JP4751805B2 - Method for producing composition containing low-order titanium oxide particles - Google Patents

Method for producing composition containing low-order titanium oxide particles Download PDF

Info

Publication number
JP4751805B2
JP4751805B2 JP2006287178A JP2006287178A JP4751805B2 JP 4751805 B2 JP4751805 B2 JP 4751805B2 JP 2006287178 A JP2006287178 A JP 2006287178A JP 2006287178 A JP2006287178 A JP 2006287178A JP 4751805 B2 JP4751805 B2 JP 4751805B2
Authority
JP
Japan
Prior art keywords
titanium oxide
particles
low
oxide particles
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006287178A
Other languages
Japanese (ja)
Other versions
JP2007145696A (en
Inventor
辰彦 井原
正大 三好
照夫 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinki University
Original Assignee
Kinki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinki University filed Critical Kinki University
Priority to JP2006287178A priority Critical patent/JP4751805B2/en
Publication of JP2007145696A publication Critical patent/JP2007145696A/en
Application granted granted Critical
Publication of JP4751805B2 publication Critical patent/JP4751805B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、低次酸化チタン粒子含有組成物の製造方法に関する。特に本発明は、コーティング用組成物として有用な低次酸化チタン粒子含有組成物の製造方法に関する。   The present invention relates to a method for producing a composition containing low-order titanium oxide particles. In particular, the present invention relates to a method for producing a composition containing low-order titanium oxide particles useful as a coating composition.

酸化チタン光触媒は、防汚性能や光誘起超親水化現象を発揮することから、窓ガラスをはじめとする野外建造物用として利用されている。野外建造物用酸化チタン光触媒コーティング剤として、ゾルタイプの酸化チタン光触媒を原料に用いたものがある。しかし、従来の酸化チタン光触媒は、防汚性能等を発揮するためには紫外線が必要であり、直射日光が当たらない場所、例えば、室内では有機物の分解反応や光誘起超親水化現象による防汚性能は著しく低下する問題があった。   Titanium oxide photocatalysts exhibit antifouling performance and light-induced superhydrophilization, and are therefore used for outdoor buildings such as window glass. As a titanium oxide photocatalyst coating agent for outdoor buildings, there is one using a sol type titanium oxide photocatalyst as a raw material. However, conventional titanium oxide photocatalysts require ultraviolet rays to exhibit antifouling performance, etc., and in places where they are not exposed to direct sunlight, such as indoors, antifouling due to organic decomposition reactions and light-induced superhydrophilic phenomena There was a problem that the performance was significantly lowered.

それに対して、可視光応答性を示す酸化チタン光触媒も知られている。可視光応答性を示す酸化チタン光触媒は、例えば、特許文献1および2に代表されるように硫酸チタンを原料としてアンモニアを加えて得た光触媒前駆体としての加水分解物を400℃程度の比較的低い温度で焼成して製造されるか、あるいは石原製酸化チタンST-01をアンモニアを含むアルゴンガス中で400℃程度の比較的低い温度で焼成することにより製造されている。   On the other hand, a titanium oxide photocatalyst exhibiting visible light responsiveness is also known. The titanium oxide photocatalyst exhibiting visible light responsiveness is, for example, a hydrolyzate as a photocatalyst precursor obtained by adding ammonia using titanium sulfate as a raw material, as represented by Patent Documents 1 and 2, at a relative temperature of about 400 ° C. It is manufactured by baking at a low temperature or by baking Ishihara-made titanium oxide ST-01 in an argon gas containing ammonia at a relatively low temperature of about 400 ° C.

また、特許文献3及び4にあるように、過酸化チタニアゾルを原料として窒素源を加えてガラスに塗布後、400℃程度の温度で焼成して可視光応答型酸化チタン光触媒コーティング膜を得る方法もある。
日本特許第3215698号 日本特許第3587178号 特開2004-136178号公報 特開2004-209305号公報
Further, as disclosed in Patent Documents 3 and 4, a method of obtaining a visible light responsive titanium oxide photocatalyst coating film by adding a nitrogen source using a titania peroxide sol as a raw material and applying it to glass, followed by baking at a temperature of about 400 ° C. is there.
Japanese Patent No. 3215698 Japanese Patent No. 3587178 JP 2004-136178 A JP 2004-209305 A

特許文献1および2に記載の方法で製造された酸化チタン光触媒は、二次粒子径が数ミクロン程度の顔料レベルのサイズを有する。酸化チタン光触媒は、物品の表面にコーティングして用いられるが、この光触媒を使って透明なコーティング膜を得ようとする場合、粉砕が必要になる。しかし、粉砕によって粒子径を小さくすると、可視光活性の発現に重要な一次粒子間の界面層が破壊され、粒子サイズの減少とともに可視光活性は著しく低下するという問題があった。   The titanium oxide photocatalyst produced by the methods described in Patent Documents 1 and 2 has a pigment level size with a secondary particle size of about several microns. The titanium oxide photocatalyst is used after being coated on the surface of the article. However, when it is intended to obtain a transparent coating film using this photocatalyst, pulverization is required. However, when the particle size is reduced by pulverization, the interface layer between primary particles important for the development of the visible light activity is destroyed, and the visible light activity is remarkably lowered as the particle size is reduced.

また、特許文献3及び4に記載の方法では、400℃程度の焼成プロセスを必要とするので、外壁材や、既に取り付けられている窓ガラスへの施工は困難であった。   Moreover, in the method of patent document 3 and 4, since the baking process of about 400 degreeC is required, the construction to an outer wall material and the window glass already attached was difficult.

このように、窓ガラス表面にコーティングできる透明性が高い可視光応答性防汚コーティング剤は未開発であり、出現が待たれていた。   As described above, a highly transparent visible light responsive antifouling coating agent that can be coated on the surface of a window glass has not been developed, and has been awaited.

そこで本発明の目的は、透明性が高い可視光応答性防汚コーティング剤を提供することにある。   Therefore, an object of the present invention is to provide a visible light responsive antifouling coating agent having high transparency.

より具体的には、本発明の目的は、紫外光はもちろんのこと、可視光の照射によっても有機物の分解や光誘起親水化による防汚効果を発揮でき、しかも、乾燥時の色彩が灰色になることで反射率を下げ、高い透明性を発揮できる光触媒防汚コーティング組成物およびその製造方法を提供することにある。   More specifically, the object of the present invention is to exhibit an antifouling effect due to decomposition of organic matter and light-induced hydrophilicity by irradiation with visible light as well as ultraviolet light, and the color when dried is gray. It is providing the photocatalyst antifouling coating composition which can reduce a reflectance and can exhibit high transparency, and its manufacturing method.

