JPH08333117A - Production of porous globular titanium oxide particle - Google Patents

Production of porous globular titanium oxide particle

Info

Publication number
JPH08333117A
JPH08333117A JP7139517A JP13951795A JPH08333117A JP H08333117 A JPH08333117 A JP H08333117A JP 7139517 A JP7139517 A JP 7139517A JP 13951795 A JP13951795 A JP 13951795A JP H08333117 A JPH08333117 A JP H08333117A
Authority
JP
Japan
Prior art keywords
particles
titanyl sulfate
aqueous solution
sulfuric acid
titanium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7139517A
Other languages
Japanese (ja)
Inventor
Yasuo Kuroda
康雄 黒田
Katsuhiko Abe
克彦 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP7139517A priority Critical patent/JPH08333117A/en
Publication of JPH08333117A publication Critical patent/JPH08333117A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To increase specific surface area of porous globular titanium oxide particles by adding urea to an aqueous solution of titanyl sulfate containing a specific amount of titanyl sulfate and excess sulfuric acid of a prescribed molar ratio to Ti and heating the mixture, recovering deposited meta-titanic acid particles and baking the particles. CONSTITUTION: Titanium ore such as ilmenite is heated with concentrated sulfuric acid and water is added thereto to subject to immersing treatment. The insoluble matter is removed and urea in an equimolar amount, especially 1.5-3 times by mol based on the total sulfuric radical is added to an aqueous solution of titanyl sulfate containing titanyl sulfate in an amount of 5.0-100g/l expressed in terms of TiO2 and excess sulfuric acid of 1.0-3.0 times molar ratio to Ti. The mixed aqueous solution is heated to about 85 deg.C to boiling point at normal pressure to hydrolyze titanyl sulfate and deposite meta-titanic acid particles. The deposited material is filtered and washed with water and baked at 650-850 deg.C to provide the objective porous globular anatase type TiO2 particles having 2.5-5.5μm average particle diameter and >=30m<2> /g specific surface area.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、SOx やNOx ガス等
の分解触媒、触媒の担体、並びに殺菌剤を含浸させた化
粧品材料等として有用な、粒径が比較的均一で比表面積
の大きい多孔質の球状酸化チタン粒子の経済的な製造方
法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a porous material having a relatively uniform particle size and a large specific surface area, which is useful as a decomposition catalyst for SOx and NOx gas, a catalyst carrier, and a cosmetic material impregnated with a bactericide. To an economical method for producing high quality spherical titanium oxide particles.

【0002】[0002]

【従来の技術】従来の球状酸化チタン粒子の製造法とし
ては、(1) チタンテトラアルコキシド等の有機チタン化
合物とメタノール等の有機化合物を気相反応させ、得ら
れた生成物を加水分解する方法 (特開平2−809963号公
報) 、(2) Ti濃度が1mol/L 以上の高濃度かつ強酸性
(反応終了時の硫酸濃度が 3.0〜8.0 N) の硫酸チタニ
ル水溶液を95〜200 ℃で長時間加熱して加水分解させ、
加水分解物を乾燥または仮焼する方法 (特開平4−3675
12号公報) 、(3) 硫酸チタニル水溶液を170 ℃以上の高
温高圧下で加水分解し、得られた含水酸化チタンを 400
〜900 ℃で焼成する方法 (特開平5−163022号公報) な
どがある。
2. Description of the Related Art As a conventional method for producing spherical titanium oxide particles, (1) a method in which an organic titanium compound such as titanium tetraalkoxide and an organic compound such as methanol are subjected to a gas phase reaction to hydrolyze the obtained product (JP-A-2-809963), (2) High Ti concentration of 1 mol / L or more and strong acidity.
An aqueous solution of titanyl sulfate having a sulfuric acid concentration of 3.0 to 8.0 N at the end of the reaction is heated at 95 to 200 ° C. for a long time for hydrolysis.
Method for drying or calcining hydrolyzate (Japanese Patent Laid-Open No. 4-3675)
No. 12), (3) an aqueous solution of titanyl sulfate was hydrolyzed under high temperature and high pressure of 170 ° C. or higher to obtain titanium hydrous oxide of 400
There is a method of firing at ˜900 ° C. (Japanese Patent Laid-Open No. 5-163022).

【0003】(1) の方法は、粒径が 0.1〜数μm、BET
値が20〜56 m2/g の比表面積が大きい球形酸化チタン粒
子を製造できるが、原料のチタンアルコキシドが取り扱
いの難しい四塩化チタンから合成される高価な材料であ
るため、原料コストが高くなる。
The method (1) uses BET with a particle size of 0.1 to several μm.
It is possible to manufacture spherical titanium oxide particles with a large specific surface area of 20 to 56 m 2 / g, but the raw material cost is high because the raw material titanium alkoxide is an expensive material synthesized from titanium tetrachloride, which is difficult to handle. .

