WO2004035477A1 - Novel titanium oxide of lower order and method for preparation thereof - Google Patents

Novel titanium oxide of lower order and method for preparation thereof Download PDF

Info

Publication number
WO2004035477A1
WO2004035477A1 PCT/JP2003/013109 JP0313109W WO2004035477A1 WO 2004035477 A1 WO2004035477 A1 WO 2004035477A1 JP 0313109 W JP0313109 W JP 0313109W WO 2004035477 A1 WO2004035477 A1 WO 2004035477A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
oxygen
low
titanium dioxide
nickel
Prior art date
Application number
PCT/JP2003/013109
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuo Kase
Ichiro Moriya
Toshiro Yotsumoto
Hiroshi Taoda
Original Assignee
Marukatsu Sangyo Co.,Ltd.
National Institute Of Advanced Industrial Science And Technology
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marukatsu Sangyo Co.,Ltd., National Institute Of Advanced Industrial Science And Technology, Japan Science And Technology Agency filed Critical Marukatsu Sangyo Co.,Ltd.
Publication of WO2004035477A1 publication Critical patent/WO2004035477A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • B01J35/39
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/043Titanium sub-oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data

Definitions

  • the present invention relates to a novel low-order titanium oxide having a titanium oxide crystal structure having an oxygen absorption capacity and a photocatalytic action such as ethylene gas decomposition, a method for producing the same, and an oxygen absorber or quality preservative containing the same.
  • new low-grade titanium oxide suitable for preserving foods such as processed foods and agricultural and marine products, metal products, industrial products such as precision machinery, pharmaceuticals, arts and crafts, cultural properties, etc.
  • the present invention relates to a method for producing the same, and an oxygen absorbent or quality preservative containing the same. Background art
  • Japanese Patent No. 3,288,265 discloses that titanium dioxide having oxygen deficiency is used to prevent food, clothing, and the like from being deteriorated in quality due to mold, fungi, insects, and oxidation. It has been proposed for use as an oxygen absorber.
  • This oxygen absorber describes that the oxygen absorption capacity is enhanced by the oxidizing power based on the photocatalytic action of titanium dioxide having oxygen deficiency, but specific numerical values of the amount of oxygen absorbed by the titanium dioxide alone are as follows. Not listed. It is described that titanium dioxide having oxygen deficiency can be produced by heating titanium dioxide in an oxygen-free atmosphere. To increase oxygen absorption capacity, the higher the heating temperature, the better. Although heating to 00 ° C is preferred, it is difficult to reproduce it.
  • the titanium dioxide changes from white to blue, and the reduction amount of titanium dioxide is about 0.1 to 0.2 mm o 1 / g (2.2 to 4.5 ml Z g of H 2 2 (gas))
  • the amount does not increase even if UV irradiation is continued, and blue immediately returns to its original white color when exposed to air, but in the absence of oxygen, blue retains its color for several years. Etc. are reported.
  • S. Ozaki et al. “Catalyst Preparation Chemistry”, p. 169, Kodansha Scientific (1980), and Tetsuro Kiyoyama, “Metal Oxides and Their Catalysis”, p.
  • titanium dioxide reduces only the surface of the crystal slightly, or if the heating temperature is increased and deoxygenation is attempted, the transition of the crystal structure or distortion to the crystal structure may occur. Since the collapse occurred and it was difficult to maintain the original crystal structure of titanium dioxide, there was a problem that it was difficult to obtain titanium dioxide having a large oxygen absorption capacity.
  • An object of the present invention is to provide a novel low-order titanium oxide having a large oxygen-absorbing ability and an oxygen-absorbing rate, in which some of the oxygen atoms are eliminated while maintaining the crystal structure of titanium dioxide. Things. Furthermore, the present invention provides foods, metal products, precision instruments, pharmaceuticals, and cultures that are highly safe, have no effect on metal detectors and the like, and can absorb oxygen without the involvement of moisture. It is an object of the present invention to provide a quality preservative including an oxygen scavenger and a freshness preservative in the field of goods and the like. Disclosure of the invention
  • titanium dioxide containing a sulfate group and Z or nickel species is used. Titanium dioxide can be easily reduced using a reducing agent such as hydrogen gas at a relatively low temperature, which was difficult in the past.
  • the present inventors have found that a novel low-order titanium oxide having the following formula can be obtained, and have completed the present invention.
  • the present invention has the following contents as its gist.
  • a low order titanium oxide which is represented by the following chemical formula:
  • a low order titanium oxide composite wherein the low order titanium oxide according to the above (1) or (2) contains a sulfate group.
  • a low-order titanium oxide composite characterized in that the low-order titanium oxide according to (1) or (2) contains a nickel species.
  • a low titanium oxide composite wherein the low titanium oxide according to (1) or (2) contains a sulfate group and a nickel species.
  • a low-order titanium oxide or a complex thereof comprising adding a basic substance to the low-order titanium oxide or the complex thereof according to any one of the above (1) to (7).
  • FIG. 1 is a chart of an X-ray photoelectron spectroscopy spectrum of the titanium dioxide complex (1-2) containing a sulfate group and a nickel species before reduction obtained in Example 1
  • FIG. 2 is a chart of Example 1.
  • 4 is a chart of an X-ray photoelectron spectroscopy spectrum of the low order titanium oxide composite (1-3) of the present invention containing a sulfate group and a nickel species after the reduction treatment.
  • FIG. 3 is a graph showing the change over time in the amount of oxygen absorbed by the low order titanium oxide composite (1-3) of the present invention containing a sulfate group and a nickel species obtained in Example 1.
  • Lower titanium oxide of the present invention is to keep the original crystal structure of titanium dioxide, and part of the oxygen therein is eliminated, novel low Formula of the general formula T I_ ⁇ 2 x It is titanium oxide.
  • X is a real number between 0.1 and 0.5.
  • the structure of this low-order titanium oxide should be confirmed by the results of instrumental analysis using an X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (X-ray Photoelectron Spectroscopy XPS), as described later.
  • the value of X can be calculated from the amount of oxygen absorbed.
  • Water reduced water
  • the amount of water is basically related to the degree of reduction of titanium dioxide, that is, the value of X.However, titanium dioxide is strongly hydrophilic and tends to mix adsorbed water in addition to reduced water. Is preferably obtained from the amount of oxygen absorbed.
  • the lower titanium oxide composite of the present invention contains the sulfate group contained in the raw material titanium dioxide as it is, or the sulfate group or nickel obtained by impregnating, adsorbing, co-precipitating or physically mixing the raw material titanium dioxide.
  • the original crystal structure of titanium dioxide which is obtained by adding seeds and reducing it, retains its original crystal structure, and some oxygen atoms are eliminated.
  • novel low-order titanium oxide represented by the chemical formula T i 0 2 _ x, and a sulfate group and Z or nickel species complexed, a novel low-order titanium oxide complex.
  • Titanium dioxide material used in the present invention (Ti0 2) are those of anatase type crystal system rutile or Burutsukaito type, or both may be used ones of amorphous titanium dioxide is preferred ANATA one peptidase type .
  • These particle size, 1 nm from (10_ 9 m) can use up to 1 m (10_ 6 m) of about one, and more preferred properly 0.
  • 1 m (10 from 3 nm (3 X 10- 9 m ) — 5 m) can be used, but in general, one with a small particle size is preferred.
  • titanium dioxide granulated to a size of about lmm in diameter may be used.
  • a specific surface area of about 5 m 2 Zg to 400 m 2 / g, preferably 50 m 2 / g to 390 m 2 Zg can be used, but those having a relatively large value are effective for the reduction treatment.
  • the above-mentioned titanium dioxide may be used as a raw material as it is as a commercial product, or it may be used as it is, or a titanium salt of an inorganic acid such as titanium sulfate, titanium tetrachloride, titanium nitrate, or titanium tetraethoxide, titanium tetraisoprotate. It can also be prepared by a method such as hydrolysis or neutralization or precipitation of a titanium compound such as titanium oxide or titanium tetra (2-ethylhexanoate) with caustic soda.
  • ana-yuichi type titanium dioxide examples include Sakai Chemical Industry Co., Ltd. SSP25 and CSPM manufactured by Ishihara Sangyo Co., Ltd., ST01 or MC-50 manufactured by Ishihara Sangyo Co., Ltd., and AMT-100 manufactured by Tika Co., Ltd. are known.
  • these titanium dioxides as raw materials to prepare titanium dioxides containing nickel species or sulfate groups, which will be described in detail below, any of them can be reduced at a low temperature.
  • a low order titanium oxide composite can be obtained.
  • the nickel species used in the present invention refers to a compound containing a nickel atom as an essential component, or a metal or an alloy containing a nickel atom as an essential component. Further, the nickel atoms include those in a so-called ionized ion state.
  • the compound containing a nickel atom as an essential component includes, for example, a nickel atom selected from the group consisting of a nickel salt of an inorganic acid, a nickel salt of an organic acid, a nickel alkoxide, and a nickel complex salt coordinated with a ligand.
  • a nickel atom selected from the group consisting of a nickel salt of an inorganic acid, a nickel salt of an organic acid, a nickel alkoxide, and a nickel complex salt coordinated with a ligand.
  • Compound examples include nickel salts of inorganic acids such as nickel nitrate, nickel chloride and nickel sulfate; nickel salts of organic acids such as nickel acetate, nickel propionate and nickel oxalate; anhydrides thereof, and water of crystallization. Hydrates, or a nickel complex salt coordinated with ammonia, ethylenediamine, etc., a nickel compound coordinated with acetylacetone, etc., or a nickel alkoxide such as nickel isopropoxide
  • the metal containing a nickel atom as an essential component is, for example, nickel metal itself, an alloy composed of nickel and other elements, or a mixture of nickel metal and another metal.
  • Examples of such an alloy or metal mixture include an alloy or a mixture of nickel and a metal selected from cobalt, iron, magnesium, calcium, aluminum and the like.
  • the lower titanium oxide (TiO 2 —x ) of the present invention which retains the crystal structure of titanium dioxide (TiO 2 ), by reduction, it is necessary to use titanium dioxide as it is. Rather, it is an effective means to include a small amount of sulfate before the reduction of titanium dioxide. Furthermore, the second effective means is to include a small amount of nickel species before the reduction of titanium dioxide. Surprisingly, by using titanium dioxide containing a small amount of sulfate and / or a small amount of nickel, it is possible to surprisingly obtain a temperature of 350 ° C.
  • titanium dioxide is produced by adding sulfuric acid to ilmenite ore, which mainly consists of oxides of titanium and iron, to form titanium sulfate, convert the homogeneous solution to titanium hydroxide by hydrolysis, and utilize the difference in solubility.
  • titanium dioxide Since titanium dioxide is known to have a strong affinity for sulfate groups, it can be obtained as titanium sulfate during the production of titanium dioxide. Good.
  • the amount of sulfate groups contained in titanium dioxide is usually about 0.01 to 10% by mass relative to titanium dioxide (hereinafter simply referred to as "%"). An amount may be used.
  • % %
  • An amount may be used.
  • CSPM and MC-50 since CSPM and MC-50 contain several percent of sulfate, it is possible to omit the step of adding sulfate.
  • Examples of a method for obtaining titanium dioxide containing a nickel species include a method of impregnating or adsorbing the above-mentioned nickel compound on titanium dioxide in the form of a solution, an aqueous solution of a titanium compound such as a titanium salt of an inorganic acid, and an aqueous solution of the nickel compound.
  • Coprecipitation method more particularly If desired, there is a method of simply mixing titanium dioxide and the nickel powder or nickel powder containing nickel atoms in a very fine state.
  • titanium dioxide containing nickel species used in the present invention in addition to those obtained by impregnation, adsorption, coprecipitation, or mixing as described above, titanium dioxide containing these nickel species, and further thereafter, also includes those that have undergone chemical structural changes due to thermal decomposition in various processes such as washing, heat drying, firing, and pulverization.
  • the content ratio of nickel metal in titanium dioxide containing nickel species used in the present invention is an amount necessary for reducing titanium dioxide and is not particularly limited, but as described later, as a catalyst during reduction, Any amount that exerts the effect is sufficient, and a small amount is sufficient.
  • nickel is used in an amount of 0.01 to 15%, preferably 0.03 to 10%, as a nickel atom, based on titanium dioxide.
  • the preparation of titanium dioxide containing the above-mentioned nickel species by impregnation can be performed with reference to methods described in various documents and the like.
  • the usual method is, for example, “Catalyst Preparation Chemistry,” edited by Suzaki Ozaki et al., P. 49, Kodansha Scientific (1980), or “9th Catalysis School Textbook” sponsored by the Society of Catalysis, P52, Catalyst As described in the Society (1998), a solution of the above-mentioned nickel compound or nickel metal containing nickel atoms as an essential component is impregnated into titanium dioxide, and the impregnated product is heated, dried, fired, crushed, etc. It is prepared through some or all of the steps.
  • the titanium dioxide impregnated with the nickel compound is usually dried at a temperature of about 200 ° C. to about 300 ° C. for about 2 to 3 hours. After the obtained lump is ground, it is baked at a temperature of about 300 ° C. to 450 ° C. for about 2 to 10 hours, but it does not change the crystal structure of titanium dioxide. Take into consideration.
  • the preparation of titanium dioxide containing nickel species by coprecipitation can also be performed by referring to methods described in various documents.
  • a solution of the compound and a solution of the titanium compound are prepared in advance, and an aqueous solution of a basic compound such as caustic soda is added to these two solutions with stirring, and co-precipitated in the above mixed solution or co-precipitated by hydrolysis.
  • the precipitate is prepared through some or all of the steps such as heating, drying, baking, and milling (see, for example, Non-Patent Documents 6 and 7). Heat drying is usually performed at a temperature of about 200 ° C. to 300 ° C. for 2 to 3 hours.
  • examples of the titanium compound include a titanium salt of an inorganic acid such as titanium tetrachloride or titanium sulfate, or the above-mentioned titanium alkoxide.
  • a strong nickel salt for example, an aqueous solution of nickel nitrate is added thereto, and a strong base such as caustic soda is added dropwise with stirring. This also makes it possible to obtain a uniform titanium dioxide containing nickel species having a high specific surface area.
  • the step of including a sulfate group and the step of including a nickel species are described separately.However, in some cases, it does not prevent simultaneous execution of these two steps. It may optionally be implemented accordingly.
  • the above process is basically a process in which sulfate and nickel species are physically mixed with titanium dioxide.
  • the low-order titanium oxide or the complex thereof retaining the crystal structure of titanium dioxide of the present invention can be easily produced by reducing titanium dioxide containing a sulfate group and ⁇ or nickel species using a reducing agent.
  • the reduction is preferably carried out at a temperature of 350 ° C. or lower in order to keep the crystal structure of titanium dioxide as it is, preferably in the range of 150 to 300, more preferably 180 to 280 ° C. :, Most preferably It is preferable to carry out the reaction at a temperature in the range of 180 to 260 ° C. from the viewpoint that the crystal structure of titanium dioxide is maintained and its quality is maintained at the highest.
  • the reduction reaction at such a low temperature allows the use of materials such as rubber packing for the sealing portion of the manufacturing equipment, and has the advantage of reducing the cost of manufacturing equipment. Even when amorphous titanium dioxide is used, at the above-mentioned temperature, it changes into a desirable anatase-type crystal during the reduction treatment.
  • hydrogen gas is most preferable as the reducing agent, and reduction can be performed without any trouble by hydrogen gas.
  • compounds conventionally known as reducing agents for example, alcohols such as ethyl alcohol, propylene and the like Hydrocarbon compounds may be used. Also, if desired, a method for promoting the reaction by irradiation with ultraviolet rays or the like is not impeded.
  • the reduction reaction be performed in a device that shuts off oxygen gas and does not contain oxygen.
  • the apparatus used for reduction Normally, a stainless steel reaction tube type with pressure resistance is used. Specifically, titanium dioxide containing sulfate and nickel species is placed in the apparatus, an inert gas is used as a carrier gas, and a reducing agent, for example, hydrogen gas is introduced under pressure and heating to perform the reduction reaction.
  • a carrier gas a rare gas such as an argon gas is particularly preferably used, but if desired, a nitrogen gas may be used as the carrier gas.
  • the pressure in the reactor is usually in the range of about 0.01 MPa to 0.7 MPa, preferably in the range of 0.05 MPa to 0.5 MPa.
  • the pressure inside the reactor is maintained at the above-mentioned pressure, and the reduction temperature is 350 ° C. or less as described above, preferably in the range of 150 ° C. to 350 ° C., for about 2 to 20 hours. Perform the reaction as needed.
  • These conditions promote the reduction of titanium dioxide containing sulfate and nickel species, and are suitable for obtaining low-grade titanium oxide that maintains excellent quality while maintaining the crystal structure of titanium dioxide as it is. is there.
  • the titanium dioxide containing the sulfate group and the nickel species is subjected to a reduction treatment with a reducing agent such as hydrogen gas, part of the oxygen of the titanium dioxide is desorbed by the reaction with hydrogen to produce water.
  • a reducing agent such as hydrogen gas
  • the reaction product is transferred to a glove box together with the reactor, and taken out in a sealed container in a nitrogen gas stream in which oxygen is blocked.
  • the titanium dioxide containing the sulfate group and the nickel species becomes a reactant that changes from gray to black, and the lower titanium oxide of the present invention or a complex thereof is obtained.
  • the reaction product is transferred to a hermetically sealed plastic container or plastic bag under oxygen-free conditions completely replaced with nitrogen gas in the above glove box, and is taken out from the glove box.
  • oxygen concentration 20.6% oxygen concentration 20.6%
  • the oxygen concentration in the container or bag decreases over time, and the reactants absorb oxygen. You can see that it is.
  • the initial black to black reactant changes to a lighter gray that is distinctly different from the color initially seen.
  • the thus obtained lower titanium oxide or the composite thereof of the present invention retains the crystal structure of the original titanium dioxide and retains the Ti 2 in which the oxygen atoms of the titanium dioxide are partially eliminated. It is a novel low-order titanium oxide that has never been seen before and is represented by the general formula of _ x (where X is 0.1 to 0.5). Further, the present invention is a low titanium oxide composite containing a sulfate group and a nickel or nickel species in such low titanium oxide. Generally, since the lower titanium oxide of the present invention is obtained as a powdery solid, it is a composite in which nickel species or sulfate added in the manufacturing process remain therein.
  • the low-order titanium oxide or its composite of the present invention has a property of absorbing oxygen when it comes into contact with air in powder form, it is difficult to remove nickel species or sulfate groups.
  • the low-order titanium oxide or the composite thereof of the present invention is provided together with air in a bag (one gas barrier bag) made of a plastic film having no gas permeability and having excellent gas barrier properties. When charged, they typically absorb oxygen in the air relatively slowly at room temperature. The amount of oxygen absorbed is basically equivalent to half the amount of water generated by the reduction of titanium dioxide during hydrogen reduction. When the lower titanium oxide or the composite thereof of the present invention absorbs oxygen and then performs hydrogen reduction again, the absorption of oxygen is repeated as before.
  • the low-order titanium oxide or its complex of the present invention absorbs oxygen slowly usually over 100 to 600 hours.
  • a basic substance such as aqueous ammonia, aqueous sodium carbonate or aqueous sodium bicarbonate is added thereto. Then, the rate of oxygen absorption rapidly increases, and the absorption of oxygen can be completed in about 20 to 40 hours. This phenomenon is presumed to be due to premature oxygen absorption due to the neutralization of the sulfate group contained in the lower titanium oxide or its complex of the present invention by the basic substance.
  • Examples of the basic substance used in the present invention include carbonates, bicarbonates, hydroxides of alkali metals and Z or alkaline earth metals, for example, sodium carbonate, potassium carbonate, calcium carbonate, magnesium carbonate, carbonate Examples include sodium hydrogen, potassium hydroxide, sodium hydroxide, magnesium hydroxide, and the like, as well as ammonia, ammonium carbonate, and ammonium hydrogencarbonate.
  • a method of treating the low-order titanium oxide or its complex with a basic substance a method in which a basic compound is directly mixed with the low-order titanium oxide, a method in which the basic compound is dissolved in water, and the aqueous solution is subjected to a low-temperature method by spraying or the like.
  • a method of spraying on the surface of titanium oxide a method in which an aqueous solution of a basic compound is supported on silica powder or the like, and then dispersed and mixed with the lower titanium oxide, Examples include a method in which a basic compound or an aqueous solution of a basic compound is heated to be in a gaseous state, and is brought into contact with the titanium oxide having a lower degree.
  • the mixing of the low order titanium oxide and the basic compound is preferably performed in an atmosphere without oxygen gas such as a nitrogen gas atmosphere.
  • an atmosphere without oxygen gas such as a nitrogen gas atmosphere.
  • lower titanium oxide or its complex containing sulfate has a weak ability to return to tetravalent titanium and has a slow oxygen absorption rate, but the effect of neutralization of sulfate is eliminated and the oxygen absorption rate is increased. It is presumed that.
  • alumina or silica may be used in combination, and atoms other than nickel, for example, atoms such as cobalt, iron, magnesium, calcium, and aluminum are essential components.
  • Compounds and Metals or metals may be used with the nickel species.
  • the low-order titanium oxide or the composite thereof of the present invention is obtained by reducing oxygen with an reducing gas, particularly hydrogen gas, under an inert gas atmosphere after returning to normal titanium dioxide after absorbing oxygen. Once again, it becomes low-order titanium oxide desorbed partially from oxygen atoms represented by the chemical formula of Tio 2 x , and has the characteristic of recovering the same oxygen absorption capacity again. Therefore, when the low order titanium oxide or its complex of the present invention is used as an oxygen absorbent, it can be used repeatedly by reducing the used one.
  • the low-order titanium oxide or a composite thereof of the present invention when used as an oxygen absorbent, unlike a conventionally used iron-based oxygen absorbent, water does not participate at all. In this case, it has the same excellent oxygen absorption capacity as an iron-based oxygen absorbent, and does not cause any problem in malfunctioning with a metal detector or use in a microwave oven. If necessary, the rate of oxygen absorption can be increased by, for example, adding a basic substance. Since the low order titanium oxide of the present invention is an inorganic compound, there is no need to worry about problems such as melting, dissolving, and burning that occur with oxygen absorbers using conventional organic compounds, so high safety and high quality are maintained. It can be applied to a wide range of uses as an agent.
  • titanium dioxide of the analog type when used as an output material, it also has a photocatalytic action, so it has an additional function such as ethylene decomposability and antibacterial properties.
  • the present invention can provide a low-order oxide that can be used as a quality preserving agent for a wider use, including a freshness preserving agent.
  • the low order titanium oxide or its composite of the present invention is put to practical use in the form of being filled in a metal or plastic container for use as an oxygen absorber, a quality preserving agent, or the like, or carried on or contained in a film. .
  • these oxygen absorbers and other products contain silica, If necessary, use naturally occurring minerals such as molyenite, processed minerals such as activated clay, synthetic minerals such as synthetic silica and zeolite, adsorbents such as activated carbon, or substances such as those containing water. May be used. If necessary, a basic substance such as aqueous ammonia, sodium bicarbonate or sodium carbonate can be used in combination as an oxygen absorption accelerator within a range not to impair the features of the present invention.
  • Example 1 '1.1 Preparation of titanium dioxide composite (1-2) by impregnation with nickel acetate
  • Sakai Chemical Industry sulfate radical (S0 4) which is provided from Ltd. 1 0.1 white having a crystal structure of Ana evening one peptidase type including 0% titanium dioxide (1-1, specific surface area 268.0m 2 / g) of 20. 0 g (25 Ommol) was placed in a Petri dish one magnetic, then nickel acetate (Ni (CH 3 COO) 2 ⁇ 4 ⁇ 2 0) 3. 1 g (1 2. 5 mmol) and water 20. O g Add a homogeneous solution, mix well, and leave overnight.
  • the X-ray diffractometer is a fully automatic diffractometer manufactured by Mac Science, MX With P 3A, X-ray photoelectron spectrometer (XPS) is manufactured by JEOL Ltd., it was measured by X-ray photoelectron spectroscopy spectrum with JPS9010MC.
  • a stainless steel 1 / 8-inch tube with an inert gas line with a pressure gauge and a hydrogen gas line are connected to a stainless steel cylindrical stainless steel reactor equipped with a thermometer and having a bore of 35 mm and a height of 130 mm.
  • a connected reactor was prepared with a gas chromatogram for composition analysis, a trap, and a back pressure valve attached to a 1 / 8-inch stainless steel pipe line for exhaust gas from the reactor.
  • 5.0 g (56.4 mmol) of titanium dioxide (1-2) containing the above sulfate group and nickel species was charged into the reactor.
  • Argon gas as carrier gas Additional pressure 0.4 MPa, flow rate
  • the reactant (1-3) was Divided into three plastic packaging containers (one bag of gas barrier). This was weighed to obtain 4.4 g of a black reactant (1-3).
  • This reaction product (1-3) was confirmed to have an anatase-type crystal structure from the result of measurement with an X-ray diffractometer (XRD).
  • Fig. 2 shows the measurement results of X-ray photoelectron spectroscopy (XPS) of the reaction product (1-3). From this result, it was observed that the signal of the binding energy based on the 2P orbital of the titanium atom was 458.29 eV before reduction, but was observed at 458.09 eV, and a part of the tetravalent titanium atom was transferred to trivalent titanium. It seems to be doing. From these results, it was confirmed that the reactant (1-3) was a low-order titanium oxide composite (TiC ⁇ ) of the present invention, which retained the original titanium dioxide crystal structure.
  • the reactant (1-3) which was black when removed from the glove box, turned light gray after absorbing oxygen (1-4). The pale gray reactant (1-4) that absorbed this oxygen was confirmed to have an anatase-type crystal structure by XRD measurement
  • the X-ray diffractometer uses a full-automatic diffractometer MX P 3A manufactured by Mac Science, and the X-ray photoelectron spectrometer (XPS) uses JPS9010MC manufactured by JEOL Ltd.
  • the vector was measured.
  • an oxygen concentration meter Check Mate 02 / C02 manufactured by PBI-Dansensor A / S was used. In the following examples, the measurement was performed using the same apparatus.
  • the absorbent cotton was warmed from the outside for 15 minutes to evaporate the ammonia gas, and the oxygen absorption after leaving it for 5 hours was measured.
  • the oxygen absorption was 21.lm l Zg (25 ° C) and after 24 hours The cumulative oxygen uptake at reached 25.8 ml / g (25 ° C), which was the same after 48 hours.
  • the same test as above was carried out by using 1 g of aqueous ammonia in the same manner as above except that the reaction product (1-3) was replaced with an unreduced ana-analyze-type titanium dioxide, and the same procedure was followed by adding 1 g of aqueous ammonia. There was no change in oxygen concentration and no oxygen absorption was observed.
  • 0.1 g of the oxygen-absorbed reactant (1-4) is placed in a glass petri dish with an inner diameter of 8.5 cm (57 cm 2 ), 3 g of pure water is added, mixed uniformly, dried and thin film Then, the surface of the reaction product (1-4) was cleaned by irradiation with a fluorescent lamp (BL) described later for 3 hours.
  • This petri dish is placed in a Tedlarbag (Tedlarbags, made of fluororesin, size 170mm X 250mm, manufactured by Inuchi Seieido) and heat-sealed.
  • the reaction product (1) was synthesized in the same manner as described in 1.1 and 1.2 above using 5.O g of titanium dioxide (1-2) containing an anase type sulfate and a nickel species prepared in 1.1.
  • 3. Og of a pale gray reactant (1-4) that absorbed oxygen in -3) was charged into a reduction reactor. Re-reduction was carried out under the conditions of a carrier gas of argon gas at 10 Oml / min and hydrogen gas at 14 ml / min to obtain 2.4 g of a black reactant (l-3b) corresponding to the reactant (1_3).
  • the measurement result of the oxygen absorption amount of this reaction product (l-3b), that is, the regenerated lower titanium oxide was 24.3 mlZg (1.08 mmol / g, converted value at 0 ° C).
  • the reaction product obtained in 1.5 i.e. placed lower titanium oxide (l-3b) 1. 4 g in a bag gas barrier, combined sodium carbonate (Na 2 C0 3) 0. 7 g was dissolved in water 2 g and Further, 3.7 g of the homogeneous mixture prepared by adding 1 g of synthetic silica (Nip Seal NS-K manufactured by Nippon Silica Industry Co., Ltd.) was added to one bag of gas barrier, sealed by heat sealing, and sealed at 35 Om 1 air was enclosed. The oxygen absorption after standing for 1 hour reaches 12 ml Zg (25 ° C), the cumulative oxygen absorption after 24 hours reaches 20.8 ml Zg (25 ° C), and this value remains the same after 48 hours Met.
  • synthetic silica Nip Seal NS-K manufactured by Nippon Silica Industry Co., Ltd.
  • a homogeneous solution of 3.1 (12.5 mmol) and 19.2 g of water was added, mixed well, and left overnight. Dried in a Matsufuru furnace at 250 ° C for 2.0 hours, cooled, pulverized, and a titanium dioxide complex containing sulfate and nickel species (2-2) [TiO 2 -Ni (CH 3 COO) 2 ) 0 . 0 5, MW: 88.7, sulfate group to give a 20. 8 g of not included in the calculation of the molecular weight (8 9.7%).
  • the titanium dioxide complex (2-2) containing the sulfate and nickel species was confirmed to have an anatase-type crystal structure by XRD measurement.
  • the XPS spectrum measurement showed that the titanium atom signal coupling energy based on 2P is observed 458.42 eV, that is shifted to the low energy side from the standard value 458.9 eV tetravalent titanium atoms (Ti0 2) was observed.
  • Example 2 Using the same reactor as in Example 1, 5.0 g (56.4 mmol) of the above titanium dioxide complex (2-2) containing a sulfate group and a nickel species was charged into the reactor. Nitrogen gas was introduced as inert gas at an additional pressure of 0.2 MPa and a flow rate of 100 ml / min, and heated to a temperature of 240 ° C to add an additional pressure of hydrogen gas of 0.4 MPa and a pressure gauge of the back pressure valve of 0.1 MPa. The reduction reaction was started by setting, that is, keeping the pressure in the reactor at 0.1 MPa, and the flow rate of hydrogen gas was introduced at 22 ml / min, and the reaction state was examined by gas chromatogram.
  • One of the reactants (1-3) contained in these two plastic bags 60 Om 1 of air was introduced into one gas barrier bag containing 2.4 g of the reactant (2-3) for 30 days. From the result of measuring the oxygen concentration after the surplus, the reactant (2-3) has absorbed 22.6 m 1 / g (1.01 mmol / g, converted value at 0 ° C). There was found.
  • the reactant (2-3) which was black when removed from the glove box, turned light gray after absorbing oxygen (2-4). Pale gray reactant having absorbed oxygen (2-4), it was confirmed to have a crystal structure of anatase type from the measurement results of XRD, titanium oxide of the original crystal structure (Ti0 2) is playing I knew it was there. 2.3 Promotion of oxygen absorption by addition of ammonia water to low order titanium oxide (2-3)
  • the reactant that is, the low order titanium oxide composite (2-3) of the present invention
  • the plastic packaging container one bag of gas barrier
  • 475 ml of air 0.8 g of a 12.5% aqueous ammonia solution was injected with a syringe into absorbent cotton in the bag.
  • rubber tape was attached to the bag to prevent outside air from entering during injection.
  • the absorbent cotton was heated from the outside for 15 minutes to evaporate ammonia gas, and the amount of oxygen absorbed after standing for 24 hours was 21.8 ml Zg.The total amount of oxygen absorbed after 48 hours was 22.7 ml Zg.
  • anatase-type titanium dioxide was used in place of the reactant, and exactly the same test was performed by adding the same ammonia water.However, there was no change in the oxygen concentration in the air and oxygen absorption was observed. I could't.
  • the reaction product (2-3) was synthesized by the same reduction apparatus and method as described in 2.1 and 2.2. (3) 3.0 g of the pale gray reactant (2-4) that absorbed oxygen was charged to the reduction reactor as a starting material. Re-reduction was performed under the conditions of nitrogen gas 100 ml / min and hydrogen gas 14 ml / min as carrier gas, and 2.3 g of a black reactant (2-3b) corresponding to the reactant (2_3) was obtained. This reactant (2-3b;), ie, the regenerated The measurement result of the oxygen absorption amount of the tan was 23.
  • the oxygen absorption amount was 0.25 ml / g (0.0 lmmol / g).
  • Sakai Chemical Industry ANATA one peptidase type titanium dioxide CSPM (3-1) Co., Ltd. [Ti0 2, specific surface area 115m 2 / g, were analytical value 1.6% of sulfur (S) by X-ray fluorescence, sulfate radical 1 0. O g (1 2 5. 2 mmol) and Kanto Chemical Co., Ltd. of special grade of nickel nitrate conversion 4.8% value of the ([pi) 6 hydrate [(Ni (N0 3) 2 * 6H 2 0, molecular weight: 290.79] 1. with 8 g (6. 2 mmol) 7.
  • the reduction reaction was continued by introducing hydrogen gas at an additional pressure of 0.4 MPa and a flow rate of hydrogen gas of 14 ml / min.
  • the temperature was increased to 220 while observing the reaction status, and thereafter 240 ° (:, 26
  • the reaction was carried out for a total of 390 minutes by raising the reaction temperature stepwise to 0 ° C.
  • transfer the reactant into a glove box and completely replace it with nitrogen gas to remove the oxygen concentration in the glove box. (3-3) was taken out of the reactor into two airtight plastic packaging containers (one bag of gas barrier) while keeping the pressure at 40 ppm or less to obtain a black reactant (3-3).
  • the novel low-order titanium oxide or a composite thereof retaining the original crystal structure of the present invention has a large oxygen absorbing ability and an oxygen absorbing rate. Since the absorption capacity is restored, it can be reused.
  • the anatase-type titanium dioxide also has a photocatalytic action, it is an excellent oxygen absorber not found in conventional ones. Preserving the quality of food and various other goods Very useful as an agent.