上記課題を解決するための本発明は以下の通りである。
[1]
凝集体を含むアナターゼ型またはルチル型酸化チタン粒子と無定形酸化チタンをロッキングミルおよび粒子径が100μm以下のビーズ粒子を用いて湿式分散し、酸化チタン粒子の一次粒子の平均粒子径が5〜50nmの範囲になるように解砕することを含む低次酸化チタン粒子含有組成物を製造する方法。

無定形酸化チタンがペルオキソチタン酸である[1]に記載の製造方法。
[3]
酸化チタン粒子100質量部に対して無定形酸化チタンを5〜20質量部の範囲とする[1]または[2]に記載の製造方法。

湿式分散を、水を溶媒として実施する[1]〜[]のいずれかに記載の製造方法。
[5]
水100質量部に対する酸化チタン粒子の量を1〜5質量部の範囲とする[4]に記載の製造方法。
[6]
ビーズ粒子の粒子径が10〜100μmの範囲である[1]〜[5]のいずれかに記載の製造方法。
[7]
ビーズ粒子の粒子径が30〜70μmの範囲である[1]〜[5]のいずれかに記載の製造方法。
[8]
湿式分散の時間は、0.5〜2時間とする[1]〜[7]のいずれかに記載の製造方法。
[9]
低次酸化チタン粒子含有組成物が、低次酸化チタン粒子を水に分散したものである[1]〜[]のいずれかに記載の製造方法。
[10]
低次酸化チタン粒子は、表面を無定形酸化チタンで覆われた粒子である[9]に記載の製造方法。
[11]
低次酸化チタン粒子含有組成物がコーティング用組成物である[1]〜[10]のいずれかに記載の製造方法。
[12]
前記低次酸化チタン粒子含有組成物は、塗布乾燥して表面状態をXPS測定すると、458eV付近にTi3+に帰属するシグナルが観察される[1]〜[11]のいずれかに記載の製造方法。
The present invention for solving the above problems is as follows.
[1]
Anatase-type or rutile-type titanium oxide particles containing aggregates and amorphous titanium oxide are wet-dispersed using a rocking mill and bead particles having a particle size of 100 μm or less, and the average particle size of the primary particles of titanium oxide particles is 5 to 50 nm. A method for producing a composition containing low-order titanium oxide particles, comprising pulverizing to a range of .
[ 2 ]
The production method according to [1 ], wherein the amorphous titanium oxide is peroxotitanic acid.
[3]
The manufacturing method as described in [1] or [2] which makes amorphous titanium oxide the range of 5-20 mass parts with respect to 100 mass parts of titanium oxide particles.
[ 4 ]
The production method according to any one of [1] to [ 3 ], wherein the wet dispersion is carried out using water as a solvent.
[5]
The production method according to [4], wherein the amount of the titanium oxide particles with respect to 100 parts by mass of water is in the range of 1 to 5 parts by mass.
[6]
The production method according to any one of [1] to [5], wherein the particle diameter of the bead particles is in the range of 10 to 100 μm.
[7]
The production method according to any one of [1] to [5], wherein the particle size of the bead particles is in the range of 30 to 70 μm.
[8]
The manufacturing method according to any one of [1] to [7], wherein the wet dispersion time is 0.5 to 2 hours.
[9]
The production method according to any one of [1] to [ 8 ], wherein the low-order titanium oxide particle-containing composition is obtained by dispersing low-order titanium oxide particles in water.
[10]
The low-order titanium oxide particles are the production method according to [9], wherein the surfaces are particles covered with amorphous titanium oxide.
[11]
The production method according to any one of [1] to [10], wherein the low-order titanium oxide particle-containing composition is a coating composition.
[12]
The low-order titanium oxide particle-containing composition is produced according to any one of [1] to [11], in which a signal attributed to Ti 3+ is observed in the vicinity of 458 eV when the surface state is measured by XPS. Method.

本発明によれば、透明性が高い可視光応答性防汚コーティング剤を提供することができる。より具体的には、本発明によれば、紫外光はもちろんのこと、可視光の照射によっても有機物の分解や光誘起親水化による防汚効果を発揮でき、しかも、乾燥時の色彩が灰色になることで反射率を下げ、高い透明性を発揮できる光触媒防汚コーティング組成物およびその製造方法を提供することができる。   According to the present invention, a visible light-responsive antifouling coating agent having high transparency can be provided. More specifically, according to the present invention, not only ultraviolet light but also visible light irradiation can exhibit an antifouling effect due to decomposition of organic matter and light-induced hydrophilicity, and the color when dried is gray. Thus, it is possible to provide a photocatalytic antifouling coating composition capable of reducing the reflectance and exhibiting high transparency and a method for producing the same.

本発明は、アナターゼ型またはルチル型酸化チタン粒子と無定形酸化チタンを湿式分散し、解砕することを含む低次酸化チタン粒子含有組成物を製造する方法に関する。   The present invention relates to a method for producing a composition containing low-order titanium oxide particles, which comprises wet-dispersing and crushing anatase-type or rutile-type titanium oxide particles and amorphous titanium oxide.

本発明においては、アナターゼ型またはルチル型酸化チタン粒子と無定形酸化チタンを湿式分散し、解砕することで、光触媒を微粒化するとともに、その表面に低次酸化チタン層(酸素欠陥を有する層)を形成する。酸化チタン粒子は、一般に凝集体を含むものであり、酸化チタン粒子の凝集体は、好ましくは、酸化チタン粒子が一次粒子のレベルになるように湿式分散し、解砕することで、低次酸化チタン粒子含有組成物を得ることができる。これにより、紫外光はもちろんのこと、可視光の照射によっても有機物の分解や光誘起親水化による防汚効果を発揮できる可視光応答性を有する低次酸化チタン粒子を含有する組成物が得られる。本発明では、光触媒性能を持つ酸化チタン粒子と無定型酸化チタンとを湿式分散することで生じるメカノケミカル反応によって、低次酸化チタン層(酸素欠陥を有する層)を形成することができ、本発明の透明性酸素欠陥型可視光応答性防汚コーティング組成物が得られる。特に、上記解砕は、酸化チタン粒子の一次粒子の平均粒子径が5〜50nmの範囲になるように行うことが、得られる低次酸化チタン粒子含有組成物の光触媒性能の点で好ましい。   In the present invention, anatase-type or rutile-type titanium oxide particles and amorphous titanium oxide are wet-dispersed and pulverized to atomize the photocatalyst and to form a low-order titanium oxide layer (a layer having oxygen defects) on the surface. ). Titanium oxide particles generally contain aggregates, and the aggregates of titanium oxide particles are preferably low-order oxidized by wet-dispersing and crushing so that the titanium oxide particles are at the level of primary particles. A titanium particle-containing composition can be obtained. As a result, a composition containing low-order titanium oxide particles having visible light responsiveness capable of exhibiting an antifouling effect due to decomposition of organic matter and light-induced hydrophilization by irradiation with visible light as well as ultraviolet light can be obtained. . In the present invention, a low-order titanium oxide layer (a layer having an oxygen defect) can be formed by a mechanochemical reaction caused by wet dispersion of titanium oxide particles having photocatalytic performance and amorphous titanium oxide. The transparent oxygen defect type visible light responsive antifouling coating composition is obtained. In particular, the crushing is preferably performed so that the average particle diameter of the primary particles of the titanium oxide particles is in the range of 5 to 50 nm from the viewpoint of the photocatalytic performance of the resulting low-order titanium oxide particle-containing composition.

