JP2013139029A - Porous adsorbent having visible light absorbency, and method for producing the same at low temperature - Google Patents

Porous adsorbent having visible light absorbency, and method for producing the same at low temperature Download PDF

Info

Publication number
JP2013139029A
JP2013139029A JP2012263188A JP2012263188A JP2013139029A JP 2013139029 A JP2013139029 A JP 2013139029A JP 2012263188 A JP2012263188 A JP 2012263188A JP 2012263188 A JP2012263188 A JP 2012263188A JP 2013139029 A JP2013139029 A JP 2013139029A
Authority
JP
Japan
Prior art keywords
clay
titania
sample
visible light
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012263188A
Other languages
Japanese (ja)
Inventor
Kaori Nishizawa
かおり 西澤
Eiji Watanabe
栄次 渡辺
Masaki Maeda
雅喜 前田
Keiichi Inukai
恵一 犬飼
Masaya Suzuki
正哉 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2012263188A priority Critical patent/JP2013139029A/en
Publication of JP2013139029A publication Critical patent/JP2013139029A/en
Pending legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a functional titania-clay composite with both an excellent substance adsorptive function and a visible light response type photocatalyst function at low temperature of the heat resistant temperature of clay or below.SOLUTION: This method for producing a functional titania-clay composite by imparting a visible light response type photocatalyst function to a clay compound that has an excellent substance adsorptive function includes adding the clay compound in a titania precursor sol solution, prepared with an ethylene glycol monomethyl ether as a solvent, after ultraviolet rays are irradiated thereto, and subjecting the mixture to heating and pressurizing processing as it is using a liquid as a heating medium within a temperature region including the heat resistant temperature of the clay and below.

Description

本発明は、優れた物質吸着機能と可視光応答型光触媒機能を併せ持つ機能性チタニア−粘土複合体、およびその低温作製方法に関するものであり、更に詳しくは、エチレングリコールモノメチルエーテルを溶媒として調製したチタニア前駆体ゾル溶液に紫外線を照射したあとで、高吸着能を有する粘土化合物を添加し、粘土の耐熱温度以下の温度域で、そのままソルボサーマル処理、即ち、液体を熱媒体として加熱・加圧処理することによって、可視光吸収能を有する結晶性アナターゼ型チタニア−粘土複合体を作製する方法を提供するものである。   The present invention relates to a functional titania-clay composite having both an excellent substance adsorption function and a visible light responsive photocatalytic function, and a low-temperature preparation method thereof, and more specifically, titania prepared using ethylene glycol monomethyl ether as a solvent. After irradiating the precursor sol with ultraviolet rays, a clay compound having a high adsorptive capacity is added, and solvothermal treatment, that is, heating / pressurizing treatment using a liquid as a heat medium, in a temperature range below the heat resistance temperature of the clay. Thus, a method for producing a crystalline anatase-type titania-clay complex having a visible light absorption ability is provided.

この発明は、通常の粘土吸着剤、可視光応答型光触媒と同様の種々の利用分野、例えば、室内の調湿、VOC除去、脱臭、殺菌、防汚等を目指した住宅建材内壁材や外壁材、有害物の高吸着能と水質浄化能を生かした河川浄化用ブロックタイル等だけでなく、その他触媒材料、吸着剤、分離材等幅広い適用が期待できる技術である。   The present invention relates to various application fields similar to ordinary clay adsorbents and visible light responsive photocatalysts, for example, interior and exterior wall materials for residential buildings aimed at humidity control, VOC removal, deodorization, sterilization, antifouling, etc. In addition to river purification block tiles that make use of the high adsorption capacity and water purification capacity of harmful substances, this is a technology that can be expected to be widely applied to other catalyst materials, adsorbents, separation materials, etc.

光触媒活性を発現する材料としては、チタニア(酸化チタン、TiO2)、酸化亜鉛(ZnO)、酸化タングステン(WO3)、酸化鉄(Fe2O3)等が知られているが、水や酸、アルカリ等に対する安定性や耐久性、安全性等の観点から、現在、実用に供されているものは、ほとんどがチタニアである。 Known materials that exhibit photocatalytic activity include titania (titanium oxide, TiO 2 ), zinc oxide (ZnO), tungsten oxide (WO 3 ), and iron oxide (Fe 2 O 3 ). From the viewpoints of stability, durability, safety, etc. with respect to alkali, etc., most of them are in practical use at present.

しかし、このチタニアのバンドギャップは3.0〜3.2eV程度であるが故、紫外領域の光によってしか光触媒活性を発現させることができなかったため、太陽光エネルギーの大部分を占める可視光照射によって光触媒活性を発現できる材料の開発が切望されてきた。   However, since the band gap of this titania is about 3.0 to 3.2 eV, photocatalytic activity could only be expressed by light in the ultraviolet region, so that photocatalytic activity was achieved by irradiation with visible light, which accounts for the majority of solar energy. The development of materials that can be expressed has been eagerly desired.

このような状況の中、例えば、チタニアにクロム(Cr)やバナジウム(V)等の金属イオンをドーピングする方法(特許文献1〜2参照)、チタニアを窒素ガス、水素ガス、メタンガス雰囲気下でプラズマ処理を施す方法(特許文献3〜4参照)、チタニアを窒素ガス、アンモニアガス雰囲気下で熱処理する方法(特許文献5〜6参照)やチタニアと尿素化合物を混合後電子線を照射する方法(特許文献7参照)等々、数多くの方法により、可視光応答型の光触媒が作製できることが報告されてきた。   Under such circumstances, for example, a method of doping titania with a metal ion such as chromium (Cr) or vanadium (V) (see Patent Documents 1 and 2), titania is plasma in an atmosphere of nitrogen gas, hydrogen gas, or methane gas. A method of performing treatment (see Patent Documents 3 to 4), a method of heat-treating titania in an atmosphere of nitrogen gas and ammonia gas (see Patent Documents 5 to 6), and a method of irradiating an electron beam after mixing titania and a urea compound (patents) It has been reported that a visible light responsive photocatalyst can be produced by a number of methods.

しかし、これらの方法は、その多くが、作製にあたり、高価で、特別な装置が必要であったり、あるいは、安全性に問題があった。   However, many of these methods are expensive to produce and require special equipment, or have a problem in safety.

そこで本発明者らは、可視光照射下で応答する光触媒体を、安全、かつ簡便に作製する方法を開発することを目標として、ゾルゲル法により調製したチタニア系前駆体溶液に高エネルギーの紫外線を照射することによって、可視光照射下で応答する光触媒体を、簡便、かつ効率よく作製できる方法の開発に成功した(特許文献8参照)。   Therefore, the present inventors aim to develop a safe and simple method for producing a photocatalyst that responds under visible light irradiation with high-energy ultraviolet rays applied to a titania-based precursor solution prepared by a sol-gel method. By irradiating, the inventors succeeded in developing a method that can easily and efficiently produce a photocatalyst that responds under visible light irradiation (see Patent Document 8).

一方で、光触媒活性を効果的に発現させるためには、分解したい有害物質をその表面に効果的に吸着させる必要がある。そのひとつの方法として、高吸着能を有する粘土化合物と結晶性アナターゼ型チタニアを複合化させる方法が知られている。   On the other hand, in order to effectively exhibit photocatalytic activity, it is necessary to effectively adsorb harmful substances to be decomposed on the surface thereof. As one of the methods, there is known a method in which a clay compound having a high adsorption ability and a crystalline anatase titania are combined.

これまでに報告されている結晶性アナターゼ型チタニアと粘土化合物との複合体の作製方法としては、低結晶性チタニア微粒子・水膨潤性粘土複合体を水に分散させ水熱処理する方法(特許文献9参照)、四塩化チタンを原料として調製したペルオキソチタン酸溶液と粘土複合体を水熱処理する方法(特許文献10参照)がある。   As a method for producing a composite of a crystalline anatase titania and a clay compound that has been reported so far, a method in which a low crystalline titania fine particle / water-swellable clay composite is dispersed in water and hydrothermally treated (Patent Document 9). And a hydrothermal treatment of a peroxotitanic acid solution prepared from titanium tetrachloride as a raw material and a clay complex (see Patent Document 10).

また、チタンアルコキシドを原料として調製したペルオキソチタン酸と水膨潤性粘土を複合化する方法(非特許文献1参照)等があり、更に、チタニア以外の結晶性金属酸化物と粘土との複合化に関する低温作製法(特許文献11参照)等も報告されている。   In addition, there is a method of compounding peroxotitanic acid prepared from titanium alkoxide as a raw material with water-swellable clay (see Non-Patent Document 1) and the like, and further, compounding of a crystalline metal oxide other than titania and clay. A low-temperature fabrication method (see Patent Document 11) has also been reported.

上記のように、チタニア光触媒体の物質吸着能を向上させるための結晶性アナターゼ型チタニアと粘土との複合化に関する研究報告例はあるが、これらの方法で作製したチタニアはいずれも紫外光のみを吸収するものであったため、可視光下では光触媒機能を発現させることができず、エネルギー効率が悪い等の問題点があった。   As described above, there are examples of research reports on the combination of crystalline anatase-type titania and clay to improve the substance adsorption ability of titania photocatalysts, but all titania produced by these methods only emits ultraviolet light. Since it was absorbed, there was a problem that the photocatalytic function could not be expressed under visible light and the energy efficiency was poor.

一方で、粘土化合物の一種で、比表面積が700m2/g以上を示し、水蒸気、二酸化炭素等の物質吸着能に優れた新規なアルミニウムケイ酸化合物(以下「ハスクレイ」と記載する)が開発されている(特許文献12)。 On the other hand, a new aluminum silicate compound (hereinafter referred to as “Hasclay”), which is a kind of clay compound, has a specific surface area of 700 m 2 / g or more and has an excellent ability to adsorb substances such as water vapor and carbon dioxide. (Patent Document 12).

当研究所で近年開発されたこの新しい粘土化合物ハスクレイは、29Si固体NMR測定によるスペクトルにおいて、−78ppmおよび−87ppm付近にピークを有する特徴がある。−78ppmのピークに対応する、HO−Si−(OAl)の配位を含む特徴的な構造の物質(非晶性の水酸化アルミニウムケイ酸:HAS,Hydroxyl Aluminum Silicate )と、−87ppmのピークに対応する、Si同士の重合構造を含む物質(低結晶性層状粘土鉱物:clay)との両者からなる複合体であり、その物質構成から「ハスクレイ」と呼称されている。 This new clay compound hus clay, which was recently developed at our laboratory, is characterized by having peaks in the vicinity of -78 ppm and -87 ppm in the spectrum measured by 29Si solid state NMR measurement. A material with a characteristic structure containing HO-Si- (OAl) 3 coordination (amorphous aluminum hydroxide silicate: HAS, Hydrogen Aluminum Silicate), corresponding to a peak of -78 ppm, and a peak of -87 ppm , And a substance comprising a Si-polymerized structure (low crystalline layered clay mineral: clay), and is called “Hasclay” because of its material structure.

このハスクレイは、ナノサイズチューブ状の特異な多孔質構造と、極めて高い比表面積を有するため、水との高い親和性、優れた物質吸着機能で注目されているが、さらなる機能化を目的とした研究としては、これまでのところ、その表面に金属触媒を担持させ、水素と一酸化窒素混合ガス中の一酸化炭素の酸化反応の選択性を向上させる研究が行われているのみで、それ以外の研究報告は見あたらない(特許文献13)。   This Hasclay is attracting attention because of its unique nano-sized tubular structure and extremely high specific surface area. So far, research has only been carried out to improve the selectivity of the oxidation reaction of carbon monoxide in a hydrogen and nitric oxide mixed gas by supporting a metal catalyst on the surface. No research report is found (Patent Document 13).

特開平9−262482号公報JP-A-9-262482 特開平11−290697号公報JP-A-11-290697 特開平11−333301号公報JP 11-333301 A 特開2000−140636号公報JP 2000-140636 A 特開2001−207082号公報JP 2001-207082 A 特許第3498739号明細書Japanese Patent No. 3498739 特開2006−95520号公報JP 2006-95520 A 特開2009−214055号公報JP 2009-214055 A 特許第3357566号公報Japanese Patent No. 3357566 特許第3321440号公報Japanese Patent No. 3321440 特開2002−79082号公報JP 2002-79082 A 特許第4576616号公報Japanese Patent No. 4576616 特開2011−5461号公報JP 2011-5461 A

Japan Energy & Technology Intelligence, 54(3),47-52, 2006.Japan Energy & Technology Intelligence, 54 (3), 47-52, 2006.

そこで本発明者らは、上記従来技術に鑑みて、優れた物質吸着機能と可視光応答型光触媒機能を併せ持つ機能性チタニア−粘土複合体を、粘土の耐熱温度以下の低温で製造する方法を提供することを課題としている。   Therefore, in view of the above-mentioned conventional technology, the present inventors provide a method for producing a functional titania-clay complex having both an excellent substance adsorption function and a visible light responsive photocatalytic function at a low temperature below the heat resistance temperature of clay. The challenge is to do.

上記課題を解決するための本発明は、以下のことを特徴としている。   The present invention for solving the above-described problems is characterized by the following.

(1)優れた物質吸着機能を有する粘土化合物に可視光応答型光触媒機能を付与した機能性チタニア−粘土複合体を作製する方法であって、エチレングリコールモノメチルエーテルを溶媒として調製したチタニア前駆体ゾル溶液に紫外線を照射後、粘土化合物を添加し、そのまま粘土の耐熱温度以下の温度域で液体を熱媒体として加熱・加圧処理することを特徴とする、可視光吸収能を有し、可視光で光触媒機能を発現するアナターゼ型チタニア−多孔質粘土複合体を作製する方法。   (1) A method for preparing a functional titania-clay complex in which a visible light responsive photocatalytic function is imparted to a clay compound having an excellent substance adsorption function, and a titania precursor sol prepared using ethylene glycol monomethyl ether as a solvent After irradiating the solution with ultraviolet rays, a clay compound is added, and the liquid is heated and pressurized as a heat medium in the temperature range below the heat resistance temperature of clay. A method for producing an anatase-type titania-porous clay complex that exhibits a photocatalytic function.

(2)粘土化合物がチューブ状の多孔質構造を有するアルミニウムケイ酸化合物である(1)記載のアナターゼ型チタニア−多孔質粘土複合体を作製する方法。   (2) The method for producing the anatase-type titania-porous clay composite according to (1), wherein the clay compound is an aluminum silicate compound having a tubular porous structure.

(3)エチレングリコールモノメチルエーテルを溶媒として調製したチタニア前駆体ゾル溶液に紫外線を照射後、粘土化合物を添加し、そのまま粘土の耐熱温度以下の温度域で液体を熱媒体として加熱・加圧処理して作製された、可視光吸収能を有し、可視光で光触媒機能を発現することを特徴とするアナターゼ型チタニア−多孔質粘土複合体。   (3) After irradiating the titania precursor sol solution prepared with ethylene glycol monomethyl ether as the solvent with ultraviolet rays, the clay compound is added, and the liquid is heated and pressurized in the temperature range below the heat resistance temperature of the clay as it is. An anatase-type titania-porous clay composite produced by the method described above, which has a visible light absorption ability and exhibits a photocatalytic function with visible light.

(4)粘土化合物がチューブ状の多孔質構造を有するアルミニウムケイ酸化合物である(3)記載のアナターゼ型チタニア−多孔質粘土複合体。   (4) The anatase titania-porous clay composite according to (3), wherein the clay compound is an aluminum silicate compound having a tubular porous structure.

(5)優れた物質吸着機能を有する粘土化合物に可視光応答型光触媒機能を付与した機能性チタニア−粘土複合体を作製する方法であって、エチレングリコールモノメチルエーテルを溶媒として調製したチタニア前駆体ゾル溶液に紫外線を照射後に、HO−Si−(OAl)の配位を含む非晶性の水酸化アルミニウムケイ酸と、Si同士の重合構造を含む低結晶性層状粘土鉱物との両者からなる複合体である、高吸着性粘土複合体ハスクレイを添加し、そのまま180〜250℃の温度域で液体を熱媒体として加熱・加圧処理することを特徴とする、高吸着性と可視光吸収能を併せ持ち、可視光で光触媒機能を発現する多孔質アナターゼ型チタニア担持ハスクレイ複合体を作製する方法。 (5) A method for producing a functional titania-clay complex in which a visible light responsive photocatalytic function is imparted to a clay compound having an excellent substance adsorption function, wherein the titania precursor sol is prepared using ethylene glycol monomethyl ether as a solvent. A composite comprising both amorphous aluminum hydroxide silicic acid containing HO—Si— (OAl) 3 coordination and low crystalline layered clay mineral containing a polymer structure of Si after irradiating the solution with ultraviolet rays High adsorptivity and visible light absorptivity, characterized by adding high adsorptivity clay complex, which is a body, and heating and pressurizing liquid as a heat medium in the temperature range of 180-250 ° C. A method for producing a porous anatase-type titania-supported Hasclay composite that also has a photocatalytic function with visible light.

(6)エチレングリコールモノメチルエーテルを溶媒として調製したチタニア前駆体ゾル溶液に紫外線を照射後に、HO−Si−(OAl)の配位を含む非晶性の水酸化アルミニウムケイ酸と、Si同士の重合構造を含む低結晶性層状粘土鉱物との両者からなる複合体である、高吸着性粘土複合体ハスクレイを添加し、そのまま180〜250℃の温度域で液体を熱媒体として加熱・加圧処理して作製された、高吸着性と可視光吸収能を併せ持つアナターゼ型チタニア担持ハスクレイ複合体。 (6) After irradiating the titania precursor sol solution prepared using ethylene glycol monomethyl ether as a solvent with ultraviolet rays, amorphous aluminum hydroxide silicic acid containing coordination of HO—Si— (OAl) 3 and Si Addition of high adsorptive clay complex, which is a complex composed of both low crystalline lamellar clay minerals containing a polymerized structure, heat and pressure treatment using liquid as a heat medium in the temperature range of 180-250 ° C. An anatase-type titania-carrying Hasclay complex having both high adsorptivity and visible light absorption ability.

(7)優れた物質吸着機能を有する粘土化合物に可視光応答型光触媒機能を付与した機能性チタニア−粘土複合体を作製する方法であって、エチレングリコールモノメチルエーテルを溶媒とし、有機窒素化合物を添加して調製したチタニア前駆体ゾル溶液に紫外線を照射後、粘土化合物を添加し、そのまま粘土の耐熱温度以下の温度域で液体を熱媒体として加熱・加圧処理することを特徴とする、可視光吸収能を有し、可視光で光触媒機能を発現する多孔質アナターゼ型チタニア−粘土複合体を作製する方法。   (7) A method for producing a functional titania-clay complex in which a visible light responsive photocatalytic function is imparted to a clay compound having an excellent substance adsorption function, wherein an organic nitrogen compound is added using ethylene glycol monomethyl ether as a solvent. The titania precursor sol solution prepared as above is irradiated with ultraviolet light, and then added with a clay compound, and heated and pressurized as it is with a liquid as a heat medium in a temperature range below the heat resistance temperature of the clay, visible light A method for producing a porous anatase-type titania-clay composite having absorption ability and exhibiting a photocatalytic function with visible light.

(8)エチレングリコールモノメチルエーテルを溶媒とし、有機窒素化合物を添加して調製したチタニア前駆体ゾル溶液に紫外線を照射後、粘土化合物を添加し、そのまま粘土の耐熱温度以下の温度域で液体を熱媒体として加熱・加圧処理して作製された、可視光吸収能を有し、可視光で光触媒機能を発現することを特徴とするアナターゼ型チタニア−粘土複合体。   (8) After irradiating the titania precursor sol solution prepared by adding ethylene glycol monomethyl ether as a solvent and adding an organic nitrogen compound with ultraviolet rays, the clay compound is added, and the liquid is heated in the temperature range below the heat resistance temperature of the clay. An anatase-type titania-clay complex produced by heating and pressurizing as a medium, having a visible light absorption ability and exhibiting a photocatalytic function with visible light.

(9)優れた物質吸着機能を有する粘土化合物に可視光応答型光触媒機能を付与した機能性チタニア−粘土複合体を作製する方法であって、エチレングリコールモノメチルエーテルを溶媒とし、有機窒素化合物を添加して調製したチタニア前駆体ゾル溶液に紫外線を照射後、HO−Si−(OAl)の配位を含む非晶性の水酸化アルミニウムケイ酸と、Si同士の重合構造を含む低結晶性層状粘土鉱物との両者からなる複合体である、高吸着性粘土複合体ハスクレイを添加し、そのまま180〜250℃の温度域で液体を熱媒体として加熱・加圧処理することを特徴とする、高吸着性と可視光吸収能を併せ持ち、可視光で光触媒機能を発現するアナターゼ型チタニア担持ハスクレイ複合体を作製する方法。 (9) A method for producing a functional titania-clay complex in which a visible light responsive photocatalytic function is imparted to a clay compound having an excellent substance adsorption function, wherein ethylene glycol monomethyl ether is used as a solvent and an organic nitrogen compound is added. The titania precursor sol solution prepared in this manner is irradiated with ultraviolet light, and then the amorphous aluminum hydroxide silicic acid containing the coordination of HO—Si— (OAl) 3 and the low crystalline layered structure containing a polymer structure of Si. It is characterized by adding a highly adsorptive clay complex, which is a complex composed of both clay minerals, and heating and pressing the liquid as a heat medium in the temperature range of 180 to 250 ° C. A method of producing an anatase-type titania-supported Hasclay complex that has both adsorptivity and visible light absorption ability and exhibits a photocatalytic function with visible light.

(10)エチレングリコールモノメチルエーテルを溶媒とし、有機窒素化合物を添加して調製したチタニア前駆体ゾル溶液に紫外線を照射後、HO−Si−(OAl)の配位を含む非晶性の水酸化アルミニウムケイ酸と、Si同士の重合構造を含む低結晶性層状粘土鉱物との両者からなる複合体である、高吸着性粘土複合体ハスクレイを添加し、そのまま180〜250℃の温度域で液体を熱媒体として加熱・加圧処理して作製された、高吸着性と可視光吸収能を併せ持ち、可視光で光触媒機能を発現することを特徴とするアナターゼ型チタニア担持ハスクレイ複合体。 (10) Amorphous hydroxylation including coordination of HO—Si— (OAl) 3 after irradiating a titania precursor sol solution prepared by adding an organic nitrogen compound using ethylene glycol monomethyl ether as a solvent. Add a high adsorptive clay complex, which is a complex composed of both aluminum silicic acid and a low crystalline layered clay mineral containing a polymerized structure of Si, and leave the liquid as it is in the temperature range of 180-250 ° C. An anatase-type titania-supported Hasclay composite produced by heating and pressurizing as a heat medium, having both high adsorptivity and visible light absorption ability and exhibiting a photocatalytic function with visible light.

上記のとおりの本発明によれば、エチレングリコールモノメチルエーテルを溶媒として調製したチタニア前駆体ゾル溶液に紫外線を照射後、これにハスクレイなどの粘土化合物を添加し、そのままソルボサーマル処理、即ち、液体を熱媒体として加熱・加圧処理することによって、可視光吸収能を有する結晶性アナターゼ型チタニア−粘土複合体を粘土の耐熱温度以下の比較的低温で効率よく簡便に作製する方法が実現される。   According to the present invention as described above, after irradiating the titania precursor sol solution prepared using ethylene glycol monomethyl ether as a solvent with ultraviolet rays, a clay compound such as a husclay is added thereto, and the solvothermal treatment, that is, the liquid is used as it is. By heating / pressurizing as a heat medium, a method for efficiently and easily producing a crystalline anatase-type titania-clay complex having a visible light absorption ability at a relatively low temperature not higher than the heat resistant temperature of clay is realized.

本発明により、次のような効果が奏される。
(1)水や大気環境中の有害物質を効率よく吸着し、この吸着物質を紫外〜可視光下で効果的に分解する結晶性アナターゼ型チタニア−粘土複合体を作製することができる。
(2)本発明により得られる材料の多孔質構造を利用して、触媒材料、吸着剤、分離材などとして幅広い分野で利用することができる。
(3)多孔質構造を有する可視光応答型光触媒作製プロセスの低温化、効率化に貢献できる。
(4)本発明により得られる金属酸化物-粘土複合体の作製方法は、金属種、粘土種を変えることにより、有害物質吸着剤、光触媒材だけでなく、各種機能材料への応用展開にも寄与できる。
The present invention has the following effects.
(1) A crystalline anatase-type titania-clay complex that efficiently adsorbs harmful substances in water and the atmospheric environment and effectively decomposes the adsorbed substances under ultraviolet to visible light can be produced.
(2) Utilizing the porous structure of the material obtained by the present invention, it can be used in a wide range of fields as a catalyst material, an adsorbent, a separation material, and the like.
(3) It can contribute to lowering the temperature and improving the efficiency of the visible light responsive photocatalyst production process having a porous structure.
(4) The method for producing the metal oxide-clay composite obtained by the present invention can be applied not only to harmful substance adsorbents and photocatalyst materials but also to various functional materials by changing the metal species and clay species. Can contribute.