Abstract

A novel titanium oxide of a lower order which retains the crystal structure inherent in titanium dioxide and is represented by a general formula: TiO2-x wherein x represents a real number from 0.1 to 0.5; a titanium composite oxide of a lower order further comprising a sulfate residue and/or a nickel species; methods for preparing them; and an oxygen absorbing agent or a quality retaining agent comprising the novel titanium oxide of a lower order. The novel titanium oxide has a structure obtained by removing a part of oxygen atoms from the crystal structure of titanium dioxide. It is capable of absorbing oxygen in a great capacity at a great absorption rate and also acts as a photocatalyst, and thus is suitable as an oxygen absorbing agent or a quality retaining agent.

Description

明 細 書 新規な低次酸化チタンおよびその製造方法 技術分野 ,  Description New low titanium oxide and its manufacturing method
本発明は、 酸素吸収能およびエチレンガス分解などの光触媒作用を有し二酸化 チタンの結晶構造を保持した新規な低次酸化チタン、 その製造方法、 及びこれを 含有する酸素吸収剤又は品質保持剤に関する。 さらに詳しくは、 加工食品 ·農水 産品などの食品類、 金属製品、 精密機械などの工業製品、 医薬品、 美術工芸品、 文化財などの広い分野の物品の保存用に適する新規な低次酸化チタン、 その製造 方法、 及びこれを含有する酸素吸収剤又は品質保持剤に関する。 背景技術  The present invention relates to a novel low-order titanium oxide having a titanium oxide crystal structure having an oxygen absorption capacity and a photocatalytic action such as ethylene gas decomposition, a method for producing the same, and an oxygen absorber or quality preservative containing the same. . More specifically, new low-grade titanium oxide suitable for preserving foods such as processed foods and agricultural and marine products, metal products, industrial products such as precision machinery, pharmaceuticals, arts and crafts, cultural properties, etc. The present invention relates to a method for producing the same, and an oxygen absorbent or quality preservative containing the same. Background art
従来、 食品類の品質保持については、 特開昭 5 6— 2 8 4 5号公報、 特開昭 5 6 - 1 3 0 2 2 2号公報、 および特開昭 5 8— 1 2 8 1 4 5号公報などに記載さ れているように、 好気性菌、 カビなどの繁殖による腐敗や、 乾性油の酸化劣化を 防止する目的で、 鉄系を中心とした種々の脱酸素剤が提案されている。 しかし、 この鉄系の脱酵素剤を封入した食品包装品は、 例えば特開平 1 0— 3 1 4 5 8 1 号公報に記載されているように、 針や金属片などの金属異物の混入防止のために 用いる金属探知機に感応し誤動作を生じる欠点が以前から指摘されている。また、 この鉄系の脱酸素剤を封入した食品包装品は、 電子レンジに使用することができ ないなどさらに改善されるべき実用上の重大な課題を残している。  Conventionally, regarding the preservation of the quality of foods, see JP-A-56-28445, JP-A-56-132022, and JP-A-58-12841. As described in Publication No. 5, various iron-based oxygen scavengers have been proposed for the purpose of preventing spoilage due to the growth of aerobic bacteria and mold, and the oxidative deterioration of drying oil. ing. However, as described in Japanese Patent Application Laid-Open No. H10-3148581, for example, a food package containing the iron-based deenzyme is protected from entry of metal foreign matter such as needles and metal pieces. It has long been pointed out that it is sensitive to the metal detectors used for it and causes malfunctions. In addition, the food package containing the iron-based oxygen scavenger still has serious practical problems to be further improved, such as being unable to be used in microwave ovens.
このような脱酸素剤の金属探知機への誤動作を改善する方法として、 例えば、 特開昭 5 9— 2 9 0 3 3号公報、 特許第 2 6 5 8 6 4 0号公報、 および 特開 2 0 0 0— 5 0 8 4 9号公報などに記載されているように、 有機化合物であ つて酸素吸収能を有するァスコルビン酸を主剤とする脱酸素剤や、 フエノール誘 導体を主剤とする脱酸素剤などが提案されている。 しかし、 これらの脱酸素剤は 何れも有機物質であるため、 使用の条件によっては溶融、 溶解を生じることが危 惧され、 また、 有機化合物であるため反応などに伴う発熱による燃焼の危険性も 指摘されている (例えば、 特開平 1 0— 3 1 4 5 8 1号公報参照) 。 As a method of improving such a malfunction of the oxygen absorber to the metal detector, for example, Japanese Patent Application Laid-Open Nos. Sho 59-29033, No. 2656840, and As described in, for example, Japanese Patent Publication No. In addition, oxygen scavengers having ascorbic acid as a main agent having oxygen absorbing ability and oxygen absorbers having a phenol derivative as a main agent have been proposed. However, since all of these oxygen scavengers are organic substances, they may be melted or dissolved depending on the conditions of use.In addition, since they are organic compounds, there is also the danger of combustion due to heat generated by reactions. It has been pointed out (for example, see Japanese Patent Application Laid-Open No. H10-3148581).
一方、 特許 3 2 8 8 2 6 5号公報には、 酸素欠損を有する二酸化チタンを用い て、 食品、 衣料品などを、 カビ、 菌、 虫、 および酸化などによる品質の劣化から 防止するための酸素吸収剤として使用することが提案されている。 この酸素吸収 剤は、 酸素欠損を有する二酸化チタンの光触媒作用に基づく酸化力により酸素吸 収能力が高められることを記載しているが、 該ニ酸化チタン単独による酸素吸収 量の具体的な数値は記載されていない。 そして、 この酸素欠損を有する二酸化チ タンは、 二酸化チタンを無酸素雰囲気下で加熱することにより製造することがで きることが記載され、 酸素吸収能力を大きくするには加熱温度が高いほどよく 8 0 0 °Cまでの加熱が好ましいとしているが、 その再現は困難である。  On the other hand, Japanese Patent No. 3,288,265 discloses that titanium dioxide having oxygen deficiency is used to prevent food, clothing, and the like from being deteriorated in quality due to mold, fungi, insects, and oxidation. It has been proposed for use as an oxygen absorber. This oxygen absorber describes that the oxygen absorption capacity is enhanced by the oxidizing power based on the photocatalytic action of titanium dioxide having oxygen deficiency, but specific numerical values of the amount of oxygen absorbed by the titanium dioxide alone are as follows. Not listed. It is described that titanium dioxide having oxygen deficiency can be produced by heating titanium dioxide in an oxygen-free atmosphere. To increase oxygen absorption capacity, the higher the heating temperature, the better. Although heating to 00 ° C is preferred, it is difficult to reproduce it.
また、 田部浩三、 清山哲郎、 笛木和夫編、 「金属酸化物と複合酸化物」 講談社 サイェンティフイク(1978年), 103頁、 および、 西本精一、 大谷文章、 坂本章、 鍵 谷勉、 日本化学会誌、 1984,246-252 (1984) には、 加熱温度が 8 0 0 °Cのような 高温なると二酸化チタンの結晶転移が急激に起こり、 アナ夕ーゼ型結晶からルチ ル型結晶になることが報告されており、 8 0 0 °Cでは二酸化チタンの結晶構造の 転移や、 酸素欠損個所に歪みを生じることが予想されるため、 良好な酸素吸収能 を付与することは難しい。  Also, Kozo Tabe, Tetsuo Kiyoyama and Kazuo Fueki, "Metal Oxides and Complex Oxides" Kodansha Sentifik (1978), p. 103, and Seiichi Nishimoto, Bunsaku Otani, Akira Sakamoto, Tsutomu Kagitani, The Chemical Society of Japan, 1984, 246-252 (1984) states that when the heating temperature is as high as 800 ° C, the crystal transition of titanium dioxide occurs rapidly, and the crystal changes from ananases type crystal to a rutile type crystal. It is reported that at 800 ° C, it is expected that the crystal structure of titanium dioxide will undergo a transition in crystal structure and distortion will occur at oxygen-deficient sites, so that it is difficult to provide good oxygen absorption capacity.
従来、 二酸化チタンの還元に関する詳しい報告は少ないが、 ミューラーらによ る二酸化チタンの光還元に関する報告がみられる ( R.P.Muller, J.Steinle, H.P.Boehm," Z.Naturforsch." 45b, 864(1990)) 。 ミューラーらは、 二酸化チタンに 紫外線照射下で還元剤としてメチルアルコールを用いて還元反応を行っており、 二酸化チタンが白色から青色に変化し、 その際二酸化チタンの還元量は 0 . 1〜 0 . 2 mm o 1 / g ( 2 . 2〜4 . 5 m l Z gの H 2〇 (ガス) ) 程度であり、 紫外線の照射を続けてもその量は増えることはなく、 空気に触れると青色はすぐ に元の白色に戻るが、 酸素のない状態では青色は数年間その色が保たれることな どを報告している。 更に、 尾崎萃ほか編 「触媒調製化学」 1 6 9頁、 講談社サイ ェンティフイク (1980) 、 および、 清山哲郎著 「金属酸化物とその触媒作用」 1 7 9頁、 講談社サイェンティフイク (1978) には、 二酸化チタンの結晶構造を保 持した形で二酸化チタンの粒子内部まで還元 ·脱酸素を行なうことは困難であつ て、 二酸化チタンに還元剤を作用させても、 その結晶表面のみが還元される金属 酸化物であることが記載されている。 Conventionally, there are few reports on the reduction of titanium dioxide, but there are reports on the photoreduction of titanium dioxide by Müller et al. (RPMuller, J. Steinle, HPBoehm, "Z. Naturforsch." 45b, 864 (1990)) . Mueller and colleagues have performed a reduction reaction on titanium dioxide using ultraviolet light as a reducing agent under ultraviolet irradiation. The titanium dioxide changes from white to blue, and the reduction amount of titanium dioxide is about 0.1 to 0.2 mm o 1 / g (2.2 to 4.5 ml Z g of H 2 2 (gas)) The amount does not increase even if UV irradiation is continued, and blue immediately returns to its original white color when exposed to air, but in the absence of oxygen, blue retains its color for several years. Etc. are reported. In addition, S. Ozaki et al., “Catalyst Preparation Chemistry”, p. 169, Kodansha Scientific (1980), and Tetsuro Kiyoyama, “Metal Oxides and Their Catalysis”, p. 179, Kodansha Scientific (1978) In some cases, it is difficult to reduce and deoxygenate the inside of the titanium dioxide particles while maintaining the crystal structure of titanium dioxide, and even if a reducing agent is applied to titanium dioxide, only the crystal surface is reduced. It is described that the metal oxide is used.
以上のように、 従来の技術では二酸化チタンは、 結晶の表面のみがわずかに還 元されるか、 或いは加熱温度を高くして脱酸素を試みると、 結晶構造の転移や結 晶構造に歪や崩落が発生し、 もとの二酸化チタンの結晶構造をそのまま保持する ことが難しいため、 酸素吸収能力の大きい二酸化チタンを得ることが困難である という問題があった。  As described above, according to the conventional technology, titanium dioxide reduces only the surface of the crystal slightly, or if the heating temperature is increased and deoxygenation is attempted, the transition of the crystal structure or distortion to the crystal structure may occur. Since the collapse occurred and it was difficult to maintain the original crystal structure of titanium dioxide, there was a problem that it was difficult to obtain titanium dioxide having a large oxygen absorption capacity.
本発明は、 二酸化チタンの結晶構造を保持したままで、 その一部の酸素原子が 脱離した、 大きな酸素吸収能力と酸素吸収速度を有する新規な低次酸化チタンを 提供することを目的とするものである。 更に、 本発明は、 安全性が高く、 金属探 知機等への影響がなく、 また水分の関与なしに酸素を吸収することも可能な、 食 品類、金属製品、精密機械、医薬品、および文化財などの分野において脱酸素剤、 鮮度保持剤を含む品質保持剤を提供することを目的とするものである。 発明の開示  An object of the present invention is to provide a novel low-order titanium oxide having a large oxygen-absorbing ability and an oxygen-absorbing rate, in which some of the oxygen atoms are eliminated while maintaining the crystal structure of titanium dioxide. Things. Furthermore, the present invention provides foods, metal products, precision instruments, pharmaceuticals, and cultures that are highly safe, have no effect on metal detectors and the like, and can absorb oxygen without the involvement of moisture. It is an object of the present invention to provide a quality preservative including an oxygen scavenger and a freshness preservative in the field of goods and the like. Disclosure of the invention
本発明者らは、 以上の状況に鑑み、 また上記の諸課題を解決するため鋭意研究 を行い、 硫酸根及び Z又はニッケル種を含有する二酸化チタンを用いることによ り、 従来困難であった比較的低い温度で水素ガス等の還元剤を用いて容易に二酸 化チタンを還元することができ、 従来の課題を一挙に解決する優れた酸素吸収能 と光触媒作用を有する新規な低次酸化チタンが得られることを見出して、 本発明 を完成するに至った。 In view of the above circumstances, the present inventors have conducted intensive research to solve the above-mentioned problems, and have found that titanium dioxide containing a sulfate group and Z or nickel species is used. Titanium dioxide can be easily reduced using a reducing agent such as hydrogen gas at a relatively low temperature, which was difficult in the past. The present inventors have found that a novel low-order titanium oxide having the following formula can be obtained, and have completed the present invention.
すなわち、 本発明は、 以下の内容をその要旨とするものである。  That is, the present invention has the following contents as its gist.
(1) 二酸化チタンの結晶構造を保持し、 一般式 T i 02x (ここで、 Xは 0.(1) Retains the crystal structure of titanium dioxide and has the general formula T i 0 2x (where X is 0.
1から 0. 5の実数を示す) の化学式で表されるものであることを特徴とする低 次酸化チタン。 A low order titanium oxide, which is represented by the following chemical formula:
(2) アナターゼの結晶構造を保持することを特徴とする、 前記 (1) 記載の低 次酸化チタン。  (2) The low titanium oxide according to the above (1), which maintains the crystal structure of anatase.
(3) 前記 (1) 又は (2) に記載の低次酸化チタンに硫酸根を含むことを特徴 とする、 低次酸化チタン複合体。  (3) A low order titanium oxide composite, wherein the low order titanium oxide according to the above (1) or (2) contains a sulfate group.
(4) 前記 (1) 又は (2) に記載の低次酸化チタンにニッケル種を含むことを 特徴とする、 低次酸化チタン複合体。  (4) A low-order titanium oxide composite, characterized in that the low-order titanium oxide according to (1) or (2) contains a nickel species.
(5) ニッケル種が、 ニッケル原子を必須成分とする化合物、 及び Z又はニッケ ル原子を必須成分とする金属であることを特徴とする、 前記 (4) 記載の低次酸 化チタン複合体。  (5) The low titanium oxide composite according to the above (4), wherein the nickel species is a compound containing a nickel atom as an essential component and a metal containing Z or a nickel atom as an essential component.
(6) 前記 (1) 又は (2) に記載の低次酸化チタンに、 硫酸根及びニッケル種 を含むことを特徴とする、 低次酸化チタン複合体。  (6) A low titanium oxide composite, wherein the low titanium oxide according to (1) or (2) contains a sulfate group and a nickel species.
(7) 酸素吸収能を有することを特徴とする、 前記 (1) 乃至 (6) のいずれか に記載された低次酸化チタン又はその複合体。  (7) The low-order titanium oxide or the complex thereof according to any one of (1) to (6), having an oxygen absorbing ability.
(8) 硫酸根及びノ又はニッケル種を含む二酸化チタンを、 3 50°C以下の温度 で、 還元剤を用いて還元することを特徴とする、 前記 (1) 乃至 (7) のいずれ かに記載された低次酸化チタン又はその複合体の製造方法。  (8) The method according to any one of (1) to (7) above, wherein the titanium dioxide containing a sulfate group and a nickel or nickel species is reduced using a reducing agent at a temperature of 350 ° C. or less. A method for producing the described low order titanium oxide or a composite thereof.
(9) 還元剤が水素である、 前記 (8) 記載の低次酸化チタン又はその複合体の 製造方法。 (9) The lower titanium oxide or the composite thereof according to (8), wherein the reducing agent is hydrogen. Production method.
( 1 0 ) 前記 (1 ) ないし (7 ) のいずれかに記載された低次酸化チタン又はそ の複合体に酸素を吸収させた後、再び還元剤を用いて還元することを特徴とする、 低次酸化チタン又はその複合体の再使用方法。  (10) After absorbing oxygen in the low-order titanium oxide or the complex thereof according to any of (1) to (7), the oxygen is reduced again using a reducing agent, A method for reusing low-order titanium oxide or a composite thereof.
( 1 1 ) 前記 (1 ) ないし (7 ) のいずれかに記載された低次酸化チタン又はそ の複合体に塩基性物質を添加することを特徴とする、 低次酸化チタン又はその複 合体の酸素の吸収速度の促進方法。 図面の簡単な説明  (11) A low-order titanium oxide or a complex thereof, comprising adding a basic substance to the low-order titanium oxide or the complex thereof according to any one of the above (1) to (7). A method of increasing the rate of oxygen absorption. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 実施例 1で得た還元前の硫酸根とニッケル種を含む二酸化チタン複 合体 (1-2)の X線光電子分光スペクトルのチャートであり、 第 2図は、 実施例 1で 得た還元処理後の硫酸根とニッケル種を含む本発明の低次酸化チタン複合体 (1-3)の X線光電子分光スペクトルのチャートである。 第 3図は、 実施例 1で得た 硫酸根とニッケル種を含む本発明の低次酸化チタン複合体 (1-3)の酸素の吸収量 の経時的な変化を示すグラフである。 発明を実施するための最良の形態  FIG. 1 is a chart of an X-ray photoelectron spectroscopy spectrum of the titanium dioxide complex (1-2) containing a sulfate group and a nickel species before reduction obtained in Example 1, and FIG. 2 is a chart of Example 1. 4 is a chart of an X-ray photoelectron spectroscopy spectrum of the low order titanium oxide composite (1-3) of the present invention containing a sulfate group and a nickel species after the reduction treatment. FIG. 3 is a graph showing the change over time in the amount of oxygen absorbed by the low order titanium oxide composite (1-3) of the present invention containing a sulfate group and a nickel species obtained in Example 1. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described.