本発明の製造方法の一方の原料である、アナターゼ型またはルチル型酸化チタン粒子は、紫外線に対する光触媒活性を有するものであれば特に限定されない。たとえば酸化チタン光触媒では、市販品の中から日本アエロゾル(社)のP-25、(株)テイカ製のAMT-100、TKP-101などが利用出来るが、(株)テイカ製のTKS-201、TKS-202、TKS-203などのゾルタイプのものも挙げることができ、中でもP-25が好ましい。アナターゼ型またはルチル型酸化チタン粒子は、凝集体(二次粒子)の平均粒子径は、例えば、0.1〜2μmの範囲であることが適当である。   The anatase type or rutile type titanium oxide particles, which are one raw material of the production method of the present invention, are not particularly limited as long as they have photocatalytic activity for ultraviolet rays. For example, for the titanium oxide photocatalyst, P-25 of Nippon Aerosol Co., Ltd., AMT-100, TKP-101 manufactured by Takeka Co., Ltd. can be used, but TKS-201 made by Takeka Co., Ltd. Examples of the sol type include TKS-202 and TKS-203. Among them, P-25 is preferable. The average particle diameter of the aggregate (secondary particles) of the anatase type or rutile type titanium oxide particles is suitably in the range of 0.1 to 2 μm, for example.

本発明の製造方法の一方の原料である、無定形酸化チタンは無定型物質であり、その例としては、ペルオキソチタン酸、水酸化チタン(オルソチタン酸、αチタン酸)等を挙げることができる。ペルオキソチタン酸としては、(株)テイカ製のTKC301ペルオキソチタニアゾル等を挙げることができる。   Amorphous titanium oxide, which is one of the raw materials of the production method of the present invention, is an amorphous substance. Examples thereof include peroxotitanic acid, titanium hydroxide (orthotitanic acid, α-titanic acid), and the like. . Examples of peroxotitanic acid include TKC301 peroxotitania sol manufactured by Teika Co., Ltd.

本発明の製造方法では、酸化チタン粒子と無定形酸化チタンとを湿式分散する。酸化チタン粒子と無定形酸化チタンの混合比は、所望の低次酸化チタン層の量等を考慮して適宜決定される。例えば、酸化チタン粒子100質量部に対して無定形酸化チタンを任意の割合とすることができるが、好ましくは5〜20質量部の範囲とすることが適当である。   In the production method of the present invention, titanium oxide particles and amorphous titanium oxide are wet-dispersed. The mixing ratio of the titanium oxide particles and the amorphous titanium oxide is appropriately determined in consideration of the amount of the desired low-order titanium oxide layer and the like. For example, the amorphous titanium oxide can be in an arbitrary ratio with respect to 100 parts by mass of the titanium oxide particles, but is preferably in the range of 5 to 20 parts by mass.

また、湿式分散は水を溶媒として実施することが適当であり、水を溶媒として湿式分散することで、低次酸化チタン粒子を水に分散した低次酸化チタン粒子含有組成物が得られる。水の使用量は、湿式分散時の粒子に対するシェアがどの程度であるか、あるいは得られる低次酸化チタン粒子含有組成物の固形分量等を考慮して適宜決定できるが、例えば、水100質量部に対する酸化チタン粒子の量は任意の割合とすることができるが1〜5質量部の範囲が適当である。   Moreover, it is appropriate to carry out wet dispersion using water as a solvent, and a low-order titanium oxide particle-containing composition in which low-order titanium oxide particles are dispersed in water is obtained by wet-dispersing using water as a solvent. The amount of water used can be appropriately determined in consideration of the degree of share with respect to the particles during wet dispersion or the solid content of the resulting low-order titanium oxide particle-containing composition. The amount of titanium oxide particles relative to can be any ratio, but a range of 1 to 5 parts by mass is appropriate.

さらに、湿式分散は、酸化チタン粒子と無定形酸化チタンとをビーズ粒子とともに混合することが、低次酸化チタン層の形成を促進するという観点から適当である。ビーズ粒子の粒子径は、低次酸化チタン層の形成に影響があり、例えば、平均粒子径が10〜100μm、好ましくは30〜70μmの範囲であるビーズ粒子を用いることが適当である。さらに、ビーズ粒子の素材は、酸化チタン粒子、無定形酸化チタン及び低次酸化チタン粒子に対して不活性であり、かつ所定の比重を有するものであることが適当である。そのようなビーズ粒子としては、例えば、ガラスビーズ粒子、アルミナ粒子、ジルコニア粒子等を挙げることができる。   Furthermore, in the wet dispersion, mixing titanium oxide particles and amorphous titanium oxide together with bead particles is appropriate from the viewpoint of promoting the formation of a low-order titanium oxide layer. The particle diameter of the bead particles affects the formation of the low-order titanium oxide layer. For example, it is appropriate to use bead particles having an average particle diameter in the range of 10 to 100 μm, preferably 30 to 70 μm. Furthermore, it is appropriate that the material of the bead particles is inert to titanium oxide particles, amorphous titanium oxide and low-order titanium oxide particles, and has a predetermined specific gravity. Examples of such bead particles include glass bead particles, alumina particles, zirconia particles, and the like.