予備実験例で作製したSampleA、実施例1〜7で作製したチタニア担持ハスクレイ複合体のSampleB〜SampleH、ハスクレイ単独のSampleIの粉末X線回折図を示す。The powder X-ray-diffraction figure of Sample A produced in the preliminary experiment example, Sample B to Sample H of the titania-carrying Hasclay composite produced in Examples 1 to 7 and Sample I of Hasclay alone is shown. 予備実験例で作製したSampleA、実施例1〜7で作製したチタニア担持ハスクレイ複合体のSampleB〜SampleH、ハスクレイ単独のSampleIの紫外可視光吸収スペクトルを示す。The ultraviolet-visible light absorption spectrum of Sample A produced in the preliminary experimental example, Sample B to Sample H of the titania-supported Hasclay composite produced in Examples 1 to 7, and Sample I of Hassley alone is shown. 予備実験例で作製したSampleA、実施例1〜7で作製したチタニア担持ハスクレイ複合体のSampleB〜SampleH、ハスクレイ単独のSampleIの透過型電子顕微鏡観察像を示す。The transmission electron microscope observation image of Sample A produced in the preliminary experiment example, Sample B to Sample H of the titania-carrying Hasclay composite produced in Examples 1 to 7, and Sample I of Hasclay alone is shown. 予備実験例で作製したSampleA、実施例1〜7で作製したチタニア担持ハスクレイ複合体のSampleB〜SampleH、ハスクレイ単独のSampleIの水蒸気吸着等温線を示す。The water vapor adsorption isotherms of Sample A prepared in the Preliminary Experimental Example, Sample B to Sample H of the titania-supported Hasclay composite prepared in Examples 1 to 7, and Sample I of Hassley alone are shown. 予備実験例で作製したSampleA、実施例1〜7で作製したチタニア担持ハスクレイ複合体のSampleB〜SampleH、ハスクレイ単独のSampleIの二酸化炭素吸着等温線を示す。The carbon dioxide adsorption isotherms of Sample A prepared in the preliminary experimental example, Sample B to Sample H of the titania-supported Hasclay composite prepared in Examples 1 to 7, and Sample I of Hassley alone are shown. 予備実験例で作製したSampleA、実施例2,3,5,6で作製したチタニア担持ハスクレイ複合体のSample C,D,F,G、ハスクレイ単独のSampleIのメチレンブルー吸着量の経時変化を示す。The time-dependent changes in the amount of methylene blue adsorbed on Sample A prepared in the preliminary experimental example, Sample C, D, F, G of the titania-supported Hasclay composite prepared in Examples 2, 3, 5 and 6, and Sample I of Hassley alone are shown. 予備実験例で作製したSampleA、実施例2,3,5,6で作製したチタニア担持ハスクレイ複合体のSample C,D,F,G、ハスクレイ単独のSampleIの可視光照射下におけるメチレンブルー光分解量の経時変化を示す。The amount of methylene blue photodegradation under visible light irradiation of Sample A prepared in the preliminary experimental example, Sample C, D, F, G of the titania-supported Hasclay composite prepared in Examples 2, 3, 5 and 6 and Sample I of the Hasclay alone. The change with time is shown. 比較実験例1〜9で、ハスクレイを添加せずに条件を変えて作製したチタニアSampleA−a〜SampleA−iの粉末X線回折図を示す。The powder X-ray-diffraction figure of the titania SampleA-a-SampleA-i produced by changing conditions, without adding a clay in Comparative Experimental Examples 1-9 is shown. 比較実験例1〜9で、ハスクレイを添加せずに条件を変えて作製したチタニアSampleA−a〜SampleA−iの紫外可視光吸収スペクトルを示す。The ultraviolet-visible light absorption spectrum of the titania SampleA-a-SampleA-i produced by changing conditions without adding a clay in Comparative Experimental Examples 1-9 is shown. 予備実験例で作製したチタニア100%のSampleA、実施例3、6、8〜13で作製したチタニア担持多孔質複合体のSample D、G、K、L、N、O、Q、R、そして、ハスクレイ、合成イモゴライト、シリカゲルQ-10、ゼオライト13X単独のSampleI、J、M、Pの粉末X線回折図を示す。Sample A of 100% titania prepared in the preliminary experimental example, Samples D, G, K, L, N, O, Q, R of the titania-supporting porous composite prepared in Examples 3, 6, and 8 to 13, and The powder X-ray diffraction patterns of Samples I, J, M, and P of Haskray, synthetic imogolite, silica gel Q-10, and zeolite 13X alone are shown. 予備実験例で作製したチタニア100%のSampleA、実施例3、6、8〜13で作製したチタニア担持多孔質複合体のSample D、G、K、L、N、O、Q、R、そして、ハスクレイ、合成イモゴライト、シリカゲルQ-10、ゼオライト13X単独のSampleI、J、M、Pの紫外可視光吸収スペクトルを示す。Sample A of 100% titania prepared in the preliminary experimental example, Samples D, G, K, L, N, O, Q, R of the titania-supporting porous composite prepared in Examples 3, 6, and 8 to 13, and The ultraviolet visible light absorption spectra of Samples I, J, M, and P of Haskray, synthetic imogolite, silica gel Q-10, and zeolite 13X alone are shown. 予備実験例で作製したチタニア100%のSampleA、実施例3、6、8〜13で作製したチタニア担持多孔質複合体のSample D、G、K、L、N、O、Q、R、そして、ハスクレイ、合成イモゴライト、シリカゲルQ-10、ゼオライト13X単独のSampleI、J、M、Pの水蒸気吸着等温線を示す。Sample A of 100% titania prepared in the preliminary experimental example, Samples D, G, K, L, N, O, Q, R of the titania-supporting porous composite prepared in Examples 3, 6, and 8 to 13, and Water vapor adsorption isotherms for Samples I, J, M, and P of Haskray, synthetic imogolite, silica gel Q-10, and zeolite 13X alone are shown. 予備実験例で作製したチタニア100%のSampleA、実施例3、6、8〜13で作製したチタニア担持多孔質複合体のSample D、G、K、L、N、O、Q、R、そして、ハスクレイ、合成イモゴライト、シリカゲルQ-10、ゼオライト13X単独のSampleI、J、M、Pの二酸化炭素吸着等温線を示す。Sample A of 100% titania prepared in the preliminary experimental example, Samples D, G, K, L, N, O, Q, R of the titania-supporting porous composite prepared in Examples 3, 6, and 8 to 13, and The carbon dioxide adsorption isotherms of Samples I, J, M, and P of Hassley, synthetic imogolite, silica gel Q-10, and zeolite 13X alone are shown. 予備実験例で作製したチタニア100%のSampleA、実施例3、8、10、12で作製したチタニア担持多孔質複合体のSample D、K、N、Qのメチレンブルー吸着量の経時変化を示す。The time-dependent changes in the amount of methylene blue adsorbed on Samples D, K, N, and Q of the titania-supported porous composite prepared in Examples 3, 8, 10, and 12 are shown. 予備実験例で作製したチタニア100%のSampleA、実施例3、8、10、12で作製したチタニア担持多孔質複合体のSample D、K、N、Qの可視光照射下におけるメチレンブルー光分解量の経時変化を示す。Sample A of 100% titania prepared in the preliminary experiment example, Sample D, K, N, and Q of the titania-supported porous composite prepared in Examples 3, 8, 10, and 12 under the visible light irradiation of methylene blue The change with time is shown. 予備実験例で作製したチタニア100%のSampleA、実施例6、9、11、13で作製したチタニア担持多孔質複合体のSample G、L、O、Rのメチレンブルー吸着量の経時変化を示す。The time-dependent changes in the amount of methylene blue adsorbed on Samples G, L, O, and R of the titania-supported porous composite prepared in Examples 6, 9, 11, and 13 are shown. 予備実験例で作製したチタニア100%のSampleA、実施例6、9、11、13で作製したチタニア担持多孔質複合体のSample G、L、O、Rの可視光照射下におけるメチレンブルー光分解量の経時変化を示す。Sample A of 100% titania prepared in the preliminary experiment example, Sample G, L, O, and R of the titania-supported porous composite prepared in Examples 6, 9, 11, and 13 under the visible light irradiation of methylene blue The change with time is shown. 予備実験例で作製したSampleA、実施例2,3,5,6で作製したチタニア担持ハスクレイ複合体のSample C,D,F,Gの浸漬時間50時間後のメチレンブルー吸着量と6時間可視光照射後のメチレンブルー光分解量の総和、総処理量を示す。Sample A prepared in Preliminary Experiments, titania-supported Hasclay composites prepared in Examples 2, 3, 5 and 6, Methylene blue adsorption amount after 50 hours immersion of Samples C, D, F and G and 6 hours visible light irradiation The total amount of methylene blue photodegradation afterwards and the total processing amount are shown. 予備実験例で作製したSampleA、実施例2,3,5,6で作製したチタニア担持ハスクレイ複合体のSample C,D,F,Gの浸漬時間150時間後のメチレンブルー吸着量と14時間可視光照射後のメチレンブルー光分解量の総和、総処理量を示す。Sample A prepared in Preliminary Experiment Example, titania-supported Hasclay composite prepared in Examples 2, 3, 5 and 6, Methylene Blue adsorption amount after 150 hours immersion of Sample C, D, F, G and 14 hours visible light irradiation The total amount of methylene blue photodegradation afterwards and the total processing amount are shown. 予備実験例で作製したチタニア100%のSampleA、実施例3、8、10、12で作製したチタニア担持多孔質複合体のSample D、K、N、Qの浸漬時間50時間後のメチレンブルー吸着量と6時間可視光照射後のメチレンブルー光分解量の総和、総処理量を示す。The amount of methylene blue adsorbed after 50 hours of immersion of Samples D, K, N, and Q of the titania-supported porous composite prepared in Examples 3, 8, 10, 12 The total amount of methylene blue photodegradation after 6 hours of visible light irradiation and the total amount treated. 予備実験例で作製したチタニア100%のSampleA、実施例3、8、10、12で作製したチタニア担持多孔質複合体のSample D、K、N、Qの浸漬時間150時間後のメチレンブルー吸着量と14時間可視光照射後のメチレンブルー光分解量の総和、総処理量を示す。The amount of methylene blue adsorbed after the immersion time of Sample D, K, N, Q of the titania-supporting porous composite prepared in Examples 3, 8, 10 and 12 was 150 hours. The total amount of methylene blue photodegradation after 14 hours of visible light irradiation, and the total amount treated. 予備実験例で作製したチタニア100%のSampleA、実施例6、9、11、13で作製したチタニア担持多孔質複合体のSample G、L、O、Rの浸漬時間50時間後のメチレンブルー吸着量と6時間可視光照射後のメチレンブルー光分解量の総和、総処理量を示す。The amount of methylene blue adsorbed after 50 hours of immersion of Sample G, L, O, and R of the titania-supporting porous composite prepared in Examples 6, 9, 11, and 13 prepared in the preliminary experiment example 100% of Titania The total amount of methylene blue photodegradation after 6 hours of visible light irradiation and the total amount treated. 予備実験例で作製したチタニア100%のSampleA、実施例6、9、11、13で作製したチタニア担持多孔質複合体のSample G、L、O、Rの浸漬時間150時間後のメチレンブルー吸着量と14時間可視光照射後のメチレンブルー光分解量の総和、総処理量を示す。The amount of methylene blue adsorbed after the immersion time of Sample G, L, O, and R of the titania-supported porous composite prepared in Examples 6, 9, 11, and 13 was 100%. The total amount of methylene blue photodegradation after 14 hours of visible light irradiation, and the total amount treated.

次に、本発明について更に詳細に説明する。   Next, the present invention will be described in more detail.

本発明は、優れた物質吸着機能と可視光応答型光触媒機能を併せ持つ機能性チタニア−粘土複合体、およびその作製方法に関するものであり、更に詳しくは、エチレングリコールモノメチルエーテルを溶媒として調製したチタニア前駆体ゾル溶液に紫外線を照射したあとで、高吸着能を有する粘土化合物を添加し、そのままソルボサーマル処理、即ち、液体を熱媒体として加熱・加圧処理することを特徴とする、新規な可視光吸収能を有する結晶性アナターゼ型チタニア−粘土複合体の製造技術に関するものである。   The present invention relates to a functional titania-clay composite having both an excellent substance adsorption function and a visible light responsive photocatalytic function, and a method for producing the same, and more specifically, a titania precursor prepared using ethylene glycol monomethyl ether as a solvent. New visible light, characterized by adding a clay compound with high adsorption ability after irradiating the body sol solution with ultraviolet light, and then subjecting it to solvothermal treatment, that is, heating and pressurizing treatment using a liquid as a heat medium. The present invention relates to a technique for producing a crystalline anatase-type titania-clay complex having an absorbing ability.

本発明において、先ず、チタニア前駆体ゾル溶液を調製するための原料としては、チタニウムテトライソプロポキシド、チタニウムテトラエトキシド、チタニウムテトラブトキシド等のチタニウム系金属アルコキシドが挙げられるが、安価、かつ、反応速度が遅いため取り扱いが容易なチタニウムテトライソプロポキシドが好適なものとして例示される。(「Thin Solid Films, 382,153 (2001)」参照)
更に、有機窒素化合物を添加する。この有機窒素化合物としては、金属アルコキシドと反応できるものであればよく、例えば、尿素、尿素化合物、各種アミノ化合物、酸アミド等が挙げられるが、毒性がなく、取り扱いが容易で安価な尿素が好適なものとして例示される。
In the present invention, first, as a raw material for preparing a titania precursor sol solution, titanium metal alkoxides such as titanium tetraisopropoxide, titanium tetraethoxide, titanium tetrabutoxide, etc. can be mentioned, but they are inexpensive and reactive. Titanium tetraisopropoxide, which is easy to handle because of its low speed, is exemplified as a suitable example. (See "Thin Solid Films, 382,153 (2001)")
Further, an organic nitrogen compound is added. The organic nitrogen compound is not particularly limited as long as it can react with the metal alkoxide, and examples thereof include urea, urea compounds, various amino compounds, acid amides, and the like. It is illustrated as a thing.

尿素をはじめとする有機窒素化合物を添加しない場合でも、低温で結晶化し、可視光吸収能も付与できたが、添加した場合と比べると結晶性、可視光吸収能ともにやや劣ることも解明できた。   Even when no organic nitrogen compounds such as urea were added, it was crystallized at a low temperature and could absorb visible light, but it was also clarified that both crystallinity and visible light absorption were slightly inferior to those when added. .

また、金属アルコキシドと有機窒素化合物の調製割合は、金属アルコキシド1に対して任意の割合で有機窒素化合物を添加することができ、添加量が多いほど可視光吸収能が向上する可能性があるが、有機窒素化合物の添加割合が大きすぎると、ゾルゲル反応が阻害され、結晶性が低下する危険性があるため、金属アルコキシド1に対してモル比0〜4の有機窒素化合物を添加する方法が好適なものとして例示される。   Moreover, the preparation ratio of the metal alkoxide and the organic nitrogen compound can add the organic nitrogen compound at an arbitrary ratio with respect to the metal alkoxide 1, and the visible light absorption ability may be improved as the addition amount increases. If the addition ratio of the organic nitrogen compound is too large, the sol-gel reaction is hindered and the crystallinity may be lowered. Therefore, a method of adding an organic nitrogen compound having a molar ratio of 0 to 4 to the metal alkoxide 1 is preferable. It is illustrated as a thing.

用いる反応溶媒としては、エチレングリコールモノメチルエーテルが、唯一好適なものとして例示される。   As a reaction solvent to be used, ethylene glycol monomethyl ether is exemplified as the only suitable solvent.

次に、前記した原料、溶媒を用いてチタニア前駆体ゾル溶液を調製する。調製溶液の濃度は任意に設定でき、濃度によってゲルの進行度を制御することが可能となる。しかし、濃度が濃すぎると沈殿が生じる可能性があり、均一なゲルを作製することが困難になってくるため、金属アルコキシド濃度が0.1〜0.5 mol/Lの程度の溶液濃度が好適なものとして例示される。   Next, a titania precursor sol solution is prepared using the above-described raw materials and solvent. The concentration of the prepared solution can be arbitrarily set, and the degree of progress of the gel can be controlled by the concentration. However, if the concentration is too high, precipitation may occur, making it difficult to produce a uniform gel. Therefore, a solution concentration with a metal alkoxide concentration of 0.1 to 0.5 mol / L is suitable. Illustrated.

また、前記のように調製した溶液を130℃で還流することにより反応を促進させるが、この場合の反応時間は3時間程度が好適なものとして例示される。   Further, the reaction is promoted by refluxing the solution prepared as described above at 130 ° C. In this case, the reaction time is preferably about 3 hours.

次に、この溶液を撹拌しながら室温まで空冷した後、紫外線照射処理を行う。使用する光源としては、185nmから600nm程度の波長の光を放射できる紫外線ランプを用いることができ、例えば、好適なランプとして超高圧水銀灯、高圧水銀灯、低圧水銀灯が例示される。この他の照射条件は任意に設定できるが、照射時間、照射雰囲気ガス、温度、湿度等によって、可視光吸収特性を制御できる可能性がある。   Next, this solution is air-cooled to room temperature while stirring, and then subjected to ultraviolet irradiation treatment. As a light source to be used, an ultraviolet lamp capable of emitting light having a wavelength of about 185 nm to 600 nm can be used. Examples of suitable lamps include an ultrahigh pressure mercury lamp, a high pressure mercury lamp, and a low pressure mercury lamp. Other irradiation conditions can be set arbitrarily, but there is a possibility that the visible light absorption characteristics can be controlled by the irradiation time, irradiation atmosphere gas, temperature, humidity and the like.

また、空冷後から紫外線照射までの撹拌時間によってその後の加水分解速度が制御され、これが可視光吸収特性に影響を及ぼす可能性がある。好適なものとして、空冷後、一晩(約15〜16時間)撹拌した後、紫外線を照射する方法が例示される。照射時間は4時間程度が好適である。尚、照射条件により呈色の程度に差があるが、いずれの場合にも、紫外線を照射直後には無色透明な溶液が黒色溶液に、そして照射終了3〜5分後には黄色溶液に変化する。   Further, the subsequent hydrolysis rate is controlled by the stirring time from air cooling to ultraviolet irradiation, which may affect the visible light absorption characteristics. Preferable examples include a method of irradiation with ultraviolet light after stirring overnight (about 15 to 16 hours) after air cooling. The irradiation time is preferably about 4 hours. Although there is a difference in the degree of coloration depending on the irradiation conditions, in any case, the colorless and transparent solution changes to a black solution immediately after irradiation with ultraviolet rays, and changes to a yellow solution 3 to 5 minutes after the end of irradiation. .

更に、前記のように紫外線照射処理した前駆体溶液を室温まで空冷後、これに水を添加して撹拌し、加水分解、重縮合反応を行うが、水の添加量、撹拌時間によって重縮合反応率を制御でき、これにより可視光の吸光度を制御できる可能性がある。このように、水は任意の量を添加できるが、過剰に添加すると加水分解重縮合反応が進行しすぎ、沈殿が生じてしまう危険性があるため、例えば、アルコキシド1に対してモル比0〜4の水を添加する方法が好適なものとして例示される。また、撹拌時間は一晩(15〜16時間)程度が好適なものとして例示される。   Furthermore, after the precursor solution treated with ultraviolet irradiation as described above is air-cooled to room temperature, water is added thereto and stirred to perform hydrolysis and polycondensation reaction. The polycondensation reaction depends on the amount of water added and the stirring time. The rate can be controlled, which can potentially control the absorbance of visible light. As described above, water can be added in any amount, but if it is added excessively, the hydrolysis polycondensation reaction proceeds excessively, and there is a risk that precipitation may occur. The method of adding water 4 is exemplified as a preferable one. In addition, the stirring time is preferably exemplified as being overnight (15 to 16 hours).

次に、前記のように調製したチタニア前駆体ゾル溶液に粘土化合物を添加する。用いる粘土化合物としては、ハスクレイ、イモゴライト、モンモリロナイト、スメクタイト等、任意の粘土化合物が利用可能であるが、特に、より高い比表面積、高吸着能を有する粘土を用いると効果的である。好適な例として、特に高性能吸着剤として利用されているハスクレイが例示される。   Next, a clay compound is added to the titania precursor sol solution prepared as described above. As the clay compound to be used, any clay compound such as Hasclay, imogolite, montmorillonite, smectite, etc. can be used, but it is particularly effective to use a clay having a higher specific surface area and a high adsorption capacity. As a suitable example, there is exemplified a clay that is used as a high performance adsorbent.

また、高い比表面積、高吸着能を有しない粘土であっても、その表層にチタニアが析出しやすい構造を有する粘土も効果的である。好適な例として、チューブ状の多孔質構造を有するイモゴライトが例示される。   Moreover, even if the clay does not have a high specific surface area and a high adsorption capacity, a clay having a structure in which titania is likely to precipitate on the surface layer is also effective. As a suitable example, imogolite having a tubular porous structure is exemplified.

ハスクレイの調製には、原料として、通常、無機ケイ素化合物と無機アルミニウム化合物が用いられる。ケイ素源として使用される試剤は、モノケイ酸であればよく、具体的には、オルトケイ酸ナトリウム、メタケイ酸ナトリウム、無定形コロイド状二酸化ケイ素(エアロジル等)等が好適なものとして挙げられる。   In preparing the clay, inorganic silicon compounds and inorganic aluminum compounds are usually used as raw materials. The reagent used as the silicon source may be monosilicate, and specific examples thereof include sodium orthosilicate, sodium metasilicate, amorphous colloidal silicon dioxide (aerosil, etc.) and the like.

また、上記ケイ酸塩分子と結合させるアルミニウム源は、アルミニウムイオンであればよく、具体的には、例えば、塩化アルミニウム、硝酸アルミニウムおよびアルミン酸ナトリウム等のアルミニウム化合物が挙げられる。これらのケイ素源及びアルミニウム源は、上記の化合物に限定されるものではなく、それらと同効のものであれば同様に使用することができる。   Moreover, the aluminum source couple | bonded with the said silicate molecule | numerator should just be an aluminum ion, Specifically, aluminum compounds, such as aluminum chloride, aluminum nitrate, and sodium aluminate, are mentioned, for example. These silicon sources and aluminum sources are not limited to the above-mentioned compounds, and can be used in the same manner as long as they have the same effect.

これらの原料を適切な水溶液に溶解させ、所定の濃度の溶液を調製する。相対湿度が60%近辺において優れた吸着挙動を示すには、ケイ素/アルミニウム比は0.7〜1.0となるように混合することが考慮される。溶液中のケイ素化合物の濃度は1〜1000mmol/Lで、アルミニウム化合物の溶液の濃度は1〜1000mmol/Lであるが、好適な濃度としては1〜700mmol/Lのケイ素化合物溶液と、1〜1000mmol/Lのアルミニウム化合物溶液を混合することが好ましい。   These raw materials are dissolved in an appropriate aqueous solution to prepare a solution having a predetermined concentration. In order to show an excellent adsorption behavior when the relative humidity is around 60%, it is considered to mix so that the silicon / aluminum ratio is 0.7 to 1.0. The concentration of the silicon compound in the solution is 1-1000 mmol / L, and the concentration of the aluminum compound solution is 1-1000 mmol / L. The preferred concentration is 1-700 mmol / L of the silicon compound solution and 1-1000 mmol. It is preferable to mix a / L aluminum compound solution.

これらの比率及び濃度に基づいて、アルミニウム化合物溶液にケイ素化合物溶液を混合し、酸又はアルカリにてpH6〜8に調製して、前駆体を形成した後、遠心分離、濾過、膜分離等により、溶液中の共存イオンを取り除き、その後、回収した前駆体を弱酸性〜弱アルカリ性水溶液に分散させ、加熱合成することにより、ハスクレイを調製することができる。   Based on these ratios and concentrations, an aluminum compound solution is mixed with a silicon compound solution, adjusted to pH 6 to 8 with acid or alkali, and a precursor is formed, followed by centrifugation, filtration, membrane separation, etc. The clay can be prepared by removing the coexisting ions in the solution, and then dispersing the recovered precursor in a weakly acidic to weakly alkaline aqueous solution, followed by heat synthesis.

また、粘土化合物の添加割合は、チタニアに対して任意の割合で添加可能であるが、添加量が多すぎるとチタニアによる可視光吸収能が発現されず、反対に少なすぎると物質吸着能が低下するおそれがある。好適な例として、粘土化合物/チタニアの重量比は、1とするのが好ましい。   The clay compound can be added at an arbitrary ratio with respect to titania, but if the addition amount is too large, the visible light absorption ability by titania will not be expressed, and conversely if it is too small, the substance adsorption ability will decrease. There is a risk. As a preferred example, the weight ratio of clay compound / titania is preferably 1.

次に、これを撹拌してチタニアゾル溶液に粘土化合物を均一に分散させる。撹拌時間は任意に調整できるが、撹拌時間が短すぎると、チタニアゾルと粘土化合物が均一になじまず、反対に、長時間撹拌しすぎるとゾルゲル反応が進行しすぎてチタニアが沈殿し、粘土化合物と分離してしまう危険性があるため注意が必要である。撹拌時間の好適な例としては、チタニアゾル溶液がゲル化する24時間程度が好適なものとして例示される。   Next, this is stirred to uniformly disperse the clay compound in the titania sol solution. The stirring time can be adjusted arbitrarily. However, if the stirring time is too short, the titania sol and the clay compound will not be blended uniformly. On the other hand, if the stirring time is too long, the sol-gel reaction will proceed too much and titania will precipitate, Care must be taken because there is a risk of separation. As a suitable example of the stirring time, about 24 hours when the titania sol solution gels is exemplified as a suitable one.

更に、これをそのまま用い、ソルボサーマル処理、即ち、液体を熱媒体として加熱・加圧処理を行う。大気圧以上の高圧下で処理を行うことによって、チタニアゲルをアナターゼ型に結晶化させるために通常必要な500℃以上の高温での焼成処理が不要となる。また、高圧処理の際、エチレングリコールモノメチルエーテルを溶媒として用いることにより、生成物のアナターゼ型チタニアに可視光吸収能を付与することが可能となる。   Furthermore, using this as it is, solvothermal treatment, that is, heating / pressurizing treatment using a liquid as a heat medium is performed. By performing the treatment under a high pressure of atmospheric pressure or higher, the baking treatment at a high temperature of 500 ° C. or higher, which is usually required for crystallizing the titania gel into anatase type, is not necessary. In addition, by using ethylene glycol monomethyl ether as a solvent during high-pressure treatment, visible light absorption ability can be imparted to the product anatase titania.

しかし、反応温度、反応時間によってチタニアの結晶性や粘土化合物の特性が制御されるため注意が必要である。例えば、エチレングリコールモノメチルエーテルを溶媒として用いた場合には、200℃よりも低温、例えば150〜180℃で反応させると、チタニアの結晶性が低下し、良好な光触媒能を発現できなくなる。逆に、粘土化合物の耐熱温度以上の温度、例えばハスクレイの場合、300℃程度で反応させるとその細孔特性が損なわれてしまい、250℃以上で可視光吸収能も低下する。   However, care must be taken because the crystallinity of titania and the properties of clay compounds are controlled by the reaction temperature and reaction time. For example, when ethylene glycol monomethyl ether is used as a solvent, if the reaction is carried out at a temperature lower than 200 ° C., for example, 150 to 180 ° C., the crystallinity of titania is lowered, and good photocatalytic ability cannot be expressed. On the other hand, in the case of a clay compound having a temperature higher than the heat resistance temperature of the clay compound, for example, a clay, if it is reacted at about 300 ° C., its pore characteristics are impaired, and the visible light absorption ability is also reduced at 250 ° C. or higher.

従って、本発明の場合には180〜250℃程度の温度範囲が望ましく、エチレングリコールモノメチルエーテル使用の場合、この温度範囲における飽和蒸気圧は500〜2200kPa程度であるため、好適な例としては、約800kPaの高圧下、200℃で10時間ソルボサーマル反応させると、ハスクレイの特性(比表面積、細孔分布等)を損なうことなく結晶性の高いアナターゼ型チタニアとの複合体を作製することができる。   Accordingly, in the case of the present invention, a temperature range of about 180 to 250 ° C. is desirable, and when ethylene glycol monomethyl ether is used, the saturated vapor pressure in this temperature range is about 500 to 2200 kPa. When a solvothermal reaction is carried out at 200 ° C. for 10 hours under a high pressure of 800 kPa, a complex with anatase titania having high crystallinity can be produced without impairing the properties of the clay (specific surface area, pore distribution, etc.).

最後に、ソルボサーマル処理、即ち、液体を熱媒体として加熱・加圧処理後に得られた沈殿物を遠心分離し、蒸留水にて洗浄を行った後、乾燥する。作製条件によっては粒子がかなり細かくなる場合があるため、10000rpm程度の高速回転で30分間の遠心分離が、また、加熱乾燥により細孔がつぶれ吸着特性が落ちてしまう危険性があるため、室温下での真空乾燥が好適な方法として例示される。   Finally, the precipitate obtained after solvothermal treatment, that is, heating / pressurizing treatment using a liquid as a heat medium, is centrifuged, washed with distilled water, and then dried. Depending on the production conditions, the particles may become quite fine, so centrifugation at a high speed of about 10,000 rpm for 30 minutes, and pores may collapse due to heat drying, resulting in a decrease in adsorption properties. And vacuum drying is exemplified as a suitable method.

このように、本発明は、エチレングリコールモノメチルエーテルを溶媒として調製したチタニア前駆体ゾル溶液に紫外線を照射したあとで粘土化合物を添加し、そのままソルボサーマル処理、即ち、液体を熱媒体として加熱・加圧処理することによって、粘土の耐熱温度以下の低温で、効率よく簡便に、高吸着能と可視光吸収能を併せ持つ結晶性アナターゼ型チタニア−粘土複合体を作製することができる、これまでにない画期的な方法である。   Thus, in the present invention, a clay compound is added to a titania precursor sol solution prepared using ethylene glycol monomethyl ether as a solvent, and then a solbothermal treatment, that is, heating and heating using a liquid as a heat medium. By pressure treatment, a crystalline anatase-type titania-clay complex having both high adsorption ability and visible light absorption ability can be produced efficiently and easily at low temperatures below the heat resistance temperature of clay. This is an epoch-making method.

次に、実施例などの実験例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではなく、実施例に具体的に示した方法及び条件に準じて同様の結晶性アナターゼ型チタニア−粘土複合体を作製することが可能である。   Next, the present invention will be specifically described based on experimental examples such as examples, but the present invention is not limited to the following examples, and the methods and conditions specifically shown in the examples. It is possible to prepare a similar crystalline anatase-type titania-clay complex according to the above.