本発明の低次酸化チタンは、 二酸化チタンのオリジナルの結晶構造をそのまま 保持し、 かつその中の酸素の一部が脱離して、 一般式 T i〇2 xの化学式で表さ れる新規な低次酸化チタンである。 ここで、 Xは 0 . 1から 0 . 5の実数である。 この低次酸化チタンの構造は、後述するように X線回折装置(X-ray diffraction, XRD) 、 X線光電子分光装置 (X-ray Photoelectron Spectroscopy XPS) などの機 器分析の結果によって確認することができ、 Xの値は酸素の吸収量により算出す ることができる。 なお、 二酸化チタンの還元に伴って水 (還元水) が発生し、 こ の水の量は基本的には二酸化チタンの還元の程度、 即ち Xの値に関連するが、 二 酸化チタンは親水性が強く還元水の外に吸着水が混入する傾向が見られるため、 Xの値は酸素吸収量から求めるのがよい。 Lower titanium oxide of the present invention is to keep the original crystal structure of titanium dioxide, and part of the oxygen therein is eliminated, novel low Formula of the general formula T I_〇 2 x It is titanium oxide. Where X is a real number between 0.1 and 0.5. The structure of this low-order titanium oxide should be confirmed by the results of instrumental analysis using an X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (X-ray Photoelectron Spectroscopy XPS), as described later. The value of X can be calculated from the amount of oxygen absorbed. Water (reduced water) is generated with the reduction of titanium dioxide. The amount of water is basically related to the degree of reduction of titanium dioxide, that is, the value of X.However, titanium dioxide is strongly hydrophilic and tends to mix adsorbed water in addition to reduced water. Is preferably obtained from the amount of oxygen absorbed.
また、 本発明の低次酸化チタン複合体は、 原料の二酸化チタンに含まれている 硫酸根をそのまま含み、 或いは原料の二酸化チタンに含浸、 吸着、 共沈殿又は物 理的混合によって硫酸根又はニッケル種を含ませ、 これを還元して得られる、 二 酸化チタンのオリジナルの結晶構造をそのまま保持し、 酸素原子が一部脱離した In addition, the lower titanium oxide composite of the present invention contains the sulfate group contained in the raw material titanium dioxide as it is, or the sulfate group or nickel obtained by impregnating, adsorbing, co-precipitating or physically mixing the raw material titanium dioxide. The original crystal structure of titanium dioxide, which is obtained by adding seeds and reducing it, retains its original crystal structure, and some oxygen atoms are eliminated.
T i 02_xの化学式で表される新規な低次酸化チタンと、 硫酸根及び Z又はニッ ケル種とが複合化した、 新規な低次酸化チタン複合体である。 And novel low-order titanium oxide represented by the chemical formula T i 0 2 _ x, and a sulfate group and Z or nickel species complexed, a novel low-order titanium oxide complex.
本発明において用いる原料の二酸化チタン (Ti02) は、 アナターゼ型、 ルチル 型若しくはブルツカイト型の結晶系のもの、 又はアモルファスのもののいずれも 使用し得るが、 アナタ一ゼ型の二酸化チタンが好適である。 それらの粒径は、 1 nm (10_9m) から 1 m (10_6m) 程度のものまでを使用でき、 より好ま しくは 3 nm (3 X 10— 9m) から 0. 1 m (10— 5m) のものが使用できる が、 一般には粒径の小さいものが好ましい。 また、 望ましくは、 直径 lmm程度 の大きさの粒状に造粒した二酸化チタンを使用してもよい。比表面積は 5m2Zg から 400m2/g程度、 好ましくは 50m2/gから 390m2Zgのものを使用 することができるが、 比較的に大きな値を有するものが還元処理には効果的であ る。 以上の二酸化チタンは製品として市販されているものを原料としてそのまま 使用することも可能であり、 あるいは硫酸チタン、 四塩化チタン、 硝酸チタンな ど無機酸のチタン塩あるいはチタンテトラエトキシド、 チタンテトライソプロボ キシドあるいはチタンテトラ (2—ェチルへキサノエ一ト) などのチタン化合物 を加水分解あるいは苛性ソーダで中和、 沈殿などの方法により調製することもで きる。 Titanium dioxide material used in the present invention (Ti0 2) are those of anatase type crystal system rutile or Burutsukaito type, or both may be used ones of amorphous titanium dioxide is preferred ANATA one peptidase type . These particle size, 1 nm from (10_ 9 m) can use up to 1 m (10_ 6 m) of about one, and more preferred properly 0. 1 m (10 from 3 nm (3 X 10- 9 m ) — 5 m) can be used, but in general, one with a small particle size is preferred. Preferably, titanium dioxide granulated to a size of about lmm in diameter may be used. A specific surface area of about 5 m 2 Zg to 400 m 2 / g, preferably 50 m 2 / g to 390 m 2 Zg can be used, but those having a relatively large value are effective for the reduction treatment. You. The above-mentioned titanium dioxide may be used as a raw material as it is as a commercial product, or it may be used as it is, or a titanium salt of an inorganic acid such as titanium sulfate, titanium tetrachloride, titanium nitrate, or titanium tetraethoxide, titanium tetraisoprotate. It can also be prepared by a method such as hydrolysis or neutralization or precipitation of a titanium compound such as titanium oxide or titanium tetra (2-ethylhexanoate) with caustic soda.
市販のアナ夕一ゼ型ニ酸化チタンの代表的な製品としては、 堺化学工業株式会 社製の S S P 2 5、 C S P M、 石原産業株式会社製の S T 0 1あるいは M C— 5 0、 ティカ株式会社製の AM T— 1 0 0などが知られている。 これらの二酸化チ タンを原料として使用して、 以下に詳しく記載するニッケル種又は硫酸根を含む 二酸化チタンを調製することにより、 何れも低温で還元することが可能となり、 本発明の低次酸化チタンまたは低次酸化チタン複合体を得ることができる。 Representative products of commercially available ana-yuichi type titanium dioxide include Sakai Chemical Industry Co., Ltd. SSP25 and CSPM manufactured by Ishihara Sangyo Co., Ltd., ST01 or MC-50 manufactured by Ishihara Sangyo Co., Ltd., and AMT-100 manufactured by Tika Co., Ltd. are known. By using these titanium dioxides as raw materials to prepare titanium dioxides containing nickel species or sulfate groups, which will be described in detail below, any of them can be reduced at a low temperature. Alternatively, a low order titanium oxide composite can be obtained.
本発明に使用するニッケル種とは、 ニッケル原子を必須成分とする化合物、 又 はニッケル原子を必須成分とする金属若しくは合金を言う。 また、 ここでニッケ ル原子にはいわゆる電離したイオン状態のものも含む。  The nickel species used in the present invention refers to a compound containing a nickel atom as an essential component, or a metal or an alloy containing a nickel atom as an essential component. Further, the nickel atoms include those in a so-called ionized ion state.
ニッケル原子を必須成分とする化合物は、 例えば、 無機酸のニッケル塩、 有機 酸のニッケル塩、 ニッケルアルコキシド、 および配位子を配位したニッケル錯塩 からなる群から選ばれるニッケル原子を必須成分として含む化合物である。 この ような化合物としては、 例えば、 硝酸ニッケル、 塩化ニッケル、 硫酸ニッケルな どの無機酸のニッケル塩;酢酸ニッケル、 プロピオン酸ニッケル、 蓚酸ニッケル などの有機酸のニッケル塩;その無水和物、 結晶水を持つ水和物が挙げられ、 あ るいはそれらにアンモニア、 エチレンジァミンなどの配位したニッケル錯塩、 ァ セチルアセトンなどを配位したニッケル化合物、 ニッケルイソプロボキシドなど のニッケルアルコキシドを用いることがで ½る。  The compound containing a nickel atom as an essential component includes, for example, a nickel atom selected from the group consisting of a nickel salt of an inorganic acid, a nickel salt of an organic acid, a nickel alkoxide, and a nickel complex salt coordinated with a ligand. Compound. Examples of such compounds include nickel salts of inorganic acids such as nickel nitrate, nickel chloride and nickel sulfate; nickel salts of organic acids such as nickel acetate, nickel propionate and nickel oxalate; anhydrides thereof, and water of crystallization. Hydrates, or a nickel complex salt coordinated with ammonia, ethylenediamine, etc., a nickel compound coordinated with acetylacetone, etc., or a nickel alkoxide such as nickel isopropoxide. .
また、 ニッケル原子を必須成分とする金属は、 例えば、 ニッケル金属そのもの またはニッケルと他の元素から構成される合金、 ニッケル金属と他の金属との混 合物である。 このような合金又は金属混合物としては、 例えば、 ニッケルとコバ ルト、 鉄、 マグネシウム、 カルシウム、 アルミニウムなどから選ばれる金属との 合金又は混合物が挙げられる。  The metal containing a nickel atom as an essential component is, for example, nickel metal itself, an alloy composed of nickel and other elements, or a mixture of nickel metal and another metal. Examples of such an alloy or metal mixture include an alloy or a mixture of nickel and a metal selected from cobalt, iron, magnesium, calcium, aluminum and the like.
次に、 本発明の低次酸化チタン又はその複合体の製造方法について説明する。 まず、二酸化チタン(Ti02)の結晶構造を保持した本発明の低次酸化チタン(Ti02x) を還元により得るためには、 二酸化チタンをそのままの形で使用するよりも むしろ、 二酸化チタンの還元に先立ち少量の硫酸根を予め含有せしめておくこと が有効な手段である。 更には、 二酸化チタンの還元に先立ち少量のニッケル種を 予め含ませておくことが第二の有効な手段である。 このように少量の硫酸根及び /又は少量のニッケル種を含む二酸化チタンを用いることによって、 驚くべきこ とにアルゴンあるいは窒素ガスなどの不活性ガスの雰囲気下において 3 5 0 °C以 下、好ましくは 1 5 0から 3 0 0 °C範囲、さらに好ましくは 1 8 0から 2 8 0 、 最も好ましくは 1 8 0から 2 6 0 °Cという低い温度で、 容易に還元反応が進行し て水を生成し、 本発明の低次酸化チタン (Ti02 ) を生成する。 Next, a method for producing the lower titanium oxide or the composite thereof of the present invention will be described. First, in order to obtain the lower titanium oxide (TiO 2 —x ) of the present invention, which retains the crystal structure of titanium dioxide (TiO 2 ), by reduction, it is necessary to use titanium dioxide as it is. Rather, it is an effective means to include a small amount of sulfate before the reduction of titanium dioxide. Furthermore, the second effective means is to include a small amount of nickel species before the reduction of titanium dioxide. Surprisingly, by using titanium dioxide containing a small amount of sulfate and / or a small amount of nickel, it is possible to surprisingly obtain a temperature of 350 ° C. or less under an atmosphere of an inert gas such as argon or nitrogen gas. At a temperature as low as 150 to 300 ° C, more preferably at 180 to 280 ° C, and most preferably at a low temperature of 180 to 260 ° C. generated, to generate a low-order titanium oxide of the present invention (Ti0 2).
本発明において、 二酸化チタンの還元を容易にする手段として硫酸根を含ませ る方法としては、 特に制約は設けないが、 市販の二酸化チタンに硫酸を 0 . 0 1 から 2 0 %程度水溶液に希釈して加え、 よく混合して均一化をはかり 2 0 0から 4 5 0 °C程度の温度で数時間乾燥、 焼成した後、 粉粒化して硫酸根を含む二酸化 チタンを調製すればよい。 二酸化チタンは、 一般的にチタンと鉄の酸化物を主成 分とするィルメナイト鉱に硫酸を加え硫酸チタンを生成させ均一液を加水分解に より水酸化チタンに変え、 溶解度の差を利用して硫酸鉄を除いて精製される。 二 酸化チタンは、 硫酸根に対して親和力の強いことが知られているため、 二酸化チ タンを製造する際にて硫酸根が残存したものとして得られるので、 これをそのま ま使用してもよい。 二酸化チタンに含ませる硫酸根の量は、 二酸化チタンに対し て通常 0 . 0 1から 1 0質量% (以下、 単に%と記載する) 程度であるが、 特に 望むなら 2 0 %あるいはそれ以上の量を用いてもよい。 なお、 上記市販の二酸化 チタンの中にあって、 CSPMと MC— 50は数%の硫酸根を含むため、 硫酸根の添 加工程を省略して用いることも可能である。  In the present invention, there is no particular limitation on the method of including a sulfate group as a means for facilitating the reduction of titanium dioxide. However, sulfuric acid is diluted to about 0.01 to 20% aqueous solution of commercially available titanium dioxide. Then, the mixture is mixed well, dried and calcined at a temperature of about 200 to 450 ° C. for several hours, and then granulated to prepare titanium dioxide containing a sulfate group. In general, titanium dioxide is produced by adding sulfuric acid to ilmenite ore, which mainly consists of oxides of titanium and iron, to form titanium sulfate, convert the homogeneous solution to titanium hydroxide by hydrolysis, and utilize the difference in solubility. Purified except iron sulfate. Since titanium dioxide is known to have a strong affinity for sulfate groups, it can be obtained as titanium sulfate during the production of titanium dioxide. Good. The amount of sulfate groups contained in titanium dioxide is usually about 0.01 to 10% by mass relative to titanium dioxide (hereinafter simply referred to as "%"). An amount may be used. In addition, among the commercially available titanium dioxides, since CSPM and MC-50 contain several percent of sulfate, it is possible to omit the step of adding sulfate.
ニッケル種を含む二酸化チタンを得る方法としては、 二酸化チタンに前記の二 ッケル化合物を溶液の形で含浸または吸着する方法、 無機酸のチタン塩等のチタ ン化合物の水溶液と前記ニッケル化合物の水溶液を共沈殿する方法、 さらに特に 望むなら二酸化チタンと前記二ッケル化合物又は二ッケル原子含有金属粉をごく 微細な状態にして単に混合する方法などがある。 また、 本発明に使用するニッケ ル種を含む二酸化チタンとしては、 上記のように含浸、 吸着、 共沈殿、 あるいは 混合により得られるもののほかに、 これらのニッケル種を含む二酸化チタンを、 更にその後、 洗浄、 加熱乾燥、 焼成、 粉碎等の諸工程で熱分解などにより化学構 造変化を生じたものも含む。 Examples of a method for obtaining titanium dioxide containing a nickel species include a method of impregnating or adsorbing the above-mentioned nickel compound on titanium dioxide in the form of a solution, an aqueous solution of a titanium compound such as a titanium salt of an inorganic acid, and an aqueous solution of the nickel compound. Coprecipitation method, more particularly If desired, there is a method of simply mixing titanium dioxide and the nickel powder or nickel powder containing nickel atoms in a very fine state. As the titanium dioxide containing nickel species used in the present invention, in addition to those obtained by impregnation, adsorption, coprecipitation, or mixing as described above, titanium dioxide containing these nickel species, and further thereafter, Also includes those that have undergone chemical structural changes due to thermal decomposition in various processes such as washing, heat drying, firing, and pulverization.
本発明に使用するニッケル種を含む二酸化チタンにおけるニッケル金属の含有 割合は、 二酸化チタンを還元するために必要な量であって特別な制限はないが、 後述するように還元の際に触媒としての作用を発揮する量であればよく、 少量で よい。 一般的に、 二酸化チタンに対して、 ニッケル原子として 0 . 0 1から 1 5 パーセント、 好ましくは 0 . 0 3から 1 0 %の範囲で用いるのがよい。  The content ratio of nickel metal in titanium dioxide containing nickel species used in the present invention is an amount necessary for reducing titanium dioxide and is not particularly limited, but as described later, as a catalyst during reduction, Any amount that exerts the effect is sufficient, and a small amount is sufficient. In general, nickel is used in an amount of 0.01 to 15%, preferably 0.03 to 10%, as a nickel atom, based on titanium dioxide.
含浸による上記のニッケル種を含む二酸化チタンの調製は、 種々の文献などに 記載されている方法を参考にして行うことができる。 通常の方法は、 例えば、 尾 崎萃ほか編 「触媒調製化学」 4 9頁、 講談社サイェンティフイク (1980) 、 或い は、触媒学会主催「第 9回キヤタリシススクールテキスト」 P52、触媒学会(1998) に記載されているように、 前述のニッケル原子を必須成分とするニッケル化合物 または二ッケル金属の溶液を二酸化チタンに含浸せしめ、 この含浸したものを加 熱乾燥、 焼成、 粉砕などの工程の一部、 あるいは全ての工程を経て調製される。 なお、 このニッケル化合物を含浸した二酸化チタンは、 通常は 2 0 0 °Cから 3 0 0 :程度の温度で 2から 3時間程度の間乾燥する。得られた塊状物は粉碎した後、 3 0 0 °Cから 4 5 0 °C程度までの温度で 2から 1 0時間の保持にして焼成するが、 二酸化チタンの結晶構造の変化を生じさせないように配慮して行う。  The preparation of titanium dioxide containing the above-mentioned nickel species by impregnation can be performed with reference to methods described in various documents and the like. The usual method is, for example, “Catalyst Preparation Chemistry,” edited by Suzaki Ozaki et al., P. 49, Kodansha Scientific (1980), or “9th Catalysis School Textbook” sponsored by the Society of Catalysis, P52, Catalyst As described in the Society (1998), a solution of the above-mentioned nickel compound or nickel metal containing nickel atoms as an essential component is impregnated into titanium dioxide, and the impregnated product is heated, dried, fired, crushed, etc. It is prepared through some or all of the steps. The titanium dioxide impregnated with the nickel compound is usually dried at a temperature of about 200 ° C. to about 300 ° C. for about 2 to 3 hours. After the obtained lump is ground, it is baked at a temperature of about 300 ° C. to 450 ° C. for about 2 to 10 hours, but it does not change the crystal structure of titanium dioxide. Take into consideration.