湿式分散は、上記のようにビーズ粒子を用い、例えば、ロッキングミルを用いて行うことが適当である。本発明の製造方法では、酸化チタン粒子と無定型酸化チタンとを湿式分散することで生じるメカノケミカル反応によって、粒子の結晶構造の破壊を極力避けながら,凝集体を解砕することが重要である。解砕によって生じた新生表面には低次酸化チタン層(酸素欠陥を有する層)が形成され、同時に低次酸化チタン層を無定型酸化チタンが覆うことで安定化した低次酸化チタン粒子含有組成物が得られるが、ビーズ粒子及びロッキングミルを用いた湿式分散は、酸化チタン一次粒子の破壊を最小限に抑えた解砕と上記低次酸化チタン層の形成を促進することから好ましい。湿式分散の時間は、低次酸化チタン層の形成の程度に応じて適宜設定することができるが、通常、例えば、0.5〜2時間程度とすることが適当である。また、本発明の低次酸化チタン粒子が有する低次酸化チタン層は、XPSによる表面分析によって確認することができる。通常の酸化チタン粒子は、460eV付近のTi4+に帰属するシグナルを示すが、低次酸化チタン層が形成されると、Ti4+に帰属するシグナルの他に458eV付近にTi3+に帰属する新たなシグナルが観測される。酸化チタン粒子の一次粒子への解砕は、電子顕微鏡観察によって確認出来るが、本発明のロッキングミルを使用した湿式粉砕では、粉砕前に形成されていた二次粒子の凝集がほぼ完全に一次粒子にまで解砕されており、さらに、その表面が無定型酸化チタンの非晶質層によって覆われている様子が観察される。 The wet dispersion is suitably performed using bead particles as described above, for example, using a rocking mill. In the production method of the present invention, it is important to break up aggregates while avoiding destruction of the crystal structure of the particles as much as possible by a mechanochemical reaction caused by wet dispersion of titanium oxide particles and amorphous titanium oxide. . A composition containing low-order titanium oxide particles stabilized by forming a low-order titanium oxide layer (a layer having oxygen defects) on the new surface produced by crushing, and simultaneously covering the low-order titanium oxide layer with amorphous titanium oxide. Although a product is obtained, wet dispersion using bead particles and a rocking mill is preferable because it promotes crushing with minimal destruction of titanium oxide primary particles and formation of the low-order titanium oxide layer. The wet dispersion time can be appropriately set according to the degree of formation of the low-order titanium oxide layer, but it is usually appropriate to be, for example, about 0.5 to 2 hours. The low-order titanium oxide layer of the low-order titanium oxide particles of the present invention can be confirmed by surface analysis using XPS. Ordinary titanium oxide particles show a signal attributed to Ti 4+ around 460 eV, but when a low-order titanium oxide layer is formed, it belongs to Ti 3+ around 458 eV in addition to the signal attributed to Ti 4+. A new signal is observed. Crushing of titanium oxide particles into primary particles can be confirmed by observation with an electron microscope, but in wet pulverization using the rocking mill of the present invention, the aggregation of secondary particles formed before pulverization is almost completely primary particles. Furthermore, it is observed that the surface is covered with an amorphous layer of amorphous titanium oxide.

但し、湿式分散はボールミル、ビーズミルなどの粉砕機をはじめ、各種のミキサーも利用して実施することもでき、基本的には水と光触媒と無定形物質との混合物を粉砕混合することで実施できる。   However, wet dispersion can be carried out by using various mixers including pulverizers such as ball mills and bead mills. Basically, it can be carried out by pulverizing and mixing a mixture of water, a photocatalyst and an amorphous substance. .

また、あらかじめ酸化チタン粒子を湿式分散しておき、その後、直ちに無定型物質を加えて軽く攪拌することでも、本発明の低次酸化チタン粒子含有組成物を調製することができる。   Alternatively, the low-titanium oxide particle-containing composition of the present invention can also be prepared by wet-dispersing titanium oxide particles in advance, and then immediately adding an amorphous substance and stirring gently.

本発明の製造方法によれば、安定な低次酸化チタン粒子含有組成物が得られる。この低次酸化チタン粒子含有組成物は、このコーティング用組成物として好適である。尚、組成物中の低次酸化チタン粒子含有量は、適当に調整することができる。例えば、前記コーティング組成物の質量に対する光触媒(低次酸化チタン粒子)の質量の比率は、例えば、0.1〜30質量%の範囲であることができる。   According to the production method of the present invention, a stable composition containing low-order titanium oxide particles can be obtained. This low-order titanium oxide particle-containing composition is suitable as this coating composition. The content of low-order titanium oxide particles in the composition can be adjusted appropriately. For example, the ratio of the mass of the photocatalyst (low-order titanium oxide particles) to the mass of the coating composition can be, for example, in the range of 0.1 to 30 mass%.

以下本発明を実施例によりさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1
酸化チタン光触媒(P-25、日本アエロジル製)0.5g、ペルオキソチタン酸水溶液(TKC301、テイカ製)5mL(酸化チタンとしてP-25に対して10質量%)、ガラスビーズ(φ50μm)80g、脱イオン水45mLを充填した反応容器(ポリプロピレン製、100mL)をロッキングミル(RM-05、セイワ技研製)に装着し、60Hz、60分間、室温で混合粉砕した。振動終了後にふるいを用いてガラスビーズと酸化チタン分散液を分離し、コーティング組成物を得た。コーティング組成物は、一部はそのまま乾燥することで光触媒粉末を得、カラーアナライザーによる反射率測定およびXPSによる表面分析を行った。カラーアナライザーによる測定結果を図1〜5(図1〜5に示す実施例1の結果は同一である)に、XPSによる測定結果を図8に示す。
Example 1
Titanium oxide photocatalyst (P-25, manufactured by Nippon Aerosil Co., Ltd.) 0.5g, Peroxotitanic acid aqueous solution (TKC301, manufactured by Teica) 5mL (10% by mass with respect to P-25 as titanium oxide), glass beads (φ50μm) 80g, deionized A reaction vessel (made of polypropylene, 100 mL) filled with 45 mL of water was mounted on a rocking mill (RM-05, manufactured by Seiwa Giken), and mixed and ground at 60 Hz for 60 minutes at room temperature. After completion of the vibration, the glass beads and the titanium oxide dispersion were separated using a sieve to obtain a coating composition. A part of the coating composition was dried as it was to obtain a photocatalyst powder, and the reflectance was measured with a color analyzer and the surface was analyzed with XPS. The measurement results by the color analyzer are shown in FIGS. 1 to 5 (the results of Example 1 shown in FIGS. 1 to 5 are the same), and the measurement results by XPS are shown in FIG.