【0004】(2)の方法は、平均粒径 0.5〜2.5 μm、
多分散指数1.1 以下、比表面積70 m2/g 以上の比表面積
が大きな球形多孔質のアナターゼ型二酸化チタン粒子を
製造できる。しかし、この方法は95〜200 ℃の加熱を、
加水分解物の球径凝集化が完了するまで数日〜10日以上
の長時間にわたって行う必要があり、効率的ではない
上、この長期間の加熱に要するエネルギーコストが高く
なり、加熱も多くは沸点以上の温度で行うため、特別の
反応装置が必要である。
The method (2) has an average particle size of 0.5 to 2.5 μm,
Spherical porous anatase-type titanium dioxide particles having a large polydispersity index of 1.1 or less and a specific surface area of 70 m 2 / g or more can be produced. However, this method requires heating at 95-200 ° C.
It is necessary to carry out for a long time of several days to 10 days or more until the spherical aggregation of the hydrolyzate is completed, which is not efficient, and the energy cost required for this long-term heating becomes high, and much heating is also required. Since it is carried out at a temperature above the boiling point, a special reactor is required.

【0005】(3)の方法でも、平均粒径 0.1〜5μm、
形状係数 0.9〜1.0 のアナターゼ型二酸化チタン粒子が
得られる。ただし、この方法で得られた粒子は非多孔質
であると推測される。また、(2) の方法でも述べたよう
に、(3) の方法は高温高圧下で加水分解を行うため、オ
ートクレーブのような特別な反応装置が必要であって、
製造コストが高くなる。
Even in the method (3), the average particle size is 0.1 to 5 μm,
Anatase type titanium dioxide particles having a shape factor of 0.9 to 1.0 are obtained. However, the particles obtained by this method are presumed to be non-porous. Further, as mentioned in the method of (2), since the method of (3) carries out hydrolysis under high temperature and high pressure, it requires a special reaction device such as an autoclave.
Manufacturing cost is high.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、安価
な原料である硫酸チタニル水溶液を使用し、常圧下で比
較的短時間の加水分解を行うことにより、粒径が均一で
多孔質 (従って、比表面積が大きい) の球状アナターゼ
型酸化チタン粒子を経済的に製造することができる方法
を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to use an inexpensive raw material aqueous solution of titanyl sulfate and carry out hydrolysis for a relatively short time under atmospheric pressure to obtain a porous ( Therefore, it is an object of the present invention to provide a method capable of economically producing spherical anatase type titanium oxide particles having a large specific surface area).

【0007】[0007]

【課題を解決するための手段】本発明によれば、TiO2
換算して 5.0〜100 g/l の硫酸チタニルとチタンに対す
るモル比 1.0〜3.0 の過剰硫酸とを含む硫酸チタニル水
溶液に、この水溶液中の全硫酸根に対し等モル以上の尿
素を加えて、85℃以上、沸点以下に加熱し、析出したメ
タチタン酸粒子を回収して 650〜850 ℃で焼成すること
を特徴とする、粒度が均一で比表面積の大きい多孔質球
状アナターゼ型酸化チタン粒子の製造方法により、上記
目的が達成される。
According to the present invention, an aqueous solution of titanyl sulfate containing 5.0 to 100 g / l of titanyl sulfate in terms of TiO 2 and an excess of sulfuric acid in a molar ratio of 1.0 to 3.0 with respect to titanium is prepared. Addition of equimolar or more urea to the total sulfate in the aqueous solution, heated to 85 ℃ or more, below the boiling point, recover the precipitated metatitanic acid particles and calcinate at 650 ~ 850 ℃, particle size The above object is achieved by a method for producing porous spherical anatase-type titanium oxide particles having a uniform surface area and a large specific surface area.

【0008】以下、本発明の方法について詳しく説明す
る。本発明の方法の原料は硫酸チタニル (TiOSO4) と過
剰の硫酸を含有する水溶液、即ち、硫酸チタニルの硫酸
酸性水溶液である。この水溶液は、精製した硫酸チタニ
ルを硫酸水溶液に溶解することによって調製することも
できるが、工業的には、硫酸法酸化チタンの製造で採用
されているのと同じ方法、即ち、イルメナイト等のチタ
ン鉱石またはチタンスラグを硫酸で浸出し、硫酸鉄を主
とする不溶物を分離することにより得ることができる。
この方法により製造された硫酸チタニルの硫酸水溶液
は、その色から黒液と呼ばれている。原料として用いる
硫酸チタニル水溶液中には、硫酸チタニルと硫酸以外
に、少量の不純物 (例、硫酸鉄) を含有していてもよ
い。
The method of the present invention will be described in detail below. The raw material for the method of the present invention is an aqueous solution containing titanyl sulfate (TiOSO 4 ) and an excess of sulfuric acid, that is, an aqueous sulfuric acid solution of titanyl sulfate. This aqueous solution can also be prepared by dissolving purified titanyl sulfate in an aqueous sulfuric acid solution, but industrially, the same method as that used in the production of titanium oxide by the sulfuric acid method, that is, titanium such as ilmenite is used. It can be obtained by leaching ore or titanium slag with sulfuric acid and separating insoluble matter mainly containing iron sulfate.
The aqueous solution of titanyl sulfate in sulfuric acid produced by this method is called black liquor because of its color. The titanyl sulfate aqueous solution used as a raw material may contain a small amount of impurities (eg, iron sulfate) in addition to titanyl sulfate and sulfuric acid.