以下に実施例を説明する。なお、最初に説明する〔予備実験例〕は、酸化チタン:100重量%で、ハスクレイ等の粘土質担持体は含まないでソルボサーマル処理してSample Aを作製するものである。また、下記の〔表1〕に、各Sampleの成分組成などをまとめて示す。   Examples will be described below. [Preliminary Experimental Example] described first is a sample A prepared by solvothermal treatment with titanium oxide: 100% by weight and without containing a clay-like support such as a Hasclay. In addition, the following [Table 1] summarizes the component composition of each sample.

〔予備実験例〕
アルゴン雰囲気下のグローブボックス中で、チタニウムテトライソプロポキシド(Ti(O-i-C3H7)4 or Ti(O-i-Pr)4)をエチレングリコールモノメチルエーテル(EGMME)に対し0.25 mol/L濃度になるように溶解し、これに、溶媒に対して0.5 mol/L濃度になるように尿素(H2NCONH2)を添加し、撹拌しながら130℃のオイルバス中で3時間還流した。その後、室温まで冷却し、1晩撹拌した。
[Preliminary experiment example]
Titanium tetraisopropoxide (Ti (OiC 3 H 7 ) 4 or Ti (Oi-Pr) 4 ) is adjusted to 0.25 mol / L with respect to ethylene glycol monomethyl ether (EGMME) in a glove box under an argon atmosphere. Urea (H 2 NCONH 2 ) was added thereto so as to have a concentration of 0.5 mol / L with respect to the solvent, and the mixture was refluxed in an oil bath at 130 ° C. for 3 hours with stirring. Then, it cooled to room temperature and stirred overnight.

これを高圧反応用テフロン(登録商標)容器に移し、撹拌しながら超高圧水銀灯(UHPML,ML-251A/B, Ushio)を用いて、室温下、大気中で4時間紫外線照射した。照射後、無色透明だった溶液が黒色を経由して濃黄色溶液に変化した。その後蓋をして、撹拌しながら室温まで冷却し、溶液に対して0.5 mol/L濃度になるよう水を加え再び蓋をして密封し、そのまま室温下で1晩撹拌した。   This was transferred to a Teflon (registered trademark) container for high pressure reaction, and irradiated with ultraviolet rays for 4 hours in the atmosphere at room temperature using an ultrahigh pressure mercury lamp (UHPML, ML-251A / B, Ushio) while stirring. After irradiation, the colorless and transparent solution changed to a dark yellow solution via black. Then, it was capped, cooled to room temperature with stirring, water was added to the solution to a concentration of 0.5 mol / L, the lid was sealed again, and the mixture was stirred at room temperature overnight.

このテフロン(登録商標)容器をそのまま耐圧ステンレスジャケットに入れ、200℃のオーブンで10時間反応させたあと室温まで放冷した。得られた沈殿を10000rpmの回転速度で30分間遠心分離し、水で複数回洗浄した。これを室温下、真空乾燥器を使って十分に乾燥させた(表1 Sample A)。   This Teflon (registered trademark) container was directly put in a pressure resistant stainless steel jacket, reacted in an oven at 200 ° C. for 10 hours, and then allowed to cool to room temperature. The resulting precipitate was centrifuged for 30 minutes at a rotational speed of 10000 rpm and washed several times with water. This was sufficiently dried at room temperature using a vacuum dryer (Table 1 Sample A).

得られた粉体の結晶性を粉末X線回折装置(XRD, RINT-2100V,Rigaku)にて評価し(図1 Sample A)、光吸収特性を紫外可視分光光度計(UV-Vis, U-4100, Hitachi High-Technologies)にて評価した(図2 Sample A)。更に、粉体の比表面積、細孔容積、細孔径等の細孔特性を比表面積・細孔分布測定装置(NOVA-2000e,Quantachrome Instruments)にて評価し(表2Sample A)、透過型電子顕微鏡(TEM,JEM-2010,JEOL)にて形態観察を行った(図3 Sample A)。   The crystallinity of the obtained powder was evaluated with a powder X-ray diffractometer (XRD, RINT-2100V, Rigaku) (Fig. 1 Sample A), and the light absorption characteristics were measured with an ultraviolet-visible spectrophotometer (UV-Vis, U- 4100, Hitachi High-Technologies) (Fig. 2 Sample A). Furthermore, the pore characteristics such as the specific surface area, pore volume, and pore diameter of the powder were evaluated using a specific surface area / pore distribution measuring device (NOVA-2000e, Quantachrome Instruments) (Table 2 Sample A), and a transmission electron microscope. Morphological observation was performed with (TEM, JEM-2010, JEOL) (Fig. 3 Sample A).

また、粉体の水蒸気吸着等温線を水蒸気吸着測定装置(Belsorp-Aqua, 日本ベル社)にて測定し(図4 Sample A)、二酸化炭素吸着等温線を二酸化炭素吸着測定装置(Belsorp-HP, 日本ベル社)にて測定した(図5 Sample A)。   Also, the water vapor adsorption isotherm of the powder was measured with a water vapor adsorption measuring device (Belsorp-Aqua, Nippon Bell) (Fig. 4 Sample A), and the carbon dioxide adsorption isotherm was measured with a carbon dioxide adsorption measuring device (Belsorp-HP, Nippon Bell Co., Ltd.) (Figure 5 Sample A).

得られた粉体の有害有機物質吸着特性、光触媒分解特性を評価するために、メチレンブルーの吸着量、及び光分解量の経時変化を求めた。0.04mmol/l濃度のメチレンブルー水溶液30 mlに、Sample Aの粉体5 mgを入れ、30分間超音波攪拌後、暗所に静置、メチレンブルー665 nmの吸光度の経時変化を追跡した(図6 Sample A)。約150時間浸漬後、超高圧水銀灯とガラスフィルターを用いて分光した410〜520 nmの可視光をこれに照射し、同様に665 nmの吸光度の経時変化を追跡した(図7 Sample A)。   In order to evaluate the harmful organic substance adsorption characteristics and photocatalytic degradation characteristics of the obtained powder, the amount of methylene blue adsorbed and the change over time in the amount of photodegradation were determined. 5 mg of Sample A powder was placed in 30 ml of 0.04 mmol / l aqueous methylene blue solution, ultrasonically stirred for 30 minutes, then left in the dark, and the change with time in the absorbance of methylene blue at 665 nm was followed (FIG. 6 Sample). A). After immersion for about 150 hours, visible light having a wavelength of 410 to 520 nm, which was spectrally separated using an ultrahigh pressure mercury lamp and a glass filter, was irradiated thereto, and the change with time in the absorbance at 665 nm was similarly traced (FIG. 7 Sample A).

〔実施例1〕
アルゴン雰囲気下のグローブボックス中で、チタニウムテトライソプロポキシド(Ti(O-i-C3H7)4 or Ti(O-i-Pr)4)をエチレングリコールモノメチルエーテル(EGMME)に対し0.25 mol/L濃度になるように溶解し、これに、溶媒に対して0.5 mol/L濃度になるように尿素(H2NCONH2)を添加し、撹拌しながら130℃のオイルバス中で3時間還流した。その後、室温まで冷却し、1晩撹拌した。
[Example 1]
Titanium tetraisopropoxide (Ti (OiC 3 H 7 ) 4 or Ti (Oi-Pr) 4 ) is adjusted to 0.25 mol / L with respect to ethylene glycol monomethyl ether (EGMME) in a glove box under an argon atmosphere. Urea (H 2 NCONH 2 ) was added thereto so as to have a concentration of 0.5 mol / L with respect to the solvent, and the mixture was refluxed in an oil bath at 130 ° C. for 3 hours with stirring. Then, it cooled to room temperature and stirred overnight.

これを高圧反応用テフロン(登録商標)容器に移し、撹拌しながら超高圧水銀灯(UHPML,ML-251A/B, Ushio)を用いて、室温下、大気中で4時間紫外線照射した。照射後、無色透明だった溶液が黒色を経由して濃黄色溶液に変化した。その後蓋をして、撹拌しながら室温まで冷却し、溶液に対して0.5 mol/L濃度になるよう水を加え、再び蓋をして密封し、そのまま室温下で1晩撹拌した。これに0.1gの高吸着性粘土複合体ハスクレイGIを添加し、再び蓋をして密封し、そのまま1日撹拌を続けた。尚、ハスクレイGIは、特許第4576616号公報(特許文献12)実施例1において、加熱条件を180℃、4時間とした以外は、当該実施例1と同様にして得られたアルミニウムケイ酸化合物である。   This was transferred to a Teflon (registered trademark) container for high pressure reaction, and irradiated with ultraviolet rays for 4 hours in the atmosphere at room temperature using an ultrahigh pressure mercury lamp (UHPML, ML-251A / B, Ushio) while stirring. After irradiation, the colorless and transparent solution changed to a dark yellow solution via black. Then, it was capped, cooled to room temperature with stirring, water was added to the solution to a concentration of 0.5 mol / L, capped again, sealed, and stirred at room temperature overnight. To this was added 0.1 g of a highly adsorptive clay composite Hasclay GI, which was sealed again with a lid, and stirring was continued for one day. In addition, Hassley GI is an aluminum silicate compound obtained in the same manner as in Example 1 except that heating conditions were set to 180 ° C. for 4 hours in Example 1 of Japanese Patent No. 4576616 (Patent Document 12). is there.

このテフロン(登録商標)容器をそのまま耐圧ステンレスジャケットに入れ、200℃のオーブンで10時間反応させたあと室温まで放冷した。得られた沈殿を10000rpmの回転速度で30分間遠心分離し、水で複数回洗浄した。これを室温下、真空乾燥器を使って十分に乾燥させた(表1 Sample B)。   This Teflon (registered trademark) container was directly put in a pressure resistant stainless steel jacket, reacted in an oven at 200 ° C. for 10 hours, and then allowed to cool to room temperature. The resulting precipitate was centrifuged for 30 minutes at a rotational speed of 10000 rpm and washed several times with water. This was sufficiently dried at room temperature using a vacuum dryer (Table 1 Sample B).

得られた粉体の結晶性を粉末X線回折装置(XRD, RINT-2100V,Rigaku)にて評価し(図1 Sample B)、光吸収特性を紫外可視分光光度計(UV-Vis, U-4100, Hitachi High-Technologies)にて評価した(図2 Sample B)。更に、粉体の比表面積、細孔容積、細孔径等の細孔特性を比表面積・細孔分布測定装置(NOVA-2000e,Quantachrome Instruments)にて評価し(表2Sample B)、透過型電子顕微鏡(TEM,JEM-2010,JEOL)にて形態観察を行った(図3 Sample B)。   The crystallinity of the obtained powder was evaluated with a powder X-ray diffractometer (XRD, RINT-2100V, Rigaku) (Fig. 1 Sample B), and the light absorption characteristics were measured with an ultraviolet-visible spectrophotometer (UV-Vis, U- 4100, Hitachi High-Technologies) (Fig. 2 Sample B). Furthermore, the pore characteristics such as the specific surface area, pore volume, and pore diameter of the powder were evaluated with a specific surface area / pore distribution measuring device (NOVA-2000e, Quantachrome Instruments) (Table 2 Sample B), and a transmission electron microscope. Morphological observation was performed with (TEM, JEM-2010, JEOL) (Fig. 3 Sample B).

また、粉体の水蒸気吸着等温線を水蒸気吸着測定装置(Belsorp-Aqua, 日本ベル社)にて測定し(図4 Sample B)、二酸化炭素吸着等温線を二酸化炭素吸着測定装置(Belsorp-HP, 日本ベル社)にて測定した(図5 Sample B)。   In addition, the water vapor adsorption isotherm of the powder was measured with a water vapor adsorption measuring device (Belsorp-Aqua, Nippon Bell Co., Ltd.) (Fig. 4 Sample B), and the carbon dioxide adsorption isotherm was measured with a carbon dioxide adsorption measuring device (Belsorp-HP, Nippon Bell Co., Ltd.) (Figure 5 Sample B).

〔実施例2〕
アルゴン雰囲気下のグローブボックス中で、チタニウムテトライソプロポキシド(Ti(O-i-C3H7)4 or Ti(O-i-Pr)4)をエチレングリコールモノメチルエーテル(EGMME)に対し0.25 mol/L濃度になるように溶解し、これに、溶媒に対して0.5 mol/L濃度になるように尿素(H2NCONH2)を添加し、撹拌しながら130℃のオイルバス中で3時間還流した。その後、室温まで冷却し、1晩撹拌した。
[Example 2]
Titanium tetraisopropoxide (Ti (OiC 3 H 7 ) 4 or Ti (Oi-Pr) 4 ) is adjusted to 0.25 mol / L with respect to ethylene glycol monomethyl ether (EGMME) in a glove box under an argon atmosphere. Urea (H 2 NCONH 2 ) was added thereto so as to have a concentration of 0.5 mol / L with respect to the solvent, and the mixture was refluxed in an oil bath at 130 ° C. for 3 hours with stirring. Then, it cooled to room temperature and stirred overnight.

これを高圧反応用テフロン(登録商標)容器に移し、撹拌しながら超高圧水銀灯(UHPML,ML-251A/B, Ushio)を用いて、室温下、大気中で4時間紫外線照射した。照射後、無色透明だった溶液が黒色を経由して濃黄色溶液に変化した。その後蓋をして、撹拌しながら室温まで冷却し、溶液に対して0.5 mol/L濃度になるよう水を加え、再び蓋をして密封し、そのまま室温下で1晩撹拌した。これに0.5gの高吸着性粘土複合体ハスクレイGIを添加し、再び蓋をして密封し、そのまま1日撹拌を続けた。尚、ハスクレイGIは、特許第4576616号公報(特許文献12)実施例1において、加熱条件を180℃、4時間とした以外は、当該実施例1と同様にして得られたアルミニウムケイ酸化合物である。   This was transferred to a Teflon (registered trademark) container for high pressure reaction, and irradiated with ultraviolet rays for 4 hours in the atmosphere at room temperature using an ultrahigh pressure mercury lamp (UHPML, ML-251A / B, Ushio) while stirring. After irradiation, the colorless and transparent solution changed to a dark yellow solution via black. Then, it was capped, cooled to room temperature with stirring, water was added to the solution to a concentration of 0.5 mol / L, capped again, sealed, and stirred at room temperature overnight. To this was added 0.5 g of a highly adsorptive clay composite Hasclay GI, which was sealed again with a lid, and stirring was continued for one day. In addition, Hassley GI is an aluminum silicate compound obtained in the same manner as in Example 1 except that heating conditions were set to 180 ° C. for 4 hours in Example 1 of Japanese Patent No. 4576616 (Patent Document 12). is there.

このテフロン(登録商標)容器をそのまま耐圧ステンレスジャケットに入れ、200℃のオーブンで10時間反応させたあと室温まで放冷した。得られた沈殿を10000rpmの回転速度で30分間遠心分離し、水で複数回洗浄した。これを室温下、真空乾燥器を使って十分に乾燥させた(表1 Sample C)。   This Teflon (registered trademark) container was directly put in a pressure resistant stainless steel jacket, reacted in an oven at 200 ° C. for 10 hours, and then allowed to cool to room temperature. The resulting precipitate was centrifuged for 30 minutes at a rotational speed of 10000 rpm and washed several times with water. This was sufficiently dried at room temperature using a vacuum dryer (Table 1 Sample C).

得られた粉体の結晶性を粉末X線回折装置(XRD, RINT-2100V,Rigaku)にて評価し(図1 Sample C)、光吸収特性を紫外可視分光光度計(UV-Vis, U-4100, Hitachi High-Technologies)にて評価した(図2 Sample C)。更に、粉体の比表面積、細孔容積、細孔径等の細孔特性を比表面積・細孔分布測定装置(NOVA-2000e,Quantachrome Instruments)にて評価し(表2Sample C)、透過型電子顕微鏡(TEM,JEM-2010,JEOL)にて形態観察を行った(図3 Sample C)。   The crystallinity of the obtained powder was evaluated with a powder X-ray diffractometer (XRD, RINT-2100V, Rigaku) (Fig. 1 Sample C), and the light absorption characteristics were measured with an ultraviolet-visible spectrophotometer (UV-Vis, U-). 4100, Hitachi High-Technologies) (Fig. 2 Sample C). Furthermore, the pore characteristics such as the specific surface area, pore volume, and pore diameter of the powder were evaluated with a specific surface area / pore distribution measuring device (NOVA-2000e, Quantachrome Instruments) (Table 2 Sample C), and a transmission electron microscope. Morphological observation was performed with (TEM, JEM-2010, JEOL) (Fig. 3 Sample C).

また、粉体の水蒸気吸着等温線を水蒸気吸着測定装置(Belsorp-Aqua, 日本ベル社)にて測定し(図4 Sample C)、二酸化炭素吸着等温線を二酸化炭素吸着測定装置(Belsorp-HP, 日本ベル社)にて測定した(図5 Sample C)。   In addition, the water vapor adsorption isotherm of the powder was measured with a water vapor adsorption measuring device (Belsorp-Aqua, Nippon Bell) (Fig. 4 Sample C), and the carbon dioxide adsorption isotherm was measured with a carbon dioxide adsorption measuring device (Belsorp-HP, Nippon Bell Co., Ltd.) (FIG. 5 Sample C).

得られた粉体の有害有機物質吸着特性、光触媒分解特性を評価するために、メチレンブルーの吸着量、及び光分解量の経時変化を求めた。0.04mmol/l濃度のメチレンブルー水溶液30 mlに、Sample Cの粉体5 mgを入れ、30分間超音波攪拌後、暗所に静置、メチレンブルー665 nmの吸光度の経時変化を追跡した(図6 Sample C)。約150時間浸漬後、超高圧水銀灯とガラスフィルターを用いて分光した410〜520 nmの可視光をこれに照射し、同様に665 nmの吸光度の経時変化を追跡した(図7 Sample C)。   In order to evaluate the harmful organic substance adsorption characteristics and photocatalytic degradation characteristics of the obtained powder, the amount of methylene blue adsorbed and the change over time in the amount of photodegradation were determined. Add 5 mg of Sample C powder to 30 ml of 0.04 mmol / l aqueous methylene blue solution, stir ultrasonically for 30 minutes, then leave it in the dark, and follow the time course of absorbance at 665 nm for methylene blue (Figure 6 Sample) C). After immersion for about 150 hours, visible light having a wavelength of 410 to 520 nm, which was spectrally separated using an ultrahigh pressure mercury lamp and a glass filter, was irradiated thereto, and the change with time in the absorbance at 665 nm was similarly traced (FIG. 7 Sample C).

〔実施例3〕
アルゴン雰囲気下のグローブボックス中で、チタニウムテトライソプロポキシド(Ti(O-i-C3H7)4 or Ti(O-i-Pr)4)をエチレングリコールモノメチルエーテル(EGMME)に対し0.25 mol/L濃度になるように溶解し、これに、溶媒に対して0.5 mol/L濃度になるように尿素(H2NCONH2)を添加し、撹拌しながら130℃のオイルバス中で3時間還流した。その後、室温まで冷却し、1晩撹拌した。
Example 3
Titanium tetraisopropoxide (Ti (OiC 3 H 7 ) 4 or Ti (Oi-Pr) 4 ) is adjusted to 0.25 mol / L with respect to ethylene glycol monomethyl ether (EGMME) in a glove box under an argon atmosphere. Urea (H 2 NCONH 2 ) was added thereto so as to have a concentration of 0.5 mol / L with respect to the solvent, and the mixture was refluxed in an oil bath at 130 ° C. for 3 hours with stirring. Then, it cooled to room temperature and stirred overnight.

これを高圧反応用テフロン(登録商標)容器に移し、撹拌しながら超高圧水銀灯(UHPML,ML-251A/B, Ushio)を用いて、室温下、大気中で4時間紫外線照射した。照射後、無色透明だった溶液が黒色を経由して濃黄色溶液に変化した。その後蓋をして、撹拌しながら室温まで冷却し、溶液に対して0.5 mol/L濃度になるよう水を加え、再び蓋をして密封し、そのまま室温下で1晩撹拌した。これに1.0gの高吸着性粘土複合体ハスクレイGIを添加し、再び蓋をして密封し、そのまま1日撹拌を続けた。尚、ハスクレイGIは、特許第4576616号公報(特許文献12)実施例1において、加熱条件を180℃、4時間とした以外は、当該実施例1と同様にして得られたアルミニウムケイ酸化合物である。   This was transferred to a Teflon (registered trademark) container for high pressure reaction, and irradiated with ultraviolet rays for 4 hours in the atmosphere at room temperature using an ultrahigh pressure mercury lamp (UHPML, ML-251A / B, Ushio) while stirring. After irradiation, the colorless and transparent solution changed to a dark yellow solution via black. Then, it was capped, cooled to room temperature with stirring, water was added to the solution to a concentration of 0.5 mol / L, capped again, sealed, and stirred at room temperature overnight. To this was added 1.0 g of highly adsorptive clay composite Hasclay GI, which was sealed again with a lid, and stirring was continued for one day. In addition, Hassley GI is an aluminum silicate compound obtained in the same manner as in Example 1 except that heating conditions were set to 180 ° C. for 4 hours in Example 1 of Japanese Patent No. 4576616 (Patent Document 12). is there.

このテフロン(登録商標)容器をそのまま耐圧ステンレスジャケットに入れ、200℃のオーブンで10時間反応させたあと室温まで放冷した。得られた沈殿を10000rpmの回転速度で30分間遠心分離し、水で複数回洗浄した。これを室温下、真空乾燥器を使って十分に乾燥させた(表1 Sample D)。   This Teflon (registered trademark) container was directly put in a pressure resistant stainless steel jacket, reacted in an oven at 200 ° C. for 10 hours, and then allowed to cool to room temperature. The resulting precipitate was centrifuged for 30 minutes at a rotational speed of 10000 rpm and washed several times with water. This was sufficiently dried at room temperature using a vacuum dryer (Table 1 Sample D).

得られた粉体の結晶性を粉末X線回折装置(XRD, RINT-2100V,Rigaku)にて評価し(図1 Sample D)、光吸収特性を紫外可視分光光度計(UV-Vis, U-4100, Hitachi High-Technologies)にて評価した(図2 Sample D)。更に、粉体の比表面積、細孔容積、細孔径等の細孔特性を比表面積・細孔分布測定装置(NOVA-2000e,Quantachrome Instruments)にて評価し(表2Sample D)、透過型電子顕微鏡(TEM,JEM-2010,JEOL)にて形態観察を行った(図3 Sample D)。   The crystallinity of the obtained powder was evaluated with a powder X-ray diffractometer (XRD, RINT-2100V, Rigaku) (Fig. 1 Sample D), and the light absorption characteristics were measured with an ultraviolet-visible spectrophotometer (UV-Vis, U- 4100, Hitachi High-Technologies) (Fig. 2 Sample D). Furthermore, the pore characteristics such as the specific surface area, pore volume, and pore diameter of the powder were evaluated with a specific surface area / pore distribution measuring device (NOVA-2000e, Quantachrome Instruments) (Table 2 Sample D), and a transmission electron microscope. Morphological observation was performed with (TEM, JEM-2010, JEOL) (Fig. 3 Sample D).

また、粉体の水蒸気吸着等温線を水蒸気吸着測定装置(Belsorp-Aqua, 日本ベル社)にて測定し(図4 Sample D)、二酸化炭素吸着等温線を二酸化炭素吸着測定装置(Belsorp-HP, 日本ベル社)にて測定した(図5 Sample D)。   In addition, the water vapor adsorption isotherm of the powder was measured with a water vapor adsorption measurement device (Belsorp-Aqua, Nippon Bell) (Fig. 4 Sample D), and the carbon dioxide adsorption isotherm was measured with a carbon dioxide adsorption measurement device (Belsorp-HP, Nippon Bell Co., Ltd.) (Figure 5 Sample D).

得られた粉体の有害有機物質吸着特性、光触媒分解特性を評価するために、メチレンブルーの吸着量、及び光分解量の経時変化を求めた。0.04mmol/l濃度のメチレンブルー水溶液30 mlに、Sample Dの粉体5 mgを入れ、30分間超音波攪拌後、暗所に静置、メチレンブルー665 nmの吸光度の経時変化を追跡した(図6 Sample D)。約150時間浸漬後、超高圧水銀灯とガラスフィルターを用いて分光した410〜520 nmの可視光をこれに照射し、同様に665 nmの吸光度の経時変化を追跡した(図7 Sample D)。   In order to evaluate the harmful organic substance adsorption characteristics and photocatalytic degradation characteristics of the obtained powder, the amount of methylene blue adsorbed and the change over time in the amount of photodegradation were determined. 5 mg of Sample D powder was placed in 30 ml of 0.04 mmol / l aqueous methylene blue solution, and the mixture was ultrasonically stirred for 30 minutes and then left standing in the dark. The change in absorbance at 665 nm of methylene blue was followed over time (Fig. 6 Sample). D). After immersion for about 150 hours, visible light having a wavelength of 410 to 520 nm, which was spectrally separated using an ultrahigh pressure mercury lamp and a glass filter, was irradiated thereto, and the change with time in the absorbance at 665 nm was similarly traced (FIG. 7 Sample D).

〔実施例4〕
アルゴン雰囲気下のグローブボックス中で、チタニウムテトライソプロポキシド(Ti(O-i-C3H7)4 or Ti(O-i-Pr)4)をエチレングリコールモノメチルエーテル(EGMME)に対し0.25 mol/L濃度になるように溶解し、これに、溶媒に対して0.5 mol/L濃度になるように尿素(H2NCONH2)を添加し、撹拌しながら130℃のオイルバス中で3時間還流した。その後、室温まで冷却し、1晩撹拌した。
Example 4
Titanium tetraisopropoxide (Ti (OiC 3 H 7 ) 4 or Ti (Oi-Pr) 4 ) is adjusted to 0.25 mol / L with respect to ethylene glycol monomethyl ether (EGMME) in a glove box under an argon atmosphere. Urea (H 2 NCONH 2 ) was added thereto so as to have a concentration of 0.5 mol / L with respect to the solvent, and the mixture was refluxed in an oil bath at 130 ° C. for 3 hours with stirring. Then, it cooled to room temperature and stirred overnight.

これを高圧反応用テフロン(登録商標)容器に移し、撹拌しながら超高圧水銀灯(UHPML,ML-251A/B, Ushio)を用いて、室温下、大気中で4時間紫外線照射した。照射後、無色透明だった溶液が黒色を経由して濃黄色溶液に変化した。その後蓋をして、撹拌しながら室温まで冷却し、溶液に対して0.5 mol/L濃度になるよう水を加え、再び蓋をして密封し、そのまま室温下で1晩撹拌した。これに1.5gの高吸着性粘土複合体ハスクレイGIを添加し、再び蓋をして密封し、そのまま1日撹拌を続けた。尚、ハスクレイGIは、特許第4576616号公報(特許文献12)実施例1において、加熱条件を180℃、4時間とした以外は、当該実施例1と同様にして得られたアルミニウムケイ酸化合物である。   This was transferred to a Teflon (registered trademark) container for high pressure reaction, and irradiated with ultraviolet rays for 4 hours in the atmosphere at room temperature using an ultrahigh pressure mercury lamp (UHPML, ML-251A / B, Ushio) while stirring. After irradiation, the colorless and transparent solution changed to a dark yellow solution via black. Then, it was capped, cooled to room temperature with stirring, water was added to the solution to a concentration of 0.5 mol / L, capped again, sealed, and stirred at room temperature overnight. To this was added 1.5 g of highly adsorptive clay complex Haslay GI, which was sealed again with a lid, and stirring was continued for one day. In addition, Hassley GI is an aluminum silicate compound obtained in the same manner as in Example 1 except that heating conditions were set to 180 ° C. for 4 hours in Example 1 of Japanese Patent No. 4576616 (Patent Document 12). is there.