比較例1
実施例1で無定形物質のTKC301を加えず、酸化チタン光触媒P-25のみを60分および120分間湿式分散したものの乾燥した状態でのカラーアナライザーによる反射率測定およびXPSによる表面分析を行った。カラーアナライザーによる測定結果を図1に、60分間湿式分散したもののXPSによる測定結果を図9に示す。
Comparative Example 1
In Example 1, the amorphous substance TKC301 was not added, and only titanium oxide photocatalyst P-25 was wet-dispersed for 60 minutes and 120 minutes, but the reflectance was measured with a color analyzer in the dry state and the surface analysis was performed with XPS. Fig. 1 shows the measurement results with a color analyzer, and Fig. 9 shows the measurement results with XPS after wet dispersion for 60 minutes.

比較例2
実施例1でP-25と無定形物質のTKC301をロッキングミルでの分散を行わず、単に混合しただけの試料について同様に回収、乾燥し、カラーアナライザーによる反射率測定結果を図2に示す。
Comparative Example 2
In Example 1, P-25 and amorphous material TKC301 were not dispersed on a rocking mill, and a sample just mixed was similarly collected and dried, and the reflectance measurement result by a color analyzer is shown in FIG.

比較例3
実施例1で無定形物質のTKC301のみを酸化チタンとして0.5g相当量を60分間湿式混合分散したものの乾燥した状態でのカラーアナライザーによる反射率測定結果を図3に、XPSによる測定結果を図10に示す。
Comparative Example 3
In Example 1, only TKC301, which is an amorphous material, was mixed with titanium oxide in an amount of 0.5 g by wet mixing and dispersing for 60 minutes, but the reflectance measurement result by a color analyzer in a dry state is shown in FIG. 3, and the measurement result by XPS is shown in FIG. Shown in

図1、図2および図3に示される反射率測定結果より、P-25は白色を呈しているので、可視光領域全般にわたってほぼ100%の反射率を示しており、原料のP-25および無定形物質TKC301を単独で湿式混合分散した場合は、P-25のみでは分散時間が60分間および120分間としても反射率は80%以上を保ち、TKC301のみにおいても分散の前後では550nm以上の領域でおよそ5%とわずかに低下する程度である。一方、P-25および無定形物質TKC301が共存する状態で湿式混合分散の場合、原料を単独で混合分散したときには起こらないレベルまで反射率が低下しており、両者の間で反応が起こり、低次酸化チタン特有の灰色を呈していることがわかる。また、P-25にTKC301を混合しただけの、一切分散をしない場合(比較例2、図2)は、ペルオキソチタン酸独特の黄色がわずかに残ることで薄黄色を示していることがわかる。   From the reflectance measurement results shown in FIG. 1, FIG. 2 and FIG. 3, P-25 exhibits a white color, indicating almost 100% reflectance over the entire visible light region. When the amorphous material TKC301 alone is wet-mixed and dispersed, P-25 alone maintains a reflectance of 80% or more even when the dispersion time is 60 minutes and 120 minutes, and TKC301 alone is a region of 550 nm or more before and after dispersion. Is about 5%. On the other hand, in the case of wet mixing and dispersion in the state where P-25 and amorphous substance TKC301 coexist, the reflectance decreases to a level that does not occur when the raw materials are mixed and dispersed alone, and a reaction occurs between the two, resulting in low It turns out that the gray color peculiar to titanium oxide is exhibited. In addition, when TKC301 is mixed with P-25 but not dispersed at all (Comparative Example 2, FIG. 2), it can be seen that a slight yellow color peculiar to peroxotitanic acid remains, indicating a light yellow color.

実施例1の試料についてXPSによる表面分析を行った結果より、図8に示したように、試料中には460eV付近のTi4+に帰属するシグナルの他に458eV付近にTi3+に帰属する新たなシグナルが観測される。この観測結果は、P-25とTKC301が共存下で湿式混合分散すると酸化チタンの表面層付近に安定な酸素欠陥層が形成されることを示しており、これが、低次酸化チタン特有の灰色を呈する理由であると解釈される。なお、図9および図10に示したように、P-25およびTKC301を単独で60分間湿式分散した場合、P-25では460eV付近のTi4+に帰属するシグナルにはほとんど変化は見られず、TKC301でもわずかに460eV付近のTi4+に帰属するシグナルがわずかにブロードになるものの、明確なTi3+に基づくシグナルとはならない。この場合、波形分離の任意性によるが、459eV付近に波形分離できるピークをTi3+に基づくシグナルと判断したとしても、実施例1ではTKC301の配合量はP-25に対して10wt%であるので、この波形成分が実施例1で観測されているTi3+の強いシグナルの主原因とは考えにくい。したがって、実施例1におけるTi3+の生成にはP-25とTKC301の両方の共存と分散のエネルギーのインプットが必要である。これらの項目がそろってさえいれば、P-25を単独で湿式分散した後でTKC301を加えた場合、軽く混合するだけで同様の効果が発現する。これについては実施例2で説明する。 From the result of the XPS surface analysis of the sample of Example 1, as shown in FIG. 8, in addition to the signal attributed to Ti 4+ near 460 eV, the sample belongs to Ti 3+ near 458 eV. A new signal is observed. This observation result shows that a stable oxygen defect layer is formed near the surface layer of titanium oxide when P-25 and TKC301 are wet-mixed and dispersed in the presence of coexistence. It is interpreted as a reason to present. As shown in FIGS. 9 and 10, when P-25 and TKC301 alone were wet-dispersed for 60 minutes, P-25 showed almost no change in the signal attributed to Ti 4+ near 460 eV. In TKC301, the signal attributed to Ti 4+ near 460eV is slightly broad, but it is not a clear signal based on Ti 3+ . In this case, depending on the waveform separation, even if the peak that can be separated in the vicinity of 459 eV is determined to be a signal based on Ti 3+ , the amount of TKC301 in Example 1 is 10 wt% with respect to P-25. Therefore, it is unlikely that this waveform component is the main cause of the strong Ti 3+ signal observed in Example 1. Therefore, the production of Ti 3+ in Example 1 requires input of coexistence and dispersion energy of both P-25 and TKC301. As long as these items are complete, when TKC301 is added after wet dispersion of P-25 alone, the same effect can be obtained by lightly mixing. This will be described in Example 2.

実施例2
実施例1で無定形物質のTKC301を加えず、酸化チタン光触媒P-25のみを60分間湿式混合分散し、直ちにTKC301-10%を添加し1分間かき混ぜたものの乾燥した状態でのカラーアナライザーによる反射率測定結果を図4に示す。図4に示される反射率測定結果より、光触媒P-25のみを60分間湿式混合分散し、直ちにTKC301-10%を添加し、1分間かき混ぜるだけでも色彩は実施例1と同等となっていることから、P-25単独での湿式メカノケミカル反応は、分散後にTKC301を加えても、かき混ぜる程度の接触で大気雰囲気においても安定な灰色の低次酸化物を形成できる。
Example 2
In Example 1, the amorphous material TKC301 was not added, but only titanium oxide photocatalyst P-25 was wet-mixed for 60 minutes, immediately added with TKC301-10% and stirred for 1 minute, but reflected by a color analyzer in a dry state. The rate measurement results are shown in FIG. From the reflectance measurement results shown in FIG. 4, the color is the same as in Example 1 even if only photocatalyst P-25 is wet-mixed and dispersed for 60 minutes, TKC301-10% is added immediately and stirred for 1 minute. Therefore, the wet mechanochemical reaction using P-25 alone can form a stable gray low-order oxide even in the air atmosphere by adding contact with TKC301 after dispersion, or by contact with stirring.

比較例4
実施例1で無定形物質のTKC301の代わりにリチウムシリケート75(日産化学)を同量添加し、60分間湿式混合分散したものの乾燥した状態でのカラーアナライザーによる反射率測定結果を図5に示す。図5に示される反射率測定結果より、リチウムシリケート75では、P-25単独で分散した比較例1と同程度の反射率しか示さず、安定な酸素欠陥層が形成されにくいことがわかる。したがって、用いる無定形物質はTKC301のような無定形酸化チタンが好ましいといえる。
Comparative Example 4
In Example 1, the same amount of lithium silicate 75 (Nissan Chemical) was added in place of the amorphous substance TKC301, and the mixture was wet-mixed for 60 minutes, but the result of reflectance measurement with a color analyzer in a dry state is shown in FIG. From the reflectance measurement results shown in FIG. 5, it can be seen that lithium silicate 75 shows only the same degree of reflectance as Comparative Example 1 dispersed with P-25 alone, and it is difficult to form a stable oxygen defect layer. Therefore, it can be said that the amorphous material used is preferably amorphous titanium oxide such as TKC301.

実施例3
実施例1で得られたコーティング組成物の一部を水で10倍に希釈し、ガラス板(5cm×5cm、厚さ1mm)表面にディップコート法(引き上げ速度:5mm/min)で塗布し、可視光による光誘起親水性発現の評価を行い、暗所に置いたときの値と比較した。結果を図6に示す。評価方法は、コーティング組成物塗布面にマイクロシリンジで脱イオン水5μLを8箇所に滴下し、8箇所での水滴の直径の平均値で示した。可視光光源には蛍光灯(昼光色、10W)にL42フィルター(東芝製)を組みあわせて用いて波長406nm以下の光をカットし、光源からの距離は3cmとした。
Example 3
A part of the coating composition obtained in Example 1 was diluted 10 times with water and applied to the surface of a glass plate (5 cm × 5 cm, thickness 1 mm) by the dip coating method (pickup speed: 5 mm / min). Evaluation of light-induced hydrophilic expression by visible light was performed and compared with the value when placed in a dark place. The results are shown in FIG. In the evaluation method, 5 μL of deionized water was dropped at 8 locations with a microsyringe on the coating composition application surface, and the average value of the diameters of the water droplets at 8 locations was shown. The visible light source was a fluorescent lamp (daylight color, 10W) combined with an L42 filter (manufactured by Toshiba) to cut light with a wavelength of 406nm or less, and the distance from the light source was 3cm.

実施例4
実施例1で得られたコーティング組成物の一部を水で10倍に希釈し、ガラス板(5cm×5cm、厚さ1mm)表面にディップコート法(引き上げ速度:5mm/min)で塗布し、可視光による有機物の分解能力の評価を行った。可視光による有機物の分解能力の評価方法は、コーティング組成物による塗布面にヘキサンに溶解させた1、2-エポキシドデカン(1%)をスピンコート法によって塗布し、その表面における水滴の直径の変化を可視光を照射しながら測定することによって行った。結果を図7に示す。
Example 4
A part of the coating composition obtained in Example 1 was diluted 10 times with water and applied to the surface of a glass plate (5 cm × 5 cm, thickness 1 mm) by the dip coating method (pickup speed: 5 mm / min). The ability to decompose organic matter by visible light was evaluated. The method for evaluating the ability to decompose organic substances by visible light is to apply 1,2-epoxydodecane (1%) dissolved in hexane to the coating surface of the coating composition by spin coating, and change the diameter of water droplets on the surface. Was measured by irradiating visible light. The results are shown in FIG.

比較例5
TOTO製のガラスコーティング剤をガラス板(5cm×5cm、厚さ1mm)表面に刷毛で塗布した表面に対して、実施例4と同様の方法でヘキサンに溶解させた1、2-エポキシドデカン(1%)を塗布し、その表面における水滴の直径の変化を可視光を照射しながら測定することによって行った。結果を図7に示す。
Comparative Example 5
1,2-epoxydodecane (1) prepared by dissolving TOTO glass coating agent on the surface of a glass plate (5 cm × 5 cm, thickness 1 mm) with a brush in the same manner as in Example 4. %) Was applied, and the change in the diameter of the water droplets on the surface was measured while irradiating visible light. The results are shown in FIG.

比較例6
比較例3で調製した無定形物質のTKC301のみを酸化チタンとして0.5g相当量を60分間湿式混合分散したものを実施例4と同様に水で10倍に希釈し、ガラス板(5cm×5cm、厚さ1mm)表面にディップコート法(引き上げ速度:5mm/min)で塗布し、可視光による有機物の分解能力の評価を行った。結果を図7に示す。
Comparative Example 6
The amorphous substance TKC301 prepared in Comparative Example 3 alone was mixed with titanium oxide in an amount equivalent to 0.5 g of titanium oxide for 60 minutes and diluted 10-fold with water in the same manner as in Example 4 to obtain a glass plate (5 cm × 5 cm, It was applied to the surface by a dip coating method (pickup speed: 5 mm / min), and the ability to decompose organic substances by visible light was evaluated. The results are shown in FIG.

比較例7
実施例1で無定形物質のTKC301の代わりにリチウムシリケート75(日産化学)を同量添加し60分間湿式混合分散したものを、実施例4と同様に水で10倍に希釈し、ガラス板(5cm×5cm、厚さ1mm)表面にディップコート法(引き上げ速度:5mm/min)で塗布し、可視光による有機物の分解能力の評価を行った。結果を図7に示す。
Comparative Example 7
In Example 1, lithium silicate 75 (Nissan Chemical) was added in the same amount in place of the amorphous substance TKC301 and wet-mixed and dispersed for 60 minutes. 5 cm × 5 cm, thickness 1 mm) was applied to the surface by a dip coating method (pickup speed: 5 mm / min), and the ability to decompose organic substances by visible light was evaluated. The results are shown in FIG.