共沈殿によるニッケル種を含む二酸化チタンの調製も、 同様に種々の文献に記 載の方法を参考にして行うことができる。 一般的な方法としては、 例えば上記の 文献に記載されているように、 前述のニッケル原子を必須成分とするニッケル化 合物の溶液と、 チタン化合物の溶液を予め調製し、 攪拌下にこれらの二つの溶液 に苛性ソーダなどの塩基性化合物の水溶液を加えて上記の混合溶液中で共沈殿、 あるいは加水分解により共沈殿を生成せしめ、 この沈殿物を加熱乾燥、 焼成、 粉 碎などの工程の一部、 あるいは全ての工程を経て調製される (例えば、 非特許文 献 6および 7参照) 。 加熱乾燥は通常 2 0 0 °Cから 3 0 0 °C程度の温度で 2から 3時間の範囲で行い、 粉碎の後、 通常 3 5 0 °Cから 4 5 0 °Cで焼成する。 ここで チタン化合物としては、 四塩化チタンあるいは硫酸チタンなどの無機酸のチタン 塩、 あるいは上記のチタンアルコキシドなどが挙げられる。 また、 共沈殿のより 簡便で実用的な方法として、 二酸化チタンの微粒子を予め水中に分散し、 そこに ニッケル強酸塩、 例えば硝酸ニッケルの水溶液を加え、 攪拌下に苛性ソーダなど の強塩基を滴下することによつても均一で比表面積の高いニッケル種を含む二酸 化チタンを得ることができる。 The preparation of titanium dioxide containing nickel species by coprecipitation can also be performed by referring to methods described in various documents. As a general method, for example, as described in the above-mentioned literature, A solution of the compound and a solution of the titanium compound are prepared in advance, and an aqueous solution of a basic compound such as caustic soda is added to these two solutions with stirring, and co-precipitated in the above mixed solution or co-precipitated by hydrolysis. The precipitate is prepared through some or all of the steps such as heating, drying, baking, and milling (see, for example, Non-Patent Documents 6 and 7). Heat drying is usually performed at a temperature of about 200 ° C. to 300 ° C. for 2 to 3 hours. After pulverization, baking is usually performed at 350 ° C. to 450 ° C. Here, examples of the titanium compound include a titanium salt of an inorganic acid such as titanium tetrachloride or titanium sulfate, or the above-mentioned titanium alkoxide. As a simpler and more practical method of co-precipitation, fine particles of titanium dioxide are dispersed in water in advance, and a strong nickel salt, for example, an aqueous solution of nickel nitrate is added thereto, and a strong base such as caustic soda is added dropwise with stirring. This also makes it possible to obtain a uniform titanium dioxide containing nickel species having a high specific surface area.
上記の記載においては、硫酸根を含ませる工程とニッケル種を含ませる工程を、 それぞれの工程を分けて記述したが、 場合によってはこれら 2つの工程を同時に 行うことを妨げるものではなく、 必要に応じて任意に実施してもよい。 また、 以 上の工程は基本的に硫酸根およびニッケル種を二酸化チタンに物理的に混合して いるものであるが、 特に望むならチタン酸ニッケル (N i T i〇3 ) 、 さらに望 むならチタン酸ニッケルカルシウム (C a 0 . 5 N i o . 5 T i 0 3 ) などの複合金属 酸化物を二酸化チタンの代り、 あるいは二酸化チタンにニッケル種を含ませる原 料として使用することを妨げるものではない。 In the above description, the step of including a sulfate group and the step of including a nickel species are described separately.However, in some cases, it does not prevent simultaneous execution of these two steps. It may optionally be implemented accordingly. The above process is basically a process in which sulfate and nickel species are physically mixed with titanium dioxide. If desired, nickel titanate (NiTi 3 ) nickel titanate calcium (C a 0. 5 N io . 5 T i 0 3) instead of titanium dioxide composite metal oxides such as, or preclude the use as a raw material to include nickel species titanium dioxide Absent.
本発明の二酸化チタンの結晶構造を保持した低次酸化チタン又はその複合体は、 硫酸根及び Ζ又はニッケル種を含む二酸化チタンを還元剤を用いて還元すること により容易に製造することができる。 還元温度は 3 5 0 °C以下の温度で実施する ことが二酸化チタンの結晶構造をそのままに保つ上から望ましく、 好ましくは 1 5 0から 3 0 0 範囲、 さらに好ましくは 1 8 0から 2 8 0 :、 最も好ましくは 1 8 0から 2 6 0 °Cの範囲で行うことが二酸化チタンの結晶構造を保持し、 その 品質を最上に保つ点から好ましい。 このように低い温度での還元反応は、 製造装 置のシール部分にゴムパッキング等の材料の使用を可能にし、 製造設備のコスト を削減できるメリットもある。 無定形の二酸化チタンを用いる場合にも上記の温 度において還元処理中に望ましいアナタ一ゼ型の結晶に変わる。 The low-order titanium oxide or the complex thereof retaining the crystal structure of titanium dioxide of the present invention can be easily produced by reducing titanium dioxide containing a sulfate group and Ζ or nickel species using a reducing agent. The reduction is preferably carried out at a temperature of 350 ° C. or lower in order to keep the crystal structure of titanium dioxide as it is, preferably in the range of 150 to 300, more preferably 180 to 280 ° C. :, Most preferably It is preferable to carry out the reaction at a temperature in the range of 180 to 260 ° C. from the viewpoint that the crystal structure of titanium dioxide is maintained and its quality is maintained at the highest. The reduction reaction at such a low temperature allows the use of materials such as rubber packing for the sealing portion of the manufacturing equipment, and has the advantage of reducing the cost of manufacturing equipment. Even when amorphous titanium dioxide is used, at the above-mentioned temperature, it changes into a desirable anatase-type crystal during the reduction treatment.
本発明においては、 還元剤としては水素ガスが最も好ましく、 水素ガスによつ て支障なく還元を行い得るが、 従来から還元剤として知られる化合物、 例えば、 エチルアルコールなどのアルコール類、 プロピレンなどの炭化水素化合物を使用 してもよい。 また、 特に望むなら、 紫外線などの照射による反応を促進する方法 も妨げるものではない。  In the present invention, hydrogen gas is most preferable as the reducing agent, and reduction can be performed without any trouble by hydrogen gas. However, compounds conventionally known as reducing agents, for example, alcohols such as ethyl alcohol, propylene and the like Hydrocarbon compounds may be used. Also, if desired, a method for promoting the reaction by irradiation with ultraviolet rays or the like is not impeded.
還元反応は、 酸素ガスを遮断し、 酸素の混入のない装置で行なうことが求めら れる。 本発明では還元に用いる装置について特別の制限は設けない。 通常はステ ンレス製反応管式で耐圧性を備えたものを用いる。 具体的には、 硫酸根とニッケ ル種を含む二酸化チタンを装置内に置き、 不活性ガスをキヤリャ一ガスに用い、 加圧、 加熱下に還元剤、 例えば水素ガスを導入して還元反応を行う。 キヤリヤー ガスとしてはアルゴンガスなどの希ガスが特に好ましく用いられるが、 望むなら 窒素ガスをキヤリヤーガスに用いてもよい。 反応器内の圧力は通常 0 . 0 1 M P aから 0 . 7 M P a程度、 好ましくは 0 . 0 5 M P aから 0 . 5 M P aの範囲で 行う。 還元反応は、 反応器内を上記の圧力に保ち、 還元温度は、 上述の如く 3 5 0 °C以下、 好ましくは 1 5 0 °Cから 3 5 0 の範囲で、 2〜2 0時間程度を要し て反応を行う。 このような条件が、 硫酸根とニッケル種を含む二酸化チタンの還 元を促進し、 かつ二酸化チタンの結晶構造をそのまま維持した優れた品質を保つ た低次酸化チタンを得るのに適した条件である。 その際、 該硫酸根とニッケル種 を含む二酸化チタンは、 水素ガスなどの還元剤により還元処理を行うと二酸化チ タンの酸素の一部が水素との反応により脱離して水を生成する。 還元反応を終了 して得られる反応物は、 冷却後、 反応器と共にグローブボックスに移し酸素を遮 断した窒素ガス気流中で密封容器中に取出される。 It is required that the reduction reaction be performed in a device that shuts off oxygen gas and does not contain oxygen. In the present invention, there is no particular limitation on the apparatus used for reduction. Normally, a stainless steel reaction tube type with pressure resistance is used. Specifically, titanium dioxide containing sulfate and nickel species is placed in the apparatus, an inert gas is used as a carrier gas, and a reducing agent, for example, hydrogen gas is introduced under pressure and heating to perform the reduction reaction. Do. As a carrier gas, a rare gas such as an argon gas is particularly preferably used, but if desired, a nitrogen gas may be used as the carrier gas. The pressure in the reactor is usually in the range of about 0.01 MPa to 0.7 MPa, preferably in the range of 0.05 MPa to 0.5 MPa. In the reduction reaction, the pressure inside the reactor is maintained at the above-mentioned pressure, and the reduction temperature is 350 ° C. or less as described above, preferably in the range of 150 ° C. to 350 ° C., for about 2 to 20 hours. Perform the reaction as needed. These conditions promote the reduction of titanium dioxide containing sulfate and nickel species, and are suitable for obtaining low-grade titanium oxide that maintains excellent quality while maintaining the crystal structure of titanium dioxide as it is. is there. At this time, when the titanium dioxide containing the sulfate group and the nickel species is subjected to a reduction treatment with a reducing agent such as hydrogen gas, part of the oxygen of the titanium dioxide is desorbed by the reaction with hydrogen to produce water. End reduction reaction After cooling, the reaction product is transferred to a glove box together with the reactor, and taken out in a sealed container in a nitrogen gas stream in which oxygen is blocked.
この硫酸根とニッケル種を含む二酸化チタンは水素ガスなどの還元剤による還 元反応を終了すると、 喑灰色から黒色を呈する反応物となり、 本発明の低次酸化 チタン又はその複合体が得られる。 この反応物を、 上記のグローブボックス内で 窒素ガスで完全に置換した無酸素の条件下で気密なプラスチック容器やプラスチ ック製の袋などに移し、 グローブボックスより取出す。 このプラスチック容器や プラスチック製の袋の中に一定量の空気 (酸素濃度 2 0 . 6 %) を挿入すると時 間の経過と共に容器や袋内の酸素濃度が減少し反応物が酸素を吸収していること が分る。 反応物の酸素吸収が終了すると、 初期の喑灰色から黒色を呈した反応物 は、 当初見られた色とは明かに異なる淡色化した灰色に変化する。  After the reduction reaction with a reducing agent such as hydrogen gas, the titanium dioxide containing the sulfate group and the nickel species becomes a reactant that changes from gray to black, and the lower titanium oxide of the present invention or a complex thereof is obtained. The reaction product is transferred to a hermetically sealed plastic container or plastic bag under oxygen-free conditions completely replaced with nitrogen gas in the above glove box, and is taken out from the glove box. When a certain amount of air (oxygen concentration 20.6%) is inserted into the plastic container or plastic bag, the oxygen concentration in the container or bag decreases over time, and the reactants absorb oxygen. You can see that it is. At the end of the oxygen uptake of the reactants, the initial black to black reactant changes to a lighter gray that is distinctly different from the color initially seen.
このようにして得られた本発明の低次酸化チタン又はその複合体は、 ォリジナ ルのニ酸化チタンの結晶構造をそのまま保持し、 かつ二酸化チタンの酸素原子が 一部脱離した T i〇2 _ x ( Xは 0 . 1から 0 . 5 ) の一般式で表わされる、 従来 にない新規な低次酸化チタンである。 更に、 本発明は、 このような低次酸化チタ ンの中に硫酸根及びノ又はニッケル種を含有した低次酸化チタン複合体である。 一般的には、 本発明の低次酸化チタンは粉末状の固体として得られるため、 製造 工程で加えたニッケル種或いは硫酸根がその中に残留した複合体である。 The thus obtained lower titanium oxide or the composite thereof of the present invention retains the crystal structure of the original titanium dioxide and retains the Ti 2 in which the oxygen atoms of the titanium dioxide are partially eliminated. It is a novel low-order titanium oxide that has never been seen before and is represented by the general formula of _ x (where X is 0.1 to 0.5). Further, the present invention is a low titanium oxide composite containing a sulfate group and a nickel or nickel species in such low titanium oxide. Generally, since the lower titanium oxide of the present invention is obtained as a powdery solid, it is a composite in which nickel species or sulfate added in the manufacturing process remain therein.
本発明の低次酸化チタン又はその複合体は粉末状で空気に触れると酸素を吸収 する性質を有するため、 ニッケル種或いは硫酸根の除去が難しい。 純度の高い低 次二酸化チタンを得るには使用するニッケル種或いは硫酸根の量を少なくするこ とが好ましい。 硫酸根は、 必要に応じて無酸素の状態で水洗浄 ·乾燥によって除 去することができる。  Since the low-order titanium oxide or its composite of the present invention has a property of absorbing oxygen when it comes into contact with air in powder form, it is difficult to remove nickel species or sulfate groups. In order to obtain low-purity titanium dioxide of high purity, it is preferable to reduce the amount of nickel species or sulfate used. Sulfate can be removed by washing and drying with water in an oxygen-free condition, if necessary.
本発明の低次酸化チタン又はその複合体は、 ガス透過性のないプラスチック製 フィルムで造られたガスパリヤー性の優れた袋 (ガスバリヤ一袋) に空気と共に 装入すると、 通常、 室温下で比較的ゆっくりと空気中の酸素を吸収する。 酸素の 吸収量は、 基本的に水素還元の際に二酸化チタンの還元によって生成する水の量 の半分に相当する量である。 本発明の低次酸化チタン又はその複合体は酸素を吸 収した後に、 再度水素還元を行うと、 先と同様に酸素の吸収を繰り返す。 この事 実は二酸化チタン (Ti02) の還元による低次酸化チタン (TiO2-x) の生成と、 そ の酸素の吸収による二酸化チタンの再生が繰り返し起こるサイクルを意味するも のであり、 再利用が可能で環境に適する素材であるといえる。 本発明の低次酸化 チタンの酸素吸収量は、 上記の方法により簡単に求めることができる。 The low-order titanium oxide or the composite thereof of the present invention is provided together with air in a bag (one gas barrier bag) made of a plastic film having no gas permeability and having excellent gas barrier properties. When charged, they typically absorb oxygen in the air relatively slowly at room temperature. The amount of oxygen absorbed is basically equivalent to half the amount of water generated by the reduction of titanium dioxide during hydrogen reduction. When the lower titanium oxide or the composite thereof of the present invention absorbs oxygen and then performs hydrogen reduction again, the absorption of oxygen is repeated as before. And the generation of this thing actually low-order titanium oxide by reduction of titanium dioxide (Ti0 2) (TiO 2 -x ), playback of titanium dioxide due to the absorption of that oxygen is also to imply a recurring cycle, re-use It is a possible and environmentally friendly material. The oxygen absorption amount of the low order titanium oxide of the present invention can be easily obtained by the above method.
本発明の低次酸化チタン又はその複合体は、 通常 1 0 0から 6 0 0時間をかけ てゆっくりと酸素を吸収する。 しかし、 驚くべきことに硫酸根を含む本発明の低 次酸化チタン又はその複合体の場合には、 その中に塩基性物質、 例えばアンモニ ァ水、 炭酸ソーダまたは重炭酸ソーダ水溶液などの塩基性物質を加えると、 酸素 吸収の速度が急に早まり 2 0から 4 0時間程度で酸素の吸収を完了することがで きる。 この現象は恐らく本発明の低次酸化チタン又はその複合体中に含まれる硫 酸根が塩基性物質により中和されることにより酸素吸収が早まつたものと推定さ れる。  The low-order titanium oxide or its complex of the present invention absorbs oxygen slowly usually over 100 to 600 hours. However, surprisingly, in the case of the lower titanium oxide of the present invention or a complex thereof containing a sulfate group, a basic substance such as aqueous ammonia, aqueous sodium carbonate or aqueous sodium bicarbonate is added thereto. Then, the rate of oxygen absorption rapidly increases, and the absorption of oxygen can be completed in about 20 to 40 hours. This phenomenon is presumed to be due to premature oxygen absorption due to the neutralization of the sulfate group contained in the lower titanium oxide or its complex of the present invention by the basic substance.
本発明に使用する塩基性物質としては、 アルカリ金属および Zまたはアル力 リ土類金属の炭酸塩、 炭酸水素塩、 水酸化物、 例えば、 炭酸ナトリウム、 炭酸力 リウム、 炭酸カルシウム、 炭酸マグネシウム、 炭酸水素ナトリウム、 水酸化カリ ゥム、 水酸化ナトリウム、 水酸化マグネシウムなどが挙げられ、 それにアンモニ ァ、 炭酸アンモニゥム、 炭酸水素アンモニゥムなどが挙げられる。  Examples of the basic substance used in the present invention include carbonates, bicarbonates, hydroxides of alkali metals and Z or alkaline earth metals, for example, sodium carbonate, potassium carbonate, calcium carbonate, magnesium carbonate, carbonate Examples include sodium hydrogen, potassium hydroxide, sodium hydroxide, magnesium hydroxide, and the like, as well as ammonia, ammonium carbonate, and ammonium hydrogencarbonate.