このテフロン(登録商標)容器をそのまま耐圧ステンレスジャケットに入れ、200℃のオーブンで10時間反応させたあと室温まで放冷した。得られた沈殿を10000rpmの回転速度で30分間遠心分離し、水で複数回洗浄した。これを室温下、真空乾燥器を使って十分に乾燥させた(表1 Sample E)。   This Teflon (registered trademark) container was directly put in a pressure resistant stainless steel jacket, reacted in an oven at 200 ° C. for 10 hours, and then allowed to cool to room temperature. The resulting precipitate was centrifuged for 30 minutes at a rotational speed of 10000 rpm and washed several times with water. This was sufficiently dried at room temperature using a vacuum dryer (Table 1 Sample E).

得られた粉体の結晶性を粉末X線回折装置(XRD, RINT-2100V,Rigaku)にて評価し(図1 Sample E)、光吸収特性を紫外可視分光光度計(UV-Vis, U-4100, Hitachi High-Technologies)にて評価した(図2 Sample E)。更に、粉体の比表面積、細孔容積、細孔径等の細孔特性を比表面積・細孔分布測定装置(NOVA-2000e,Quantachrome Instruments)にて評価し(表2Sample E)、透過型電子顕微鏡(TEM,JEM-2010,JEOL)にて形態観察を行った(図3 Sample E)。   The crystallinity of the obtained powder was evaluated with a powder X-ray diffractometer (XRD, RINT-2100V, Rigaku) (Fig. 1 Sample E), and the light absorption characteristics were measured with an ultraviolet-visible spectrophotometer (UV-Vis, U- 4100, Hitachi High-Technologies) (Fig. 2 Sample E). Furthermore, the pore characteristics such as the specific surface area, pore volume, and pore diameter of the powder were evaluated with a specific surface area / pore distribution measuring device (NOVA-2000e, Quantachrome Instruments) (Table 2 Sample E), and a transmission electron microscope. Morphological observation was performed with (TEM, JEM-2010, JEOL) (Fig. 3 Sample E).

また、粉体の水蒸気吸着等温線を水蒸気吸着測定装置(Belsorp-Aqua, 日本ベル社)にて測定し(図4 Sample E)、二酸化炭素吸着等温線を二酸化炭素吸着測定装置(Belsorp-HP, 日本ベル社)にて測定した(図5 Sample E)。   In addition, the water vapor adsorption isotherm of the powder was measured with a water vapor adsorption measurement device (Belsorp-Aqua, Nippon Bell) (Fig. 4 Sample E), and the carbon dioxide adsorption isotherm was measured with a carbon dioxide adsorption measurement device (Belsorp-HP, Nippon Bell Co.) (Figure 5 Sample E).

〔実施例5〕
アルゴン雰囲気下のグローブボックス中で、チタニウムテトライソプロポキシド(Ti(O-i-C3H7)4 or Ti(O-i-Pr)4)をエチレングリコールモノメチルエーテル(EGMME)に対し0.25 mol/L濃度になるように溶解し、これに、溶媒に対して0.5 mol/L濃度になるように尿素(H2NCONH2)を添加し、撹拌しながら130℃のオイルバス中で3時間還流した。その後、室温まで冷却し、1晩撹拌した。
Example 5
Titanium tetraisopropoxide (Ti (OiC 3 H 7 ) 4 or Ti (Oi-Pr) 4 ) is adjusted to 0.25 mol / L with respect to ethylene glycol monomethyl ether (EGMME) in a glove box under an argon atmosphere. Urea (H 2 NCONH 2 ) was added thereto so as to have a concentration of 0.5 mol / L with respect to the solvent, and the mixture was refluxed in an oil bath at 130 ° C. for 3 hours with stirring. Then, it cooled to room temperature and stirred overnight.

これを高圧反応用テフロン(登録商標)容器に移し、撹拌しながら超高圧水銀灯(UHPML,ML-251A/B, Ushio)を用いて、室温下、大気中で4時間紫外線照射した。照射後、無色透明だった溶液が黒色を経由して濃黄色溶液に変化した。その後蓋をして、撹拌しながら室温まで冷却し、溶液に対して0.5 mol/L濃度になるよう水を加え、再び蓋をして密封し、そのまま室温下で1晩撹拌した。これに2.0gの高吸着性粘土複合体ハスクレイGIを添加し、再び蓋をして密封し、そのまま1日撹拌を続けた。尚、ハスクレイGIは、特許第4576616号公報(特許文献12)実施例1において、加熱条件を180℃、4時間とした以外は、当該実施例1と同様にして得られたアルミニウムケイ酸化合物である。   This was transferred to a Teflon (registered trademark) container for high pressure reaction, and irradiated with ultraviolet rays for 4 hours in the atmosphere at room temperature using an ultrahigh pressure mercury lamp (UHPML, ML-251A / B, Ushio) while stirring. After irradiation, the colorless and transparent solution changed to a dark yellow solution via black. Then, it was capped, cooled to room temperature with stirring, water was added to the solution to a concentration of 0.5 mol / L, capped again, sealed, and stirred at room temperature overnight. To this was added 2.0 g of highly adsorptive clay complex Hasclay GI, which was sealed again with a lid, and stirring was continued for one day. In addition, Hassley GI is an aluminum silicate compound obtained in the same manner as in Example 1 except that heating conditions were set to 180 ° C. for 4 hours in Example 1 of Japanese Patent No. 4576616 (Patent Document 12). is there.

このテフロン(登録商標)容器をそのまま耐圧ステンレスジャケットに入れ、200℃のオーブンで10時間反応させたあと室温まで放冷した。得られた沈殿を10000rpmの回転速度で30分間遠心分離し、水で複数回洗浄した。これを室温下、真空乾燥器を使って十分に乾燥させた(表1 Sample F)。   This Teflon (registered trademark) container was directly put in a pressure resistant stainless steel jacket, reacted in an oven at 200 ° C. for 10 hours, and then allowed to cool to room temperature. The resulting precipitate was centrifuged for 30 minutes at a rotational speed of 10000 rpm and washed several times with water. This was sufficiently dried at room temperature using a vacuum dryer (Table 1 Sample F).

得られた粉体の結晶性を粉末X線回折装置(XRD, RINT-2100V,Rigaku)にて評価し(図1 Sample F)、光吸収特性を紫外可視分光光度計(UV-Vis, U-4100, Hitachi High-Technologies)にて評価した(図2 Sample F)。更に、粉体の比表面積、細孔容積、細孔径等の細孔特性を比表面積・細孔分布測定装置(NOVA-2000e,Quantachrome Instruments)にて評価し(表2Sample F)、透過型電子顕微鏡(TEM,JEM-2010,JEOL)にて形態観察を行った(図3 Sample F)。   The crystallinity of the obtained powder was evaluated with a powder X-ray diffractometer (XRD, RINT-2100V, Rigaku) (Figure 1 Sample F), and the light absorption characteristics were measured with an ultraviolet-visible spectrophotometer (UV-Vis, U-). 4100, Hitachi High-Technologies) (Fig. 2 Sample F). Furthermore, the pore characteristics such as the specific surface area, pore volume, and pore diameter of the powder were evaluated with a specific surface area / pore distribution measuring device (NOVA-2000e, Quantachrome Instruments) (Table 2 Sample F), and a transmission electron microscope. Morphological observation was performed with (TEM, JEM-2010, JEOL) (Fig. 3 Sample F).

また、粉体の水蒸気吸着等温線を水蒸気吸着測定装置(Belsorp-Aqua, 日本ベル社)にて測定し(図4 Sample F)、二酸化炭素吸着等温線を二酸化炭素吸着測定装置(Belsorp-HP, 日本ベル社)にて測定した(図5 Sample F)。   In addition, the water vapor adsorption isotherm of the powder was measured with a water vapor adsorption measuring device (Belsorp-Aqua, Nippon Bell) (Fig. 4 Sample F), and the carbon dioxide adsorption isotherm was measured with a carbon dioxide adsorption measuring device (Belsorp-HP, Nippon Bell Co., Ltd.) (FIG. 5 Sample F).

得られた粉体の有害有機物質吸着特性、光触媒分解特性を評価するために、メチレンブルーの吸着量、及び光分解量の経時変化を求めた。0.04mmol/l濃度のメチレンブルー水溶液30 mlに、Sample Fの粉体5 mgを入れ、30分間超音波攪拌後、暗所に静置、メチレンブルー665 nmの吸光度の経時変化を追跡した(図6 Sample F)。約150時間浸漬後、超高圧水銀灯とガラスフィルターを用いて分光した410〜520 nmの可視光をこれに照射し、同様に665 nmの吸光度の経時変化を追跡した(図7 Sample F)。   In order to evaluate the harmful organic substance adsorption characteristics and photocatalytic degradation characteristics of the obtained powder, the amount of methylene blue adsorbed and the change over time in the amount of photodegradation were determined. Add 5 mg of Sample F powder to 30 ml of 0.04 mmol / l methylene blue aqueous solution, ultrasonically stir for 30 minutes, and then leave it in the dark to trace the time course of absorbance at 665 nm for methylene blue (Figure 6 Sample) F). After immersion for about 150 hours, visible light having a wavelength of 410 to 520 nm, which was spectrally separated using an ultrahigh pressure mercury lamp and a glass filter, was irradiated thereto, and the change with time in the absorbance at 665 nm was similarly traced (FIG. 7 Sample F).

〔実施例6〕
アルゴン雰囲気下のグローブボックス中で、チタニウムテトライソプロポキシド(Ti(O-i-C3H7)4 or Ti(O-i-Pr)4)をエチレングリコールモノメチルエーテル(EGMME)に対し0.025 mol/L濃度になるように溶解し、これに、溶媒に対して0.05 mol/L濃度になるように尿素(H2NCONH2)を添加し、撹拌しながら130℃のオイルバス中で3時間還流した。その後、室温まで冷却し、1晩撹拌した。
Example 6
Titanium tetraisopropoxide (Ti (OiC 3 H 7 ) 4 or Ti (Oi-Pr) 4 ) is adjusted to 0.025 mol / L with respect to ethylene glycol monomethyl ether (EGMME) in a glove box under an argon atmosphere. In this solution, urea (H 2 NCONH 2 ) was added so as to have a concentration of 0.05 mol / L with respect to the solvent, and the mixture was refluxed in an oil bath at 130 ° C. for 3 hours with stirring. Then, it cooled to room temperature and stirred overnight.

これを高圧反応用テフロン(登録商標)容器に移し、撹拌しながら超高圧水銀灯(UHPML,ML-251A/B, Ushio)を用いて、室温下、大気中で4時間紫外線照射した。照射後、無色透明だった溶液が黒色を経由して濃黄色溶液に変化した。その後蓋をして、撹拌しながら室温まで冷却し、溶液に対して0.05 mol/L濃度になるよう水を加え、再び蓋をして密封しそのまま室温下で1晩撹拌した。これに1.0gの高吸着性粘土複合体ハスクレイGIを添加し、再び蓋をして密封し、そのまま1日撹拌を続けた。尚、ハスクレイGIは、特許第4576616号公報(特許文献12)実施例1において、加熱条件を180℃、4時間とした以外は、当該実施例1と同様にして得られたアルミニウムケイ酸化合物である。   This was transferred to a Teflon (registered trademark) container for high pressure reaction, and irradiated with ultraviolet rays for 4 hours in the atmosphere at room temperature using an ultrahigh pressure mercury lamp (UHPML, ML-251A / B, Ushio) while stirring. After irradiation, the colorless and transparent solution changed to a dark yellow solution via black. Then, it was capped, cooled to room temperature with stirring, water was added to the solution to a concentration of 0.05 mol / L, capped again, sealed, and stirred at room temperature overnight. To this was added 1.0 g of highly adsorptive clay composite Hasclay GI, which was sealed again with a lid, and stirring was continued for one day. In addition, Hassley GI is an aluminum silicate compound obtained in the same manner as in Example 1 except that heating conditions were set to 180 ° C. for 4 hours in Example 1 of Japanese Patent No. 4576616 (Patent Document 12). is there.

このテフロン(登録商標)容器をそのまま耐圧ステンレスジャケットに入れ、200℃のオーブンで10時間反応させたあと室温まで放冷した。得られた沈殿を10000rpmの回転速度で30分間遠心分離し、水で複数回洗浄した。これを室温下、真空乾燥器を使って十分に乾燥させた(表1 Sample G)。   This Teflon (registered trademark) container was directly put in a pressure resistant stainless steel jacket, reacted in an oven at 200 ° C. for 10 hours, and then allowed to cool to room temperature. The resulting precipitate was centrifuged for 30 minutes at a rotational speed of 10000 rpm and washed several times with water. This was sufficiently dried at room temperature using a vacuum dryer (Table 1 Sample G).

得られた粉体の結晶性を粉末X線回折装置(XRD, RINT-2100V,Rigaku)にて評価し(図1 Sample G)、光吸収特性を紫外可視分光光度計(UV-Vis, U-4100, Hitachi High-Technologies)にて評価した(図2 Sample G)。更に、粉体の比表面積、細孔容積、細孔径等の細孔特性を比表面積・細孔分布測定装置(NOVA-2000e,Quantachrome Instruments)にて評価し(表2Sample G)、透過型電子顕微鏡(TEM,JEM-2010,JEOL)にて形態観察を行った(図3 Sample G)。   The crystallinity of the obtained powder was evaluated with a powder X-ray diffractometer (XRD, RINT-2100V, Rigaku) (Fig. 1 Sample G), and the light absorption characteristics were measured with an ultraviolet-visible spectrophotometer (UV-Vis, U- 4100, Hitachi High-Technologies) (Fig. 2 Sample G). Furthermore, the pore characteristics such as the specific surface area, pore volume, and pore diameter of the powder were evaluated using a specific surface area / pore distribution measuring device (NOVA-2000e, Quantachrome Instruments) (Table 2 Sample G), and a transmission electron microscope. Morphological observation was performed with (TEM, JEM-2010, JEOL) (Fig. 3 Sample G).

また、粉体の水蒸気吸着等温線を水蒸気吸着測定装置(Belsorp-Aqua, 日本ベル社)にて測定し(図4 Sample G)、二酸化炭素吸着等温線を二酸化炭素吸着測定装置(Belsorp-HP, 日本ベル社)にて測定した(図5 Sample G)。   In addition, the water vapor adsorption isotherm of the powder was measured with a water vapor adsorption measurement device (Belsorp-Aqua, Nippon Bell) (Fig. 4 Sample G), and the carbon dioxide adsorption isotherm was measured with a carbon dioxide adsorption measurement device (Belsorp-HP, Nippon Bell Co., Ltd.) (Figure 5 Sample G).

得られた粉体の有害有機物質吸着特性、光触媒分解特性を評価するために、メチレンブルーの吸着量、及び光分解量の経時変化を求めた。0.04mmol/l濃度のメチレンブルー水溶液30 mlに、Sample Gの粉体5 mgを入れ、30分間超音波攪拌後、暗所に静置、メチレンブルー665 nmの吸光度の経時変化を追跡した(図6 Sample G)。約150時間浸漬後、超高圧水銀灯とガラスフィルターを用いて分光した410〜520 nmの可視光をこれに照射し、同様に665 nmの吸光度の経時変化を追跡した(図7 Sample G)。   In order to evaluate the harmful organic substance adsorption characteristics and photocatalytic degradation characteristics of the obtained powder, the amount of methylene blue adsorbed and the change over time in the amount of photodegradation were determined. Add 5 mg of Sample G powder to 30 ml of 0.04 mmol / l aqueous methylene blue solution, stir ultrasonically for 30 minutes, leave it in the dark, and follow the time course of absorbance at 665 nm for methylene blue (Figure 6 Sample) G). After immersion for about 150 hours, visible light having a wavelength of 410 to 520 nm, which was spectrally separated using an ultrahigh pressure mercury lamp and a glass filter, was irradiated thereto, and the change with time in the absorbance at 665 nm was similarly traced (FIG. 7 Sample G).

〔実施例7〕
アルゴン雰囲気下のグローブボックス中で、チタニウムテトライソプロポキシド(Ti(O-i-C3H7)4 or Ti(O-i-Pr)4)をエチレングリコールモノメチルエーテル(EGMME)に対し0.025 mol/L濃度になるように溶解し、これに、溶媒に対して0.05 mol/L濃度になるように尿素(H2NCONH2)を添加し、撹拌しながら130℃のオイルバス中で3時間還流した。その後、室温まで冷却し、1晩撹拌した。
Example 7
Titanium tetraisopropoxide (Ti (OiC 3 H 7 ) 4 or Ti (Oi-Pr) 4 ) is adjusted to 0.025 mol / L with respect to ethylene glycol monomethyl ether (EGMME) in a glove box under an argon atmosphere. In this solution, urea (H 2 NCONH 2 ) was added so as to have a concentration of 0.05 mol / L with respect to the solvent, and the mixture was refluxed in an oil bath at 130 ° C. for 3 hours with stirring. Then, it cooled to room temperature and stirred overnight.

これを高圧反応用テフロン(登録商標)容器に移し、撹拌しながら超高圧水銀灯(UHPML,ML-251A/B, Ushio)を用いて、室温下、大気中で4時間紫外線照射した。照射後、無色透明だった溶液が黒色を経由して濃黄色溶液に変化した。その後蓋をして、撹拌しながら室温まで冷却し、溶液に対して0.05 mol/L濃度になるよう水を加え、再び蓋をして密封し、そのまま室温下で1晩撹拌した。これに2.0gの高吸着性粘土複合体ハスクレイを添加し、再び蓋をして密封し、そのまま1日撹拌を続けた。尚、ハスクレイGIは、特許第4576616号公報(特許文献12)実施例1において、加熱条件を180℃、4時間とした以外は、当該実施例1と同様にして得られたアルミニウムケイ酸化合物である。   This was transferred to a Teflon (registered trademark) container for high pressure reaction, and irradiated with ultraviolet rays for 4 hours in the atmosphere at room temperature using an ultrahigh pressure mercury lamp (UHPML, ML-251A / B, Ushio) while stirring. After irradiation, the colorless and transparent solution changed to a dark yellow solution via black. Then, it was capped, cooled to room temperature with stirring, water was added to the solution to a concentration of 0.05 mol / L, capped again, sealed, and stirred at room temperature overnight. To this was added 2.0 g of highly adsorptive clay complex haslay, which was sealed again with a lid, and continued to stir for one day. In addition, Hassley GI is an aluminum silicate compound obtained in the same manner as in Example 1 except that heating conditions were set to 180 ° C. for 4 hours in Example 1 of Japanese Patent No. 4576616 (Patent Document 12). is there.

このテフロン(登録商標)容器をそのまま耐圧ステンレスジャケットに入れ、200℃のオーブンで10時間反応させたあと室温まで放冷した。得られた沈殿を10000rpmの回転速度で30分間遠心分離し、水で複数回洗浄した。これを室温下、真空乾燥器を使って十分に乾燥させた(表1 Sample H)。   This Teflon (registered trademark) container was directly put in a pressure resistant stainless steel jacket, reacted in an oven at 200 ° C. for 10 hours, and then allowed to cool to room temperature. The resulting precipitate was centrifuged for 30 minutes at a rotational speed of 10000 rpm and washed several times with water. This was sufficiently dried at room temperature using a vacuum dryer (Table 1 Sample H).

得られた粉体の結晶性を粉末X線回折装置(XRD, RINT-2100V,Rigaku)にて評価し(図1 Sample H)、光吸収特性を紫外可視分光光度計(UV-Vis, U-4100, Hitachi High-Technologies)にて評価した(図2 Sample H)。また、透過型電子顕微鏡(TEM,JEM-2010,JEOL)にて形態観察を行った(図3 Sample H)。   The crystallinity of the obtained powder was evaluated with a powder X-ray diffractometer (XRD, RINT-2100V, Rigaku) (Fig. 1 Sample H), and the light absorption characteristics were measured with an ultraviolet-visible spectrophotometer (UV-Vis, U-). 4100, Hitachi High-Technologies) (Fig. 2 Sample H). Further, the morphology was observed with a transmission electron microscope (TEM, JEM-2010, JEOL) (Fig. 3 Sample H).

更に、粉体の比表面積、細孔容積、細孔径等の細孔特性を比表面積・細孔分布測定装置(NOVA-2000e,Quantachrome Instruments)にて評価した。(表2 Sample H)また、粉体の水蒸気吸着等温線を水蒸気吸着測定装置(Belsorp-Aqua, 日本ベル社)にて測定し(図4 Sample H)、二酸化炭素吸着等温線を二酸化炭素吸着測定装置(Belsorp-HP, 日本ベル社)にて測定した(図5 Sample H)。   Furthermore, the pore characteristics such as the specific surface area, pore volume and pore diameter of the powder were evaluated with a specific surface area / pore distribution measuring device (NOVA-2000e, Quantachrome Instruments). (Table 2 Sample H) The water vapor adsorption isotherm of the powder was measured with a water vapor adsorption measuring device (Belsorp-Aqua, Nippon Bell Co., Ltd.) (Fig. 4 Sample H), and the carbon dioxide adsorption isotherm was measured by carbon dioxide adsorption. Measurement was performed with an apparatus (Belsorp-HP, Nippon Bell Co., Ltd.) (FIG. 5 Sample H).

上記したSampleA〜SampleH、及び、ハスクレイ単独のSampleIの粉体比表面積、細孔容積、細孔径の評価結果を表2に示す。   Table 2 shows the evaluation results of the powder specific surface area, pore volume, and pore diameter of Sample A to Sample H and Sample I of Hassley alone.

一方、ハスクレイを添加せず、ソルボサーマル処理の諸条件を変えてチタニアを作製する比較実験を以下に示した。   On the other hand, a comparative experiment in which titania was produced by changing various conditions of the solvothermal treatment without adding a clay was shown below.

また、〔表3〕には、各比較実験例で、ハスクレイを添加せずソルボサーマル処理してチタニアSample A-a〜Sample A-iを作製した際の諸条件をまとめて示した。なお、〔表3〕の一段目の「SampleA」は、〔予備実験例〕でのソルボサーマル処理条件を対比のために掲載したものである。   [Table 3] collectively shows various conditions for producing titania Sample A-a to Sample A-i by solvothermal treatment without adding a clay in each comparative experimental example. Note that “Sample A” in the first row of [Table 3] lists the solvothermal treatment conditions in [Preliminary Experiment Example] for comparison.

〔比較実験例1〕
アルゴン雰囲気下のグローブボックス中で、チタニウムテトライソプロポキシド(Ti(O-i-C3H7)4 or Ti(O-i-Pr)4)をエチレングリコールモノメチルエーテル(EGMME)に対し0.25 mol/L濃度になるように溶解し、これに、溶媒に対して0.5 mol/L濃度になるように尿素(H2NCONH2)を添加し、撹拌しながら130℃のオイルバス中で3時間還流した。その後、室温まで冷却し、溶液に対して0.5 mol/L濃度になるよう水を加え、蓋をしてそのまま室温下で1晩撹拌した。
[Comparative Experiment Example 1]
Titanium tetraisopropoxide (Ti (OiC 3 H 7 ) 4 or Ti (Oi-Pr) 4 ) is adjusted to 0.25 mol / L with respect to ethylene glycol monomethyl ether (EGMME) in a glove box under an argon atmosphere. Urea (H 2 NCONH 2 ) was added thereto so as to have a concentration of 0.5 mol / L with respect to the solvent, and the mixture was refluxed in an oil bath at 130 ° C. for 3 hours with stirring. Then, it cooled to room temperature, water was added so that it might become a 0.5 mol / L density | concentration with respect to a solution, it covered, and it stirred at room temperature overnight as it was.

これを高圧反応用テフロン(登録商標)容器に移し、蓋をして密封し、そのまま耐圧ステンレスジャケットに入れて200℃のオーブンで10時間反応させたあと室温まで放冷した。得られた沈殿を10000rpmの回転速度で30分間遠心分離し、水で複数回洗浄した。これを室温下、真空乾燥器を使って十分に乾燥させた(表3 Sample A-a)。   This was transferred to a Teflon (registered trademark) container for high pressure reaction, sealed with a lid, placed in a pressure resistant stainless steel jacket, allowed to react in an oven at 200 ° C. for 10 hours, and then allowed to cool to room temperature. The resulting precipitate was centrifuged for 30 minutes at a rotational speed of 10000 rpm and washed several times with water. This was sufficiently dried at room temperature using a vacuum dryer (Table 3 Sample A-a).

得られた粉体の結晶性を粉末X線回折装置(XRD, RINT-2100V,Rigaku)にて評価し(図8 Sample A-a)、光吸収特性を紫外可視分光光度計(UV-Vis, U-4100, Hitachi High-Technologies)にて評価した(図9 Sample A-a)。更に、粉体の比表面積、細孔容積、細孔径等の細孔特性を比表面積・細孔分布測定装置(NOVA-2000e,Quantachrome Instruments)にて評価した(表4 Sample A-a)。   The crystallinity of the obtained powder was evaluated with a powder X-ray diffractometer (XRD, RINT-2100V, Rigaku) (Figure 8 Sample Aa), and the light absorption characteristics were measured with an ultraviolet-visible spectrophotometer (UV-Vis, U- 4100, Hitachi High-Technologies) (FIG. 9 Sample Aa). Furthermore, the pore characteristics such as the specific surface area, pore volume, and pore diameter of the powder were evaluated with a specific surface area / pore distribution measuring device (NOVA-2000e, Quantachrome Instruments) (Table 4 Sample A-a).

〔比較実験例2〕
アルゴン雰囲気下のグローブボックス中で、チタニウムテトライソプロポキシド(Ti(O-i-C3H7)4 or Ti(O-i-Pr)4)をエチレングリコールモノメチルエーテル(EGMME)に対し0.25 mol/L濃度になるように溶解し、これに、溶媒に対して0.5 mol/L濃度になるように尿素(H2NCONH2)を添加し、撹拌しながら130℃のオイルバス中で3時間還流した。その後、室温まで冷却し、溶液に対して0.5 mol/L濃度になるよう水を加え、蓋をしてそのまま室温下で1晩撹拌した。
[Comparative Experiment 2]
Titanium tetraisopropoxide (Ti (OiC 3 H 7 ) 4 or Ti (Oi-Pr) 4 ) is adjusted to 0.25 mol / L with respect to ethylene glycol monomethyl ether (EGMME) in a glove box under an argon atmosphere. Urea (H 2 NCONH 2 ) was added thereto so as to have a concentration of 0.5 mol / L with respect to the solvent, and the mixture was refluxed in an oil bath at 130 ° C. for 3 hours with stirring. Then, it cooled to room temperature, water was added so that it might become a 0.5 mol / L density | concentration with respect to a solution, it covered, and it stirred at room temperature overnight as it was.

これをテフロン(登録商標)容器に移し、蓋をして密封し、そのまま耐圧ステンレスジャケットに入れ、200℃のオーブンで10時間反応させたあと室温まで放冷した。得られた沈殿を10000rpmの回転速度で30分間遠心分離し、水で複数回洗浄した。これを再び高圧反応用テフロン(登録商標)容器に入れ、これに水を加えて密封後、200℃で10時間水熱処理した。得られた沈殿を10000rpmの回転速度で30分間遠心分離し、水で複数回洗浄した。これを室温下、真空乾燥器を使って十分に乾燥させた(表3 Sample A-b)。   This was transferred to a Teflon (registered trademark) container, sealed with a lid, placed in a pressure resistant stainless steel jacket, allowed to react in an oven at 200 ° C. for 10 hours, and then allowed to cool to room temperature. The resulting precipitate was centrifuged for 30 minutes at a rotational speed of 10000 rpm and washed several times with water. This was again put in a Teflon (registered trademark) container for high-pressure reaction, and water was added to the vessel, which was sealed and hydrothermally treated at 200 ° C. for 10 hours. The resulting precipitate was centrifuged for 30 minutes at a rotational speed of 10000 rpm and washed several times with water. This was sufficiently dried at room temperature using a vacuum dryer (Table 3 Sample A-b).