図7に示される水滴の直径の測定結果より、比較例5のTOTO製ガラスコーティング膜や比較例6のTKC301単独で湿式混合分散して得た膜およびTKC301の代わりにリチウムシリケートを用いてP-25と混合分散して得た膜は可視光活性がなく、可視光を照射してもエポキシドデカンを分解できず、水滴の直径は4.6〜4.8mmの範囲を維持したままである。一方、実施例4で得られたコーティング組成物塗布面は可視光照射5時間程度で水滴の直径が4.7〜4.8mmから5.5〜5.6mmに大きくなっており、これはエポキシドデカンの分解が進行したためと思われる。   From the measurement results of the diameter of the water droplets shown in FIG. 7, the TOTO glass coating film of Comparative Example 5, the film obtained by wet mixing and dispersing with TKC301 alone of Comparative Example 6, and lithium silicate instead of TKC301 were used. The film obtained by mixing and dispersing with 25 has no visible light activity, and epoxide decane cannot be decomposed even when irradiated with visible light, and the diameter of the water droplet remains in the range of 4.6 to 4.8 mm. On the other hand, the surface coated with the coating composition obtained in Example 4 had a water droplet diameter increased from 4.7 to 4.8 mm to 5.5 to 5.6 mm after about 5 hours of visible light irradiation. This was because decomposition of epoxide decane proceeded. I think that the.

実施例5
実施例1で用いた酸化チタン光触媒P-25の代わりにJRC-TIO-2(日本触媒学会参照触媒)を用い、実施例1と同様の操作を行うことでコーティング組成物を得た。得られたコーティング液の一部(10mL)に対し、さらに固着を目的としてペルオキソチタン酸水溶液(TKC301、テイカ製)2.5mLを加え、実施例3と同様にガラス板(5cm×5cm、厚さ1mm)表面にディップコート法(引き上げ速度:5mm/min)で塗布した。塗布物を暗所に放置後、可視光による光誘起親水性発現の評価を行った。結果を図11に示す。
Example 5
A coating composition was obtained by performing the same operation as in Example 1 using JRC-TIO-2 (reference catalyst of the Japan Society for Catalysis) instead of the titanium oxide photocatalyst P-25 used in Example 1. To a part of the resulting coating solution (10 mL), 2.5 mL of a peroxotitanic acid aqueous solution (TKC301, manufactured by Teika) was added for the purpose of fixation, and a glass plate (5 cm × 5 cm, thickness 1 mm) as in Example 3. ) It was applied to the surface by a dip coating method (pickup speed: 5 mm / min). After leaving the coated material in a dark place, evaluation of light-induced hydrophilicity by visible light was performed. The results are shown in FIG.

本発明は、例えば、可視光応答性防汚コーティングの分野で有用である。   The present invention is useful, for example, in the field of visible light responsive antifouling coatings.

実施例1および比較例1で得た光触媒のカラーアナライザーによる測定結果。The measurement result by the color analyzer of the photocatalyst obtained in Example 1 and Comparative Example 1. 実施例1および比較例2で得た光触媒のカラーアナライザーによる測定結果。The measurement result by the color analyzer of the photocatalyst obtained in Example 1 and Comparative Example 2. 実施例1および比較例3で得た光触媒のカラーアナライザーによる測定結果。The measurement result by the color analyzer of the photocatalyst obtained in Example 1 and Comparative Example 3. 実施例1および2で得た光触媒のカラーアナライザーによる測定結果。The measurement result by the color analyzer of the photocatalyst obtained in Example 1 and 2. 実施例1および比較例1および4で得た光触媒のカラーアナライザーによる測定結果。The measurement result by the color analyzer of the photocatalyst obtained in Example 1 and Comparative Examples 1 and 4. 実施例3で得た可視光による光誘起親水性発現の評価結果。The evaluation result of the light induction hydrophilic expression by visible light obtained in Example 3. FIG. 実施例4および比較例5〜7で得た可視光による有機物の分解能力の評価結果。The evaluation result of the decomposition | disassembly capability of the organic substance by visible light obtained in Example 4 and Comparative Examples 5-7. 実施例1で得た光触媒のXPSによる測定結果。The measurement result by XPS of the photocatalyst obtained in Example 1. 比較例1で得た光触媒のXPSによる測定結果。The measurement result by XPS of the photocatalyst obtained in Comparative Example 1. 比較例3で得た光触媒のXPSによる測定結果。The measurement result by XPS of the photocatalyst obtained in Comparative Example 3. 実施例5で得た可視光による光誘起親水性発現の評価結果。The evaluation result of the light-induced hydrophilic expression by visible light obtained in Example 5.

Claims (12)