低次酸化チタンまたはその複合体を塩基性物質で処理する方法としては、 塩基 性化合物を直接低次酸化チタンと混合する方法、 塩基性化合物を水に溶解させ、 その水溶液をスプレー等で低次酸化チタンの表面に噴霧する方法、 塩基性化合物 水溶液をシリカ粉などに坦持させてから低次酸化チタンに分散'混合させる方法、 塩基性化合物または塩基性化合物水溶液を加温したりして、 気体状にし、 低次酸 化チタンと接触させる方法などがあげられる。 低次酸化チタンと塩基性化合物と の混合は、 窒素ガス雰囲気等の酸素ガスのない雰囲気下で行なうのが好ましい。 上記の現象とそのメカニズムは未だ検討中の部分もあるが、 表面分析として知 られる X P Sなどの測定結果から次のように推定される。 すなわち、 Sanjines ら と Hermanらは夫々の論文の中で 4価のチタン原子で構成される高純度の二酸化 チタン (Ti02) の 4価チタン原子 (Ti4 + 2P2/3) に基づく結合エネルギーのシグナ ルとして、 458.9 eVの値を報告している (R. Sanjines, et. al., J. Appl. Phys. 75(6) 2945(1994).および、 G. S. Herman, et. al., Surface Science 447, 201(2000).) 。 また、 Iwakiらは Ti02 (チタン原子は 4価) 、 Ti203 (3価) 、 TiO ( 2価) 、 Ti (金 属原子、 0価) ) のようにチタンの原子価が低下するほどそのシグナルは低い値 に移行し、 金属チタン (0価) では 453.9 eVの値を示すことを報告している (M. Iwaki, et. al., Nuclear Instruments and Methods B4, 212(1990)、 および、 日本表面学会 編、 X線光電子分光法、 P— 218、 丸善 (1998).) 。 少量の硫酸根を含む二酸化チタ ンにおける X P Sのチタン原子のシグナルは後述する実施例 1の結果の如く 458.3eV 附近に観測され (図 1 ) 、 還元され易い状態にあり、 水素還元により生 じた低次酸化チタン (Ti02-x ) のシグナルは 458.1eV附近に観測されるところか ら (図 2 ) 、 4価のチタン原子から一部は 3価のチタンに還元され、 4価と 3価 のチタン原子の混在していることを示しているものと推定される。 さらに、 硫酸 根を含む低次酸化チタン又はその複合体は 4価のチタンに復帰する力が弱く酸素 吸収速度は遅いが、 硫酸根が中和によりその影響が解消され酸素吸収速度が早ま つたものと推定される。 As a method of treating the low-order titanium oxide or its complex with a basic substance, a method in which a basic compound is directly mixed with the low-order titanium oxide, a method in which the basic compound is dissolved in water, and the aqueous solution is subjected to a low-temperature method by spraying or the like. A method of spraying on the surface of titanium oxide, a method in which an aqueous solution of a basic compound is supported on silica powder or the like, and then dispersed and mixed with the lower titanium oxide, Examples include a method in which a basic compound or an aqueous solution of a basic compound is heated to be in a gaseous state, and is brought into contact with the titanium oxide having a lower degree. The mixing of the low order titanium oxide and the basic compound is preferably performed in an atmosphere without oxygen gas such as a nitrogen gas atmosphere. Although the above phenomena and their mechanisms are still under investigation, they can be estimated as follows from the measurement results of XPS, which is known as surface analysis. That, Sanjines et and Herman et al bond energy based on tetravalent titanium atom of tetravalent constructed high-purity titanium dioxide with titanium atoms in each of the papers (Ti0 2) (Ti 4 + 2P 2/3) Reported a value of 458.9 eV (R. Sanjines, et. Al., J. Appl. Phys. 75 (6) 2945 (1994). And GS Herman, et. Al., Surface Science 447, 201 (2000).). Further, Iwaki et al Ti0 2 (Titanium atom tetravalent), Ti 2 0 3 (3 valence), TiO (2-valent), Ti (metallic atoms, zero-valent) is the valence of titanium as) decreases The signal shifts to a lower value, and the value of titanium metal (0 valence) is reported to be 453.9 eV (M. Iwaki, et. Al., Nuclear Instruments and Methods B4, 212 (1990), And The Surface Society of Japan, X-ray photoelectron spectroscopy, P-218, Maruzen (1998).) The signal of the titanium atom of XPS in titanium dioxide containing a small amount of sulfate was observed at around 458.3 eV as shown in the results of Example 1 to be described later (Fig. 1), and it was easily reduced, and was generated by hydrogen reduction. Since the signal of low-order titanium oxide (Ti0 2-x ) is observed near 458.1 eV (Fig. 2), some of the tetravalent titanium atoms are reduced to trivalent titanium, and tetravalent and trivalent It is presumed to indicate that titanium atoms are mixed. In addition, lower titanium oxide or its complex containing sulfate has a weak ability to return to tetravalent titanium and has a slow oxygen absorption rate, but the effect of neutralization of sulfate is eliminated and the oxygen absorption rate is increased. It is presumed that.
本発明における還元処理に際しては、 特に望むならばアルミナあるいはシリカ などを併用してもよく、 また、 ニッケル以外の原子、 例えば、 コバルト、 鉄、 マ グネシゥム、 カルシウム、 アルミニウムなどの原子を必須成分とする化合物およ びノまたは金属をニッケル種とともに使用してもよい。 In the reduction treatment in the present invention, if desired, alumina or silica may be used in combination, and atoms other than nickel, for example, atoms such as cobalt, iron, magnesium, calcium, and aluminum are essential components. Compounds and Metals or metals may be used with the nickel species.
また、 本発明の低次酸化チタン又はその複合体は、 酸素を吸収して通常の二酸 化チタンに戻った後に、 再度不活性ガス雰囲気下で還元剤、 特に水素ガスにより 還元することにより、 再び容易に T i o 2 xの化学式で表される酸素原子の一部 脱離した低次酸化チタンとなり、 再び同程度の酸素吸収能を回復するという特徴 を有する。 従って、 本発明の低次酸化チタン又はその複合体は酸素吸収剤として 使用した場合には、 使用済みのものを還元することによって、 繰り返して使用す ることができる。 Further, the low-order titanium oxide or the composite thereof of the present invention is obtained by reducing oxygen with an reducing gas, particularly hydrogen gas, under an inert gas atmosphere after returning to normal titanium dioxide after absorbing oxygen. Once again, it becomes low-order titanium oxide desorbed partially from oxygen atoms represented by the chemical formula of Tio 2 x , and has the characteristic of recovering the same oxygen absorption capacity again. Therefore, when the low order titanium oxide or its complex of the present invention is used as an oxygen absorbent, it can be used repeatedly by reducing the used one.
このような本発明の低次酸化チタンまたはその複合体は、 これを酸素吸収剤と して使用した場合には、 従来から使用されている鉄系の酸素吸収剤と異なり、 水 がまったく関与しない場合にも鉄系の酸素吸収剤と同程度の優れた酸素吸収能を 有しており、 しかも金属探知機での誤動作や電子レンジ等での使用に問題を生じ ない。 また、 必要に応じて、 例えば塩基性物質を添加するなどの方法によって、 酸素の吸収速度を速めることもできる。 本発明の低次酸化チタンは、 無機化合物 であるため、 従来の有機化合物を使用した酸素吸収剤に見られる融解、 溶解、 燃 焼などのトラブルの心配も存在しないため安全性が高く、 品質保持剤として広い 用途に適用し得るものである。  When such a low-order titanium oxide or a composite thereof of the present invention is used as an oxygen absorbent, unlike a conventionally used iron-based oxygen absorbent, water does not participate at all. In this case, it has the same excellent oxygen absorption capacity as an iron-based oxygen absorbent, and does not cause any problem in malfunctioning with a metal detector or use in a microwave oven. If necessary, the rate of oxygen absorption can be increased by, for example, adding a basic substance. Since the low order titanium oxide of the present invention is an inorganic compound, there is no need to worry about problems such as melting, dissolving, and burning that occur with oxygen absorbers using conventional organic compounds, so high safety and high quality are maintained. It can be applied to a wide range of uses as an agent.
また、 アナ夕一ゼ型の二酸化チタンを出 ¾原料に用いた場合には、 光触媒作用 をも兼ね備えているので、 エチレン分解性、 抗菌性などの付加的な機能を有する 従来にない脱酸素剤、 鮮度保持剤を含む、 より一層広い用途の品質保持剤などに 用い得る低次酸化物を提供しうるものである。  In addition, when titanium dioxide of the analog type is used as an output material, it also has a photocatalytic action, so it has an additional function such as ethylene decomposability and antibacterial properties. The present invention can provide a low-order oxide that can be used as a quality preserving agent for a wider use, including a freshness preserving agent.
本発明の低次酸化チタン又はその複合体は、 酸素吸収剤、 品質保持剤などの用 途で金属製あるいはプラスチック製などの容器に充填、あるいはフィルムに担持、 内包した形で実用に供される。  The low order titanium oxide or its composite of the present invention is put to practical use in the form of being filled in a metal or plastic container for use as an oxygen absorber, a quality preserving agent, or the like, or carried on or contained in a film. .
さらにこれら酸素吸収剤などの製品には、 補助的な成分として、 シリカ、 モン モリ口ナイトなどの天然産の鉱物、活性白土などの加工された鉱物、合成シリカ、 ゼォライトなどの合成鉱物、 活性炭などの吸着剤あるいはこれらの物質に水を含 ませるなどの物質を必要に応じて使用してもよい。 また、 必要に応じアンモニア 水、 重炭酸ソーダあるいは炭酸ソ一ダなどの塩基性物質を酸素吸収の促進剤とし て、 本発明の特徴を損なわない範囲で併用することもできる。 In addition, these oxygen absorbers and other products contain silica, If necessary, use naturally occurring minerals such as molyenite, processed minerals such as activated clay, synthetic minerals such as synthetic silica and zeolite, adsorbents such as activated carbon, or substances such as those containing water. May be used. If necessary, a basic substance such as aqueous ammonia, sodium bicarbonate or sodium carbonate can be used in combination as an oxygen absorption accelerator within a range not to impair the features of the present invention.
【00 36】  [00 36]
次に実施例により本発明をさらに詳細に説明するが、 本発明は以下に示す実施 例に限定されるものではない。 なお、 実施例中、 「%」 は、 特別に記載しない限 り質量基準である。  Next, the present invention will be described in more detail by way of examples, but the present invention is not limited to the following examples. In Examples, “%” is based on mass unless otherwise specified.
実施例 1 : ' 1.1 酢酸ニッケルの含浸による二酸化チタン複合体 (1-2) の調製 Example 1: '1.1 Preparation of titanium dioxide composite (1-2) by impregnation with nickel acetate
堺化学工業株式会社より提供された硫酸根 (S04) 1 0. 0 %を含むアナ夕一 ゼ型の結晶構造を有する白色の二酸化チタン(1-1、比表面積 268.0m2/g)の 20. 0 g(25 Ommol)を磁性のシャーレ一に入れ、次いで酢酸ニッケル(Ni(CH3COO) 2·4Η20) 3. 1 g (1 2. 5 mmol) と水 20. O gの均一溶液を加えて、 よく 混合した後、一夜放置する。マツフル炉で 2 5 0° (:、 2. 5時間乾燥し、冷却後、 粉砕し、 硫酸根とニッケル種を含む二酸化チタン複合体 (1-2) [Ή02· (Ni(CH3COO)2)0.o5 、 MW:88.7、 硫酸根は分子量の計算に含めない] の 20. 4 g (88. 3 %) を得た。 この硫酸根とニッケル種を含む二酸化チタン複合体(1-2) は、 X線回折装置 (XRD) の測定結果からアナターゼ型の結晶構造を有すること が確かめられ、 X線光電子分光装置 (XPS) によるスペクトルの測定結果は図 1 に示す通りであって、 チタン原子の 2 Pに基づく結合エネルギーのシグナルが 458.29 eVに観測され、 4価のチタン原子 (Ti02) の標準値 458.9 eVから低エネ ルギー側にシフトしていることが認められた。 Sakai Chemical Industry sulfate radical (S0 4) which is provided from Ltd. 1 0.1 white having a crystal structure of Ana evening one peptidase type including 0% titanium dioxide (1-1, specific surface area 268.0m 2 / g) of 20. 0 g (25 Ommol) was placed in a Petri dish one magnetic, then nickel acetate (Ni (CH 3 COO) 2 · 4Η 2 0) 3. 1 g (1 2. 5 mmol) and water 20. O g Add a homogeneous solution, mix well, and leave overnight. Dry in a Matsufuru furnace at 250 ° (:, 2.5 hours, cool, pulverize, and titanium dioxide complex containing sulfate and nickel species (1-2) [Ή0 2 · (Ni (CH 3 COO) 2) 0 .o5, MW:. 88.7, sulfate group to give a 20. 4 g not included in the calculation of the molecular weight (88.3%) titanium dioxide composite including this sulfate group and nickel species (1- 2) was confirmed to have an anatase-type crystal structure from the measurement results of the X-ray diffractometer (XRD), and the spectrum measurement results by the X-ray photoelectron spectrometer (XPS) are as shown in Fig. 1. signal coupling energy based on 2 P of titanium atoms was observed at 458.29 eV, it has been found that shifted to a lower energy side from the standard value 458.9 eV tetravalent titanium atoms (Ti0 2).
なお、 X線回折装置 (XRD) はマックサイエンス社製、 全自動回折装置、 MX P3A を用い、 X 線光電子分光装置 (XPS) は日本電子株式会社製、 JPS9010MC を用いて X線光電子分光スペクトルを測定した。 The X-ray diffractometer (XRD) is a fully automatic diffractometer manufactured by Mac Science, MX With P 3A, X-ray photoelectron spectrometer (XPS) is manufactured by JEOL Ltd., it was measured by X-ray photoelectron spectroscopy spectrum with JPS9010MC.
1.2 二酸化チタン複合体 (1-2) の水素還元 1.2 Hydrogen reduction of titanium dioxide composite (1-2)
ステンレス製 1/8インチ管に圧力ゲージの付いたイナートガスライン、 同じく 水素ガスラインを、 温度計を付したステンレス製の内径 3 5 mm、 高さ 1 3 0m mの円筒形のステンレス製反応器に接続し、反応器の排出ガス用ステンレス製 1/8 インチ管ラインに組成分析用のガスクロマトグラム、 トラップ、 バックプレツシ ャ一バルブを付した反応装置を用意した。 この反応装置を用い、 上記の硫酸根と ニッケル種を含む二酸化チタン (1-2) の 5. 0 g (56. 4 mmol) を反応器内 に仕込んだ。 キヤリャガスとしてアルゴンガスを付加圧力 0.4MPa、 流速  A stainless steel 1 / 8-inch tube with an inert gas line with a pressure gauge and a hydrogen gas line are connected to a stainless steel cylindrical stainless steel reactor equipped with a thermometer and having a bore of 35 mm and a height of 130 mm. A connected reactor was prepared with a gas chromatogram for composition analysis, a trap, and a back pressure valve attached to a 1 / 8-inch stainless steel pipe line for exhaust gas from the reactor. Using this reactor, 5.0 g (56.4 mmol) of titanium dioxide (1-2) containing the above sulfate group and nickel species was charged into the reactor. Argon gas as carrier gas Additional pressure 0.4 MPa, flow rate
100ml/minで導入し、 加熱を開始した。 1 80 °Cの温度で水素ガスの付加圧力 0. 4MPa、 バックプレッシャーバルブのゲージ圧を 0.3MPaに設定し、 すなわち反 応装置内の圧力を 0.3MPaに保って、水素ガスの流速を 22ml/minで導入して還元 反応を開始し、 反応状況をガスクロマトグラムにより調べた。 1 80°Cで水素ガ スの導入を開始すると水素ガスが二酸化チタンの酸素原子を還元したことによる と推定される水の生成が認められた。 1 80°Cの温度で 60分を経過すると水の 生成量の低下がみられたため、 200°Cに昇温して水の生成量の低下するまで継 続し、 以後、 反応温度を 2 20°C、 24 Ot:, 260°Cと段階的に高めて合計 4 80分間 (8時間) 水素ガスを導入して還元反応を行った。 この間に生成した水 の量を積算すると硫酸根とニッケル種を含む二酸化チタン複合体 (1-2) [Τί02· (Ni(C¾COO)2)0.05、 分子量: 88.7] の 1グラム (1 1. 3 mmol) 当たり水 47. 8m l (2. 1 3 mmol , 0°Cの換算値) であった。 反応器を冷却した後バルブ を閉じ加圧状態で、 グローブボックス内に反応物を移し窒素ガスで完全に置換し てグローブボックス内の酸素濃度が 30 p pm以下に到達した後、 窒素ガス流通 下に酸素濃度を 5 0 p pm以下に保ちながら反応物 (1-3)を反応器から気密な二 つのプラスチック包装容器 (ガスバリヤ一袋) に分けて取り出した。 これを計量 し、 黒色の反応物 (1-3) の 4. 4 gを得た。 It was introduced at 100 ml / min and heating was started. (1) At a temperature of 80 ° C, the additional pressure of hydrogen gas was set to 0.4 MPa, and the gauge pressure of the back pressure valve was set to 0.3 MPa.In other words, the pressure in the reactor was kept at 0.3 MPa, and the flow rate of hydrogen gas was 22 ml / The reaction was started by introducing min, and the reaction was examined by gas chromatogram. When the introduction of hydrogen gas was started at 180 ° C, it was observed that hydrogen gas reduced the oxygen atoms of titanium dioxide to generate water. 1 After 60 minutes at a temperature of 80 ° C, a decrease in the amount of water produced was observed.The temperature was raised to 200 ° C and continued until the amount of water produced declined. ° C, 24 Ot :, gradually increased to 260 ° C, and a reduction reaction was performed by introducing hydrogen gas for a total of 480 minutes (8 hours). When integrating the amount of water generated during this titanium dioxide composite comprising the sulfate and nickel species (1-2) [Τί0 2 · ( Ni (C¾COO) 2) 0 05, molecular weight:. 88.7] 1 gram (1 Water was 47.8 ml (2.13 mmol, converted value at 0 ° C) per 1.3 mmol). After cooling the reactor, close the valve and pressurize, transfer the reactant into the glove box and completely replace it with nitrogen gas.After the oxygen concentration in the glove box reaches 30 ppm or less, the nitrogen gas flow While keeping the oxygen concentration below 50 ppm, the reactant (1-3) was Divided into three plastic packaging containers (one bag of gas barrier). This was weighed to obtain 4.4 g of a black reactant (1-3).