得られた粉体の結晶性を粉末X線回折装置(XRD, RINT-2100V,Rigaku)にて評価し(図8 Sample A-b)、光吸収特性を紫外可視分光光度計(UV-Vis, U-4100, Hitachi High-Technologies)にて評価した(図9 Sample A-b)。更に、粉体の比表面積、細孔容積、細孔径等の細孔特性を比表面積・細孔分布測定装置(NOVA-2000e,Quantachrome Instruments)にて評価した(表4 Sample A-b)。   The crystallinity of the obtained powder was evaluated with a powder X-ray diffractometer (XRD, RINT-2100V, Rigaku) (Fig. 8 Sample Ab), and the light absorption characteristics were measured with an ultraviolet-visible spectrophotometer (UV-Vis, U-). 4100, Hitachi High-Technologies) (FIG. 9 Sample Ab). Furthermore, the pore characteristics such as the specific surface area, pore volume, and pore diameter of the powder were evaluated with a specific surface area / pore distribution measuring device (NOVA-2000e, Quantachrome Instruments) (Table 4 Sample A-b).

〔比較実験例3〕
アルゴン雰囲気下のグローブボックス中で、チタニウムテトライソプロポキシド(Ti(O-i-C3H7)4 or Ti(O-i-Pr)4)をエチレングリコールモノメチルエーテル(EGMME)に対し0.25 mol/L濃度になるように溶解し、これに、溶媒に対して0.5 mol/L濃度になるように尿素(H2NCONH2)を添加し、撹拌しながら130℃のオイルバス中で3時間還流した。その後、室温まで冷却し、溶液に対して0.5 mol/L濃度になるよう水を加え、蓋をしてそのまま室温下で1晩撹拌した。
[Comparative Experimental Example 3]
Titanium tetraisopropoxide (Ti (OiC 3 H 7 ) 4 or Ti (Oi-Pr) 4 ) is adjusted to 0.25 mol / L with respect to ethylene glycol monomethyl ether (EGMME) in a glove box under an argon atmosphere. Urea (H 2 NCONH 2 ) was added thereto so as to have a concentration of 0.5 mol / L with respect to the solvent, and the mixture was refluxed in an oil bath at 130 ° C. for 3 hours with stirring. Then, it cooled to room temperature, water was added so that it might become a 0.5 mol / L density | concentration with respect to a solution, it covered, and it stirred at room temperature overnight as it was.

溶媒を分別し、得られた白色粉末を水とともに高圧反応用テフロン(登録商標)容器に移したあと密封し、耐圧ステンレスジャケットに入れ、200℃のオーブンで10時間反応させたあと室温まで放冷した。得られた沈殿を10000rpmの回転速度で30分間遠心分離し、水で複数回洗浄した。これを室温下、真空乾燥器を使って十分に乾燥させた(表3 Sample A-c)。   Solvent was separated, and the resulting white powder was transferred to a high-pressure Teflon (registered trademark) container with water, sealed, placed in a pressure-resistant stainless steel jacket, allowed to react in an oven at 200 ° C for 10 hours, and then allowed to cool to room temperature. did. The resulting precipitate was centrifuged for 30 minutes at a rotational speed of 10000 rpm and washed several times with water. This was sufficiently dried at room temperature using a vacuum dryer (Table 3 Sample A-c).

得られた粉体の結晶性を粉末X線回折装置(XRD, RINT-2100V,Rigaku)にて評価し(図8 Sample A-c)、光吸収特性を紫外可視分光光度計(UV-Vis,U-4100, Hitachi High-Technologies)にて評価した(図9 Sample A-c)。更に、粉体の比表面積、細孔容積、細孔径等の細孔特性を比表面積・細孔分布測定装置(NOVA-2000e,Quantachrome Instruments)にて評価した(表4 Sample A-c)。   The crystallinity of the obtained powder was evaluated with a powder X-ray diffractometer (XRD, RINT-2100V, Rigaku) (Fig. 8 Sample Ac), and the light absorption characteristics were measured with an ultraviolet-visible spectrophotometer (UV-Vis, U- 4100, Hitachi High-Technologies) (FIG. 9 Sample Ac). Furthermore, the pore characteristics such as the specific surface area, pore volume and pore diameter of the powder were evaluated with a specific surface area / pore distribution measuring device (NOVA-2000e, Quantachrome Instruments) (Table 4 Sample A-c).

〔比較実験例4〕
アルゴン雰囲気下のグローブボックス中で、チタニウムテトライソプロポキシド(Ti(O-i-C3H7)4 or Ti(O-i-Pr)4)をエチレングリコールモノメチルエーテル(EGMME)に対し0.25 mol/L濃度になるように溶解し、撹拌しながら130℃のオイルバス中で3時間還流した。その後、室温まで冷却し、溶液に対して0.5 mol/L濃度になるよう水を加え、蓋をしてそのまま室温下で1晩撹拌した。
[Comparative Experiment Example 4]
Titanium tetraisopropoxide (Ti (OiC 3 H 7 ) 4 or Ti (Oi-Pr) 4 ) is adjusted to 0.25 mol / L with respect to ethylene glycol monomethyl ether (EGMME) in a glove box under an argon atmosphere. The mixture was dissolved in an oil bath at 130 ° C. for 3 hours with stirring. Then, it cooled to room temperature, water was added so that it might become a 0.5 mol / L density | concentration with respect to a solution, it covered, and it stirred at room temperature overnight as it was.

これに白沈が生じるまで水を添加した後、溶媒を分別し、得られた白色粉末を水とともに高圧反応用テフロン(登録商標)容器に移したあと密封し、耐圧ステンレスジャケットに入れ、200℃のオーブンで10時間反応させたあと室温まで放冷した。得られた沈殿を10000rpmの回転速度で30分間遠心分離し、水で複数回洗浄した。これを室温下、真空乾燥器を使って十分に乾燥させた(表3 Sample A-d)。   After adding water until white precipitation occurs, the solvent is separated, and the resulting white powder is transferred to a high-pressure reaction Teflon (registered trademark) container together with water, sealed, placed in a pressure-resistant stainless steel jacket, and 200 ° C. In the oven for 10 hours and then allowed to cool to room temperature. The resulting precipitate was centrifuged for 30 minutes at a rotational speed of 10000 rpm and washed several times with water. This was sufficiently dried at room temperature using a vacuum dryer (Table 3 Sample A-d).

得られた粉体の結晶性を粉末X線回折装置(XRD, RINT-2100V,Rigaku)にて評価し(図8 Sample A-d)、光吸収特性を紫外可視分光光度計(UV-Vis, U-4100, Hitachi High-Technologies)にて評価した(図9 Sample A-d)。更に、粉体の比表面積、細孔容積、細孔径等の細孔特性を比表面積・細孔分布測定装置(NOVA-2000e,Quantachrome Instruments)にて評価した(表4 Sample A-d)。   The crystallinity of the obtained powder was evaluated with a powder X-ray diffractometer (XRD, RINT-2100V, Rigaku) (Fig. 8 Sample Ad), and the light absorption characteristics were measured with an ultraviolet-visible spectrophotometer (UV-Vis, U-). 4100, Hitachi High-Technologies) (FIG. 9 Sample Ad). Furthermore, the pore characteristics such as the specific surface area, pore volume, and pore diameter of the powder were evaluated with a specific surface area / pore distribution measuring device (NOVA-2000e, Quantachrome Instruments) (Table 4 Sample A-d).

〔比較実験例5〕
アルゴン雰囲気下のグローブボックス中で、チタニウムテトライソプロポキシド(Ti(O-i-C3H7)4 or Ti(O-i-Pr)4)をエチレングリコールモノメチルエーテル(EGMME)に対し0.25 mol/L濃度になるように溶解し、撹拌しながら130℃のオイルバス中で3時間還流した。その後、室温まで冷却し、1晩撹拌した。
[Comparative Experimental Example 5]
Titanium tetraisopropoxide (Ti (OiC 3 H 7 ) 4 or Ti (Oi-Pr) 4 ) is adjusted to 0.25 mol / L with respect to ethylene glycol monomethyl ether (EGMME) in a glove box under an argon atmosphere. The mixture was dissolved in an oil bath at 130 ° C. for 3 hours with stirring. Then, it cooled to room temperature and stirred overnight.

これを高圧反応用テフロン(登録商標)容器に移し、撹拌しながら超高圧水銀灯(UHPML,ML-251A/B, Ushio)を用いて、室温下、大気中で4時間紫外線照射した。照射後、無色透明だった溶液が黒みがかった濃黄色溶液に変化した。その後蓋をして、撹拌しながら室温まで冷却し、溶液に対して0.5 mol/L濃度になるよう水を加え、再び蓋をして密封し、そのまま室温下で1晩撹拌した。   This was transferred to a Teflon (registered trademark) container for high pressure reaction, and irradiated with ultraviolet rays for 4 hours in the atmosphere at room temperature using an ultrahigh pressure mercury lamp (UHPML, ML-251A / B, Ushio) while stirring. After irradiation, the colorless and transparent solution changed to a dark yellow solution with a blackish appearance. Then, it was capped, cooled to room temperature with stirring, water was added to the solution to a concentration of 0.5 mol / L, the lid was sealed again, and the mixture was stirred at room temperature overnight.

これをそのまま耐圧ステンレスジャケットに入れ、200℃のオーブンで10時間反応させたあと室温まで放冷した。得られた沈殿を10000rpmの回転速度で30分間遠心分離し、水で複数回洗浄した。これを室温下、真空乾燥器を使って十分に乾燥させた(表3 Sample A-e)。   This was directly put in a pressure resistant stainless steel jacket, allowed to react in an oven at 200 ° C. for 10 hours, and then allowed to cool to room temperature. The resulting precipitate was centrifuged for 30 minutes at a rotational speed of 10000 rpm and washed several times with water. This was sufficiently dried at room temperature using a vacuum dryer (Table 3 Sample A-e).

得られた粉体の結晶性を粉末X線回折装置(XRD, RINT-2100V,Rigaku)にて評価し(図8 Sample A-e)、光吸収特性を紫外可視分光光度計(UV-Vis, U-4100, Hitachi High-Technologies)にて評価した(図9 Sample A-e)。更に、粉体の比表面積、細孔容積、細孔径等の細孔特性を比表面積・細孔分布測定装置(NOVA-2000e,Quantachrome Instruments)にて評価した(表4 Sample A-e)。   The crystallinity of the obtained powder was evaluated with a powder X-ray diffractometer (XRD, RINT-2100V, Rigaku) (Fig. 8 Sample Ae), and the light absorption characteristics were measured with an ultraviolet-visible spectrophotometer (UV-Vis, U- 4100, Hitachi High-Technologies) (FIG. 9 Sample Ae). Furthermore, pore characteristics such as specific surface area, pore volume, and pore diameter of the powder were evaluated with a specific surface area / pore distribution measuring device (NOVA-2000e, Quantachrome Instruments) (Table 4 Sample A-e).

〔比較実験例6〕
アルゴン雰囲気下のグローブボックス中で、尿素(H2NCONH2)をイソプロピルアルコール(i-C3H7OH or i-PrOH)に対し0.5 mol/L濃度になるように添加し撹拌、更にこれにチタニウムテトライソプロポキシド(Ti(O-i-C3H7)4 or Ti(O-i-Pr)4)を溶媒に対し0.25 mol/L濃度になるように添加し、撹拌しながら110℃のオイルバス中で3時間還流した。その後、室温まで冷却し、1晩撹拌した。
[Comparative Experimental Example 6]
In a glove box under an argon atmosphere, urea (H 2 NCONH 2 ) is added to isopropyl alcohol (iC 3 H 7 OH or i-PrOH) to a concentration of 0.5 mol / L and stirred. Add isopropoxide (Ti (OiC 3 H 7 ) 4 or Ti (Oi-Pr) 4 ) to the solvent to a concentration of 0.25 mol / L, and reflux in an oil bath at 110 ° C for 3 hours with stirring. did. Then, it cooled to room temperature and stirred overnight.

これを高圧反応用テフロン(登録商標)容器に移し、撹拌しながら超高圧水銀灯(UHPML,ML-251A/B, Ushio)を用いて、室温下、大気中で4時間紫外線照射した。照射後、黄色溶液に変化した。その後蓋をして、撹拌しながら室温まで冷却し、溶液に対して0.5 mol/L濃度になるよう水を加え、再び蓋をして密封し、そのまま室温下で1晩撹拌した。これをそのまま耐圧ステンレスジャケットに入れ、200℃のオーブンで10時間反応させたあと室温まで放冷した。得られた沈殿を10000rpmの回転速度で30分間遠心分離し、水で複数回洗浄した。これを室温下、真空乾燥器を使って十分に乾燥させた(表3 Sample A-f)。   This was transferred to a Teflon (registered trademark) container for high pressure reaction, and irradiated with ultraviolet rays for 4 hours in the atmosphere at room temperature using an ultrahigh pressure mercury lamp (UHPML, ML-251A / B, Ushio) while stirring. After irradiation, it turned into a yellow solution. Then, it was capped, cooled to room temperature with stirring, water was added to the solution to a concentration of 0.5 mol / L, the lid was sealed again, and the mixture was stirred at room temperature overnight. This was directly put in a pressure resistant stainless steel jacket, allowed to react in an oven at 200 ° C. for 10 hours, and then allowed to cool to room temperature. The resulting precipitate was centrifuged for 30 minutes at a rotational speed of 10000 rpm and washed several times with water. This was sufficiently dried at room temperature using a vacuum dryer (Table 3 Sample A-f).

得られた粉体の結晶性を粉末X線回折装置(XRD, RINT-2100V,Rigaku)にて評価し(図8 Sample A-f)、光吸収特性を紫外可視分光光度計(UV-Vis, U-4100, Hitachi High-Technologies)にて評価した(図9 Sample A-f)。更に、粉体の比表面積、細孔容積、細孔径等の細孔特性を比表面積・細孔分布測定装置(NOVA-2000e,Quantachrome Instruments)にて評価した(表4 Sample A-f)。   The crystallinity of the obtained powder was evaluated with a powder X-ray diffractometer (XRD, RINT-2100V, Rigaku) (Fig. 8 Sample Af), and the light absorption characteristics were measured with an ultraviolet-visible spectrophotometer (UV-Vis, U- 4100, Hitachi High-Technologies) (FIG. 9 Sample Af). Furthermore, the pore characteristics such as the specific surface area, pore volume, and pore diameter of the powder were evaluated with a specific surface area / pore distribution measuring device (NOVA-2000e, Quantachrome Instruments) (Table 4 Sample A-f).

〔比較実験例7〕
アルゴン雰囲気下のグローブボックス中で、チタニウムテトライソプロポキシド(Ti(O-i-C3H7)4 or Ti(O-i-Pr)4)をエチレングリコールモノメチルエーテル(EGMME)に対し0.25 mol/L濃度になるように溶解し、これに、溶媒に対して0.5 mol/L濃度になるように尿素(H2NCONH2)を添加し、撹拌しながら130℃のオイルバス中で3時間還流した。その後、室温まで冷却し、1晩撹拌した。
[Comparative Experimental Example 7]
Titanium tetraisopropoxide (Ti (OiC 3 H 7 ) 4 or Ti (Oi-Pr) 4 ) is adjusted to 0.25 mol / L with respect to ethylene glycol monomethyl ether (EGMME) in a glove box under an argon atmosphere. Urea (H 2 NCONH 2 ) was added thereto so as to have a concentration of 0.5 mol / L with respect to the solvent, and the mixture was refluxed in an oil bath at 130 ° C. for 3 hours with stirring. Then, it cooled to room temperature and stirred overnight.

これを高圧反応用テフロン(登録商標)容器に移し、撹拌しながら超高圧水銀灯(UHPML,ML-251A/B, Ushio)を用いて、室温下、大気中で4時間紫外線照射した。照射後、無色透明だった溶液が黒色を経由して濃黄色溶液に変化した。その後蓋をして、撹拌しながら室温まで冷却し、溶液に対して0.5 mol/L濃度になるよう水を加え、再び蓋をして密封し、そのまま室温下で1晩撹拌した。   This was transferred to a Teflon (registered trademark) container for high pressure reaction, and irradiated with ultraviolet rays for 4 hours in the atmosphere at room temperature using an ultrahigh pressure mercury lamp (UHPML, ML-251A / B, Ushio) while stirring. After irradiation, the colorless and transparent solution changed to a dark yellow solution via black. Then, it was capped, cooled to room temperature with stirring, water was added to the solution to a concentration of 0.5 mol / L, capped again, sealed, and stirred at room temperature overnight.

このテフロン(登録商標)容器をそのまま耐圧ステンレスジャケットに入れ、180℃のオーブンで10時間反応させたあと室温まで放冷した。得られた沈殿を10000rpmの回転速度で30分間遠心分離し、水で複数回洗浄した。これを室温下、真空乾燥器を使って十分に乾燥させた(表3 Sample A-g)。   This Teflon (registered trademark) container was directly put in a pressure resistant stainless steel jacket, reacted in an oven at 180 ° C. for 10 hours, and then allowed to cool to room temperature. The resulting precipitate was centrifuged for 30 minutes at a rotational speed of 10000 rpm and washed several times with water. This was sufficiently dried at room temperature using a vacuum dryer (Table 3 Sample A-g).

得られた粉体の結晶性を粉末X線回折装置(XRD, RINT-2100V,Rigaku)にて評価し(図8 Sample A-g)、光吸収特性を紫外可視分光光度計(UV-Vis, U-4100, Hitachi High-Technologies)にて評価した(図9 Sample A-g)。更に、粉体の比表面積、細孔容積、細孔径等の細孔特性を比表面積・細孔分布測定装置(NOVA-2000e,Quantachrome Instruments)にて評価した(表4 Sample A-g)。   The crystallinity of the obtained powder was evaluated with a powder X-ray diffractometer (XRD, RINT-2100V, Rigaku) (Fig. 8 Sample Ag), and the light absorption characteristics were measured with an ultraviolet-visible spectrophotometer (UV-Vis, U-). 4100, Hitachi High-Technologies) (FIG. 9 Sample Ag). Furthermore, pore characteristics such as specific surface area, pore volume, and pore diameter of the powder were evaluated with a specific surface area / pore distribution measuring device (NOVA-2000e, Quantachrome Instruments) (Table 4 Sample A-g).

〔比較実験例8〕
アルゴン雰囲気下のグローブボックス中で、チタニウムテトライソプロポキシド(Ti(O-i-C3H7)4 or Ti(O-i-Pr)4)をエチレングリコールモノメチルエーテル(EGMME)に対し0.25 mol/L濃度になるように溶解し、これに、溶媒に対して0.5 mol/L濃度になるように尿素(H2NCONH2)を添加し、撹拌しながら130℃のオイルバス中で3時間還流した。その後、室温まで冷却し、1晩撹拌した。
[Comparative Experiment 8]
Titanium tetraisopropoxide (Ti (OiC 3 H 7 ) 4 or Ti (Oi-Pr) 4 ) is adjusted to 0.25 mol / L with respect to ethylene glycol monomethyl ether (EGMME) in a glove box under an argon atmosphere. Urea (H 2 NCONH 2 ) was added thereto so as to have a concentration of 0.5 mol / L with respect to the solvent, and the mixture was refluxed in an oil bath at 130 ° C. for 3 hours with stirring. Then, it cooled to room temperature and stirred overnight.

これを高圧反応用テフロン(登録商標)容器に移し、撹拌しながら超高圧水銀灯(UHPML,ML-251A/B, Ushio)を用いて、室温下、大気中で4時間紫外線照射した。照射後、無色透明だった溶液が黒色を経由して濃黄色溶液に変化した。その後蓋をして、撹拌しながら室温まで冷却し、溶液に対して0.5 mol/L濃度になるよう水を加え、再び蓋をして密封し、そのまま室温下で1晩撹拌した。   This was transferred to a Teflon (registered trademark) container for high pressure reaction, and irradiated with ultraviolet rays for 4 hours in the atmosphere at room temperature using an ultrahigh pressure mercury lamp (UHPML, ML-251A / B, Ushio) while stirring. After irradiation, the colorless and transparent solution changed to a dark yellow solution via black. Then, it was capped, cooled to room temperature with stirring, water was added to the solution to a concentration of 0.5 mol / L, capped again, sealed, and stirred at room temperature overnight.

このテフロン(登録商標)容器をそのまま耐圧ステンレスジャケットに入れ、150℃のオーブンで10時間反応させたあと室温まで放冷した。得られた沈殿を10000rpmの回転速度で30分間遠心分離し、水で複数回洗浄した。これを室温下、真空乾燥器を使って十分に乾燥させた(表3 Sample A-h)。   This Teflon (registered trademark) container was directly put in a pressure resistant stainless steel jacket, reacted in an oven at 150 ° C. for 10 hours, and then allowed to cool to room temperature. The resulting precipitate was centrifuged for 30 minutes at a rotational speed of 10000 rpm and washed several times with water. This was sufficiently dried at room temperature using a vacuum dryer (Table 3 Sample A-h).

得られた粉体の結晶性を粉末X線回折装置(XRD, RINT-2100V,Rigaku)にて評価し(図8 Sample A-h)、光吸収特性を紫外可視分光光度計(UV-Vis, U-4100, Hitachi High-Technologies)にて評価した(図9 Sample A-h)。更に、粉体の比表面積、細孔容積、細孔径等の細孔特性を比表面積・細孔分布測定装置(NOVA-2000e,Quantachrome Instruments)にて評価した(表4 Sample A-h)。   The crystallinity of the obtained powder was evaluated with a powder X-ray diffractometer (XRD, RINT-2100V, Rigaku) (Fig. 8 Sample Ah), and the light absorption characteristics were measured with an ultraviolet-visible spectrophotometer (UV-Vis, U- 4100, Hitachi High-Technologies) (FIG. 9 Sample Ah). Furthermore, the pore characteristics such as the specific surface area, pore volume and pore diameter of the powder were evaluated with a specific surface area / pore distribution measuring device (NOVA-2000e, Quantachrome Instruments) (Table 4 Sample A-h).

〔比較実験例9〕
アルゴン雰囲気下のグローブボックス中で、チタニウムテトライソプロポキシド(Ti(O-i-C3H7)4 or Ti(O-i-Pr)4)をエチレングリコールモノメチルエーテル(EGMME)に対し0.25 mol/L濃度になるように溶解し、これに、溶媒に対して0.5 mol/L濃度になるように尿素(H2NCONH2)を添加し、撹拌しながら130℃のオイルバス中で3時間還流した。その後、室温まで冷却し、1晩撹拌した。
[Comparative Experiment 9]
Titanium tetraisopropoxide (Ti (OiC 3 H 7 ) 4 or Ti (Oi-Pr) 4 ) is adjusted to 0.25 mol / L with respect to ethylene glycol monomethyl ether (EGMME) in a glove box under an argon atmosphere. Urea (H 2 NCONH 2 ) was added thereto so as to have a concentration of 0.5 mol / L with respect to the solvent, and the mixture was refluxed in an oil bath at 130 ° C. for 3 hours with stirring. Then, it cooled to room temperature and stirred overnight.

これを高圧反応用テフロン(登録商標)容器に移し、撹拌しながら超高圧水銀灯(UHPML,ML-251A/B, Ushio)を用いて、室温下、大気中で4時間紫外線照射した。照射後、無色透明だった溶液が黒色を経由して濃黄色溶液に変化した。その後蓋をして、撹拌しながら室温まで冷却し、溶液に対して0.5 mol/L濃度になるよう水を加え、再び蓋をして密封し、そのまま室温下で1晩撹拌した。   This was transferred to a Teflon (registered trademark) container for high pressure reaction, and irradiated with ultraviolet rays for 4 hours in the atmosphere at room temperature using an ultrahigh pressure mercury lamp (UHPML, ML-251A / B, Ushio) while stirring. After irradiation, the colorless and transparent solution changed to a dark yellow solution via black. Then, it was capped, cooled to room temperature with stirring, water was added to the solution to a concentration of 0.5 mol / L, capped again, sealed, and stirred at room temperature overnight.

このテフロン(登録商標)容器をそのまま耐圧ステンレスジャケットに入れ、250℃のオーブンで10時間反応させたあと室温まで放冷した。得られた沈殿を10000rpmの回転速度で30分間遠心分離し、水で複数回洗浄した。これを室温下、真空乾燥器を使って十分に乾燥させた(表3 Sample A-i)。   The Teflon (registered trademark) container was placed in a pressure resistant stainless steel jacket as it was, reacted in an oven at 250 ° C. for 10 hours, and then allowed to cool to room temperature. The resulting precipitate was centrifuged for 30 minutes at a rotational speed of 10000 rpm and washed several times with water. This was sufficiently dried at room temperature using a vacuum dryer (Table 3 Sample A-i).

得られた粉体の結晶性を粉末X線回折装置(XRD, RINT-2100V,Rigaku)にて評価し(図8 Sample A-i)、光吸収特性を紫外可視分光光度計(UV-Vis, U-4100, Hitachi High-Technologies)にて評価した(図9 Sample A-i)。更に、粉体の比表面積、細孔容積、細孔径等の細孔特性を比表面積・細孔分布測定装置(NOVA-2000e,Quantachrome Instruments)にて評価した(表4 Sample A-i)。   The crystallinity of the obtained powder was evaluated with a powder X-ray diffractometer (XRD, RINT-2100V, Rigaku) (Fig. 8 Sample Ai), and the light absorption characteristics were measured with an ultraviolet-visible spectrophotometer (UV-Vis, U- 4100, Hitachi High-Technologies) (FIG. 9 Sample Ai). Furthermore, the pore characteristics such as the specific surface area, pore volume, and pore diameter of the powder were evaluated with a specific surface area / pore distribution measuring device (NOVA-2000e, Quantachrome Instruments) (Table 4 Sample A-i).

〔表4〕に、上記したSampleA-a〜SampleA-iの粉体比表面積、細孔容積、細孔径の評価結果を示す。   [Table 4] shows the evaluation results of the powder specific surface area, pore volume, and pore diameter of Sample A-a to Sample A-i described above.


次に、ハスクレイ以外の多孔質体を用いて作製した例を以下に示した。   Next, the example produced using porous bodies other than a hus clay was shown below.

〔表5〕には、作製したサンプルの組成と粉体の比表面積、細孔容積、細孔径の細孔特性を示した。   [Table 5] shows the composition of the prepared sample and the pore characteristics of the specific surface area, pore volume, and pore diameter of the powder.

〔実施例8〕
アルゴン雰囲気下のグローブボックス中で、チタニウムテトライソプロポキシド(Ti(O-i-C3H7)4 or Ti(O-i-Pr)4)をエチレングリコールモノメチルエーテル(EGMME)に対し0.25 mol/L濃度になるように溶解し、これに、溶媒に対して0.5 mol/L濃度になるように尿素(H2NCONH2)を添加し、撹拌しながら130℃のオイルバス中で3時間還流した。その後、室温まで冷却し、1晩撹拌した。
Example 8
Titanium tetraisopropoxide (Ti (OiC 3 H 7 ) 4 or Ti (Oi-Pr) 4 ) is adjusted to 0.25 mol / L with respect to ethylene glycol monomethyl ether (EGMME) in a glove box under an argon atmosphere. Urea (H 2 NCONH 2 ) was added thereto so as to have a concentration of 0.5 mol / L with respect to the solvent, and the mixture was refluxed in an oil bath at 130 ° C. for 3 hours with stirring. Then, it cooled to room temperature and stirred overnight.

これを高圧反応用テフロン(登録商標)容器に移し、撹拌しながら超高圧水銀灯(UHPML,ML-251A/B, Ushio)を用いて、室温下、大気中で4時間紫外線照射した。照射後、無色透明だった溶液が黒色を経由して濃黄色溶液に変化した。その後蓋をして、撹拌しながら室温まで冷却し、溶液に対して0.5 mol/L濃度になるよう水を加え、再び蓋をして密封し、そのまま室温下で1晩撹拌した。これに1.0gの合成イモゴライトを添加し、再び蓋をして密封し、そのまま1日撹拌を続けた。   This was transferred to a Teflon (registered trademark) container for high pressure reaction, and irradiated with ultraviolet rays for 4 hours in the atmosphere at room temperature using an ultrahigh pressure mercury lamp (UHPML, ML-251A / B, Ushio) while stirring. After irradiation, the colorless and transparent solution changed to a dark yellow solution via black. Then, it was capped, cooled to room temperature with stirring, water was added to the solution to a concentration of 0.5 mol / L, capped again, sealed, and stirred at room temperature overnight. To this, 1.0 g of synthetic imogolite was added, sealed again with a lid, and stirring was continued for 1 day.

尚、合成イモゴライトは以下のように合成した。0.062 mol/lのオルトケイ酸ナトリウム水溶液と0.152 mol/lの塩化アルミニウム水溶液を混合し、15分間攪拌。これに1N水酸化ナトリウム水溶液を加え、pH を6.8に調製することにより懸濁液を作製した。これを遠心分離して洗浄、脱塩。これを純水に分散させたあと、5Nの塩酸を溶液が透明になるまで加えた。これを98℃で4日間加熱し、生成物をろ別、乾燥し、目的物質とした。   The synthetic imogolite was synthesized as follows. Mix 0.062 mol / l sodium orthosilicate aqueous solution and 0.152 mol / l aluminum chloride aqueous solution and stir for 15 minutes. A 1N aqueous sodium hydroxide solution was added to this to prepare a suspension by adjusting the pH to 6.8. This is centrifuged, washed and desalted. After this was dispersed in pure water, 5N hydrochloric acid was added until the solution became clear. This was heated at 98 ° C. for 4 days, and the product was filtered off and dried to obtain the target substance.

次に、このテフロン(登録商標)容器をそのまま耐圧ステンレスジャケットに入れ、200℃のオーブンで10時間反応させたあと室温まで放冷した。得られた沈殿を10000rpmの回転速度で30分間遠心分離し、水で複数回洗浄した。これを室温下、真空乾燥器を使って十分に乾燥させた(表5 Sample K)。   Next, the Teflon (registered trademark) container was directly put in a pressure resistant stainless steel jacket, reacted in an oven at 200 ° C. for 10 hours, and then allowed to cool to room temperature. The resulting precipitate was centrifuged for 30 minutes at a rotational speed of 10000 rpm and washed several times with water. This was sufficiently dried at room temperature using a vacuum dryer (Table 5 Sample K).

得られた粉体の結晶性を粉末X線回折装置(XRD, RINT-2100V,Rigaku)にて評価し(図10(b) Sample K)、光吸収特性を紫外可視分光光度計(UV-Vis, U-4100, Hitachi High-Technologies)にて評価した(図11 Sample K)。更に、粉体の比表面積、細孔容積、細孔径等の細孔特性を比表面積・細孔分布測定装置(NOVA-2000e,Quantachrome Instruments)にて評価した(表5 Sample K)。また、粉体の水蒸気吸着等温線を水蒸気吸着測定装置(Belsorp-Aqua, 日本ベル社)にて測定し(図12(b) Sample K)、二酸化炭素吸着等温線を二酸化炭素吸着測定装置(Belsorp-HP, 日本ベル社)にて測定した(図13(b) Sample K)。   The crystallinity of the obtained powder was evaluated with a powder X-ray diffractometer (XRD, RINT-2100V, Rigaku) (Fig. 10 (b) Sample K), and the light absorption characteristics were measured with a UV-Vis spectrophotometer (UV-Vis U-4100, Hitachi High-Technologies) (Fig. 11 Sample K). Furthermore, the pore characteristics such as the specific surface area, pore volume, and pore diameter of the powder were evaluated with a specific surface area / pore distribution measuring device (NOVA-2000e, Quantachrome Instruments) (Table 5 Sample K). In addition, the water vapor adsorption isotherm of the powder was measured with a water vapor adsorption measuring device (Belsorp-Aqua, Nippon Bell Co., Ltd.) (Fig. 12 (b) Sample K), and the carbon dioxide adsorption isotherm was measured with the carbon dioxide adsorption measuring device (Belsorp -HP, Nippon Bell Co., Ltd.) (FIG. 13 (b) Sample K).

得られた粉体の有害有機物質吸着特性、光触媒分解特性を評価するために、メチレンブルーの吸着量、及び光分解量の経時変化を求めた。0.04 mmol/l濃度のメチレンブルー水溶液30 mlに、Sample Kの粉体5 mgを入れ、30分間超音波攪拌後、暗所に静置、メチレンブルー665 nmの吸光度の経時変化を追跡した(図14 Sample K)。約150時間浸漬後、超高圧水銀灯とガラスフィルターを用いて分光した410〜520 nmの可視光をこれに照射し、同様に665 nmの吸光度の経時変化を追跡した(図15 Sample K)。   In order to evaluate the harmful organic substance adsorption characteristics and photocatalytic degradation characteristics of the obtained powder, the amount of methylene blue adsorbed and the change over time in the amount of photodegradation were determined. Sample K powder 5 mg was placed in 30 ml of 0.04 mmol / l methylene blue aqueous solution, ultrasonically stirred for 30 minutes, then left in the dark, and the time-dependent change in absorbance at methylene blue 665 nm was followed (FIG. 14 Sample) K). After immersion for about 150 hours, visible light having a wavelength of 410 to 520 nm, which was spectrally separated using an ultrahigh pressure mercury lamp and a glass filter, was irradiated thereto, and the change with time in the absorbance at 665 nm was similarly traced (FIG. 15 Sample K).

〔実施例9〕
アルゴン雰囲気下のグローブボックス中で、チタニウムテトライソプロポキシド(Ti(O-i-C3H7)4 or Ti(O-i-Pr)4)をエチレングリコールモノメチルエーテル(EGMME)に対し0.025 mol/L濃度になるように溶解し、これに、溶媒に対して0.05 mol/L濃度になるように尿素(H2NCONH2)を添加し、撹拌しながら130℃のオイルバス中で3時間還流した。その後、室温まで冷却し、1晩撹拌した。
Example 9
Titanium tetraisopropoxide (Ti (OiC 3 H 7 ) 4 or Ti (Oi-Pr) 4 ) is adjusted to 0.025 mol / L with respect to ethylene glycol monomethyl ether (EGMME) in a glove box under an argon atmosphere. In this solution, urea (H 2 NCONH 2 ) was added so as to have a concentration of 0.05 mol / L with respect to the solvent, and the mixture was refluxed in an oil bath at 130 ° C. for 3 hours with stirring. Then, it cooled to room temperature and stirred overnight.

これを高圧反応用テフロン(登録商標)容器に移し、撹拌しながら超高圧水銀灯(UHPML,ML-251A/B, Ushio)を用いて、室温下、大気中で4時間紫外線照射した。照射後、無色透明だった溶液が黒色を経由して濃黄色溶液に変化した。その後蓋をして、撹拌しながら室温まで冷却し、溶液に対して0.05 mol/L濃度になるよう水を加え、再び蓋をして密封しそのまま室温下で1晩撹拌した。これに1.0gの合成イモゴライトを添加し、再び蓋をして密封し、そのまま1日撹拌を続けた。尚、合成イモゴライトは以下のように合成した。   This was transferred to a Teflon (registered trademark) container for high pressure reaction, and irradiated with ultraviolet rays for 4 hours in the atmosphere at room temperature using an ultrahigh pressure mercury lamp (UHPML, ML-251A / B, Ushio) while stirring. After irradiation, the colorless and transparent solution changed to a dark yellow solution via black. Then, it was capped, cooled to room temperature with stirring, water was added to the solution to a concentration of 0.05 mol / L, capped again, sealed, and stirred at room temperature overnight. To this, 1.0 g of synthetic imogolite was added, sealed again with a lid, and stirring was continued for 1 day. The synthetic imogolite was synthesized as follows.

0.062 mol/lのオルトケイ酸ナトリウム水溶液と0.152 mol/lの塩化アルミニウム水溶液を混合し、15分間攪拌。これに1N水酸化ナトリウム水溶液を加え、pH を6.8に調製することにより懸濁液を作製した。これを遠心分離して洗浄、脱塩。これを純水に分散させたあと、5Nの塩酸を溶液が透明になるまで加えた。これを98℃で4日間加熱し、生成物をろ別、乾燥し、目的物質とした。   Mix 0.062 mol / l sodium orthosilicate aqueous solution and 0.152 mol / l aluminum chloride aqueous solution and stir for 15 minutes. A 1N aqueous sodium hydroxide solution was added to this to prepare a suspension by adjusting the pH to 6.8. This is centrifuged, washed and desalted. After this was dispersed in pure water, 5N hydrochloric acid was added until the solution became clear. This was heated at 98 ° C. for 4 days, and the product was filtered off and dried to obtain the target substance.

次に、このテフロン(登録商標)容器をそのまま耐圧ステンレスジャケットに入れ、200℃のオーブンで10時間反応させたあと室温まで放冷した。得られた沈殿を10000rpmの回転速度で30分間遠心分離し、水で複数回洗浄した。これを室温下、真空乾燥器を使って十分に乾燥させた(表5 Sample L)。   Next, the Teflon (registered trademark) container was directly put in a pressure resistant stainless steel jacket, reacted in an oven at 200 ° C. for 10 hours, and then allowed to cool to room temperature. The resulting precipitate was centrifuged for 30 minutes at a rotational speed of 10000 rpm and washed several times with water. This was sufficiently dried at room temperature using a vacuum dryer (Table 5 Sample L).

得られた粉体の結晶性を粉末X線回折装置(XRD, RINT-2100V,Rigaku)にて評価し(図10(b) Sample L)、光吸収特性を紫外可視分光光度計(UV-Vis, U-4100, Hitachi High-Technologies)にて評価した(図11 Sample L)。更に、粉体の比表面積、細孔容積、細孔径等の細孔特性を比表面積・細孔分布測定装置(NOVA-2000e,Quantachrome Instruments)にて評価した(表5 Sample L)。また、粉体の水蒸気吸着等温線を水蒸気吸着測定装置(Belsorp-Aqua, 日本ベル社)にて測定し(図12(b) Sample L)、二酸化炭素吸着等温線を二酸化炭素吸着測定装置(Belsorp-HP, 日本ベル社)にて測定した(図13(b) Sample L)。   The crystallinity of the obtained powder was evaluated with a powder X-ray diffractometer (XRD, RINT-2100V, Rigaku) (Fig. 10 (b) Sample L), and the light absorption characteristics were measured with a UV-Vis spectrophotometer (UV-Vis U-4100, Hitachi High-Technologies) (FIG. 11 Sample L). Furthermore, pore characteristics such as specific surface area, pore volume, and pore diameter of the powder were evaluated with a specific surface area / pore distribution measuring device (NOVA-2000e, Quantachrome Instruments) (Table 5 Sample L). In addition, the water vapor adsorption isotherm of the powder was measured with a water vapor adsorption measuring device (Belsorp-Aqua, Nippon Bell Co., Ltd.) (Fig. 12 (b) Sample L), and the carbon dioxide adsorption isotherm was measured with the carbon dioxide adsorption measuring device (Belsorp -HP, Nippon Bell Co., Ltd.) (FIG. 13 (b) Sample L).

得られた粉体の有害有機物質吸着特性、光触媒分解特性を評価するために、メチレンブルーの吸着量、及び光分解量の経時変化を求めた。0.04 mmol/l濃度のメチレンブルー水溶液30 mlに、Sample Lの粉体5 mgを入れ、30分間超音波攪拌後、暗所に静置、メチレンブルー665 nmの吸光度の経時変化を追跡した(図16 Sample L)。約150時間浸漬後、超高圧水銀灯とガラスフィルターを用いて分光した410〜520 nmの可視光をこれに照射し、同様に665 nmの吸光度の経時変化を追跡した(図17 Sample L)。   In order to evaluate the harmful organic substance adsorption characteristics and photocatalytic degradation characteristics of the obtained powder, the amount of methylene blue adsorbed and the change over time in the amount of photodegradation were determined. Add 5 mg of Sample L powder to 30 ml of 0.04 mmol / l methylene blue aqueous solution, ultrasonically stir for 30 minutes, then leave it in the dark, and follow the time course of absorbance at 665 nm for methylene blue (Figure 16 Sample) L). After immersion for about 150 hours, visible light having a wavelength of 410 to 520 nm, which was spectrally separated using an ultrahigh pressure mercury lamp and a glass filter, was irradiated thereto, and the change with time in absorbance at 665 nm was similarly traced (FIG. 17 Sample L).

〔実施例10〕
アルゴン雰囲気下のグローブボックス中で、チタニウムテトライソプロポキシド(Ti(O-i-C3H7)4 or Ti(O-i-Pr)4)をエチレングリコールモノメチルエーテル(EGMME)に対し0.25 mol/L濃度になるように溶解し、これに、溶媒に対して0.5 mol/L濃度になるように尿素(H2NCONH2)を添加し、撹拌しながら130℃のオイルバス中で3時間還流した。その後、室温まで冷却し、1晩撹拌した。
Example 10
Titanium tetraisopropoxide (Ti (OiC 3 H 7 ) 4 or Ti (Oi-Pr) 4 ) is adjusted to 0.25 mol / L with respect to ethylene glycol monomethyl ether (EGMME) in a glove box under an argon atmosphere. Urea (H 2 NCONH 2 ) was added thereto so as to have a concentration of 0.5 mol / L with respect to the solvent, and the mixture was refluxed in an oil bath at 130 ° C. for 3 hours with stirring. Then, it cooled to room temperature and stirred overnight.

これを高圧反応用テフロン(登録商標)容器に移し、撹拌しながら超高圧水銀灯(UHPML,ML-251A/B, Ushio)を用いて、室温下、大気中で4時間紫外線照射した。照射後、無色透明だった溶液が黒色を経由して濃黄色溶液に変化した。その後蓋をして、撹拌しながら室温まで冷却し、溶液に対して0.5 mol/L濃度になるよう水を加え、再び蓋をして密封し、そのまま室温下で1晩撹拌した。これに1.0gのシリカゲル(富士シリシア製 CARiACT Q-10)を添加し、再び蓋をして密封し、そのまま1日撹拌を続けた。   This was transferred to a Teflon (registered trademark) container for high pressure reaction, and irradiated with ultraviolet rays for 4 hours in the atmosphere at room temperature using an ultrahigh pressure mercury lamp (UHPML, ML-251A / B, Ushio) while stirring. After irradiation, the colorless and transparent solution changed to a dark yellow solution via black. Then, it was capped, cooled to room temperature with stirring, water was added to the solution to a concentration of 0.5 mol / L, capped again, sealed, and stirred at room temperature overnight. To this, 1.0 g of silica gel (Fuji Silysia CARiACT Q-10) was added, and the lid was sealed again, and stirring was continued for one day.

次に、このテフロン(登録商標)容器をそのまま耐圧ステンレスジャケットに入れ、200℃のオーブンで10時間反応させたあと室温まで放冷した。得られた沈殿を10000rpmの回転速度で30分間遠心分離し、水で複数回洗浄した。これを室温下、真空乾燥器を使って十分に乾燥させた(表5 Sample N)。   Next, the Teflon (registered trademark) container was directly put in a pressure resistant stainless steel jacket, reacted in an oven at 200 ° C. for 10 hours, and then allowed to cool to room temperature. The resulting precipitate was centrifuged for 30 minutes at a rotational speed of 10000 rpm and washed several times with water. This was sufficiently dried at room temperature using a vacuum dryer (Table 5 Sample N).

得られた粉体の結晶性を粉末X線回折装置(XRD, RINT-2100V,Rigaku)にて評価し(図10(c) Sample N)、光吸収特性を紫外可視分光光度計(UV-Vis, U-4100, Hitachi High-Technologies)にて評価した(図11 Sample N)。更に、粉体の比表面積、細孔容積、細孔径等の細孔特性を比表面積・細孔分布測定装置(NOVA-2000e,Quantachrome Instruments)にて評価した(表5 Sample N)。また、粉体の水蒸気吸着等温線を水蒸気吸着測定装置(Belsorp-Aqua, 日本ベル社)にて測定し(図12(c) Sample N)、二酸化炭素吸着等温線を二酸化炭素吸着測定装置(Belsorp-HP, 日本ベル社)にて測定した(図13(c) Sample N)。   The crystallinity of the obtained powder was evaluated with a powder X-ray diffractometer (XRD, RINT-2100V, Rigaku) (Fig. 10 (c) Sample N), and the light absorption characteristics were measured with a UV-Vis spectrophotometer (UV-Vis U-4100, Hitachi High-Technologies) (FIG. 11 Sample N). Furthermore, the pore characteristics such as the specific surface area, pore volume and pore diameter of the powder were evaluated with a specific surface area / pore distribution measuring device (NOVA-2000e, Quantachrome Instruments) (Table 5 Sample N). In addition, the water vapor adsorption isotherm of the powder was measured with a water vapor adsorption measuring device (Belsorp-Aqua, Nippon Bell Co., Ltd.) (Fig. 12 (c) Sample N), and the carbon dioxide adsorption isotherm was measured with the carbon dioxide adsorption measuring device (Belsorp -HP, Nippon Bell Co., Ltd.) (FIG. 13 (c) Sample N).

得られた粉体の有害有機物質吸着特性、光触媒分解特性を評価するために、メチレンブルーの吸着量、及び光分解量の経時変化を求めた。0.04 mmol/l濃度のメチレンブルー水溶液30 mlに、Sample Nの粉体5 mgを入れ、30分間超音波攪拌後、暗所に静置、メチレンブルー665 nmの吸光度の経時変化を追跡した(図14 Sample N)。約150時間浸漬後、超高圧水銀灯とガラスフィルターを用いて分光した410〜520 nmの可視光をこれに照射し、同様に665 nmの吸光度の経時変化を追跡した(図15 Sample N)。   In order to evaluate the harmful organic substance adsorption characteristics and photocatalytic degradation characteristics of the obtained powder, the amount of methylene blue adsorbed and the change over time in the amount of photodegradation were determined. In 30 ml of methylene blue solution with a concentration of 0.04 mmol / l, 5 mg of Sample N powder was placed, and after stirring for 30 minutes with ultrasound, left standing in the dark, and the time-dependent change in absorbance at 665 nm of methylene blue was followed (FIG. 14 Sample) N). After immersion for about 150 hours, visible light having a wavelength of 410 to 520 nm, which was spectrally separated using an ultrahigh pressure mercury lamp and a glass filter, was irradiated thereto, and the change with time in absorbance at 665 nm was similarly traced (FIG. 15 Sample N).

〔実施例11〕
アルゴン雰囲気下のグローブボックス中で、チタニウムテトライソプロポキシド(Ti(O-i-C3H7)4 or Ti(O-i-Pr)4)をエチレングリコールモノメチルエーテル(EGMME)に対し0.025 mol/L濃度になるように溶解し、これに、溶媒に対して0.05 mol/L濃度になるように尿素(H2NCONH2)を添加し、撹拌しながら130℃のオイルバス中で3時間還流した。その後、室温まで冷却し、1晩撹拌した。
Example 11
Titanium tetraisopropoxide (Ti (OiC 3 H 7 ) 4 or Ti (Oi-Pr) 4 ) is adjusted to 0.025 mol / L with respect to ethylene glycol monomethyl ether (EGMME) in a glove box under an argon atmosphere. In this solution, urea (H 2 NCONH 2 ) was added so as to have a concentration of 0.05 mol / L with respect to the solvent, and the mixture was refluxed in an oil bath at 130 ° C. for 3 hours with stirring. Then, it cooled to room temperature and stirred overnight.

これを高圧反応用テフロン(登録商標)容器に移し、撹拌しながら超高圧水銀灯(UHPML,ML-251A/B, Ushio)を用いて、室温下、大気中で4時間紫外線照射した。照射後、無色透明だった溶液が黒色を経由して濃黄色溶液に変化した。その後蓋をして、撹拌しながら室温まで冷却し、溶液に対して0.05 mol/L濃度になるよう水を加え、再び蓋をして密封しそのまま室温下で1晩撹拌した。これに1.0gのシリカゲル(富士シリシア製 CARiACT Q-10)を添加し、再び蓋をして密封し、そのまま1日撹拌を続けた。   This was transferred to a Teflon (registered trademark) container for high pressure reaction, and irradiated with ultraviolet rays for 4 hours in the atmosphere at room temperature using an ultrahigh pressure mercury lamp (UHPML, ML-251A / B, Ushio) while stirring. After irradiation, the colorless and transparent solution changed to a dark yellow solution via black. Then, it was capped, cooled to room temperature with stirring, water was added to the solution to a concentration of 0.05 mol / L, capped again, sealed, and stirred at room temperature overnight. To this, 1.0 g of silica gel (Fuji Silysia CARiACT Q-10) was added, and the lid was sealed again, and stirring was continued for one day.

次に、このテフロン(登録商標)容器をそのまま耐圧ステンレスジャケットに入れ、200℃のオーブンで10時間反応させたあと室温まで放冷した。得られた沈殿を10000rpmの回転速度で30分間遠心分離し、水で複数回洗浄した。これを室温下、真空乾燥器を使って十分に乾燥させた(表5 Sample O)。   Next, the Teflon (registered trademark) container was directly put in a pressure resistant stainless steel jacket, reacted in an oven at 200 ° C. for 10 hours, and then allowed to cool to room temperature. The resulting precipitate was centrifuged for 30 minutes at a rotational speed of 10000 rpm and washed several times with water. This was sufficiently dried at room temperature using a vacuum dryer (Table 5 Sample O).

得られた粉体の結晶性を粉末X線回折装置(XRD, RINT-2100V,Rigaku)にて評価し(図10(c) Sample O)、光吸収特性を紫外可視分光光度計(UV-Vis, U-4100, Hitachi High-Technologies)にて評価した(図11 Sample O)。更に、粉体の比表面積、細孔容積、細孔径等の細孔特性を比表面積・細孔分布測定装置(NOVA-2000e,Quantachrome Instruments)にて評価した(表5 Sample O)。また、粉体の水蒸気吸着等温線を水蒸気吸着測定装置(Belsorp-Aqua, 日本ベル社)にて測定し(図12(c) Sample O)、二酸化炭素吸着等温線を二酸化炭素吸着測定装置(Belsorp-HP, 日本ベル社)にて測定した(図13(c) Sample O)。   The crystallinity of the obtained powder was evaluated with a powder X-ray diffractometer (XRD, RINT-2100V, Rigaku) (Fig. 10 (c) Sample O), and the light absorption characteristics were measured with a UV-Vis spectrophotometer (UV-Vis U-4100, Hitachi High-Technologies) (FIG. 11 Sample O). Furthermore, pore characteristics such as specific surface area, pore volume, and pore diameter of the powder were evaluated with a specific surface area / pore distribution measuring device (NOVA-2000e, Quantachrome Instruments) (Table 5 Sample O). In addition, the water vapor adsorption isotherm of the powder was measured with a water vapor adsorption measuring device (Belsorp-Aqua, Nippon Bell Co., Ltd.) (FIG. 12 (c) Sample O), and the carbon dioxide adsorption isotherm was measured with the carbon dioxide adsorption measuring device (Belsorp -HP, Nippon Bell Co., Ltd.) (FIG. 13 (c) Sample O).

得られた粉体の有害有機物質吸着特性、光触媒分解特性を評価するために、メチレンブルーの吸着量、及び光分解量の経時変化を求めた。0.04 mmol/l濃度のメチレンブルー水溶液30 mlに、Sample Oの粉体5 mgを入れ、30分間超音波攪拌後、暗所に静置、メチレンブルー665 nmの吸光度の経時変化を追跡した(図16 Sample O)。約150時間浸漬後、超高圧水銀灯とガラスフィルターを用いて分光した410〜520 nmの可視光をこれに照射し、同様に665 nmの吸光度の経時変化を追跡した(図17 Sample O)。   In order to evaluate the harmful organic substance adsorption characteristics and photocatalytic degradation characteristics of the obtained powder, the amount of methylene blue adsorbed and the change over time in the amount of photodegradation were determined. Sample O powder 5 mg was added to 30 ml of 0.04 mmol / l methylene blue aqueous solution, ultrasonically stirred for 30 minutes, then left in the dark, and the time course of absorbance at 665 nm methylene blue was followed (Figure 16 Sample) O). After immersion for about 150 hours, visible light having a wavelength of 410 to 520 nm, which was spectrally separated using an ultrahigh pressure mercury lamp and a glass filter, was irradiated thereto, and the change with time in absorbance at 665 nm was similarly traced (FIG. 17 Sample O).

〔実施例12〕
アルゴン雰囲気下のグローブボックス中で、チタニウムテトライソプロポキシド(Ti(O-i-C3H7)4 or Ti(O-i-Pr)4)をエチレングリコールモノメチルエーテル(EGMME)に対し0.25 mol/L濃度になるように溶解し、これに、溶媒に対して0.5 mol/L濃度になるように尿素(H2NCONH2)を添加し、撹拌しながら130℃のオイルバス中で3時間還流した。その後、室温まで冷却し、1晩撹拌した。
Example 12
Titanium tetraisopropoxide (Ti (OiC 3 H 7 ) 4 or Ti (Oi-Pr) 4 ) is adjusted to 0.25 mol / L with respect to ethylene glycol monomethyl ether (EGMME) in a glove box under an argon atmosphere. Urea (H 2 NCONH 2 ) was added thereto so as to have a concentration of 0.5 mol / L with respect to the solvent, and the mixture was refluxed in an oil bath at 130 ° C. for 3 hours with stirring. Then, it cooled to room temperature and stirred overnight.

これを高圧反応用テフロン(登録商標)容器に移し、撹拌しながら超高圧水銀灯(UHPML,ML-251A/B, Ushio)を用いて、室温下、大気中で4時間紫外線照射した。照射後、無色透明だった溶液が黒色を経由して濃黄色溶液に変化した。その後蓋をして、撹拌しながら室温まで冷却し、溶液に対して0.5 mol/L濃度になるよう水を加え、再び蓋をして密封し、そのまま室温下で1晩撹拌した。これに1.0gのゼオライト(水澤化学製 ゼオライト13X)を添加し、再び蓋をして密封し、そのまま1日撹拌を続けた。   This was transferred to a Teflon (registered trademark) container for high pressure reaction, and irradiated with ultraviolet rays for 4 hours in the atmosphere at room temperature using an ultrahigh pressure mercury lamp (UHPML, ML-251A / B, Ushio) while stirring. After irradiation, the colorless and transparent solution changed to a dark yellow solution via black. Then, it was capped, cooled to room temperature with stirring, water was added to the solution to a concentration of 0.5 mol / L, capped again, sealed, and stirred at room temperature overnight. To this, 1.0 g of zeolite (Zeolite 13X manufactured by Mizusawa Chemical Co., Ltd.) was added, sealed again with a lid, and stirring was continued for one day.

次に、このテフロン(登録商標)容器をそのまま耐圧ステンレスジャケットに入れ、200℃のオーブンで10時間反応させたあと室温まで放冷した。得られた沈殿を10000rpmの回転速度で30分間遠心分離し、水で複数回洗浄した。これを室温下、真空乾燥器を使って十分に乾燥させた(表5 Sample Q)。   Next, the Teflon (registered trademark) container was directly put in a pressure resistant stainless steel jacket, reacted in an oven at 200 ° C. for 10 hours, and then allowed to cool to room temperature. The resulting precipitate was centrifuged for 30 minutes at a rotational speed of 10000 rpm and washed several times with water. This was sufficiently dried at room temperature using a vacuum dryer (Table 5 Sample Q).

得られた粉体の結晶性を粉末X線回折装置(XRD, RINT-2100V,Rigaku)にて評価し(図10(d) Sample Q)、光吸収特性を紫外可視分光光度計(UV-Vis, U-4100, Hitachi High-Technologies)にて評価した(図11 Sample Q)。更に、粉体の比表面積、細孔容積、細孔径等の細孔特性を比表面積・細孔分布測定装置(NOVA-2000e,Quantachrome Instruments)にて評価した(表5 Sample Q)。また、粉体の水蒸気吸着等温線を水蒸気吸着測定装置(Belsorp-Aqua, 日本ベル社)にて測定し(図12(d) Sample Q)、二酸化炭素吸着等温線を二酸化炭素吸着測定装置(Belsorp-HP, 日本ベル社)にて測定した(図13(d) Sample Q)。   The crystallinity of the obtained powder was evaluated with a powder X-ray diffractometer (XRD, RINT-2100V, Rigaku) (Fig. 10 (d) Sample Q), and the light absorption characteristics were measured with a UV-Vis spectrophotometer (UV-Vis U-4100, Hitachi High-Technologies) (Fig. 11 Sample Q). Furthermore, pore characteristics such as specific surface area, pore volume, and pore diameter of the powder were evaluated with a specific surface area / pore distribution measuring device (NOVA-2000e, Quantachrome Instruments) (Table 5 Sample Q). In addition, the water vapor adsorption isotherm of the powder was measured with a water vapor adsorption measuring device (Belsorp-Aqua, Nippon Bell Co., Ltd.) (Fig. 12 (d) Sample Q), and the carbon dioxide adsorption isotherm was measured with the carbon dioxide adsorption measuring device (Belsorp -HP, Nippon Bell Co., Ltd.) (FIG. 13 (d) Sample Q).

得られた粉体の有害有機物質吸着特性、光触媒分解特性を評価するために、メチレンブルーの吸着量、及び光分解量の経時変化を求めた。0.04 mmol/l濃度のメチレンブルー水溶液30 mlに、Sample Qの粉体5 mgを入れ、30分間超音波攪拌後、暗所に静置、メチレンブルー665 nmの吸光度の経時変化を追跡した(図14 Sample Q)。約150時間浸漬後、超高圧水銀灯とガラスフィルターを用いて分光した410〜520 nmの可視光をこれに照射し、同様に665 nmの吸光度の経時変化を追跡した(図15 Sample Q)。   In order to evaluate the harmful organic substance adsorption characteristics and photocatalytic degradation characteristics of the obtained powder, the amount of methylene blue adsorbed and the change over time in the amount of photodegradation were determined. Add 5 mg of Sample Q powder to 30 ml of 0.04 mmol / l methylene blue aqueous solution, stir ultrasonically for 30 minutes, leave it in the dark, and trace the time course of absorbance at 665 nm for methylene blue (Figure 14 Sample) Q). After immersion for about 150 hours, visible light having a wavelength of 410 to 520 nm, which was spectrally separated using an ultrahigh pressure mercury lamp and a glass filter, was irradiated thereto, and the change with time in the absorbance at 665 nm was similarly traced (FIG. 15 Sample Q).

〔実施例13〕
アルゴン雰囲気下のグローブボックス中で、チタニウムテトライソプロポキシド(Ti(O-i-C3H7)4 or Ti(O-i-Pr)4)をエチレングリコールモノメチルエーテル(EGMME)に対し0.025 mol/L濃度になるように溶解し、これに、溶媒に対して0.05 mol/L濃度になるように尿素(H2NCONH2)を添加し、撹拌しながら130℃のオイルバス中で3時間還流した。その後、室温まで冷却し、1晩撹拌した。
Example 13
Titanium tetraisopropoxide (Ti (OiC 3 H 7 ) 4 or Ti (Oi-Pr) 4 ) is adjusted to 0.025 mol / L with respect to ethylene glycol monomethyl ether (EGMME) in a glove box under an argon atmosphere. In this solution, urea (H 2 NCONH 2 ) was added so as to have a concentration of 0.05 mol / L with respect to the solvent, and the mixture was refluxed in an oil bath at 130 ° C. for 3 hours with stirring. Then, it cooled to room temperature and stirred overnight.

これを高圧反応用テフロン(登録商標)容器に移し、撹拌しながら超高圧水銀灯(UHPML,ML-251A/B, Ushio)を用いて、室温下、大気中で4時間紫外線照射した。照射後、無色透明だった溶液が黒色を経由して濃黄色溶液に変化した。その後蓋をして、撹拌しながら室温まで冷却し、溶液に対して0.05 mol/L濃度になるよう水を加え、再び蓋をして密封しそのまま室温下で1晩撹拌した。これに1.0gのゼオライト(水澤化学製 ゼオライト13X)を添加し、再び蓋をして密封し、そのまま1日撹拌を続けた。   This was transferred to a Teflon (registered trademark) container for high pressure reaction, and irradiated with ultraviolet rays for 4 hours in the atmosphere at room temperature using an ultrahigh pressure mercury lamp (UHPML, ML-251A / B, Ushio) while stirring. After irradiation, the colorless and transparent solution changed to a dark yellow solution via black. Then, it was capped, cooled to room temperature with stirring, water was added to the solution to a concentration of 0.05 mol / L, capped again, sealed, and stirred at room temperature overnight. To this, 1.0 g of zeolite (Zeolite 13X manufactured by Mizusawa Chemical Co., Ltd.) was added, sealed again with a lid, and stirring was continued for one day.

次に、このテフロン(登録商標)容器をそのまま耐圧ステンレスジャケットに入れ、200℃のオーブンで10時間反応させたあと室温まで放冷した。得られた沈殿を10000rpmの回転速度で30分間遠心分離し、水で複数回洗浄した。これを室温下、真空乾燥器を使って十分に乾燥させた(表5 Sample R)。   Next, the Teflon (registered trademark) container was directly put in a pressure resistant stainless steel jacket, reacted in an oven at 200 ° C. for 10 hours, and then allowed to cool to room temperature. The resulting precipitate was centrifuged for 30 minutes at a rotational speed of 10000 rpm and washed several times with water. This was sufficiently dried at room temperature using a vacuum dryer (Table 5 Sample R).

得られた粉体の結晶性を粉末X線回折装置(XRD, RINT-2100V,Rigaku)にて評価し(図10(d) Sample R)、光吸収特性を紫外可視分光光度計(UV-Vis, U-4100, Hitachi High-Technologies)にて評価した(図11 Sample R)。更に、粉体の比表面積、細孔容積、細孔径等の細孔特性を比表面積・細孔分布測定装置(NOVA-2000e,Quantachrome Instruments)にて評価した(表5 Sample R)。また、粉体の水蒸気吸着等温線を水蒸気吸着測定装置(Belsorp-Aqua, 日本ベル社)にて測定し(図12(d) Sample R)、二酸化炭素吸着等温線を二酸化炭素吸着測定装置(Belsorp-HP, 日本ベル社)にて測定した(図13(d) Sample R)。   The crystallinity of the obtained powder was evaluated with a powder X-ray diffractometer (XRD, RINT-2100V, Rigaku) (Fig. 10 (d) Sample R), and the light absorption characteristics were measured with a UV-Vis spectrophotometer (UV-Vis U-4100, Hitachi High-Technologies) (FIG. 11 Sample R). Furthermore, the pore characteristics such as the specific surface area, pore volume and pore diameter of the powder were evaluated with a specific surface area / pore distribution measuring device (NOVA-2000e, Quantachrome Instruments) (Table 5 Sample R). In addition, the water vapor adsorption isotherm of the powder was measured with a water vapor adsorption measuring device (Belsorp-Aqua, Nippon Bell Co., Ltd.) (Fig. 12 (d) Sample R), and the carbon dioxide adsorption isotherm was measured with the carbon dioxide adsorption measuring device (Belsorp -HP, Nippon Bell Co., Ltd.) (FIG. 13 (d) Sample R).

得られた粉体の有害有機物質吸着特性、光触媒分解特性を評価するために、メチレンブルーの吸着量、及び光分解量の経時変化を求めた。0.04 mmol/l濃度のメチレンブルー水溶液30 mlに、Sample Rの粉体5 mgを入れ、30分間超音波攪拌後、暗所に静置、メチレンブルー665 nmの吸光度の経時変化を追跡した(図16 Sample R)。約150時間浸漬後、超高圧水銀灯とガラスフィルターを用いて分光した410〜520 nmの可視光をこれに照射し、同様に665 nmの吸光度の経時変化を追跡した(図17 Sample R)。
(2)結果について
図1に、作製したチタニア担持ハスクレイ複合体、およびチタニア多孔質体の粉末X線回折図を示した。チタニウムアルコキシドを原料としてアナターゼ型チタニアに結晶化させるためには、通常500℃以上での焼成過程が必要とされる。ところが、本発明の方法を用いると、いずれの場合のチタニアも200℃の温度下でアナターゼ型に結晶化することがわかった。また、Sample E〜Sample Hに示されるように、ハスクレイの含有量が60 wt%以上になるとハスクレイ由来の回折も観測されるようになるが、チタニアの結晶化が阻害されることはないことがわかった。
In order to evaluate the harmful organic substance adsorption characteristics and photocatalytic degradation characteristics of the obtained powder, the amount of methylene blue adsorbed and the change over time in the amount of photodegradation were determined. Add 5 mg of Sample R powder to 30 ml of 0.04 mmol / l methylene blue aqueous solution, stir ultrasonically for 30 minutes, then leave it in the dark, and follow the time course of absorbance at 665 nm for methylene blue (Figure 16 Sample) R). After immersion for about 150 hours, visible light having a wavelength of 410 to 520 nm, which was spectrally separated using an ultrahigh pressure mercury lamp and a glass filter, was irradiated thereto, and the change with time in absorbance at 665 nm was similarly traced (FIG. 17 Sample R).
(2) Results FIG. 1 shows a powder X-ray diffraction pattern of the produced titania-supporting Hasclay composite and the titania porous body. In order to crystallize anatase-type titania using titanium alkoxide as a raw material, a firing process at 500 ° C. or higher is usually required. However, it was found that when the method of the present invention was used, titania in any case crystallized into anatase type at a temperature of 200 ° C. Also, as shown in Sample E to Sample H, when the clay content is 60 wt% or more, diffraction from the clay is observed, but the titania crystallization is not hindered. all right.

図2に、作製したチタニア担持ハスクレイ複合体、およびチタニア多孔質体の紫外可視光吸収スペクトルを示した。これらのスペクトルは、粉末状の試料の反射スペクトルを測定し、縦軸吸光度に変換したものである。本発明の方法を用いて作製したチタニア担持ハスクレイ複合体、およびチタニア多孔質体は、いずれも紫外光だけでなく400nm以上の可視光も効果的に吸収することがわかった。そして全体的な傾向として、チタニアの含有量が多くなるほど吸光度は大きくなる傾向がみられた。   FIG. 2 shows the ultraviolet-visible light absorption spectrum of the produced titania-supported Hasclay composite and the titania porous body. These spectra are obtained by measuring the reflection spectrum of a powdered sample and converting the absorbance to the vertical axis. It has been found that both the titania-supported Hasclay composite and the titania porous body produced using the method of the present invention effectively absorb not only ultraviolet light but also visible light of 400 nm or more. As a general tendency, the absorbance increased as the titania content increased.

図3に、作製したチタニア担持ハスクレイ複合体、およびチタニア多孔質体の透過型電子顕微鏡観察像を示した。いずれもアナターゼ型チタニアの結晶格子縞がはっきりと観察されており、結晶性が良好であることが確認できた。また、チタニアの粒子径は約10nm程度のようであり、チタニアの含有量が多い試料ほど結晶格子縞が多く観察されることも確認した。   FIG. 3 shows a transmission electron microscope observation image of the produced titania-supported Hasclay composite and the titania porous body. In both cases, crystal lattice fringes of anatase-type titania were clearly observed, and it was confirmed that the crystallinity was good. Moreover, the particle diameter of titania seems to be about 10 nm, and it was also confirmed that the crystal lattice fringes are observed more in the sample with a higher titania content.

作製したチタニア担持ハスクレイ複合体、およびチタニア多孔質体の細孔特性:比表面積、細孔容積、平均細孔径は、〔表2〕に示した。   The pore characteristics: specific surface area, pore volume, and average pore diameter of the produced titania-supported Hasclay composite and the titania porous body are shown in [Table 2].

ハスクレイ未添加、100%チタニアからなるSample Aの場合に比表面積175m2/gと大きな値を示し、多孔質状になっていることが予測された。この場合の全細孔容積は0.25ml/g、平均細孔径は約5.6nmであった。図3のTEM画像をもとに考えると、この試料の細孔は粒子と粒子の間の隙間からできているものと考えられた。一方、Sample Aと比較して、ハスクレイを添加した試料は、添加量が増えるに従って比表面積、全細孔容積共に増加する傾向にあり、ハスクレイ100%の値に近づいていくことがわかった。 In the case of Sample A made of 100% titania with no added clay, a large specific surface area of 175 m 2 / g was shown, and it was predicted that the sample was porous. In this case, the total pore volume was 0.25 ml / g, and the average pore diameter was about 5.6 nm. Considering the TEM image in FIG. 3, it was considered that the pores of this sample were formed by the gaps between the particles. On the other hand, as compared with Sample A, it was found that the sample to which HASClay was added tended to increase both the specific surface area and the total pore volume as the addition amount increased, and approached the value of HASClay 100%.

図1の結果から、ハスクレイの添加によりチタニアの結晶化が阻害されることがないことは明らかとなったが、表2の結果から、チタニアゾルが結晶化することでハスクレイの多孔質性が阻害されないことも明らかとなった。また、平均細孔径の値は、いずれの試料の場合にもおおよそ5.5nm程度でほぼ同じ値を示すことがわかった。これは、本方法により生成するチタニアの細孔径と添加するハスクレイの細孔径がほぼ同じくらいのサイズであることに起因した結果であると考えられる。   From the results shown in FIG. 1, it has been clarified that the addition of Hasclay does not inhibit the crystallization of titania, but the results shown in Table 2 do not inhibit the porosity of Hasclay due to the crystallization of titania sol. It became clear. Further, it was found that the average pore diameter value was approximately the same at about 5.5 nm in any sample. This is considered to result from the fact that the pore diameter of titania produced by the present method and the pore diameter of added clay clay are approximately the same size.

図4に、作製したチタニア担持ハスクレイ複合体、チタニア多孔質体、そして100%ハスクレイの水蒸気吸着等温線を示した。複合体の水蒸気吸着量は、100%チタニアのSample Aと100%ハスクレイのSample Iの間の値を示しており、ハスクレイの含有量が増えるほど、水蒸気の吸着量が多くなることがわかった。   FIG. 4 shows the water vapor adsorption isotherms of the produced titania-supported Hasclay composite, the titania porous material, and 100% Hasclay. The water vapor adsorption amount of the composite showed a value between Sample A of 100% titania and Sample I of 100% Hasclay, and it was found that the amount of water vapor adsorbed increased as the content of Hasclay increased.

図5に、作製したチタニア担持ハスクレイ複合体、チタニア多孔質体、そして100%ハスクレイの二酸化炭素吸着等温線を示した。水蒸気吸着等温線と同じように、複合体の二酸化炭素吸着量は、ほぼ、100%チタニアのSample Aと100%ハスクレイのSample Iの間の値を示していた。しかし、ハスクレイの含有量と二酸化炭素吸着量の間には明確な相関関係は認められず、また、ハスクレイにチタニアを担持させることで、二酸化炭素の吸着量はかなり減少することが明らかとなった。   FIG. 5 shows carbon dioxide adsorption isotherms for the produced titania-supported Hasclay composite, titania porous material, and 100% Hasclay. Similar to the water vapor adsorption isotherm, the amount of carbon dioxide adsorbed by the composite showed a value between Sample A of 100% titania and Sample I of 100% Hasclay. However, there was no clear correlation between the content of Hasclay and the amount of carbon dioxide adsorbed, and it became clear that the amount of carbon dioxide adsorbed was significantly reduced by loading titania on the clay. .

図6に、作製したチタニア担持ハスクレイ複合体、およびチタニア多孔質体のメチレンブルー吸着の経時変化を示した。複合体のメチレンブルー吸着量は、100%チタニアのSample Aよりも多くなっており、ハスクレイの含有量が増えるほど多くなることがわかった。また、メチレンブルーの吸着量は浸漬開始後約1〜2日で、ほぼ平衡状態に達することも明らかとなった。尚、ここで示したブランクとは、試料を入れずにメチレンブルー吸光度の経時変化を追ったものである。このブランクで、ほんのわずかではあるが吸光度の経時的な減少が見られたのは、容器として使用しているガラスビーカー表面への吸着のためと思われた。   FIG. 6 shows changes with time in the methylene blue adsorption of the produced titania-supporting Hasclay composite and the titania porous body. The amount of methylene blue adsorbed by the composite was higher than that of Sample A of 100% titania, and it was found that the amount increased as the content of Hasclay increased. It was also revealed that the amount of methylene blue adsorbed reached an almost equilibrium state about 1-2 days after the start of immersion. In addition, the blank shown here is what followed the time-dependent change of the methylene blue light absorbency without putting a sample. The slight decrease in absorbance over time with this blank was likely due to adsorption to the surface of the glass beaker used as the container.

図7に、作製したチタニア担持ハスクレイ複合体、およびチタニア多孔質体の可視光によるメチレンブルー光分解の経時変化を示した。複合体のメチレンブルー光分解量は100%チタニアのSample Aよりは劣るものの、ハスクレイの含有量と相関関係にあることがわかった。尚、ここで示したブランクとは、試料を入れずに、可視光によるメチレンブルー光分解の経時変化を追ったものである。このブランクで、ほんのわずかではあるが吸光度の経時的な減少が見られたのは、メチレンブルーそのものが、可視光によりわずかに光分解するためと思われた。   FIG. 7 shows changes over time in the photodecomposition of methylene blue by visible light of the produced titania-supported Hasclay composite and the titania porous body. The amount of methylene blue photolysis of the composite was inferior to 100% titania Sample A, but was found to correlate with the content of Hasclay. In addition, the blank shown here is what followed the time-dependent change of the methylene blue photolysis by visible light, without putting a sample. The slight decrease in absorbance over time was observed in this blank because the methylene blue itself was slightly photodegraded by visible light.

図18に、各試料によるメチレンブルーの総処理量、つまり、50時間浸漬後のメチレンブルー吸着量と、可視光照射6時間後のメチレンブルー光分解量の総量を棒グラフで表した。縦軸は、図6と7で求めた吸光度の変化量を濃度換算で表したものである。ハスクレイの含有量が多いサンプルほどメチレンブルーの吸着量は多くなるが、その反面、光分解量は減少する。しかし、処理時間が短い吸着50時間、分解6時間の時間範囲では、ハスクレイによる吸着量の影響がかなり大きいため、ハスクレイ含有量が多い試料の方が、総処理量が多くなる結果となることが分かった。   FIG. 18 is a bar graph showing the total amount of methylene blue treated by each sample, that is, the total amount of methylene blue adsorbed after 50 hours of immersion and the amount of methylene blue photodegraded after 6 hours of visible light irradiation. The vertical axis represents the amount of change in absorbance obtained in FIGS. 6 and 7 in terms of concentration. A sample with a high content of Hasclay increases the amount of methylene blue adsorbed, but on the other hand, the amount of photodegradation decreases. However, in the time range of short adsorption time of 50 hours and decomposition time of 6 hours, the effect of the amount of adsorption by the clay is quite large, so the sample with a large amount of the clay content may result in a large total throughput. I understood.

ところが、処理時間が長くなると光分解の影響が大きく現れてくることがわかった。図19に、150時間浸漬後のメチレンブルー吸着量と、可視光照射14時間後のメチレンブルー光分解量を併せた総処理量を棒グラフで示した。メチレンブルーの吸着量は、50時間浸漬後、さらに長時間浸漬してもほとんど変わらなかったが、光分解量は、長時間光照射することで分解量が増大するため、総処理量としては、チタニアとハスクレイの重量割合が1:1のSample D辺りで極大になっていくことが明らかとなった。   However, it has been found that the effect of photolysis appears significantly as the treatment time increases. FIG. 19 is a bar graph showing the total amount of methylene blue adsorbed after 150 hours of immersion and the total amount of methylene blue photodegraded after 14 hours of visible light irradiation. The amount of methylene blue adsorbed remained almost unchanged after 50 hours of immersion and further immersed for a long time. However, the amount of photodegradation increased with light irradiation for a long time. It has been clarified that the weight ratio of Hassley becomes maximum around Sample D where the weight ratio is 1: 1.

図8、図9に、比較実験として行った、ハスクレイを添加せず、条件を変えて作製したチタニアの粉末X線回折図と紫外可視光吸収スペクトル、そして〔表4〕に、細孔特性:比表面積、細孔容積、細孔径を示すが、作製条件によってチタニアの結晶性、可視光吸収能、そして細孔特性に違いがあることがわかった。   FIGS. 8 and 9 are X-ray powder diffractograms and ultraviolet-visible light absorption spectra of titania prepared by changing the conditions without adding the clay, as a comparative experiment, and Table 4 shows the pore characteristics: Specific surface area, pore volume, and pore diameter are shown, but it was found that there are differences in titania crystallinity, visible light absorption ability, and pore characteristics depending on the production conditions.

具体的には、まずは本発明のプロセスにおいて、紫外線を照射せずに作製すると200℃の低温ではチタニアへの結晶化が起こらず、可視光吸収能も低くなることがわかった(図8、図9 Sample A-a)。   Specifically, in the process of the present invention, it was first found that when produced without irradiation with ultraviolet light, crystallization into titania did not occur at a low temperature of 200 ° C., and the visible light absorption ability was lowered (FIG. 8, FIG. 9 Sample Aa).

これらの結果から、チタニアゾルへの紫外線照射は、可視光吸収能を付与し、低温で結晶化させるために必要な条件であることが明らかとなった。また、このアモルファス状のままであった試料は、更に水中で水熱処理してやることにより図1のSample Aよりも高結晶性のチタニアに結晶化させることはできたが、可視光吸収能を付与することはできなかった(図8、図9 Sample A-b)。これは、EGMME中でのソルボサーマル処理の代わりに、EGMME溶媒を除去した試料を水熱処理したSample A-cの場合とほぼ同じ結果であった(図8、図9 Sample A-c)。   From these results, it has been clarified that irradiation of the titania sol with ultraviolet rays is a necessary condition for imparting visible light absorption ability and crystallizing at a low temperature. In addition, the sample that remained in an amorphous state could be crystallized into titania having higher crystallinity than Sample A in FIG. 1 by further hydrothermal treatment in water, but imparts visible light absorption ability. (Fig. 8, Fig. 9 Sample Ab). This was almost the same result as Sample A-c obtained by hydrothermally treating the sample from which the EGMME solvent had been removed instead of the solvothermal treatment in EGMME (FIGS. 8 and 9 Sample A-c).

一方、尿素添加の効果について、尿素を添加しない場合でも低温で結晶化し、可視光吸収能も付与できたが、添加した場合と比べると結晶性、可視光吸収能ともに劣ることがわかった(図8、図9 Sample A-e)。また、反応溶媒をイソプロピルアルコールに変えた場合には、EGMME使用時と同様に低温で結晶化し、可視光吸収能も多少付与できたが、EGMMEの場合と比較して結晶性、可視光吸収能ともに劣ることがわかった(図8、図9 Sample A-f)。   On the other hand, regarding the effect of urea addition, it was crystallized at a low temperature even when urea was not added, and was able to impart visible light absorptivity, but it was found that both crystallinity and visible light absorptivity were inferior compared to when added (Fig. 8, FIG. 9 Sample Ae). In addition, when the reaction solvent was changed to isopropyl alcohol, it was crystallized at a low temperature as in the case of using EGMME, and some visible light absorption ability was imparted, but the crystallinity and visible light absorption ability were compared with the case of EGMME. Both were found to be inferior (Fig. 8, Fig. 9 Sample Af).

さらに、ソルボサーマル処理の際の反応温度については、200℃以下の180℃、150℃でも反応温度200℃の場合と同じように可視光吸収能は付与できるが、反応温度の低下とともに結晶性が悪くなり、150℃の反応温度ではアモルファス状態のままで結晶化しないことがわかった(図8、図9 Sample A-g、Sample A-h)。   Furthermore, as for the reaction temperature during the solvothermal treatment, visible light absorption ability can be imparted even at 180 ° C and 150 ° C below 200 ° C, as in the case of the reaction temperature of 200 ° C. It became worse and it turned out that it does not crystallize with the reaction temperature of 150 degreeC with an amorphous state (FIG. 8, FIG. 9 Sample Ag, Sample Ah).

一方で、200℃以上の反応温度、例えば250℃で処理した場合には、200℃の場合と同等の結晶性のものが生成したが、可視光吸収能が低下することがわかった(図8、図9 Sample A-i)。そして、〔表4〕に示した各試料の細孔特性の結果は、図8、9の結果を支持するものであった。   On the other hand, when treated at a reaction temperature of 200 ° C. or higher, for example, 250 ° C., a crystalline product equivalent to that at 200 ° C. was produced, but it was found that the visible light absorption ability was reduced (FIG. 8). FIG. 9 Sample Ai). And the result of the pore characteristic of each sample shown in [Table 4] supported the result of FIG.

以上の結果から、チタニウムアルコキシドを比較的低温でアナターゼ型チタニアに結晶化させ、あわせて、可視光吸収能を発現させるためには、ゾル溶液への尿素添加、紫外線照射、そしてEGMMEを溶媒としたソルボサーマル処理、即ち、液体を熱媒体とした加熱・加圧処理の工程が必要であることが明らかとなった。   From the above results, in order to crystallize titanium alkoxide into anatase-type titania at a relatively low temperature and to develop visible light absorption ability, urea addition to the sol solution, ultraviolet irradiation, and EGMME were used as solvents. It became clear that a solvothermal process, that is, a heating / pressurizing process using a liquid as a heat medium is necessary.

そして、ソルボサーマル処理、即ち、液体を熱媒体として加熱・加圧処理を行う前にハスクレイ等の粘土化合物を任意の割合で添加することにより、チタニアの結晶化を阻害することなく、かつ、ハスクレイ等の粘土化合物の細孔特性を損なうことなく、可視光吸収能を有し、アナターゼ型に結晶化したチタニア担持粘土複合体を作製することができることが明らかとなった。   Then, before performing the solvothermal treatment, that is, heating / pressurizing treatment using the liquid as a heat medium, a clay compound such as a clay is added at an arbitrary ratio, so that the crystallization of the titania is not hindered. It was revealed that a titania-carrying clay complex having visible light absorption ability and crystallized into anatase type can be produced without impairing the pore characteristics of the clay compound.

次に、複合化する多孔質体として、チューブ状のアルミニウムケイ酸化合物であるイモゴライト、そして、高吸着性無機物質としてよく知られているシリカゲル、及びゼオライトを使って作製したチタニア担持多孔質複合体、およびチタニア多孔質体の細孔特性:比表面積、細孔容積、平均細孔径の結果を〔表5〕に示した。   Next, as a porous body to be combined, a titania-supported porous composite manufactured using imogolite, which is a tubular aluminum silicate compound, and silica gel, which is well known as a highly adsorptive inorganic substance, and zeolite The results of the pore characteristics of the titania porous body: specific surface area, pore volume, and average pore diameter are shown in [Table 5].

ハスクレイ、シリカゲル、ゼオライトの場合は、チタニアと複合化することで比表面積の値が小さくなったが、イモゴライトの場合はその値がとても小さいため、チタニアを複合化することでその値が大きくなることが分かった。   In the case of Hasclay, silica gel, and zeolite, the specific surface area value was reduced by compounding with titania, but in the case of imogolite, the value was very small, so the value was increased by compounding titania. I understood.

図10に、作製したチタニア担持多孔質複合体、100%チタニア多孔質体、及び原料として用いた多孔質体の粉末X線回折図を示した。イモゴライト(b)、シリカゲル(c)を用いた場合には、チタニアの含有量が10 wt%程度でもアナターゼ型に結晶化する様子が認められたが、その結晶性はハスクレイ(a)の場合よりも低かった(Sample G、L、O)。   FIG. 10 shows a powder X-ray diffraction pattern of the produced titania-supporting porous composite, 100% titania porous body, and porous body used as a raw material. When imogolite (b) and silica gel (c) were used, crystallization into anatase type was observed even when the titania content was about 10 wt%, but the crystallinity was higher than that of Haskray (a). Was also low (Sample G, L, O).