【0009】この硫酸チタニル水溶液に尿素を加えて加
熱し、硫酸チタニルを加水分解させてメタチタン酸を析
出させる。この尿素の添加による硫酸チタニルの加水分
解は公知の方法であるが、本発明ではこの時の加水分解
を特定の条件下で行うことにより、球形のメタチタン酸
粒子を析出させる。そして、このメタチタン酸粒子を濾
過などにより回収して、比較的低温で焼成することによ
り、多孔質で比表面積が大きく、粒径が比較的均一で凝
集の少ない球状の酸化チタン粒子が得られるのである。
Urea is added to the titanyl sulfate aqueous solution and heated to hydrolyze the titanyl sulfate to precipitate metatitanic acid. Hydrolysis of titanyl sulfate by the addition of urea is a known method, but in the present invention, spherical metatitanic acid particles are precipitated by performing the hydrolysis at this time under specific conditions. Then, by recovering the metatitanic acid particles by filtration or the like and calcining at a relatively low temperature, it is possible to obtain spherical titanium oxide particles having a large specific surface area, a relatively large particle size and less aggregation. is there.

【0010】硫酸チタニル水溶液中の硫酸チタニルの濃
度は、TiO2として 5.0〜100 g/l 、好ましくは 5.0〜50
g/lである。この濃度が5.0 g/l 未満であると、尿素を
加えて加熱してもメタチタン酸粒子の析出が起こらない
か、或いは析出量が少なすぎて非効率である。また、硫
酸チタニルの濃度がTiO2として100 g/l を超えると、加
水分解で析出するメタチタン酸粒子が凝集する傾向が強
くなり、メタチタン酸が球状粒子の凝集体として得ら
れ、焼成後に最終的に粉砕が必要となり、均一な粒径の
酸化チタン粒子を得ることが困難となる。
The concentration of titanyl sulfate in the aqueous solution of titanyl sulfate is 5.0 to 100 g / l, preferably 5.0 to 50 as TiO 2.
g / l. If this concentration is less than 5.0 g / l, precipitation of metatitanic acid particles will not occur even if urea is added and heated, or the amount of precipitation will be too small, resulting in inefficiency. Also, when the concentration of titanyl sulfate exceeds 100 g / l as TiO 2 , metatitanic acid particles precipitated by hydrolysis have a strong tendency to aggregate, and metatitanic acid is obtained as agglomerates of spherical particles, which are finally obtained after firing. Therefore, it is difficult to obtain titanium oxide particles having a uniform particle size.

【0011】硫酸チタニル水溶液は、過剰の硫酸を含有
する硫酸酸性水溶液とする。この過剰硫酸の量は、水溶
液中のチタンに対するモル比 (=原料硫酸チタニルに対
するモル比) で 1.0〜3.0 の範囲内とする。硫酸チタニ
ルがチタンと等モルの硫酸根(硫酸イオン) を含有して
いるので、この硫酸チタニルの硫酸根を含めた溶液中の
全硫酸根の量は上記範囲より1モルづつ多くなり、チタ
ンに対して 2.0〜4.0モルの割合となる。
The titanyl sulfate aqueous solution is a sulfuric acid acidic aqueous solution containing excess sulfuric acid. The amount of this excess sulfuric acid is in the range of 1.0 to 3.0 in terms of molar ratio to titanium in the aqueous solution (= mol ratio to starting material titanyl sulfate). Since titanyl sulfate contains sulfates (sulfate ions) in the same moles as titanium, the amount of total sulfate in the solution including the sulfates of this titanyl sulfate is 1 mol higher than the above range, and titanium On the other hand, the ratio is 2.0 to 4.0 mol.

【0012】過剰硫酸のチタンに対するモル比が1.0 未
満では、加水分解で析出するメタチタン酸粒子の形状が
不定形で、球状にはならない。一方、このモル比が3.0
を超えると、尿素の添加によるメタチタン酸粒子の析出
速度が低下し、効率的ではない。このモル比は好ましく
は 1.5〜2.5 の範囲内である。
When the molar ratio of excess sulfuric acid to titanium is less than 1.0, the metatitanic acid particles precipitated by hydrolysis have an irregular shape and do not become spherical. On the other hand, this molar ratio is 3.0
If it exceeds, the precipitation rate of metatitanic acid particles due to the addition of urea decreases, which is not efficient. This molar ratio is preferably within the range of 1.5 to 2.5.

【0013】上記のようにチタンおよび硫酸濃度を調整
した硫酸チタニルの硫酸酸性水溶液に、尿素を添加す
る。尿素は溶液中の硫酸根全部を中和するのに十分な量
(全硫酸根と等モル以上) であればよく、多ければメタ
チタン酸粒子の析出速度が速くなる。好ましい尿素の添
加量は、全硫酸根に対するモル比で 1.5〜3の範囲であ
る。
Urea is added to a sulfuric acid acidic aqueous solution of titanyl sulfate whose titanium and sulfuric acid concentrations are adjusted as described above. Urea is sufficient to neutralize all sulfate in solution
It is sufficient if it is (equal to or more than the total sulfate group), and if it is large, the precipitation rate of metatitanic acid particles will be high. The preferred amount of urea added is in the range of 1.5 to 3 in terms of molar ratio to the total sulfate groups.