この二つのプラスチック袋に納められた反応物 (1—3)のうちの一つの、 反応物 (1-3) 2. 0 gを含むプラスチック包装容器 (ガスバリヤ一袋) に空気 5 0 0m l を導入し、その後の酸素濃度を測定した。その結果を図 3に示す。この結果から、 反応物 (1-3) は約 30日で酸素の吸収を終了し、 酸素の吸収量は 23. 8m l / g (1. 06mmo l Zg、 0°Cの換算値) であることが判明した。 この酸素吸 収量から算出した Xの値は 0. 1 88 (=1.06X2/11.3) であり、 T i〇2xで表 した場合に T i〇 . 81である酸化チタンが得られた。 この反応物 (1-3) は、 X線 回折装置 (XRD) の測定結果からアナターゼ型の結晶構造を有することが確かめ られた。 また、 この反応物 (1-3)の X線光電子分光スペクトル (XPS) の測定結果 を図 2に示す。 この結果から、 チタン原子の 2P軌道に基づく結合エネルギーの シグナルが還元前に 458.29eVであったものが 458.09 eVに観測されるところから、 4価のチタン原子の 1部が 3価のチタンに移行していると見られる。 これらの結 果から、 反応物 (1-3) は、 オリジナルの二酸化チタンの結晶構造を保持した本発 明の低次酸化チタン複合体 (TiC ^) であることが確かめられた。 グロ一ブポッ クスから取り出した際は黒色であった反応物 (1-3) は、 酸素を吸収した後、 淡い 灰色に変化した (1-4) 。 この酸素を吸収した淡い灰色の反応物 (1-4) は、 XRD の測定結果からアナターゼ型の結晶構造を有することが確認された。 One of the reactants (1-3) contained in these two plastic bags, 500 ml of air is placed in a plastic packaging container (one bag of gas barrier) containing 2.0 g of the reactant (1-3). After the introduction, the oxygen concentration was measured. Figure 3 shows the results. From this result, the reaction product (1-3) finished absorbing oxygen in about 30 days, and the amount of absorbed oxygen was 23.8 ml / g (1.06 mmol Zg, converted value at 0 ° C). It has been found. The value of X calculated from the oxygen absorption capacity is 0. 1 88 (= 1.06X2 / 11.3 ), T I_〇 2 - T I_〇 titanium oxide is 81 is obtained when table with x.. This reaction product (1-3) was confirmed to have an anatase-type crystal structure from the result of measurement with an X-ray diffractometer (XRD). Fig. 2 shows the measurement results of X-ray photoelectron spectroscopy (XPS) of the reaction product (1-3). From this result, it was observed that the signal of the binding energy based on the 2P orbital of the titanium atom was 458.29 eV before reduction, but was observed at 458.09 eV, and a part of the tetravalent titanium atom was transferred to trivalent titanium. It seems to be doing. From these results, it was confirmed that the reactant (1-3) was a low-order titanium oxide composite (TiC ^) of the present invention, which retained the original titanium dioxide crystal structure. The reactant (1-3), which was black when removed from the glove box, turned light gray after absorbing oxygen (1-4). The pale gray reactant (1-4) that absorbed this oxygen was confirmed to have an anatase-type crystal structure by XRD measurement.
なお、 X線回折装置 (XRD) はマックサイエンス社製、 全自動回折装置、 MX P3Aを用い、 X線光電子分光装置 (XPS) は日本電子株式会社製、 JPS9010MC を用いて X線光電子分光スぺクトルを測定した。 酸素濃度の分析には PBI- Dansensor A/S社製、 酸素濃度計 Check Mate 02/C02を使用した。 以下の実施例 においても同じ装置を用いて測定した。 The X-ray diffractometer (XRD) uses a full-automatic diffractometer MX P 3A manufactured by Mac Science, and the X-ray photoelectron spectrometer (XPS) uses JPS9010MC manufactured by JEOL Ltd. The vector was measured. For the analysis of oxygen concentration, an oxygen concentration meter Check Mate 02 / C02 manufactured by PBI-Dansensor A / S was used. In the following examples, the measurement was performed using the same apparatus.
1.3 低次酸化チタン (1-3) へアンモニア水の添加による酸素吸収の促進 上記の反応物、 すなわち本発明の低次酸化チタン (1-3) 2. 4 gを、 気密なプ ラスチック包装容器 (ガスバリヤ一袋) に取出す際に、 少量の脱脂綿を同時に袋 内の反応物に触れない状態で収め、 ヒートシールにより密封し 600m lの空気 を封入した。 12. 5%濃度のアンモニア水 1 gを袋内の脱脂綿に注射器で注入 した。 なお、 封入の際には、 ゴムテープを袋に貼り付け注入の際における外気の 混入を防いだ。 脱脂綿の部分を外部から 1 5分間暖めてアンモニアガスを気化さ せ、 5時間放置した後における酸素吸収量を測定したところ、酸素吸収量は 21. lm l Zg (25°C) 、 24時間後における累積の酸素吸収量は 25. 8m l / g (25°C) に達し、 この値は 48時間経過した後も同じであった。 また、 比較 のため反応物 (1-3)の代りに還元処理しないアナ夕一ゼ型ニ酸化チタンを用い、 全 く同様にアンモニア水 1 gを加えて上記と同じ試験を行ったが、 空気中の酸素濃 度の変化はなく酸素の吸収は認められなかった。 1.3 Promotion of oxygen absorption by addition of ammonia water to low order titanium oxide (1-3) When taking out 2.4 g of the above reactant, that is, 2.4 g of the lower titanium oxide (1-3) of the present invention into an airtight plastic packaging container (one bag of gas barrier), a small amount of absorbent cotton is simultaneously added to the reactant in the bag. Was sealed without touching, sealed by heat sealing, and sealed with 600 ml of air. 1 g of 5% ammonia water was injected into absorbent cotton in the bag with a syringe. At the time of encapsulation, rubber tape was attached to the bag to prevent outside air from being mixed during injection. The absorbent cotton was warmed from the outside for 15 minutes to evaporate the ammonia gas, and the oxygen absorption after leaving it for 5 hours was measured.The oxygen absorption was 21.lm l Zg (25 ° C) and after 24 hours The cumulative oxygen uptake at reached 25.8 ml / g (25 ° C), which was the same after 48 hours. For comparison, the same test as above was carried out by using 1 g of aqueous ammonia in the same manner as above except that the reaction product (1-3) was replaced with an unreduced ana-analyze-type titanium dioxide, and the same procedure was followed by adding 1 g of aqueous ammonia. There was no change in oxygen concentration and no oxygen absorption was observed.
上記のように、 反応物 (1-3)に空気を封入しそのまま放置した場合には酸素を吸 収するのに 30日余りを要するが、 塩基性物質であるアンモニア水の添加により 酸素吸収が促進され、 1日から 2日 (24から 48時間) 程度で同程度の酸素吸 収量に達することが分った。  As described above, if air is sealed in the reactant (1-3) and left as it is, it takes more than 30 days to absorb oxygen, but the addition of basic aqueous ammonia reduces oxygen absorption. It was found to be accelerated and to reach the same level of oxygen absorption in about 1 to 2 days (24 to 48 hours).
1. 酸素を吸収した反応物 (1-4) の光触媒作用によるエチレンガスの分解  1. Decomposition of ethylene gas by photocatalysis of oxygen-absorbed reactant (1-4)
酸素を吸収した反応物 (1-4) の 0. l gを内径 8. 5 cm (57 cm2) のガ ラス製シャーレに採り 3 gの純水を加えて均一に混合し、 乾燥して薄膜状にし、 後述する蛍光灯 (BL) を 3時間照射して反応物 (1-4)の表面を清浄な状態にした。 このシャーレをテドラーバッグ(Tedlarbags、 材質 フッ素樹脂、 サイズ 170mm X 250mm, 井内盛栄堂製) に収め、 熱シールする。 袋内の空気をアルゴン Z酸素 = 80X2 0の混合ガスで置換し、 次いでエチレンガス 1 00 0 p pmを注射器 で注入した。 封入の際には、 ゴムテープを袋に貼り付け注入の際における外気の 混入を防いだ。 この試料などを収めたテドラ一バッグを光照射箱に収め、 40ヮ ット蛍光灯 (ブラックライト (BL)、 0. lmW/cm2 (光の波長 436nm)、 1 mW/cm2 (光の波長 365nm)) で照射したところ、 5時間経過後で当初のエヂ レンガス濃度が 1 O O O p pmから 500 p pm以下に半減した。 従って、 酸素 吸収後の反応物 (1-4)は優れた光触媒作用を有することがわかる。 0.1 g of the oxygen-absorbed reactant (1-4) is placed in a glass petri dish with an inner diameter of 8.5 cm (57 cm 2 ), 3 g of pure water is added, mixed uniformly, dried and thin film Then, the surface of the reaction product (1-4) was cleaned by irradiation with a fluorescent lamp (BL) described later for 3 hours. This petri dish is placed in a Tedlarbag (Tedlarbags, made of fluororesin, size 170mm X 250mm, manufactured by Inuchi Seieido) and heat-sealed. The air in the bag was replaced with a mixed gas of argon Z oxygen = 80 × 20, and then 100,000 ppm of ethylene gas was injected with a syringe. At the time of encapsulation, rubber tape was attached to the bag to prevent outside air from entering during injection. Place the Tedlar bag containing this sample etc. in the light irradiation box, and Irradiated with a black fluorescent light (black light (BL), 0.1 lmW / cm 2 (light wavelength 436 nm), 1 mW / cm 2 (light wavelength 365 nm)), the original ethylene gas after 5 hours The concentration was halved from 1 OOO p pm to 500 p pm or less. Therefore, it is found that the reactant (1-4) after oxygen absorption has an excellent photocatalytic action.
1.5 酸素を吸収した反応物 (1-4) より低次酸化チタンの再生とその酸素吸収1.5 Regeneration of lower order titanium oxide from oxygen-absorbed reactant (1-4) and its oxygen absorption
1.1 で調製したアナ夕ーゼ型の硫酸根とニッケル種を含む二酸化チタン (1-2) の 5. O gを用い、 前記 1.1および 1.2に記載したと同様の方法で合成した反応 物 (1-3)の酸素を吸収させた淡い灰色の反応物 (1-4) の 3. O gを出発原料とし て還元反応装置に仕込んだ。 キヤリャガスとしてアルゴンガス 10 Oml/min、 水 素ガス 14ml/minの条件で再還元を行い、 反応物 (1_3) に相当する黒色の反応 物 (l-3b) 2. 4 gを得た。 この反応物 (l-3b)、 すなわち再生された低次酸化 チタンの酸素吸収量の測定結果は 24. 3mlZg (1. 08 mmol/g, 0°C換 算値) であった。 この結果より算出した Xの値は 0. 1 92 (= 1.08X2/11.3) であり、 これは T i 02xで表した場合に T i 81である低次酸化チタンであ り、 酸素吸収前の反応物 (1-3)が再生されたことが確認された。 The reaction product (1) was synthesized in the same manner as described in 1.1 and 1.2 above using 5.O g of titanium dioxide (1-2) containing an anase type sulfate and a nickel species prepared in 1.1. As a starting material, 3. Og of a pale gray reactant (1-4) that absorbed oxygen in -3) was charged into a reduction reactor. Re-reduction was carried out under the conditions of a carrier gas of argon gas at 10 Oml / min and hydrogen gas at 14 ml / min to obtain 2.4 g of a black reactant (l-3b) corresponding to the reactant (1_3). The measurement result of the oxygen absorption amount of this reaction product (l-3b), that is, the regenerated lower titanium oxide was 24.3 mlZg (1.08 mmol / g, converted value at 0 ° C). The value of X calculated from this result is 0.192 (= 1.08X2 / 11.3), which is a lower titanium oxide that is T i 81 when expressed as T i 0 2 —x , It was confirmed that the reactant (1-3) before absorption was regenerated.
1.6 低次酸化チタン (l-3b) へ炭酸ナトリウムの添加による酸素吸収の促進 1.6 Promotion of oxygen absorption by addition of sodium carbonate to low titanium oxide (l-3b)
1.5にて得た反応物、 すなわち低次酸化チタン (l-3b) 1. 4 gをガスバリヤ一 袋に入れ、 併せて炭酸ナトリウム (Na2C03) 0. 7 gを水 2 gに溶解し、 更に合 成シリカ (日本シリカ工業株式会社製のニップシール NS - K) の l gを加えて調 製した均一混合物の 3. 7 gを伺じガスバリヤ一袋に加え、 ヒートシールにより 密封し、 35 Om 1の空気を封入した。 1時間放置した後における酸素吸収量は 12m l Zg (25°C) 、 24時間後における累計の酸素吸収量は 20. 8m l Zg (25°C) に達し、 この値は 48時間後も同じであった。 The reaction product obtained in 1.5, i.e. placed lower titanium oxide (l-3b) 1. 4 g in a bag gas barrier, combined sodium carbonate (Na 2 C0 3) 0. 7 g was dissolved in water 2 g and Further, 3.7 g of the homogeneous mixture prepared by adding 1 g of synthetic silica (Nip Seal NS-K manufactured by Nippon Silica Industry Co., Ltd.) was added to one bag of gas barrier, sealed by heat sealing, and sealed at 35 Om 1 air was enclosed. The oxygen absorption after standing for 1 hour reaches 12 ml Zg (25 ° C), the cumulative oxygen absorption after 24 hours reaches 20.8 ml Zg (25 ° C), and this value remains the same after 48 hours Met.
上記のように、 反応物に空気を封入しそのままの放置した場合には 30日余り を要する酸素吸収が、 塩基性物質の添加により促進されたことがわかった。 実施例 2 : As described above, it was found that when air was sealed in the reaction product and left as it was, oxygen absorption, which took over 30 days, was promoted by the addition of the basic substance. Example 2:
2.1 酢酸ニッケルの含浸による二酸化チタン複合体 (2-2) の調製  2.1 Preparation of titanium dioxide composite (2-2) by impregnation with nickel acetate
堺化学工業株式会社より提供された硫酸根を含むアナターゼ型の結晶構造を有 する白色の二酸化チタン CS PM (2-1) [比表面積 120m2/g、 蛍光 X線による硫 黄 (S) の分析値 2.68%であり、 硫酸根への換算値 8.0%] の 20. 0 g (2 50 mmol) を磁性のシャーレ一に入れ、 次いで酢酸ニッケル [Ni(CH3COO)2'4H20]White titanium dioxide with anatase-type crystal structure containing sulfate groups provided by Sakai Chemical Industry Co., Ltd. CS PM (2-1) [Specific surface area 120 m 2 / g; Analytical value 2.68%, converted to sulfate group 8.0%] of 20.0 g (250 mmol) was placed in a magnetic dish, and then nickel acetate [Ni (CH 3 COO) 2 '4H 20 ]
3. 1 (1 2. 5 mmol) と水 1 9. 2 gの均一溶液を加えて、 よく混合した後、 一夜放置した。 マツフル炉で 2 50°Cで 2. 0時間乾燥し、 冷却後、 粉碎し、 硫 酸根とニッケル種を含む二酸化チタン複合体 (2-2) [TiO2-Ni(CH3COO)2)0.05 、 MW:88.7、 硫酸根は分子量の計算に含めない] の 20. 8 g (8 9. 7 %) を得 た。 この硫酸根とニッケル種を含む二酸化チタン複合体 (2-2) は、 XRD の測定 結果からアナターゼ型の結晶構造を有することが確かめられ、 XPSによるスぺク トルの測定結果は、チタン原子の 2Pに基づく結合エネルギーのシグナルは 458.42 eVに観測され、 4価のチタン原子 (Ti02) の標準値 458.9 eVから低エネルギー 側にシフトしていることが認められた。 A homogeneous solution of 3.1 (12.5 mmol) and 19.2 g of water was added, mixed well, and left overnight. Dried in a Matsufuru furnace at 250 ° C for 2.0 hours, cooled, pulverized, and a titanium dioxide complex containing sulfate and nickel species (2-2) [TiO 2 -Ni (CH 3 COO) 2 ) 0 . 0 5, MW: 88.7, sulfate group to give a 20. 8 g of not included in the calculation of the molecular weight (8 9.7%). The titanium dioxide complex (2-2) containing the sulfate and nickel species was confirmed to have an anatase-type crystal structure by XRD measurement. The XPS spectrum measurement showed that the titanium atom signal coupling energy based on 2P is observed 458.42 eV, that is shifted to the low energy side from the standard value 458.9 eV tetravalent titanium atoms (Ti0 2) was observed.
2.2二酸化チタン複合体 (2-2) の水素還元 2.2 Hydrogen reduction of titanium dioxide composite (2-2)
実施例 1と同じ反応装置を用い、 上記の硫酸根とニッケル種を含む二酸化チタ ン複合体 (2-2) の 5. 0 g (5 6. 4 mmol) を反応器内に仕込んだ。 イナート ガスとして窒素ガスを付加圧力 0. 2MPa、 流速 100ml/minで導入し、 240 °C の温度に加熱し水素ガスの付加圧力 0. 4MPa、 バックプレッシャーバルブのゲ 一ジ圧を 0. lMPaに設定、 すなわち反応装置内の圧力を 0. lMPaに保って、 水素ガスの流速を 22ml/minで導入して還元反応を開始し、 反応状況をガスクロ マトグラムにより調べた。 2 3 5 から 240°Cの反応温度で水素ガスの導入を 開始すると水素ガスが二酸化チタンの酸素原子を還元したことによると推定され る水の生成が認められた。 合計 320分間水素ガスを導入して反応を終了した。 この間に生成した水の量を積算すると硫酸根とニッケル種を含む二酸化チタンUsing the same reactor as in Example 1, 5.0 g (56.4 mmol) of the above titanium dioxide complex (2-2) containing a sulfate group and a nickel species was charged into the reactor. Nitrogen gas was introduced as inert gas at an additional pressure of 0.2 MPa and a flow rate of 100 ml / min, and heated to a temperature of 240 ° C to add an additional pressure of hydrogen gas of 0.4 MPa and a pressure gauge of the back pressure valve of 0.1 MPa. The reduction reaction was started by setting, that is, keeping the pressure in the reactor at 0.1 MPa, and the flow rate of hydrogen gas was introduced at 22 ml / min, and the reaction state was examined by gas chromatogram. When the introduction of hydrogen gas was started at a reaction temperature of 235 to 240 ° C, the formation of water presumably due to the hydrogen gas reducing the oxygen atoms of titanium dioxide was observed. The reaction was terminated by introducing hydrogen gas for a total of 320 minutes. By integrating the amount of water generated during this period, titanium dioxide containing sulfate and nickel species
[TiO2'(Ni(C¾COO)2)0.05、 分子量: 88.7] の 1グラム (1 1. 3 mmol) 当たり水 49. 5m l (2. 2 1 mmoL 0°Cの換算値) であった。 反応器を冷却した後バ ルブを閉じ加圧状態で、 グローブボックス内に反応物を移し窒素ガスで完全に置 換してグローブボックス内の酸素濃度が 3 0 p pm以下に到達した後、 窒素ガス 流通下に酸素濃度を 5 0 p pm以下に保ちながら反応物 (2-3)を反応器から気密 な二つのプラスチック包装容器 (ガスバリヤ一袋) に分けて取り出した。 これを 計量し、 黒色の反応物 (2-3) の 4. 3 gを得た。 [TiO 2 '(Ni (C¾COO ) 2) 0 05, molecular weight:. 88.7] One gram of (1 1. 3 mmol) of water per 49. 5m l (2. conversion value of 2 1 mmoL 0 ° C) met Was. After cooling the reactor, close the valve and pressurize, transfer the reactant into the glove box and completely replace it with nitrogen gas until the oxygen concentration in the glove box reaches 30 ppm or less. The reactant (2-3) was taken out of the reactor into two airtight plastic packaging containers (one bag of gas barrier) while maintaining the oxygen concentration at 50 ppm or less under gas flow. This was weighed to obtain 4.3 g of a black reactant (2-3).
この二つのプラスチック袋に納められた反応物 (1-3)のうちの一つの、 反応物 (2-3)の 2. 4 gを含むガスバリヤ一袋に空気 60 Om 1を導入し、 30日余り後 の酸素濃度を測定した結果から、 反応物 (2-3) は 22. 6 m 1 /g (1. 0 1 mmol/g、 0°Cの換算値) の酸素を吸収していることが判明した。 酸素ガス吸収量 から算出した Xの値は 0. 1 8 (= 1.01X2/11.3) であり、 T i〇2xで表した 場合に T I O L 82である酸化チタンを得た。 この反応物 (2-3) は XRDの測定結 果からアナターゼ型の結晶構造を有することが確かめられ、 XPSのスぺクトルか らチタン原子の 2Pに基づく結合エネルギーのシグナルが 457.83 eVに観測され、 4価のチタン原子のかなりの部分が 3価のチタンに移行していると見られる。 こ れらの結果から、 反応物 (2-3) は、 オリジナルの二酸化チタンの結晶構造を保持 した本発明の低次酸化チタン複合体 (TiOi.82) であることが確かめられた。 One of the reactants (1-3) contained in these two plastic bags, 60 Om 1 of air was introduced into one gas barrier bag containing 2.4 g of the reactant (2-3) for 30 days. From the result of measuring the oxygen concentration after the surplus, the reactant (2-3) has absorbed 22.6 m 1 / g (1.01 mmol / g, converted value at 0 ° C). There was found. The value of X calculated from the oxygen gas absorption amount is 0. 1 8 (= 1.01X2 / 11.3 ), T I_〇 2 - to obtain a titanium oxide which is TIOL 82 when expressed by x. XRD measurement confirmed that this reaction product (2-3) had an anatase-type crystal structure.A XPS spectrum showed a binding energy signal based on the 2P of the titanium atom at 457.83 eV. It can be seen that a significant portion of the tetravalent titanium atoms have migrated to trivalent titanium. From these results, it was confirmed that the reactant (2-3) was a low-order titanium oxide composite (TiOi.82) of the present invention, which retained the original titanium dioxide crystal structure.