凝集体を含むアナターゼ型またはルチル型酸化チタン粒子と無定形酸化チタンをロッキングミルおよび粒子径が100μm以下のビーズ粒子を用いて湿式分散し、酸化チタン粒子の一次粒子の平均粒子径が5〜50nmの範囲になるように解砕することを含む低次酸化チタン粒子含有組成物を製造する方法。 Anatase-type or rutile-type titanium oxide particles containing aggregates and amorphous titanium oxide are wet-dispersed using a rocking mill and bead particles having a particle size of 100 μm or less, and the average particle size of the primary particles of titanium oxide particles is 5 to 50 nm. A method for producing a composition containing low-order titanium oxide particles, comprising pulverizing to a range of . 無定形酸化チタンがペルオキソチタン酸である請求項1に記載の製造方法。 The process according to claim 1, wherein the amorphous titanium oxide is peroxotitanic acid. 酸化チタン粒子100質量部に対して無定形酸化チタンを5〜20質量部の範囲とする請求項1または2に記載の製造方法。The manufacturing method of Claim 1 or 2 which makes amorphous titanium oxide the range of 5-20 mass parts with respect to 100 mass parts of titanium oxide particles. 湿式分散を、水を溶媒として実施する請求項1〜のいずれか一項に記載の製造方法。 The manufacturing method as described in any one of Claims 1-3 which implements wet dispersion using water as a solvent. 水100質量部に対する酸化チタン粒子の量を1〜5質量部の範囲とする請求項4に記載の製造方法。The manufacturing method of Claim 4 which makes the quantity of the titanium oxide particle with respect to 100 mass parts of water the range of 1-5 mass parts. ビーズ粒子の粒子径が10〜100μmの範囲である請求項1〜5のいずれか一項に記載の製造方法。The manufacturing method according to any one of claims 1 to 5, wherein the particle diameter of the bead particles is in the range of 10 to 100 µm. ビーズ粒子の粒子径が30〜70μmの範囲である請求項1〜5のいずれか一項に記載の製造方法。The production method according to any one of claims 1 to 5, wherein the particle size of the bead particles is in the range of 30 to 70 µm. 湿式分散の時間は、0.5〜2時間とする請求項1〜7のいずれか一項に記載の製造方法。The manufacturing method according to any one of claims 1 to 7, wherein the wet dispersion time is 0.5 to 2 hours. 低次酸化チタン粒子含有組成物が、低次酸化チタン粒子を水に分散したものである請求項1〜のいずれか一項に記載の製造方法。 Lower titanium oxide particle-containing composition, the production method according to the low-order titanium oxide particles in any one of claims 1-8 is obtained by dispersing in water. 低次酸化チタン粒子は、表面を無定形酸化チタンで覆われた粒子である請求項9に記載の製造方法。The manufacturing method according to claim 9, wherein the low-order titanium oxide particles are particles whose surfaces are covered with amorphous titanium oxide. 低次酸化チタン粒子含有組成物がコーティング用組成物である請求項1〜10のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 10, wherein the low-order titanium oxide particle-containing composition is a coating composition. 前記低次酸化チタン粒子含有組成物は、塗布乾燥して表面状態をXPS測定すると、458eV付近にTi3+に帰属するシグナルが観察される請求項1〜11のいずれか一項に記載の製造方法。 The said low-order titanium oxide particle containing composition is a manufacturing as described in any one of Claims 1-11 by which the signal attributed to Ti3 + is observed in the vicinity of 458eV, when the surface state is measured by XPS by applying and drying. Method.
JP2006287178A 2005-10-24 2006-10-23 Method for producing composition containing low-order titanium oxide particles Active JP4751805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006287178A JP4751805B2 (en) 2005-10-24 2006-10-23 Method for producing composition containing low-order titanium oxide particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005308091 2005-10-24
JP2005308091 2005-10-24
JP2006287178A JP4751805B2 (en) 2005-10-24 2006-10-23 Method for producing composition containing low-order titanium oxide particles

Publications (2)

Publication Number Publication Date
JP2007145696A JP2007145696A (en) 2007-06-14
JP4751805B2 true JP4751805B2 (en) 2011-08-17

Family

ID=38207543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006287178A Active JP4751805B2 (en) 2005-10-24 2006-10-23 Method for producing composition containing low-order titanium oxide particles

Country Status (1)

Country Link
JP (1) JP4751805B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT106550B (en) * 2012-09-27 2014-11-05 Ntio2 Lda NON-ESTEQUIOMETRIC TITANIUM OXIDE SHOWING IMPROVED PHOTOCATALYTIC AND ANTI-BACTERIAL PROPERTIES, PROCESS FOR PREPARING AND USING THE SAME
CN108671903B (en) * 2018-05-18 2021-04-27 福州大学 Photocatalytic composite material with graphene coated titanium dioxide for secondary growth

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3690864B2 (en) * 1996-03-29 2005-08-31 株式会社ティオテクノ Production method of photocatalyst
JP2001220141A (en) * 2000-02-03 2001-08-14 Toho Titanium Co Ltd Titanium oxide dispersion
JP2001262005A (en) * 2000-03-16 2001-09-26 Toho Titanium Co Ltd Coating-film-forming composition, coating film, and coated article for photocatalyst
JP2002211927A (en) * 2001-01-12 2002-07-31 Kenichi Yamanaka Method for producing titanium dioxide dispersion
JP4261154B2 (en) * 2002-10-15 2009-04-30 独立行政法人科学技術振興機構 Novel low-order titanium oxide and method for producing the same
JP3825391B2 (en) * 2002-10-16 2006-09-27 三菱重工業株式会社 Method for producing photocatalyst precursor sol, photocatalyst and method for producing the same
JP2004237182A (en) * 2003-02-05 2004-08-26 Mitsubishi Heavy Ind Ltd Photocatalyst precursor sol, its production method, photocatalytic element, and its production method
JP4540069B2 (en) * 2005-04-08 2010-09-08 東邦チタニウム株式会社 Composition for forming titanium oxide photocatalyst coating film, method for producing the same, coating film for photocatalyst, and coated product for photocatalyst

Also Published As

Publication number Publication date
JP2007145696A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
EP2100927B1 (en) Carbon-containing titanium dioxide photocatalyst and process the production thereof
CN1993431B (en) Coating composition
JP3959213B2 (en) Titanium oxide, photocatalyst body using the same, and photocatalyst body coating agent
US7335620B2 (en) Photocatalytic powder, photocatalytic slurry, and polymer composition, coating agent, photocatalytic functional molded article and photocatalytic functional structure using the powder
JP4686536B2 (en) Photocatalyst, method for producing the same, dispersion containing photocatalyst, and photocatalyst coating composition
JPH06293519A (en) Production of titanium oxide particles and film
JP4647803B2 (en) Production method of photocatalyst powder
EP2133311B1 (en) Zirconium oxalate sol
CN1483002A (en) High activity photo-catalyst
Luna et al. Photocatalytic TiO2 nanosheets-SiO2 coatings on concrete and limestone: An enhancement of de-polluting and self-cleaning properties by nanoparticle design
JP4751805B2 (en) Method for producing composition containing low-order titanium oxide particles
DE102005057770A1 (en) Composition, useful for coating facades, streets, pavements, public places, sealed floor spaces, roof stones and roofings, comprises a binding agent and a photocatalytic agent
JP2005318999A (en) Antibacterial deodorant and its manufacturing method
JP2005170687A (en) Neutral titanium oxide sol and method for producing the same
JP4424905B2 (en) Anatase type titania-silica composite, production method thereof and photocatalytic material
JP5313051B2 (en) Zirconium oxalate sol
JP2003055841A (en) Titanium oxide fiber and photocatalyst body using the same
WO2004069946A1 (en) Coating material for forming photocatalyst/titanium oxide composite film
JP4103324B2 (en) Titanium oxide, photocatalyst body and photocatalyst body coating agent using the same
JP5237528B2 (en) Photocatalyst production method and pollutant decomposition method
JP3981757B2 (en) Photocatalyst body and photocatalyst body coating agent using the same
JP4246933B2 (en) Photocatalyst particles and method for producing the same
JP6096536B2 (en) Photocatalyst composite particles and method for producing the same
JP2001262005A (en) Coating-film-forming composition, coating film, and coated article for photocatalyst
JP2004344825A (en) Visible light responsive photocatalyst particle and its production method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

R150 Certificate of patent or registration of utility model

Ref document number: 4751805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250