【0014】尿素を添加した硫酸チタニル水溶液を、常
圧で85℃以上、溶液の沸点以下に加熱して、硫酸チタニ
ルの加水分解を行う。この加熱により尿素がアンモニア
と二酸化炭素に分解し、生成したアンモニアの触媒作用
により硫酸チタニルがメタチタン酸 (TiO2・H2O 、含水
酸化チタンともいう) と硫酸に加水分解し、メタチタン
酸が溶液から析出する。溶液が強酸性であるので、尿素
の分解で生じた二酸化炭素は溶液から揮散する。
The titanyl sulfate aqueous solution to which urea has been added is heated to 85 ° C. or higher and not higher than the boiling point of the solution under normal pressure to hydrolyze the titanyl sulfate. This heating decomposes urea into ammonia and carbon dioxide, and by the catalytic action of the generated ammonia, titanyl sulfate hydrolyzes into metatitanic acid (TiO 2 · H 2 O, also called hydrous titanium oxide) and sulfuric acid, and metatitanic acid becomes a solution. Precipitate from. Since the solution is strongly acidic, carbon dioxide generated by the decomposition of urea is volatilized from the solution.

【0015】硫酸チタニル水溶液に予め尿素を添加して
溶液中に溶解させてから加熱して加水分解を行うことに
より、溶液全体において均一にアンモニアが発生するた
め、溶液中でメタチタン酸の析出が均一に起こる。それ
により、粒径が均一に揃ったメタチタン酸粒子を短時間
に析出させることができ、また理由は解明されていない
が、析出したメタチタン酸粒子は球形で、しかも凝集が
ほとんど起こらず、せいぜい数個が凝集した粒子形態と
なることが判明した。
By adding urea to the aqueous solution of titanyl sulfate in advance and dissolving it in the solution and then heating it for hydrolysis, ammonia is uniformly generated in the entire solution, so that precipitation of metatitanic acid is uniform in the solution. Happen to. As a result, metatitanic acid particles having a uniform particle size can be precipitated in a short time, and the reason has not been clarified. It was found that the particles were in the form of aggregated particles.

【0016】この時の加熱温度が85℃より低いと、尿素
の分解反応が極めて遅く、メタチタン酸の析出に過大な
時間を要し、実用的ではない。加熱温度が沸点を超える
と、オートクレーブのような高価な反応装置が必要とな
る。好ましい加熱温度は90℃より高温、かつ沸点未満の
温度である。加熱はメタチタン酸の析出が実質的に完了
し、沈殿がある程度熟成するまで行うことが好ましく、
それに要する加熱時間は一般に7〜10時間の範囲であ
る。
If the heating temperature at this time is lower than 85 ° C., the decomposition reaction of urea is extremely slow and the precipitation of metatitanic acid requires an excessive amount of time, which is not practical. When the heating temperature exceeds the boiling point, an expensive reactor such as an autoclave is required. The preferred heating temperature is higher than 90 ° C and lower than the boiling point. Heating is preferably carried out until the precipitation of metatitanic acid is substantially completed and the precipitation is aged to some extent,
The heating time required for this is generally in the range of 7 to 10 hours.

【0017】上記の加水分解反応条件からわかるよう
に、本発明の方法は、従来より工業的に実施されている
硫酸法酸化チタン顔料の製造装置および製造原料 (黒
液) をそのまま利用して、常圧で実施することができ、
経済的である。
As can be seen from the above hydrolysis reaction conditions, the method of the present invention utilizes the sulfuric acid method titanium oxide pigment production apparatus and the production raw material (black liquor) which have been conventionally industrially implemented, as they are. Can be carried out at normal pressure,
It is economical.

【0018】上記の加熱によって析出したメタチタン酸
の沈殿を濾過等の適当な固液分離手段により回収し、必
要により水洗して付着した硫酸や尿素を除去した後、 6
50〜850 ℃の温度で焼成して、アナターゼ型酸化チタン
粒子を得る。
The precipitate of metatitanic acid deposited by the above heating is recovered by an appropriate solid-liquid separation means such as filtration, and if necessary washed with water to remove the adhering sulfuric acid and urea.
It is calcined at a temperature of 50 to 850 ° C. to obtain anatase type titanium oxide particles.

【0019】本発明によれば、上記条件下で焼成を行う
ことにより、加水分解反応で生成したメタチタン酸粒子
の球形の形状を保持し、それ以上の粒子の凝集を引き起
こさずに、多孔質の酸化チタン粒子を得ることができ
る。従って、得られた酸化チタン粒子は、球形で粒径が
比較的均一に揃い、凝集が少なく (せいぜい数個の粒子
が凝集し) 、多孔質で比表面積が大きいという特徴を有
する。
According to the present invention, by performing the firing under the above conditions, the metatitanic acid particles produced by the hydrolysis reaction retain the spherical shape and do not cause further particle agglomeration, and Titanium oxide particles can be obtained. Therefore, the obtained titanium oxide particles are spherical and have a relatively uniform particle size, little aggregation (a few particles aggregate at most), and are porous and have a large specific surface area.