また、 グローブボックスから取り出した際は黒色であった反応物 (2-3) は、 酸 素を吸収した後淡い灰色に変化した (2-4) 。 この酸素を吸収した淡い灰色の反応 物 (2-4) は、 XRDの測定結果からアナターゼ型の結晶構造を有することが確認 され、 もとの結晶構造の酸化チタン (Ti02) が再生していることがわかった。 2.3 低次酸化チタン (2-3) へアンモニア水の添加による酸素吸収の促進 The reactant (2-3), which was black when removed from the glove box, turned light gray after absorbing oxygen (2-4). Pale gray reactant having absorbed oxygen (2-4), it was confirmed to have a crystal structure of anatase type from the measurement results of XRD, titanium oxide of the original crystal structure (Ti0 2) is playing I knew it was there. 2.3 Promotion of oxygen absorption by addition of ammonia water to low order titanium oxide (2-3)
反応物、 すなわち本発明の低次酸化チタン複合体 (2-3) 1. 9 gを、 気密なプ ラスチック包装容器 (ガスバリヤ一袋) に取出す際に、 少量の脱脂綿を同時に袋 内に反応物に触れない状態で収め、密封し、 47 5m lの空気を封入した。 1 2. 5 %濃度のアンモニア水 0. 8 gを袋内の脱脂綿に注射器で注入した。 注入の際 には、 ゴムテープを袋に貼り付け注入の際における外気の混入を防いだ。 脱脂綿 の部分を外部から 1 5分間、 暖めてアンモニアガスを気化させ、 24時間放置し た後における酸素吸収量を測定したところ 2 1. 8m l Zgであり、 48時間後 における合計の酸素吸収量は 22. 7m l Zgであった。 また、 比較のためアナ ターゼ型ニ酸化チタンを反応物の代りに用い、 全く同じアンモニア水を加えて上 記と同じ試験を行ったが、 空気中の酸素濃度の変化はなく酸素の吸収は認められ なかった。 1.9 g of the reactant, that is, the low order titanium oxide composite (2-3) of the present invention, was placed in an airtight mold. A small amount of cotton wool was simultaneously placed in the plastic packaging container (one bag of gas barrier) without touching the reactants, sealed, and sealed with 475 ml of air. 0.8 g of a 12.5% aqueous ammonia solution was injected with a syringe into absorbent cotton in the bag. At the time of injection, rubber tape was attached to the bag to prevent outside air from entering during injection. The absorbent cotton was heated from the outside for 15 minutes to evaporate ammonia gas, and the amount of oxygen absorbed after standing for 24 hours was 21.8 ml Zg.The total amount of oxygen absorbed after 48 hours Was 22.7 ml Zg. For comparison, anatase-type titanium dioxide was used in place of the reactant, and exactly the same test was performed by adding the same ammonia water.However, there was no change in the oxygen concentration in the air and oxygen absorption was observed. I couldn't.
以上のように、 反応物 (2-3)に空気を封入しそのまま放置した場合には酸素を吸 収するのに 3 0日余りを要するが、 塩基性物質であるアンモニア水の添加により 酸素吸収が促進され、 1日から 2日程度で同程度の酸素吸収量に達することが分 つた。  As described above, if air is sealed in the reactant (2-3) and left as it is, it takes more than 30 days to absorb oxygen.However, the addition of basic aqueous ammonia to absorb oxygen It was found that the same amount of oxygen absorption was reached in about 1 to 2 days.
2.4酸素を吸収した反応物 (2-4) の光触媒作用によるエチレンガスの分解  2.4 Decomposition of ethylene gas by photocatalysis of reactant (2-4) that absorbed oxygen
酸素を吸収した反応物 (2-4) の 0. l gを用いて、 実施例 1に記載したと同じ 方法でエチレンガスの分解を試験した結果、 5時間で当初の 1 000 p pmから 500 p pm以下の濃度に半減した。  Using 0.1 lg of the oxygen-absorbed reactant (2-4), the decomposition of ethylene gas was tested in the same manner as described in Example 1. The concentration was reduced by half to below pm.
2.5酸素を吸収した反応物 (2-4) からの低次酸化チタンの再生とその酸素吸収 2.5 Regeneration of low order titanium oxide from oxygen-absorbed reactant (2-4) and its oxygen absorption
2.1 で調製したアナターゼ型の硫酸根とニッケル種を含む二酸化チタン (2-2) の 5. 0 gを用い、 2.1および 2.2 に記載したと同じ還元装置と方法で合成した 反応物 (2-3)の酸素を吸収した淡い灰色の反応物 (2-4) の 3. 0 gを出発原料と して還元反応装置に仕込んだ。 キヤリャガスとして窒素ガス 1 0 0ml/min、 水素 ガス 14ml/minの条件で再還元を行い、 反応物 (2_3) に相当する黒色の反応物 (2-3 b) 2. 3 gを得た。 この反応物 (2-3b;)、 すなわち再生された低次酸化チ タンの酸素吸収量の測定結果は 2 3. lm l Zg (1. 0 3 mmol/g, 0°C換算値) であった。 この結果より算出した Xの値は 0. 1 82 (= 1.03X2/11.3) であり、 これは T i 02_xで表した場合に T i O 82である低次酸化チタンであり、酸素 吸収前の反応物 (2-3)が再生されたことが確認された。 Using 5.0 g of titanium dioxide (2-2) containing an anatase-type sulfate and a nickel species prepared in 2.1, the reaction product (2-3) was synthesized by the same reduction apparatus and method as described in 2.1 and 2.2. (3) 3.0 g of the pale gray reactant (2-4) that absorbed oxygen was charged to the reduction reactor as a starting material. Re-reduction was performed under the conditions of nitrogen gas 100 ml / min and hydrogen gas 14 ml / min as carrier gas, and 2.3 g of a black reactant (2-3b) corresponding to the reactant (2_3) was obtained. This reactant (2-3b;), ie, the regenerated The measurement result of the oxygen absorption amount of the tan was 23. 3 lm l Zg (1.03 mmol / g, converted value at 0 ° C). The value of X calculated from this result is 0.182 (= 1.03X2 / 11.3), which is a lower titanium oxide that is T i O 82 when expressed as T i 0 2 _ x , It was confirmed that the reactant (2-3) before absorption was regenerated.
比較例 1 : Comparative Example 1:
堺化学工業株式会社製のアナ夕一ゼ型結晶構造を有する白色の二酸化チタン SSP25 (Cl-1、 MW79.9、 粒子径 9nm、 比表面積 270m2/g) の 3. 0 g (3 7. 5mmo 1 ) を実施例 1に記載したと同じステンレス製の還元装置に仕込んだ。 キヤリャガスとしてアルゴンガス 1 0 Oml/min、水素ガス 14 ml/minの条件で、 300°Cから 3 50°C、 400°C、 450 °Cと段階的に反応温度に高めて還元を 合計 7時間行ったところ、 その間に合計 4. 5m 1 /g (0. 2 mmol) の水の 生成が認められた。 これを実施例 1と同様にしてグローブボックス内から取り出 したところ、 褐色を呈する反応物 (C1-3)の 2. 3 gを得た。 この反応物 (C1-3)の 酸素吸収量の測定結果は僅かに 0. 8 m 1 Zg ( 0. 04 mmoL 0 °C換算値) であった。 この結果より算出した Xの値は 0. 00 6 (=0.04X2/12.5) であり、 T i 02_xで表した場合に T i Ox. 994である酸化チタンであり、 硫酸根及び二 ッケル種を含まない二酸化チタンを使用した場合には、 原料の二酸化チタンは極 めてわずかしか還元されていなかった。 3.0 g (37.5 mmo) of white titanium dioxide SSP25 (Cl-1, MW79.9, particle size 9 nm, specific surface area 270 m2 / g) with an analog-type crystal structure manufactured by Sakai Chemical Industry Co., Ltd. 1) was charged into the same stainless steel reduction device as described in Example 1. Under the conditions of argon gas 10 Oml / min and hydrogen gas 14 ml / min as carrier gas, the reaction temperature is increased stepwise from 300 ° C to 350 ° C, 400 ° C, and 450 ° C for a total reduction of 7 hours. During that time, a total of 4.5 m 1 / g (0.2 mmol) of water was found to be produced. This was taken out of the glove box in the same manner as in Example 1 to obtain 2.3 g of a brown reactant (C1-3). The measurement result of the oxygen absorption amount of this reaction product (C1-3) was slightly 0.8 m 1 Zg (equivalent to 0.04 mmoL at 0 ° C). The value of X calculated from this result is 0. 00 6 (= 0.04X2 / 12.5 ), a T i O x. 994 titanium oxide is when expressed in T i 0 2 _ x, and sulfate radical When titanium dioxide containing no nickel species was used, the raw material titanium dioxide was reduced very little.
比較例 2 : Comparative Example 2:
昭和夕イタニゥム株式会社製のアナ夕一ゼ型結晶構造を有する白色の二酸化チ タン: F6 (C2-l、 MW79.9、 粒子径 15nm、 比表面積 95m2/g) の 1 6. 0 g (2 00. 3 mmol) を石英製の舟形の皿にはかりとる。 この舟形の皿を電気炉に移 し、 無酸素雰囲気下に 80 の温度で 2. 5時間加熱した。 その後、 これを室 温 (2 5°C) に冷却して反応物 (C2-3) を得た。 この反応物 (C2-3) を機密なプ ラスチック包装容器 (ガスバリヤ一袋) に移し、 この中に空気 20 Om 1を導入 し、 20日放置した後に酸素吸収量を測定した。 その結果は、 酸素吸収量が 0. 25m l /g (0. 0 lmmol/g) であることが判明した。 この結果より算出した Xの値は 0. 002 (= 0.01X2/12.5) であり、 T i〇 2_xで表した場合に T i O !. 998である酸化チタンであり、 無酸素雰囲気下で二酸化チタンを加熱した場合 にも、 原料の二酸化チタンはほとんど還元されないことがわかった。 16.0 g (2%) of F6 (C2-l, MW79.9, particle size 15 nm, specific surface area 95 m2 / g ) (0.00.3 mmol) in a boat-shaped dish made of quartz. The boat-shaped dish was transferred to an electric furnace and heated at a temperature of 80 for 2.5 hours in an oxygen-free atmosphere. Then, this was cooled to room temperature (25 ° C) to obtain a reaction product (C2-3). Transfer this reaction product (C2-3) to a confidential plastic packaging container (one bag of gas barrier), and introduce 20 Om1 of air into it. After standing for 20 days, the amount of oxygen absorbed was measured. As a result, it was found that the oxygen absorption amount was 0.25 ml / g (0.0 lmmol / g). The value of X calculated from this result is 0.002 (= 0.01X2 / 12.5), which is titanium oxide that is T i O!. 998 when expressed as T i 〇 2 _ x , under an oxygen-free atmosphere. It was found that even when the titanium dioxide was heated in, the raw material titanium dioxide was hardly reduced.
実施例 3 ; Example 3;
3.1 硝酸ニッケルの含浸による二酸化チタン複合体の調製  3.1 Preparation of titanium dioxide composite by impregnation with nickel nitrate
堺化学工業株式会社製のアナタ一ゼ型ニ酸化チタン CSPM (3-1) [Ti02、 比表面 積 115m2/g、 蛍光 X線による硫黄 (S) の分析値 1.6%であり、 硫酸根への換算 値 4.8%] の 1 0. O g (1 2 5. 2 mmol) を、 関東化学株式会社製の試薬特級 の硝酸ニッケル (Π) 6水和物 [ (Ni(N03)2* 6H20、 分子量: 290.79] の 1. 8 g (6. 2 mmol) を 7. 3 gのイオン交換水で希釈して調製した 20 %濃度の水 溶液と共に、 ビーカ一内でよく混合した後に磁性のシャレーに移す。 1日放置し て自然乾燥した後、電気炉で 2 50°Cの温度で 2. 5時間乾燥した。冷却した後、 塊状の乾燥物を乳鉢でよく粉碎し、 5モルパ一セントの硝酸ニッケルを含む硫酸 根とニッケル種を含む二酸化チタン複合体 (3-2) [ (Ti02 - (Ni(N03)2) 0.05、 分子量: 89.0、 硫酸根は分子量の計算に含めない) の 9. l gを得た。 この硫酸 根とニッケル種を含む二酸化チタン複合体 (3-2) は、 X線回折装置 (XRD) の測 定結果からアナターゼ型の結晶構造を有することが確かめられた。 Sakai Chemical Industry ANATA one peptidase type titanium dioxide CSPM (3-1) Co., Ltd. [Ti0 2, specific surface area 115m 2 / g, were analytical value 1.6% of sulfur (S) by X-ray fluorescence, sulfate radical 1 0. O g (1 2 5. 2 mmol) and Kanto Chemical Co., Ltd. of special grade of nickel nitrate conversion 4.8% value of the ([pi) 6 hydrate [(Ni (N0 3) 2 * 6H 2 0, molecular weight: 290.79] 1. with 8 g (6. 2 mmol) 7. water solution of 20% strength was prepared by dilution with ion-exchanged water 3 g of, after mixing well beaker within one Leave it in a magnetic chalet, allow it to dry naturally for 1 day, and then dry it in an electric furnace for 2.5 hours at a temperature of 250 ° C. After cooling, pulverize the lump of dried material in a mortar, one cent titanium dioxide composite comprising the sulfate and nickel species comprising nickel nitrate (3-2) [(Ti0 2 - (Ni (N0 3) 2) 0 05, molecular weight:. 89.0, computation of the sulfate molecular weight 9 lg was obtained. Titanium dioxide composite comprising the sulfate and nickel species (3-2), it was confirmed to have a crystal structure from a measurement result of the anatase X-ray diffractometer (XRD).
3.2二酸化チタン複合体 (3-2) の水素還元 3.2 Hydrogen reduction of titanium dioxide composite (3-2)
実施例 1と同じ装置、 同様の方法を用い、 上記の硫酸根とニッケル種を含む二 酸化チタン複合体 (3-2)の 3. O g (3 3. 7 mmol) を反応器内に仕込む。 ァルゴ ンガスを付加圧力 0.4MPa、 流速 100ml/minで導入し、 バックプレッシャーゲー ジ圧を 0.3MPaに設定、すなわち反応装置内の圧力を 0.3MPaに保って 450°Cの 温度で 3. 0時間焼成する。 アルゴンガスの導入を継続して 20 0°Cの温度に放 冷後、 水素ガスの付加圧力 0.4MPa、 水素ガスの流速を 14ml/minで導入して還 元反応を継続の後、 反応状況を観察しながら 220 に昇温、 以後 240° (:、 2 6 0°Cと段階的に反応温度を高めて合計 3 90分間、 反応を行った。 この間に、 硫酸根とニッケル種を含む二酸化チタン複合体 (3-2)の 1グラム (1 1. 2mmol) 当たり水 43. 8m l (1. 9 6 ramol) が生成した。 この反応物を冷却後、 グロ —ブボックス内に反応物を移し窒素ガスで完全に置換してグローブボックス内の 酸素濃度を 40 p pm以下に保ちながら反応物 (3-3)を反応器から気密な二つの プラスチック包装容器(ガスバリヤ一袋) に分けて取り出し、黒色の反応物(3-3) を得た。 Using the same apparatus and the same method as in Example 1, 3.O g (33.7 mmol) of the above-mentioned titanium dioxide complex (3-2) containing a sulfate group and a nickel species is charged into a reactor. . Argon gas was introduced at an additional pressure of 0.4 MPa and a flow rate of 100 ml / min, and the back pressure gage pressure was set to 0.3 MPa.In other words, the pressure inside the reactor was kept at 0.3 MPa and calcined at 450 ° C for 3.0 hours. I do. Continue introducing argon gas and release it to a temperature of 200 ° C. After cooling, the reduction reaction was continued by introducing hydrogen gas at an additional pressure of 0.4 MPa and a flow rate of hydrogen gas of 14 ml / min. The temperature was increased to 220 while observing the reaction status, and thereafter 240 ° (:, 26 The reaction was carried out for a total of 390 minutes by raising the reaction temperature stepwise to 0 ° C. During this time, 1 gram (11.2 m ) of the titanium dioxide composite (3-2) containing sulfate and nickel species 43.8 ml (1.96 ramol) of water per mol) After cooling the reactant, transfer the reactant into a glove box and completely replace it with nitrogen gas to remove the oxygen concentration in the glove box. (3-3) was taken out of the reactor into two airtight plastic packaging containers (one bag of gas barrier) while keeping the pressure at 40 ppm or less to obtain a black reactant (3-3).
反応物 (3-3)の入ったプラスチック包装容器に空気を導入し 3 0日余り後の酸 素濃度を測定した結果から、反応物(3-3)は 20. 4m l Zg (0. 9 1 mmol/g Ot:の換算値) の酸素を吸収していることが判明した。 この反応物 (3-3) は XRD の測定結果からアナターゼ型の結晶構造を有することが確かめられ、 酸素ガスの 吸収量から算出した Xの値は 0. 1 6 (= 0.91X2/11.2) であった。 従って、 こ こで得られた反応物 (3-3)は、 T i〇2_xで表した場合に T i 0,_ 84であるアナ夕 —ゼ型の結晶を保持した本発明の低次酸化チタン複合体であった。 また、 グロ一 ブボックスから取り出した際は黒色であった反応物 (3-3)は、 酸素を吸収した後に は淡い灰色に変化した (3-4)。 産業上の利用可能性 The air was introduced into the plastic packaging container containing the reactant (3-3), and the oxygen concentration after more than 30 days was measured. From the result of the measurement, the reactant (3-3) was 20.4 ml Zg (0.9 (Converted value of 1 mmol / g Ot :). XRD measurement confirmed that this reaction product (3-3) had an anatase-type crystal structure, and the value of X calculated from the oxygen gas absorption was 0.16 (= 0.91X2 / 11.2). there were. Therefore, the reaction product (3-3) obtained here has a low activity of the present invention that retains an anatase-type crystal having T i 0, _ 84 when represented by T i〇 2 — x. This was a titanium oxide composite. The reactant (3-3), which was black when removed from the glove box, turned pale gray after absorbing oxygen (3-4). Industrial applicability
本発明のオリジナルの結晶構造を保持する新規な低次酸化チタン又はその複合 体は、 大きな酸素吸収能と酸素吸収速度を有しており、 また一旦酸素吸収された ものを還元することによって再度酸素吸収能が回復して再利用も可能であり、 さ らに、 アナ夕ーゼ型の二酸化チタンは光触媒作用をも有するため、 従来のものに みられない優れた酸素吸収剤として、 更には、 食品その他様々な品物の品質保持 剤として極めて有用である。 The novel low-order titanium oxide or a composite thereof retaining the original crystal structure of the present invention has a large oxygen absorbing ability and an oxygen absorbing rate. Since the absorption capacity is restored, it can be reused.In addition, since the anatase-type titanium dioxide also has a photocatalytic action, it is an excellent oxygen absorber not found in conventional ones. Preserving the quality of food and various other goods Very useful as an agent.

