて半導体 層 1 3を形成する。 図 7 Aは、 半導体層形成工程において、 複合材料の溶液を基板 2の表 面に塗布した直後の半導体層 1 3における有機半導体材料とナノチュー ブとの関係を概念的に示す上面図である。 図 7 Bは、 塗布した複合材料 を濃縮して有機半導体材料が被覆された半導体系のカーボンナノチュー ブ 1 7を析出させた状態の半導体層 1 3における有機半導体材料とナノ チューブとの関係を概念的に示す上面図である。 図 Ί Aに示すように、 複合材料の溶液 1 9中でカーボンナノチューブ 1 7の個々は基板 (図示 省略) 表面の配向処理方向 (矢印 A ) に対して、 物理的におおよそ向き をそろえて配列される。この配向原理は液晶配向技術から明らかである。 この状態で複合材料の溶液 1 9を濃縮すると、 図 7 Bに示すように、 力 一ボンナノチューブ 1 7は、 その周囲が高分子系有機半導体材料 1 8で 被覆されつつ、 良好に配向された状態で基板 (図示省略) 上に析出され る。 配向方向は、 ソース電極, ドレーン電極 (図示省略) を結ぶ線に対 して、 所望の電気特性が得られる方向を選択する。 例えば、 カーボンナ ノチューブの配向方向に関して、 オン特性が向上される方向は、 ソース 電極とドレ一ン電極を結ぶ線との平行方向である。
また、 有機半導体材料として液晶性の高分子系有機半導体材料を用い る場合は、 配向処理により、 高分子系有機半導体分子が並ぶとともに、 ナノチューブをさらに良好に配列させることができる。 また、 ナノチュ —ブをそろえて配列させることにより、 隙間がなく充填率が高い半導体 層 1 3を形成することができるので、分散密度を向上させることができ、 高いキャリア移動度を有する T F Tを構成することができる。 また、 ナ ノチューブがそろえて配列されていることにより、 電子がよりスムーズ に流れるという効果もあり、 かかる効果はキヤリァ移動度の向上に寄与 する。
(第 4の実施形態)
第 4の実施形態は、 半導体層が有機半導体材料とナノチューブとを含 む複合材料によって形成された T F Tにかかる。 前記ナノチューブは複 数個が連結されているナノチューブを含む。
図 8は、 本実施形態の T F Tの構成を模式的に示す断面図である。 図 8に示すように、 本実施形態の T F T 2 1の構成は、 半導体層 2 2以外 は、 図 1に示す第 1の実施形態の構成と同様であるので、 半導体層 2 2 の形成工程以外の説明は省略する。
第 4の実施形態では、 半導体層 2 2は、 有機半導体材料と、 複数個が 連結されているナノチューブとを含む複合材料で形成されている。
さらに詳しくは、 複合材料は、 キャリア移動度が高いカーボンナノチ ユーブを用いその端部を共有結合などによって相互に化学結合させて連 結した力一ボンナノチューブと、 フルオレン—ビチォフェン共重合体か らなる高分子系有機半導体とを含む。 カーボンナノチューブの連結個数 は限定されることなく、 2個連結されたもの、 3個以上連結されたもの を含んでいてもよい。
図 9は、 本実施形態の T F Tの半導体層 2 2の有機半導体材料とナノ チューブとの関係を概念的に示す上面図である。 複合材料調製工程にお いて、 カーボンナノチューブ 2 5のュニッ ト間を結合部 2 7によ'り相互 に結合させて連結した力一ボンナノチューブを含むナノチューブ材料と、 有機半導体材料 2 6とを含む複合材料を調製する。
例えば、 以下に述べるように、 カーボンナノチューブ 2 5間を少なく ともその端部で共有結合などによって化学結合させる方法により連結し たナノチューブ材料をあらかじめ用意しておく。 カーボンナノチューブ ユニッ トの典型的な例は (ィヒ 1 ) の形で示される。
(化 1 )
Figure imgf000022_0001
(化 1 ) に示す 5員環と 6員環で形成されたカーボンナノチューブ先 端同士を化学結合させるために、 (化 2 ) に示すビスへキシルォキシ基 で置換したビススルホンを準備する。
(化 2 )
Figure imgf000023_0001
OC6Hn 3
この (化 2) に示す化合物と、 (化 1 ) のナノチューブ等モル量とを 1 , 2, 4— トリクロ口ベンゼン溶媒で環流し、 反応させる。 約 2 0時 間の反応後に、 カーボンナノチューブ間が連結された (ィ匕 3 ) に示す化 合物が生成される。
(化 3 )
Figure imgf000023_0002
(化 3 ) に示すように、 力一ボンナノチューブは、 ビス— 0—キノジ メ夕ン基によってその端部が化学結合されて連結する。このようにして、 力一ボンナノチューブ 2 5間を共有結合で連結させたナノチューブ材料 を用意する。
本実施形態においては、 上記のような合成方法で、 形状がナノ構造で 長さ 0. 2〜3 /m、 直径約 1. 5 nm ( 1. 4 nm以上) からなる力 —ボンナノチューブ 1 0同士が、 その端部に共有結合する結合部 1 2の スぺ一ザで連結される。
半導体層 2 2において、 図 9に示すように、 少なく とも上記の合成方 法で連結させた力一ボンナノチューブ 2 5の周囲や、 その結合部 2 7や 結合部 2 7の周囲 2 8が、 非晶質で機械的に強度が高いフルオレンービ チォフェン共重合体の高分子系の有機半導体 2 6の材料で被覆される。 すなわち、 図 9において、 半導体層 2 2は、 ナノ構造からなる互いに連 結したカーボンナノチューブ 2 5が有機半導体材料 2 6の中に分散され ていて、 カーボンナノチューブ 2 5やその結合部 2 7および結合部 2 7 の周囲 2 8は、 非晶質で機械的に強度が高い高分子系有機半導体材料か らなる有機半導体 2 6で被覆されている。 その結果、 多数の連結した力 —ボンナノチューブ 2 5の間にしなやかな材料である高分子系有機半導 体材料が、 良好に充填され、 全体をしなやかに保持することができる。
T F T 2 1オン時において、 力一ボンナノチューブ 2 5を伝搬してき たキャリアは、 力一ボンナノチューブ 2 5間の結合部 2 7の周囲 2 8に おける有機半導体材料 2 6を介して、 カーボンナノチューブ 2 5間を伝 わることができる。 すなわち、 有機半導体材料 2 6によって、 カーボン ナノチューブ 2 5が有する高いキヤリァ移動度が結合部 2 7における化 学結合において低下するのを補うことができ、 高いキヤリァ移動度の T F Tとすることができる。 本実施形態の T F T 2 1のチャネル 8のキヤ リア移動度は、 2 1 0 c m 2 / V sであり、 高いキャリア移動度を有す ることが示された。
上記により、 半導体層 2 2を形成する複合材料において、 相互に結合 させて連結したナノチューブ 2 5を用いることにより、 半導体層 2 2内 のナノチューブ 2 5の配置数あるいは充填密度をさらに高めることがで き、 ナノチューブ 2 5間の電気的な接合点密度をさらに高くでき、 キヤ リア移動度をさらに向上させることができる。 また、 互いに化学的に連 結させたナノチューブ 2 5が半導体層 2 2に含まれることにより、 半導 体層 2 2の機械的強度が向上する。 また、 カーボンナノチューブ 2 5およびカーボンナノチューブ 2 5間 の結合部 2 7の少なくとも周囲 2 8を、 有機半導体材料 2 6で覆うこと により、 望ましくは高分子系有機半導体材料で覆うことにより、 力一ボ ンナノチューブ間の結合部や結合部の周辺などが強固な膜を形成する高 分子系有機半導体で覆われることになるので、 カーボンナノチューブは 強固に配置保持され、 機械的強度の高い T F Tとなる。
また、 T F T 2 2のオフ時において、 ナノチューブ 2 5個々はその周 囲に有機半導体材料 2 6が被覆されていて直接接触することがないので、 T F T 2 1のオフ特性は良好となる。
微視的にはナノチューブ 2 5個々の接合点に存在する有機半導体材料 2 6がスィツチ部となるので、 作製に困難である極端な微細パターンを 基板上に形成することなく、 特性バラツキの少ない T F Tとすることが できる。
なお、 複合材料調製工程、 半導体層形成工程において、 様々な方法を 採用しうることは、 第 1の実施形態と同様である。 ただし、 本実施形態 においては、 複合材料調製工程前に、 あらかじめ相互に連結されたナノ チューブを用意し、 これを複合材料の調製に用いる点のみ、 第 1の実施 形態とは異なる。
なお, 前記したような本願発明の構成により, 半導体層が、 有機半導 体とナノチューブ (N T ) とを混合して複合化して形成した複合系半導 体層であるように構成され、 複合系半導体層内のナノチューブは混合分 散されたものとなっているような場合と比べ, 力一ボンナノチューブの 配置数を増やし、 ナノチューブ間における電気的な接合点の密度を高く し、 より特性が高い薄膜トランジスタを実現できる。
(第 5の実施形態)
第 5の実施形態は、 半導体層が有機半導体材料とナノチューブとを含 む複合材料によって形成された T F Tにかかる。 前記ナノチューブは複 数個が連結されているナノチューブを含む。 図 1 0は、 本実施形態の T F Tの構成を模式的に示す断面図である。 図 1 0に示すように、 本実施形態の T F T 2 3の構成は、 半導体層 2 4 以外は、 図 4に示す第 2の実施形態の構成と同様であるので、 半導体層 2 4の形成工程以外の説明は省略する。
第 5の実施形態では、 半導体層 2 4は、 有機半導体材料と、 複数個が 連結されているナノチューブとを含む複合材料で形成されている。
半導体層 2 4を形成する方法は、 まず、 高分子系有機半導体材料の溶 液中に複数本連結させたカーボンナノチューブを浸漬して複合材料を調 製する複合材料調製工程と、 前記複合材料をゲート絶縁層 3の上に塗布 あるいはインクジェッ ト法などによる吹き付けをして濃縮または乾燥さ せ、 その後、 高分子系有機半導体材料で被覆された連結した力一ポンナ ノチューブを析出する工程により、 ゲ一ト絶縁層 3の上に半導体層 2 4 を形成する半導体層形成工程を有する。
図 1 1は、 本実施形態の T F T 2 3の半導体層 2 4における有機半導 体材料とナノチューブとの関係を示す概念的に示す断面図である。 半導 体層 2 4の形成には、 フルオレン—ビチォフェン共重合体の高分子系有 機半導体材料からなる有機半導体材料 2 6と、 以下に述べる合成法で作 成した、 複数本のカーボンナノチューブ 2 5が連結したナノチュープ材 料との複合からなる複合材料を使用する。 カーボンナノチューブ 2 5間 を少なくともその端部で化学結合させて複数本連結したナノチューブ材 料の合成方法は以下の通りである。
(化 4 ) に示すカーボンナノチューブの (トリメチルシリル) ェチニ ル誘導体を、 T H F中で、 フッ化物イオンにより脱シリル化し、 (ィヒ 5 ) のナノチューブ誘導体分散液を形成する。 反応が進んで、 (化 5 ) に示 すナノチューブのアルキル誘導体化合物が十分形成されたら、 卜リフル ォロ酢酸で反応を止める。 (化 4)
Figure imgf000027_0001
そして、 形成された (化 5 ) の化合物を、 室温空気中、 クロ口べンゼ ンの中で、 C u C l と TMEDAにより 6時間、 酸化カップリングする ことにより、 (化 6 ) に示すカーボンナノチューブが複数本連結した化 合物が合成される。
(化 6 )
Figure imgf000027_0002
図 1 1に すように、 長さ 0. 2〜 3 iim、 直径約 1. 5 nm ( 1. 4 nm以上) のナノ構造からなるカーボンナノチューブ 2 5を、 上記に 述べた合成方法によって、 2〜 4本のカーボンナノチューブ 2 5を共有 結合によって連結させ、 連結させたカーボンナノチューブ 2 5と高分子 系有機半導体材料 2 6とからなる半導体層 1 6を形成した。 本実施形態 のように、 高キヤリァ移動度を有するカーボンナノチューブ 2 5を複数 本連結させたカーボンナノチューブを用いることで、 カーボンナノチュ ーブ同士をより近接させて配置することができ、 また力一ボンナノチュ
—ブの結合部 2 7においては有機半導体 2 6を介してキヤリァが移動で きる電気的な接合点が増加することになり、 より高いキヤリァ移動度を 有する半導体層 2 4とすることができる。
約 0. 0 0 3〜 0. 0 2 c m2Z V sの低いキャリア移動度を有する チォフェン高分子系の有機半導体材料 2 6と、 約 1 0 0 0〜 1 5 0 0 c m2ZV s の高いキヤリァ移動度を有するカーボンナノチューブ 2 5を 複数本連結させた力一ボンナノチューブを複合させた複合系半導体層 2 4を有する T F T 2 3を作製した。 この T F T 2 3のチャネル 8のキヤ リア移動度は、 2 4 0 c m2/ V sの値を示し、 高いキャリア移動度を 有する優れた特性の T F Tとすることができた。
また、 複合材料調製工程において、 機械的強度が高い高分子系有機半 導体膜がナノ構造からなる力一ボンナノチューブを複数本連結させた力 —ボンナノチューブの周囲表面に被覆形成される。 半導体形成工程にお いて、 作製された複合材料を濃縮して析出させながら、 高分子系有機半 導体膜で被覆された複数本連結させたカーボンナノチューブが積み重ね られることにより、 半導体層 2 4が形成される。 高分子系有機半導体材 料はしなやかな膜材料であるので、 連結させたカーボンナノチューブを 充填率よく保持し、 かつ結合部においてキャリアを伝搬させるので、 機 械的強度や特性を向上させた T F Tを容易に製造することができる。
また、 複合材料調製工程が、 有機半導体材料の溶液中に上記連結させ た力一ボンナノチューブを分散した複合材料の溶液を調製する工程であ り、 半導体層形成工程が複合材料の溶液を噴霧して乾燥させる工程であ つてもよい。
T F T 2 3のオン時においては、 半導体層 2 4における電流はナノチ ユーブ 2 5の中を大部分が流れ、 近接した短距離間で結合させて連結し たナノチューブ 2 5の間においては、 周囲に被覆された高分子系有機半 導体材料 2 6の中を電流が流れる。 また、 結合させて連結したナノチュ ーブを用いることで、 連結しない場合よりも、 半導体層 2 4内でナノチ ュ一ブ同士が近接する頻度が向上する。 従って、 高分子系有機半導体材 料のみからなる半導体層や、 高分子系有機半導体材料中に連結されない ナノチューブが分散された半導体層を有する T F Tよりも、 高いキヤリ ァ移動度を有し、 オン特性が優れた T F Tとすることができる。
また、 連結させたナノチューブ 2 5とその周囲に被覆形成された高分 子系有機半導体材料 2 6とが複合された半導体層 2 4となっているので、 ナノチューブのみからなる半導体層を有する T F Tよりも良好なオフ特 性が得られる。
第 4、 第 5の実施形態において、 ナノチューブ間を結合させる方法と して、 共有結合による合成方法の一例を用いて説明したが、 他の合成方 法を使用しても同様に実施可能である。
また、 第 4、 第 5の実施形態の T F Tの半導体層は、 連結させたナノ チューブを少なくとも含むものであるが、 連結させたナノチューブの量 はナノチューブ全体量の 2 0〜 1 0 0 %でよい。 望ましくはナノチュー プ全体量の 5 0〜 1 0 0 %が好ましく、 連結させたナノチューブが多く 含まれるほど、 半導体層中のナノチューブの接合点密度が増加すること になるので、 特性がさらに高い T F Tとすることができる。
また、 第 4、 第 5の実施形態で使用するナノチューブは、 長さ 0 . 2 〜 3 x m、 直径 n m l以上、 好ましくは 1 . 4 n m以上の形状範囲のも のを使用することができるが、 この範囲に限定されるものではない。 ま た、 上記ナノチューブにおいて、 金属性と半導体性を含む混合系あるい は金属性を含まない半導体性のナノチューブを使用することができるが、 半導体性のものが多い方が好ましい。 さらに好ましくは、 すべて半導体 性であるのが良い。
また、 ナノチューブは、 上記においてカーボンナノチューブを使用す るとして説明したが、 将来において、 炭素以外の材料からなるナノチュ ーブも使用できる可能性がある。 また、 上記第 1〜第 5の実施形態の T F Tは、 半導体回路装置や、 そ の半導体回路装置を使用した携帯機器や使い捨て機器あるいはその他の 電子機器などに適用することもできる。
(第 6の実施形態)
本実施形態では、 第 1〜第 5の実施形態の T F Tを用いたアプリケ一 シヨン例として、 シートライクなフレキシブルディスプレイ、 無線 I D タグ、 及び携帯電話について説明する。
まず、 フレキシブルディスプレイとしてァクティブマトリクス型ディ スプレイの構成例について説明する。
図 1 2は、 本実施形態に係るァクティブマトリクス型ディスプレイの 構成を模式的に示す断面図である。 図 1 2に示すように、 本実施形態の ァクティブマトリクス型ディスプレイ 1 1 1は、 プラスチック基板 1 1 2上にマトリツクス型に配置された複数本の電極 1 1 3、 1 1 4を有す る。 電極 1 1 3、 1 1 4の各交点 1 1 5には第 1〜第 5の実施形態のい ずれかの T F T (不図示) が配置されており各画素のスィツチング素子 として機能する。 各画素のスィツチング素子となる第 1〜第 5の実施形 態の T F Tは、 情報信号を良好な特性で ONZO F Fすることができる ので、 信頼性の高いリライタブル可能なァクティブマトリクス型デイス プレイを提供することができる。 T F Tの上には、 ディスプレイパネル 1 1 8が配設されている。 さらに、 各交点 1 1 5に配置された T F Tを 電極 1 1 3、 1 1 4を介して駆動する駆動回路 1 1 6 a、 1 1 6 bと、 駆動回路 1 1 6 a、 1 1 6 bを制御する制御回路 1 1 7とを備える。 駆 動回路 1 1 6 a、 1 1 6 b及び制御回路 1 1 7についても、 第 1〜第 5 の実施形態の T F Tを備えた半導体回路により構成することが可能であ る。 このような構成とすることにより、 ディスプレイパネル 1 1 8、 駆 動回路 1 1 6 a、 1 1 6 b, 制御回路 1 1 7を一体で作製することが可 能となるので、 機械的柔軟性及び耐衝撃性に優れたシ一トディスプレイ を提供することが可能となる。 アクティブマトリクス型のディスプレイとして、 シートライクあるい はペーパーライクなディスプレイを構成することができるが、 ディスプ レイパネルとして、 液晶表示方式、 電気泳動表示方式、 有機 E L方式、 エレク ト口クロミック表示方式 (E C D ) 、 電解析出方式、 電子粉流体 方式、 千渉型変調 (M E M S ) 方式などのディスプレイパネル方式を使 うことができる。
次に、 本発明に係る T F Tを無線 I Dタグに応用した場合について説 明する。 図 1 3は、 本実施形態に係る T F Tを用いた無線 I Dタグの構 成を模式的に示した斜視図である。
図 1 3に示すように、 本実施形態に係る無線 I Dタグ 1 2 0は、 フィ ルム状のプラスチック基板 1 2 1を基材として使用している。 この基板 1 2 1上には、 アンテナ部 1 2 2とメモリ一 I C部 1 2 3とが設けられ ている。 ここで、 メモリ一 I C部 1 2 3は、 第 1〜第 5の実施形態のい ずれかの T F Tを利用して構成することが可能である。 そして、 この無 線 I Dタグ 1 2 0は、 裏面に粘着効果を持たせることで、 菓子袋やドリ ンク缶のような平坦でないものにも貼り付けて使用することが可能であ る。 尚、 無線 I Dタグ 1 2 0の表面には、 必要に応じて保護膜が設けら れる。
このように、 第 1〜第 5の実施形態の T F Tを用いて無線 I Dタグを 構成することにより、 様々な形状、 又は素材へ貼り付けることが可能な しなやかで壊れにくい無線 I D夕グを具現化することが可能になる。 ま た、 反応速度 (処理速度) の速い無線 I Dタグを具現化することが可能 になる。
尚、 本発明の効果は、 図 1 3に示した無線 I Dタグの構成に限定され るものではない。 従って、 アンテナ部、 メモリ一 I C部の配置や構成方 法は、 任意に設定可能である。 また、 例えば倫理回路部を無線 I Dタグ に組み込むことも可能である。 また、 本実施形態では、 プラスチック基 板 1 2 1上に予めアンテナ部 1 2 2とメモリー I C部 1 2 3とを形成し ておく形態について説明したが、 本発明はこの形態に限定されるもので はなく、 インクジェッ ト印刷のような方法を用いて、 直接対象物に無線 I Dタグを形成することも可能である。 この場合も、 本発明に係る T F Tの構成を用いることにより、 機械的柔軟性、 耐衝撃性に優れた高性能 な無線 I Dタグを作製することができる。
次に、 本発明に係る T F Tを携行用機器に応用した一例として、 携帯 電話に応用した場合について説明する。 図 1 4は、 本実施形態に係る T F Tを用いた携帯電話の構成を模式的に示した正面図である。
図 1 4に示すように、 本実施形態に係る携帯電話 1 4 0は、 電話番号 等を表示する液晶表示装置等からなる表示部 1 4 1 と、 ここでは収納自 在なホイップアンテナからなる通信電波を送受信可能な送受信部 1 4 2 と、 通信音声を出力するスピーカ等からなる音声出力部 1 4 3と、 写真 撮影可能な C C D素子等を有するカメラ部 1 4 4と、 携帯電話 1 4 0を 必要に応じて折り畳むための折り畳み用可動部 1 4 5 と、 電話番号や文 字を入力するための複数の操作スィツチ 1 4 6と、 通信音声を入力する コンデンサマイク等からなる音声入力部 1 4 7とを備えている。
この携帯電話 1 4 0は、 図 1 4では特に図示しないが、 その内部に I Dや L S I等の集積回路を有している。 そして、 本発明に係る T F Tを 利用した集積回路が、 携帯電話 1 4 0を構成する演算素子、 記憶素子、 スイッチング素子等として適宜使用されている。 これにより、 携帯電話 1 4 0は、 携帯型の通信端末として機能する。
上記説明から、 当業者にとっては、 本発明の多くの改良や他の実施形 態が明らかである。 従って、 上記説明は、 例示としてのみ解釈されるべ きであり、 本発明を実行する最良の態様を当業者に教示する目的で提供 されたものである。 本発明の精神を逸脱することなく、 その構造及び Z 又は機能の詳細を実質的に変更できる。 〔産業上の利用の可能性〕
本発明は、 機械的柔軟性、 及び耐衝撃性が優れた高キャリア移動度の TF T及びその製造方法として有用である。 また、 本発明に係る T F T は、 シートライク又はペーパーライクなアクティブマトリクス型のディ スプレイや、 無線 I Dタグ、 携帯電話等の携行用機器等を製造するため に有用である。

Claims

請 求 の 範 囲
1 . ソース領域から注入されドレーン領域へ向かうキヤリァが移動す る半導体層を有し、 前記半導体層が有機半導体材料とナノチューブとを 含む複合材料で形成されている、 電界効果型トランジスタ。
2 . 前記半導体層において、 前記ナノチューブの周囲が前記有機半導 体材料で被覆されている、 請求の範囲第 1項に記載の電界効果型トラン ジス夕。
3 . 前記半導体層において、 前記ナノチューブが複数個連結されてい る、 請求の範囲第 1項に記載の電界効果型トランジスタ。
4 . 前記半導体層において、 前記ナノチューブは化学結合により複数 個連結されている、請求の範囲第 3項に記載の電界効果型トランジスタ。
5 . 前記半導体層において、 前記ナノチューブが連結された部分が前 記有機半導体材料で被覆されている、 請求の範囲第 3項に記載の電界効 果型トランジスタ。
6 . 前記ナノチューブは、 カーボンナノチューブである、 請求の範囲 第 1項に記載の電界効果型トランジスタ。
7 . 前記有機半導体材料は、 高分子系有機半導体材料である、 請求の 範囲第 1項に記載の電界効果型トランジスタ。
8 . 前記高分子系有機半導体材料は、 チォフェン系材料である、 請求 の範囲第 7項に記載の電界効果型トランジスタ。
9 . 前記有機半導体材料は、 低分子系有機半導体材料である、 請求の 範囲第 1項に記載の電界効果型トランジスタ。
1 0 . 前記低分子系有機半導体材料は、 ァセン系材料である、 請求の 範囲第 9項に記載の電界効果型トランジスタ。
1 1 . 前記半導体層において、 前記ナノチューブが所定の方向にほぼ 配向している、 請求の範囲第 1項に記載の電界効果型トランジスタ。
1 2 . 前記電界効果型トランジスタは、 薄膜トランジスタである、 請 求の範囲第 1項に記載の電界効果型トランジスタ。
1 3 . 前記電界効果型トランジスタは、 基板上に形成されている、 請 求の範囲第 1項に記載の電界効果型トランジスタ。
1 4 . 前記基板は、 プラスチック板または樹脂フィルムである、 請求 の範囲第 1 3項に記載の電界効果型トランジスタ。
1 5 . ソース領域から注入されドレ一ン領域へ向かうキャリアが移動 する半導体層を有する電界効果型卜ランジス夕の製造方法であって、 有機半導体材料とナノチューブとを含む複合材料を用意する工程( a )、 および
前記複合材料を用いて前記半導体層を形成する工程 (b ) 、 を含む、 電界効果型トランジスタの製造方法。
1 6 . 前記工程 ( a ) は、 前記有機半導体材料と前記ナノチューブと を混合して前記複合材料を調製する工程を含む、 請求の範囲第 1 5項に 記載の電界効果型トランジス夕の製造方法。
1 7. 前記工程 ( a) において、 前記有機半導体材料の溶液に前記ナ ノチューブを混合して前記複合材料を調製し、
前記工程 (b) において、 前記複合材料を乾燥させて半導体層を形成 する、請求の範囲第 1 6項に記載の電界効果型トランジス夕の製造方法。
1 8. 前記工程 ( a) において、 前記有機半導体材料で被覆されてい る前記ナノチューブを含む前記複合材料を調製する、 請求の範囲第 1 5 項に記載の電界効果型卜ランジス夕の製造方法。
1 9. 前記工程 ( a) において、 前記有機半導体材料の溶液中に前記 ナノチューブを浸漬して濾過する工程を繰り返して前記複合材料を調製 する、請求の範囲第 1 8項に記載の電界効果型トランジスタの製造方法。
2 0. 前記ナノチューブは、 力一ボンナノチューブである、 請求の範 囲第 1 5項に記載の電界効果型トランジスタの製造方法。
2 1. 前記工程 ( a) において、 複数個が連結されている前記ナノチ ュ一ブを用いる、 請求の範囲第 1 5項に記載の電界効果型トランジスタ の製造方法。
2 2. 前記工程 ( a) の前に、 複数個の前記ナノチューブを連結させ る工程 ( c ) を含む、 請求の範囲第 2 1項に記載の電界効果型トランジ ス夕の製造方法。
2 3. 前記工程 ( c ) において、 複数個の前記ナノチューブを化学結 合により連結させる、 請求の範囲第 2 2項に記載の電界効果型卜ランジ ス夕の製造方法。
2 4 . 請求の範囲第 1項乃至第 1 4項のいずれかに記載の電界効果型 トランジスタが、 画素を駆動するためのスイッチング素子として複数個 配設されてなる、 アクティブマトリクス型ディスプレイ。
2 5 . 請求の範囲第 1項乃至第 1 4項のいずれかに記載の電界効果型 トランジスタが、 集積回路を構成するための半導体素子として利用され てなる、 無線 I Dタグ。
2 6 . 請求の範囲第 1項乃至第 1 4項のいずれかに記載の電界効果型 トランジス夕が、 集積回路を構成するための半導体素子として利用され てなる、 携行用機器。
PCT/JP2004/010275 2003-07-17 2004-07-13 電界効果型トランジスタおよびその製造方法 WO2005008784A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/564,755 US7858968B2 (en) 2003-07-17 2004-07-13 Field effect transistor and method of fabricating the same
CNB2004800205805A CN100533770C (zh) 2003-07-17 2004-07-13 场效应型晶体管及其制造方法
KR1020067000982A KR100757615B1 (ko) 2003-07-17 2004-07-13 전계 효과형 트랜지스터 및 그 제조 방법
JP2005511874A JP4632952B2 (ja) 2003-07-17 2004-07-13 電界効果型トランジスタおよびその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003275896 2003-07-17
JP2003-275896 2003-07-17
JP2003-318010 2003-09-10
JP2003318010 2003-09-10

Publications (1)

Publication Number Publication Date
WO2005008784A1 true WO2005008784A1 (ja) 2005-01-27

Family

ID=34082361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010275 WO2005008784A1 (ja) 2003-07-17 2004-07-13 電界効果型トランジスタおよびその製造方法

Country Status (5)

Country Link
US (1) US7858968B2 (ja)
JP (1) JP4632952B2 (ja)
KR (1) KR100757615B1 (ja)
CN (1) CN100533770C (ja)
WO (1) WO2005008784A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004266272A (ja) * 2003-02-14 2004-09-24 Toray Ind Inc 電界効果型トランジスタ並びにそれを用いた液晶表示装置
JP2006351613A (ja) * 2005-06-13 2006-12-28 Matsushita Electric Ind Co Ltd 電界効果トランジスタ、その製造方法および電子機器
WO2007089322A2 (en) * 2005-11-23 2007-08-09 William Marsh Rice University PREPARATION OF THIN FILM TRANSISTORS (TFTs) OR RADIO FREQUENCY IDENTIFICATION (RFID) TAGS OR OTHER PRINTABLE ELECTRONICS USING INK-JET PRINTER AND CARBON NANOTUBE INKS
KR100756817B1 (ko) * 2006-04-06 2007-09-07 비오이 하이디스 테크놀로지 주식회사 박막 트랜지스터의 제조 방법
JP2009111377A (ja) * 2007-10-11 2009-05-21 Institute Of Physical & Chemical Research 電子素子および電子素子の製造方法
US7537975B2 (en) 2005-04-22 2009-05-26 Samsung Mobile Display Co., Ltd. Organic thin film transistor and method of fabricating the same
JP2009231631A (ja) * 2008-03-24 2009-10-08 Univ Nagoya カーボンナノチューブを用いた電界効果トランジスタ及びその製造方法
US8323789B2 (en) 2006-08-31 2012-12-04 Cambridge Enterprise Limited Nanomaterial polymer compositions and uses thereof
US8872162B2 (en) 2010-03-10 2014-10-28 Nec Corporation Field-effect transistor and method for manufacturing the same
JP2015088662A (ja) * 2013-10-31 2015-05-07 独立行政法人物質・材料研究機構 有機分子トランジスタ
JPWO2017183534A1 (ja) * 2016-04-19 2019-02-28 東レ株式会社 半導体素子、その製造方法、無線通信装置およびセンサ

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0506899D0 (en) 2005-04-05 2005-05-11 Plastic Logic Ltd Multiple conductive layer TFT
US20070275498A1 (en) * 2006-05-26 2007-11-29 Paul Beecher Enhancing performance in ink-jet printed organic semiconductors
KR101206661B1 (ko) * 2006-06-02 2012-11-30 삼성전자주식회사 동일 계열의 소재로 형성된 반도체층 및 소스/드레인전극을 포함하는 유기 전자 소자
US20100224862A1 (en) * 2007-09-07 2010-09-09 Hiroyuki Endoh Carbon nanotube structure and thin film transistor
KR100986148B1 (ko) * 2008-04-04 2010-10-07 고려대학교 산학협력단 탄소나노튜브층과 유기반도체층이 적층된 구조의 활성층을구비하는 박막 트랜지스터 및 그 제조방법
CN101582382B (zh) 2008-05-14 2011-03-23 鸿富锦精密工业(深圳)有限公司 薄膜晶体管的制备方法
CN101587839B (zh) 2008-05-23 2011-12-21 清华大学 薄膜晶体管的制备方法
CN101582444A (zh) 2008-05-14 2009-11-18 清华大学 薄膜晶体管
CN101593699B (zh) 2008-05-30 2010-11-10 清华大学 薄膜晶体管的制备方法
CN101582445B (zh) * 2008-05-14 2012-05-16 清华大学 薄膜晶体管
CN101582450B (zh) * 2008-05-16 2012-03-28 清华大学 薄膜晶体管
CN101582446B (zh) 2008-05-14 2011-02-02 鸿富锦精密工业(深圳)有限公司 薄膜晶体管
CN101582448B (zh) 2008-05-14 2012-09-19 清华大学 薄膜晶体管
CN101582451A (zh) * 2008-05-16 2009-11-18 清华大学 薄膜晶体管
CN101582449B (zh) 2008-05-14 2011-12-14 清华大学 薄膜晶体管
CN101599495B (zh) * 2008-06-04 2013-01-09 清华大学 薄膜晶体管面板
CN101582447B (zh) 2008-05-14 2010-09-29 清华大学 薄膜晶体管
TWI478348B (zh) * 2008-05-30 2015-03-21 Hon Hai Prec Ind Co Ltd 薄膜電晶體
KR100888236B1 (ko) * 2008-11-18 2009-03-12 서울반도체 주식회사 발광 장치
CN101997035B (zh) * 2009-08-14 2012-08-29 清华大学 薄膜晶体管
EP2528855A1 (en) 2010-01-25 2012-12-05 The Board of Regents of the Leland Stanford Junior University Fullerene-doped nanostructures and methods therefor
CN102770959A (zh) * 2010-01-25 2012-11-07 小利兰·斯坦福大学托管委员会 接合的纳米结构及其方法
CN102856495B (zh) * 2011-06-30 2014-12-31 清华大学 压力调控薄膜晶体管及其应用
TWI508305B (zh) 2013-05-06 2015-11-11 E Ink Holdings Inc 主動元件
US9379166B2 (en) * 2014-11-04 2016-06-28 Atom Nanoelectronics, Inc. Active matrix light emitting diodes display module with carbon nanotubes control circuits and methods of fabrication

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273811A (ja) * 1993-03-22 1994-09-30 Mitsubishi Electric Corp 光・電子機能材料およびその薄膜の製法
JP2002082082A (ja) * 2000-09-07 2002-03-22 Matsushita Refrig Co Ltd 臭気センサー及びその製造方法
JP2002273741A (ja) * 2001-03-15 2002-09-25 Polymatech Co Ltd カーボンナノチューブ複合成形体及びその製造方法
WO2002080195A1 (en) * 2001-02-16 2002-10-10 E.I. Dupont De Nemours And Company High conductivity polyaniline compositions and uses therefor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3086100B2 (ja) 1993-03-22 2000-09-11 富士写真フイルム株式会社 写真用支持体及びハロゲン化銀写真感光材料
US7439096B2 (en) * 2001-02-21 2008-10-21 Lucent Technologies Inc. Semiconductor device encapsulation
KR100582724B1 (ko) * 2001-03-22 2006-05-23 삼성에스디아이 주식회사 평판 디스플레이 장치용 표시 소자, 이를 이용한 유기전계발광 디바이스 및 평판 디스플레이용 표시 소자의제조 방법
EP2199437B1 (en) 2001-08-09 2015-07-29 Asahi Kasei Kabushiki Kaisha Use of an organic semiconductor solution to form oriented polyacene crystals on a substrate
US6794220B2 (en) * 2001-09-05 2004-09-21 Konica Corporation Organic thin-film semiconductor element and manufacturing method for the same
JP5061414B2 (ja) 2001-09-27 2012-10-31 東レ株式会社 薄膜トランジスタ素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273811A (ja) * 1993-03-22 1994-09-30 Mitsubishi Electric Corp 光・電子機能材料およびその薄膜の製法
JP2002082082A (ja) * 2000-09-07 2002-03-22 Matsushita Refrig Co Ltd 臭気センサー及びその製造方法
WO2002080195A1 (en) * 2001-02-16 2002-10-10 E.I. Dupont De Nemours And Company High conductivity polyaniline compositions and uses therefor
JP2002273741A (ja) * 2001-03-15 2002-09-25 Polymatech Co Ltd カーボンナノチューブ複合成形体及びその製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004266272A (ja) * 2003-02-14 2004-09-24 Toray Ind Inc 電界効果型トランジスタ並びにそれを用いた液晶表示装置
JP4572543B2 (ja) * 2003-02-14 2010-11-04 東レ株式会社 電界効果型トランジスタ並びにそれを用いた液晶表示装置
US7537975B2 (en) 2005-04-22 2009-05-26 Samsung Mobile Display Co., Ltd. Organic thin film transistor and method of fabricating the same
JP2006351613A (ja) * 2005-06-13 2006-12-28 Matsushita Electric Ind Co Ltd 電界効果トランジスタ、その製造方法および電子機器
WO2007089322A2 (en) * 2005-11-23 2007-08-09 William Marsh Rice University PREPARATION OF THIN FILM TRANSISTORS (TFTs) OR RADIO FREQUENCY IDENTIFICATION (RFID) TAGS OR OTHER PRINTABLE ELECTRONICS USING INK-JET PRINTER AND CARBON NANOTUBE INKS
WO2007089322A3 (en) * 2005-11-23 2008-03-06 Univ Rice William M PREPARATION OF THIN FILM TRANSISTORS (TFTs) OR RADIO FREQUENCY IDENTIFICATION (RFID) TAGS OR OTHER PRINTABLE ELECTRONICS USING INK-JET PRINTER AND CARBON NANOTUBE INKS
KR100756817B1 (ko) * 2006-04-06 2007-09-07 비오이 하이디스 테크놀로지 주식회사 박막 트랜지스터의 제조 방법
US8323789B2 (en) 2006-08-31 2012-12-04 Cambridge Enterprise Limited Nanomaterial polymer compositions and uses thereof
JP2009111377A (ja) * 2007-10-11 2009-05-21 Institute Of Physical & Chemical Research 電子素子および電子素子の製造方法
JP2009231631A (ja) * 2008-03-24 2009-10-08 Univ Nagoya カーボンナノチューブを用いた電界効果トランジスタ及びその製造方法
US8872162B2 (en) 2010-03-10 2014-10-28 Nec Corporation Field-effect transistor and method for manufacturing the same
JP2015088662A (ja) * 2013-10-31 2015-05-07 独立行政法人物質・材料研究機構 有機分子トランジスタ
JPWO2017183534A1 (ja) * 2016-04-19 2019-02-28 東レ株式会社 半導体素子、その製造方法、無線通信装置およびセンサ
JP7024407B2 (ja) 2016-04-19 2022-02-24 東レ株式会社 半導体素子、その製造方法、無線通信装置およびセンサ

Also Published As

Publication number Publication date
US20070108480A1 (en) 2007-05-17
KR20060034706A (ko) 2006-04-24
CN1823426A (zh) 2006-08-23
JP4632952B2 (ja) 2011-02-16
JPWO2005008784A1 (ja) 2006-09-28
KR100757615B1 (ko) 2007-09-10
US7858968B2 (en) 2010-12-28
CN100533770C (zh) 2009-08-26

Similar Documents

Publication Publication Date Title
WO2005008784A1 (ja) 電界効果型トランジスタおよびその製造方法
Sun et al. Inorganic semiconductors for flexible electronics
CN100420032C (zh) 场效应晶体管及其制造方法
US10663834B2 (en) Display device and method of fabricating the same
Sharma et al. Graphene based field effect transistors: Efforts made towards flexible electronics
TW479369B (en) A process for fabricating integrated circuit devices having thin film transistors
EP1679752A1 (en) Conductive thin film and thin-film transistor
CN101911269B (zh) 柔性半导体装置及其制造方法
JP4424341B2 (ja) 薄膜トランジスタ、電子回路、表示装置および電子機器
CN103178090A (zh) 3 端子电子器件和2 端子电子器件
KR20070110262A (ko) 유기 전계효과 트랜지스터 및 반도체장치
US8030645B2 (en) Electronic device, process for producing the same and electronic equipment making use thereof
CN101689566B (zh) 半导体装置及其制造方法以及图像显示装置
WO2006054709A1 (ja) 電界効果トランジスタおよびその製造方法、ならびにそれを用いた電子機器
JP2006351613A (ja) 電界効果トランジスタ、その製造方法および電子機器
KR100783851B1 (ko) 박막 트랜지스터와 그 제조 방법, 액티브 매트릭스형 디스플레이, 무선 id 태그 및 휴대용 기기
JP4892810B2 (ja) 電界効果型トランジスタ
US7564051B2 (en) Thin-film transistor including organic semiconductor and inorganic particles, and manufacturing method therefor
JP2006073774A (ja) 薄膜トランジスタ及びその製造方法
JP5170627B2 (ja) 有機半導体装置の作製方法及び有機半導体装置
CN100592545C (zh) 导电性薄膜和薄膜晶体管
TWI236173B (en) Manufacturing method and device for organic thin film transistor
KR20240057909A (ko) 나노와이어 함유 패턴의 제조방법 및 이를 이용하여 제조된 투명 전극
JP2006024790A (ja) 有機薄膜トランジスタとその製造方法、及びそれを用いたアクティブマトリクス型のディスプレイと無線識別タグ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480020580.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005511874

Country of ref document: JP

Ref document number: 1020067000982

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020067000982

Country of ref document: KR

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 2007108480

Country of ref document: US

Ref document number: 10564755

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10564755

Country of ref document: US