【0020】上記温度範囲での焼成により多孔質の粒子
が生成する理由については、図1に示す示差熱分析のデ
ータから次のように推測される。まず、室温〜500 ℃の
加熱中に吸熱反応である脱水が起こって、重量が大きく
減少する。次いで、500 ℃より高温になると脱SO3
起こって重量が再び減少し、このSO3 が抜けきること
によりその跡が空孔として残ることにより多孔質の粒子
が得られる。しかし、焼成温度が850 ℃超えると、焼結
により空孔が塞がれ、再び非多孔質となる。また、酸化
チタン粒子が多孔質であることは、その比表面積が著し
く高いことからもわかるが、酸化チタン粒子に精通した
研究者であれば、SEM写真からも判断することができ
る。
The reason why porous particles are produced by firing in the above temperature range is presumed as follows from the data of the differential thermal analysis shown in FIG. First, dehydration, which is an endothermic reaction, occurs during heating from room temperature to 500 ° C, and the weight is greatly reduced. Next, when the temperature becomes higher than 500 ° C., SO 3 desorption occurs and the weight is reduced again, and when this SO 3 is exhausted, the traces thereof remain as vacancies to obtain porous particles. However, when the firing temperature exceeds 850 ° C, the pores are closed by sintering and the material becomes non-porous again. Further, the fact that the titanium oxide particles are porous can be understood from the fact that the specific surface area thereof is extremely high, but a researcher who is familiar with the titanium oxide particles can also judge from the SEM photograph.

【0021】焼成温度が650 ℃を下回ると、粒子は無定
形となり、アナターゼ型結晶とならない場合がある上、
多孔質ではなく、比表面積が著しく小さな粒子が得られ
る。一方、焼成温度が850 ℃を超えても、上述したよう
に酸化チタン粒子が多孔質ではなくなり、比表面積の小
さい酸化チタン粒子が得られる。焼成温度がさらに高く
なって1000℃を超えると、粒子間の焼結が進むため、焼
成後に強力な粉砕処理が必要となり、粒径分布が広が
る。好ましい焼成温度は 700〜800 ℃である。
When the firing temperature is lower than 650 ° C., the particles become amorphous and may not be anatase type crystals.
Particles that are not porous and have a significantly small specific surface area are obtained. On the other hand, even if the firing temperature exceeds 850 ° C., the titanium oxide particles are not porous as described above, and titanium oxide particles having a small specific surface area can be obtained. If the firing temperature further rises and exceeds 1000 ° C., sintering between particles proceeds, so a strong pulverization process is required after firing, and the particle size distribution widens. The preferred firing temperature is 700-800 ° C.

【0022】焼成は空気中で実施すればよいが、焼成雰
囲気は特に制限されるものではなく、真空中または不活
性ガス中でも実施できる。ただし、焼成雰囲気が酸素を
含まない場合には、格子欠陥により白色度が低下する傾
向があるので、要すれば焼成後に酸素を含む雰囲気中で
アニールを行う。焼成時間は温度にもよるが、通常は10
〜30分間の範囲である。
The firing may be performed in air, but the firing atmosphere is not particularly limited, and may be performed in vacuum or in an inert gas. However, if the firing atmosphere does not contain oxygen, the whiteness tends to decrease due to lattice defects. Therefore, if necessary, annealing is performed in an atmosphere containing oxygen after firing. The firing time depends on the temperature, but is usually 10
~ 30 minutes range.

【0023】本発明の方法により製造されたアナターゼ
型酸化チタン粒子は、球状 (本発明では、長径/短径の
比が1.2 以内の粒子を球状と称する) の粒子がせいぜい
数個凝集した状態であり、平均粒径 (凝集粒子の場合は
凝集粒径) は 2.5〜5.5 μmの範囲内であって、粒度分
布 (重量分率で両側10%づつをカットした中央部80%の
粒子の粒度分布、以下の実施例でも同じ) が平均粒径の
±1.5 μmの範囲に入るという比較的均一な粒径を有し
ている。また、この酸化チタン粒子は多孔質で、比表面
積が30 m2/g 以上と大きい。
The anatase-type titanium oxide particles produced by the method of the present invention are spherical (in the present invention, particles having a major axis / minor axis ratio of 1.2 or less are referred to as spherical particles) in an aggregated state at most. Yes, the average particle size (aggregated particle size in the case of agglomerated particles) is within the range of 2.5 to 5.5 μm, and the particle size distribution (particle size distribution of the central part 80% with 10% cut on both sides by weight fraction) The same applies to the following examples) having a relatively uniform particle size of ± 1.5 μm of the average particle size. The titanium oxide particles are porous and have a large specific surface area of 30 m 2 / g or more.

【0024】[0024]

【実施例1】硫酸法による酸化チタン顔料の製造用原料
液 (イルメナイトを濃硫酸と加熱し、次いで水を加えて
浸出処理し、不溶物を除去した液) を採取し、濃度調整
を行って、硫酸チタニル濃度がTiO2に換算して10 g/l、
全硫酸濃度 (硫酸チタニルの硫酸根も硫酸として含めた
濃度) が38 g/l (過剰硫酸のチタンに対するモル比=2.
1)、Fe含有量が1.5 g/L の水溶液を調製した。
Example 1 A raw material liquid for producing a titanium oxide pigment by a sulfuric acid method (a liquid in which ilmenite was heated with concentrated sulfuric acid and then leaching treatment was performed by adding water to remove insoluble matter) was carried out, and its concentration was adjusted. , The concentration of titanyl sulfate converted to TiO 2 is 10 g / l,
The total sulfuric acid concentration (concentration of titanyl sulfate including sulfate radicals as sulfuric acid) was 38 g / l (molar ratio of excess sulfuric acid to titanium = 2.
1), an aqueous solution containing 1.5 g / L of Fe was prepared.