しかし、イモゴライトの場合、チタニアの含有量が50 wt%の場合には、ハスクレイと同等の良好な結晶性を示すようになることが分かった(Sample D、K)。一方で、ゼオライト(d)の場合には、チタニアの含有量が50 wt%の場合でもチタニア由来の回折は観測されなかったことから、チタニアの結晶化が阻害されているものと推測された(Sample P、R、Q)。   However, in the case of imogolite, it was found that when the titania content was 50 wt%, it showed good crystallinity equivalent to that of Hascray (Sample D, K). On the other hand, in the case of zeolite (d), since titania-derived diffraction was not observed even when the titania content was 50 wt%, it was speculated that crystallization of titania was inhibited ( Sample P, R, Q).

図11に、作製したチタニア担持多孔質複合体、100%チタニア多孔質体、及び原料として用いた多孔質体の反射スペクトルを示した。多孔質体にチタニアを担持させることにより、紫外光領域だけでなく400nm以上の可視光領域でも反射率は減少し、効果的にこの領域の光を吸収することがわかった。   FIG. 11 shows reflection spectra of the produced titania-supporting porous composite, 100% titania porous body, and the porous body used as a raw material. It was found that by supporting titania on the porous material, the reflectance decreases not only in the ultraviolet light region but also in the visible light region of 400 nm or more, and effectively absorbs light in this region.

そして、その反射率は、イモゴライト<ハスクレイ=シリカゲル<ゼオライトの順で小さくなり、また全体的な傾向として、どの多孔質体の場合でも、チタニアの含有量が少ないほど反射率が小さくなる傾向がみられた。   The reflectivity decreases in the order of imogolite <hsclay = silica gel <zeolite. As a whole, in any porous body, the reflectivity tends to decrease as the titania content decreases. It was.

図12に、作製したチタニア担持多孔質複合体、100%チタニア多孔質体、及び原料として用いた多孔質体の水蒸気吸着等温線を示した。イモゴライト複合体の水蒸気吸着量(b)は、ハスクレイ複合体(a)の場合と同様、100%チタニアのSample Aと100%イモゴライトのSample Jの間の値を示していたが、シリカゲル(c)複合体の場合には、原料のシリカゲルのSample Mとほぼ同じような特性を示し、一方で、ゼオライト複合体(d)の場合には、100%チタニアのSample Aよりも原料のゼオライトのSample Pよりもその吸着量は増大することがわかった。   FIG. 12 shows water vapor adsorption isotherms of the produced titania-supporting porous composite, 100% titania porous body, and porous material used as a raw material. The water vapor adsorption amount (b) of the imogolite complex showed a value between 100% titania Sample A and 100% imogolite Sample J, as in the case of the Hasclay complex (a). In the case of the composite, it shows almost the same characteristics as Sample M of the raw material silica gel, while in the case of the zeolite composite (d), the sample P of the raw material zeolite than the sample A of 100% titania. It was found that the amount of adsorption increased.

図13に、作製したチタニア担持多孔質複合体、100%チタニア多孔質体、及び原料として用いた多孔質体の二酸化炭素吸着等温線を示した。イモゴライト(b)とシリカゲル(c)の場合には、その吸着量は少なく、チタニアと複合化してもその吸着量はほとんど変わらなかった。しかし、ゼオライト(d)の場合には、複合化することで二酸化炭素の吸着量は大きく変化することがわかった。   FIG. 13 shows carbon dioxide adsorption isotherms of the produced titania-supported porous composite, 100% titania porous body, and porous material used as a raw material. In the case of imogolite (b) and silica gel (c), the amount of adsorption was small, and the amount of adsorption was almost unchanged even when combined with titania. However, in the case of zeolite (d), it was found that the amount of carbon dioxide adsorbed greatly changed by the compounding.

図14に、1:1の重量比で作製したチタニア担持多孔質複合体、およびチタニア多孔質体のメチレンブルー吸着量の経時変化を示した。複合体のメチレンブルー吸着量はいずれも経時的に増大し、ハスクレイ(Sample D)とシリカゲル(Sample N)の場合には、浸漬2日後辺りからその吸着量は平衡値に達することが分かった。   FIG. 14 shows the titania-supporting porous composite produced at a weight ratio of 1: 1, and the methylene blue adsorption amount of the titania porous body over time. It was found that the amount of methylene blue adsorbed by the complex increased with time, and in the case of Haskray (Sample D) and silica gel (Sample N), the amount of adsorption reached an equilibrium value around 2 days after immersion.

一方で、イモゴライト(Sample K)、ゼオライト(Sample Q)の場合には、初期の吸着量は少ないが、経時的に増え、一番吸着量の少なかったイモゴライトの場合でも浸漬100時間を超える頃には100%チタニアのSample Aよりも多くなることが分かった。   On the other hand, in the case of imogolite (Sample K) and zeolite (Sample Q), the initial amount of adsorption is small, but it increases with time, and even in the case of imogolite with the smallest amount of adsorption, the immersion time exceeds 100 hours. Was found to be more than 100% Titania Sample A.

図15に、1:1の重量比で作製したチタニア担持多孔質複合体、およびチタニア多孔質体の可視光照射下におけるメチレンブルー光分解量の経時変化を示した。イモゴライト複合体(Sample K)のメチレンブルー光分解量は100%チタニア(Sample A)よりも多いことが分かった。それ以外の複合体の場合には、Sample Aよりも少なく、ゼオライトの場合に一番少ないことが分かった。   FIG. 15 shows changes over time in the amount of methylene blue photodegradation of titania-supporting porous composites prepared at a weight ratio of 1: 1 and titania porous bodies under visible light irradiation. It was found that the amount of methylene blue photolysis of the imogolite complex (Sample K) was higher than that of 100% titania (Sample A). The other composites were found to be less than Sample A and the least in the case of zeolite.

図16に、10:1の重量比で作製したチタニア担持多孔質複合体、およびチタニア多孔質体のメチレンブルー吸着量の経時変化を示した。これらは、多孔質体の含有量が多い複合体であるため、物質吸着特性に優れたハスクレイの場合に特に吸着量が多く、また、ゼオライト複合体(Sample R)以外では、浸漬2日を超える頃からその吸着量は平衡に達することが分かった。   FIG. 16 shows the titania-supporting porous composite prepared at a weight ratio of 10: 1 and the change with time of the methylene blue adsorption amount of the titania porous body. Since these are composites with a high content of porous material, the amount of adsorption is particularly high in the case of a Hasley with excellent material adsorption characteristics. Except for the zeolite composite (Sample R), it exceeds 2 days of immersion. From around this time, it was found that the amount of adsorption reached equilibrium.

図17に、10:1の重量比で作製したチタニア担持多孔質複合体、およびチタニア多孔質体の可視光照射下におけるメチレンブルー光分解量の経時変化を示した。これらは、多孔質体の含有量が多い複合体であるため、いずれもその光分解量は100%チタニア(Sample A)よりも少ないことが分かった。特に、ハスクレイとイモゴライト複合体の場合に光分解量が少ないことが分かった。   FIG. 17 shows the time-dependent changes in the amount of methylene blue photodegradation of the titania-supporting porous composite prepared at a weight ratio of 10: 1 and the titania porous body under visible light irradiation. Since these are composites with a high content of porous material, it was found that the amount of photolysis was less than that of 100% titania (Sample A). In particular, it was found that the amount of photodegradation was small in the case of the Hasley and imogolite complex.

図20に、1:1の重量比で作製したチタニア担持多孔質複合体、およびチタニア多孔質体によるメチレンブルーの総処理量、つまり、50時間浸漬後のメチレンブルー吸着量と、可視光照射6時間後のメチレンブルー光分解量の総量を棒グラフで表した。縦軸は、図14と15で求めた吸光度の変化量を濃度換算で表したものである。この短い処理時間では、吸着量の効果が大きいハスクレイ複合体(Sample D)が、総処理量としては最も効果的であることが分かった。   FIG. 20 shows the titania-supporting porous composite prepared at a weight ratio of 1: 1, and the total amount of methylene blue treated by the titania porous body, that is, the amount of methylene blue adsorbed after 50 hours of immersion and 6 hours after visible light irradiation. The total amount of methylene blue photodegradation of was represented by a bar graph. The vertical axis represents the amount of change in absorbance obtained in FIGS. 14 and 15 in terms of concentration. In this short processing time, it was found that the Hasclay complex (Sample D) having a large adsorption amount effect is most effective as the total processing amount.

ところが、処理時間が長くなると光分解の影響が大きく現れ、逆転現象がみられることが分かった。図21に、1:1の重量比で作製したチタニア担持多孔質複合体、およびチタニア多孔質体による150時間浸漬後のメチレンブルー吸着量と、可視光照射14時間後のメチレンブルー光分解量を併せた総処理量を棒グラフで示した。   However, it was found that when the treatment time is long, the effect of photolysis appears greatly, and a reverse phenomenon is observed. FIG. 21 shows the titania-supporting porous composite prepared at a weight ratio of 1: 1 and the amount of methylene blue adsorbed after 150 hours of immersion with the titania porous body and the amount of methylene blue photodegradation after 14 hours of visible light irradiation. The total throughput is shown as a bar graph.

どの複合体も、メチレンブルーの吸着量は50時間浸漬後、さらに長時間浸漬してもほとんど変わらなかったが、光分解量は、長時間光照射することで分解量が増大し、特に、イモゴライトの場合にその効果が大きかったため、総処理量としては、イモゴライト複合体のSample Kが一番多くなることが明らかとなった。しかし、短時間処理、長時間処理、いずれの場合であっても、アルミニウムケイ酸化合物であるハスクレイ、イモゴライト複合体の方が、その他の無機多孔質体であるシリカゲル、ゼオライト複合体よりも効果的であることが明らかとなった。   In any of the complexes, the amount of methylene blue adsorbed was almost unchanged after 50 hours of immersion, but the amount of photodegradation increased with prolonged light irradiation. Since the effect was large in some cases, it became clear that the total amount of processing was highest for Sample K of the imogolite complex. However, in both cases of short-time treatment and long-time treatment, the aluminum silicate compound, husclay and imogolite complex, are more effective than the other inorganic porous materials such as silica gel and zeolite complex. It became clear that.

図22に、10:1の重量比で作製したチタニア担持多孔質複合体、およびチタニア多孔質体によるメチレンブルーの総処理量、つまり、50時間浸漬後のメチレンブルー吸着量と、可視光照射6時間後のメチレンブルー光分解量の総量を棒グラフで表した。縦軸は、図16と17で求めた吸光度の変化量を濃度換算で表したものである。この短い処理時間では、吸着量の効果が大きいハスクレイ複合体(Sample G)が、総処理量としては最も効果的であることが分かった。   FIG. 22 shows the titania-supported porous composite prepared at a weight ratio of 10: 1 and the total amount of methylene blue treated by the titania porous body, that is, the amount of methylene blue adsorbed after 50 hours of immersion and 6 hours after visible light irradiation. The total amount of methylene blue photodegradation of was represented by a bar graph. The vertical axis represents the amount of change in absorbance obtained in FIGS. 16 and 17 in terms of concentration. In this short processing time, it was found that the Hasclay complex (Sample G) having a large adsorption amount effect is the most effective as the total processing amount.

図23に、10:1の重量比で作製したチタニア担持多孔質複合体、およびチタニア多孔質体による150時間浸漬後のメチレンブルー吸着量と、可視光照射14時間後のメチレンブルー光分解量を併せた総処理量を棒グラフで示した。処理時間が長くなると処理時間が短いときよりも光分解の影響が大きく現れたが、多孔質体の含有量が多い複合体の場合には、吸着量の効果が大きすぎて、吸着量の効果が大きいハスクレイ複合体(Sample G)が総処理量としては変わらず最も効果的であることが分かった。しかし、多孔質体の含有量が多い複合体の場合には、アルミニウムケイ酸化合物であるイモゴライト複合体よりも、その他の無機多孔質体であるシリカゲル、ゼオライト複合体の方が効果的であることが明らかとなった。   FIG. 23 shows the titania-supporting porous composite prepared at a weight ratio of 10: 1 and the amount of methylene blue adsorbed after 150 hours of immersion with the titania porous body and the amount of methylene blue photodegradation after 14 hours of visible light irradiation. The total throughput is shown as a bar graph. The longer the treatment time, the greater the effect of photolysis than when the treatment time was short. However, in the case of a composite with a high content of porous material, the effect of the adsorption amount is too great, and the effect of the adsorption amount The large clay clay (Sample G) was found to be most effective as the total throughput. However, in the case of a composite with a large porous body content, silica gel and zeolite composite, which are other inorganic porous bodies, are more effective than imogolite composite, which is an aluminum silicate compound. Became clear.

本発明は、通常の粘土吸着剤、可視光応答型光触媒と同様の種々の利用分野、例えば、室内の調湿、VOC除去、脱臭、殺菌、防汚等を目指した住宅建材内壁材や外壁材、有害物の高吸着能と水質浄化能を生かした河川浄化用ブロックタイル等だけでなく、その他触媒材料、吸着剤、分離材等、幅広い適用が可能である。   The present invention is applicable to various fields of application similar to ordinary clay adsorbents and visible light responsive photocatalysts, for example, interior and exterior wall materials for indoor humidity control, VOC removal, deodorization, sterilization, antifouling, etc. In addition to river purification block tiles that make use of the high adsorption ability and water purification ability of harmful substances, a wide range of applications such as catalyst materials, adsorbents, separation materials, etc. are possible.

Claims (10)

優れた物質吸着機能を有する粘土化合物に可視光応答型光触媒機能を付与した機能性チタニア−粘土複合体を作製する方法であって、エチレングリコールモノメチルエーテルを溶媒として調製したチタニア前駆体ゾル溶液に紫外線を照射後、粘土化合物を添加し、そのまま粘土の耐熱温度以下の温度域で液体を熱媒体として加熱・加圧処理することを特徴とする、可視光吸収能を有し、可視光で光触媒機能を発現するアナターゼ型チタニア−多孔質粘土複合体を作製する方法。   A method for preparing a functional titania-clay composite in which a visible light responsive photocatalytic function is imparted to a clay compound having an excellent substance adsorption function, and ultraviolet light is applied to a titania precursor sol solution prepared using ethylene glycol monomethyl ether as a solvent. After irradiation, the clay compound is added, and the liquid is heated and pressurized as a heat medium in the temperature range below the heat resistance temperature of the clay. A method for producing an anatase-type titania-porous clay complex that expresses. 粘土化合物がチューブ状の多孔質構造を有するアルミニウムケイ酸化合物である請求項1記載のアナターゼ型チタニア−多孔質粘土複合体を作製する方法。   The method for producing an anatase-type titania-porous clay composite according to claim 1, wherein the clay compound is an aluminum silicate compound having a tubular porous structure. エチレングリコールモノメチルエーテルを溶媒として調製したチタニア前駆体ゾル溶液に紫外線を照射後、粘土化合物を添加し、そのまま粘土の耐熱温度以下の温度域で液体を熱媒体として加熱・加圧処理して作製された、可視光吸収能を有し、可視光で光触媒機能を発現することを特徴とするアナターゼ型チタニア−多孔質粘土複合体。   The titania precursor sol solution prepared using ethylene glycol monomethyl ether as a solvent is irradiated with ultraviolet light, added with a clay compound, and heated and pressurized using a liquid as a heat medium in the temperature range below the heat resistance temperature of the clay. An anatase-type titania-porous clay composite characterized by having a visible light absorption ability and exhibiting a photocatalytic function with visible light. 粘土化合物がチューブ状の多孔質構造を有するアルミニウムケイ酸化合物である請求項3記載のアナターゼ型チタニア−多孔質粘土複合体。   The anatase-type titania-porous clay composite according to claim 3, wherein the clay compound is an aluminum silicate compound having a tubular porous structure. 優れた物質吸着機能を有する粘土化合物に可視光応答型光触媒機能を付与した機能性チタニア−粘土複合体を作製する方法であって、エチレングリコールモノメチルエーテルを溶媒として調製したチタニア前駆体ゾル溶液に紫外線を照射後に、HO−Si−(OAl)の配位を含む非晶性の水酸化アルミニウムケイ酸と、Si同士の重合構造を含む低結晶性層状粘土鉱物との両者からなる複合体である、高吸着性粘土複合体ハスクレイを添加し、そのまま180〜250℃の温度域で液体を熱媒体として加熱・加圧処理することを特徴とする、高吸着性と可視光吸収能を併せ持ち、可視光で光触媒機能を発現する多孔質アナターゼ型チタニア担持ハスクレイ複合体を作製する方法。 A method for preparing a functional titania-clay composite in which a visible light responsive photocatalytic function is imparted to a clay compound having an excellent substance adsorption function, and ultraviolet light is applied to a titania precursor sol solution prepared using ethylene glycol monomethyl ether as a solvent. Is a composite composed of both amorphous aluminum hydroxide silicic acid containing a coordination of HO—Si— (OAl) 3 and a low crystalline layered clay mineral containing a polymer structure of Si. It has both high adsorptivity and visible light absorption capability, and is characterized by adding high adsorptive clay complex hus clay and heating and pressurizing liquid as a heat medium in the temperature range of 180-250 ° C. A method for producing a porous anatase-type titania-supported Hasclay composite that exhibits a photocatalytic function with light. エチレングリコールモノメチルエーテルを溶媒として調製したチタニア前駆体ゾル溶液に紫外線を照射後に、HO−Si−(OAl)の配位を含む非晶性の水酸化アルミニウムケイ酸と、Si同士の重合構造を含む低結晶性層状粘土鉱物との両者からなる複合体である、高吸着性粘土複合体ハスクレイを添加し、そのまま180〜250℃の温度域で液体を熱媒体として加熱・加圧処理して作製された、高吸着性と可視光吸収能を併せ持つアナターゼ型チタニア担持ハスクレイ複合体。 After irradiating a titania precursor sol solution prepared using ethylene glycol monomethyl ether as a solvent with ultraviolet rays, an amorphous aluminum hydroxide silicic acid containing a coordination of HO—Si— (OAl) 3 and a polymerization structure between Si are obtained. Made by adding high adsorptive clay complex, which is a complex composed of both low crystalline lamellar clay minerals, and heating / pressurizing the liquid as a heat medium in the temperature range of 180-250 ° C. An anatase-type titania-supported Hasclay complex having both high adsorptivity and visible light absorption ability. 優れた物質吸着機能を有する粘土化合物に可視光応答型光触媒機能を付与した機能性チタニア−粘土複合体を作製する方法であって、エチレングリコールモノメチルエーテルを溶媒とし、有機窒素化合物を添加して調製したチタニア前駆体ゾル溶液に紫外線を照射後、粘土化合物を添加し、そのまま粘土の耐熱温度以下の温度域で液体を熱媒体として加熱・加圧処理することを特徴とする、可視光吸収能を有し、可視光で光触媒機能を発現する多孔質アナターゼ型チタニア−粘土複合体を作製する方法。   This is a method for producing a functional titania-clay complex in which a visible light responsive photocatalytic function is imparted to a clay compound having an excellent material adsorption function, which is prepared by adding an organic nitrogen compound using ethylene glycol monomethyl ether as a solvent. After irradiating the titania precursor sol solution with ultraviolet light, a clay compound is added and the liquid is heated and pressurized as a heat medium in the temperature range below the heat resistance temperature of the clay. A method for producing a porous anatase-type titania-clay complex having a photocatalytic function with visible light. エチレングリコールモノメチルエーテルを溶媒とし、有機窒素化合物を添加して調製したチタニア前駆体ゾル溶液に紫外線を照射後、粘土化合物を添加し、そのまま粘土の耐熱温度以下の温度域で液体を熱媒体として加熱・加圧処理して作製された、可視光吸収能を有し、可視光で光触媒機能を発現することを特徴とするアナターゼ型チタニア−粘土複合体。   Irradiate titania precursor sol solution prepared by adding ethylene nitrogen monomethyl ether and organic nitrogen compound with ultraviolet rays, add clay compound, and heat liquid as heat medium in the temperature range below the heat resistance temperature of clay. An anatase-type titania-clay complex produced by pressurization and having a visible light absorption ability and exhibiting a photocatalytic function with visible light. 優れた物質吸着機能を有する粘土化合物に可視光応答型光触媒機能を付与した機能性チタニア−粘土複合体を作製する方法であって、エチレングリコールモノメチルエーテルを溶媒とし、有機窒素化合物を添加して調製したチタニア前駆体ゾル溶液に紫外線を照射後、HO−Si−(OAl)の配位を含む非晶性の水酸化アルミニウムケイ酸と、Si同士の重合構造を含む低結晶性層状粘土鉱物との両者からなる複合体である、高吸着性粘土複合体ハスクレイを添加し、そのまま180〜250℃の温度域で液体を熱媒体として加熱・加圧処理することを特徴とする、高吸着性と可視光吸収能を併せ持ち、可視光で光触媒機能を発現するアナターゼ型チタニア担持ハスクレイ複合体を作製する方法。 This is a method for producing a functional titania-clay complex in which a visible light responsive photocatalytic function is imparted to a clay compound having an excellent material adsorption function, which is prepared by adding an organic nitrogen compound using ethylene glycol monomethyl ether as a solvent. After the irradiated titania precursor sol solution is irradiated with ultraviolet light, amorphous aluminum hydroxide silicic acid containing a coordination of HO—Si— (OAl) 3 and a low crystalline layered clay mineral containing a polymer structure of Si and A high adsorptivity clay composite, which is a composite composed of both of the above, and is heated and pressurized as a heat medium in a temperature range of 180 to 250 ° C. A method for producing an anatase-type titania-supported Hasclay complex that also has visible light absorption ability and exhibits a photocatalytic function with visible light. エチレングリコールモノメチルエーテルを溶媒とし、有機窒素化合物を添加して調製したチタニア前駆体ゾル溶液に紫外線を照射後、HO−Si−(OAl)の配位を含む非晶性の水酸化アルミニウムケイ酸と、Si同士の重合構造を含む低結晶性層状粘土鉱物との両者からなる複合体である、高吸着性粘土複合体ハスクレイを添加し、そのまま180〜250℃の温度域で液体を熱媒体として加熱・加圧処理して作製された、高吸着性と可視光吸収能を併せ持ち、可視光で光触媒機能を発現することを特徴とするアナターゼ型チタニア担持ハスクレイ複合体。
Amorphous aluminum hydroxide silicic acid containing a coordination of HO-Si- (OAl) 3 after irradiating ultraviolet light onto a titania precursor sol solution prepared by adding an organic nitrogen compound using ethylene glycol monomethyl ether as a solvent And a highly adsorptive clay complex, which is a complex composed of both a low crystalline lamellar clay mineral containing a polymerized structure of Si, and a liquid as a heat medium in a temperature range of 180 to 250 ° C. An anatase-type titania-supported Hasclay complex, which is produced by heat and pressure treatment, has both high adsorptivity and visible light absorption ability, and exhibits a photocatalytic function with visible light.
JP2012263188A 2011-12-05 2012-11-30 Porous adsorbent having visible light absorbency, and method for producing the same at low temperature Pending JP2013139029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012263188A JP2013139029A (en) 2011-12-05 2012-11-30 Porous adsorbent having visible light absorbency, and method for producing the same at low temperature

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011265994 2011-12-05
JP2011265994 2011-12-05
JP2012263188A JP2013139029A (en) 2011-12-05 2012-11-30 Porous adsorbent having visible light absorbency, and method for producing the same at low temperature

Publications (1)

Publication Number Publication Date
JP2013139029A true JP2013139029A (en) 2013-07-18

Family

ID=49036988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012263188A Pending JP2013139029A (en) 2011-12-05 2012-11-30 Porous adsorbent having visible light absorbency, and method for producing the same at low temperature

Country Status (1)

Country Link
JP (1) JP2013139029A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015163396A (en) * 2014-02-03 2015-09-10 国立大学法人信州大学 Photocatalyst filter and method for producing the same
CN106994339A (en) * 2017-05-25 2017-08-01 绍兴文理学院 A kind of preparation method of silicon doped titanium dioxide photocatalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015163396A (en) * 2014-02-03 2015-09-10 国立大学法人信州大学 Photocatalyst filter and method for producing the same
CN106994339A (en) * 2017-05-25 2017-08-01 绍兴文理学院 A kind of preparation method of silicon doped titanium dioxide photocatalyst
CN106994339B (en) * 2017-05-25 2019-08-20 绍兴文理学院 A kind of preparation method of silicon doped titanium dioxide photocatalyst

Similar Documents

Publication Publication Date Title
Yang et al. Synthesis of ZnO/ZIF-8 hybrid photocatalysts derived from ZIF-8 with enhanced photocatalytic activity
Aranda et al. Titania− sepiolite nanocomposites prepared by a surfactant templating colloidal route
Valente et al. Adsorption and photocatalytic degradation of phenol and 2, 4 dichlorophenoxiacetic acid by Mg–Zn–Al layered double hydroxides
Shukla et al. Adsorption and heterogeneous advanced oxidation of phenolic contaminants using Fe loaded mesoporous SBA-15 and H2O2
Kumaresan et al. Synthesis and characterization of Zr4+, La3+ and Ce3+ doped mesoporous TiO2: Evaluation of their photocatalytic activity
Mazinani et al. Photocatalytic activity, surface area and phase modification of mesoporous SiO2–TiO2 prepared by a one-step hydrothermal procedure
Seftel et al. The influence of the Ti4+ location on the formation of self-assembled nanocomposite systems based on TiO2 and Mg/Al-LDHs with photocatalytic properties
Bouberka et al. Degradation by irradiation of an Acid Orange 7 on colloidal TiO2/(LDHs)
Boscaro et al. C, N-doped TiO2 monoliths with hierarchical macro-/mesoporosity for water treatment under visible light
Chatterjee et al. A novel synthesis of MIL-53 (Al)@ SiO 2: an integrated photocatalyst adsorbent to remove bisphenol a from wastewater
Nikolopoulou et al. Solvothermal preparation of TiO2/saponite nanocomposites and photocatalytic activity
Preethi et al. Reprint of “Influence of chitosan–PEG binary template on the crystallite characteristics of sol–gel synthesised mesoporous nanotitania photocatalyst”
Saadati et al. Synthesis of nanocomposite based on Semnan natural zeolite for photocatalytic degradation of tetracycline under visible light
Chobchun et al. Characterization of TiO2-activated carbon onto adsorption and photocatalytic properties and its application
Photong et al. Synthesis of APTMS-functionalized SiO 2/TiO 2 transparent film using peroxo titanic acid refluxed solution for formaldehyde removal
Sui et al. Preparation and photocatalytic performance of a Pr–SiO2–TiO2 nanocomposite for degradation of aqueous dye wastewater
Wu et al. Facile preparation and characterization of BiOI–rectorite composite with high adsorptive capacity and photocatalytic activity
JP2013139029A (en) Porous adsorbent having visible light absorbency, and method for producing the same at low temperature
Ma et al. Influence of synthesis temperature on morphology of TiO2/SBA-16 materials and its photocatalytic performance
Johnston et al. Photoactivity of nano-structured calcium silicate–titanium dioxide composite materials
Einafshar et al. Nanocomposite with high adsorption activity developed using stabilized silver modified alumina and TiO2-NPs incorporated into β-cyclodextrin-graphene oxide
de Souza et al. Rapid synthesis and characterization of CeMCM-41
Chen et al. Preparation, characterization of C/Fe–Bi2WO6 nanosheet composite and degradation application of norfloxacin in water
Zhang et al. Large-sized nano-TiO 2/SiO 2 mesoporous nanofilmconstructed macroporous photocatalysts with excellent photocatalytic performance
Cui et al. Zeolite-based CuO nanotubes catalysts: investigating the characterization, mechanism, and decolouration process of methylene blue