Claims

請 求 の 範 囲 The scope of the claims
1 . 二酸化チタンの結晶構造を保持し、 一般式 T i 0 2 _ x (ここで、 X は 0 . 1から 0 . 5の実数を示す) の化学式で表されるものであるこ とを特徴とする低次酸化チタン。 1. It retains the crystal structure of titanium dioxide and is represented by the chemical formula of the general formula Ti 0 2 _ x (where X represents a real number from 0.1 to 0.5). Lower titanium oxide.
2 . アナターゼの結晶構造を保持することを特徴とする、 請求の範囲 第 1項記載の低次酸化チタン。 2. The low-order titanium oxide according to claim 1, wherein the low-order titanium oxide retains a crystal structure of anatase.
3 . 請求の範囲第 1項又は第 2項記載の低次酸化チタンに硫酸根を含 むことを特徴とする、 低次酸化チタン複合体。 3. A low titanium oxide composite, wherein the low titanium oxide according to claim 1 or 2 contains a sulfate group.
4 . 請求の範囲第 1項又は第 2項記載の低次酸化チタンにニッケル種 を含むことを特徴とする、 低次酸化チタン複合体。 4. A low order titanium oxide composite, wherein the low order titanium oxide according to claim 1 or 2 contains a nickel species.
5 . ニッケル種が、 ニッケル原子を必須成分とする化合物、 及び Z又 はニッケル原子を必須成分とする金属であることを特徴とする、 請求 の範囲第 4項記載の低次酸化チタン複合体。 5. The low titanium oxide composite according to claim 4, wherein the nickel species is a compound containing a nickel atom as an essential component, and a metal containing Z or a nickel atom as an essential component.
6 . 請求の範囲第 1項又は第 2項記載の低次酸化チタンに、 硫酸根及 びニッケル種を含むことを特徴とする、 低次酸化チタン複合体。 6. A low titanium oxide composite, wherein the low titanium oxide according to claim 1 or 2 contains a sulfate group and a nickel species.
7 . 酸素吸収能を有することを特徴とする、 請求の範囲第 1項乃至第 6項のいずれかに記載された低次酸化チタン又はその複合体。 7. The low-order titanium oxide or the composite thereof according to any one of claims 1 to 6, having an oxygen absorbing ability.
8 . 硫酸根及び/又はニッケル種を含む二酸化チタンを、 3 5 0 以 下の温度で、 還元剤を用いて還元することを特徴とする、 請求の範囲 第 1項乃至第 7項のいずれかに記載された低次酸化チタン又はその複 合体の製造方法。 8. The method according to any one of claims 1 to 7, wherein the titanium dioxide containing a sulfate group and / or a nickel species is reduced with a reducing agent at a temperature of 350 or less. The method for producing a low-order titanium oxide or a complex thereof according to the above.
9 . 還元剤が水素である、 請求の範囲第 8項記載の低次酸化チタン又 はその複合体の製造方法。 9. The method for producing a low titanium oxide or a composite thereof according to claim 8, wherein the reducing agent is hydrogen.
1 0 . 請求の範囲第 1項乃至第 7項のいずれかに記載された低次酸化 チタン又はその複合体に酸素を吸収させた後、 再び還元剤を用いて還 元することを特徴とする、 低次酸化チタン又はその複合体の再使用方 法。 10. The oxygen is absorbed by the low-order titanium oxide or the composite thereof according to any one of claims 1 to 7, and then reduced again by using a reducing agent. How to reuse low order titanium oxide or its composite.
1 1 . 請求の範囲第 1項乃至第 7項のいずれかに記載された低次酸化 チタン又はその複合体に塩基性物質を添加することを特徴とする、 低 次酸化チタン又はその複合体の酸素の吸収速度促進方法。 11. A low-order titanium oxide or a composite thereof, wherein a basic substance is added to the low-order titanium oxide or the composite thereof according to any one of claims 1 to 7. A method for promoting the rate of oxygen absorption.
PCT/JP2003/013109 2002-10-15 2003-10-14 Novel titanium oxide of lower order and method for preparation thereof WO2004035477A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-300445 2002-10-15
JP2002300445A JP4261154B2 (en) 2002-10-15 2002-10-15 Novel low-order titanium oxide and method for producing the same

Publications (1)

Publication Number Publication Date
WO2004035477A1 true WO2004035477A1 (en) 2004-04-29

Family

ID=32104987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/013109 WO2004035477A1 (en) 2002-10-15 2003-10-14 Novel titanium oxide of lower order and method for preparation thereof

Country Status (2)

Country Link
JP (1) JP4261154B2 (en)
WO (1) WO2004035477A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111649A (en) * 2004-10-12 2006-04-27 Toppan Printing Co Ltd Printing ink composition having oxygen absorption capacity and oxygen absorbing laminate using the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1666139A4 (en) * 2003-09-10 2009-06-03 Nat Inst Of Advanced Ind Scien Oxygen scavenger and method for production thereof
JP4288499B2 (en) * 2003-09-10 2009-07-01 独立行政法人産業技術総合研究所 Oxygen scavenger and method for producing the same
JP4600987B2 (en) * 2005-03-04 2010-12-22 中央化学株式会社 Oxygen-absorbing container
JP4872094B2 (en) * 2005-05-02 2012-02-08 財団法人ファインセラミックスセンター Method for producing visible light responsive photocatalytic material and photocatalytic material
JP4751805B2 (en) * 2005-10-24 2011-08-17 日本メンテナスエンジニヤリング株式会社 Method for producing composition containing low-order titanium oxide particles
JP5035060B2 (en) * 2008-03-24 2012-09-26 三菱マテリアル株式会社 Method for manufacturing titanium oxide target having high density and low specific resistance
TWI513661B (en) 2009-03-12 2015-12-21 Univ Kumamoto Nat Univ Corp Process for manufacturing low-level titanium oxide
WO2013141063A1 (en) * 2012-03-23 2013-09-26 株式会社クラレ Catalyst and fuel cell provided with same
CN111151233B (en) * 2019-12-31 2022-07-08 陕西科技大学 Oxygen-deficient TiO2Normal temperature and pressure water phase preparation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4923824A (en) * 1972-06-28 1974-03-02
EP0601761A1 (en) * 1992-11-30 1994-06-15 Shiseido Company Limited Manufacturing method of pigment including lower titanium oxide
JPH06183736A (en) * 1992-12-21 1994-07-05 Sumitomo Sitix Corp Production of lower titanium oxide
JPH08333117A (en) * 1995-06-06 1996-12-17 Mitsubishi Materials Corp Production of porous globular titanium oxide particle
JPH1112115A (en) * 1997-06-20 1999-01-19 Agency Of Ind Science & Technol Quality preserving agent and use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4923824A (en) * 1972-06-28 1974-03-02
EP0601761A1 (en) * 1992-11-30 1994-06-15 Shiseido Company Limited Manufacturing method of pigment including lower titanium oxide
JPH06183736A (en) * 1992-12-21 1994-07-05 Sumitomo Sitix Corp Production of lower titanium oxide
JPH08333117A (en) * 1995-06-06 1996-12-17 Mitsubishi Materials Corp Production of porous globular titanium oxide particle
JPH1112115A (en) * 1997-06-20 1999-01-19 Agency Of Ind Science & Technol Quality preserving agent and use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111649A (en) * 2004-10-12 2006-04-27 Toppan Printing Co Ltd Printing ink composition having oxygen absorption capacity and oxygen absorbing laminate using the same

Also Published As

Publication number Publication date
JP4261154B2 (en) 2009-04-30
JP2004137087A (en) 2004-05-13

Similar Documents

Publication Publication Date Title
US5759939A (en) Composite metal oxide adsorbents
Wang et al. Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal
US6843919B2 (en) Carbon-coated metal oxide nanoparticles
US5712219A (en) Iron oxide magnesium oxide composites and method for destruction of cholrinated hydrocarbon using such composites
Chang et al. Fe 2 O 3@ SiTi core–shell catalyst for the selective catalytic reduction of NO x with NH 3: activity improvement and HCl tolerance
JP4332346B2 (en) Quality retainer
WO2004035477A1 (en) Novel titanium oxide of lower order and method for preparation thereof
US20100222215A1 (en) Halide scavengers for high temperature applications
Mantovani et al. Unusual catalytic activity after simultaneous immobilization of two metalloporphyrins on hydrozincite/nanocrystalline anatase
CN112090439A (en) Nitrogen-doped hydrotalcite-like derivative composite oxide material and preparation method and application thereof in low-temperature carbonyl sulfide hydrolysis reaction
CN107670632A (en) A kind of medium temperature carbon dioxide absorber and its preparation and application
US20210269231A1 (en) Package including hydrogen sulfide sustained release agent and method for producing same, hydrogen sulfide sustained release agent, hydrogen sulfide sustained releasecomposite, and method for generating hydrogen sulfide using same
JP2866928B2 (en) Catalyst for decomposing nitrous oxide and method for removing nitrous oxide
CN115676896B (en) Amorphous manganese oxide composite material and preparation method and application thereof
JP4072592B2 (en) Novel oxygen absorber and method for producing the same
KR100743930B1 (en) Oxygen scavenger and method for production thereof
Jung et al. Evidence of correlation between electronic density and surface acidity of sulfated TiO2
JPH1184084A (en) Removal method for radioactive iodine
JP4288499B2 (en) Oxygen scavenger and method for producing the same
Rosso et al. Tackling the problem of sulfur poisoning of perovskite catalysts for natural gas combustion
JP4352113B2 (en) Quality retainer
JP2013139029A (en) Porous adsorbent having visible light absorbency, and method for producing the same at low temperature
JPH0687943B2 (en) Exhaust gas purification method
JP2000005596A (en) Deoxidizing agent
JP2005052693A (en) Oxygen absorbent and its production method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase