WO2004072993A1 - 電子部品用基板及びその製造方法 - Google Patents

電子部品用基板及びその製造方法 Download PDF

Info

Publication number
WO2004072993A1
WO2004072993A1 PCT/JP2004/001199 JP2004001199W WO2004072993A1 WO 2004072993 A1 WO2004072993 A1 WO 2004072993A1 JP 2004001199 W JP2004001199 W JP 2004001199W WO 2004072993 A1 WO2004072993 A1 WO 2004072993A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
flexible circuit
insulating base
terminal
electronic component
Prior art date
Application number
PCT/JP2004/001199
Other languages
English (en)
French (fr)
Inventor
Shinji Mizuno
Koji Mitsui
Katsutoshi Yanoshita
Shinichi Suzuki
Takashi Shinoki
Kazutaka Nakagome
Naoki Fukuda
Kozo Morita
Daisuke Makino
Original Assignee
Teikoku Tsushin Kogyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003409463A external-priority patent/JP4371794B2/ja
Priority claimed from JP2003420048A external-priority patent/JP2004266256A/ja
Priority claimed from JP2003420047A external-priority patent/JP2004266255A/ja
Priority claimed from JP2003423308A external-priority patent/JP2004266257A/ja
Application filed by Teikoku Tsushin Kogyo Co., Ltd. filed Critical Teikoku Tsushin Kogyo Co., Ltd.
Priority to DE112004000260T priority Critical patent/DE112004000260T5/de
Priority to US10/541,459 priority patent/US7728710B2/en
Publication of WO2004072993A1 publication Critical patent/WO2004072993A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/30Adjustable resistors the contact sliding along resistive element
    • H01C10/32Adjustable resistors the contact sliding along resistive element the contact moving in an arcuate path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/1418Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the inserts being deformed or preformed, e.g. by the injection pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14639Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/46Arrangements of fixed resistors with intervening connectors, e.g. taps
    • H01C10/48Arrangements of fixed resistors with intervening connectors, e.g. taps including contact movable in an arcuate path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14467Joining articles or parts of a single article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3406Components, e.g. resistors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/167Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed resistors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0014Shaping of the substrate, e.g. by moulding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24917Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including metal layer

Definitions

  • the present invention relates to a substrate for an electronic component used for a semi-fixed variable resistor and the like, and a method for manufacturing the same.
  • a chip-type semi-fixed variable resistor has a ceramic substrate, a slider, and a current collecting plate.
  • the slider is arranged on the upper surface of the ceramic substrate, and the current collecting plate is arranged on the lower surface of the ceramic substrate.
  • the cylindrical projection provided on the current collector plate is inserted into the through-hole provided in the ceramic substrate and the fitting hole provided in the slider, and the tip of the cylindrical projection is swaged to make the slider a ceramic substrate. It is configured to be rotatably fixed on the upper side. Then, by rotating the slider, the sliding contact provided on the slider slides on the surface of the horseshoe-shaped resistor pattern provided on the ceramic substrate, thereby providing both ends of the resistor pattern. The resistance value between the terminal pattern and the current collector was changed.
  • the above-mentioned semi-fixed variable resistor uses a ceramic substrate and has to print a resistor pattern on a ceramic substrate, the production efficiency is low, the material cost is high, and the cost is low. There were limits to pricing. In addition, the ceramic substrate was easily damaged, and it was difficult to further reduce the thickness.
  • an object of the present invention is to provide an electronic component substrate which can be easily manufactured, has good production efficiency, can reduce material costs, can reduce costs, and can easily achieve a reduction in thickness, and a method for manufacturing the same. I have. Disclosure of the invention
  • the invention according to claim 1 is a flexible circuit board comprising: an insulating base; and a terminal pattern on a synthetic resin film mounted on the insulating base, and a conductor pattern on which a slider slides.
  • the insulating base is a synthetic resin molded product, and the flexible circuit board is insert-molded on the insulating base.
  • the insulating base is formed by molding a synthetic resin. Therefore, it is easy to manufacture, the material cost can be reduced compared to the ceramic substrate, and the thickness can be reduced easily and inexpensively. Also, since the flexible circuit board is insert-molded on the insulating base, its manufacture is easy.
  • a large number of conductor patterns are simultaneously formed on a synthetic resin film, and then an insulating base is simultaneously formed on each of the flexible circuit boards on which the conductor patterns of each group are provided. Since it can be cut into individual products, electronic component substrates can be easily mass-produced, and productivity can be improved.
  • the invention according to claim 2 is characterized in that, in the insulating base, the current collector plate provided with a cylindrical projection is provided such that the cylindrical projection is located in a through hole provided in each of the insulating base and the flexible circuit board.
  • the flexible circuit board is attached to the insulating base by insert molding in a state where the flexible circuit board is bent so that the upper and lower surfaces of the insulating base are exposed.
  • the electronic component substrate can be easily chipped.
  • the insulating base is provided with a holding portion for firmly fixing a flexible circuit board to the insulating base. It is on the component board. According to the present invention, since the holding portion for firmly fixing the flexible circuit board to the insulating base is provided on the insulating base, the flexible circuit board can be firmly fixed to the insulating base.
  • the conductor pattern is formed of a metal thin film formed by physical vapor deposition or chemical vapor deposition, wherein the conductive pattern is for an electronic component according to claim 1 or 2 or 3 or 4.
  • the ceramic substrate is baked at a high temperature. Good temperature and humidity characteristics equivalent to those of the conductor pattern can be obtained.
  • production efficiency is better than baking on a ceramic substrate.
  • the invention according to claim 6, further comprising a terminal plate connected to a terminal pattern provided on the flexible circuit board and attached to an end portion of the insulating base, for the electronic component according to claim 1, On the substrate.
  • the terminal board since the terminal board is used, the electronic component substrate can be easily fixed to another circuit board by a connecting means involving a high temperature, and on the other hand, as a material of the terminal pattern and the flexible circuit board. Materials that are sensitive to heat can be used.
  • the terminal plate can also serve as a mechanical fixing means for fixing the flexible circuit board by sandwiching it between the insulating bases.
  • the insulating base is provided with a holding portion for firmly fixing a flexible circuit board to the insulating base. It is in.
  • the flexible circuit board can be firmly fixed to the insulating base by the holding portion.
  • the problem that the flexible circuit board is peeled off from the surface of the insulating base is not a problem. This does not occur and can be easily and firmly fixed.
  • the invention according to claim 8 is the electronic component substrate according to claim 6 or 7, wherein the terminal plate is insert-molded on the insulating base. According to the present invention, a separate mounting process of the terminal plate to the insulating base is not required, and the fixing of the terminal plate to the insulating base and the electrical connection of the terminal plate to the terminal pattern are more reliably performed. .
  • the invention according to claim 9 is the electronic component substrate according to claim 6, wherein the current collector plate is insert-molded on the insulating base.
  • the insulating base and the current collecting plate can be integrated, and the manufacturing process of a rotary electronic component such as a variable resistor using the electronic component substrate can be simplified.
  • the conductor pattern is formed by a metal thin film formed by physical vapor deposition or chemical vapor deposition. It is on the component board. According to the present invention, the same good temperature / humidity characteristics as in the case of the conductor pattern baked on the ceramic substrate at a high temperature can be obtained. In addition, because of vapor deposition, the production efficiency is better than baking on a ceramic substrate.
  • the invention according to claim 11 is a method in which a slider slides on a surface of a synthetic resin film.
  • a flexible circuit board provided with a body pattern and a terminal pattern connected to the conductor pattern, and a mold having a cavity formed in the outer shape of the electronic component substrate are prepared.
  • the flexible circuit board is accommodated in the flexible circuit board.
  • the surface on which the conductor pattern is provided of the flexible circuit board is in contact with one surface in the cavity, and the portion on the side on which the terminal pattern is provided is the other surface of the capital.
  • the folded portion of the flexible circuit board is brought into close contact with the lower surface of the cavity from the upper surface to the lower surface via the outer peripheral side surface.
  • the portion where the conductor pattern is provided on the upper surface of the insulating base made of the molding resin is formed. While exposing, certain portions of the side provided with the terminal pattern on the manufacturing method of the electronic component substrate to from the outer peripheral side surface, characterized that you exposed in a state of folded toward the lower surface.
  • the conductor pattern is exposed on the upper surface of the insulating base and the terminal pattern is provided from the outer peripheral side surface to the lower surface only by insert-molding the flexible circuit board into the mold cavity.
  • a substrate for an electronic component having a structure as described above can be easily manufactured, and cost can be reduced. Also, material cost can be reduced as compared with the ceramic substrate, and the thickness can be reduced easily and inexpensively.
  • a large number of sets of conductor patterns are simultaneously formed on a synthetic resin film, and then an insulating base is simultaneously formed on each of the flexible circuit boards provided with the respective sets of conductor patterns, and then the integrally connected flexible circuit boards are cut. Since individualized products can be produced, substrates for electronic components can be easily mass-produced, and productivity is improved.
  • the invention according to claim 12 is characterized in that, when the flexible circuit board is housed in the cavity of the mold, a current collector plate made of a metal plate is housed in the capital at the same time.
  • the conductor pattern is exposed on the upper surface of the insulating base and the terminal pattern is moved from the outer peripheral side surface to the lower surface only by insert-molding the flexible circuit board and the current collector plate in the mold cavity.
  • it is possible to easily manufacture a substrate for an electronic component having a structure in which a current collecting plate is attached while being exposed thereby improving productivity and reducing costs.
  • the invention according to claim 13 is a flexible circuit board comprising a synthetic resin film provided with a conductor pattern on the surface of which a slider slides and a terminal pattern connected to the conductor pattern, and a metal plate. And a key formed in the external shape of the electronic component substrate.
  • a mold having a capacity is prepared, and the flexible circuit board is housed in the cavity of the mold. At this time, the surface on which the conductor pattern of the flexible circuit board is provided is placed on one surface in the cavity. By contacting and filling the cavity with the molten molding resin, and removing the mold after the filled molding resin is solidified, the flexible circuit board and the conductor pattern and the terminal pattern are formed on the insulating base made of the molding resin.
  • a method of manufacturing a substrate for electronic components comprising: mounting the terminal so as to be exposed; and thereafter, attaching a terminal plate to an end portion of the insulating base so as to be connected to a terminal pattern provided on the flexible circuit board. It is in.
  • the flexible circuit board is insert-molded on the absolute base, it can be easily manufactured and cost can be reduced.
  • the insulating base is made of a synthetic resin molded product, its manufacture is easy, the material cost can be reduced as compared with the ceramic substrate, and the thickness can be reduced easily and inexpensively.
  • a large number of sets of conductive patterns are simultaneously formed on a synthetic resin film, and then an insulating base is simultaneously formed on each of the flexible circuit boards provided with each set of conductive patterns, and then the integrally connected flexible circuit boards are cut. Since individualized products can be manufactured individually, electronic component substrates can be easily mass-produced, and productivity can be improved.
  • the invention according to claim 14 is a flexible circuit board comprising a synthetic resin film provided with a conductor pattern on the surface of which a slider slides and a terminal pattern connected to the conductor pattern, and a metal plate. And a mold having a cavity formed in the outer shape of the electronic component substrate, and the flexible circuit board and the terminal board are stored in the mold cavity. At this time, the surface of the flexible circuit board on which the conductor pattern is provided is in contact with one surface of the cavity, and at the same time, a part of the terminal board is in contact with or is opposed to the terminal pattern of the flexible circuit board, The flexible circuit board is transferred to an insulating base made of molding resin by filling the inside with molten molding resin and removing the mold after the filled molding resin has solidified.
  • the terminal board as well as the flexible circuit board is insert-molded on the insulating base, a separate attaching step of the terminal board to the insulating base is not required, and the terminal board made of a metal plate is attached. It is easy to manufacture electronic component substrates with a structure, and costs can be reduced. Also, fix the terminal board to the insulating base and Electrical connection to the turn can be easily and reliably performed.
  • the insulating base is made of a synthetic resin molded product, its manufacture is easy, the material cost can be reduced compared to a ceramic substrate, and the thickness can be reduced easily and inexpensively.
  • the invention according to claim 15 is characterized in that, when the flexible circuit board is housed in the cavity of the mold, a current collector plate made of a metal plate is housed in the cavity at the same time.
  • a current collector plate is embedded in an insulating base made of resin.
  • FIG. 1 is a perspective view of an electronic component substrate 111 configured using the first embodiment of the present invention.
  • FIG. 2 is a diagram showing an electronic component substrate 111 configured using the first embodiment of the present invention.
  • FIG. 2 (a) is a plan view
  • FIG. 2 (b) is a front view
  • FIG. 2 (c) is a sectional view taken along the line A-A in FIG. 2 (a)
  • FIG. 2 (d) is a rear view.
  • FIG. 3 is an explanatory diagram of a method of manufacturing the electronic component substrate 111.
  • FIG. 4 is an explanatory diagram of a method of manufacturing the electronic component substrate 111.
  • FIG. 4 is an explanatory diagram of a method of manufacturing the electronic component substrate 111.
  • FIGS. 5A and 5B are diagrams showing a semi-fixed variable resistor 100-1 configured using the electronic component substrate 111.
  • FIG. 5A is a plan view
  • FIG. 5B is a front view
  • FIG. 5 (c) is a sectional view taken along line BB of FIG. 5 (a)
  • FIG. 5 (d) is a rear view.
  • FIGS. 6A and 6B are diagrams showing electronic component substrates 112 configured using the second embodiment of the present invention.
  • FIG. 6A is a plan view
  • FIG. 6B is a front view
  • FIG. 6 (c) is a sectional view taken along line D-D of FIG. 6 (a)
  • FIG. 6 (d) is a rear view.
  • FIGS. 7A and 7B are diagrams showing a semi-fixed variable resistor 100-2 configured using the electronic component substrates 112.
  • FIG. 7A is a plan view
  • FIG. 7B is a front view
  • Fig. 7 (d) is a back view.
  • FIG. 8 is an explanatory diagram of a method of manufacturing the electronic component substrates 112.
  • FIG. FIG. 9 is a diagram showing an electronic component substrate 13 configured using the third embodiment of the present invention, FIG. 9 (a) is a perspective view seen from above, and FIG. It is the perspective view seen from the lower side.
  • FIG. 10 is a diagram showing an electronic component substrate 13 configured using the third embodiment of the present invention.
  • FIG. 10 (a) is a plan view
  • FIG. 10 (b) is a front view
  • Fig. 10 (c) shows Fig. 10.
  • FIG. 10A is a cross-sectional view taken along line FF
  • FIG. 10D is a rear view.
  • FIG. 11 is an explanatory diagram of a method of manufacturing the electronic component substrate 13.
  • FIG. 12 is an explanatory diagram of a method of manufacturing the electronic component substrate 13.
  • FIG. 13 is a perspective view showing an electronic component substrate 14 manufactured using the fourth embodiment of the present invention.
  • FIG. 14 is a diagram showing electronic component substrates 1-4, FIG. 14 (a) is a plan view, and FIG.
  • FIG. 14 (b) is a front view
  • FIG. 14 (c) is a sectional view taken along line GG of FIG. 14 (a)
  • FIG. 14 (d) is a rear view.
  • FIG. 15 is an explanatory diagram of a method of manufacturing the electronic component substrate 14.
  • FIG. 16 is an explanatory diagram of a method of manufacturing the electronic component substrate 1-4.
  • FIG. 17 is a diagram showing a semi-fixed variable resistor 100-4 configured using electronic component substrates 114, FIG. 17 (a) is a plan view, FIG. 17 (b) is a front view, and FIG. (c) is a sectional view taken along the line H-H in FIG. 17 (a), and FIG. 17 (d) is a rear view.
  • FIG. 18 is a diagram showing an electronic component substrate 115 manufactured using the fifth embodiment of the present invention
  • FIG. 18 (a) is a plan view
  • FIG. 18 (b) is a front view
  • Fig. 18 (c) shows Fig. 18.
  • FIG. 18 (d) is a rear view.
  • FIG. 19 is an explanatory diagram of a method of manufacturing the electronic component substrate 115.
  • FIG. 20 is a diagram showing the electronic component substrate 1_6.
  • FIG. 20 (a) is a plan view, and FIG.
  • FIG. 20 (b) is a front view
  • FIG. 20 (c) is a sectional view taken along the line JJ of FIG. 20 (a)
  • FIG. 20 (d) is a rear view.
  • FIG. 21 is an explanatory diagram of a method of manufacturing the electronic component substrate 116.
  • FIG. 22 is an explanatory diagram of a method of manufacturing the electronic component substrate 116A.
  • FIG. 23 is a diagram showing a semi-fixed variable resistor 100-6 constituted by using electronic component substrates 116.
  • FIG. 23 (a) is a plan view
  • FIG. 23 (b) is a front view
  • FIG. (c) is a sectional view taken along the line KK of FIG. 23 (a)
  • FIG. 23 (d) is a rear view.
  • FIG. 24 is a cross-sectional view showing an electronic component substrate 1-7 manufactured using the seventh embodiment of the present invention.
  • FIG. 25 is a diagram showing an electronic component substrate 118 manufactured by using the eighth embodiment of the present invention.
  • FIG. 25 (a) is a perspective view seen from above, and
  • FIG. 26 is a view showing the electronic component substrate 1-8.
  • FIG. 26 (a) is a plan view
  • FIG. 26 (b) is a front view
  • FIG. 26 (c) is L-L of FIG. 26 (a).
  • 26 (d) is a rear view
  • FIG. 26 (e) is a cross-sectional view taken along line M--M of FIG. 26 (a).
  • FIG. 27 is an explanatory diagram of a method of manufacturing the electronic component substrate 1-8.
  • FIG. 28 is an explanatory diagram of a method of manufacturing the electronic component substrate 118.
  • FIG. 29 is an explanatory diagram of a method of manufacturing the electronic component substrate 118.
  • FIG. 1 and 2 are views showing an electronic component substrate 11 manufactured using the first embodiment of the present invention.
  • FIG. 1 is a perspective view
  • FIG. 2 (a) is a plan view
  • FIG. 2 (b) is a front view
  • FIG. 2 (c) is a sectional view taken along line AA of FIG. 2 (a)
  • FIG. 2 (d) is a rear view.
  • the electronic component substrate 1-1 is configured by integrally attaching a flexible circuit board 20 to the upper surface of an insulating base 10 by insert molding.
  • each component will be described.
  • the insulating base 10 is a substantially rectangular and plate-shaped synthetic resin molded product, a circular through hole 11 is provided at the center, and a concave current collecting plate housing recess 15 is provided at the center of the lower surface.
  • the insulating base 10 is made of a thermoplastic synthetic resin, such as nylon or polyphenylene sulfide (PPS).
  • the flexible circuit board 20 is composed of terminal patterns 29, 29 on a thermoplastic synthetic resin film (for example, a polyimide film) and a conductor pattern on which a slider slides.
  • a thermoplastic synthetic resin film for example, a polyimide film
  • this flexible circuit board 20 is provided with a through hole 21 having the same inner diameter as the through hole 11 in the center of the synthetic resin film at a position corresponding to the through hole 11, and surrounds the through hole 21 on the surface in a horseshoe shape.
  • a conductor pattern (hereinafter referred to as “resistor pattern” in this embodiment) 25 is provided. Terminal patterns 29 and 29 are connected to the resistor pattern 25 at the ends.
  • the side of the flexible circuit board 20 on which the terminal patterns 29, 29 are provided is folded back from the upper surface of the insulating substrate 10 to the lower surface via the outer peripheral side, whereby the terminal pattern is formed.
  • the terminals 29 and 29 also extend from the outer peripheral side of the insulating base 10 to the lower surface.
  • the resistor pattern 25 is formed of a metal thin film formed by physical vapor deposition (PVD, physical vapor deposition) or chemical vapor deposition (CVD, chemical vapor deposition).
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • a method of physical vapor deposition vacuum vapor deposition, sputtering, ion beam vapor deposition, or the like is used.
  • a chemical vapor deposition method a thermal CVD method, a plasma CVD method, an optical CVD method, or the like is used.
  • the material of the resistor pattern 2 5 for depositing a nickel-based material such as nickel chromium alloy, or a chromium silicate compound (C r _ S i 0 2 ) like mono Met-based material consisting of, or tantalum nitride Tantalum-based material or the like is used. Since the chromium silicate compound can easily realize a large specific resistance of more than 200 cm, it is suitable for downsizing the electronic component substrate 111. According to the resistor pattern 25 formed by metal deposition of this type, it is needless to say that the entire resistor pattern 25 can be formed to have a uniform and uniform thickness, and furthermore, a paste obtained by mixing conductive powder in a resin is printed and fired.
  • the resistance value does not easily change due to heat or temperature.
  • the temperature coefficient of resistance is 500 DpmZ ° C
  • the temperature coefficient of resistance in the case of a metal thin film using the above-described vacuum deposition is 100 ppmZ. ° C.
  • the resistor pattern (conductor pattern) 25 is composed of a metal thin film formed by physical vapor deposition or chemical vapor deposition, good temperature and humidity characteristics equivalent to those of a conductor pattern baked on a ceramic substrate at a high temperature can be obtained. It is possible. In addition, since it is deposited, the production efficiency is higher than that of baking on a ceramic substrate.
  • the terminal patterns 29, 29 are formed by sequentially forming a copper layer and a gold layer on a nichrome base by vapor deposition. Since the terminal patterns 29 and 29 do not directly affect the change of the resistance value, they may be formed by other means such as printing and firing of a conductive paste. That is, in the first embodiment, the insulating base 10 and the terminal patterns 29 and 29 on the synthetic resin film attached on the insulating base 10 are the invention according to claim 1. And a flexible circuit board 20 provided with a conductor pattern 25 on which a slider slides in contact with the surface thereof, wherein the insulating base 10 is a synthetic resin molded product, As the circuit board 20, an electronic component substrate 11-1, which is insert-molded on the insulating base 10, is disclosed.
  • the first embodiment is the invention according to claim 3, wherein the flexible circuit board 20 is bent so that the upper and lower surfaces of the insulating base 10 are exposed.
  • An electronic component substrate 111 attached to an insulating base 10 by insert molding in a state is disclosed.
  • a method of manufacturing the electronic component substrate 111 will be described.
  • connecting portions 31 and 31 protrude from both sides thereof, and a large number of the same flexible circuit boards 20 are connected in parallel by these connecting portions 31 and 31. .
  • the flexible circuit boards 20 connected by the connecting portions 31 and 31 are inserted into a first die 41 and a second die 45 composed of two dies, as shown in FIG. I do.
  • a cavity C1 having the same shape as the outer shape of the electronic component substrate 11 is formed in the first and second molds 41 and 45, and the flexible circuit substrate 20 is The surface on which the resistor pattern 25 is formed abuts against the inner plane CI 1 of the cavity C 1 on the first mold 41 side, and one end provided with the terminal patterns 29, 29 is attached to the second mold 45. Fold it to the side.
  • the flexible circuit board 20 is stored in the cavities C1 of the first and second molds 41, 45, and the surface on which the resistor pattern 25 of the flexible circuit board 20 is provided is the cavity. ⁇
  • One side in C 1 (the first mold 41 side) and the part where the terminal pads 29, 29 are provided are connected to the other side of the cavity C 1 (second side). It should be folded back on the mold 45 side).
  • the shape of the cavity C1 is formed in the outer shape of the electronic component substrate 111. Specifically, a convex portion forming a circular through hole 11 in the center is formed. It has a substantially rectangular plate shape having a predetermined thickness. Also, as shown in Fig. 4,
  • the parting surface P S of the convex part composed of both molds 4 1, 4 5 for providing 1 1 is a through hole
  • the folded portion of the flexible circuit board 20 is pressed against the inner peripheral surface of the cavity C1 as shown by a dotted line in FIG. 4 by the press-fitting pressure of the molten resin, and is cooled and solidified in that state. That is, by filling the molten molding resin into the cavity C1, the folded portion of the flexible circuit board 20 is brought into close contact with the lower surface of the cavity C1 from the upper surface to the lower surface via the outer peripheral side surface, and cooled in that state. 'Solidified. Then, the first and second molds 41 and 45 are removed, and the connecting portions 31 and 31 protruding from both sides of the molded insulating base 10 are cut off, as shown in FIGS. 1 and 2. The electronic component substrate 1 1 is completed.
  • the flexible circuit board 20 is disposed from the upper surface of the substantially rectangular plate-shaped insulating base 10 to the lower surface via one outer peripheral side surface.
  • a through hole 11 is provided in the center of the insulating base 10
  • a horseshoe-shaped resistor pattern 25 is provided on the flexible circuit board 20 on the outer periphery thereof, and terminal pads 29 are provided at both ends. , 29 are provided, and the terminal patterns 29, 29 are further provided on the lower surface of the insulating base 10 via one outer peripheral side surface.
  • a flexible circuit board 20 provided with patterns 29 and 29 and dies 41 and 45 having cavities C1 formed in the outer shape of the electronic component board 1_1 are provided.
  • the flexible circuit board 20 is accommodated in the cavity C1 of the molds 41 and 45, and the surface of the flexible circuit board 20 on which the conductor pattern 25 is provided is one side of the cavity C1.
  • the portion on the side where the terminal patterns 29 and 29 are provided, which is in contact with the surface C11 of the above, is folded back on the other surface side of the capacities C1.
  • the electronic component substrate 1 has a portion where the conductor patterns 25 are provided on the upper surface of the electronic component substrate 1 and a portion where the terminal patterns 29 and 29 are provided is folded back from the outer peripheral side surface to the lower surface.
  • the flexible circuit board 20 is simply insert-molded into the cavities C1 of the first and second molds 41, 45, and the insulating base 10 is formed.
  • the electronic component substrate 11 having a structure in which the resistor pattern 25 is exposed on the upper surface and the terminal patterns 29 and 29 are exposed from the outer peripheral side surface to the lower surface thereof is easily manufactured. Cost can be reduced. Also, material costs can be reduced compared to ceramic substrates, and thickness can be reduced easily and inexpensively. Also, after a large number of sets of resist patterns 25 are simultaneously formed on the synthetic resin film, and then an insulating base 10 is simultaneously formed on a flexible circuit board 20 provided with each set of resistor patterns 25, respectively. Since the integrated flexible circuit board 20 can be cut into individual products, the electronic component substrates 1-1 can be easily mass-produced, and productivity is improved.
  • FIG. 5 is a diagram showing a semi-fixed variable resistor 100-1 constituted using the electronic component substrate 111
  • FIG. 5 (a) is a plan view
  • FIG. 5 (b) is a front view
  • FIG. 5 (c) is a cross-sectional view taken along line BB of FIG. 5 (a)
  • FIG. 5 (d) is a rear view.
  • the semi-fixed variable resistor 100-1 has a slider 60 disposed on the upper surface of the electronic component substrate 1-1 and a current collector plate 50 disposed on the lower surface.
  • the cylindrical cylindrical projection 51 provided on the plate 50 is passed through the through holes 11 and 21, and the tip of the cylindrical projection 51 that has penetrated the electronic component substrate 11 is connected to the slider 6.
  • the slider 60 is rotatably mounted by penetrating through the fitting hole 61 provided in the above and then caulking the tip.
  • the current collector 50 is housed in a current collector housing recess 15 provided on the lower surface of the electronic component substrate 11. Then, when the slider 60 is rotated, the sliding contact 63 provided on the slider 60 slides on the surface of the resistor pattern 25 (see FIG. 2), and the terminal pad 2 9 , 29 and the current collector 50 are changed.
  • FIGS. 6A and 6B are diagrams showing electronic component substrates 112 manufactured using the second embodiment of the present invention, wherein FIG. 6A is a plan view, FIG. 6B is a front view, and FIG. (c) in Fig. 6 (a): D—
  • FIG. 6D is a rear view.
  • the same parts as those of the electronic component substrate 11 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • a flexible circuit board is provided on the upper surface of the insulating base 10.
  • the resistor pattern 25 formed on the flexible circuit board 20 is integrally formed by insert molding, and the resistor pattern 25 formed on the flexible circuit board 20 is formed of a metal thin film formed by physical vapor deposition or chemical vapor deposition.
  • a current collector 50-2 is further provided inside the insulating base 10 on the electronic component substrate 111.
  • the current collecting plate 50-2 is formed at the center of a base 53-2 formed by forming a metal plate in a substantially rectangular shape, and on the surface side on which the resistor pattern 25 of the electronic component substrate 112 is provided. Projecting cylindrical The protrusions 51-2 are provided, and are protruded outward from one side of the outer periphery of the base 53-2 in a substantially rectangular shape and are bent twice at substantially right angles to form a resistor of the electronic component substrate 1-2.
  • the connecting portion 55-2 exposed on the surface opposite to the surface on which the pattern 25 is provided is provided.
  • the distal end of the connection portion 55-2 is divided into three parts, and the center portion thereof is bent at a substantially right angle to the surface on which the resistor panel 25 of the electronic component substrate 12 is provided.
  • the current collector plate 50-2 is formed with the cylindrical projection 51-2 in the through hole 11 of the insulating base 10 (simultaneously with the through hole of the flexible circuit board 20). It is embedded in the insulating base 10 by insert molding so that it is located in (center) 2 1). At this time, the lower surface of the connection portion 55-12 is exposed on the lower surface of the insulating base 10 as described above.
  • the cylindrical protrusion 51-2 protrudes on the upper surface side of the flexible circuit board 20.
  • the insulating base 10 which is the invention according to claim 2, and the terminal patterns 29, 29 on the synthetic resin film attached on the insulating base 10.
  • a flexible circuit board 20 provided with a conductor pattern 25 on which the slider slides in contact with the surface thereof;
  • the insulating base 10 is a synthetic resin molded product;
  • the insulating base 10 is heat-insulated and further formed on the insulating base 10 with a current collecting plate 50-2 provided with a cylindrical projection 51-2, and a cylindrical projection 51-2.
  • the electronic component substrates 11 and 2 which are insert-molded are disclosed such that are located in the through holes 11 and 21 provided in the insulating substrate-containing 10 and the flexible circuit substrate 20 respectively. .
  • the second embodiment is the invention according to claim 3, wherein the flexible circuit board 20 is bent so that the upper and lower surfaces of the insulating base 10 are exposed.
  • An electronic component substrate 112 mounted on an insulating base 10 by insert molding in a state thereof is disclosed.
  • a method of manufacturing the electronic component substrate 112 will be described.
  • a flexible circuit having a through hole 21 similar to that shown in Fig. 3 and having a resistor pattern 25 and terminal patterns 29, 29 formed on its surface by a metal thin film formed by physical vapor deposition or chemical vapor deposition.
  • a substrate 20 and a current collector 50-2 shown in FIG. 6 are prepared.
  • the connecting portions 31 and 31 protrude from both sides of the flexible circuit board 20, and a large number of the same flexible circuit boards 20 are connected in parallel by the connecting portions 31 and 31. Are linked.
  • current collector The same large number of current collector plates 50-12 are also connected in parallel by connecting the leading end of the connection portion 55-2 to a connection member (not shown).
  • the flexible circuit boards 20 connected by the connecting portions 31 and 31 and the current collecting plates 50-2 connected by the connecting members are connected to the first and second molds as shown in FIG. 4 Insert in 1 and 45.
  • the cavities C 1 having the same shape as the outer shape of the electronic component substrate 112 are formed in the first and second molds 41, 45, but the flexible circuit substrate 20 is formed of the resistor C 1.
  • the surface on which the pattern 25 is formed is in contact with the inner plane CI 1 on the first mold 41 side of the capty C 1, and one end provided with the terminal pads 29, 29 is a second mold 45. Fold it to the side.
  • the flexible circuit board 20 is housed in the cavities C1 of the first and second molds 41 and 45, and the surface of the flexible circuit board 20 on which the resistor pattern 25 is provided is the cavity.
  • the portion on the side where the terminal patterns 29 and 29 are in contact with the one surface C11 of the first C1 is folded back to the other surface of the cavity C1.
  • the base plate 53-2 of the current collector plate 50-2 is sandwiched by the first and second molds 41, 45, and at the same time, the two molds 4
  • the projections 1 and 45 are inserted, and the lower surface of the connection portion 55-2 comes into close contact with the surface of the second mold 45.
  • Heat and melt synthetic resin (nylon, polyphenylene sulfide, etc.) from two resin injection ports P 1 and P 2 (see Fig. 6 (a)) provided on the first mold 41 side of the cavity C1. ) Press and fill to fill the cavity C1. Then, the folded portion of the flexible circuit board 20 is pressed against the inner peripheral surface of the cavity C1 as shown by a dotted line in FIG. 8 by the press-in pressure of the molten resin, and is cooled and solidified in that state. In other words, by filling the molten molding resin into the cavity C1, the folded portion of the flexible circuit board 20 is brought into close contact with the lower surface of the cavity C1 from the upper surface via the outer peripheral side surface, and cooled in that state. ⁇ Solidified.
  • the flexible circuit board 20 is disposed from the upper surface of the substantially rectangular plate-shaped insulating base 10 to the lower surface via one outer peripheral side surface.
  • a through hole 11 is provided at the center of the insulating base 10
  • a horseshoe-shaped resistor pattern 25 is provided on a flexible circuit board 20 on the outer periphery thereof, and terminal patterns 29, 29 are provided at both ends thereof.
  • the terminal patterns 29 and 29 are further provided on the lower surface via one outer peripheral side surface of the insulating base 10. ing. Further, the current collector plate 50-2 is integrally embedded in the insulating base 10 and the through-holes 11 provided in the insulating base 10 have cylindrical protrusions 5 of the current collector plate 50-2. 1-2 protrudes beyond the upper surface of the insulating base 10, the base 53-2 is embedded in the insulating base 10, and the connecting portion 55-2 is the lower surface of the insulating base 10 ( ⁇ And exposed on the outer peripheral side facing the terminal patterns 29, 29 exposed on the lower surface.
  • a mold 4 1 having a flexible circuit board 20 provided with terminal patterns 29, 29 connected to the pins 25, and a cavity C 1 formed in the external shape of the electronic component substrate 11 2 , 45 are prepared, and the flexible circuit board 20 is accommodated in the cavities C 1 of the dies 41, 45, at which time the surface on which the conductor pattern 25 of the flexible circuit board 20 is provided Is brought into contact with one surface C 11 in the cavity C 1, and the portion on the side where the terminal patterns 29, 29 are provided is folded back to the other surface side of the cavity C 1, and the cavity C 1
  • the flexible circuit board 2 is filled by filling the inside with a molten molding resin.
  • the folded part of 0 is brought into close contact with the lower surface via the outer peripheral side from the upper surface of the capity C1, and after the filled molding resin has solidified, the dies 41, 45 are removed, and the insulation made of the molding resin is removed.
  • a portion where the conductor pattern 25 is provided is exposed on the upper surface of the base 10 and a portion on the side where the terminal patterns 29 and 29 are provided is exposed in a folded state from the outer peripheral side surface to the lower surface.
  • the insulating base 1 can be formed simply by insert-molding the flexible circuit board 20 and the current collector 50-2 into the cavities C1 of the molds 41, 45.
  • the electronic component has a structure in which the resistor pads 25 are exposed on the upper surface of the terminal 0, the terminal patterns 29, 29 are exposed from the outer peripheral side surface to the lower surface, and the current collecting plate 50-2 is further attached.
  • the substrates 112 can be easily manufactured, the productivity is improved, and the cost can be reduced.
  • the material cost can be reduced as compared with the ceramic substrate, and the thickness can be reduced easily and inexpensively.
  • Fig. 7 shows a semi-fixed variable resistor 100-2 constructed using the electronic component substrate 112 described above.
  • 7 (a) is a plan view
  • FIG. 7 (b) is a front view
  • FIG. 7 (c) is a sectional view taken along line E--E of FIG. 7 (a)
  • FIG. 7 (d) is a rear view.
  • the semi-fixed variable resistor 100-2 is formed by a cylindrical projection 51- provided on the current collecting plate 50-2 when the slider 60 is disposed on the upper surface of the electronic component substrate 1-2. 2 is penetrated through a fitting hole 61 provided in the slider 60, and the slider 60 is rotatably mounted by caulking the tip. Then, when the slider 60 is rotated, the sliding contact 63 provided on the slider 60 slides on the surface of the resistor pattern 25 (see FIG. 6) to make contact with the terminal patterns 29, 29 and the current collector plate. Changes the resistance between 50-2.
  • FIGS. 9 and 10 are diagrams showing electronic component substrates 13 manufactured using the third embodiment of the present invention.
  • FIG. 9 (a) is a perspective view seen from above, and FIG. ) Is a perspective view as viewed from below
  • FIG. 10 (a) is a plan view
  • FIG. 10 (b) is a front view
  • FIG. 10 (c) is a cross-sectional view taken along line FF of FIG. 10 (a)
  • FIG. ) Is a rear view.
  • the same parts as those of the electronic component substrates 11 1 and 11 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the flexible circuit board 20 is integrally mounted on the upper surface of the insulating base 10 by insert molding, and the resistor pattern formed on the flexible circuit board 20 is formed.
  • Reference numeral 25 is a metal thin film formed by physical vapor deposition or chemical vapor deposition. The material of each member constituting the electronic component substrate 113 and the method of manufacturing the same are the same as the material of the corresponding member of the first and second embodiments and the method of manufacturing the same.
  • the insulating base 10 is a substantially rectangular plate-like synthetic resin molded product, and the current collecting plate 50-3 is connected to the insulating base 10 similarly to the electronic component substrate 112. It is integrally insert molded inside.
  • the current collecting plate 50-3 has the same shape as the current collecting plate 50-2, and the resistance of the electronic component substrate 13 is provided at the center of the base 53-3 formed by forming a metal plate into a substantially rectangular shape.
  • a cylindrical projection 51-3 protruding from the surface on which the body pattern 25 is provided is provided. Also, it protrudes outward from one side of the outer periphery of the base 53-3 in a substantially rectangular shape, and is bent twice at a substantially right angle.
  • the electronic component substrate 13 is provided with a connection portion 55-3 that is exposed on the surface opposite to the surface on which the resistor pattern 25 is provided.
  • the distal end of the connection portion 55-3 is divided into three parts, and the center portion thereof is bent at a substantially right angle to the surface on which the resistor panel 25 of the electronic component substrate 13 is provided.
  • the current collecting plate 5 The insulating base is positioned so that its cylindrical projection 5 1-3 is positioned (centered) in the through hole 11 of the insulating base 10 (and simultaneously the through hole 21 of the flexible circuit board 20). It is embedded inside 10 by insert molding. At this time, the lower surface of the connection portion 55-3 is exposed on the lower surface of the insulating base 10 as described above.
  • the inner diameters of the through hole 11 and the through hole 21 are larger than the outer diameter of the cylindrical protrusion 51-3, and the cylindrical protrusion 51-3 protrudes to the upper surface side of the flexible circuit board 20.
  • the flexible circuit board 20 has a substantially rectangular shape as shown in FIG. 11 (having a width substantially equal to the width of the insulating base 10 and a length longer than the insulating base 10 by a predetermined dimension).
  • a through-hole 21 having the same inner diameter as the through-hole 11 is provided at a position corresponding to the through-hole 11 in the center of the plastic synthetic resin film.
  • the resistor pattern is referred to as a “resistor pattern” 25, and a substantially rectangular terminal pattern 29, 2 along the length direction (A) is provided at the ends 25 e, 25 e of the resistor pattern 25. 9 are connected and provided.
  • the flexible circuit board 20 has its side on which the terminal patterns 29, 29 are provided folded back from the upper surface of the insulating base 10 to the lower surface via the outer peripheral side, whereby the flexible circuit board 20 is
  • the insulating base 10 is attached to the insulating base 10 in a state of being bent so that the upper surface, the outer peripheral side surface, and the lower surface are exposed. Accordingly, the resistor pattern 25 is exposed on the upper surface of the insulating base 10, and the terminal patterns 29, 29 are exposed from the upper surface and the outer peripheral side of the insulating base 10 to the lower surface.
  • the edge 7 (the resistor pattern 25 side) in the length direction (A) outside the resistor 25 of the flexible circuit board 20 is formed.
  • Holder 1 having an arc shape that covers 1 ⁇ a (however, if it does not cover the resistor pattern 25, and the outer ends 25 e and 25 e of the resistor pattern 25 on the flexible circuit board 20)
  • a holding portion 17 b having an arc shape covering the two terminal patterns 29, 29 in a portion near the circumference, and a terminal pattern 29 of a flexible circuit board 20 arranged on the lower surface of the insulating base 10.
  • the lower surface of the insulating base 10 covering the end side 7 3 on the side where 2-9 is provided and the flat holding part 17 c on the same plane as the lower surface of the insulating base 10 are provided integrally with the insulating base 10 by insert molding resin.
  • the flexible circuit board 20 is firmly fixed to the insulating base 10.
  • the edge 7 1 of the flexible circuit board 20 matches the arc shape of the resistor pattern 25
  • the pressing portion 17a is also formed in an arc shape in accordance with the arc shape.
  • the holding portion 17b is connected to a molding resin constituting the insulating base 10 below the resin passing portions 75a, 75a, and 75b at the portions of the resin communicating portions 75a, 75a, and 75b.
  • the edge 73 of the other side (terminal pattern 29, 29 side) in the length direction (A) folded back on the lower surface side of the insulating base 10 of the flexible circuit board 20 is A concave part 77 (see Fig. 11) is provided, which is substantially linear and concave in the shape of an arc at the center.
  • a holding portion 17c is formed on one end side 73 so as to hold the end side 73 at a plurality of places (five places).
  • the surface near the end side 73 of the flexible circuit board 20 is the surface immediately after the flexible circuit board 20 is folded back on the lower surface side of the insulating base 10 (the lower surface located on the side surface side of the insulating base 10). ) Is further recessed toward the inside of the insulating base 10 up to the bottom of the recess 78, but the surface of the holding portion 17 c is flush with the exposed surfaces of the terminal patterns 29, 29. Therefore, it is necessary to lower the surface of the flexible circuit board 20 by the thickness of the holding portion 17c.
  • the third embodiment is an invention according to claim 4, which is dependent on claim 2, wherein an insulating base 10 and terminals on a synthetic resin film attached on the insulating base 10 are provided.
  • a flexible circuit board 20 provided with patterns 29 and 29 and a conductor pattern 25 on the surface of which a slider slides.
  • the insulating base 10 is a synthetic resin molded product.
  • the flexible circuit board 20 is insert-molded on the insulating base 10, and the insulating base 10 is provided with a current collecting plate 50-3 provided with a cylindrical projection 51-3. But cylindrical projection 5 1
  • Insert molding is carried out so as to be positioned in the base 1. Further, the insulating base 10 is provided with holding portions 17 a, 17 7 for firmly fixing the flexible circuit board 20 to the insulating base 10.
  • the electronic component substrates 13 and 13 provided with b and 17c are disclosed.
  • the current collector plate in which the insulating base 10 is provided with the cylindrical projections 51-3 is provided.
  • the collector plate 50-3 is not insert-molded on the insulating base 10 and the other parts are the same as those of the third embodiment.
  • a component substrate may be configured.
  • This electronic component substrate is the invention according to claim 4 dependent on claim 1, wherein an insulating base 10 and a terminal pattern 29 on a synthetic resin film attached on the insulating base 10 are provided. 29, and a flexible circuit board 20 provided with a conductor pattern 25 on the surface of which a slider slides.
  • the insulating base 10 is a synthetic resin molded product, and The board 20 is insert-molded on the insulating base 10, and further, the insulating base 10 has a holding portion 17 a, which firmly fixes the flexible circuit board 20 to the insulating base 10. 17b and 17c are provided.
  • a through-hole 21 and resin through-holes 75a, 75a, and 75b are provided, and a resistor is formed on the surface by a metal thin film formed by physical or chemical vapor deposition.
  • a flexible circuit board 20 on which the pattern 25 and the terminal patterns 29, 29 are formed and a current collector 50-3 shown in FIG. 10 are prepared.
  • the flexible circuit board 20 has connecting portions 31 and 31 protruding from both sides of the portion where the resistor pattern 25 is provided, and the connecting portions 31 and 31 form a large number of the same flexible circuit.
  • Substrates 20 (not shown) are connected in parallel.
  • the same number of current collectors 50-3 are connected in parallel by connecting the tip of the connection portion 55-3 to a connecting member (not shown).
  • the flexible circuit boards 20 connected by the connecting portions 31 and 31 and the current collectors 50-3 connected by the connecting members are connected to the first and second metal plates as shown in FIG. Insert into molds 41 and 45.
  • a cavity C 1 having the same shape as the outer shape of the electronic component substrate 13 is formed in the first and second molds 41, 45, but the flexible circuit substrate 20 has the resistance thereof.
  • the surface on which the body pattern 25 is formed is in contact with the inner plane C 11 of the first mold 41 side of the cavity C 1, and the end side 73 side on which the terminal patterns 29, 29 are provided is the second metal. Fold it back to the mold 45 side. That is, the cavity C of the first and second molds 4 1 and 4 5
  • the flexible circuit board 20 is accommodated in 1, and at this time, the surface on which the resistor pattern 25 of the flexible circuit board 20 is provided contacts one surface (the first mold 41 side) in the cavity C 1.
  • the portion on the side where the terminal patterns 29 and 29 are provided is folded back to the other surface side (the second mold 45 side) of the cavity C1.
  • the current collector 50 0-3 is the base 5
  • the portion 3-3 is sandwiched between the first and second molds 41 and 45, and the lower surface of the connection portion 55-3 is in close contact with the surface of the second mold 45.
  • the concave portion 77 (see FIG. 11) was provided at the end 73 of the flexible circuit board 20 because the end 73 side of the flexible circuit board 20 was folded back to the second mold 45 side.
  • the flexible circuit board 20 escapes so as not to come into contact with the convex portion 47 for forming the through hole 11 provided in the second mold 45.
  • the heated and melted synthetic resin is injected from the resin injection port (arrows Gl and G2 shown in Fig. 9 (a) and Gl and G2 shown in Fig. 12) at the two places provided on the mold 41 side.
  • the flexible circuit board 20 is pressed against the inner peripheral surface of the cavity C1 by the press-fitting pressure and heat of the molten resin, is deformed into the inner peripheral surface shape, and is cooled and solidified in that state.
  • the folded portion of the flexible circuit board 20 is brought into close contact with the lower surface of the cavity C1 from the upper surface to the lower surface via the outer peripheral side surface and cooled in that state. ⁇ Solidified. Then, the first and second molds 41 and 45 are removed, and the connecting portions 31 and 31 protruding from both sides of the molded insulating base 10 and the current collecting plates 50-3 protruding are removed. By cutting off the tip of the connecting portion 55-3, the electronic component substrate 13 shown in FIGS. 9 and 10 is completed.
  • the end portion 73 and its vicinity were intermittently held at a plurality of places by the holding portion 1 ⁇ c because a part of the end side 73 was brought into contact with the surface of the second mold 45. By doing so, the end portion 73 is pushed up to the surface of the second mold 45 by the press-fitting pressure of the molten molding resin, and is held so as not to be deformed. In other words, the end 73 and the vicinity thereof exposed from the lower surface of the insulating base 10 without the holding portion 17 c are connected to the end 73 and the vicinity thereof by the second mold 45. It was formed as a result of holding down.
  • the flexible circuit board 20 and the current collector 50-3 are simply insert-molded into the cavities C1 of the first and second molds 41, 45. Then, the resistor pattern 25 was exposed on the upper surface of the insulating base 10, the terminal patterns 29, 29 were exposed from the outer peripheral side to the lower surface, and the current collector 50-3 was attached.
  • the electronic component substrate 13 having the structure can be easily manufactured, thereby improving the productivity and reducing the cost. Also, material costs can be reduced compared to ceramic substrates, and thickness can be reduced easily and inexpensively.
  • the flexible circuit board 20 provided on the upper surface of the insulating base 10 and the flexible circuit board 20 provided on the lower surface of the insulating base 10 include: Since the holding portions 11a to 17c for firmly fixing the flexible circuit board 20 to the insulating base 10 are provided, for example, the flexible circuit board 20 and the insulating base 10 can be controlled only by heat and pressure during insert molding. Even if the combination is made of a material that is difficult to adhere to, the problem such as the flexible circuit board 20 coming off the surface of the insulating base 10 does not occur, and this can be easily and firmly fixed.
  • the holding portions 17 a to 17 c are connected to the end 71 on the resistor pattern 25 side provided on the upper surface side of the insulating base 10 of the flexible circuit board 20 and the resistor pattern 25. Although they are provided on the outer periphery of the ends 25 e and 25 e and on the terminal pattern 29 and the end 73 on the lower surface side of the insulating base 10, they are provided on the insulating base 10 of the flexible circuit board 20. In the case where the fixation to the surface is relatively strong, the holding part may be provided only in one of these three places. In this case, the portion bent toward the lower surface side of the insulating base 10 of the flexible circuit board 20 has the strongest stress to return to the original shape and is easily peeled off. It is preferable to provide the holding portion 17c.
  • the electronic component substrate 113 manufactured as described above penetrates the cylindrical projection 51-3 through the fitting hole 61 of the slider 60 similar to that shown in FIG. By caulking, the slider 60 is rotatably mounted, thereby forming a semi-fixed variable resistor.
  • FIGS. 13 and 14 are diagrams showing electronic component substrates 14 manufactured using the fourth embodiment of the present invention.
  • FIG. 13 is a perspective view
  • FIG. 14 (a) is a plan view
  • FIG. 14B is a front view
  • FIG. 14C is a cross-sectional view taken along line GG of FIG. 14A
  • FIG. 14D is a rear view.
  • the electronic component substrates 14 are mounted integrally with the flexible circuit board 20 on the upper surface of the insulating base 10 by insert molding, and the terminal boards 70, 70 are mounted on the flexible circuit board 20. It is configured to be attached to the end of the insulating base 10 so as to be connected to the provided terminal patterns 29, 29.
  • each component will be described.
  • the insulating base 10 is a substantially rectangular plate-shaped synthetic resin molded product, a circular through-hole 11 is provided at the center thereof, and a concave current collecting plate housing recess 15 is provided at the center of the lower surface thereof. In addition, near the one end side of the lower surface, there are provided terminal plate storage recesses 18, 18 of a size and shape for storing the terminal plates 70, 70.
  • the insulating base 10 is made of a thermoplastic synthetic resin, for example, nylon-polyphenylene sulfide (PPS) or the like.
  • the flexible circuit board 20 is made of a thermoplastic synthetic resin film (for example, a polyimide film).
  • the terminal patterns 29, 29 and a conductor pattern 25 on which a slider slides are provided. That is, this flexible circuit board 20 is provided with a through-hole 21 having the same inner diameter as the through-hole 11 in the center of the synthetic resin film at a position corresponding to the through-hole 11, and around the through-hole 21 on the surface thereof.
  • a conductor pattern (hereinafter referred to as a “resistor pattern”) 25 is provided in a horseshoe shape, and terminal patterns 29 and 29 are provided at both ends of the resistor pad 25, respectively. It is provided in connection with body pattern 25.
  • the resistor pattern 25 is formed of a metal thin film formed by physical vapor deposition (PVD, physical vapor deposition) or chemical vapor deposition (CVD, chemical vapor deposition).
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • a method of physical vapor deposition vacuum vapor deposition, sputtering, ion beam vapor deposition, or the like is used.
  • a chemical vapor deposition method a thermal CVD method, a plasma CVD method, an optical CVD method, or the like is used.
  • the material of the resistor pattern 2 5 for depositing a nickel-based material such as nickel chromium alloy, or a chromium silicate compound (C r one S i 0 2) mono Met material made of such, or tantalum nitride Tantalum-based material or the like is used. Since the chromium silicate compound can easily realize a large specific resistance of more than 2000 ⁇ -cm, it is suitable for downsizing the electronic component substrate 14.
  • a resistor pattern made of a resistor paste such as a carbon paste can be used as the resistor pattern 25, but in this embodiment, the electronic component substrate 114 is semi-fixed. Since it is a substrate for a variable resistor, a resistor pattern 25 formed by metal evaporation was used. The reason is as follows. In other words, the semi-fixed variable resistor is usually mounted on another circuit board or the like, and then the resistance is set by rotating the slider, but once the resistance is set, the resistance is changed. It is used to keep the set resistance value as it is. Therefore, in this type of semi-fixed variable resistor, it is necessary to make the set resistance value less affected by temperature and humidity.
  • the entire resistor pattern 25 can be formed to have a uniform and uniform thickness, and a resistor obtained by printing and firing a paste obtained by mixing conductive powder in resin. Since there is no resin inside like the body pattern, the resistance value is hard to change by heat and temperature.
  • a carbon paste printed and baked In the case of the antibody pattern, the temperature coefficient of resistance was 5OO pp mZ ° C, whereas in the case of the metal thin film using the above-mentioned vacuum deposition, the temperature coefficient of resistance was 100 ppmZ ° C.
  • the temperature coefficient of resistance of this metal thin film is as good as the temperature coefficient of resistance when a resistor pattern is printed on a ceramic substrate at a high temperature.
  • the resistor pattern 25 formed by metal deposition is used as the antibody pattern.
  • the terminal patterns 29, 29 are formed by sequentially forming a copper layer and a gold layer on a nichrome base by vapor deposition. Since the terminal patterns 29 and 29 do not directly affect the change in the resistance value, they may be formed by other means such as printing and firing a conductive paste.
  • the terminal plates 70 and 70 are substantially U-shaped and made of a metal plate (for example, a metal plate with a low melting point after copper plating on a surface of an iron plate or a stainless steel plate). It is formed to have dimensions that cover the top, side, and bottom surfaces.
  • a flexible circuit board 20 comprising a pattern 29 and a conductor pattern 25 on the surface of which a slider is in sliding contact, wherein the insulating base 10 is a synthetic resin molded product.
  • the flexible circuit board 20 is insert-molded on the insulating base 10, and further connected to terminal patterns 29, 29 provided on the flexible circuit board 20 to form an insulating base.
  • An electronic component substrate 1-4 comprising terminal plates 70, 70 attached to the 10 end is disclosed.
  • a method of manufacturing the electronic component substrate 114 will be described.
  • a flexible circuit having a through hole 21 and a resistor pattern 25 and terminal patterns 29, 29 formed on its surface by a metal thin film by physical vapor deposition or chemical vapor deposition Prepare the substrate 20.
  • connecting portions 31 and 31 protrude from both sides thereof, and a large number of the same flexible circuit boards 20 are connected in parallel by these connecting portions 31 and 31. .
  • the flexible circuit boards 20 connected by the connecting portions 31 and 31 are inserted into the first and second molds 41 and 45 as shown in FIG.
  • the first and second molds 41 and 45 have a cavity having the same shape as the external shape of the electronic component substrate 114.
  • the flexible circuit board 20 has its resistor pattern 25 forming surface in contact with the inner plane C11 on the first mold 41 side of the capital C1.
  • synthetic resin nylon, nylon, etc.
  • the resin injection ports arrows PI and P2 shown in FIG. 13 and Pl and P2 shown in FIG. 16
  • the first and second molds 41 and 45 are removed, and the connection portions 31 and 31 protruding from both sides of the molded insulating base 10 are removed. Disconnect.
  • the terminal plates 70, 70 shown in FIGS. 13 and 14 are connected so as to cover the surface on which the terminal patterns 29, 29 are provided on the surface of the flexible circuit board 20, and this surface is connected to this surface. If it is installed so as to cover the surfaces of the terminal board storage recesses 18 and 18 on the lower surface of the insulating base 10 and the outer peripheral side surface of the insulating base 10, it will be connected to the terminal pattern 29 shown in Figs. Thus, the electronic component substrate 114 with the terminal plate 70 attached to the insulating base end 12 is completed.
  • the flexible circuit board 20 is mounted on the base 10 so that the conductor pattern 25 and the terminal patterns 29, 29 are exposed. Then, the flexible circuit board 20 is mounted on the insulating base end 12 and on the flexible circuit board 20. A method for manufacturing a substrate for electronic components 114 in which terminal plates 70, 70 are attached so as to be connected to the provided terminal patterns 29, 29 is disclosed.
  • terminal plate 70 and the terminal pattern 29 may be connected only by the mechanical contact force directly contacted, or may be connected via a conductive adhesive or the like.
  • the shape of the terminal plate 70 and the mounting structure are not limited to this embodiment.
  • Any structure may be used as long as it can be attached to the 10 end.
  • the manufacturing can be easily performed and the cost can be reduced.
  • the insulating base 10 is made of a synthetic resin molded product, its manufacture is easy, The material cost can be reduced as compared with the MIC substrate, and the thickness can be reduced easily and inexpensively.
  • a large number of sets of resistor patterns 25 are simultaneously formed on the synthetic resin film, and then the insulating bases 10 are simultaneously formed on the flexible circuit boards 20 on which the respective sets of resistor patterns 25 are provided. Since the circuit board 20 can be cut into individual products, the electronic component substrates 114 can be easily mass-produced, and productivity is improved.
  • FIG. 17 is a diagram showing a semi-fixed variable resistor 100-4 configured using the electronic component substrates 114
  • FIG. 17 (a) is a plan view
  • FIG. 17 (b) is a front view
  • FIG. (c) is a sectional view taken along the line HH of FIG. 17 (a)
  • FIG. 17 (d) is a rear view.
  • the semi-fixed variable resistor 100-4 has a slider 60 disposed on the upper surface of the electronic component substrate 1-4, a current collector 50 disposed on the lower surface, and provided on the current collector 50. Through the through holes 11 and 21, and the tip of the cylindrical protrusion 51 that has penetrated the electronic component substrate 1-4 through the fitting hole 61 provided in the slider 60.
  • the slider 60 is rotatably mounted by caulking the tip of the slider.
  • the current collecting plate 50 is housed in the current collecting plate housing recess 15 provided on the lower surface of the electronic component substrate 14.
  • the sliding contact 63 provided on the slider 60 slides on the surface of the resistor pattern 25 (see FIG. 14), and the terminal plates 70, 70 and the current collector plate 50 Change the resistance value of
  • the semi-fixed variable resistor 100-4 is mounted on another circuit board on which various electronic components are mounted.
  • the terminal plates 70, 70 are fixed to a circuit pattern provided on another circuit board by a connecting means using a high melting point metal or the like, which involves a high temperature.
  • the terminal plates 70, 70 are fixed. Since 70 is used, it can be easily fixed to another circuit board by high-temperature connecting means, while the material of the terminal pattern 29 and the flexible circuit board 20 can be made of a material weak to heat.
  • the terminal plates 70 also serve as mechanical fixing means for fixing the flexible circuit board 20 by sandwiching it between the insulating bases 10.
  • FIGS. 18A and 18B are diagrams showing electronic component substrates 115 manufactured using the fifth embodiment of the present invention, wherein FIG. 18A is a plan view, FIG. 18B is a front view, and FIG. (c) is a sectional view taken along the line II in FIG. 18 (a), and FIG. 18 (d) is a rear view.
  • the same parts as those of the electronic component substrate 1-4 are denoted by the same reference numerals, and the detailed description thereof is omitted. Omitted.
  • the flexible circuit board 20 is integrally mounted on the upper surface of the insulating base 10 by insert molding, and the terminal plates 70, 70 are connected to the terminal pins 29, 29. Attached to the insulating base end 12.