【0025】この水溶液16リットルに尿素 790 g (全硫
酸根に対するモル比=2.1)を添加し、100 RPM で攪拌し
ながら、95℃に加熱し、メタチタン酸がほぼ完全に析出
するまでこの温度で8時間加熱した。析出した沈殿を濾
別し、20倍量の水に分散させて攪拌する洗浄操作を3回
行った後、120 ℃で乾燥し、121 gのメタチタン酸を得
た。このメタチタン酸粒子の形状をSEM (走査式電子
顕微鏡) 写真により確認したところ、粒径が約1〜1.25
μmの範囲のほぼ球形の粒子が数個凝集したものが大半
を占めていた。
To 16 liters of this aqueous solution, 790 g of urea (molar ratio to all sulfates = 2.1) was added and heated to 95 ° C. with stirring at 100 RPM, at this temperature until metatitanic acid was almost completely precipitated. Heated for 8 hours. The deposited precipitate was separated by filtration, dispersed in 20 times amount of water and stirred three times, and then dried at 120 ° C. to obtain 121 g of metatitanic acid. When the shape of these metatitanic acid particles was confirmed by SEM (scanning electron microscope) photograph, the particle size was about 1 to 1.25.
Most of the particles were agglomerates of several spherical particles in the μm range.

【0026】このメタチタン酸粒子を空気中で200 ℃/h
の速度で表1に示す温度まで昇温させ、この温度に15分
間保持して、焼成を行った。得られた各焼成物は何れも
アナターゼ型酸化チタン結晶からなり、SEM写真か
ら、粒子形状は球形で、粒子の凝集は数個程度にとどま
り、平均粒径と粒度分布 (重量分率で両側の10%づつを
カットした残りの粒度分布) は表1に示す通りであっ
た。表1には、BET法で測定した酸化チタン粒子の比
表面積も併せて示す。表1からわかるように、焼成温度
が低すぎると、無定形で比表面積の小さい非多孔質の酸
化チタン粒子が得られ、焼成温度が高すぎると、アナタ
ーゼ型にはなるものの、やはり非多孔質で比表面積が著
しく小さい酸化チタン粒子が得られた。
The metatitanic acid particles were heated at 200 ° C./h in air.
The temperature was raised to the temperature shown in Table 1 at the rate of, and the temperature was maintained for 15 minutes to perform firing. Each of the obtained fired products was composed of anatase-type titanium oxide crystals, and from the SEM photograph, the particle shape was spherical, and the agglomeration of the particles was only a few, and the average particle size and particle size distribution (weight fraction of both sides were The remaining particle size distribution after cutting 10% each is as shown in Table 1. Table 1 also shows the specific surface area of the titanium oxide particles measured by the BET method. As can be seen from Table 1, if the firing temperature is too low, amorphous and non-porous titanium oxide particles having a small specific surface area are obtained, and if the firing temperature is too high, the anatase type is obtained, but the non-porous titanium oxide particles still remain. As a result, titanium oxide particles having a remarkably small specific surface area were obtained.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【比較例1】硫酸チタニル含有量がTiO2に換算して1g/
l 、全硫酸濃度が4g/l(過剰硫酸の対チタンモル比=2.
2)の硫酸チタニル水溶液8リットルに尿素50g (全硫酸
根に対するモル比=2.5)を添加し、100 RPM で攪拌しな
がら95℃まで昇温し、この温度で10時間加熱し続けた
が、水溶液は僅かに白濁しただけで、沈殿はほとんど得
られなかった。
[Comparative Example 1] The content of titanyl sulfate converted to TiO 2 was 1 g /
l, total sulfuric acid concentration 4g / l (molar ratio of excess sulfuric acid to titanium = 2.
50 g of urea (molar ratio to total sulfate = 2.5) was added to 8 liters of 2) titanyl sulfate aqueous solution, and the temperature was raised to 95 ° C with stirring at 100 RPM, and heating was continued at this temperature for 10 hours. Was slightly cloudy, and almost no precipitate was obtained.

【0029】[0029]

【比較例2】硫酸チタニル含有量がTiO2に換算して20g/
l 、全硫酸濃度が150 g/l(過剰硫酸の対チタンモル比=
5.0)の硫酸チタニル水溶液1リットルに尿素140 g (全
硫酸根に対するモル比=1.5)を添加し、100 RPM で攪拌
しながら95℃まで昇温し、この温度で10時間加熱し続け
た。濾過で回収されたメタチタン酸沈殿の量は約2gに
過ぎなかった。
[Comparative Example 2] The content of titanyl sulfate converted to TiO 2 was 20 g /
l, total sulfuric acid concentration 150 g / l (molar ratio of excess sulfuric acid to titanium =
To 1 liter of the aqueous solution of titanyl sulfate (5.0), 140 g of urea (molar ratio to all sulfates = 1.5) was added, the temperature was raised to 95 ° C. with stirring at 100 RPM, and heating was continued at this temperature for 10 hours. The amount of metatitanic acid precipitate recovered by filtration was only about 2 g.