  • the resistor pattern 25 is also formed of a metal thin film formed by physical vapor deposition or chemical vapor deposition.
  • the manufacturing method of the electronic component substrate 115 includes the flexible circuit board 20 in the cavity C 1 of the first and second molds 41 and 45 for molding the insulating base 10.
  • the terminal plates 70, 70 are inserted in advance, and molten synthetic resin is press-fitted into the cavity C1 from the resin injection ports P1, P2 (provided at the same position as in the fourth embodiment). Then, by cooling and solidifying, a flexible circuit board 20 and terminal boards 70, 70 are integrally molded on the insulating base 10 to produce an electronic component board 1_5.
  • a flexible circuit board 20 provided with conductive patterns 25 on the surfaces of which sliders are in sliding contact.
  • the insulating base 10 is a synthetic resin molded product
  • the flexible circuit board 20 is Is provided with terminal plates 70, 70 that are insert-molded on the insulating base 10 and are connected to terminal patterns 29, 29 provided on the flexible circuit board 20 and attached to the end of the insulating base 10.
  • electronic component substrates 1 to 5 which are formed by insert-molding the terminal boards 70 and 70 on the insulating base 10.
  • a conductor pattern 25 in which a slider slides on a surface of a synthetic resin film and a terminal connected to the conductor pattern 25 according to the invention of claim 14.
  • Flexible circuit board 20 provided with patterns 29, 29, terminal boards 70, 70 made of a metal plate, and cavities formed in the outer shape of electronic component substrate 115
  • a mold 41, 45 having C1 is prepared, and the flexible circuit board 20 and the terminal boards 70, 70 are accommodated in the cavity C1 of the mold 41, 45, at which time the flexible circuit board is provided.
  • the surface on which the 20 conductor patterns 25 are provided is brought into contact with one surface C 11 (the first mold 41 surface) of the cavity C 1, and at the same time, a part of the terminal plates 70, 70 is attached to the flexible circuit board 20.
  • Contact or face terminal patterns 29, 29 After filling the molten molding resin into the cavity C 1 and solidifying the filled molding resin, the molds 41 and 45 are removed, so that the flexible circuit board 20 is transferred to the insulating base 10 made of molding resin by the conductor pattern.
  • a method for manufacturing an electronic component substrate 115 to which the plates 70, 70 are attached is disclosed.
  • a cap C12 which constitutes a part of the cap C1, is provided at a position above the terminal plate 70 of the first mold 41, and an insulating base 10 is formed in the cap C12.
  • a projecting abutment 42 is provided to support the terminal plates 70, 70 from behind. Have been.
  • the cavity C12 forms a terminal plate holding portion 19 made of the same synthetic resin as the insulating base 10 covering the upper surfaces of the terminal plates 70 and 70, as shown in FIG. 18, and the insulating base of the terminal plates 70 and 70 is formed.
  • An opening 23 for integrally connecting the insulating base 10 and the terminal plate holding portion 19 is provided in a portion between the two terminal patterns 29, 29 of the flexible circuit board 20.
  • the two holes 191 and 191 formed in the terminal plate holding portion 19 are holes formed by the contact portion 42 provided in the cavity C12 of the first die 41.
  • the terminal boards 70, 70 as well as the flexible circuit board 20 are formed by insert molding on the insulating base 10, a separate attaching process of the terminal boards 70, 70 to the insulating base 10 becomes unnecessary.
  • the fixing of the terminal plates 70, 70 to the insulating base 10 and the electrical connection of the terminal plates 70, 70 to the terminal patterns 29, 29 can be easily and reliably performed.
  • the insulating base 10 is made of a synthetic resin molded product, its manufacture is easy, the material cost can be reduced as compared with the ceramic base, and the thickness can be reduced easily and inexpensively. Note that the terminal plate holding portion 19 is not always necessary and may be omitted.
  • FIG. 20 is a diagram showing an electronic component substrate 16 manufactured using the sixth embodiment of the present invention, wherein FIG. 20 (a) is a plan view, FIG. 20 (b) is a front view, and FIG. (c) is a sectional view taken along the line J-J in FIG. 20 (a), and FIG. 20 (d) is a rear view.
  • the electronic component substrate 116 shown in the figure the same parts as those of the electronic component substrate 114 are denoted by the same reference numerals, and the detailed description thereof will be omitted. Omitted.
  • the flexible circuit board 20 is integrally mounted on the upper surface of the insulating base 10 by insert molding, and the terminal boards 70, 70 are attached to the flexible circuit board 20. It is attached to the insulating base end (end side) 12 while being connected to the terminal patterns 29, 29 provided above.
  • the difference between the electronic component substrate 114 and the electronic component substrate 114 is that the electronic component substrate 114 is further provided with a current collector plate 50-6 inside the insulating base 10. This is the point that it was integrally molded.
  • the current collector plate 50-6 is located at the center of a base 53-3-6 formed of a metal plate in a substantially rectangular shape, on the surface side of the electronic component substrate 16-16 where the resistor pattern 25 is provided.
  • a protruding cylindrical projection 51-6 is provided, and is protruded outward from one side of the outer periphery of the base 53-6 in a substantially rectangular shape, and is bent twice at a substantially right angle to form an electronic component substrate 116.
  • connection portion 55-6 exposed on the surface opposite to the surface on which the resistor pattern 25 is provided.
  • the tip of the connecting portion 55-6 is divided into three parts, and the center part thereof is bent at a substantially right angle to the surface on which the resistor panel 25 of the electronic component substrate 16 is provided.
  • the current collector plate 50-6 is formed by connecting the cylindrical projections 51-6 to the through holes 11 of the insulating base 10 (at the same time, the through holes of the flexible circuit board 20). It is embedded by insert molding inside the insulating base 10 so that it is located in (center) 2 1). At this time, the lower surface of the connection portion 55-6 is exposed on the lower surface of the insulating base 10 as described above.
  • the cylindrical protrusions 51-6 protrude toward the upper surface of the flexible circuit board 20.
  • a method of manufacturing the electronic component substrate 1_6 will be described.
  • a flexible circuit having a through hole 21 similar to that shown in Fig. 15 and having a resistive pattern 25 and terminal patterns 29, 29 formed on its surface by a metal thin film formed by physical or chemical vapor deposition.
  • a substrate 20 and a current collecting plate 50-6 shown in FIG. 20 are prepared.
  • this flexible circuit board 20 has connecting portions 31 and 31 protruding from both sides thereof, and these connecting portions 3 1 and 3 1
  • the current collector plates 50-6 also have the same number of the current collector plates 50-16 connected in parallel by connecting the distal end portions of the connection portions 55-16 to a connecting member (not shown).
  • the flexible circuit boards 20 connected by the connecting portions 31 and 31 and the current collectors 50-6 connected by the connecting members are connected to the first and second metal plates as shown in FIG. Type 4 1, 4 Insert in 5.
  • cavities C1 having the same shape as the outer shape of the electronic component substrate 116 are formed in the first and second molds 41 and 45, but the flexible circuit substrate 20 is formed of a resistor body.
  • the pattern 25 forming surface is in contact with the inner plane CI 1 of the cavity C 1 on the side of the first mold 41. That is, the flexible circuit board 20 is housed in the cavities C 1 of the first and second dies 41, 45, and the surface of the flexible circuit board 20 on which the resistor pattern 25 is provided is the cavity C 1.
  • Heat and melt synthetic resin (nylon, polyphenylene sulfide, etc.) from two resin injection ports P 1, P 2 (same position as in Fig. 13) provided on the first mold 41 side of cavity C 1 ) Press and fill to fill the cavity C1.
  • the flexible circuit board 20 is pressed against the inner plane C 11 of the first mold C 1 by the injection pressure of the molten resin, and is cooled and solidified in that state.
  • the first and second molds 41, 45 are removed, and the connection portions 31, 31 projecting from both sides of the molded insulating base 10 and the projecting current collector plates 50-6 are connected.
  • the electronic component substrate 1-6 shown in FIG. 20 is completed.
  • a through hole 11 is provided at the center of the insulating base 10, a horseshoe-shaped resistor pattern 25 is provided on a flexible circuit board 20 on the outer periphery thereof, and terminal patterns 29, 29 are provided at both ends thereof. Is provided. Further, the current collector plates 50-6 are integrally embedded in the insulating base 10, and the through-holes 11 provided in the insulating base 10 have cylindrical projections 5 of the current collector plates 50-6. 1-6 project beyond the upper surface of the insulating base 10; the bases 5 3-6 are embedded in the insulating base 10; Exposed on the outer peripheral side facing the terminal patterns 29, 29 exposed on the upper surface.
  • the terminal boards 70 and 70 shown in FIG. 20 are connected so as to cover the surface of the flexible circuit board 20 on which the terminal pads 29 and 29 are provided. If it is installed so as to cover the surfaces of the terminal plate storage recesses 18 and 18 on the lower surface of the base 10 and the outer peripheral side surface of the insulating base 10, it is connected to the terminal pattern 29 shown in Fig. 20 and the insulating base end 1
  • the electronic component substrate 116 with the terminal plate 70 attached to 2 is completed. That is, in the sixth embodiment, the insulation base 10 and the terminal on a synthetic resin film attached on the insulation base 10 are the invention according to claim 9 which is dependent on claim 6.
  • a flexible circuit board 20 comprising a pattern 29 and a conductor pattern 25 on the surface of which a slider is in sliding contact, wherein the insulating base 10 is a synthetic resin molded product.
  • the flexible circuit board 20 is insert-molded on the insulating base 10, and is connected to the terminal patterns 29, 29 provided on the flexible circuit board 20 to form an insulating base.
  • Terminal boards 70, 70 attached to the 10 end portions, and further, the insulating base 10 has an electronic component substrate 116, on which a current collector plate 50-6 is insert-molded. Is disclosed.
  • the surface of the flexible circuit board 20 on which the conductor pattern 25 is provided abuts against one surface C 1 1 (the first mold 41 surface) in the cavity C 1, and the inside of the cavity C 1
  • the molds 41 and 45 are removed to remove the molding resin.
  • the flexible circuit board 20 is mounted on the insulating base 10 so that the conductor pattern 25 and the terminal patterns 29 and 29 are exposed, and then, on the end of the insulating base 10, the flexible circuit board 20 is mounted.
  • the terminal boards 70, 70 are attached so as to be connected to the terminal patterns 29, 29 provided on the substrate, and the flexible circuit board 20 is stored in the cavities C1 of the dies 41, 45.
  • the current collecting plate 50-6 is formed by storing the current collecting plate 50-6 made of a metal plate into the cap C1 at the same time, thereby embedding the current collecting plate 50-6 in the insulating base 10 made of the molding resin.
  • a method for manufacturing an electronic component substrate 116 made of the following is disclosed.
  • the flexible circuit board 20 and the current collector plate 50-6 are insert-molded on the insulating base 10 so that the current collector plate 50-6 is separately provided.
  • insulating base Since 10 is made of a synthetic resin molded product, its manufacture is easy, the material cost can be reduced compared to a ceramic substrate, and the thickness can be reduced easily and inexpensively.
  • a flexible circuit board 20 and a current collector 50-6 are provided in first and second molds 41 and 45.
  • the terminal plates 70 and 70 may be inserted similarly to the fifth embodiment. That is, as shown in FIG. 22, the flexible circuit board 20 is provided in the capacities C 1 of the first and second molds 41, 45 for molding the electronic component substrate 16 A (not shown).
  • the current collector plate 50-6 and the terminal plates 70, 70 are inserted in advance, and the resin inlets Pl, P2 (provided at the same position as in the fourth embodiment) in the cavity C1.
  • the flexible circuit board 20, the current collectors 50-6, and the terminal boards 70, 70 are integrally molded on the base 10 by cooling and solidifying the molten synthetic resin by press-fitting it.
  • Electronic component substrate 1_6A may be manufactured.
  • an insulating base 10 and a terminal pattern 2 on a synthetic resin film attached on the insulating base 10 are the invention according to claim 9 which is dependent on claim 8. 9 and 29 and a flexible circuit board 20 provided with a conductor pattern 25 on which the slider slides.
  • the insulating base 10 is a synthetic resin molded product.
  • the flexible circuit board 20 is insert-molded on the insulating base 10, and is connected to the terminal patterns 29, 29 provided on the flexible circuit board 20 to form an end on the insulating base 10.
  • Terminal plates 70, 70 to be attached are provided, and these terminal plates 70, 70 are insert-molded on the insulating base 10 and a current collecting plate 50-6 on the insulating base 10. Discloses an electronic component substrate 1-6A formed by insert molding.
  • the conductor pattern 25 and the conductor pattern, in which the slider slides on the surface of the synthetic resin film, according to the invention according to claim 15 which is dependent on claim 14, A flexible circuit board 20 provided with terminal patterns 29 and 29 connected to 25, a terminal board 70 and 70 made of a metal plate, and an electronic component board 16
  • the molds 4 1 and 4 5 having the formed cavities C 1 are prepared, and the molds 4 1 and 4 are provided.
  • the flexible circuit board 20 and the terminal boards 70, 70 are accommodated in the capacity C1 of the fifth section, and the surface of the flexible circuit board 20 on which the conductor pattern 25 is provided is inside the capacity C1.
  • a part of the terminal plates 70 and 70 at the same time as abutting against one surface C 11 (the first mold 41 surface) of the flexible circuit board 20. Abutment or opposition
  • the cavity C1 is filled with a molten molding resin, and after the filled molding resin is solidified, the dies 41 and 45 are removed, so that the insulating base 10 made of the molding resin is flexible.
  • the circuit board 20 was provided on the flexible circuit board 20 at the end of the insulating base 10.
  • the current collector plate 50-6 made of a metal plate is also housed in the cavity C1, so that the electrons formed by embedding the current collector plate 50-6 in the insulating base 10 made of the molding resin.
  • a method for manufacturing a component substrate 116A is disclosed.
  • the flexible circuit board 20, the current collecting plate 50-6, and the terminal plates 70, 70 are insert-molded on the insulating base 10, so that Separately, there is no need to attach the current collecting plate 50-6 to the insulating base 10 and the terminal plate 70, 70 to the insulating base 10 separately.
  • An electronic component substrate 16A having a structure in which 50-6 and the terminal plates 70, 70 are mounted can be easily manufactured, and cost can be reduced.
  • the insulating base 10 is made of a synthetic resin molded product, its manufacture is easy, the material cost can be reduced as compared with the ceramic substrate, and the thickness can be reduced easily and inexpensively.
  • a cap C12 which forms part of the cap C1
  • an insulating base is provided in the cap C1 2. Projections that support the terminal plates 70, 70 from the rear side so that the terminal plates 70, 70 do not shift due to the molten resin that is pressed into the cavities C1, C12 when molding the 10
  • the point that a contact portion 42 in the shape of a circle is provided is also the same as in the fifth embodiment.
  • the terminal plates 70, 70 and the current collector plates 50-6 are insert-molded on the insulating base 10, they are simultaneously formed in a state where they are connected to the same metal plate at the connecting portions. Then, if the insulating base 10 is formed by being housed in a mold and then the connecting portion is cut off, the number of actual parts can be further reduced and the manufacturing process can be simplified.
  • FIG. 23 is a diagram showing a semi-fixed variable resistor 100-6 constituted by using the electronic component substrate 116, FIG. 23 (a) is a plan view, and FIG. 23 (b) is Front view, Figure 23 (c) is a figure
  • FIG. 23 (a) is a sectional view taken along the line K—K
  • FIG. 23 (d) is a rear view.
  • the semi-fixed variable resistor 100-6 is a cylindrical member provided on the current collector plate 50-6 when the slider 60 is arranged on the upper surface of the electronic component substrate 116.
  • the projection 5 1-6 is inserted through the fitting hole 61 provided in the slider 60,
  • the slider 60 is rotatably mounted by caulking its tip. Then, when the slider 60 is rotated, the sliding contact 63 provided on the slider 60 slides on the surface of the resistor panel 25 (see FIG. 20) to contact the terminal plates 70, 70. Changes the resistance value between current collectors 50-6.
  • the portion where the terminal patterns 29, 29 of the flexible circuit board 20 are provided is arranged only on the upper surface of the insulating base 10.
  • the end 201 on the side of the circuit board 20 where the terminal patterns 29, 29 (not shown in FIG. 24) are provided is folded from the upper surface of the insulating base 10 to the lower surface through the outer peripheral side, and the folded flexible
  • the terminal boards 70 and 70 may be attached so as to cover the circuit board 20.
  • the flexible circuit board 20 or the flexible circuit board 20 and the terminal plates 70, 70 are inserted into a mold and molded integrally with the insulating base 10.
  • the terminal patterns 29, 29 may be provided only on the upper surface of the flexible circuit board 20, or may be provided on the outer peripheral side and / or the lower surface thereof.
  • FIGS. 25 and 26 are diagrams showing an electronic component substrate 118 according to an eighth embodiment of the present invention.
  • FIG. 25 (a) is a perspective view as viewed from above, and
  • FIG. Fig. 26 (a) is a plan view,
  • Fig. 26 (b) is a front view,
  • Fig. 26 (c) is a cross-sectional view of L in Fig. 26 (a),
  • Fig. 26 (d) is a bottom view.
  • FIG. 26 (e) is a sectional view taken along line M--M of FIG. 26 (a).
  • the same portions as those of the electronic component substrates 1_4, 1-5, 1-6, and 17 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the flexible circuit board 20 is integrally mounted on the upper surface of the insulating base 10 by insert molding, and the resistor pattern 25 formed on the flexible circuit board 20 is formed. Is composed of a metal thin film formed by physical vapor deposition or chemical vapor deposition.
  • the material of each member constituting the electronic component substrate 118 and its manufacturing method are the same as those of the corresponding members of the fourth to seventh embodiments and the manufacturing method thereof.
  • the insulating base 10 is a plate-like synthetic resin molded product having a substantially rectangular shape, and the current collecting plate 50-8 is connected to the insulating base 10 in the same manner as the electronic component substrate 1-6. internal The insert molding is performed integrally.
  • the current collector plate 50-8 is formed by projecting a substantially rectangular connection portion 55-8 outward from one side of the base portion 53-8 provided with the cylindrical projections 51-8.
  • the cylindrical projection 51-8 is located in the center (the center) of the through hole 11 having an inner diameter larger than the outer diameter of the cylindrical projection 51-8 provided on the insulating base 1010. At this time, the lower surface of the connection portion 55-8 is exposed on the lower surface of the insulating base 10.
  • the cylindrical projections 51 to 18 protrude toward the upper surface of the flexible circuit board 20.
  • the flexible circuit board 20 has a substantially rectangular shape as shown in Fig. 27 (the width is substantially the same as the width of the insulating base 10 and the length is a predetermined length longer than the length of the insulating base 10).
  • a through-hole 21 having the same inner diameter as the through-hole 11 is provided at a position corresponding to the through-hole 11 in the center of the plastic synthetic resin film.
  • the resistor pattern is referred to as a “resistor pattern” 25, and further, a substantially rectangular terminal pattern 29, 2 along the length direction (A) is provided at the ends 25 e, 25 e of the resistor pattern 25. 9 are connected and provided.
  • the flexible circuit board 20 has its side on which the terminal patterns 29, 29 are provided folded back from the upper surface of the insulating base 10 to the lower surface via the outer peripheral side as shown in FIG.
  • the flexible circuit board 20 is attached to the insulating base 10 in a state where the flexible circuit board 20 is bent so that the surface is exposed on the upper surface, the outer peripheral side surface, and the lower surface of the insulating base 10. Accordingly, the resistor pattern 25 is exposed on the upper surface of the insulating base 10, and the terminal patterns 29, 29 are exposed from the upper surface and the outer peripheral side to the lower surface of the insulating base 10.
  • the lower surface of the insulating base 10 that covers the end side 73 on the side where the pins 29 and 29 are provided is inserted integrally with the insulating base 10 with the flat holding part 17 c on the same plane as the lower surface of the insulating base 10.
  • the flexible circuit board 20 is firmly fixed to the insulating base 10 by providing with a molding resin.
  • the edge 71 of the flexible circuit board 20 matches the arc shape of the resistor pattern 25
  • the pressing portion 17a is also formed in an arc shape in accordance with the arc shape.
  • the presser portion 17b is connected to a molding resin constituting the insulating base 10 below the resin through portions 75a, 75a, and 75b at the resin communicating portions 75a, 75a, and 75b.
  • the edge 73 of the other side (terminal pattern 29, 29 side) in the length direction (A) folded back on the lower surface side of the insulating base 10 of the flexible circuit board 20 is A concave portion 77 (see Fig. 27) is provided, which is substantially linear and concave in an arc shape at the center.
  • a holding portion 17c is formed on one end side 73 so as to hold the end side 73 at a plurality of places (five places).
  • the surface of the portion of the flexible circuit board 20 that is folded back on the lower surface side of the insulating base 10 is a concave portion 78 that is recessed from other portions of the lower surface of the insulating base 10.
  • the depth of the recess 78 is substantially the same as the thickness of the terminal board 70.
  • the terminal plates 70, 70 are attached so as to be connected to the terminal patterns 29, 29 provided on the flexible circuit board 20. Have been.
  • the insulating base 10 and the terminal on the synthetic resin film attached on the insulating base 10 are the invention according to claim 9 dependent on claim 6.
  • a flexible circuit board 20 provided with a pattern 29 and a conductor pattern 25 sliding on the surface thereof with a slider force S, wherein the insulating base 10 is a synthetic resin molded product.
  • the flexible circuit board 20 is insert-molded on the insulating base 10, and is connected to the terminal patterns 29, 29 provided on the flexible circuit board 20 to form an insulating base.
  • the invention according to claim 9 which is dependent on claim 7, wherein the insulating base 10 and the terminal are provided on a synthetic resin film attached on the insulating base 10.
  • a flexible circuit board 20 comprising a pattern 29 and a conductor pattern 25 on the surface of which a slider is in sliding contact, wherein the insulating base 10 is a synthetic resin molded product.
  • the flexible circuit board 20 is insert-molded on the insulating base 10, and is connected to the terminal patterns 29, 29 provided on the flexible circuit board 20, and the terminal boards 70, 70, and the insulating base 1.0 is provided with holding portions 17a, 17b, 17c for firmly fixing the flexible circuit board 20 to the insulating base 10.
  • FIG. 27 there are through-holes 21 and resin through-holes 75a, 75a, 75b, and the resistor pattern 25 and the terminal pattern are formed on the surface by a metal thin film formed by physical or chemical vapor deposition.
  • a flexible circuit board 20 on which 29 and 29 are formed is prepared.
  • the flexible circuit board 20 has connecting portions 31, 31 protruding from both sides of the portion where the resistor pattern 25 is provided, and the connecting portions 31, 31 make the same many flexible circuit boards 20 (not shown). ) Are connected in parallel.
  • the flexible circuit board 20 and the current collector 50-8 are inserted into the first and second molds 41 and 45.
  • the cavities C 1 having the same shape as the electronic component substrates 118 are formed in the first and second molds 41 and 45, but the flexible circuit board 20 has the cavities C 1 formed with the resistor patterns 25.
  • a portion of the first mold 41 abutting against the inner plane C11 of the first mold 41 on the side of the first mold 41 and having one end 73 provided with the terminal patterns 29, 29 is folded back toward the second mold 45.
  • the concave portion 77 (see FIG. 27) is provided in the end 73 of the flexible circuit board 20 because the end 73 of the flexible circuit board 20 is folded back to the second mold 45 when the second mold 45 is turned.
  • the flexible circuit board 20 escapes so as not to come into contact with the protrusion 47 for forming the through hole 11 provided in the hole 45. Then, heat and melt the synthetic resin from the resin injection port (arrows G1 and G2 shown in Fig. 25 (a) and G1 and G2 shown in Fig. 28) at the two places provided on the first mold 41 side. Fill in Cavity C1. At this time, the flexible circuit board 20 is pressed against the inner peripheral surface of the cavity C1 by the press-fitting pressure and heat of the molten resin, deforms into the inner peripheral surface shape, and is cooled and solidified in that state.
  • FIGS. 29 (a) and (b) As shown in the drawing, the portions of the insulating base 10 on the side of the side where the concave portions 78 are provided are provided with the terminal plates 29, 29 so as to cover the U-shaped terminal plates 70, 70. Then, if the insulating base 10 is sandwiched and fixed, the electronic component base 1-8 shown in FIGS. 25 (a) and (b) is completed.
  • the terminal plates 70, 70 As a method of fixing the terminal plates 70, 70, only the mechanical pressing force by the terminal plates 70, 70 may be used, or the terminal plates 70, 70 may be connected via a conductive adhesive or the like.
  • the mounting structure is not limited to this embodiment. In short, any structure can be used as long as it is connected to the terminal pattern 29 and mounted on the end of the insulating base 10. It may have a structure.
  • a conductor pattern 25 in which a slider slides on a surface of a synthetic resin film according to the invention of claim 15 which is dependent on claim 13.
  • a flexible circuit board 20 having terminal patterns 29 connected to the conductor pattern 25, a terminal board 70 made of a metal plate, and an electronic component board 18 Molds 41 and 45 having cavities C1 formed in the outer shape are prepared, and the flexible circuit board 20 is stored in the cavities C1 of the dies 41 and 45.
  • the surface on which the conductor pattern 25 of the flexible circuit board 20 was provided was brought into contact with one surface C 1 1 (the first mold 41 surface) in the cavity C 1, and was melted in the cavity C 1.
  • the flexible circuit board 20 is mounted on the insulating base 10 so that the conductor pattern 25 and the terminal patterns 29 and 29 are exposed, and then, on the end of the insulating base 10, the flexible circuit board 20 is mounted.
  • the terminal boards 70, 70 are attached so as to be connected to the terminal patterns 29, 29 provided on the substrate, and the flexible circuit board 20 is stored in the cavities C1 of the molds 41, 45.
  • the current collector plates 50-8 which are made of a metal plate, are simultaneously stored in the cavity C1 so that the current collector plates 50-8 are embedded in the insulating base 10 made of the molded resin.
  • the edge 73 and the vicinity thereof were intermittently held at a plurality of places by the holding portion 17c as described above because a part of the edge 73 was brought into contact with the surface of the second mold 45. By leaving, the edge
  • the flexible substrate provided on the upper surface of the insulating base 10 is provided. Pressing portions 17a to 17 that firmly fix the flexible circuit board 20 to the base 10 are attached to the flexible circuit board 20 and the flexible circuit board 20 provided on the lower surface of the insulating base 10 respectively. Since c is provided, even if the flexible circuit board 20 and the insulating base 10 are made of a combination of materials that are difficult to be fixed only by heat and pressure during insert molding, the flexible circuit board 2 There is no problem such as 0 peeling off from the surface of the insulating base 10, and it can be easily and firmly fixed.
  • the holding portions 17 a to l 7 c are connected to an end 7 1 of the resistor pattern 25 provided on the upper surface side of the insulating base 10 of the flexible circuit board 20, and Provided at the end portions 25 e, 25 e of the resistor pattern 25 near the outer periphery and at the terminal side 73 of the terminal patterns 29, 29 provided on the lower surface side of the insulating base 10.
  • the holding portion may be provided only in one of these three places.
  • the electronic component substrate 118 manufactured as described above penetrates the cylindrical projection 51_8 into the fitting hole 61 of the slider 60 similar to that shown in FIG. Then, the slider 60 is rotatably mounted by caulking its tip, thereby forming a semi-fixed variable resistor.
  • the terminal boards 70, 70 are mounted later on the insulating base 10 in which the molded flexible circuit board 20 is integrated.
  • the terminal plates 70, 70 are also stored in advance in the cavities C1 of the first and second molds 41, 45 together with the flexible circuit board 20 and the current collector plates 50-8, and melted.
  • the terminal plates 70, 70 may be integrally attached to the insulating base 10 at the same time when the resin is injection-molded.
  • the present invention is not limited to the above-described embodiment, but is limited to the scope of the claims and the technical idea described in the specification and the drawings. Various modifications are possible. It should be noted that any shape, structure, or material not directly described in the specification and drawings is within the scope of the technical idea of the present invention as long as the effects and effects of the present invention are exhibited.
  • the shape of the terminal board 70 can be changed in various ways. In short, any shape can be used as long as the terminal board is connected to the terminal pattern provided on the flexible circuit board and attached to the end of the insulating base. It may be of a mounting structure.
  • the resistor pattern is used as the conductor pattern.
  • other various patterns such as a switch pattern may be used.
  • the switch pattern and the terminal pattern may be made of the same material and formed in the same step.
  • a metal thin film formed by physical vapor deposition or chemical vapor deposition is used as the conductor pattern.
  • a resistor paste obtained by mixing a conductive powder in a resin may be used.
  • the resistor pattern 25 is provided on the terminal patterns 29, 29.On the contrary, the terminal patterns 29, 29 may be provided on the resistor pattern 25. Good. Industrial applicability
  • the electronic component substrate and the method of manufacturing the same according to the present invention are useful as a substrate for a semi-fixed variable resistor, as a substrate for various other variable resistors, and as a substrate for a switch. It is particularly suitable for use in cases where manufacturing is to be facilitated, material costs are reduced, and thickness is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

 絶縁基台10と、絶縁基台10上に取り付けられる合成樹脂フイルム上に端子パターン29,29とその表面に摺動子が摺接する抵抗体パターン25とを設けてなるフレキシブル回路基板20とを具備する電子部品用基板1−1である。絶縁基台10は合成樹脂成形品である。フレキシブル回路基板20は絶縁基台10にインサート成形されている。電子部品用基板1−1の製造は、フレキシブル回路基板20と、電子部品用基板1−1の外形形状に形成されたキャビティーC1を有する第一,第二金型41,45とを用意し、第一,第二金型41,45のキャビティーC1内にフレキシブル回路基板20を収納し、キャビティーC1内に溶融した成形樹脂を充填して充填した成形樹脂が固化した後に第一,第二金型41,45を取り外すことで行う。

Description

明 細 書
電子部品用基板及びその製造方法 技術分野
本発明は、 半固定可変抵抗器等に用いられる電子部品用基板及びその製造方法に関 するものである。 背景技術
従来、 チップ型の半固定可変抵抗器は、 セラミック基板と摺動子と集電板とを具備 し、 セラミック基板の上面に摺動子を配置すると共にセラミック基板の下面に集電板 を配置し、 その際集電板に設けた筒状突起をセラミック基板に設けた貫通孔と摺動子 に設けた嵌掙孔に挿入し、 筒状突起の先端をかしめることで摺動子をセラミック基板 上に回動自在に固定して構成されている。 そして摺動子を回動することで摺動子に設 けた摺動接点がセラミック基板上に設けた馬蹄形状の抵抗体パターンの表面を摺接し、 これによつて抵抗体パターンの両端に設けた端子パターンと前記集電板との間の抵抗 値を変化させていた。
しかしながら上記半固定可変抵抗器は、 セラミック基板を用いている上に、 セラミ ック基板の上に抵抗体パターンを焼き付けなければならないので、 その生産効率が悪 く、 また材料費も高く、 その低価格化に限界があった。 またセラミック基板は破損し 易く、 更なる薄型化は困難であった。
従って、 本発明は、 製造が容易で生産効率が良く、 材料費も低減できて低コスト化 が図れ、 さらに薄型化も容易に図れる電子部品用基板及びその製造方法を提供するこ とを目的としている。 発明の開示
請求項 1に記載の発明は、 絶縁基台と、 前記絶縁基台上に取り付けられる合成樹脂 フィルム上に端子パターンとその表面に摺動子が摺接する導体パターンとを設けてな るフレキシブル回路基板とを具備し、 前記絶縁基台は合成樹脂成形品であり、 前記フ レキシブル回路基板はこの絶縁基台にインサート成形されていることを特徴とする電 子部品用基板にある。 この発明によれば、 絶縁基台を合成樹脂を成形することで構成 したので、 製造が容易で、 セラミック基板に比べて材料費の低コスト化が図れ、 厚み の薄型化も容易且つ安価に行える。 またフレキシブル回路基板は絶縁基台にィンサー ト成形されるので、 その製造が容易である。 また合成樹脂フィルムに多数組の導体パ ターンを同時に形成して次に各組の導体パターンを設けたフレキシブル回路基板にそ れぞれ同時に絶縁基台を成形した後、 一体に連結したフレキシブル回路基板をカツト して個品化することができるので、 電子部品用基板を容易に大量生産でき、 生産性が 向上する。
請求項 2に記載の発明は、 前記絶縁基台には、 筒状突起を設けた集電板が、 筒状突 起が前記絶縁基台とフレキシブル回路基板にそれぞれ設けた貫通孔の中に位置するよ うに、 インサート成形されていることを特徴とする請求項 1に記載の電子部品用基板 にある。 この発明によれば、 絶縁基台に筒状突起を設けた集電板をインサート成形し たので、 絶縁基台と集電板とが一体化でき、 この電子部品用基板を用いた可変抵抗器 等の回転式電子部品の製造工程の簡略化が図れる。
請求項 3に記載の発明は、 前記フレキシブル回路基板は、 前記絶縁基台の上面と下 面にその表面が露出するように折り曲げられた状態でィンサ一ト成形によって絶縁基 台に取り付けられていることを特徴とする請求項 1又は 2に記載の電子部品用基板に ある。 この発明によれば、 容易に電子部品用基板をチップィヒすることができる。 請求項 4に記載の発明は、 前記絶縁基台には、 フレキシブル回路基板を前記絶縁基 台に強固に固定する押え部を設けたことを特徴とする請求項 1又は 2又は 3に記載の 電子部品用基板にある。 この発明によれば、 絶縁基台にフレキシブル回路基板を絶縁 基台に強固に固定する押え部を設けたので、 フレキシブル回路基板の絶縁基台への固 定を強固に行うことができる。 特にフレキシブル回路基板と絶縁基台とがインサート 成形時の熱と圧力だけによつては固着しにくい材質の組み合わせであった場合でも、 フレキシブル回路基板が絶縁基台の表面から剥がれるなどの問題は生じず、 容易にこ れを強固に固定しておくことができる。 この押え部は、 フレキシブル回路基板を絶縁 基台の上面と下面にその表面が露出するように折り曲げた状態でィンサート成形した 場合に用いて好適である。
請求項 5に記載の発明は、 前記導体パターンは、 物理的蒸着又は化学的蒸着による 金属薄膜によって構成されていることを特徴とする請求項 1又は 2又は 3又は 4に記 載の電子部品用基板にある。 この発明によれば、 セラミック基板に高温で焼き付けた 導体パターンの場合と同等の良好な温度 ·湿度特性が得られる。 しかも蒸着なのでセ ラミツク基板への焼付けに比べて生産効率が良い。
請求項 6に記載の発明は、 前記フレキシブル回路基板上に設けられた端子パターン と接続して絶縁基台端部に取り付く端子板を具備することを特徴とする請求項 1に記 載の電子部品用基板にある。 この発明によれば、 端子板を用いているので、 この電子 部品用基板の別の回路基板への高温を伴う接続手段による固定が容易に行え、 一方で 端子'パターンやフレキシブル回路基板の材質として熱に弱い材質のものを用いること ができるようになる。 また端子板はフレキシブル回路基板を絶縁基台に挟持して固定 する機械的固定手段を兼ねることができる。
請求項 7に記載の発明は、 前記絶縁基台には、 フレキシブル回路基板を前記絶縁基 台に強固に固定する押え部を設けたことを特徴とする請求項 6に記載の電子部品用基 板にある。 この発明によれば、 押え部によって、 フレキシブル回路基板の絶縁基台 への固定を強固に行うことができる。 特にフレキシブル回路基板と絶縁基台とがイン サート成形時の熱と圧力だけによつては固着しにくい材質の組み合わせであった場合 でも、 フレキシブル回路基板が絶縁基台の表面から剥がれるなどの問題は生じず、 容 易にこれを強固に固定しておくことができる。
請求項 8に記載の発明は、 前記端子板は、 前記絶縁基台にインサート成形されてい ることを特徴とする請求項 6又は 7に記載の電子部品用基板にある。 この発明によれ ば、 別途端子板の絶縁基台への取付工程が不要になり、 また端子板の絶縁基台への固 定と端子板の端子パターンへの電気的接続とがより確実になる。
請求項 9に記載の発明は、 前記絶縁基台には、 集電板がインサート成形されている ことを特徴とする請求項 6又は 7又は 8に記載の電子部品用基板にある。 この発明に よれば、 絶縁基台と集電板とが一体化でき、 この電子部品用基板を用いた可変抵抗器 等の回転式電子部品の製造工程の簡略ィヒが図れる。
請求項 1 0に記載の発明は、 前記導体パターンを、 物理的蒸着又は化学的蒸着によ る金属薄膜によつて構成したことを特徴とする請求項 6又は 7又は 8又は 9に記載の 電子部品用基板にある。 この発明によれば、 セラミック基板に高温で焼き付けた導体 パターンの場合と同様の良好な温度 ·湿度特性が得られる。 しかも蒸着なので、 セラ ミック基板への焼付けに比べて生産効率が良い。
請求項 1 1に記載の発明は、 合成樹脂フィルム上にその表面に摺動子が摺接する導 体パターンとこの導体パターンに接続される端子パターンとを設けてなるフレキシブ ル回路基板と、 電子部品用基板の外形形状に形成されたキヤビティーを有する金型と を用意し、 前記金型のキヤビティ一内に前記フレキシブル回路基板を収納し、 その際 前記フレキシブル回路基板の導体パターンを設けた面をキヤビティ一内の一方の面に 当接し、 且つ端子パターンを設けた側の部分をキヤピティーの他方の面側に折り返し た状態とし、 前記キヤビティ一内に溶融した成形樹脂を充填することで、 前記フレキ シブル回路基板の折り返した部分を、 キヤビティーの上面から外周側面を介して下面 に密着させ、 充填した成形樹脂が固化した後に金型を取り外すことで、 前記成形樹脂 からなる絶縁基台の上面に導体パターンを設けた部分を露出すると共に、 端子パター ンを設けた側の部分をその外周側面から下面にかけて折り返した状態で露出させたこ とを特徴とする電子部品用基板の製造方法にある。 この発明によれば、 フレキシブ ル回路基板を金型のキヤビティ一内にィンサート成形するだけで、 絶縁基台の上面に 導体パターンを露出すると共に、 端子パターンをその外周側面から下面にかけて露出 して設けてなる構造の電子部品用基板を容易に製造することができ、 低コス卜化が図 れる。 またセラミック基板に比べて材料費の低コスト化が図れ、 厚みの薄型化も容易 且つ安価に行える。 また合成樹脂フィルムに多数組の導体パターンを同時に形成し、 次に各組の導体パターンを設けたフレキシブル回路基板にそれぞれ同時に絶縁基台を 成形した後、 一体に連結したフレキシブル回路基板をカットして個品化することがで きるので、 電子部品用基板を容易に大量生産でき、 生産性が向上する。
請求項 1 2に記載の発明は、 前記金型のキヤビティ一内に前記フレキシブル回路基 板を収納した際に、 同時に金属板からなる集電板をこのキヤピティー内に収納してお くことで、 前記成形樹脂からなる絶縁基台に集電板を埋め込んだことを特徴とする請 求項 1 1に記載の電子部品用基板の製造方法にある。 この発明によれば、 フレキシブ ル回路基板と集電板とを金型のキヤビティ一内にィンサート成形するだけで、 絶縁基 台の上面に導体パターンを露出し、 且つ端子パターンをその外周側面から下面にかけ て露出すると共に、 さらに集電板を取り付けた構造の電子部品用基板を容易に製造す ることができ、 生産性が向上し、 低コスト化が図れる。
請求項 1 3に記載の発明は、 合成樹脂フィルム上にその表面に摺動子が摺接する導 体パターンとこの導体パターンに接続される端子パターンとを設けてなるフレキシブ ル回路基板と、 金属板からなる端子板と、 電子部品用基板の外形形状に形成されたキ ャピティ一を有する金型とを用意し、 前記金型のキヤビティ一内に前記フレキシブル 回路基板を収納し、 その際前記フレキシブル回路基板の導体パターンを設けた面をキ ャビティ一内の一方の面に当接し、前記キヤビティー内に溶融した成形樹脂を充填し、 充填した成形樹脂が固化した後に金型を取り外すことで、 成形樹脂からなる絶縁基台 にフレキシブル回路基板をその導体パターンと端子パターンとを露出するように取り 付け、 その後絶縁基台端部に、 前記フレキシブル回路基板上に設けられた端子パ夕一 ンに接続するように端子板を取り付けたことを特徴とする電子部品用基板の製造方法 にある。 この発明によれば、 フレキシブル回路基板を絶緣基台にインサート成形する ので、 その製造が容易に行え、 低コスト化が図れる。 また絶縁基台を合成樹脂成形品 で構成したので、 その製造が容易で、 セラミック基板に比べて材料費の低コスト化が 図れ、 厚みの薄型化も容易且つ安価に行える。 また合成樹脂フィルムに多数組の導体 パターンを同時に形成し、 次に各組の導体パターンを設けたフレキシブル回路基板に それぞれ同時に絶縁基台を成形した後、 一体に連結したフレキシブル回路基板をカツ トして個品化することができるので、 電子部品用基板を容易に大量生産でき、 生産性 が向上する。
請求項 1 4に記載の発明は、 合成樹脂フィルム上にその表面に摺動子が摺接する導 体パターンとこの導体パターンに接続される端子パターンとを設けてなるフレキシブ ル回路基板と、 金属板からなる端子板と、 電子部品用基板の外形形状に形成されたキ ャビティ一を有する金型とを用意し、 前記金型のキヤビティ一内に前記フレキシブル 回路基板と端子板とを収納し、 その際前記フレキシブル回路基板の導体パターンを設 けた面をキヤビティ一内の一方の面に当接すると同時に、 端子板の一部をフレキシブ ル回路基板の端子パターンに当接又は対向させておき、 前記キヤビティー内に溶融し た成形樹脂を充填し、 充填した成形樹脂が固化した後に金型を取り外すことで、 成形 樹脂からなる絶縁基台にフレキシブル回路基板をその導体パターンと端子パターンと を露出するように取り付けると同時に、 この絶縁基台端部に、 前記フレキシブル回路 基板上に設けられた端子パターンに接続するように端子板を取り付けたことを特徴と する電子部品用基板の製造方法にある。 この発明によれば、 フレキシブル回路基板ば かりか端子板をも絶縁基台にインサート成形するので、 別途端子板の絶緣基台への取 付工程が不要になり、 金属板製の端子板を取り付ける構造の電子部品用基板の製造が 容易に行え、 低コスト化が図れる。 また端子板の絶縁基台への固定と端子板の端子パ ターンへの電気的接続とを容易に確実に行うことができる。 また絶縁基台を合成樹脂 成形品で構成したので、 その製造が容易で、 セラミック基板に比べて材料費の低コス ト化が図れ、 厚みの薄型化も容易且つ安価に行える。
請求項 15に記載の発明は、 前記金型のキヤビティー内に前記フレキシブル回路基 板を収納した際に、 同時に金属板からなる集電板をこのキヤビティー内に収納してお くことで、 前記成形樹脂からなる絶縁基台に集電板を埋め込んだことを特徴とする請 求項 13又は 14に記載の電子部品用基板の製造方法にある。 この発明によれば、 フ レキシブル回路基板と集電板 (又はフレキシブル回路基板と集電板と端子板) とを絶 縁基台にインサート成形するので、別途集電板の絶縁基台への取付工程が不要になり、 金属板製の集電板 (又はさらに端子板) を取り付ける構造の電子部品用基板の製造が 容易に行え、 低コスト化が図れる。 図面の簡単な説明
図 1は、 本発明の第一の実施の形態を用いて構成した電子部品用基板 1一 1の斜 視図である。
図 2は、 本発明の第一の実施の形態を用いて構成した電子部品用基板 1一 1を示す 図であり、 図 2 (a) は平面図、 図 2 (b) は正面図、 図 2 (c) は図 2 (a) の A 一 A断面図、 図 2 (d) は裏面図である。
図 3は、 電子部品用基板 1一 1の製造方法説明図である。
図 4は、 電子部品用基板 1一 1の製造方法説明図である。
図 5は、 電子部品用基板 1一 1を用いて構成した半固定可変抵抗器 100— 1を示 す図であり、 図 5 (a) は平面図、 図 5 (b) は正面図、 図 5 (c) は図 5 (a) の B— B断面図、 図 5 (d) は裏面図である。
図 6は、 本発明の第二の実施の形態を用いて構成した電子部品用基板 1一 2を示す 図であり、 図 6 (a) は平面図、 図 6 (b) は正面図、 図 6 (c) は図 6 (a) の D 一 D断面図、 図 6 (d) は裏面図である。
図 7は、 電子部品用基板 1一 2を用いて構成した半固定可変抵抗器 100— 2を示 す図であり、 図 7 (a) は平面図、 図 7 (b) は正面図、 図 7 (c) は図 7 (a) の
E— E断面図、 図 7 (d) は裏面図である。
図 8は、 電子部品用基板 1一 2の製造方法説明図である。 図 9は、 本発明の第三の実施の形態を用いて構成した電子部品用基板 1一 3を示す 図であり、 図 9 (a) は上側から見た斜視図、 図 9 (b) は下側から見た斜視図であ る。
図 10は、 本発明の第三の実施の形態を用いて構成した電子部品用基板 1一 3を示 す図であり、 図 10 (a) は平面図、 図 10 (b) は正面図、 図 10 (c) は図 10
(a) の F— F断面図、 図 10 (d) は裏面図である。
図 11は、 電子部品用基板 1一 3の製造方法説明図である。
図 12は、 電子部品用基板 1一 3の製造方法説明図である。
図 13は、 本発明の第四の実施の.形態を用いて製造した電子部品用基板 1一 4を示 す斜視図である。
図 14は、 電子部品用基板 1—4を示す図であり、 図 14 (a) は平面図、 図 14
(b) は正面図、 図 14 (c) は図 14 (a) の G— G断面図、 図 14 (d) は裏面 図である。
図 15は、 電子部品用基板 1一 4の製造方法説明図である。
図 16は、 電子部品用基板 1—4の製造方法説明図である。
図 17は、 電子部品用基板 1一 4を用いて構成した半固定可変抵抗器 100— 4を 示す図であり、 図 17 (a) は平面図、 図 17 (b) は正面図、 図 17 (c) は図 1 7 (a) の H— H断面図、 図 17 (d) は裏面図である。
図 18は、 本発明の第五の実施の形態を用いて製造した電子部品用基板 1一 5を示 す図であり、 図 18 (a) は平面図、 図 18 (b) は正面図、 図 18 (c) は図 18
(a) の I一 I断面図、 図 18 (d) は裏面図である。
図 19は、 電子部品用基板 1一 5の製造方法説明図である。
図 20は、 電子部品用基板 1_ 6を示す図であり、 図 20 (a) は平面図、 図 20
(b) は正面図、 図 20 (c) は図 20 (a) の J— J断面図、 図 20 (d) は裏面 図である。
図 21は、 電子部品用基板 1一 6の製造方法説明図である。
図 22は、 電子部品用基板 1一 6 Aの製造方法説明図である。
図 23は、 電子部品用基板 1一 6を用いて構成した半固定可変抵抗器 100— 6を 示す図であり、 図 23 (a) は平面図、 図 23 (b) は正面図、 図 23 (c) は図 2 3 (a) の K— K断面図、 図 23 (d) は裏面図である。 図 24は、 本発明の第七の実施の形態を用いて製造した電子部品用基板 1— 7を示 す断面図である。
図 25は、 本発明の第八の実施の形態を用いて製造した電子部品用基板 1一 8を示 す図であり、 図 25 (a) は上側から見た斜視図、 図 25 (b) は下側から見た斜視 図である。
図 26は、 電子部品用基板 1—8を示す図であり、 図 26 (a) は平面図、 図 26 (b) は正面図、 図 26 (c) は図 26 (a) の L一 L断面図、 図 26 (d) は裏面 図、 図 26 (e) は図 26 (a) の M— M断面図である。
図 27は、 電子部品用基板 1― 8の製造方法説明図である。
図 28は、 電子部品用基板 1一 8の製造方法説明図である。
図 29は、 電子部品用基板 1一 8の製造方法説明図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態を図面を参照して詳細に説明する。
〔第一の実施の形態〕
図 1, 図 2は本発明の第一の実施の形態を用いて製造した電子部品用基板 1一 1を 示す図であり、 図 1は斜視図、 図 2 (a) は平面図、 図 2 (b) は正面図、 図 2 (c) は図 2 (a) の A— A断面図、 図 2 (d) は裏面図である。 両図に示すように電子部 品用基板 1— 1は、 絶縁基台 10の上面にフレキシブル回路基板 20を、 ィンサート 成形によって、一体に取り付けて構成されている。以下各構成部分について説明する。 絶縁基台 10は略矩形状で板状の合成樹脂成形品であり、 中央には円形の貫通孔 1 1が設けられ、 また下面中央には凹状の集電板収納凹部 15が設けられている。 この 絶縁基台 10は熱可塑性の合成樹脂、例えばナイロンやポリフエ二レンスルフィド(P PS) 等によって構成されている。
一方フレキシブル回路基板 20は熱可塑性の合成樹脂フィルム (例えばポリイミド フィルム) 上に端子パターン 29, 29とその表面に摺動子が摺接する導体パターン
25とを設けて構成される。 即ちこのフレキシブル回路基板 20は合成樹脂フィルム の中央の前記貫通孔 11に対応する位置にこれと同一内径の貫通孔 21を設け、 また その表面の貫通孔 21の周囲にはこれを馬蹄形状に囲む導体パターン (以下この実施 の形態では 「抵抗体パターン」 という) 25を設け、 さらに抵抗体パターン 25の両 端にはそれぞれ端子パターン 2 9 , 2 9を抵抗体パターン 2 5と接続して設けている。 フレキシブル回路基板 2 0の端子パターン 2 9, 2 9を設けた側の辺は絶緣基旮 1 0 の上面から外周側辺を介してその下面側に折り返されており、 これによつて端子パタ ーン 2 9, 2 9も絶縁基台 1 0の外周側辺から下面側まで至っている。
ここで前記抵抗体パターン 2 5は物理的蒸着 ( P V D、 physical vapor deposition) 又は化学的蒸着 (C V D、 chemical vapor deposition) による金属薄膜によって構成 されている。 物理的蒸着の方法としては、 真空蒸着、 スパッタリング、 イオンビーム 蒸着等を用いる。 化学的蒸着の方法としては、 熱 C VD法、 プラズマ C V D法、 光 C V D法等を用いる。 蒸着する抵抗体パターン 2 5の材質としては、 ニッケルクロム合 金等のニッケル系材料、 又はクロム珪酸塩系化合物 (C r _ S i 0 2) 等からなるサ 一メット系材料、 又は窒化タンタル等のタンタル系材料等を用いる。 クロム珪酸塩系 化合物は 2 0 0 0 · c m以上の大きな比抵抗を容易に実現できるので、 この電子 部品用基板 1一 1の小型化に好適である。 この種の金属蒸着による抵抗体パターン 2 5によれば、 抵抗体パターン 2 5全体を均質で均一な厚みに形成できることは言うま でもなく、 さらに樹脂中に導電紛を混合したペーストを印刷焼成した抵抗体パターン のように内部に榭脂を有していないので、 熱や温度によって抵抗値が変化しにくい。 例えばカーボンペーストを印刷焼成した抵抗体パターンの場合、 抵抗温度係数が 5 0 0 D p mZ°Cなのに対して、上記真空蒸着を用いた金属薄膜の場合の抵抗温度係数は、 1 0 0 p pmZ°Cであった。 これはセラミック基板に高温で抵抗体パターンを焼き付 けた場合と同等の良好な温度特性である。 即ち、 抵抗体パターン (導体パターン) 2 5を、 物理的蒸着又は化学的蒸着による金属薄膜によって構成したので、 セラミック 基板に高温で焼き付けた導体パターンの場合と同等の良好な温度 ·湿度特性が得られ る。 しかも蒸着なのでセラミック基板への焼付けに比べて生産効率が良い。
次に端子パターン 2 9, 2 9は、 ニクロム下地の上に銅層と金層とを順番に蒸着に よって形成して構成されている。 なお端子パターン 2 9, 2 9は抵抗値の変ィ匕に直接 影響を与えないので、導電ペーストの印刷焼成等の他の手段によって形成しても良い。 即ち上記第一の実施の形態には、 請求項 1に記載の発明である、 絶縁基台 1 0と、 前記絶縁基台 1 0上に取り付けられる合成樹脂フィルム上に端子パターン 2 9 , 2 9 とその表面に摺動子が摺接する導体パターン 2 5とを設けてなるフレキシブル回路基 板 2 0とを具備し、 前記絶縁基台 1 0は合成樹脂成形品であり、 前記フレキシブル回 路基板 2 0はこの絶縁基台 1 0にィンサ一ト成形されている電子部品用基板 1一 1、 が開示されている。
さらに第一の実施の形態には、 請求項 3に記載の発明である、 前記フレキシブル回 路基板 2 0は、 前記絶縁基台 1 0の上面と下面にその表面が露出するように折り曲げ られた状態でィンサート成形によって絶縁基台 1 0に取り付けられている電子部品用 基板 1一 1、 が開示されている。
次にこの電子部品用基板 1一 1の製造方法を説明する。 まず図 3に示すように貫通 孔 2 1を有し、 その表面に物理的蒸着又は化学的蒸着による金属薄膜によって抵抗体 パターン 2 5と端子パ夕一ン 2 9, 2 9とを形成したフレキシブル回路基板 2 0を用 意する。 このフレキシブル回路基板 2 0は、 その両側辺から連結部 3 1 , 3 1が突出 しており、 これら連結部 3 1 , 3 1によって同一の多数のフレキシブル回路基板 2 0 が並列に連結されている。
次に連結部 3 1 , 3 1によって連結された各フレキシブル回路基板 2 0を図 4に示 すように、 二つの金型からなる第一金型 4 1と第二金型 4 5内にインサートする。 こ のとき第 1, 第二金型 4 1, 4 5内には前記電子部品用基板 1一 1の外形形状と同一 形状のキヤビティ一 C 1が形成されるが、 フレキシブル回路基板 2 0はその抵抗体パ ターン 2 5形成面をキヤビティー C 1の第一金型 4 1側の内平面 C I 1に当接し、 且 つ端子パターン 2 9, 2 9を設けた一端部分を第二金型 4 5側に折り返しておく。 即 ち第一, 第二金型 4 1, 4 5のキヤビティー C 1内にフレキシブル回路基板 2 0を収 納し、 その際フレキシブル回路基板 2 0の抵抗体パターン 2 5を設けた面をキヤビテ ィー C 1内の一方の面 (第一金型 4 1側) に当接し、 且つ端子パ夕一ン 2 9, 2 9を 設けた側の部分をキヤビティー C 1の他方の面側 (第二金型 4 5側) に折り返した状 態とする。 なお、 キヤビティー C 1の形状は、 電子部品用基板 1一 1の外形形状に形 成されたものであり、 具体的には、 中央に円形の貫通孔 1 1となる部分を形成する凸 部を有する所定の厚みを持つ略矩形板状のものである。 また図 4に示す如く、 貫通孔
1 1を設けるための両金型 4 1 , 4 5からなる凸部のパーティング面 P Sは、 貫通孔
1 1となる部分内に位置している。
そしてキヤビティ一 C 1の第一金型 4 1側に設けた二か所の樹脂注入口 (図 1に示 す矢印 P l, P 2及び図 4に示す P l, F 2 ) から加熱'溶融した合成樹脂 (ナイ口 ン、 ポリフエ二レンスルフイド等) を圧入 '充填してキヤビティー C 1内を満たす。 2004/001199
そしてこの溶融樹脂の圧入圧力によりフレキシブル回路基板 2 0の折り返した部分は 図 4に点線で示すようにキヤビティー C 1の内周面に押し付けられ、 その状態のまま 冷却 ·固化される。 即ちキヤビティ一 C 1内に溶融した成形樹脂を充填することで、 フレキシブル回路基板 2 0の折り返した部分を、 キヤビティー C 1の上面から外周側 面を介して下面に密着させ、 その状態のまま冷却 '固化される。 そして第一, 第二金 型 4 1 , 4 5を取り外し、 成形された絶縁基台 1 0の両側から突出する連結部 3 1, 3 1の部分を切断すれば、 図 1 , 図 2に示す電子部品用基板 1一 1が完成する。 つま り、 略矩形状の板状の絶縁基台 1 0の上面から一外周側面を介して下面に至ってフレ キシブル回路基板 2 0が配置されている。 なお絶縁基台 1 0の中央には貫通孔 1 1が 設けられ、 その外周のフレキシブル回路基板 2 0には馬蹄形の抵抗体パターン 2 5が 設けられ、 その両端には端子パ夕一ン 2 9 , 2 9が設けられ、 端子パターン 2 9 , 2 9は更に絶縁基台 1 0の一外周側面を介して下面にも設けられている。
即ち第一の実施の形態には、 請求項 1 1に記載の発明である、 合成樹脂フィルム上 にその表面に摺動子が摺接する導体パターン 2 5とこの導体パターン 2 5に接続され る端子パターン 2 9 , 2 9とを設けてなるフレキシブル回路基板 2 0と、 電子部品用 基板 1 _ 1の外形形状に形成されたキヤビティー C 1を有する金型 4 1 , 4 5とを用 意し、 前記金型 4 1, 4 5のキヤビティ一 C 1内に前記フレキシブル回路基板 2 0を 収納し、 その際前記フレキシブル回路基板 2 0の導体パターン 2 5を設けた面をキヤ ビティー C 1内の一方の面 C 1 1に当接し、 且つ端子パターン 2 9 , 2 9を設けた側 の部分をキヤピティ一 C 1の他方の面側に折り返した状態とし、 前記キヤビティー C 1内に溶融した成形樹脂を充填することで、 前記フレキシブル回路基板 2 0の折り返 した部分を、 キヤビティ一 C 1の上面から外周側面を介して下面に密着させ、 充填し た成形樹脂が固化した後に金型 4 1, 4 5を取り外すことで、 前記成形樹脂からなる 絶縁基台 1 0の上面に導体パターン 2 5を設けた部分を露出すると共に、 端子パター ン 2 9 , 2 9を設けた側の部分をその外周側面から下面にかけて折り返した状態で露 出させた電子部品用基板 1一 1の製造方法、 が開示されている。
以上のようにこの実施の形態によれば、 フレキシブル回路基板 2 0を第一, 第二金 型 4 1 , 4 5のキヤビティー C 1内にインサ一ト成形するだけで、 絶縁基台 1 0の上 面に抵抗体パターン 2 5を露出すると共に、 端子パターン 2 9 , 2 9をその外周側面 から下面にかけて露出して設けてなる構造の電子部品用基板 1一 1を容易に製造する ことができ、 低コスト化が図れる。 またセラミック基板に比べて材料費の低コスト化 が図れ、 厚みの薄型化も容易且つ安価に行える。 また合成樹脂フィルムに多数組の抵 抗体パターン 2 5を同時に形成して次に各組の抵抗体パターン 2 5を設けたフレキシ ブル回路基板 2 0にそれぞれ同時に絶縁基台 1 0を成形した後、 一体に連結したフレ キシブル回路基板 2 0をカットして個品化することができるので、 電子部品用基板 1 —1を容易に大量生産でき、 生産性が向上する。
図 5は上記電子部品用基板 1一 1を用いて構成した半固定可変抵抗器 1 0 0— 1を 示す図であり、 図 5 ( a ) は平面図、 図 5 ( b ) は正面図、 図 5 ( c ) は図 5 ( a ) の B— B断面図、 図 5 ( d ) は裏面図である。 同図に示すように半固定可変抵抗器 1 0 0— 1は、 電子部品用基板 1― 1の上面に摺動子 6 0を配置し、 下面に集電板 5 0 を配置し、集電板 5 0に設けた円筒状の筒状突起 5 1を貫通孔 1 1, 2 1に貫通させ、 さらに電子部品用基板 1一 1を貫通した筒状突起 5 1の先端を摺動子 6 0に設けた嵌 揷孔 6 1に貫通した上でその先端をかしめることで摺動子 6 0を回動自在に取り付け て構成されている。 ここで集電板 5 0は電子部品用基板 1一 1の下面に設けた集電板 収納凹部 1 5に収納されている。 そして摺動子 6 0を回動すれば、 摺動子 6 0に設け られた摺動接点 6 3が抵抗体パターン 2 5 (図 2参照) の表面を摺接して端子パ夕一 ン 2 9, 2 9と集電板 5 0間の抵抗値を変化する。
〔第二の実施の形態〕
図 6は本発明の第二の実施の形態を用いて製造した電子部品用基板 1一 2を示す図 であり、 図 6 ( a ) は平面図、 図 6 ( b ) は正面図、 図 6 ( c ) は図 6 ( a ) の: D—
D断面図、 図 6 ( d ) は裏面図である。 同図に示す電子部品用基板 1—2において前 記電子部品用基板 1一 1と同一部分には同一符号を付してその詳細な説明は省略する。 この電子部品用基板 1—2においても、 絶縁基台 1 0の上面にフレキシブル回路基板
2 0をインサート成形によって一体に取り付けて構成しており、 またフレキシブル回 路基板 2 0上に形成される抵抗体パターン 2 5は物理的蒸着又は化学的蒸着による金 属薄膜によって構成されている。
この電子部品用基板 1一 2において前記電子部品用基板 1一 1と相違する点は、 前 記電子部品用基板 1一 1に更に集電板 5 0— 2を絶縁基台 1 0の内部に一体成形した 点である。 ここで集電板 5 0— 2は、 金属板を略矩形状に形成してなる基部 5 3— 2 の中央に、 電子部品用基板 1一 2の抵抗体パターン 2 5を設けた面側に突出する筒状 突起 5 1—2を設け、 また基部 5 3— 2の外周の一辺から外方に向けて略矩形状に突 出し且つ二回略直角に屈曲することで電子部品用基板 1― 2の抵抗体パターン 2 5を 設けた面と反対側の面に露出する接続部 5 5— 2を設けて構成されている。 接続部 5 5 - 2の先端は三分割され、 その中央の部分が電子部品用基板 1一 2の抵抗体パ夕一 ン 2 5を設けた面側に略直角に折り曲げられている。 そしてこの電子部品用基板 1一 2においては、 集電板 5 0— 2を、 その筒状突起 5 1— 2が絶縁基台 1 0の貫通孔 1 1 (同時にフレキシブル回路基板 2 0の貫通孔 2 1 ) の中 (中央) に位置するように 絶縁基台 1 0の内部にインサート成形によって埋め込んでいる。 このとき接続部 5 5 一 2の下面は前述のように絶縁基台 1 0の下面に露出している。 筒状突起 5 1—2は フレキシブル回路基板 2 0の上面側に突出している。 このように構成すれば、 絶縁基 台 1 0を成形する際に、 絶縁基台 1 0とフレキシブル回路基板 2 0と集電板 5 0 - 2 とが同時に一体化できるので、 製造工程の簡略化が図れる。
即ち第二の実施の形態には、 請求項 2に記載の発明である、 絶縁基台 1 0と、 前記 絶縁基台 1 0上に取り付けられる合成樹脂フィルム上に端子パターン 2 9, 2 9とそ の表面に摺動子が摺接する導体パターン 2 5とを設けてなるフレキシブル回路基板 2 0とを具備し、 前記絶縁基台 1 0は合成樹脂成形品であり、 前記フレキシブル回路基 板 2 0はこの絶縁基台 1 0にィンサ一ト成形され、 さらに前記絶縁基台 1 0には、 筒 状突起 5 1— 2を設けた集電板 5 0— 2が、 筒状突起 5 1— 2が前記絶縁基含 1 0と フレキシブル回路基板 2 0にそれぞれ設けた貫通孔 1 1, 2 1の中に位置するように、 インサート成形されている電子部品用基板 1一 2、 が開示されている。
さらに第二の実施の形態には、 請求項 3に記載の発明である、 前記フレキシブル回 路基板 2 0は、 前記絶緣基台 1 0の上面と下面にその表面が露出するように折り曲げ られた状態でィンサート成形によって絶縁基台 1 0に取り付けられている電子部品用 基板 1一 2、 が開示されている。
次にこの電子部品用基板 1一 2の製造方法を説明する。 まず図 3に示すと同様の貫 通孔 2 1を有し、 その表面に物理的蒸着又は化学的蒸着による金属薄膜によって抵抗 体パターン 2 5と端子パターン 2 9 , 2 9とを形成したフレキシブル回路基板 2 0と、 図 6に示す集電板 5 0— 2とを用意する。 このフレキシブル回路基板 2 0は前述のよ うに、 その両側辺から連結部 3 1, 3 1が突出しており、 これら連結部 3 1, 3 1に よって同一の多数のフレキシブル回路基板 2 0が並列に連結されている。 また集電板 5 0 - 2も接続部 5 5— 2の先端部分が図示しない連結部材に連結されることで、 同 一の多数の集電板 5 0一 2が並列に連結されている。
次に連結部 3 1 , 3 1によって連結された各フレキシブル回路基板 2 0と連結部材 によって連結された各集電板 5 0— 2とを図 8に示すように、 第一, 第二金型 4 1, 4 5内にインサートする。 このとき第一, 第二金型 4 1, 4 5内には前記電子部品用 基板 1一 2の外形形状と同一形状のキヤビティー C 1が形成されるが、 フレキシブル 回路基板 2 0はその抵抗体パターン 2 5形成面をキヤピティ一 C 1の第一金型 4 1側 の内平面 C I 1に当接し、 且つ端子パ夕一ン 2 9, 2 9を設けた一端部分を第二金型 4 5側に折り返しておく。 即ち第一, 第二金型 4 1 , 4 5のキヤビティ一 C 1内にフ レキシブル回路基板 2 0を収納し、 その際フレキシブル回路基板 2 0の抵抗体パター ン 2 5を設けた面をキヤビティ一 C 1内の一方の面 C 1 1に当接し、 且つ端子パター ン 2 9 , 2 9を設けた側の部分をキヤビティ一 C 1の他方の面側に折り返した状態と する。 同時に集電板 5 0— 2はその基部 5 3— 2の部分が第一, 第二金型 4 1, 4 5 によって挟持されると同時に筒状突起 5 1— 2内には両金型 4 1 , 4 5からなる凸部 が挿入され、 さらに接続部 5 5— 2の下面が第二金型 4 5の表面に密着する。
そしてキヤビティー C 1の第一金型 4 1側に設けた二か所の樹脂注入口 P 1 , P 2 (図 6 ( a ) 参照) から加熱 ·溶融した合成樹脂 (ナイロン、 ポリフエ二レンスルフ イド等) を圧入 ·充填してキヤビティ一 C 1内を満たす。 そしてこの溶融樹脂の圧入 圧力によりフレキシブル回路基板 2 0の折り返した部分は図 8に点線で示すようにキ ャビティー C 1の内周面に押し付けられ、 その状態のまま冷却 ·固化される。 即ちキ ャビティ一 C 1内に溶融した成形樹脂を充填することで、 フレキシブル回路基板 2 0 の折り返した部分を、キヤビティー C 1の上面から外周側面を介して下面に密着させ、 その状態のまま冷却 ·固化される。 そして第一, 第二金型 4 1, 4 5を取り外し、 成 形された絶縁基台 1 0の両側から突出する連結部 3 1 , 3 1の部分及び突出する集電 板 5 0— 2の接続部 5 5— 2の先端部分を切断すれば、 図 6に示す電子部品用基板 1 一 2が完成する。 つまり、 略矩形状の板状の絶縁基台 1 0の上面から一外周側面を介 して下面に至ってフレキシブル回路基板 2 0が配置されている。 なお絶縁基台 1 0の 中央には貫通孔 1 1が設けられ、 その外周のフレキシブル回路基板 2 0には馬蹄形の 抵抗体パターン 2 5が設けられ、 その両端には端子パターン 2 9 , 2 9が設けられ、 端子パターン 2 9 , 2 9は更に絶緣基台 1 0の一外周側面を介して下面にも設けられ ている。 さらに集電板 5 0— 2は一体に絶縁基台 1 0に埋め込まれて構成され、 絶縁 基台 1 0に設けられた貫通孔 1 1には集電板 5 0— 2の筒状突起 5 1—2を絶縁基台 1 0の上面を超えて突出させ、 さらに基部 5 3 _ 2は絶縁基台 1 0内に埋め込まれ、 接続部 5 5— 2は絶縁基台 1 0の下面 (伹し下面に露出している端子パターン 2 9 , 2 9に対向した一外周側面側の下面) に露出している。
即ち第二の実施の形態には、請求項 1 1に従属する請求項 1 2に記載の発明である、 合成樹脂フィルム上にその表面に損動子が摺接する導体パターン 2 5とこの導体パタ —ン 2 5に接続される端子パターン 2 9, 2 9とを設けてなるフレキシブル回路基板 2 0と、 電子部品用基板 1一 2の外形形状に形成されたキヤビティー C 1を有する金 型 4 1, 4 5とを用意し、 前記金型 4 1 , 4 5のキヤビティー C 1内に前記フレキシ ブル回路基板 2 0を収納し、 その際前記フレキシブル回路基板 2 0の導体パターン 2 5を設けた面をキヤビティー C 1内の一方の面 C 1 1に当接し、 且つ端子パターン 2 9, 2 9を設けた側の部分をキヤビティ一 C 1の他方の面側に折り返した状態とし、 前記キヤビティー C 1内に溶融した成形樹脂を充填することで、 前記フレキシブル回 路基板 2 0の折り返した部分を、 キヤピティー C 1の上面から外周側面を介して下面 に密着させ、 充填した成形樹脂が固化した後に金型 4 1, 4 5を取り外すことで、 前 記成形樹脂からなる絶縁基台 1 0の上面に導体パターン 2 5を設けた部分を露出する と共に、 端子パターン 2 9 , 2 9を設けた側の部分をその外周側面から下面にかけて 折り返した状態で露出させ、 さらに前記金型 4 1 , 4 5のキヤビティー C 1内に前記 フレキシブル回路基板 2 0を収納した際に、 同時に金属板からなる集電板 5 0— 2を このキヤビティー C 1内に収納しておくことで、 前記成形樹脂からなる絶縁基台 1 0 に集電板 5 0 - 2を埋め込んでなる電子部品用基板の製造方法、 が開示されている。 以上のようにこの実施の形態によれば、 フレキシブル回路基板 2 0と集電板 5 0— 2とを金型 4 1 , 4 5のキヤビティー C 1内にインサート成形するだけで、 絶縁基台 1 0の上面に抵抗体パ夕一ン 2 5を露出すると共に、 端子パターン 2 9, 2 9をその 外周側面から下面にかけて露出し、 さらに集電板 5 0 - 2を取り付けた構造の電子部 品用基板 1一 2を容易に製造することができ、生産性が向上し、低コスト化が図れる。 またセラミック基板に比べて材料費の低コスト化が図れ、 厚みの薄型化も容易且つ安 価に行える。
図 7は上記電子部品用基板 1一 2を用いて構成した半固定可変抵抗器 1 0 0— 2を 示す図であり、 図 7 (a) は平面図、 図 7 (b) は正面図、 図 7 (c) は図 7 (a) の E— E断面図、 図 7 (d) は裏面図である。 同図に示すように半固定可変抵抗器 1 00— 2は、 電子部品用基板 1一 2の上面に摺動子 60を配置する際に集電板 50— 2に設けた筒状突起 51— 2を摺動子 60に設けた嵌揷孔 61に貫通し、 その先端を かしめることで摺動子 60を回動自在に取り付けて構成されている。 そして摺動子 6 0を回動すれば、摺動子 60に設けられている摺動接点 63が抵抗体パターン 25 (図 6参照) の表面を摺接して端子パターン 29, 29と集電板 50— 2間の抵抗値を変 化する。
〔第三の実施の形態〕
図 9, 図 10は本発明の第三の実施の形態を用いて製造した電子部品用基板 1一 3 を示す図であり、 図 9 (a) は上側から見た斜視図、 図 9 (b) は下側から見た斜視 図、 図 10 (a) は平面図、 図 10 (b) は正面図、 図 10 (c) は図 10 (a) の F— F断面図、 図 10 (d) は裏面図である。 同図に示す電子部品用基板 1一 3にお いて前記電子部品用基板 1一 1 , 1一 2と同一部分には同一符号を付してその詳細な 説明は省略する。 この電子部品用基板 1一 3においても、 絶縁基台 10の上面にフレ キシブル回路基板 20をインサート成形によって一体に取り付けて構成しており、 ま たフレキシブル回路基板 20上に形成される抵抗体パターン 25は物理的蒸着又は化 学的蒸着による金属薄膜によって構成されている。 なおこの電子部品用基板 1一 3を 構成する各部材の材質及びその製造方法は、 上記第一, 第二の実施の形態の対応する 各部材の材質及びその製造方法と同じである。
そしてこの実施の形態においても絶縁基^ 10は略矩形状で板状の合成樹脂成形品 であり、 前記電子部品用基板 1一 2と同様に、 集電板 50— 3を絶縁基台 10の内部 に一体にインサート成形している。 この集電板 50— 3も前記集電板 50— 2と同じ 形状であり、 金属板を略矩形状に形成してなる基部 53— 3の中央に、 電子部品用基 板 1一 3の抵抗体パターン 25を設けた面側に突出する筒状突起 51— 3を設け、 ま た基部 53— 3の外周の一辺から外方に向けて略矩形状に突出し且つ二回略直角に屈 曲することで電子部品用基板 1一 3の抵抗体パターン 25を設けた面と反対側の面に 露出する接続部 55— 3を設けて構成されている。 接続部 55— 3の先端は三分割さ れ、 その中央の部分が電子部品用基板 1一 3の抵抗体パ夕一ン 25を設けた面側に略 直角に折り曲げられている。 そしてこの電子部品用基板 1一 3においても、 集電板 5 0— 3を、 その筒状突起 5 1— 3が絶縁基台 1 0の貫通孔 1 1 (同時にフレキシブル 回路基板 2 0の貫通孔 2 1 ) の中 (中央) に位置するように絶縁基台 1 0の内部にィ ンサート成形によって埋め込んでいる。 このとき接続部 5 5— 3の下面は前述のよう に絶縁基台 1 0の下面に露出している。 また貫通孔 1 1と貫通孔 2 1の内径は筒状突 起 5 1— 3の外径よりも大きく、 筒状突起 5 1— 3はフレキシブル回路基板 2 0の上 面側に突出している。 このように構成すれば、 第二の実施の形態と同様に、 絶縁基台 1 0とフレキシブル回路基板 2 0と集電板 5 0 - 3とが同時に一体化できるので、 製 造工程の簡略化が図れる。
次にフレキシブル回路基板 2 0は図 1 1で示すような略矩形状 (幅は絶緣基台 1 0 と幅と略同一、 長さは絶縁基台 1 0の長さより所定寸法長い形状) の熱可塑性の合成 樹脂フィルムの中央の前記貫通孔 1 1に対応する位置にこれと同一内径の貫通孔 2 1 を設け、 またその表面の貫通孔 2 1の外周に馬蹄形状の導体パターン (以下この実施 の形態では 「抵抗体パターン」 という) 2 5を設け、 さらに抵抗体パターン 2 5の端 部 2 5 e, 2 5 eに長さ方向 (A) に沿う略矩形状の端子パターン 2 9 , 2 9を接続 して設けて構成されている。 フレキシブル回路基板 2 0はその端子パターン 2 9, 2 9を設けた側の辺を絶縁基台 1 0の上面から外周側辺を介してその下面に折り返し、 これによつてフレキシブル回路基板 2 0は絶縁基台 1 0の上面と外周側面と下面にそ の表面が露出するように折り曲げられた状態で絶縁基台 1 0に取り付けられる。 従つ て抵抗体パターン 2 5は絶縁基台 1 0の上面に、 端子パターン 2 9 , 2 9は絶縁基台 1 0の上面と外周側辺から下面にわたって露出している。
そしてこの電子部品用基板 1一 3においては、 フレキシブル回路基板 2 0の抵抗体 2 5の外側にある長さ方向 (A) の一辺の端部 (抵抗体パターン 2 5側) となる端辺 7 1を覆う円弧形状を有する押え部 1 Ί a (但し抵抗体パターン 2 5を覆ってはいな レ と、 フレキシブル回路基板 2 0の抵抗体パターン 2 5の端部 2 5 e, 2 5 eの外 周近傍の部分に二つの端子パターン 2 9 , 2 9を覆う円弧形状を有する押え部 1 7 b と、絶縁基台 1 0の下面に配置されたフレキシブル回路基板 2 0の端子パターン 2 9 ,
2- 9を設けた側の端辺 7 3を覆う絶縁基台 1 0の下面と同一面の平板状の押え部 1 7 cとを、 それぞれ絶縁基台 1 0と一体にインサート成形樹脂で設け、 これによつてフ レキシブル回路基板 2 0を絶縁基台 1 0に強固に固定している。
フレキシブル回路基板 2 0の端辺 7 1は、 抵抗体パターン 2 5の円弧形状に合わせ て円弧状に形成されており、 押え部 1 7 aもこの円弧形状に合わせて円弧状に形成さ れている。
フレキシブル回路基板 2 0の抵抗体パターン 2 5の端子パターン 2 9, 2 9を接続 した部分の両外周側辺 (即ちフレキシブル回路基板 2 0の幅方向 (B ) の両端部) に は凹状に切り欠かれた一対の樹脂揷通部 7 5 a, 7 5 aが設けられ、 また両端子パ夕 ーン 2 9, 2 9の間には貫通孔からなる樹脂揷通部 7 5 bが設けられ、 これら樹脂揷 通部 7 5 a , 7 5 a , 7 5 bの上を通過し且つ抵抗体パ夕一ン 2 5の円弧形状に合わ せて円弧状に押え部 1 7 bが成形されている。 押え部 1 7 bは樹脂揷通部 7 5 a , 7 5 a , 7 5 bの部分でその下側の絶縁基台 1 0を構成する成形樹脂と連結されている。 フレキシブル回路基板 2 0の絶縁基台 1 0の下面側に折り返された長さ方向 (A) のもう一つの辺の端部 (端子パターン 2 9, 2 9側) となる端辺 7 3は、 略直線状で その中央に円弧状に凹む凹部 7 7 (図 1 1参照) を設けている。 そして一端辺 7 3の 上には、 端辺 7 3を複数箇所 (五ケ所) で押さえるように押え部 1 7 cが成形されて いる。 フレキシブル回路基板 2 0の端辺 7 3近傍部分の面は、 フレキシブル回路基板 2 0を絶縁基台 1 0の下面側に折り返した直後の面 (絶縁基台 1 0の側面側に位置す る下面) から更に絶縁基台 1 0の内部に向かって凹む凹部 7 8の底面まで凹ませてい るが、 これは押え部 1 7 cの表面を端子パターン 2 9, 2 9の露出面と同一面にする ため、 押え部 1 7 cの厚み分だけフレキシブル回路基板 2 0の面を低くしておく必要 があるからである。
即ち第三の実施の形態には、 請求項 2に従属する請求項 4に記載の発明である、 絶 縁基台 1 0と、 前記絶縁基台 1 0上に取り付けられる合成樹脂フィルム上に端子バタ ーン 2 9 , 2 9とその表面に摺動子が摺接する導体パターン 2 5とを設けてなるフレ キシブル回路基板 2 0とを具備し、 前記絶縁基台 1 0は合成樹脂成形品であり、 前記 フレキシブル回路基板 2 0はこの絶縁基台 1 0にインサート成形されており、 また前 記絶縁基台 1 0には、 筒状突起 5 1— 3を設けた集電板 5 0— 3が、 筒状突起 5 1一
3が前記絶縁基台 1 0とフレキシブル回路基板 2 0にそれぞれ設けた貫通孔 1 1, 2
1の中に位置するように、インサート成形されており、 さらに前記絶緣基台 1 0には、 フレキシブル回路基板 2 0を前記絶縁基台 1 0に強固に固定する押え部 1 7 a , 1 7 b, 1 7 cを設けた電子部品用基板 1一 3、 が開示されている。
なお上記第三の実施の形態では、 絶縁基台 1 0に筒状突起 5 1— 3を設けた集電板 5 0— 3をインサート成形した例を示しているが、 絶縁基台 1 0に集電板 5 0— 3を ィンサート成形しないでその他の部分は上記第三の実施の形態と同一の構造の電子部 品用基板を構成してもよい。
この電子部品用基板は、 請求項 1に従属する請求項 4に記載の発明である、 絶縁基 台 1 0と、 前記絶縁基台 1 0上に取り付けられる合成樹脂フィルム上に端子パターン 2 9 , 2 9とその表面に摺動子が摺接する導体パターン 2 5とを設けてなるフレキシ ブル回路基板 2 0とを具備し、 前記絶縁基台 1 0は合成樹脂成形品であり、 前記フレ キシブル回路基板 2 0はこの絶縁基台 1 0にインサート成形されており、 さらに前記 絶縁基台 1 0には、 フレキシブル回路基板 2 0を前記絶縁基台 1 0に強固に固定する 押え部 1 7 a, 1 7 b , 1 7 cを設けた構成となる。
次にこの電子部品用基板 1一 3の製造方法を説明する。 まず図 1 1に示すように貫 通孔 2 1、 樹脂揷通部 7 5 a, 7 5 a , 7 5 bを有し、 その表面に物理的蒸着又は化 学的蒸着による金属薄膜によって抵抗体パターン 2 5と端子パターン 2 9 , 2 9とを 形成したフレキシブル回路基板 2 0と図 1 0に示す集電板 5 0— 3とを用意する。 こ のフレキシブル回路基板 2 0は、 抵抗体パターン 2 5を設けた部分の両側辺から連結 部 3 1, 3 1を突出しており、 これら連結部 3 1, 3 1によって同一の多数のフレキ シブル回路基板 2 0 (図示せず) が並列に連結されている。 また集電板 5 0— 3も接 続部 5 5— 3の先端部分が図示しない連結部材に連結されることで、 同一の多数の集 電板 5 0— 3が並列に連結されている。
次に連結部 3 1 , 3 1によって連結された各フレキシブル回路基板 2 0及び連結部 材によって連結された各集電板 5 0— 3を図 1 2に示すように、第一,第二金型 4 1 , 4 5内にインサートする。 このとき第一, 第二金型 4 1 , 4 5内には前記電子部品用 基板 1一 3の外形形状と同一形状のキヤビティ一 C 1が形成されるが、 フレキシブル 回路基板 2 0はその抵抗体パターン 2 5形成面をキヤビティ一 C 1の第一金型 4 1側 の内平面 C 1 1に当接し、 且つ端子パターン 2 9 , 2 9を設けた一端辺 7 3側部分を 第二金型 4 5側に折り返しておく。 即ち第一, 第二金型 4 1 , 4 5のキヤビティ一 C
1内にフレキシブル回路基板 2 0を収納し、 その際フレキシブル回路基板 2 0の抵抗 体パターン 2 5を設けた面をキヤビティー C 1内の一方の面 (第一金型 4 1側) に当 接し、 且つ端子パターン 2 9 , 2 9を設けた側の部分をキヤビティー C 1の他方の面 側 (第二金型 4 5側) に折り返した状態とする。 同時に集電板 5 0— 3はその基部 5 3— 3の部分が第一, 第二金型 4 1 , 4 5によって挟持され、 また接続部 5 5— 3の 下面が第二金型 4 5の表面に密着する。 なおフレキシブル回路基板 2 0の端辺 7 3に 凹部 7 7 (図 1 1参照) を設けたのは、 フレキシブル回路基板 2 0の端辺 7 3側部分 を第二金型 4 5側に折り返した際に、 第二金型 4 5に設けた貫通孔 1 1を形成するた めの凸部 4 7にフレキシブル回路基板 2 0が当接しないように逃げるためである。 そして金型 4 1側に設けたニケ所の樹脂注入口 (図 9 ( a ) に示す矢印 G l, G 2 及び図 1 2に示す G l, G 2 ) から加熱 ·溶融した合成樹脂を圧入 ·充填してキヤピ ティー C 1内を満たす。 このとき溶融樹脂の圧入圧力と熱とによりフレキシブル回路 基板 2 0はキヤビティー C 1の内周面に押し付けられてその内周面形状に変形し、 そ の状態のまま冷却 ·固化される。 即ちキヤビティ一 C 1内に溶融した成形樹脂を充填 することで、 フレキシブル回路基板 2 0の折り返した部分を、 キヤビティー C 1の上 面から外周側面を介して下面に密着させ、 その状態のまま冷却 ·固化される。 そして 第一, 第二金型 4 1, 4 5を取り外し、 成形された絶縁基台 1 0の両側から突出して いる連結部 3 1, 3 1の部分及び突出する集電板 5 0— 3の接続部 5 5— 3の先端部 分を切断すれば、 図 9, 図 1 0に示す電子部品用基板 1一 3が完成する。
なお前述のように押え部 1 Ί cによって端辺 7 3及びその近傍を断続的に複数箇所 で押さえたのは、 端辺 7 3の一部を第二金型 4 5の面に当接させておくことで、 端辺 7 3の部分が溶融成形樹脂の圧入圧力によって第二金型 4 5の面まで押し上げられて 変形しないようにこれを押えておくためである。 つまり押え部 1 7 cを設けないで絶 緣基台 1 0の下面から露出している端辺 7 3及びその近傍部分は、 第二金型 4 5によ つて端辺 7 3及びその近傍を押えていた結果形成されたものである。
以上のようにこの実施の形態によれば、 フレキシブル回路基板 2 0と集電板 5 0— 3とを第一,第二金型 4 1 , 4 5のキヤビティ一 C 1内にインサート成形するだけで、 絶縁基台 1 0の上面に抵抗体パタ一ン 2 5を露出すると共に、 端子パターン 2 9 , 2 9をその外周側面から下面にかけて露出し、 さらに集電板 5 0— 3を取り付けた構造 の電子部品用基板 1一 3を容易に製造することができ、 生産性が向上し、 低コスト化 が図れる。 またセラミック基板に比べて材料費の低コスト化が図れ、 厚みの薄型化も 容易且つ安価に行える。
この電子部品用基板 1一 3によれば、 絶縁基台 1 0の上面に設けられたフレキシブ ル回路基板 2 0と絶縁基台 1 0の下面に設けられたフレキシブル回路基板 2 0とに、 それぞれフレキシブル回路基板 20を強固に絶縁基台 10に固定する押え部 11 a〜 17 cを設けたので、 たとえフレキシブル回路基板 20と絶縁基台 10とがインサー ト成形時の熱と圧力だけによつては固着しにくい材質の組み合わせであったとしても、 フレキシブル回路基板 20が絶縁基台 10の表面から剥がれるなどの問題は生じず、 容易にこれを強固に固定しておくことができる。 なおこの実施の形態においては、 押 え部 17 a〜l 7 cをフレキシブル回路基板 20の絶縁基台 10の上面側に設けられ た抵抗体パターン 25側の端辺 71と、 抵抗体パターン 25の端部 25 e, 25 eの 外周近傍部分と、 絶縁基台 10の下面側に設けられた端子パターン 29, 29側の端 辺 73とに設けたが、 フレキシブル回路基板 20の絶縁基台 10上への固着が比較的 強固の場合、 押え部はこれら三力所の内の何れか一力所のみに設けるだけでもかまわ ない。 その場合、 フレキシブル回路基板 20の絶縁基台 10の下面側に折り曲げた部 分が最も元の形状に戻ろうとする応力が強く、 はがれ易いので、 端子パターン 29, 29側の端辺 73の部分に押え部 17 cを設けることが好ましい。
以上のようにして製造された電子部品用基板 1一 3は、 その筒状突起 51— 3を、 前記図 7に示すと同様の摺動子 60の嵌揷孔 61に貫通してその先端をかしめること で摺動子 60を回動自在に取り付け、 これによつて半固定可変抵抗器が構成される。
〔第四の実施の形態〕
図 13, 図 14は本発明の第四の実施の形態を用いて製造した電子部品用基板 1一 4を示す図であり、 図 13は斜視図、 図 14 (a) は平面図、 図 14 (b) は正面図、 図 14 (c) は図 14 (a) の G— G断面図、 図 14 (d) は裏面図である。 両図に 示すように電子部品用基板 1一 4は、 絶縁基台 10の上面にフレキシブル回路基板 2 0をインサート成形によって一体に取り付けると共に、 端子板 70, 70を前記フレ キシブル回路基板 20上に設けた端子パターン 29, 29と接続するように絶縁基台 10の端部に取り付けて構成されている。 以下各構成部品について説明する。
絶緣基台 10は略矩形状で板状の合成樹脂成形品であり、 その中央には円形の貫通 孔 11が設けられ、 またその下面中央には凹状の集電板収納凹部 15が設けられ、 さ らにその下面の一端辺近傍には端子板 70, 70を収納する寸法形状の端子板収納凹 部 18, 18が設けられている。 この絶縁基台 10は熱可塑性の合成樹脂、 例えばナ イロンゃポリフエ二レンスルフイド (PPS) 等によって構成されている。
フレキシブル回路基板 20は熱可塑性の合成樹脂フィルム (例えばポリイミドフィ ルム) 上に端子パターン 2 9, 2 9とその表面に摺動子が摺接する導体パターン 2 5 とを設けて構成される。 即ちこのフレキシブル回路基板 2 0は合成樹脂フィルムの中 央の前記貫通孔 1 1に対応する位置にこれと同一内径の貫通孔 2 1を設け、 またその 表面の貫通孔 2 1の周囲にはこれを馬蹄形状に囲む導体パターン (以下この実施の形 態では 「抵抗体パターン」 という) 2 5を設け、 さらに抵抗体パ夕一ン 2 5の両端に はそれぞれ端子パターン 2 9 , 2 9を抵抗体パターン 2 5と接続して設けている。 ここで前記抵抗体パターン 2 5は物理的蒸着 ( P V D、 physical vapor deposition) 又は化学的蒸着 (C V D、 chemical vapor deposition) による金属薄膜によって構成 されている。 物理的蒸着の方法としては、 真空蒸着、 スパッタリング、 イオンビーム 蒸着等を用いる。 化学的蒸着の方法としては、 熱 C VD法、 プラズマ C V D法、 光 C V D法等を用いる。 蒸着する抵抗体パターン 2 5の材質としては、 ニッケルクロム合 金等のニッケル系材料、 又はクロム珪酸塩系化合物 (C r一 S i 02) 等からなるサ 一メット系材料、 又は窒化タンタル等のタンタル系材料等を用いる。 クロム珪酸塩系 化合物は 2 0 0 0 Ω - c m以上の大きな比抵抗を容易に実現できるので、 この電子 部品用基板 1一 4の小型化に好適である。
ところで本発明においては抵抗体パターン 2 5として、 カーボンペースト等の抵抗 体ペーストからなる抵抗体パターンを用いることもできるが、 この実施の形態におい ては、 この電子部品用基板 1一 4が半固定可変抵抗器用の基板なので、 金属蒸着によ る抵抗体パターン 2 5を用いた。 その理由は以下の通りである。 即ち半固定可変抵抗 器は通常別の回路基板等に取り付けられた後、 摺動子を回動することで抵抗値をセッ トするが、 一旦抵抗値をセットした後はその抵抗値を変化させず、 セットした抵抗値 をそのまま維持するように使用される。従ってこの種の半固定可変抵抗器にあっては、 セットした抵抗値が温度や湿度の影響を受けにくいようにする必要がある。 しかしな がら抵抗体パターンとして抵抗体ペーストからなる抵抗体パターンを用いた場合、 抵 钪体パ夕一ンが樹脂中に導電粉を混合する構成なので、 その樹脂が熱や湿度に影響さ れ易く、 その抵抗値が温度 ·湿度の変化によって変化し易い。
一方上記金属蒸着による抵抗体パターン 2 5によれば、 抵抗体パターン 2 5全体を 均質で均一な厚みに形成できることは言うまでもなく、 さらに樹脂中に導電粉を混合 したべ一ストを印刷焼成した抵抗体パターンのように内部に樹脂を有していないので、 熱や温度によって抵抗値が変化しにくい。 例えばカーボンペーストを印刷焼成した抵 抗体パターンの場合、 抵抗温度係数が 5 O O p p mZ°Cなのに対して、 上記真空蒸着 を用いた金属薄膜の場合の抵抗温度係数は、 1 0 0 p p mZ°Cであった。 なおこの金 属薄膜の抵抗温度係数はセラミック基板に高温で抵抗体パターンを焼き付けた場合の 抵抗温度係数と同等の良好な温度特性である。 これらのことから本実施の形態では抵 抗体パターンとして金属蒸着による抵抗体パターン 2 5を用いたのである。
次に端子パターン 2 9, 2 9は、 ニクロム下地の上に銅層と金層とを順番に蒸着に よって形成して構成されている。 なお端子パターン 2 9, 2 9は抵抗値の変化に直接 影響を与えないので、導電ペーストの印刷焼成等の他の手段によって形成しても良い。 端子板 7 0, 7 0は略コ字状で金属板 (例えば鉄板の表面に銅メツキした上で低融 点金属メツキしたものや、 ステンレス板等) 製であり、 絶縁基台端部 1 2の上面、 側 面、 下面を覆う寸法に形成されている。
即ち第四の実施の形態には、 請求項 1に従属する請求項 6に記載の発明である、 絶 縁基台 1 0と、 前記絶緣基台 1 0上に取り付けられる合成樹脂フィルム上に端子パ夕 ーン 2 9 , 2 9とその表面に摺動子が摺接する導体パターン 2 5とを設けてなるフレ キシブル回路基板 2 0とを具備し、 前記絶縁基台 1 0は合成樹脂成形品であり、 前記 フレキシブル回路基板 2 0はこの絶縁基^ 1 0にインサート成形されており、 さらに 前記フレキシブル回路基板 2 0上に設けられた端子パターン 2 9 , 2 9と接続して絶 緣基台 1 0端部に取り付く端子板 7 0 , 7 0を具備して構成される電子部品用基板 1 —4、 が開示されている。
次にこの電子部品用基板 1一 4の製造方法を説明する。 まず図 1 5に示すように貫 通孔 2 1を有し、 その表面に物理的蒸着又は化学的蒸着による金属薄膜によって抵抗 体パターン 2 5と端子パターン 2 9 , 2 9とを形成したフレキシブル回路基板 2 0を 用意する。 このフレキシブル回路基板 2 0は、 その両側辺から連結部 3 1, 3 1が突 出しており、 これら連結部 3 1 , 3 1によって同一の多数のフレキシブル回路基板 2 0が並列に連結されている。
次に連結部 3 1 , 3 1によって連結された各フレキシブル回路基板 2 0を図 1 6に 示すように、 第一, 第二金型 4 1, 4 5内にインサートする。 このとき第一, 第二金 型 4 1 , 4 5内には前記電子部品用基板 1一 4の外形形状と同一形状のキヤビティー
C 1が形成されるが、 フレキシブル回路基板 2 0はその抵抗体パターン 2 5形成面を キヤピティー C 1の第一金型 4 1側の内平面 C 1 1に当接しておく。 そして第一金型 4 1側に設けたニケ所の樹脂注入口 (図 1 3に示す矢印 P I , P 2 及び図 1 6に示す P l, P 2 ) から加熱 ·溶融した合成樹脂 (ナイロン、 ポリフエ二 レンスルフイド等) を圧入 ·充填してキヤビティ一 C 1内を満たす。 そして前記溶融 合成樹脂が冷却'固化した後に、 第一, 第二金型 4 1 , 4 5を取り外し、 成形された 絶縁基台 1 0の両側から突出する連結部 3 1, 3 1の部分を切断する。
そして前記図 1 3, 図 1 4に示す端子板 7 0, 7 0を、 フレキシブル回路基板 2 0 の表面の端子パターン 2 9 , 2 9を設けた面を覆うように接続して、 この面と絶縁基 台 1 0下面の端子板収納凹部 1 8, 1 8の面及び絶縁基台 1 0の外周側面を覆うよう に取り付ければ、 図 1 3, 図 1 4に示す端子パターン 2 9と接続して絶縁基台端部 1 2に取り付く端子板 7 0を伴う電子部品用基板 1一 4が完成する。
即ち第四の実施の形態には、 請求項 1 3に記載の発明である、 合成樹脂フィルム上 にその表面に摺動子が摺接する導体パターン 2 5とこの導体パターン 2 5に接続され る端子パターン 2 9 , 2 9とを設けてなるフレキシブル回路基板 2 0と、 金属板から なる端子板 7 0 , 7 0と、 電子部品用基板 1一 4の外形形状に形成されたキヤビティ —C 1を有する金型 4 1, 4 5とを用意し、 前記金型 4 1, 4 5のキヤビティー C 1 内に前記フレキシブル回路基板 2 0を収納し、 その際前記フレキシブル回路基板 2 0 の導体パターン 2 5を設けた面をキヤビティ一 C 1内の一方の面 C 1 1 (第一金型 4
1面) に当接し、 前記キヤビティ一 C 1内に溶融した成形樹 J3旨を充填し、 充填した成 形樹脂が固化した後に金型 4 1, 4 5を取り外すことで、 成形樹脂からなる絶縁基台 1 0にフレキシブル回路基板 2 0をその導体パターン 2 5と端子パターン 2 9, 2 9 とを露出するように取り付け、 その後絶縁基台端部 1 2に、 前記フレキシブル回路基 板 2 0上に設けられた端子パターン 2 9, 2 9に接続するように端子板 7 0, 7 0を 取り付けてなる電子部品用基板 1一 4の製造方法、 が開示されている。
なお前記端子板 7 0と端子パターン 2 9間は直接当接した機械的圧接力のみで接続 しても良いし、 導電性接着剤などを介して接続しても良い。 なお端子板 7 0の形状' 取付構造はこの実施の形態に限定されず、 要は端子パターン 2 9と接続して絶縁基台
1 0端部に取り付ける構造であれば、 どのような構造であっても良い。
以上のようにして電子部品用基板 1—4を製造すれば、 フレキシブル回路基板 2 0 を絶縁基台 1 0にインサート成形するので、 その製造が容易に行え、 低コスト化が図 れる。 また絶縁基台 1 0を合成樹脂成形品で構成したので、 その製造が容易で、 セラ ミック基板に比べて材料費の低コスト化が図れ、 厚みの薄型化も容易且つ安価に行え る。 また合成樹脂フィルムに多数組の抵抗体パターン 25を同時に形成し、 次に各組 の抵抗体パターン 25を設けたフレキシブル回路基板 20にそれぞれ同時に絶縁基台 10を成形した後、 一体に連結したフレキシブル回路基板 20をカツトして個品化す ることができるので、 電子部品用基板 1一 4を容易に大量生産でき、 生産性が向上す る。
図 17は上記電子部品用基板 1一 4を用いて構成した半固定可変抵抗器 100-4 を示す図であり、 図 17 (a) は平面図、 図 17 (b) は正面図、 図 17 (c) は図 17 (a) の H— H断面図、 図 17 (d) は裏面図である。 同図に示すように半固定 可変抵抗器 100— 4は、 電子部品用基板 1― 4の上面に摺動子 60を配置し、 下面 に集電板 50を配置し、 集電板 50に設けた円筒状の筒状突起 51を貫通孔 11, 2 1に貫通させ、 さらに電子部品用基板 1—4を貫通した筒状突起 51の先端を摺動子 60に設けた嵌揷孔 61に貫通した上でその先端をかしめることで摺動子 60を回動 自在に取り付けて構成されている。 ここで集電板 50は電子部品用基板 1一 4の下面 に設けた集電板収納凹部 15に収納されている。 そして摺動子 60を回動すれば、 摺 動子 60に設けられた摺動接点 63が抵抗体パターン 25 (図 14参照) の表面を摺 接して端子板 70, 70と集電板 50間の抵抗値を変化する。
上記半固定可変抵抗器 100-4は各種電子部品を搭載した別の回路基板に取り付 けられる。 その際は別の回路基板に設けた回路パターンに前記端子板 70, 70を低 融点金属等を用いた高温を伴う接続手段によって固定することとなるが、 本発明にお いては端子板 70, 70を用いているので、 別の回路基板への高温を伴う接続手段に よる固定が容易に行え、 一方で端子パターン 29やフレキシブル回路基板 20の材質 として熱に弱い材質のものを用いることができるようになる。 また端子板 70, 70 はフレキシブル回路基板 20を絶縁基台 10に挟持して固定する機械的固定手段を兼 ねる。
〔第五の実施の形態〕
図 18は本発明の第五の実施の形態を用いて製造した電子部品用基板 1一 5を示す 図であり、 図 18 (a) は平面図、 図 18 (b) は正面図、 図 18 (c) は図 18 (a) の I— I断面図、 図 18 (d) は裏面図である。 同図に示す電子部品用基板 1一 5に おいて前記電子部品用基板 1— 4と同一部分には同一符号を付してその詳細な説明は 省略する。 この電子部品用基板 1一 5においても、 絶縁基台 10の上面にフレキシブ ル回路基板 20をインサート成形によって一体に取り付け、 また端子板 70, 70を 端子パ夕一ン 29, 29と接続するように絶縁基台端部 12に取り付けている。 抵抗 体パターン 25も物理的蒸着又は化学的蒸着による金属薄膜で構成されている。
この電子部品用基板 1—5において前記電子部品用基板 1一 4と相違する点は、 フ レキシブル回路基板 20の他に端子板 70, 70も絶縁基台 10にインサート成形し、 これによつてこれら各部品を一体化した点である。 即ちこの電子部品用基板 1一 5の 製造方法は、 図 19に示すように、 絶縁基台 10成型用の第一, 第二金型 41, 45 のキヤビティ一 C 1内にフレキシブル回路基板 20と端子板 70, 70とを予めイン サ一トしておき、 キヤビティー C 1内に樹脂注入口 P 1, P 2 (第四の実施の形態と 同じ位置に設けてある) から溶融合成樹脂を圧入して冷却 ·固化することで、 フレキ シブル回路基板 20と端子板 70, 70とを絶縁基台 10にて一体成形した電子部品 用基板 1 _ 5を製造する。
即ち第五の実施の形態には、 請求項 6に従属する請求項 8に記載の発明である、 絶 緣基台 10と、 前記絶縁基台 10上に取り付けられる合成樹脂フィルム上に端子パタ ーン 29, 29とその表面に摺動子が摺接する導体パターン 25とを設けてなるフレ キシブル回路基板 20とを具備し、 前記絶縁基台 10は合成樹脂成形品であり、 前記 フレキシブル回路基板 20はこの絶縁基台 10にインサート成形され、 また前記フレ キシブル回路基板 20上に設けられた端子パターン 29, 29と接続して絶縁基台 1 0端部に取り付く端子板 70, 70を具備し、 これら端子板 70, 70も、 前記絶縁 基台 10にインサート成形して構成される電子部品用基板 1— 5、が開示されている。 また第五の実施の形態には、 請求項 14に記載の発明である、 合成樹脂フィルム上 にその表面に摺動子が摺接する導体パターン 25とこの導体パ夕一ン 25に接続され る端子パターン 29, 29とを設けてなるフレキシブル回路基板 20と、 金属板から なる端子板 70, 70と、 電子部品用基板 1一 5の外形形状に形成されたキヤビティ
—C 1を有する金型 41, 45とを用意し、 前記金型 41, 45のキヤビティー C 1 内に前記フレキシブル回路基板 20と端子板 70, 70とを収納し、 その際前記フレ キシブル回路基板 20の導体パターン 25を設けた面をキヤビティ一 C 1内の一方の 面 C 11 (第一金型 41面) に当接すると同時に、 端子板 70, 70の一部をフレキ シブル回路基板 20の端子パターン 29, 29に当接又は対向させておき、 前記キヤ ビティ一 C 1内に溶融した成形樹脂を充填し、 充填した成形樹脂が固化した後に金型 41, 45を取り外すことで、 成形樹脂からなる絶縁基台 10にフレキシブル回路基 板 20をその導体パターン 25と端子パターン 29, 29とを露出するように取り付 けると同時に、 この絶縁基台 10端部に、 前記フレキシブル回路基板 20上に設けら れた端子パターン 29, 29に接続するように端子板 70, 70を取り付けてなる電 子部品用基板 1一 5の製造方法、 が開示されている。
なお第一金型 41の端子板 70の上部の位置には、 キヤビティー C 1の一部を構成 するキヤピティー C 12が設けられており、 キヤビティ一 C 12内には、 絶縁基台 1 0を成形する際にキヤビティー C 1 , C 2内に圧入する溶融成形樹脂によって端子板 70, 70が位置ずれを起こさないように端子板 70, 70をその後側から支える突 起状の当接部 42が設けられている。 そしてこのキヤビティー C 12によって、 図 1 8に示す、 端子板 70, 70の上面を覆う絶縁基台 10と同じ合成樹脂からなる端子 板押え部 19が形成され、 端子板 70, 70の絶縁基台 10への固定の確実化と、 端 子板 70, 70の端子パ夕一ン 29, 29への接続の確実化とを図っている。 なおフ レキシブル回路基板 20の両端子パターン 29, 29の間の部分には、 絶縁基台 10 と端子板押え部 19間を一体に連結するための開口 23が設けられている。 また端子 板押え部 19に形成されている二つの穴 191, 191は、 前記第一金型 41のキヤ ビティー C 12内に設けられた当接部 42によって形成される穴である。
このようにフレキシブル回路基板 20ばかりか端子板 70, 70をも絶縁基台 10 にィンサ一ト成形することとすれば、 別途端子板 70, 70の絶縁基台 10への取付 工程が不要になり、 また端子板 70, 70の絶縁基台 10への固定と端子板 70, 7 0の端子パターン 29, 29への電気的接続とを容易に確実に行うことができる。 ま た絶縁基台 10を合成樹脂成形品で構成したので、 その製造が容易で、 セラミック基 板に比べて材料費の低コスト化が図れ、 厚みの薄型化も容易且つ安価に行える。 なお 端子板押え部 19は必ずしも必要なく、 省略しても良い。
〔第六の実施の形態〕
図 20は本発明の第六の実施の形態を用いて製造した電子部品用基板 1一 6を示す 図であり、 図 20 (a) は平面図、 図 20 (b) は正面図、 図 20 (c) は図 20 (a) の J一 J断面図、 図 20 (d) は裏面図である。 同図に示す電子部品用基板 1一 6に おいて前記電子部品用基板 1一 4と同一部分には同一符号を付してその詳細な説明は 省略する。 この電子部品用基板 1—6においても、 絶縁基台 1 0の上面にフレキシブ ル回路基板 2 0がィンサ一ト成形によって一体に取り付けられると共に、端子板 7 0, 7 0がフレキシブル回路基板 2 0上に設けた端子パターン 2 9, 2 9に接続された状 態で絶縁基台端部 (端辺) 1 2に取り付けられている。
この電子部品用基板 1一 6において前記電子部品用基板 1一 4と相違する点は、 前 記電子部品用基板 1一 4に更に、 集電板 5 0— 6を絶縁基台 1 0の内部に一体成形し た点である。 ここで集電板 5 0— 6は、 金属板を略矩形状に形成してなる基部 5 3— 6の中央に、 電子部品用基板 1一 6の抵抗体パターン 2 5を設けた面側に突出する筒 状突起 5 1 - 6を設け、 また基部 5 3 - 6の外周の一辺から外方に向けて略矩形状に 突出し且つ二回略直角に屈曲することで電子部品用基板 1一 6の抵抗体パターン 2 5 を設けた面と反対側の面に露出する接続部 5 5— 6を設けて構成されている。 接続部 5 5 - 6の先端は三分割され、 その中央の部分が電子部品用基板 1一 6の抵抗体パ夕 —ン 2 5を設けた面側に略直角に折り曲げられている。 そしてこの電子部品用基板 1 一 6においては、 集電板 5 0— 6を、 その筒状突起 5 1— 6が絶縁基台 1 0の貫通孔 1 1 (同時にフレキシブル回路基板 2 0の貫通孔 2 1 ) の中 (中央) に位置するよう に絶縁基台 1 0の内部にインサート成形によって埋め込んでいる。 このとき接続部 5 5— 6の下面は前述のように絶縁基台 1 0の下面に露出している。 筒状突起 5 1 - 6 はフレキシブル回路基板 2 0の上面側に突出している。 このように構成すれば、 絶縁 基台 1 0を成形する際に、 絶縁基^ 1 0とフレキシブル回路基板 2 0と集電板 5 0— 6とが同時に一体化できるので、 製造工程の簡略化が図れる。
次にこの電子部品用基板 1 _ 6の製造方法を説明する。 まず図 1 5に示すと同様の 貫通孔 2 1を有し、 その表面に物理的蒸着又は化学的蒸着による金属薄膜によって抵 抗体パターン 2 5と端子パターン 2 9 , 2 9とを形成したフレキシブル回路基板 2 0 と、 図 2 0に示す集電板 5 0— 6とを用意する。 このフレキシブル回路基板 2 0は前 述のように、 その両側辺から連結部 3 1 , 3 1が突出しており、 これら連結部 3 1,
3 1によって同一の多数のフレキシブル回路基板 2 0が並列に連結されている。 また 集電板 5 0 - 6も接続部 5 5一 6の先端部分が図示しない連結部材に連結されること で、 同一の多数の集電板 5 0一 6が並列に連結されている。
次に連結部 3 1 , 3 1によって連結された各フレキシブル回路基板 2 0と連結部材 によって連結された各集電板 5 0— 6とを図 2 1に示すように、第一,第二金型 4 1 , 4 5内にインサートする。 このとき第一, 第二金型 4 1 , 4 5内には前記電子部品用 基板 1一 6の外形形状と同一形状のキヤビティー C 1が形成されるが、 フレキシブル 回路基板 2 0はその抵抗体パターン 2 5形成面をキヤビティ一 C 1の第一金型 4 1側 の内平面 C I 1に当接しておく。 即ち第一, 第二金型 4 1 , 4 5のキヤビティー C 1 内にフレキシブル回路基板 2 0を収納し、 その際フレキシブル回路基板 2 0の抵抗体 パターン 2 5を設けた面をキヤビティ一 C 1内の一方の面 C 1 1 (第一金型 4 1面) に当接した状態とする。 同時に集電板 5 0— 6はその基部 5 3— 6の部分が第一, 第 二金型 4 1 , 4 5によって挟持されると同時に筒状突起 5 1 _ 6内には両金型 4 1, 4 5からなる凸部が挿入され、 さらに接続部 5 5— 6の下面が第二金型 4 5の表面に 密着する。
そしてキヤビティー C 1の第一金型 4 1側に設けた二か所の樹脂注入口 P 1 , P 2 (図 1 3と同じ位置) から加熱 ·溶融した合成樹脂 (ナイロン、 ポリフエ二レンスル フイド等) を圧入 ·充填してキヤビティー C 1内を満たす。 そしてこの溶融樹脂の圧 入圧力によりフレキシブル回路基板 2 0は第一金型 C 1の内平面 C 1 1に押し付けら れ、 その状態のまま冷却 '固化される。 そして第一, 第二金型 4 1, 4 5を取り外し、 成形された絶縁基台 1 0の両側から突出する連結部 3 1 , 3 1の部分及び突出する集 電板 5 0— 6の接続部 5 5— 6の先端部分を切断すれば、 図 2 0に示す電子部品用基 板 1 _ 6が完成する。 なお絶縁基台 1 0の中央には貫通孔 1 1が設けられ、 その外周 のフレキシブル回路基板 2 0には馬蹄形の抵抗体パターン 2 5が設けられ、 その両端 には端子パターン 2 9, 2 9が設けられている。 さらに集電板 5 0— 6は一体に絶縁 基台 1 0に埋め込まれて構成され、 絶縁基台 1 0に設けられた貫通孔 1 1には集電板 5 0— 6の筒状突起 5 1— 6を絶縁基台 1 0の上面を超えて突出させ、 さらに基部 5 3 - 6は絶縁基台 1 0内に埋め込まれ、 接続部 5 5— 6は絶縁基台 1 0の下面 (つま り上面に露出している端子パターン 2 9 , 2 9に対向した一外周側面側の下面) に露 出している。
そして図 2 0に示す端子板 7 0, 7 0を、 フレキシブル回路基板 2 0の表面の端子 パ夕一ン 2 9, 2 9を設けた面を覆うように接続して、 この面と絶縁基台 1 0下面の 端子板収納凹部 1 8 , 1 8の面及び絶縁基台 1 0の外周側面を覆うように取り付けれ ば、 図 2 0に示す端子パターン 2 9と接続して絶縁基台端部 1 2に取り付く端子板 7 0を伴う電子部品用基板 1一 6が完成する。 即ち第六の実施の形態には、 請求項 6に従属する請求項 9に記載の発明である、 絶 縁基台 1 0と、 前記絶縁基台 1 0上に取り付けられる合成樹脂フィルム上に端子パ夕 ーン 2 9 , 2 9とその表面に摺動子が摺接する導体パターン 2 5とを設けてなるフレ キシブル回路基板 2 0とを具備し、 前記絶縁基台 1 0は合成樹脂成形品であり、 前記 フレキシブル回路基板 2 0はこの絶縁基台 1 0にインサート成形されており、 また前 記フレキシブル回路基板 2 0上に設けられた端子パターン 2 9 , 2 9と接続して絶縁 基台 1 0端部に取り付く端子板 7 0 , 7 0を具備し、 さらに前記絶縁基台 1 0には、 集電板 5 0— 6がィンサ一ト成形されている電子部品用基板 1一 6、 が開示されてい る。
また第六の実施の形態には、請求項 1 3に従属する請求項 1 5に記載の発明である、 合成樹脂フィルム上にその表面に摺動子が摺接する導体パターン 2 5とこの導体パ夕 ーン 2 5に接続される端子パターン 2 9 , 2 9とを設けてなるフレキシブル回路基板 2 0と、 金属板からなる端子板 7 0, 7 0と、 電子部品用基板 1一 6の外形形状に形 成されたキヤビティ一 C 1を有する金型 4 1 , 4 5とを用意し、 前記金型 4 1 , 4 5 のキヤビティ一 C 1内に前記フレキシブル回路基板 2 0を収納し、 その際前記フレキ シブル回路基板 2 0の導体パ夕一ン 2 5を設けた面をキヤビティー C 1内の一方の面 C 1 1 (第一金型 4 1面) に当接し、 前記キヤビティー C 1内に溶融した成形樹脂を 充填し、 充填した成形樹脂が固化した後に金型 4 1, 4 5を取り外すことで、 成形樹 脂からなる絶縁基台 1 0にフレキシブル回路基板 2 0をその導体パターン 2 5と端子 パターン 2 9 , 2 9とを露出するように取り付け、 その後絶縁基台 1 0端部に、 前記 フレキシブル回路基板 2 0上に設けられた端子パターン 2 9 , 2 9に接続するように 端子板 7 0 , 7 0を取り付け、 さらに前記金型 4 1, 4 5のキヤビティー C 1内に前 記フレキシブル回路基板 2 0を収納した際に、 同時に金属板からなる集電板 5 0 - 6 をこのキヤピティー C 1内に収納しておくことで、 前記成形樹脂からなる絶縁基台 1 0に集電板 5 0— 6を埋め込んでなる電子部品用基板 1一 6の製造方法、 が開示され ている。
このようにして電子部品用基板 1一 6を製造すれば、 フレキシブル回路基板 2 0と 集電板 5 0— 6とを絶縁基台 1 0にインサート成形するので、 別途集電板 5 0— 6の 絶縁基台 1 0への取付工程が不要になり、 金属板製の集電板 5 0— 6を取り付けた構 造の電子部品用基板 1—6の製造が容易に行え、 低コスト化が図れる。 また絶縁基台 1 0を合成樹脂成形品で構成したので、 その製造が容易で、 セラミック基板に比べて 材料費の低コスト化が図れ、 厚みの薄型化も容易且つ安価に行える。
ところで第六の実施の形態の変形実施形態として、 さらに図 2 2に示すように、 第 一, 第二金型 4 1, 4 5内に、 フレキシブル回路基板 2 0と集電板 5 0— 6の他に更 に、 前記第五の実施の形態と同様に、 端子板 7 0, 7 0をもインサートしてもよい。 即ち図 2 2に示すように、 電子部品用基板 1一 6 A (図示は省略) 成型用の第一, 第 二金型 4 1, 4 5のキヤピティ一 C 1内にフレキシブル回路基板 2 0と集電板 5 0— 6と端子板 7 0, 7 0とを予めインサートしておき、 キヤビティ一 C 1内に樹脂注入 口 P l, P 2 (第四の実施の形態と同じ位置に設けてある) から溶融合成樹脂を圧入 して冷却 ·固化することで、 フレキシブル回路基板 2 0と集電板 5 0— 6と端子板 7 0 , 7 0とを絶緣基台 1 0にて一体成形した電子部品用基板 1 _ 6 Aを製造してもよ い。
即ちこの実施の形態には、 請求項 8に従属する請求項 9に記載の発明である、 絶縁 基台 1 0と、 前記絶縁基台 1 0上に取り付けられる合成樹脂フィルム上に端子パター ン 2 9 , 2 9とその表面に摺動子が摺接する導体パターン 2 5とを設けてなるフレキ シブル回路基板 2 0とを具備し、 前記絶縁基台 1 0は合成樹脂成形品であり、 前記フ レキシブル回路基板 2 0はこの絶縁基台 1 0にインサート成形されており、 また前記 フレキシブル回路基板 2 0上に設けられた端子パターン 2 9 , 2 9と接続して絶縁基 台 1 0端部に取り付く端子板 7 0 , 7 0を具備し、 これら端子板 7 0 , 7 0は、 前記 絶縁基台 1 0にィンサート成形され、 さらに前記絶縁基台 1 0には、 集電板 5 0— 6 がィンサート成形されてなる電子部品用基板 1— 6 A、 が開示されている。
またこの変形実施形態には、請求項 1 4に従属する請求項 1 5に記載の発明である、 合成樹脂フィルム上にその表面に摺動子が摺接する導体パターン 2 5とこの導体パタ ーン 2 5に接続される端子パターン 2 9 , 2 9とを設けてなるフレキシブル回路基板 2 0と、 金属板からなる端子板 7 0, 7 0と、 電子部品用基板 1一 6 Aの外形形状に 形成されたキヤビティー C 1を有する金型 4 1 , 4 5とを用意し、 前記金型 4 1, 4
5のキヤピティー C 1内に前記フレキシブル回路基板 2 0と端子板 7 0 , 7 0とを収 納し、 その際前記フレキシブル回路基板 2 0の導体パターン 2 5を設けた面をキヤビ ティー C 1内の一方の面 C 1 1 (第一金型 4 1面) に当接すると同時に、端子板 7 0 , 7 0の一部をフレキシブル回路基板 2 0の端子パ夕一ン 2 9, 2 9に当接又は対向さ せておき、 前記キヤビティ一 C 1内に溶融した成形樹脂を充填し、 充填した成形樹脂 が固化した後に金型 4 1, 4 5を取り外すことで、 成形樹脂からなる絶縁基台 1 0に フレキシブル回路基板 2 0をその導体パターン 2 5と端子パターン 2 9 , 2 9とを露 出するように取り付けると同時に、 この絶縁基台 1 0端部に、 前記フレキシブル回路 基板 2 0上に設けられた端子パターン 2 9, 2 9に接続するように端子板 7 0 , 7 0 を取り付け、 さらに前記金型 4 1, 4 5のキヤビティー C 1内に前記フレキシブル回 路基板 2 0を収納した際に、 同時に金属板からなる集電板 5 0— 6もこのキヤビティ — C 1内に収納しておくことで、 前記成形樹脂からなる絶縁基台 1 0に集電板 5 0— 6を埋め込んでなる電子部品用基板 1一 6 Aの製造方法、 が開示されている。
このようにして電子部品用基板 1—6 Aを製造すれば、 フレキシブル回路基板 2 0 と集電板 5 0— 6と端子板 7 0 , 7 0とを絶縁基台 1 0にインサート成形するので、 別途集電板 5 0— 6の絶縁基台 1 0への取付工程や、 端子板 7 0, 7 0の絶縁基台 1 0への取付工程が不要になり、 金属板製の集電板 5 0 - 6と端子板 7 0 , 7 0とを取 り付ける構造の電子部品用基板 1一 6 Aの製造が容易に行え、 低コスト化が図れる。 また絶縁基台 1 0を合成樹脂成形品で構成したので、 その製造が容易で、 セラミック 基板に比べて材料費の低コスト化が図れ、 厚みの薄型化も容易且つ安価に行える。 なお第一金型 4 1の端子板 7 0の上部の位置には、 キヤピティー C 1の一部を構成 するキヤピティー C 1 2が設けられており、 キヤビティ一 C 1 2内には、 絶縁基台 1 0を成形する際にキヤビティー C 1, C 1 2内に圧入する溶融成形樹脂によって端子 板 7 0, 7 0が位置ずれを起こさないように端子板 7 0, 7 0をその後側から支える 突起状の当接部 4 2が設けられている点も、 前記第五の実施の形態と同様である。 また端子板 7 0 , 7 0と集電板 5 0— 6とを絶縁基台 1 0にインサート成形する場 合は、 これらを同一の金属板に連結部で連結した状態で同時に形成しておいて金型内 に収納して絶縁基台 1 0を成形し、 その後連結部を切り離すようにすれば、 さらに実 質的な部品点数の削減と製造工程の簡素化とが図れる。
図 2 3は上記電子部品用基板 1一 6を用いて構成した半固定可変抵抗器 1 0 0— 6 を示す図であり、 図 2 3 ( a ) は平面図、 図 2 3 ( b ) は正面図、 図 2 3 ( c ) は図
2 3 ( a ) の K— K断面図、 図 2 3 ( d ) は裏面図である。 同図に示すように半固定 可変抵抗器 1 0 0— 6は、 電子部品用基板 1一 6の上面に摺動子 6 0を配置する際に 集電板 5 0— 6に設けた筒状突起 5 1— 6を摺動子 6 0に設けた嵌揷孔 6 1に貫通し、 その先端をかしめることで摺動子 60を回動自在に取り付けて構成されている。 そし て摺動子 60を回動すれば、 摺動子 60に設けられている摺動接点 63が抵抗体パ夕 ーン 25 (図 20参照) の表面を摺接して端子板 70, 70と集電板 50— 6間の抵 抗値を変化する。
〔第七の実施の形態〕
また上記各実施の形態ではフレキシブル回路基板 20の端子パターン 29, 29を 設けた部分を絶縁基台 10の上面だけに配置したが、 図 24に示す電子部品用基板 1 —7のように、 フレキシブル回路基板 20の端子パターン 29, 29 (図 24には明 示せず) を設けた側の端部 201を絶縁基台 10の上面から外周側辺を介してその下 面側に折り返し、 折り返したフレキシブル回路基板 20の個所を覆うように端子板 7 0, 70を取り付けても良い。 この場合も、 フレキシブル回路基板 20又はフレキシ ブル回路基板 20及び端子板 70, 70を、 金型内にインサートして絶縁基台 10と 一体に成形する。 なおこの場合、 端子パターン 29, 29はフレキシブル回路基板 2 0の上面だけに設けても良いし、 さらにその外周側辺及び/又はその下面にわたって 設けても良い。
〔第八の実施の形態〕
図 25, 図 26は本発明の第八の実施の形態にかかる電子部品用基板 1一 8を示す 図であり、 図 25 (a) は上側から見た,斜視図、 図 25 (b) は下側から見た,斜視図、 図 26 (a) は平面図、 図 26 (b) は正面図、 図 26 (c) は図 26 (a) の — L断面図、 図 26 (d) は裏面図、 図 26 (e) は図 26 (a) の M— M断面図であ る。 同図に示す電子部品用基板 1—8において前記電子部品用基板 1_ 4, 1-5, 1-6, 1一 7と同一部分には同一符号を付してその詳細な説明は省略する。 この電 子部品用基板 1一 8においても、 絶縁基台 10の上面にフレキシブル回路基板 20を インサート成形によって一体に取り付けて構成しており、 またフレキシブル回路基板 20上に形成される抵抗体パターン 25は物理的蒸着又は化学的蒸着による金属薄膜 によって構成されている。 なおこの電子部品用基板 1一 8を構成する各部材の材質及 びその製造方法は、 上記第四乃至第七の実施の形態の対応する各部材の材質及びその 製造方法と同じである。
そしてこの実施の形態においても絶緣基台 10は略矩形状で板状の合成樹脂成形品 であり、 前記電子部品用基板 1—6と同様に、 集電板 50— 8を絶縁基台 10の内部 に一体にィンサート成形している。 集電板 5 0 - 8は筒状突起 5 1— 8を設けた基部 5 3— 8の一辺から外方に向けて略矩形状の接続部 5 5— 8を突出して構成されてい る。 筒状突起 5 1— 8は絶縁基台 1 0に設けた筒状突起 5 1— 8の外径よりも大きい 内径の貫通孔 1 1の中 (中央) に位置するように絶縁基台 1 0内に設置されており、 このとき接続部 5 5— 8の下面は絶縁基台 1 0の下面に露出している。 また筒状突起 5 1一 8はフレキシブル回路基板 2 0の上面側に突出している。 このように構成すれ ば、 第六の実施の形態と同様に、 絶縁基台 1 0とフレキシブル回路基板 2 0と集電板 5 0 - 8とが同時に一体化できるので、 製造工程の簡略化が図れる。
次にフレキシブル回路基板 2 0は図 2 7で示すような略矩形状 (幅は絶縁基台 1 0 の幅と略同一、 長さは絶縁基台 1 0の長さより所定寸法長い形状) の熱可塑性の合成 樹脂フィルムの中央の前記貫通孔 1 1に対応する位置にこれと同一内径の貫通孔 2 1 を設け、 またその表面の貫通孔 2 1の外周に馬蹄形状の導体パターン (以下この実施 の形態では 「抵抗体パターン」 という) 2 5を設け、 さらに抵抗体パターン 2 5の端 部 2 5 e , 2 5 eに長さ方向 (A) に沿う略矩形状の端子パターン 2 9 , 2 9を接続 して設けて構成されている。 フレキシブル回路基板 2 0はその端子パターン 2 9 , 2 9を設けた側の辺を図 2 6に示すように絶縁基台 1 0の上面から外周側辺を介してそ の下面に折り返し、 これによつてフレキシブル回路基板 2 0は絶縁基台 1 0の上面と 外周側面と下面にその表面が露出するように折り曲げられた状態で絶縁基台 1 0に取 り付けられる。 従って抵抗体パターン 2 5は絶縁基台 1 0の上面に、 端子パターン 2 9 , 2 9は絶縁基台 1 0の上面と外周側辺から下面にわたって露出している。
そしてこの電子部品用基板 1一 8においては、 フレキシブル回路基板 2 0の抵抗体 パターン 2 5の外側にある長さ方向 (A) の一辺の端部 (抵抗体パターン 2 5側) と なる端辺 7 1を覆う円弧形状を有する押え部 1 7 a (但し抵抗体パターン 2 5を覆つ てはいない) と、 フレキシブル回路基板 2 0の抵抗体パターン 2 5の端部 2 5 e, 2 5 eの外周近傍の部分に二つの端子パターン 2 9, 2 9を覆う円弧形状を有する押え 部 1 7 bと、 絶縁基台 1 0の下面に配置されたフレキシブル回路基板 2 0の端子パ夕
—ン 2 9, 2 9を設けた側の端辺 7 3を覆う絶縁基台 1 0の下面と同一面の平板状の 押え部 1 7 cとを、 それぞれ絶縁基台 1 0と一体にインサート成形樹脂で設け、 これ によってフレキシブル回路基板 2 0を絶緣基台 1 0に強固に固定している。
フレキシブル回路基板 2 0の端辺 7 1は、 抵 ί¾体パターン 2 5の円弧形状に合わせ て円弧状に形成されており、 押え部 1 7 aもこの円弧形状に合わせて円弧状に形成さ れている。
フレキシブル回路基板 2 0の抵抗体パターン 2 5の端子パターン 2 9, 2 9を接続 した部分の両外周側辺 (即ちフレキシブル回路基板 2 0の幅方向 (B ) の両端部) に は凹状に切り欠かれた一対の樹脂揷通部 7 5 a, 7 5 aが設けられ、 また両端子パ夕 ーン 2 9, 2 9の間には貫通孔からなる樹脂揷通部 7 5 bが設けられ、 これら樹脂揷 通部 7 5 a , 7 5 a , 7 5 bの上を通過し且つ抵抗体パターン 2 5の円弧形状に合わ せて円弧状に押え部 1 7 bが成形されている。 押え部 1 7 bは榭脂揷通部 7 5 a , 7 5 a , 7 5 bの部分でその下側の絶縁基台 1 0を構成する成形樹脂と連結されている。 フレキシブル回路基板 2 0の絶縁基台 1 0の下面側に折り返された長さ方向 (A) のもう一つの辺の端部 (端子パターン 2 9, 2 9側) となる端辺 7 3は、 略直線状で その中央に円弧状に凹む凹部 7 7 (図 2 7参照) を設けている。 そして一端辺 7 3の 上には、 端辺 7 3を複数箇所 (五ケ所) で押さえるように押え部 1 7 cが成形されて いる。フレキシブル回路基板 2 0の絶縁基台 1 0の下面側に折り返された部分の面は、 絶縁基台 1 0の下面の他の部分よりも凹む凹部 7 8となっている。 凹部 7 8の深さは 端子板 7 0の厚みとほぼ同一である。 そして絶縁基台 1 0の凹部 7 8を設けた側の辺 の端部に端子板 7 0, 7 0がフレキシブル回路基板 2 0上に設けた端子パターン 2 9, 2 9と接続するように取り付けられている。
即ち第八の実施の形態には、 請求項 6に従属する請求項 9に記載の発明である、 絶 縁基台 1 0と、 前記絶縁基台 1 0上に取り付けられる合成樹脂フィルム上に端子パタ ーン 2 9 , 2 9とその表面に摺動子力 S摺接する導体パターン 2 5とを設けてなるフレ キシブル回路基板 2 0とを具備し、 前記絶縁基台 1 0は合成樹脂成形品であり、 前記 フレキシブル回路基板 2 0はこの絶縁基台 1 0にインサート成形されており、 また前 記フレキシブル回路基板 2 0上に設けられた端子パターン 2 9 , 2 9と接続して絶縁 基台 1 0端部に取り付く端子板 7 0 , 7 0を具備し、 また前記絶縁基台 1 0には、 集 電板 5 0— 8がィンサート成形されてなる電子部品用基板 1一 8、が開示されている。 また第八の実施の形態には、 請求項 7に従属する請求項 9に記載の発明である、 絶 緣基台 1 0と、 前記絶縁基台 1 0上に取り付けられる合成樹脂フィルム上に端子パ夕 ーン 2 9 , 2 9とその表面に摺動子が摺接する導体パターン 2 5とを設けてなるフレ キシブル回路基板 2 0とを具備し、 前記絶縁基台 1 0は合成樹脂成形品であり、 前記 フレキシブル回路基板 20はこの絶縁基台 10にインサート成形されており、 また前 記フレキシブル回路基板 20上に設けられた端子パターン 29, 29と接続して絶縁 基台 10端部に取り付く端子板 70, 70を具備し、 また前記絶縁基台 1.0には、 フ レキシブル回路基板 20を前記絶縁基台 10に強固に固定する押え部 17 a, 17 b, 17 cを設け、 さらに前記絶縁基台 10には、 集電板 50— 8がィンサート成形され てなる電子部品用基板 1— 8、 が開示されている。
次にこの電子部品用基板 1一 8の製造方法を説明する。 まず図 27に示すように貫 通孔 21、 樹脂揷通部 75 a, 75 a, 75 bを有し、 その表面に物理的蒸着又は化 学的蒸着による金属薄膜によって抵抗体パターン 25と端子パターン 29, 29とを 形成したフレキシブル回路基板 20を用意する。 このフレキシブル回路基板 20は、 抵抗体パターン 25を設けた部分の両側辺から連結部 31, 31を突出しており、 こ れら連結部 31, 31によって同一の多数のフレキシブル回路基板 20 (図示せず) が並列に連結されている。
次に前記フレキシブル回路基板 20及び集電板 50— 8を図 28に示すように、 第 一, 第二金型 41, 45内にインサートする。 このとき第一, 第二金型 41, 45内 には電子部品用基板 1一 8と同一形状のキヤビティー C 1が形成されるが、 フレキシ ブル回路基板 20はその抵抗体パターン 25形成面をキヤビティー C 1の第一金型 4 1側の内平面 C 11に当接し、 且つ端子パターン 29, 29を設けた一端辺 73側部 分を第二金型 45側に折り返しておく。 なおフレキシブル回路基板 20の端辺 73に 凹部 77 (図 27参照) を設けたのは、 フレキシブル回路基板 20の端辺 73側部分 を第二金型 45側に折り返しと際に、 第二金型 45に設けた貫通孔 1 1を形成するた めの凸部 47にフレキシブル回路基板 20が当接しないように逃げるためである。 そして第一金型 41側に設けたニケ所の樹脂注入口 (図 25 (a) に示す矢印 G1, G 2及び図 28に示す G 1, G2) から加熱 '溶融した合成樹脂を圧入してキヤビテ ィー C 1内を満たす。 このとき溶融樹脂の圧入圧力と熱とによりフレキシブル回路基 板 20はキヤビティー C 1の内周面に押し付けられてその内周面形状に変形し、 その 状態のまま冷却 ·固化される。 そして第一, 第二金型 41, 45を取り外し、 成形さ れた絶緣基台 10の両側から突出している連結部 31, 31の部分を切断し、 さらに 図 29 (a), (b) に示すように、 絶縁基台 10の凹部 78を設けた側の辺の端部の 端子パ夕一ン 29, 29を設けた部分にコ字状の端子板 70, 70を覆うように取り 付けて絶縁基台 1 0を挟持して固定すれば、 図 2 5 ( a ) , ( b ) に示す電子部品用基 板 1—8が完成する。 端子板 7 0 , 7 0の固定方法としては、 端子板 7 0, 7 0によ る機械的圧接力のみでも良いし、 導電性接着剤等を介して接続しても良い。 なお端子 板 7 0, 7 0の形状 ·取付構造はこの実施の形態に限定されず、 要は端子パターン 2 9と接続して絶縁基台 1 0端部に取り付ける構造であれば、 どのような構造であって も良い。
即ち第八の実施の形態には、請求項 1 3に従属する請求項 1 5に記載の発明である、 合成樹脂フィルム上にその表面に摺動子が摺接する導体パタ一ン 2 5とこの導体パタ ーン 2 5に接続される端子パターン 2 9 , 2 9とを設けてなるフレキシブル回路基板 2 0と、 金属板からなる端子板 7 0 , 7 0と、 電子部品用基板 1一 8の外形形状に形 成されたキヤビティー C 1を有する金型 4 1, 4 5とを用意し、 前記金型 4 1, 4 5 のキヤビティ一 C 1内に前記フレキシブル回路基板 2 0を収納し、 その際前記フレキ シブル回路基板 2 0の導体パターン 2 5を設けた面をキヤビティー C 1内の一方の面 C 1 1 (第一金型 4 1面) に当接し、 前記キヤビティー C 1内に溶融した成形樹脂を 充填し、 充填した成形樹脂が固化した後に金型 4 1, 4 5を取り外すことで、 成形榭 脂からなる絶縁基台 1 0にフレキシブル回路基板 2 0をその導体パターン 2 5と端子 パターン 2 9 , 2 9とを露出するように取り付け、 その後絶縁基台 1 0端部に、 前記 フレキシブル回路基板 2 0上に設けられた端子パターン 2 9 , 2 9に接続するように 端子板 7 0 , 7 0を取り付け、 さらに前記金型 4 1 , 4 5のキヤビティー C 1内に前 記フレキシブル回路基板 2 0を収納した際に、 同時に金属板からなる集電板 5 0 - 8 をこのキヤビティー C 1内に収納しておくことで、 前記成形樹脂からなる絶縁基台 1 0に集電板 5 0— 8を埋め込んでなる電子部品用基板 1一 8の製造方法、 が開示され ている。
なお前述のように押え部 1 7 cによって端辺 7 3及びその近傍を断続的に複数箇所 で押さえたのは、 端辺 7 3の一部を第二金型 4 5の面に当接させておくことで、 端辺
7 3の部分が溶融成形樹脂の圧入圧力によって第二金型 4 5の面まで押し上げられて 変形しないようにこれを押えておくためである。 つまり押え部 1 7 cを設けないで絶 緣基台 1 0の下面から露出している端辺 7 3及びその近傍部分は、 第二金型 4 5によ つて端辺 7 3及びその近傍を押えていた結果形成されたものである。
この電子部品用基板 1—8によれば、 絶縁基台 1 0の上面に設けられたフレキシブ ル回路基板 2 0と絶縁基台 1 0の下面に設けられたフレキシブル回路基板 2 0とに、 それぞれフレキシブル回路基板 2 0を強固に絶緣基台 1 0に固定する押え部 1 7 a〜 1 7 cを設けたので、 たとえフレキシブル回路基板 2 0と絶縁基台 1 0とがインサ一 ト成形時の熱と圧力だけによつては固着しにくい材質の組み合わせであったとしても、 フレキシブル回路基板 2 0が絶縁基台 1 0の表面から剥がれるなどの問題は生じず、 容易にこれを強固に固定しておくことができる。 なおこの実施の形態においては、 押 え部 1 7 a〜l 7 cをフレキシブル回路基板 2 0の絶縁基台 1 0の上面側に設けられ た抵抗体パターン 2 5側の端辺 7 1と、 抵抗体パターン 2 5の端部 2 5 e , 2 5 eの 外周近傍部分と、 絶縁基台 1 0の下面側に設けられた端子パターン 2 9, 2 9側の端 辺 7 3とに設けたが、 フレキシブル回路基板 2 0の絶縁基台 1 0上への固着が比較的 強固な場合、 押え部はこれら三力所の内の何れか一力所のみに設けるだけでもかまわ ない。
以上のようにして製造された電子部品用基板 1一 8は、 その筒状突起 5 1 _ 8を、 前記図 2 3に示すのと同様の摺動子 6 0の嵌揷孔 6 1に貫通してその先端をかしめる ことで摺動子 6 0を回動自在に取り付け、 これによつて半固定可変抵抗器が構成され る。
なおこの実施の形態では、 端子板 7 0, 7 0を成形後のフレキシブル回路基板 2 0 を一体化した絶緣基台 1 0に後から取り付けたが、 前記第五の実施の形態と同様に、 予め端子板 7 0 , 7 0もフレキシブル回路基板 2 0や集電板 5 0— 8と一緒に、第一, 第二金型 4 1, 4 5のキヤビティー C 1内に収納しておき、 溶融樹脂を射出成形する 際に同時に端子板 7 0 , 7 0を一体に絶縁基台 1 0に取り付けても良い。
以上本発明の実施の形態を説明したが、 本発明は上記実施の形態に限定されるもの ではなく、 特許請求の範囲、 及び明細書と図面に記載された技術的思想の範囲内にお いて種々の変形が可能である。 なお直接明細書及び図面に記載がない何れの形状や構 造や材質であっても、 本願発明の作用 ·効果を奏する以上、 本願発明の技術的思想の 範囲内である。 例えば端子板 7 0の形状は種々の変更が可能であり、 要はフレキシブ ル回路基板上に設けられた端子パターンと接続して絶縁基台端部に取り付く端子板で あれば、 どのような形状 ·取付構造のものであっても良い。
また上記各実施の形態では導体パターンとして抵抗体パターンを用いたが、 スィッ チパターン等、 他の各種パターンを用いても良い。 スィッチパターンを設ける場合は スィッチパターンと端子パターンとを同一材質とし、 同一の工程で形成しても良い。 また導体パターンとして上記各実施の形態では物理的蒸着又は化学的蒸着による金属 薄膜を用いたが、 樹脂中に導電粉を混合してなる抵抗体ペーストを用いても良く、 ま た金属箔のエッチングによって形成される導体パターンを用いても良い等、 種々の変 更が可能である。 また上記各実施の形態では端子パターン 2 9 , 2 9の上に抵抗体パ ターン 2 5を設けたが、 逆に抵抗体パターン 2 5の上に端子パターン 2 9 , 2 9を設 けてもよい。 産業上の利用可能性
以上のように、 本発明にかかる電子部品用基板及びその製造方法は、 半固定可変抵 抗器用の基板として、 また、 その他の各種可変抵抗器用の基板として、 また、 スイツ チ用の基板として有用であり、 特に製造を容易にし、 材料費を低減し、 薄型化を図ろ うとする場合に用いるのに適している。

Claims

請 求 の 範 囲
1 . 絶縁基台と、
前記絶縁基台上に取り付けられる合成樹脂フィルム上に端子パターンとその表面に 摺動子が摺接する導体パターンとを設けてなるフレキシブル回路基板とを具備し、 前記絶縁基台は合成樹脂成形品であり、 前記フレキシブル回路基板はこの絶縁基台 にィンサ一ト成形されていることを特徴とする電子部品用基板。
2 . 前記絶縁基台には、 筒状突起を設けた集電板が、 筒状突起が前記絶縁基台とフレ キシブル回路基板にそれぞれ設けた貫通孔の中に位置するように、 インサート成形さ れていることを特徴とする請求項 1に記載の電子部品用基板。
3 . 前記フレキシブル回路基板は、 前記絶縁基台の上面と下面にその表面が露出する ように折り曲げられた状態でィンサート成形によつて絶縁基台に取り付けられている ことを特徴とする請求項 1又は 2に記載の電子部品用基板。
4 . 前記絶縁基台には、 フレキシブル回路基板を前記絶縁基台に強固に固定する押え 部を設けたことを特徴とする請求項 1又は 2又は 3に記載の電子部品用基板。
5 . 前記導体パターンは、 物理的蒸着又は化学的蒸着による金属薄膜によって構成さ れていることを特徴とする請求項 1又は 2又は 3又は 4に記載の電子部品用基板。
6 . 前記フレキシブル回路基板上に設けられた端子パターンと接続して絶縁基台端部 に取り付く端子板を具備することを特徴とする請求項 1に記載の電子部品用基板。
7 . 前記絶縁基台には、 フレキシブル回路基板を前記絶縁基台に強固に固定する押え 部を設けたことを特徴とする請求項 6に記載の電子部品用基板。
8 . 前記端子板は、 前記絶縁基台にインサート成形されていることを特徴とする請求 項 6又は 7に記載の電子部品用基板。
9 . 前記絶縁基台には、 集電板がインサート成形されていることを特徴とする請求項 6又は 7又は 8に記載の電子部品用基板。
1 0 . 前記導体パターンを、 物理的蒸着又は化学的蒸着による金属薄膜によって構成 したことを特徴とする請求項 6又は 7又は 8又は 9に記載の電子部品用基板。
1 1 . 合成樹脂フィルム上にその表面に摺動子が摺接する導体パターンとこの導体パ 夕一ンに接続される端子パターンとを設けてなるフレキシブル回路基板と、 電子部品 用基板の外形形状に形成されたキヤビティ一を有する金型とを用意し、
前記金型のキヤピティー内に前記フレキシブル回路基板を収納し、 その際前記フレ キシブル回路基板の導体パターンを設けた面をキヤビティ一内の一方の面に当接し、 且つ端子パターンを設けた側の部分をキヤビティーの他方の面側に折り返した状態と し、
前記キヤビティ一内に溶融した成形樹脂を充填することで、 前記フレキシブル回路 基板の折り返した部分を、キヤビティーの上面から外周側面を介して下面に密着させ、 充填した成形樹脂が固化した後に金型を取り外すことで、 前記成形樹脂からなる絶 縁基台の上面に導体パターンを設けた部分を露出すると共に、 端子パターンを設けた 側の部分をその外周側面から下面にかけて折り返した状態で露出させたことを特徴と する電子部品用基板の製造方法。
1 2 . 前記金型のキヤビティー内に前記フレキシブル回路基板を収納した際に、 同時 に金属板からなる集電板をこのキヤビティー内に収納しておくことで、 前記成形樹脂 からなる絶縁基台に集電板を埋め込んだことを特徴とする請求項 1 1に記載の電子部 品用基板の製造方法。
1 3 . 合成樹脂フィルム上にその表面に摺動子が摺接する導体パターンとこの導体パ 夕一ンに接続される端子パターンとを設けてなるフレキシブル回路基板と、 金属板か らなる端子板と、 電子部品用基板の外形形状に形成されたキヤビティ一を有する金型 とを用意し、
前記金型のキヤビティ一内に前記フレキシブル回路基板を収納し、 その際前記フレ キシブル回路基板の導体パターンを設けた面をキヤビティー内の一方の面に当接し、 前記キヤビティ一内に溶融した成形樹脂を充填し、 充填した成形樹脂が固化した後 に金型を取り外すことで、 成形樹脂からなる絶縁基台にフレキシブル回路基板をその 導体パターンと端子パターンとを露出するように取り付け、
その後絶縁基台端部に、 前記フレキシブル回路基板上に設けられた端子パターンに 接続するように端子板を取り付けたことを特徴とする電子部品用基板の製造方法。
1 4. 合成樹脂フィルム上にその表面に摺動子が摺接する導体パターンとこの導体パ ターンに接続される端子パターンとを設けてなるフレキシブル回路基板と、 金属板か らなる端子板と、 電子部品用基板の外形形状に形成されたキヤピティーを有する金型 とを用意し、
前記金型のキヤビティー内に前記フレキシブル回路基板と端子板とを収納し、 その 際前記フレキシブル回路基板の導体パタ一ンを設けた面をキヤピティ一内の一方の面 に当接すると同時に、 端子板の一部をフレキシブル回路基板の端子パターンに当接又 は対向させておき、
前記キヤビティ一内に溶融した成形樹脂を充填し、 充填した成形樹脂が固化した後 に金型を取り外すことで、 成形樹脂からなる絶縁基台にフレキシブル回路基板をその 導体パターンと端子パターンとを露出するように取り付けると同時に、 この絶縁基台 端部に、 前記フレキシブル回路基板上に設けられた端子パターンに接続するように端 子板を取り付けたことを特徴とする電子部品用基板の製造方法。
1 5 . 前記金型のキヤビティー内に前記フレキシブル回路基板を収納した際に、 同時 に金属板からなる集電板をこのキヤビティ一内に収納しておくことで、 前記成形樹脂 からなる絶縁基台に集電板を埋め込んだことを特徴とする請求項 1 3又は 1 4に記載 の電子部品用基板の製造方法。
PCT/JP2004/001199 2003-02-12 2004-02-05 電子部品用基板及びその製造方法 WO2004072993A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112004000260T DE112004000260T5 (de) 2003-02-12 2004-02-05 Elektronikbauteilleiterplatte und Verfahren zu deren Herstellung
US10/541,459 US7728710B2 (en) 2003-02-12 2004-02-05 Electronic parts board and method of producing the same

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2003-34180 2003-02-12
JP2003-34181 2003-02-12
JP2003034181 2003-02-12
JP2003034180 2003-02-12
JP2003-409463 2003-12-08
JP2003409463A JP4371794B2 (ja) 2003-02-12 2003-12-08 電子部品用基板
JP2003420048A JP2004266256A (ja) 2003-02-12 2003-12-17 電子部品用基板
JP2003-420047 2003-12-17
JP2003-420048 2003-12-17
JP2003420047A JP2004266255A (ja) 2003-02-12 2003-12-17 電子部品用基板の製造方法
JP2003-423308 2003-12-19
JP2003423308A JP2004266257A (ja) 2003-02-12 2003-12-19 電子部品用基板の製造方法

Publications (1)

Publication Number Publication Date
WO2004072993A1 true WO2004072993A1 (ja) 2004-08-26

Family

ID=32873104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001199 WO2004072993A1 (ja) 2003-02-12 2004-02-05 電子部品用基板及びその製造方法

Country Status (5)

Country Link
US (1) US7728710B2 (ja)
KR (1) KR20050103913A (ja)
DE (1) DE112004000260T5 (ja)
TW (1) TWI252495B (ja)
WO (1) WO2004072993A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7909482B2 (en) * 2006-08-21 2011-03-22 Innotec Corporation Electrical device having boardless electrical component mounting arrangement
US7712933B2 (en) * 2007-03-19 2010-05-11 Interlum, Llc Light for vehicles
US8408773B2 (en) * 2007-03-19 2013-04-02 Innotec Corporation Light for vehicles
US8230575B2 (en) 2007-12-12 2012-07-31 Innotec Corporation Overmolded circuit board and method
US7815339B2 (en) 2008-01-09 2010-10-19 Innotec Corporation Light module
JP5543146B2 (ja) * 2009-07-27 2014-07-09 ローム株式会社 チップ抵抗器およびチップ抵抗器の製造方法
US9022631B2 (en) 2012-06-13 2015-05-05 Innotec Corp. Flexible light pipe
WO2015044523A1 (en) 2013-09-27 2015-04-02 Tactotek Oy Method for manufacturing an electromechanical structure and an arrangement for carrying out the method
US9763333B2 (en) * 2015-03-09 2017-09-12 Cooper Technologies Company Shared resistor pad bypass
US10424425B2 (en) * 2016-04-27 2019-09-24 Panasonic Intellectual Property Management Co., Ltd. Resistance substrate and rheostat comprising same
DE102019200768A1 (de) * 2019-01-23 2020-07-23 Zf Friedrichshafen Ag Verfahren und Werkzeug zum Umspritzen eines Elektronikmoduls und umspritztes Elektronikmodul

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02216896A (ja) * 1989-02-17 1990-08-29 Teikoku Tsushin Kogyo Co Ltd フレキシブル基板を用いた電子部品のケース取付方法
JP2001015308A (ja) * 1999-06-30 2001-01-19 Murata Mfg Co Ltd 可変抵抗器
JP2002289411A (ja) * 2001-03-23 2002-10-04 Denso Corp 摺動抵抗器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3884718T2 (de) 1987-08-21 1994-05-05 Teikoku Tsushin Kogyo Kk Gehäuse aus vergossenem Kunststoff für einen elektronischen Teil mit einer biegsamen Schaltung.
EP0307977B1 (en) * 1987-09-07 1992-09-30 Teikoku Tsushin Kogyo Co. Ltd. Molded resin casing of electronic part with flat cable
JPH0722215A (ja) 1993-01-29 1995-01-24 Murata Mfg Co Ltd 可変抵抗器
US5631623A (en) * 1993-04-26 1997-05-20 Rohm Co., Ltd. Chip-type variable resistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02216896A (ja) * 1989-02-17 1990-08-29 Teikoku Tsushin Kogyo Co Ltd フレキシブル基板を用いた電子部品のケース取付方法
JP2001015308A (ja) * 1999-06-30 2001-01-19 Murata Mfg Co Ltd 可変抵抗器
JP2002289411A (ja) * 2001-03-23 2002-10-04 Denso Corp 摺動抵抗器

Also Published As

Publication number Publication date
KR20050103913A (ko) 2005-11-01
DE112004000260T5 (de) 2006-01-19
TW200419595A (en) 2004-10-01
US7728710B2 (en) 2010-06-01
US20060040094A1 (en) 2006-02-23
TWI252495B (en) 2006-04-01

Similar Documents

Publication Publication Date Title
WO2004072993A1 (ja) 電子部品用基板及びその製造方法
JPH0748330B2 (ja) フレキシブル基板内蔵の電子部品樹脂モールドケース及びその製造方法
US4978491A (en) Molded resin casing of electronic part incorporating flexible board
US5071611A (en) Method of making molded resin casing of electronic part with flat cable
JP4371794B2 (ja) 電子部品用基板
JP2004266255A (ja) 電子部品用基板の製造方法
JP2004266257A (ja) 電子部品用基板の製造方法
JP2004266256A (ja) 電子部品用基板
JP4360989B2 (ja) 回転式電子部品用基板及び回転式電子部品用基板の製造方法
JP3868796B2 (ja) 電気部品
JPH054836B2 (ja)
JPH055361B2 (ja)
JP2001162644A (ja) モールド樹脂による端子の基板への接続固定方法及び接続固定構造
JP2006344818A (ja) 電子部品用基体及びその製造方法
JPH0563111B2 (ja)
JP3355482B2 (ja) 部材の導電部へのモールド樹脂による金属板接続方法
JPH1138109A (ja) 磁気センサ
JP2006344819A (ja) 電子部品用基体の製造方法
JPS6127843B2 (ja)
JPH11162719A (ja) チップ抵抗器とその製造方法
JP2006049522A (ja) 回転式電子部品及びその実装基板への取付構造及び回転式電子部品の製造方法
JPH01303701A (ja) 電子部品及びその製造方法
JPH01319906A (ja) フラットケーブル付き電子部品及びその製造方法
JP2006049523A (ja) 面実装用電子部品
JP2005100918A (ja) スイッチ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006040094

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10541459

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020057014239

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048040499

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057014239

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10541459

Country of ref document: US

122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8607