【0030】[0030]

【実施例2】表2に示す硫酸チタニル濃度と過剰硫酸濃
を有する硫酸チタニル水溶液に、モル比で全硫酸根の2.
5 倍量の尿素を加え、得られた水溶液 (沸点は約114
℃) を100 RPM で攪拌しながら100 ℃でメタチタン酸が
ほぼ完全に析出するまで10時間加熱した。析出した沈殿
を実施例1と同様に水洗して回収し、乾燥した後、空気
中750 ℃で10分間焼成した。各焼成物は何れもアナター
ゼ型結晶で、その粒子形状、平均粒径、ならびに比表面
積は表2に示す通りであった。
Example 2 An aqueous solution of titanyl sulfate having a concentration of titanyl sulfate and an excess concentration of sulfuric acid shown in Table 2 was added to the total 2.
5 times the amount of urea was added and the resulting aqueous solution (boiling point about 114
) Was stirred at 100 RPM and heated at 100 ° C for 10 hours until the metatitanic acid was almost completely precipitated. The deposited precipitate was washed with water in the same manner as in Example 1, collected, dried, and then baked in air at 750 ° C. for 10 minutes. All the calcined products were anatase type crystals, and the particle shape, average particle size, and specific surface area were as shown in Table 2.

【0031】表2からわかるように、原料の硫酸チタニ
ル水溶液中の硫酸チタニル濃度および過剰硫酸濃度が本
発明の範囲を外れると、目的とする凝集が少なくアナタ
ーゼ型酸化チタンの球形粒子を得ることができなかっ
た。
As can be seen from Table 2, when the titanyl sulfate concentration and the excess sulfuric acid concentration in the raw material titanyl sulfate aqueous solution are out of the ranges of the present invention, the target aggregation is small and spherical particles of anatase type titanium oxide can be obtained. could not.

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【発明の効果】本発明によれば、硫酸法のアナターゼ型
酸化チタン顔料の製造に従来より工業的に利用されてき
た製造装置および製造原料を利用し、常圧で比較的短時
間の加熱により、粒径が均一に揃い、凝集度の小さい球
状のメタチタン酸粒子を経済的に得ることができ、この
メタチタン酸粒子を比較的低温で焼成することにより、
多孔質で比表面積が大きく、粒径が比較的均一な球状の
酸化チタン粒子が得られる。
According to the present invention, the production apparatus and the production raw materials which have been industrially used for producing the anatase type titanium oxide pigment by the sulfuric acid method are utilized, and the heating is carried out at ordinary pressure for a relatively short time. , Uniform particle size, it is possible to economically obtain spherical metatitanic acid particles with a small degree of aggregation, by calcining the metatitanic acid particles at a relatively low temperature,
Spherical titanium oxide particles having a large specific surface area and a relatively uniform particle size can be obtained.

【0034】本発明の方法で製造された酸化チタン粒子
は、その大きな比表面積と粒径が比較的均一な球状粒子
であるという特徴によって、それ自体をSOx やNOx
ガス等の酸化分解触媒として利用できるほか、殺菌剤を
含浸させた化粧料 (例、ファンデーション用粉末) 、触
媒担体などといった各種の含浸基材または担体材料とし
て幅広い用途に利用可能である。
The titanium oxide particles produced by the method of the present invention are characterized by having a large specific surface area and spherical particles having a relatively uniform particle size, and thus are themselves characterized by SOx and NOx.
It can be used as a catalyst for oxidative decomposition of gases and the like, and can also be used in a wide range of applications as various impregnated base materials or carrier materials such as cosmetics (eg, foundation powder) impregnated with a bactericidal agent and catalyst carriers.

【図面の簡単な説明】[Brief description of drawings]

【図1】メタチタン酸の示差熱分析結果を示すグラフ
(左軸=重量減少率、右軸=示差熱データ) である。
FIG. 1 is a graph showing the results of differential thermal analysis of metatitanic acid.
(Left axis = weight loss rate, right axis = differential thermal data).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 TiO2に換算して 5.0〜100 g/l の硫酸チ
タニルとチタンに対するモル比 1.0〜3.0 の過剰硫酸と
を含む硫酸チタニル水溶液に、この水溶液中の全硫酸根
に対し等モル以上の尿素を加えて、85℃以上、沸点以下
に加熱し、析出したメタチタン酸粒子を回収して 650〜
850 ℃で焼成することを特徴とする、粒度が均一で比表
面積の大きい多孔質球状アナターゼ型酸化チタン粒子の
製造方法。
1. An aqueous solution of titanyl sulfate containing 5.0 to 100 g / l of titanyl sulfate in terms of TiO 2 and excess sulfuric acid having a molar ratio of 1.0 to 3.0 with respect to titanium is equimolar to all sulfate groups in the aqueous solution. Add the above urea and heat to 85 ℃ or higher and below boiling point to recover the precipitated metatitanic acid particles.
A method for producing porous spherical anatase-type titanium oxide particles having a uniform particle size and a large specific surface area, which is characterized by firing at 850 ° C.
JP7139517A 1995-06-06 1995-06-06 Production of porous globular titanium oxide particle Withdrawn JPH08333117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7139517A JPH08333117A (en) 1995-06-06 1995-06-06 Production of porous globular titanium oxide particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7139517A JPH08333117A (en) 1995-06-06 1995-06-06 Production of porous globular titanium oxide particle

Publications (1)

Publication Number Publication Date
JPH08333117A true JPH08333117A (en) 1996-12-17

Family

ID=15247143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7139517A Withdrawn JPH08333117A (en) 1995-06-06 1995-06-06 Production of porous globular titanium oxide particle

Country Status (1)

Country Link
JP (1) JPH08333117A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1102431C (en) * 1998-08-03 2003-03-05 中国科学院山西煤炭化学研究所 Process for preparing Ti-base catalyst for catalytic reduction of NOx
WO2004035477A1 (en) * 2002-10-15 2004-04-29 Marukatsu Sangyo Co.,Ltd. Novel titanium oxide of lower order and method for preparation thereof
JP2005187294A (en) * 2003-12-26 2005-07-14 Dowa Mining Co Ltd Titanium dioxide for visible light response type catalyst and its manufacturing method
US7585488B2 (en) 2004-03-26 2009-09-08 Toho Titanium Co., Ltd. Anatase-type titanium oxide powder and method for producing same
JP2013028563A (en) * 2011-07-29 2013-02-07 Ishihara Sangyo Kaisha Ltd Titanium dioxide pigment for cosmetic and method for producing the same
WO2016159412A1 (en) * 2015-03-31 2016-10-06 제이앤제이 패밀리 주식회사 Method for preparing titanium oxide derivative

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1102431C (en) * 1998-08-03 2003-03-05 中国科学院山西煤炭化学研究所 Process for preparing Ti-base catalyst for catalytic reduction of NOx
WO2004035477A1 (en) * 2002-10-15 2004-04-29 Marukatsu Sangyo Co.,Ltd. Novel titanium oxide of lower order and method for preparation thereof
JP2005187294A (en) * 2003-12-26 2005-07-14 Dowa Mining Co Ltd Titanium dioxide for visible light response type catalyst and its manufacturing method
US7585488B2 (en) 2004-03-26 2009-09-08 Toho Titanium Co., Ltd. Anatase-type titanium oxide powder and method for producing same
JP2013028563A (en) * 2011-07-29 2013-02-07 Ishihara Sangyo Kaisha Ltd Titanium dioxide pigment for cosmetic and method for producing the same
WO2016159412A1 (en) * 2015-03-31 2016-10-06 제이앤제이 패밀리 주식회사 Method for preparing titanium oxide derivative

Similar Documents

Publication Publication Date Title
US6548039B1 (en) Processing aqueous titanium solutions to titanium dioxide pigment
EP2069439B1 (en) Nanocomposite particle and process of preparing the same
CN1128106C (en) Method for prodn. of mono-dispersed and crystalline TiO2 ultrafine powders from aqueous TiOCl2 solution using homogeneous precipitation
Qian et al. Preparation of ultrafine powders of TiO 2 by hydrothermal H 2 O 2 oxidation starting from metallic Ti
JP2009521392A (en) Method for producing titanium oxide particles, and particles and preparations produced thereby
JPH092818A (en) Production of crystalline titania powder from solution of titanium salt in water/alcohol mixed solvent
JPH1095617A (en) Plate-shaped titanium oxide, production thereof, and anti-sunburn cosmetic material, resin composition, coating material, adsorbent, ion exchanging resin, complex oxide precursor containing the same
KR100708812B1 (en) Manufacturing method of anatase type titanium dioxide photocatalyst
EP1194378B1 (en) Processing aqueous titanium solutions to titanium dioxide pigment
JPH08333117A (en) Production of porous globular titanium oxide particle
JP5317486B2 (en) Method for producing rutile type titanium oxide fine particles
JPH05163022A (en) Spherical anatase titanium oxide and its production
CN110550656A (en) Preparation method of three-phase mixed nano TiO 2
JP2002249319A (en) Method for producing titanium oxide
KR100404449B1 (en) The manufacturing method of titanium oxide powder by dropping precipitant
RU2435733C1 (en) Method of producing photocatalytic nanocomposite containing titanium dioxide
CN1597534A (en) Preparation method of nanometer rutile type titanium dioxide
KR100523451B1 (en) Production Method of Nano-sized Crystalline Titania Powders
JP4829771B2 (en) Spherical peroxotitanium hydrate and method for producing spherical titanium oxide
JPH04280816A (en) Production of porous fine particulate titanium oxide
JP2008273815A (en) Method for producing metal oxide powder, method for producing anatase-type titanium oxide powder, and method for producing sulfur-containing anatase-type titanium oxide powder
CN107531506B (en) Process for producing titanium oxide derivative
CN117865215A (en) Preparation method of battery-level nano titanium dioxide
KR20020050977A (en) Method of preparing titanium oxide
CN117138764A (en) Preparation method of titanium dioxide for high photocatalytic activity

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020806