WO2004020477A1 - Wässrige polymerdispersionen, verfahren zu ihrer herstellung sowie ihre verwendung, insbesondere in korrosionsschutzbeschichtungen - Google Patents

Wässrige polymerdispersionen, verfahren zu ihrer herstellung sowie ihre verwendung, insbesondere in korrosionsschutzbeschichtungen Download PDF

Info

Publication number
WO2004020477A1
WO2004020477A1 PCT/EP2003/007931 EP0307931W WO2004020477A1 WO 2004020477 A1 WO2004020477 A1 WO 2004020477A1 EP 0307931 W EP0307931 W EP 0307931W WO 2004020477 A1 WO2004020477 A1 WO 2004020477A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
copolymer
acid
monomers
monomer
Prior art date
Application number
PCT/EP2003/007931
Other languages
English (en)
French (fr)
Inventor
Christian Meiners
Stephan Krieger
Ulrich Désor
Gerhard Merten
Original Assignee
Celanese Emulsions Gmbh
Clariant Gmbh
The Nippon Synthetic Chemical Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Celanese Emulsions Gmbh, Clariant Gmbh, The Nippon Synthetic Chemical Industry Co., Ltd. filed Critical Celanese Emulsions Gmbh
Priority to JP2004531809A priority Critical patent/JP4979192B2/ja
Publication of WO2004020477A1 publication Critical patent/WO2004020477A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents

Definitions

  • Aqueous polymer dispersions processes for their preparation and their use, in particular in corrosion protection coatings
  • the present invention relates to new aqueous copolymer dispersions, processes for their preparation and their use, in particular in corrosion protection coatings.
  • Aqueous polymer dispersions for use in anti-corrosion coatings are subject to a number of boundary conditions which must be observed in order to ensure adequate protection against rust formation.
  • the coating must have sufficient hydrophobicity to prevent the diffusion of water to the interface between the substrate and the coating, since water is significantly involved in the corrosion process.
  • good adhesion between the substrate and the coating should be ensured in order to minimize the formation of bubbles at the substrate / coating interface due to the infiltration of the anticorrosive protective layer by water.
  • the corrosion protection layer should have a good diffusion barrier effect against carbon dioxide.
  • Unsaturated ß-ketoester compounds, such as allylacetoacetate and acetoacetoxyethyl methacrylate have proven themselves in the literature as adhesion-increasing comonomers.
  • the task of ensuring good adhesion between the substrate and the coating is achieved in WO 99/14278 by acetoacetoxy groups in the polymer.
  • Poly (alkyleneimines) are added to the polymer dispersions, which crosslink with the acetoacetoxy groups during film formation with enamine formation.
  • the premature crosslinking reaction in the polymer dispersion was suppressed by the addition of anionic emulsifiers.
  • nonionic emulsifiers such as Example in WO 99/14275 and WO 99/14279.
  • nonionic emulsifiers are subsequently added as stabilizers.
  • Phosphate emulsifiers are used for the polymerization.
  • the dispersions obtained have little tendency to foam.
  • a disadvantage of these coatings is the need to post-stabilize the dispersions obtained by adding emulsifiers.
  • larger amounts of the emulsifiers are to be added in order to achieve the required storage stability.
  • the addition of poly (alkyleneimine) emulsifier is therefore on the one hand expensive, on the other hand the water absorption increases with an increased emulsifier content in a coating, which is detrimental to the corrosion protection effect.
  • amines tend to form brown-colored degradation products in aqueous solutions, which are undesirable per se and can also apparently lead to discoloration of the coating.
  • the packaging of the dispersions with the described additives and the necessary final pH reduction with a buffer system further increase the costs for the manufacture of the product.
  • crosslinking mechanism of polyamines with acetoacetoxy groups based on aqueous polymer dispersions is i.a. also described in WO 98/54256.
  • US Pat. No. 5,122,566 discloses a process for the preparation of latices which is carried out by means of aqueous emulsion polymerization in the presence of phosphate emulsifiers and at a pH ⁇ 3.5.
  • the dispersions described in this document also contain at least one water-insoluble, nonionic surface-active agent and are adjusted to a pH in the range from 7 to 10.5 after the polymerization.
  • the use of adhesion-increasing acetoacetoxy derivatives of (meth) acrylic acid is not disclosed.
  • EP-A-0 476 528 discloses a process for the (industrial) production of latices, in which copolymers of vinyl aromatics are used by means of aqueous emulsion polymerization in the presence of a seed polymer at pH ⁇ 3.5 in the presence of phosphate emulsifiers and a water-insoluble, nonionic surface-active agent and acrylates. Except for the presence of at least one seed polymer, this method is identical to that disclosed in US Pat. No. 5,122,566. According to EP-A-0 476 528, polymers with a very high coagulum content are obtained on an industrial production scale in the absence of at least one seed polymer, ie the process according to US Pat. No. 5,122,566.
  • the present invention was therefore based on the object of providing aqueous polymer dispersions which, in corrosion protection coatings, have a high resistance to corrosion in the condensation water test in accordance with DIN 50017, are accessible on an industrial scale and can be prepared without the complex synthetic methods described in the prior art.
  • the films of the polymers should be distinguished by high transparency, that is to say the absence of disruptive scattering centers due to the formation of aggregates during the polymerization, so that they can also be used in clearcoats.
  • aqueous polymer dispersion having a solids content of 20 to 74% by weight, preferably 40 to 70% by weight, containing at least one copolymer A) which
  • the copolymer A) used according to the invention usually has a copolymer at least one glass transition temperature T g in the range from -35 to 80 ° C., preferably one T g in the range from 0 to 40 ° C. or two T g 's in the range from -30 to +20 ° C (first T fl ) and from +40 to + 80 ° C (second T g ).
  • the glass transition temperature of the copolymer A) used according to the invention is set by selecting the type and amount of the comonomers.
  • the proportions by weight of the monomers a) to c) are preferably chosen so that a copolymer composed only of them would have a glass transition temperature T g in the range from -35 to 80.degree.
  • the aqueous dispersions according to the invention have a significantly improved resistance of the resulting corrosion protection coatings in the condensation test according to DIN 50017. Furthermore, the aqueous dispersions according to the invention have reduced coagulum formation during the polymerization. The dispersions obtained can be produced perfectly on an industrial scale and the corrosion protection primer coatings formulated with them have increased (storage) stability. Finally, coatings with a high gloss can be produced with the dispersions according to the invention.
  • Preferred building blocks a) of the at least one copolymer are the esters ⁇ , ⁇ -ethylenically unsaturated carboxylic acids with alkanols containing 1 to 18 carbon atoms, preferably the esters of acrylic and methacrylic acid with methanol, ethanol, propanols, butanols, pentanols, 2- Ethyl hexanol, iso-octanol, n-decanol and n-dodecanol.
  • vinyl aromatic monomers such as styrene and its alkyl derivatives such as methyl styrene, ethyl styrene and oligo (alkyl) styrenes are preferred monomers.
  • alkenes such as ethene, propene, isobutene and derivatives of these compounds, such as vinyl chloride, vinyl ether and esters of (aliphatic) carboxylic acids with alkenes, preferably vinyl acetate, or ethylenically unsaturated esters of versatic acid as building blocks a).
  • Mono- or oligoethylenically unsaturated mono- or oligocarboxylic acids and their anhydrides or their salts are used as building blocks b).
  • Acrylic acid, methacrylic acid, itaconic acid, maleic acid and / or fumaric acid and their salts are preferably used. If the pH of the aqueous monomer emulsion template containing the building blocks b) and c) is ⁇ 4.7, it must be raised to at least pH> 4.7.
  • building blocks b) and (if used) c) in water, optionally together with building blocks d) and emulsifiers and optionally initiators, in the aqueous monomer emulsion template and the monomer emulsion template by adjusting the pH to bases with pH> 4 , 7 is neutralized before the rest of the monomers are added.
  • Partially water-soluble building blocks d) such as, for example, AAEMA, can be added to the aqueous initial charge of the monomer emulsion.
  • the mixture of the following is used as the monomer emulsion template Substances in the storage vessel for the production of monomer emulsions: water, building blocks b), building blocks c) (if present), emulsifiers and optionally building blocks d) and optionally initiators.
  • Sodium and potassium hydroxide are preferably used to raise the pH of the monomer emulsion template.
  • Ammonia is particularly preferably used for the neutralization of the monomer emulsion charge, since the base volatilizes after the film formation of the polymer, which results in less water absorption by the polymer.
  • Preferred building blocks c) are ethylenically unsaturated derivatives of sulfuric, sulfonic, phosphoric and / or phosphonic acid in the form of their sodium, potassium and ammonium salts. Particularly preferred are sodium ethenesulfonate, 2-acrylamido-2-methylpropanesulfonic acid (AMPS ®) salts and Kaliumsulfopropyl methacrylate.
  • AMPS ® 2-acrylamido-2-methylpropanesulfonic acid
  • Kaliumsulfopropyl methacrylate The ammonium salts are particularly preferably used since after
  • Film consolidation the free acids are present in the polymer, which have a lower water absorption of the polymer than the corresponding salts.
  • the aqueous polymer dispersions according to the invention further contain at least 0.3% by weight, preferably 0.3 to 5% by weight, based on the weight of the monomers used to prepare the copolymer, of emulsifiers containing phosphate and / or phosphone groups.
  • the emulsifiers are preferably used as ammonium, sodium and potassium salts of the phosphoric acid esters and / or the phosphonic acid esters.
  • the salts of these compounds with other bases can also be used.
  • the free phosphoric acid and / or phosphonic acid esters are used as raw material, they can be neutralized to pH> 7 (in part) in situ by reacting an aqueous solution of the emulsifier with a base, preferably with ammonia.
  • Emulsifiers containing phosphate groups are preferred, in particular esters of phosphoric acid with alcohols and phenols (also as mixtures of mono-, di- and triesters of phosphoric acid), esters of phosphoric acid with adducts of alcohols or (alkyl) phenols and ethylene oxide and / or propylene oxide and the sodium -, Potassium and ammonium salts of these compounds used.
  • the compounds are commercially available, for example, under the trade name ® Berol 522 (alkylphosphoric acid potassium salt), ® Hostaphat1306 (alkyloligoethoxylate phosphoric acid ester and ® Berol 733 (alkylphenololigoethoxylate phosphate potassium salt).
  • phosphate group-containing emulsifiers ethylenically unsaturated esters of phosphoric acid and hydrocarbons derived therefrom with hydrocarbons can also be used Neutralization products with bases can be used.
  • the at least one copolymer of the aqueous dispersion additionally contains 0.05 to 10% by weight, particularly preferably 0.5 to 3% by weight, based on the weight of the monomers used to prepare the copolymer, of a free-radically polymerizable one Monomers d) with at least one acetoacetoxy group in copolymerized form.
  • Acetoacetoxyethyl methacrylate (AAEMA) and acetoacetoxyethyl acrylate (AAEA) are preferably used as preferred monomers d). Also
  • Acetoacetic acid vinyl ether can be used.
  • the monomers d) can also be introduced with the monomers b) and c) in the initial charge of the monomer emulsion if they, e.g. AAEMA, are partially water-soluble.
  • the at least one copolymer of the aqueous dispersion can additionally, based in each case on the weight of the monomers used to prepare the copolymer, from 0 to 10% by weight, preferably 0 to 2% by weight and particularly preferably 0.05 to 1 Wt .-%, at least one (mono) - or (oligo) - ethylenically unsaturated reactive crosslinking monomers e) copolymerized, in addition to it 0 to 30 wt .-%, preferably 0 to 5 wt .-%, other copolymerizable (mono ) - or (oligo) ethylenically unsaturated monomers f) copolymerized and additionally 0 to 5% by weight, preferably 0 to 2 % By weight, particularly preferably 0 to 0.5% by weight, of molecules g) which react with the polymer by polymer-analogous reactions.
  • Monomers that crosslink during film formation are preferably ethylenically unsaturated derivatives of silane, such as, for example, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriisopropoxysilane, (methacrylicoxypropyltrimethoxysilane, vinyltris (2-methoxyethoxy) silane and (methacryoxoxy-2-oxypropyl-methoxysiloxysilane ) silane, used.
  • silane such as, for example, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriisopropoxysilane, (methacrylicoxypropyltrimethoxysilane, vinyltris (2-methoxyethoxy) silane and (methacryoxoxy-2-oxypropyl-methoxysiloxysilane ) silane, used.
  • glycidyl (meth) acrylates and / or other ethylenically unsaturated derivatives of glycidol such as, for example, glycidyl vinyl ether.
  • Diacetone acrylamide can also be used as monomer e). In this case, however, a dihydrazide should be added as a co-crosslinker. Masked derivatives of N-methylolacrylamide, such as N-butoxymethylmethacrylamide, can also be used as crosslinking agents.
  • monomers f) which can be used include, for example, unsaturated nitrogen-containing monomers, such as methacrylamide and dimethylaminoethyl (meth) acrylate, derivatives of urea, such as ß-ureidoethyl acrylate, ß-ureidovinyl ether, and ⁇ -hydroxyalkyl (meth) acrylates, where Methacrylamide is preferred.
  • unsaturated nitrogen-containing monomers such as methacrylamide and dimethylaminoethyl (meth) acrylate
  • derivatives of urea such as ß-ureidoethyl acrylate, ß-ureidovinyl ether, and ⁇ -hydroxyalkyl (meth) acrylates, where Methacrylamide is preferred.
  • bifunctional (meth) acrylates such as 1, 4- and 1, 3-butanediol di (meth) acrylate and 1, 6-hexanediol di (meth) acrylate
  • bifunctional ethylene derivatives such as divinylbenzene, butadiene
  • trifunctional (meth) acrylates such as trimethylolpropane trimethacrylate
  • Epoxysilanes are preferably used here, particularly preferably glycidyloxypropyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltriethoxysilane, ⁇ - (3,4- Epoxycyclohexyl) ethyltrimethoxysilane, furthermore oligofunctional silanes such as 1 - (triethoxysilyl) -2- (diethoxymethylsilyl) ethane or tris- [3- (trimethoxysilyl) propyljisocyanurate.
  • the aqueous composition according to the invention contains
  • UV crosslinking substances which are not ethylenically unsaturated are.
  • Preferred UV crosslinkers are acetophenone, benzophenone and acetophenone or benzophenone derivatives which do not contain an ethylenically unsaturated polymerizable group.
  • Derivatives of benzophenone which are present as a liquid mixture at room temperature, optionally with the addition of suitable auxiliary substances, are particularly preferred since these are advantageous in terms of application technology.
  • Phosphine oxide derivatives can also be used.
  • the aqueous polymer dispersion according to the invention can also contain further emulsifiers.
  • the total amount of emulsifiers is preferably in the range from 0.3 to 10% by weight, particularly preferably 0.3 to 3.5% by weight, based on the total amount of the monomers of the copolymer.
  • Preferred further emulsifiers are those which contain alkyl, aryl or alkylaryl groups.
  • a poly (ethylene oxide), a poly (propylene oxide) or a poly (ethylene oxide / propylene oxide) can be used as a spacer between the hydrocarbon radical and the polar head group.
  • ionic emulsifiers based on sulfate, sulfonate or carboxylate in addition to the phosphate or phosphonate emulsifiers is less preferred.
  • Nonionic co-emulsifiers in addition to the phosphate and / or phosphone emulsifiers can also be used.
  • the emulsifiers are preferably added before and / or during the polymerization.
  • ionic and nonionic emulsifiers can also be added to the finished dispersion in order to increase their stability.
  • the amount of emulsifiers used should be kept as low as possible in order to minimize the water absorption of the coatings.
  • the aqueous polymer dispersion according to the invention contains 0 to 5% by weight, preferably 0 to 1% by weight, based on the weight of the monomers used to prepare the copolymer, of protective colloids.
  • All protective colloids known to the person skilled in the art and suitable for the present purpose can be used as protective colloids.
  • water-soluble carboxymethyl celluloses are preferably used, particularly preferably in the form of their ammonium or alkali salts.
  • Commercially available products are, for example, ® Blanose 7M, ® Blanose 7UL, ® Blanose 7EL and ® Ambergum 3021 (Aqualon).
  • carboxymethyl celluloses can optionally carry further substituents, such as, for example, alkyl or hydroxyalkyl radicals, alkyloxyalkyl radicals and dialkylamino groups.
  • substituents such as, for example, alkyl or hydroxyalkyl radicals, alkyloxyalkyl radicals and dialkylamino groups. Examples include methylcarboxymethyl cellulose, ethyl carboxymethyl cellulose, hydroxyethyl carboxymethyl cellulose, hydroxypropyl carboxymethyl cellulose, methoxyethyl carboxymethyl cellulose and ethoxyethyl carboxymethyl cellulose.
  • high-molecular compounds such as, for example, polyvinyl alcohols, polyvinyl pyrrolidones, polyacrylamides, polymethacrylamides or polycarboxylic acids and their alkali metal or ammonium salts can also be used as protective colloids.
  • the aqueous polymer dispersion according to the invention contains 0 to 10% by weight, preferably 0.05 to 3% by weight, based on the weight of the monomers used to prepare the copolymer, of dispersants, preferably of polymeric dispersants.
  • dispersants preferably of polymeric dispersants.
  • All dispersants known to the person skilled in the art and suitable for the present purpose can be used as dispersants. Examples include water-soluble poly (meth) acrylic acids and / or their alkali or ammonium salts.
  • dispersants with hydrophobic components are preferably used, such as, for example, water-soluble copolymers of vinyl aromatics, in particular styrene with ethylenically unsaturated carboxylic acids and / or their anhydrides, in particular maleic anhydride.
  • These copolymers are particularly preferably used in the form of the corresponding ammonium and alkali salts. Some or all of these can also be introduced during or before the polymerization.
  • ® SMA resins such as the ® SMA 3000 HNa from Cray Valley, can be used.
  • the aqueous polymer dispersion according to the invention can, if appropriate, also film-forming auxiliaries, such as, for example, butyl diglycol and white spirit, plasticizers, such as, for example, dimethyl phthalate and dibutyl phthalate, and / or other auxiliaries, such as, for example, corrosion inhibitors, polyurethane and polyacrylate thickeners, preservatives, defoamers, such as Examples include mineral oil or silicone oil defoamers, wetting agents and other additives, as are usually used for the formulation of coating compositions.
  • auxiliaries such as, for example, butyl diglycol and white spirit
  • plasticizers such as, for example, dimethyl phthalate and dibutyl phthalate
  • auxiliaries such as, for example, corrosion inhibitors, polyurethane and polyacrylate thickeners, preservatives, defoamers, such as Examples include mineral oil or silicone oil defoamers, wetting agents and other additives, as are usually used
  • the present invention relates both to the aqueous polymer dispersions and to processes for their preparation and their use, in particular in anti-rust coatings.
  • the copolymers can be prepared by the methods of free radical suspension, mini-emulsion, microemulsion and emulsion polymerization known to the person skilled in the art. However, emulsion polymerization in water is preferred as the production process.
  • the aqueous polymer dispersions prepared therefrom are the preferred delivery form for the copolymers according to the invention.
  • the at least one copolymer is accordingly preferably by free radical emulsion polymerization in an aqueous medium under the
  • the conventional methods of emulsion polymerization emulsify the monomers in the aqueous phase in the presence of the emulsifiers, initiators and, if appropriate, the protective colloid and polymerize them preferably at temperatures in the range from 25 to 95 ° C.
  • the emulsion polymerization can by the processes known to the person skilled in the art, such as, for example, batch or emulsion feed processes, the emulsion feed process being preferred, in which part of the monomer emulsion is initially introduced and polymerized before the remaining monomers are metered in as an aqueous monomer emulsion.
  • a plurality of monomer (emulsion) feeds of different compositions are preferably metered in successively.
  • multi-stage polymers with heterogeneous morphology of the resulting polymer film are obtained.
  • the preparation of such multistage polymers is described, for example, in EP-A-0 795 568.
  • Suitable multistage polymers have lower minimum film formation temperatures (MFTs) than homogeneous polymers of the same monomer composition and are therefore preferred.
  • MFTs minimum film formation temperatures
  • Multi-stage polymers can also be produced in a particularly block-resistant manner. Deviating from this, the monomers can also be metered in according to the so-called power feed technique with a constant or abrupt gradient of the monomer composition.
  • Both the emulsifier (s) and any protective colloids which may be used can be (partly) placed in the reactor and / or (partly) metered in with the monomer emulsion.
  • One or more monomer emulsion templates can be used in the process according to the invention.
  • the pH of the monomer emulsion template comprising the at least one monomer b) and optionally the at least one monomer c) is> 4.7, preferably 4.7 to 11, particularly preferably 4.7 to 8 and very particularly preferably 5 to 7.
  • the emulsifiers are usually added together with the monomer emulsion templates, it being possible for different monomer emulsion templates to contain different emulsifiers.
  • the monomer template containing the at least one monomer b) preferably contains emulsifiers containing phosphate groups.
  • Monomer templates containing monomers a), b) and optionally c) and emulsifiers containing phosphate groups are particularly preferably used.
  • the polymerization is usually carried out at pH values of> 4.7, preferably 4.7 to 11 and particularly preferably 5 to 7.
  • Oil and / or water-soluble radical formers or redox initiator systems are used to start and carry out the polymerization.
  • potassium, sodium or ammonium peroxodisulfate, hydrogen peroxide, dibenzoyl peroxide, lauryl peroxide, tert-butyl hydroperoxide, azoisobutyronitrile and other azo initiators are preferably used, optionally together with reducing reagents such as sodium bisulfite, ® rongalit, glucose, ascorbic acid or tartaric acid.
  • the polymerization initiators are generally used in amounts of 0.1 to 10% by weight, preferably 0.1 to 1% by weight, in each case based on the total weight of the monomers used to prepare the copolymer.
  • regulators such as thiols
  • n-dodecyl mercaptan thiophenol
  • 2-methyl-5-tert-butylthiophenol being preferably used.
  • the regulator or regulators are generally used in amounts of 0 to 1% by weight, based on the weight of the monomers used to prepare the copolymer.
  • the final pH of the aqueous dispersions is generally adjusted to pH 6 to 10 using aqueous solutions of ammonia or alkali hydroxide solutions.
  • aqueous dispersions according to the invention can be prepared by adding conventional additives, pigments, plasticizers and, if appropriate, other ingredients, for example fillers, dispersants, thickeners, corrosion protection pigments, corrosion inhibitors, wetting agents, UV inhibitors, UV initiators and / or other polymeric binders can be formulated into coating compositions. They are particularly suitable for the production and use of optionally pigmented coatings, such as, for example, anti-rust coatings, clear lacquers, gloss lacquers and decorative coatings, in which increased substrate adhesion is required. The improved substrate adhesion is ensured by the presence of phosphate and, if applicable, wet adhesion promoters such as acetoacetoxy groups in the synthetic resin preparation.
  • AAEMA and / or AAEA are particularly preferably used as functional monomers of the at least one copolymer.
  • Suitable substrates are preferably metals, particularly preferably steel, but also inorganic surfaces containing silicate, and wood. Furthermore, acetoacetoxy groups which may be present ensure that the coatings according to the invention have a low tendency to block, ie have little tendency to block when pressing two drying surfaces which have been treated with the coatings. Good substrate adhesion is also achieved if, instead of the monomers d), reactive-crosslinking monomers e) are used.
  • the determination of the minimum film-forming temperature (MFT) of the polymers was carried out in accordance with DIN-ISO 2115.
  • the glass transition temperatures (T g ) of the polymers were determined by means of DSC (Differential Scanning Calorimetry). The heating and cooling rate was 20 ° C / min in each case, and the recorded temperature range was -60 ° C to + 130 ° C.
  • the specified glass transition temperatures of the polymers were determined in the 2nd heating cycle (mid-point evaluation). By using the Fox equation, the glass transition temperatures of the polymers can be estimated to a good approximation (see TG Fox, Bull. Am. Phys. Soc. (Ser. II), 1, 123 [1956]).
  • the glass transition temperatures of the homopolymers built up from the monomers a), b) and c) are largely known and are listed, for example, in J. Brandrup, EH Immergut, Polymer Handbook, 2 nd Ed., J. Wiley, New York, 1975.
  • Monomer emulsion liquor (monomer emulsion template): Become one after the other
  • Example 11 After storage for one day at room temperature, the dispersions of Examples 1 to 10 (solids content approx. 47%), water and Texanol are added to the paste in the amounts described and the finished coating is stirred for a further 10 minutes at 500 rpm.
  • Example 11 k and 111 (see Table 3) is before Color formulation each 1.44 wt .-% based on the polymer dispersions gross SMA ⁇ 3000 HNa solution (Cray Valley, delivery form about 25% solids) added to the dispersion.
  • Example 12 Testing of anti-rust coatings in a constant condensation test according to DIN 50017 and storage stability of the primer formulations
  • the primers from Example 11 are applied to galvanized steel sheets with a 100 ⁇ m spiral doctor blade (wet layer thickness approx. 100 ⁇ m, dry layer thickness approx. 50 ⁇ m) and then 14 days at 23 ° C and 50% rel. Humidity dried. Then the dry layer thickness is determined and the sheets parallel to the long axis in the middle of the substrate are scored over the entire length of the test specimen using a scribe tool so that there is a distance of 30 mm from the sheet edges. The test is carried out in a climate change test device from Weiss at 40 ° C. and 100% rel. Humidity carried out at an exposure duration of 864 hours.
  • KSW (4 x bubble quantity + 1 x bubble size + 1 x degree of rust) / 6
  • the bubble quantity, bubble size and degree of rust were determined in accordance with DIN 53209 and DIN 53210.
  • Storage stability is ensured by storing the primers for 3 months at room temperature determined in closed PE vessels.
  • the assessment is carried out on a scale from 1 to 5, 1 meaning excellent storage stability without any settling of the fillers and pigments and 5 very strong settling with considerable serum formation.
  • V comparative example
  • P example according to the invention
  • 3 phosphate emulsifier
  • 4 sulfate emulsifier
  • the use of the dispersions according to the invention which are produced at pH 5 of the monomer emulsion liquor and thus (partially) neutralized carboxylic acid monomer groups, results in increased stability of the anti-rust primer. While the primer 11i coagulates immediately when the binder is added during the primer preparation, the formulation 11j according to the invention is stable.
  • the dispersions according to the invention surprisingly produce a significantly increased rust protection effect in the constant climate condensation water test in rust protection primers, compared to polymers in which the monomer emulsion template containing carboxylic acid groups b) was not adjusted to at least pH> 4.7. Only by combining the features of the presence of a phosphate emulsifier and using a monomer emulsion template containing the building blocks b) with a pH> 4.7 are the inventive

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Wässrige Polymerdispersionen für Korrosionsschutzbeschichtungen sowie ihre Herstellung und Verwendung. Die Erfindung betrifft Polymerdispersionen für den Korrosionsschutz mit guten Rostschutzeigenschaften, ihre Herstellung und ihre Verwendung. Die Polymerdispersionen weisen phosphat- und/oder phosphonatgruppenhaltige Emulgatoren auf, und die als Stabilisatoren zugesetzten (Carbon)säuregruppen werden vor der Polymerisation durch Zugabe von Basen (teil)neutralisiert. So werden Polymerdispersionen mit verbesserten Rostschutzeigenschaften gemäss Kondenswassertest DIN 50017 und niedrigem Koagulatanteil bei Produktion im grosstechnischen Massstab erhalten. Die Polymerdispersionen bewirken zudem eine verbesserte Stabilität der mit ihnen hergestellten Korrosionsschutz-Primer. Mit den Polymerdispersionen lassen sich Beschichtungen mit hohem Glanz formulieren.

Description

Beschreibung
Wässrige Polymerdispersionen, Verfahren zu ihrer Herstellung sowie ihre Verwendung, insbesondere in Korrosionsschutzbeschichtungen
Die vorliegende Erfindung betrifft neue wässrige Copolymerisatdispersionen, Verfahren zu ihrer Herstellung sowie ihre Verwendung, insbesondere in Korrosionsschutzbeschichtungen.
Wässrige Polymerdispersionen für den Einsatz in Korrosionsschutzbeschichtungen unterliegen einer Reihe von Randbedingungen, welche beachtet werden müssen, um eine ausreichende Schutzwirkung gegenüber der Rostbildung zu gewährleisten. So muss die Beschichtung eine ausreichende Hydrophobie aufweisen, um die Diffusion von Wasser zur Grenzfläche zwischen Substrat und Beschichtung zu unterbinden, da Wasser am Korrosionsprozess maßgeblich beteiligt ist. Weiterhin sollte eine gute Haftung zwischen Substrat und Beschichtung gewährleistet sein, um die Blasenbildung an der Grenzfläche Substrat/Beschichtung bedingt durch Unterwanderung der antikorrosiven Schutzschicht durch Wasser zu minimieren. Schließlich sollte die Korrosionsschutzschicht eine gute Diffusionssperrwirkung gegenüber Kohlendioxid aufweisen. Als adhäsionssteigernde Comonomere haben sich in der Literatur unter anderem ungesättigte ß-Ketoesterverbindungen, wie zum Beispiel Allylacetoacetat und Acetoacetoxyethylmethacrylat, bewährt.
Die Aufgabe, eine gute Haftung zwischen Substrat und Beschichtung zu gewährleisten, wird in der WO 99/14278 durch Acetoacetoxygruppen im Polymer gelöst. Den Polymerdispersionen werden Poly(alkylenimine) zugesetzt, die bei der Filmbildung unter Enaminbiidung mit den Acetoacetoxygruppen vernetzen. Durch die Nachgabe von anionischen Emulgatoren konnte die vorzeitige Vernetzungsreaktion in der Polymerdispersion unterdrückt werden. In gleicher weise wird die Stabilisierung des Vernetzersystems mit nichtionischen Emulgatoren, wie zum Beispiel in der WO 99/14275 und in der WO 99/14279, offenbart. In letzterer Schrift werden nichtionische Emulgatoren als Stabilisatoren nachträglich zugesetzt. Zur Polymerisation werden Phosphatemulgatoren verwendet. Die erhaltenen Dispersionen neigen wenig zum Schäumen.
Nachteilig an diesen Beschichtungen ist die Notwendigkeit, die erhaltenen Dispersionen durch Zugabe von Emulgatoren nachzustabilisieren. Gemäß den offenbarten Beispielen sind größere Mengen der Emulgatoren zuzusetzen, um die geforderte Lagerstabilität zu erreichen. Die Nachgabe an Poly(alkylenimin)- Emulgator ist somit einerseits teuer, andererseits steigt die Wasseraufnahme mit erhöhtem Emulgatorgehalt in einer Beschichtung an, was der Korrosionsschutzwirkung abträglich ist. Weiterhin besteht die Gefahr, dass die Emulgatoren an die Grenzfläche Substrat/Beschichtung wandern und dort zu einer Reduzierung der Adhäsion am Substrat führen können. Dies führt im Verbund mit erhöhter Wasseraufnahme zu Blasenbildung in den Beschichtungen ("Blistering").
Schließlich neigen Amine in wässrigen Lösungen zur Bildung von braungefärbten Abbauprodukten, welche per se unerwünscht sind und auch augenscheinlich zu einer Verfärbung der Beschichtung führen können. Die Konfektionierung der Dispersionen mit den beschriebenen Nachgaben und die notwendige abschließende pH-Reduzierung mit einem Puffersystem erhöhen weiterhin die Kosten für die Herstellung des Produkts.
Der Vernetzungsmechanismus von Polyaminen mit Acetoacetoxygruppen basierend auf wässrigen Polymerdispersionen wird u.a. auch in der WO 98/54256 beschrieben.
In der US 5,122,566 wird ein Verfahren zur Herstellung von Latices offenbart, das mittels wässriger Emulsionspolymerisation in Anwesenheit von Phosphatemulgatoren und bei einem pH < 3,5 durchgeführt wird. Die in diesem Dokument beschriebenen Dispersionen enthalten weiterhin mindestens ein wasserunlösliches, nichtionisches oberflächenaktives Mittel und werden nach der Polymerisation auf einen pH im Bereich von 7 bis 10,5 eingestellt. Die Verwendung von adhäsionssteigernden Acetoacetoxyderivaten der (Meth)acrylsäure wird nicht offenbart.
In der EP-A-0 476 528 wird ein Verfahren zur (großtechnischen) Herstellung von Latices offenbart, bei dem mittels wässriger Emulsionspolymerisation in Gegenwart eines Saatpolymeren bei pH < 3,5 in Gegenwart von Phosphatemulgatoren und eines wasserunlöslichen, nichtionischen oberflächenaktiven Mittels Copolymere aus Vinylaromaten und Acrylaten hergestellt werden. Bis auf die Anwesenheit mindestens eines Saatpolymeren ist dieses Verfahren mit dem in der US 5,122,566 offenbarten identisch. Laut der EP-A-0 476 528 werden im industriellen Produktionsmaßstab in Abwesenheit des mindestens einen Saatpolymeren, also dem Verfahren gemäß der US 5,122,566, Polymerisate mit sehr hohem Koagulatgehalt erhalten.
Der vorliegenden Erfindung lag somit die Aufgabe zugrunde, wässrige Polymerdispersionen bereitzustellen, die in Korrosionsschutzbeschichtungen eine hohe Beständigkeit gegenüber Korrosion im Kondenswassertest gemäß DIN 50017 aufweisen, großtechnisch zugänglich sind und ohne die im Stand der Technik beschriebenen aufwendigen Synthesemethoden hergestellt werden können.
Weiterhin sollen sich die Filme der Polymerisate durch hohe Transparenz, das heißt Abwesenheit von störenden Streuzentren durch Aggregatbildung während der Polymerisation, auszeichnen, um sie auch in Klarlacken einsetzen zu können.
Die gestellte Aufgabe wird erfindungsgemäß gelöst durch eine wässrige Polymerdispersion, mit einem Feststoffanteil von 20 bis 74 Gew.-%, vorzugsweise 40 bis 70 Gew.-%, enthaltend mindestens ein Copolymerisat A), das
a) 40 bis 99,95 Gew.-%, vorzugsweise 60 bis 90 Gew.-%, bezogen auf das Gewicht der zur Herstellung des Copolymerisats eingesetzten Monomeren, mindestens eines mono- oder oligoethylenisch ungesättigten Monomeren, das durch freie radikalische Emulsionspolymerisation polymerisiert werden kann, b) 0,05 bis 10 Gew.-%, vorzugsweise 0,05 bis 5 Gew.-%, bezogen auf das Gewicht der zur Herstellung des Copolymerisats eingesetzten Monomeren, mindestens einer ethylenisch ungesättigten Mono- und/oder Oligocarbonsäure, bzw. deren Salze, und c) 0 bis 5 Gew.-%, vorzugsweise 0,05 bis 2 Gew.-%, bezogen auf das Gewicht der zur Herstellung des Copolymerisats eingesetzten Monomeren, mindestens einer sonstigen ethylenisch ungesättigten Mono- und/oder Oligosäure, abgeleitet von der Phosphorsäure, Phosphonsäure, Schwefelsäure und/oder Sulfonsäure bzw. deren Salze,
copolymerisiert enthält,
die dadurch gekennzeichnet ist, dass sie mindestens 0,3 Gew.-%, vorzugsweise 0,3 bis 5 Gew.-%, bezogen auf das Gewicht der zur Herstellung des Copolymerisats eingesetzten Monomeren, an phosphat- und/oder phosphongruppenhaltigen Emulgatoren enthält und dass die das mindestens eine Monomere b) und falls anwesend das mindestens eine Monomere c) enthaltende mindestens eine Monomeremulsionsvorlage einen pH-Wert > 4,7 aufweist.
Das erfindungsgemäß eingesetzte Copolymerisat A) weist üblicherweise Copolymerisat mindestens eine Glasübergangstemperatur Tg im Bereich von -35 bis 80°C, vorzugsweise eine Tg im Bereich von 0 bis 40°C oder zwei Tg 's im Bereich von -30 bis +20°C (erste Tfl) und von +40 bis +80°C (zweite Tg), auf.
Die Einstellung der Glasübergangstemperatur des erfindungsgemäß eingesetzten Copolymerisats A) erfolgt durch Auswahl von Art und Menge der Comonomeren.
Vorzugsweise werden die Gewichtsanteile der Momomeren a) bis c) so gewählt, dass ein nur aus ihnen aufgebautes Copolymerisat eine Glasübergangstemperatur Tg im Bereich von -35 bis 80°C aufweisen würde.
Es wurde überraschend gefunden, dass die erfindungsgemäßen, wässrigen Dispersionen eine deutlich verbesserte Beständigkeit der resultierenden Korrosionsschutzbeschichtungen im Kondenswassertest gemäß DIN 50017 aufweisen. Weiterhin weisen die erfindungsgemäßen, wässrigen Dispersionen eine verminderte Koagulatbildung während der Polymerisation auf. Die erhaltenen Dispersionen lassen sich großtechnisch einwandfrei produzieren und die mit ihnen formulierten Korrosionsschutz-Grundierungs-Überzüge weisen eine erhöhte (Lager)stabilität auf. Schließlich lassen sich mit den erfindungsgemäßen Dispersionen Beschichtungen mit hohem Glanz herstellen.
Als Bausteine a) des mindestens einen Copolymerisats bevorzugt sind die Ester σ,ß- ethylenisch ungesättigter Carbonsäuren mit 1 bis 18 C-Atome enthaltenden Alkanolen, vorzugsweise die Ester der Acryl- und Methacrylsäure mit Methanol, Ethanol, Propanolen, Butanolen, Pentanolen, 2-Ethylhexanol, iso-Octanol, n- Decanol und n-Dodecanol. Weiterhin sind vinylaromatische Monomere, wie Styrol und seine Alkylderivate, wie zum Beispiel Methylstyrol, Ethylstyrol und Oligo(alkyl)styrole bevorzugte Monomere. Weiterhin können Alkene, wie Ethen, Propen, Isobuten sowie Derivate dieser Verbindungen, wie Vinylchlorid, Vinylether sowie Ester von (aliphatischen) Carbonsäuren mit Alkenen, bevorzugt Vinylacetat, oder ethylenisch ungesättigte Ester der Versatiesäure als Bausteine a) eingesetzt werden.
Als Bausteine b) werden mono- oder oligoethylenisch ungesättigte Mono- oder Oligocarbonsäuren sowie deren Anhydride bzw. deren Salze eingesetzt. Bevorzugt werden Acrylsäure, Methacrylsäure, Itaconsäure, Maleinsäure und/oder Fumarsäure sowie deren Salze eingesetzt. Beträgt der pH-Wert der die Bausteine b) und c) enthaltenden wässrigen Monomeremulsionsvorlage < 4,7, so ist er auf mindestens pH > 4,7 anzuheben. Dies geschieht, indem die Bausteine b) und (falls eingesetzt) c) in Wasser, gegebenenfalls zusammen mit den Bausteinen d) sowie Emulgatoren und ggf. Initiatoren, in der wässrigen Monomeremulsionsvorlage vorgelegt und die Monomeremulsionsvorlage durch pH-Einstellung mit Basen auf pH > 4,7 neutralisiert wird, bevor der Rest der Monomeren zugesetzt wird. Teilweise wasserlösliche Bausteine d), wie zum Beispiel AAEMA, können vorab in die wässrige Vorlage der Monomeremulsion gegeben werden.
Als Monomeremulsionsvorlage wird in dieser Schrift die Mischung aus folgenden Stoffen im Vorlagegefäß zur Monomeremulsionsherstellung bezeichnet: Wasser, Bausteinen b), Bausteinen c) (wenn vorhanden), Emulgatoren und optional Bausteinen d) und gegebenenfalls Initiatoren.
Bevorzugt wird zur pH-Erhöhung der Monomeremulsionsvorlage Natrium- und Kaliumhydroxid verwendet. Besonders bevorzugt wird zur Neutralisation der Monomeremulsionsvorlage Ammoniak verwendet, da sich die Base nach der Filmbildung des Polymeren verflüchtigt, was eine geringere Wasseraufnahme des Polymeren nach sich zieht.
Als Bausteine c) bevorzugt sind ethylenisch ungesättigte Derivate der Schwefel-, Sulfon-, Phosphor- und/oder Phosphonsäure in Form ihrer Natrium-, Kalium- und Ammonium-Salze. Besonders bevorzugt sind Natriumethensulfonat, 2-Acrylamido-2- methylpropansulfonsäure- (®AMPS)-Salze sowie Kaliumsulfopropyl-methacrylat. Besonders bevorzugt werden die Ammoniumsalze verwendet, da nach
Filmkonsolidierung die freien Säuren im Polymer vorliegen, welche eine geringere Wasseraufnahme des Polymerisats als die entsprechenden Salze aufweisen.
Bei der Angabe der Gewichtsanteile der einzelnen (Comonomer)bausteine am mindestens einen Copolymerisat wird davon ausgegangen, dass alle eingesetzten Comonomere zu 100 % in das Copolymerisat eingebaut werden.
Die erfindungsgemäßen wässrigen Polymerdispersionen enthalten weiterhin mindestens 0,3 Gew.-%, bevorzugt 0,3 bis 5 Gew.-%, bezogen auf das Gewicht der zur Herstellung des Copolymerisats eingesetzten Monomeren, an phosphat- und/oder phosphongruppenhaltigen Emulgatoren. Die Emulgatoren werden bevorzugt als Ammonium-, Natrium- und Kalium-Salze der Phosphorsäureester und/oder der Phosphonsäureester eingesetzt. Jedoch können auch die Salze dieser Verbindungen mit anderen Basen eingesetzt werden. Werden die freien Phosphorsäure- und/oder Phosphonsäureester als Rohstoff eingesetzt, so können sie in situ durch Umsetzung einer wässrigen Lösung des Emulgators mit einer Base, bevorzugt mit Ammoniak, auf pH > 7 (teil)neutralisiert werden. Bevorzugt werden phosphatgruppenhaltige Emulgatoren, insbesondere Ester der Phosphorsäure mit Alkoholen und Phenolen (auch als Gemische aus Mono- Di- und Triester der Phosphorsäure), Ester der Phosphorsäure mit Addukten aus Alkoholen bzw. (Alkyl)phenolen und Ethylenoxid und/oder Propylenoxid und die Natrium-, Kalium- und Ammoniumsalze dieser Verbindungen eingesetzt. Die Verbindungen sind beispielsweise unter dem Handelsnamen ®Berol 522 (Alkylphosphorsäure- Kaliumsalz), ®Hostaphat1306 (Alkyloligoethoxylat-Phosphorsäureester und ®Berol 733 (Alkylphenololigoethoxylatphosphat-Kaliumsalz) kommerziell erhältlich. Als phosphatgruppenhaltige Emulgatoren können auch ethylenisch ungesättigte Ester der Phosphorsäure mit Kohlenwasserstoffen und die hiervon abgeleiteten Neutralisationsprodukte mit Basen verwendet werden.
In einer bevorzugten Ausführungsform enthält das mindestens eine Copolymerisat der wässrigen Dispersion zusätzlich 0,05 bis 10 Gew.-%, besonders bevorzugt 0,5 bis 3 Gew.-%, bezogen auf das Gewicht der zur Herstellung des Copolymerisats eingesetzten Monomeren, eines radikalisch polymerisierbaren Monomeren d) mit mindestens einer Acetoacetoxygruppe in copolymerisierter Form.
Als bevorzugte Monomere d) werden vorzugsweise Acetoacetoxyethylmethacrylat (AAEMA) sowie Acetoacetoxyethylacrylat (AAEA) eingesetzt. Auch
Acetessigsäurevinylether kann verwendet werden. Die Monomeren d) können erfindungsgemäß auch mit den Monomeren b) und c) in der Vorlage der Monomeremulsion vorgelegt werden, falls sie, wie z.B. AAEMA, teilweise wasserlöslich sind.
Darüber hinaus kann das mindestens eine Copolymerisat der wässrigen Dispersion zusätzlich, jeweils bezogen auf das Gewicht der zur Herstellung des Copolymerisats eingesetzten Monomeren, noch 0 bis 10 Gew.-%, vorzugsweise 0 bis 2 Gew.-% und besonders bevorzugt 0,05 bis 1 Gew.-%, mindestens eines (mono)- oder (oligo)- ethylenisch ungesättigten reaktiv-vemetzenden Monomeren e) copolymerisiert, zusätzlich dazu noch 0 bis 30 Gew.-%, vorzugsweise 0 bis 5 Gew.-%, sonstiger copolymerisierbarer (mono)- oder (oligo)ethylenisch ungesättigter Monomere f) copolymerisiert und zusätzlich dazu noch 0 bis 5 Gew.-%, vorzugsweise 0 bis 2 Gew.-%, besonders bevorzugt 0 bis 0,5 Gew.-%, durch polymeranaloge Reaktionen mit dem Polymer reagierende Moleküle g) enthalten.
Als reaktiv-vemetzende Monomere e), d.h. Monomere, die bei der Filmbildung vernetzen, werden bevorzugt ethylenisch ungesättigte Derivate des Silans, wie zum Beispiel Vinyltrimethoxysilan, Vinyltriethoxysilan, Vinyltriisopropoxysilan, (-Methacryloxypropyltrimethoxysilan, Vinyl-tris-(2-methoxyethoxy)silan und (-MethacryIoxypropyl-tris-(2-methoxyethoxy)silan, eingesetzt.
Weiterhin sind als Monomere e) Glycidyl(meth)acrylate und/oder andere ethylenisch ungesättigte Derivate des Glycidols geeignet, wie zum Beispiel Glycidylvinylether.
Ebenfalls als Monomer e) kann Diacetonacrylamid verwendet werden. In diesem Fall sollte jedoch ein Dihydrazid als Covemetzer zugesetzt werden. Auch können maskierte Derivate des N-Methylolacrylamids, wie N-Butoxymethylmethacrylamid, vernetzend eingesetzt werden.
Als sonstige Monomere f) können beispielsweise ungesättigte stickstoffhaltige Monomere, wie zum Beispiel Methacrylamid und Dimethylaminoethyl-(meth)acrylat, Abkömmlinge des Harnstoffs, wie zum Beispiel ß-Ureidoethylacrylat, ß-Ureidovinylether, sowie φ-Hydroxyalkyl(meth)acrylate eingesetzt werden, wobei Methacrylamid bevorzugt ist.
Auch bifunktionelle (Meth)acrylate, wie 1 ,4- und 1 ,3-Butandioldi(meth)acrylat sowie 1 ,6-Hexandioldi(meth)acrylat, bifunktionelle Ethylenderivate, wie Divinylbenzol, Butadien sowie trifunktionelle (Meth)acrylate, wie Trimethylolpropantrimethacrylat, können als sonstige ungesättigte Monomere f) zur Erhöhung der Elastizität der Beschichtung verwendet werden.
Als Bausteine g) können im allgemeinen Substanzen eingesetzt werden, welche mit funktioneilen Gruppen des Polymers durch polymeranaloge Reaktionen reagieren. Vorzugsweise werden hier Epoxysilane eingesetzt, besonders bevorzugt Glycidyloxypropyltrimethoxysilan, ß-(3,4-Epoxycyclohexyl)-ethyltriethoxysilan, ß-(3,4- Epoxycyclohexyl)ethyltrimethoxysilan, weiterhin oligofunktionelle Silane wie 1 -(Triethoxysilyl)-2-(diethoxymethylsilyl)ethan oder tris-[3-(Trimethoxysilyl)- propyljisocyanurat.
In einer weiteren Ausführungsform enthält die erfindungsgemäße wässrige
Polymerdispersion 0 bis 5 Gew.-%, vorzugsweise 0 bis 0,5 und besonders bevorzugt 0 bis 0,3 Gew.-%, bezogen auf das Gewicht der zur Herstellung des Copolymerisats eingesetzten Monomeren, an UV-vernetzenden Substanzen, die nicht ethylenisch ungesättigt sind. Bevorzugt als UV-Vernetzer sind Acetophenon, Benzophenon sowie Acetophenon- oder Benzophenonderivate, die keine ethylenisch ungesättigte polymerisierbare Gruppe enthalten. Besonders bevorzugt werden Derivate des Benzophenons eingesetzt, die bei Raumtemperatur, gegebenenfalls unter Zusatz geeigneter Hilfssubstanzen, als flüssige Mischung vorliegen, da diese anwendungstechnisch vorteilhaft sind. Auch Phosphinoxidderivate können eingesetzt werden.
Weiterhin kann die erfindungsgemäße wässrige Polymerdispersion neben den phosphat- und/oder phosphongruppenhaltigen Emulgatoren auch weitere Emulgatoren enthalten. Die Gesamtmenge an Emulgatoren liegt vorzugsweise im Bereich von 0,3 bis 10 Gew.-%, besonders bevorzugt 0,3 bis 3,5 Gew.-% bezogen auf die Gesamtmenge der Monomeren des Copolymerisats. Als weitere Emulgatoren bevorzugt sind solche, die Alkyl-, Aryl- oder Alkylarylgruppen enthalten. Als Spacer zwischen dem Kohlenwasserstoffrest und der polaren Kopfgruppe kann ein Poly(ethylenoxid), ein Poly(propylenoxid) oder ein Poly(ethylenoxid/propylenoxid) eingesetzt werden. Weniger bevorzugt ist die Verwendung von weiteren ionischen Emulgatoren auf Sulfat-, Sulfonat- bzw. Carboxylatbasis neben den Phosphat- bzw. Phosphonatemulgatoren. Nichtionische Co-Emulgatoren zusätzlich zu den Phosphat- und/oder Phosphonemulgatoren können ebenfalls eingesetzt werden. Bevorzugt werden die Emulgatoren vor und/oder während der Polymerisation zugesetzt. Es können jedoch auch ionische sowie nichtionische Emulgatoren zur fertigen Dispersion zugesetzt werden, um deren Stabilität zu erhöhen. Die Menge der verwendeten Emulgatoren sollte möglichst gering gehalten werden, um die Wasseraufnahme der Beschichtungen zu minimieren. In einer weiteren Ausführungsform enthält die erfindungsgemäße wässrige Polymerdispersion 0 bis 5 Gew.-%, vorzugsweise 0 bis 1 Gew.-%, bezogen auf das Gewicht der zur Herstellung des Copolymerisats eingesetzten Monomere, an Schutzkolloiden. Als Schutzkolloide können alle dem Fachmann bekannten und für den vorliegenden Zweck geeignete Schutzkolloide eingesetzt werden. Vorzugsweise werden jedoch wasserlösliche Carboxymethylcellulosen eingesetzt, besonders bevorzugt in Form ihrer Ammonium- oder Alkalisalze. Kommerziell verfügbare Produkte sind beispielsweise ®Blanose 7M, ®Blanose 7UL, ®Blanose 7EL sowie ®Ambergum 3021 (Aqualon). Weiterhin können die Carboxymethylcellulosen gegebenenfalls weitere Substituenten, wie zum Beispiel Alkyl- oder Hydroxyalkyl- reste, Alkyloxyalkylreste sowie Dialkylaminogruppen, tragen. Beispiele hierfür sind Methylcarboxymethylcellulose, Ethylcarboxymethylcellulose, Hydroxyethylcarboxy- methylcellulose, Hydroxypropylcarboxymethylcellulose, Methoxyethylcarboxy- methylcellulose und Ethoxyethylcarboxymethylcellulose.
Weiterhin können als Schutzkolloide aber auch hochmolekulare Verbindungen wie zum Beispiel Polyvinylalkohole, Polyvinylpyrrolidone, Polyacrylamide, Polymethacrylamide oder Polycarbonsäuren sowie deren Alkalimetall- bzw. Ammoniumsalze eingesetzt werden.
In einer weiteren, bevorzugten Ausführungsform enthält die erfindungsgemäße wässrige Polymerdispersion 0 bis 10 Gew.-%, vorzugsweise 0,05 bis 3 Gew.-%, bezogen auf das Gewicht der zur Herstellung des Copolymerisats eingesetzten Monomere, an Dispergiermitteln, vorzugsweise an polymeren Dispergiermitteln. Als Dispergiermittel können alle dem Fachmann bekannten und für den vorliegenden Zweck geeignete Dispergiermittel eingesetzt werden. Beispiele dafür sind wasserlösliche Poly(meth)acrylsäuren und/oder deren Alkali- oder Ammoniumsalze. Vorzugsweise werden jedoch Dispergiermittel mit hydrophoben Anteilen eingesetzt, wie zum Beispiel wasserlösliche Copolymerisate von Vinylaromaten, insbesondere Styrol mit ethylenisch ungesättigten Carbonsäuren und/oder deren Anhydriden, insbesondere Maleinsäureanhydrid. Besonders bevorzugt werden diese Copolymerisate in Form der entsprechenden Ammonium- und Alkalisalze eingesetzt. Diese können teilweise oder vollständig auch schon während oder vor der Polymerisation vorgelegt werden. Namentlich können z.B. ®SMA-Harze, wie das ®SMA 3000 HNa der Firma Cray Valley, eingesetzt werden.
Darüber hinaus kann die erfindungsgemäße wässrige Polymerdispersion gegebenenfalls noch filmbildende Hilfsmittel, wie zum Beispiel Butyldiglykol und Testbenzin, Weichmacher, wie zum Beispiel Dimethylphthalat und Dibutylphthalat, und/oder andere Hilfsstoffe, wie zum Beispiel Korrosionsinhibitoren, Polyurethan- und Polyacrylatverdicker, Konservierungsmittel, Entschäumer, wie zum Beispiel Mineralöl- oder Silikonölentschäumer, Netzmittel und andere Additive enthalten, wie sie üblicherweise zur Formulierung von Beschichtungsmassen eingesetzt werden.
Die vorliegende Erfindung betrifft sowohl die wässrigen Polymerdispersionen als auch Verfahren zu ihrer Herstellung sowie ihre Verwendung, insbesondere in Rostschutzbeschichtungen.
Die Copolymerisate sind nach den dem Fachmann bekannten Methoden der radikalischen Suspensions-, Miniemulsions-, Mikroemulsions- und Emulsionspolymerisation herstellbar. Bevorzugt als Herstellungsverfahren ist jedoch die Emulsionspolymerisation in Wasser. Die daraus hergestellten wässrigen Polymerdispersionen sind die bevorzugte Lieferform der erfindungsgemäßen Copolymerisate.
Das mindestens eine Copolymerisat wird demgemäss vorzugsweise durch freie radikalische Emulsionspolymerisation in wässrigem Medium unter den dem
Fachmann bekannten Bedingungen der Emulsionspolymerisation in Gegenwart von radikalbildenden Initiatoren und Emulgatoren sowie gegebenenfalls in Gegenwart von Schutzkolloiden, Reglern und weiteren Hilfsstoffen durchgeführt.
Durch die gängigen Verfahren der Emulsionspolymerisation werden die Monomere in der wässrigen Phase in Anwesenheit der Emulgatoren, Initiatoren und gegebenenfalls des Schutzkolloids emulgiert und vorzugsweise bei Temperaturen im Bereich von 25 bis 95°C polymerisiert. Die Emulsionspolymerisation kann hierbei nach den dem Fachmann bekannten Verfahren, wie zum Beispiel Batch- oder Emulsions-Zulaufverfahren, erfolgen, wobei das Emulsions-Zulaufverfahren bevorzugt ist, bei dem ein Teil der Monomeremulsion vorgelegt und auspolymerisiert wird, bevor die Dosierung der restlichen Monomeren als wässrige Monomeremulsion erfolgt. Vorzugsweise werden mehrere Monomer(emulsions)-zuläufe unterschiedlicher Zusammensetzung nacheinander zudosiert werden. Hierdurch werden Mehrstufenpolymerisate mit heterogener Morphologie des resultierenden Polymerfilms erhalten. Die Herstellung solcher Mehrstufenpolymerisate wird beispielsweise in der EP-A-0 795 568 beschrieben. Geeignete Mehrstufenpolymerisate weisen niedrigere Mindestfilmbildungstemperaturen (MFTs) auf als homogene Polymerisate der gleichen Monomerzusammensetzung und sind daher bevorzugt. Durch die niedrigere MFT kann der Verbrauch an umweltschädlichen, flüchtigen, filmbildenden Hilfsmitteln stark reduziert werden. Weiterhin lassen sich Mehrstufenpolymerisate besonders blockfest herstellen. Abweichend können die Monomeren auch nach der sog. Power-Feed-Technik mit einem konstanten oder sprunghaften Gradienten der Monomerenzusammensetzung zudosiert werden. Sowohl der bzw. die Emulgator(en) als auch gegebenenfalls zum Einsatz kommende Schutzkolloide können sowohl (zum Teil) im Reaktor vorgelegt werden und/oder (zum Teil) mit der Monomerenemulsion zudosiert werden.
Im erfindungsgemäßen Verfahren können eine oder mehrere Monomeremulsions- vorlagen eingesetzt werden. Erfindungsgemäß beträgt der pH-Wert der das mindestens eine Monomere b) und gegebenenfalls das mindestens eine Monomere c) enthaltenden Monomeremulsionsvorlage > 4,7, vorzugsweise 4,7 bis 11 , besonders bevorzugt 4,7 bis 8 und ganz besonders bevorzugt 5 bis 7.
Die Zugabe der Emulgatoren erfolgt üblicherweise zusammen mit den Monomeremulsionsvorlagen, wobei unterschiedliche Monomeremulsionsvorlagen unterschiedliche Emulgatoren enthalten können.
Vorzugsweise enthält die das mindestens eine Monomere b) enthaltende Monomervorlage phosphatgruppenhaltige Emulgatoren. Besonders bevorzugt werden Monomervorlagen eingesetzt enthaltend Monomere a), b) und gegebenenfalls c) sowie phosphatgruppenhaltige Emulgatoren.
Bei mehreren Monomeremulsionsvorlagen weisen vorzugsweise alle einen pH-Wert von > 4,7 vorzugsweise 4,7 bis 11 und besonders bevorzugt 5 bis 7 auf.
Die Polymerisation erfolgt üblicherweise bei pH-Werten von > 4,7 vorzugsweise 4,7 bis 11 und besonders bevorzugt 5 bis 7.
Zum Starten und Durchführen der Polymerisation werden öl- und/oder wasserlösliche Radikalbildner oder Redoxinitiatorsysteme verwendet. Bevorzugt werden z.B. Kalium-, Natrium- oder Ammoniumperoxodisulfat, Wasserstoffperoxid, Dibenzoylperoxid, Laurylperoxid, tert.-Butylhydroperoxid, Azoisobutyronitril und andere Azoinitiatoren eingesetzt, gegebenenfalls zusammen mit reduzierenden Reagenzien, wie beispielsweise Natriumbisulfit, ®Rongalit, Glucose, Ascorbinsäure oder Weinsäure. Die Polymerisationsinitiatoren werden im allgemeinen in Mengen von 0,1 bis 10 Gew.-%, vorzugsweise 0,1 bis 1 Gew.-%, eingesetzt, jeweils bezogen auf das Gesamtgewicht der zur Herstellung des Copolymerisats eingesetzten Monomeren.
Darüber hinaus können Regler, wie zum Beispiel Thiole, eingesetzt werden, wobei n- Dodecylmercaptan, Thiophenol sowie 2-Methyl-5-tert-butylthiophenol bevorzugt verwendet werden. Der oder die Regler werden im allgemeinen in Mengen von 0 bis 1 Gew.-% verwendet, bezogen auf das Gewicht der zur Herstellung des Copolymerisats eingesetzten Monomere.
Der End-pH-Wert der wässrigen Dispersionen wird im allgemeinen mit wässrigen Lösungen von Ammoniak oder Alkalihydroxidlösungen auf pH 6 bis 10 eingestellt.
Die erfindungsgemäßen wässrigen Dispersionen können durch Zugabe von üblichen Additiven, Pigmenten, Weichmachern sowie gegebenenfalls weiteren Zutaten, beispielsweise Füllstoffen, Dispergiermitteln, Verdickern, Korrosionsschutzpigmenten, Korrosionsinhibitoren, Netzmitteln, UV-Inhibitoren, UV-Initiatoren und/oder weiteren polymeren Bindemitteln, zu Beschichtungsmitteln formuliert werden. Sie eignen sich insbesondere zur Herstellung und Verwendung von gegebenenfalls pigmentierten Überzügen, wie zum Beispiel Rostschutzbeschichtungen, Klarlacken, Glanzlacken und dekorativen Beschichtungen, in denen eine erhöhte Substrathaftung verlangt wird. Die verbesserte Substrathaftung wird durch die anwesenden Phosphat- und ggf. anwesende Nasshaftungspromotoren wie Acetoacetoxygruppen der Kunstharzzubereitung gewährleistet. Besonders bevorzugt werden dabei AAEMA und/oder AAEA als funktioneile Monomere des mindestens einen Copolymerisats eingesetzt. Als Substrate eignen sich bevorzugt Metalle, besonders bevorzugt Stahl, jedoch auch anorganische, silikathaltige Oberflächen, und Holz. Weiterhin gewährleisten ggf. anwesende Acetoacetoxygruppen, dass die erfindungsgemäßen Beschichtungen eine geringe Blockneigung aufweisen, d.h. wenig zum Verblocken beim Verpressen zweier trocknender Oberflächen, die mit den Beschichtungen behandelt wurden, neigen. Eine gute Substrathaftung wird auch erreicht, wenn anstelle der Monomeren d) reaktiv-vernetzende Monomere e) eingesetzt werden Die Bestimmung der Mindestfilmbildetemperatur (MFT) der Polymerisate erfolgte nach DIN-ISO 2115. Die Ermittlung der Glasübergangstemperaturen (Tg) der Polymerisate erfolgte mittels DSC (Differential Scanning Calorimetry). Die Heiz- und Kühlgeschwindigkeit betrug jeweils 20°C/min, und der erfasste Temperaturbereich lag bei -60°C bis + 130°C. Die angegebenen Glasübergangstemperaturen der Polymerisate wurden im 2. Heizzyklus ermittelt (mid-point-Auswertung). Durch die Anwendung der Fox-Gleichung können die Glasübergangstemperaturen der Polymerisate in guter Näherung abgeschätzt werden (s. T. G. Fox, Bull. Am. Phys. Soc. (Ser. II), 1 , 123 [1956]). Die Glasübergangstemperaturen der aus den Monomeren a), b) und c) aufgebauten Homopolymeren sind größtenteils bekannt und z.B. aufgelistet in J. Brandrup, E.H. Immergut, Polymer Handbook, 2πd Ed., J. Wiley, New York, 1975.
Die Erfindung wird im folgenden anhand von Ausführungsbeispielen näher erläutert, ohne dadurch jedoch beschränkt zu werden.
Beispiele 1 bis 10: Herstellung der wässrigen Copolymerisat-Dispersionen:
a) Herstellung der Initiatorlösung: 3,75 g Kaliumpersulfat werden in 96,25 g deionisiertem Wasser (VE-Wasser) gelöst.
b) Polymerisation Herstellung der Monomeremulsion
Monomeremulsionsflotte (Monomeremulsionsvorlage): Nacheinander werden
491 ,2 g VE-Wasser, die beschriebene Menge Emulgator für die Monomeremulsion (siehe Tabelle 1 ), 19,2 g Methacrylsäure und gegebenenfalls 28,8 g AAEMA bei 1000 UpM mit einem mit Propellerrührer ausgestattetem Rührwerk durchmischt. Im Anschluss wird gegebenenfalls der pH-Wert mit der beschriebenen Menge (Tabelle 1 ) 12,5 %iger NH4OH auf 5 eingestellt.
Fertige Monomeremulsion: Anschließend wird eine Mischung aus 480 g Methylmethacrylat und 480 g n-Butylacrylat zugegeben, die resultierende Mischung für 10 Minuten bei 1000 UpM emulgiert.
In einen 3 I-Glasreaktor mit Ankerrührer werden nacheinander 526,4 g VE-Wasser, die beschriebene Menge Emulgator für die Vorlage (siehe Tabelle 1) unter Rühren bei 120 UpM auf 80°C erhitzt, dann 15,1 g der Initiatorlösung a) sowie 37 g der Monomeremulsion zugegeben und die Mischung für 15 Minuten gerührt. Das Anspringen der Polymerisation ist hierbei an der exothermen Wärmetönung zu erkennen. Die Innentemperatur des Reaktors wird stets auf 80 bis 82°C durch ein externes Wasserbad gehalten. Sodann wird die restliche Monomeremulsion binnen 180 Minuten und die restliche Initiatorlösung binnen 195 Minuten kontinuierlich durch separate Tropftrichter zudosiert. Nach dem Ende der Dosierung wird noch eine Stunde bei 80°C nachgeheizt, dann auf Raumtemperatur abgekühlt. Hierbei wird bei 30°C mit 12,5%igem Ammoniakwasser auf pH 7 bis 8 eingestellt. Tabelle 1 :
Figure imgf000017_0001
1: Tri-sec-Butylphenolhepta(ethylenglykol)ethersulfat-Natriumsalz (ca. 50%ig) 2: lsotridecylocta(ethylenglykol)ethermono- und -diphosphorsäureester (ca. 100 %ig) 3: 4-Nonylphenolpoly(ethylenglykol)etherphosphosphorsäure-Monokaliumsalz (ca. 35 %ig)
Durch die Anhebung des pH-Wertes der Monomeremulsionsflotte auf pH 5 und Einpolymerisation von AAEMA in das Polymer wird der mit 180 μm-Sieb abzufiltrierende Koagulatanteil einschließlich des am Rührer anhaftenden Koagulats stark reduziert. Dies zeigt der Vergleich der Beispiele 1 mit 2 bzw. 1 mit 6. Beispiel 11
Herstellung einer Rostschutz-Primer-Formulierung mit den Copolymerisat-
Dispersionen der Beispiele 1 bis 10
Tabelle 2:
Figure imgf000018_0001
In 8 g Wasser werden unter Rühren 4,4 g einer 5 %igen wässrigen Lösung von Borchigel L 75 eingetragen. Dann gibt man AMP 90, Surfynol SE-F, Additol VXW 4973, SerAd FA 179 dazu. Nun werden Heucophos ZP10, Mikrotalkum AT extra, Bayferrox 130 M und Millicarb in den in Tabelle 2 angegebenen Mengen nacheinander eingetragen und die Mischung bei 5000 UpM 20 Minuten im Dissolver geschert.
Nach einem Tag Lagerung bei Raumtemperatur werden zur Paste die Dispersionen der Beispiele 1 bis 10 (Festkörpergehalt ca. 47 %), Wasser und Texanol in den beschriebenen Mengen zugesetzt und die fertige Beschichtung noch für 10 Minuten bei 500 UpM gerührt. In Beispiel 11 k und 111 (s. Tabelle 3) wird vor der Farbformulierung je 1 ,44 Gew.-% bezogen auf die Polymerdispersionen brutto SMA^ 3000 HNa -Lösung (Cray-Valley, Lieferform ca. 25% Festkörper) in die Dispersion gegeben.
Tabelle 3:
Figure imgf000019_0001
Beispiel 12: Prüfung von Rostschutzbeschichtungen im Kondenswasser-Konstantklimatest gemäß DIN 50017 und Lagerstabilität der Primerformulierungen
Die Primer aus Beispiel 11 werden mit einem 100 μm-Spiralrakel (Nassschichtdicke ca.100 μm, Trockenschichtdicke ca. 50 μm) auf verzinkte Stahlbleche aufgetragen und anschließend 14 Tage bei 23°C und 50 % rel. Luftfeuchte getrocknet. Dann wird die Trockenschichtdicke ermittelt und die Bleche parallel zur Langachse mittig bis zum Substrat so über die ganze Länge des Prüfkörpers mit einem Ritzstichel eingeritzt, dass zu den Blechkanten ein Abstand von 30 mm blieb. Der Versuch wird in einem Klima-Wechseltestgerät der Fa. Weiss bei 40°C und 100 % rel. Luftfeuchte durchgeführt bei einer Expositionsdauer von 864 Stunden. Der hier angegebene Korrosionsschutzwert (KSW) errechnet sich wie folgt: KSW = (4 x Blasenmenge + 1 x Blasengröße + 1 x Rostgrad)/6 Hierbei werden die Einzelbeurteilungen jeweils auf einer Skala von 0 = sehr gut bis 5 = sehr schlecht getätigt, somit ist der beste KSW 0 und der schlechteste 5,0. Die Bestimmung von Blasenmenge, Blasengröße und Rostgrad erfolgte nach DIN 53209 und DIN 53210.
Die Lagerstabilität wird durch 3-monatige Lagerung der Primer bei Raumtemperatur in abgeschlossenen PE-Gefäßen ermittelt. Die Beurteilung erfolgt auf einer Skala von 1 bis 5, wobei 1 exzellente Lagerstabilität ohne jegliches Absetzen der Füllstoffe und Pigmente und 5 sehr starkes Absetzen unter erheblicher Serumbildung bedeuten.
Tabelle 4: Abschließende Übersichtstabelle
Figure imgf000020_0001
1: V = Vergleichsbeispiel; 2: P = erfindungsgemäßes Beispiel; 3: Phosphatemulgator; 4: Sulfatemulgator;
Es zeigt sich, dass der Einsatz der erfindungsgemäßen Dispersionen, welche bei pH 5 der Monomeremulsionsflotte und damit (partiell) neutralisierten Carbonsäuremonomergruppen hergestellt werden, eine erhöhte Stabilität der Rostschutzgrundierung nach sich zieht. Während die Grundierung 11i sofort bei Zugabe des Bindemittels bei der Primerherstellung koaguliert, ist die erfindungsgemäße Formulierung 11j stabil.
Wie die Ergebnisse zeigen (vgl. Tabelle 4), wird die Lagerstabilität der Beschichtung durch die Anwesenheit von AAEMA im Polymerisat noch erhöht, und die Zugabe von einem Styrol-Maleinsäureanhydrid-Copolymerisat zur Dispersion verbessert die Lagerstabilität der bindemittelhaltigen Rostschutzgrundierungen weiter. Durch diese Nachgabe wird die Stabilität der Korrosionsschutzgrundierung erheblich erhöht.
Die erfindungsgemäßen Dispersionen bringen in Rostschutzgrundierungen überraschend eine deutlich gesteigerte Rostschutzwirkung im Konstantklima- Kondenswassertest hervor, verglichen mit Polymerisaten, bei denen die Carbonsäuregruppen b) enthaltende Monomeremulsionsvorlage nicht auf mind. pH > 4,7 eingestellt wurde. Nur durch die Kombination der Merkmale Anwesenheit von Phosphatemulgator sowie Einsatz einer die Bausteine b) enthaltenden Monomeremulsionsvorlage mit pH > 4,7 werden die erfindungsgemäßen
Dispersionen erhalten, die koagulatarm sind und in der Grundierung eine gute bis ausreichende Lagerstabilität und einen sehr guten Rostschutz im Konstantklima- Kondenswassertest aufweisen.

Claims

Patentansprüche:
1. Wässrige Polymerdispersion, mit einem Feststoffanteil von 20 bis 74 Gew.-%, vorzugsweise 40 bis 70 Gew.-%, enthaltend mindestens ein Copolymerisat A), das
a) 40 bis 99,95 Gew.-%, vorzugsweise 60 bis 90 Gew.-%, bezogen auf das Gewicht der zur Herstellung des Copolymerisats eingesetzten Monomeren, mindestens eines mono- oder oligoethylenisch ungesättigten Monomeren, das durch freie radikalische Emulsionspolymerisation polymerisiert werden kann, b) 0,05 bis 10 Gew.-%, vorzugsweise 0,05 bis 5 Gew.-%, bezogen auf das
Gewicht der zur Herstellung des Copolymerisats eingesetzten Monomeren, mindestens einer ethylenisch ungesättigten Mono- und/oder Oligocarbonsäure, bzw. deren Salze, und c) 0 bis 5 Gew.-%, vorzugsweise 0,05 bis 2 Gew.-%, bezogen auf das Gewicht der zur Herstellung des Copolymerisats eingesetzten Monomeren, mindestens einer sonstigen ethylenisch ungesättigten Mono- und/oder Oligosäure, abgeleitet von der Phosphorsäure, Phosphonsäure, Schwefelsäure und/oder Sulfonsäure bzw. deren Salze,
copolymerisiert enthält,
die dadurch gekennzeichnet ist, dass sie mindestens 0,3 Gew.-%, vorzugsweise 0,3 bis 5 Gew.-%, bezogen auf das Gewicht der zur Herstellung des Copolymerisats eingesetzten Monomeren, an phosphat- und/oder phosphonatgruppenhaltigen Emulgatoren enthält und dass die das mindestens eine Monomere b) und falls anwesend das mindestens eine Monomere c) enthaltende mindestens eine Monomeremulsionsvorlage einen pH-Wert von > 4,7 aufweist.
2. Wässrige Polymerdispersion nach Anspruch 1 , dadurch gekennzeichnet, dass das Copolymerisat A) mindestens eine Glasübergangstemperatur Tg im Bereich von
-35 bis 80°C aufweist.
3. Wässrige Polymerdispersion nach Anspruch 1 , dadurch gekennzeichnet, dass als Bausteine a) im Copolymerisat A) Ester σ,ß-ethylenisch ungesättigter Carbonsäuren mit 1 bis 18 C-Atome enthaltenden Alkanolen, vorzugsweise die Ester der Acryl- und Methacrylsäure mit Methanol, Ethanol, Propanolen, Butanolen, Pentanolen, 2-Ethylhexanol, iso-Octanol, n-Decanol und n-Dodecanol, sowie Styrol copolymerisiert enthalten sind.
4. Wässrige Polymerdispersion nach Anspruch 1 , dadurch gekennzeichnet, dass als Bausteine b) im Copolymerisat A) mono- oder oligoethylenisch ungesättigte Mono- oder Oligocarbonsäuren sowie deren Anhydride bzw. deren Salze copolymerisiert enthalten sind, vorzugsweise Acrylsäure, Methacrylsäure, Itaconsäure, Maleinsäure und/oder Fumarsäure sowie deren Salze.
5. Wässrige Polymerdispersion nach Anspruch 1 , dadurch gekennzeichnet, dass als Bausteine c) im Copolymerisat A) ethylenisch ungesättigte Derivate, insbesondere Ester, der Schwefel-, Sulfon-, Phosphor- und/oder Phosphonsäure in Form ihrer Natrium-, Kalium- und Ammonium-Salze copolymerisiert enthalten sind, vorzugsweise Natriumethensulfonat, 2-Acrylamido-2-methylpropansulfonsäure- (AMPS)-Salze sowie Kaliumsulfopropylmethacrylat.
6. Wässrige Polymerdispersion nach Anspruch 1 , dadurch gekennzeichnet, dass sie als phosphatgruppenhaltige Emulgatoren Ester der Phosphorsäure mit Alkoholen und (Alkyl)phenolen, gegebenenfalls als Gemische aus Mono- Di- und Triester der Phosphorsäure, Ester der Phosphorsäure mit Addukten aus Alkoholen oder (Alkyl)phenolen und Ethylenoxid und/oder Propylenoxid und die Natrium-, Kalium- und Ammoniumsalze dieser Verbindungen enthält oder die Salze dieser Verbindungen mit anderen Basen.
7. Wässrige Polymerdispersion nach Anspruch 1 , dadurch gekennzeichnet, dass das Copolymerisat A) zusätzlich 0,05 bis 10 Gew.-%, besonders bevorzugt 0,5 bis 3 Gew.-%, bezogen auf das Gewicht der zur Herstellung des Copolymerisats A) eingesetzten Monomeren, mindestens eines radikalisch polymerisierbaren Monomeren d) mit mindestens einer Acetoacetoxygruppe, vorzugsweise Acetoacetoxyethylmethacrylat (AAEMA) sowie Acetoacetoxyethylacrylat (AAEA) oder Acetessigsäurevinylether, copolymerisiert enthält.
8. Wässrige Polymerdispersion nach Anspruch 1 , dadurch gekennzeichnet, dass das Copolymerisat A) zusätzlich, jeweils bezogen auf das Gewicht der zur Herstellung des Copolymerisats A) eingesetzten Monomeren, noch bis zu 10 Gew.- %, vorzugsweise bis zu 2 Gew.-% und besonders bevorzugt 0,05 bis 1 Gew.-%, mindestens eines (mono)- oder (oligo)ethylenisch ungesättigten reaktivvernetzenden Monomeren e) copolymerisiert, bis zu 30 Gew.-%, vorzugsweise bis zu 5 Gew.-%, sonstiger copolymerisierbarer (mono)- oder (oligo)ethylenisch ungesättigter Monomere f) copolymerisiert und bis zu 5 Gew.-%, vorzugsweise bis zu 2 Gew.-%, besonders bevorzugt bis zu 0,5 Gew.-% durch polymeranaloge Reaktionen mit dem Polymer reagierende Bausteine g) copolymerisiert enthält.
9. Wässrige Polymerdispersion nach Anspruch 1 , dadurch gekennzeichnet, dass als reaktiv-vernetzende Monomere e) im Copolymerisat A) ethylenisch ungesättigte
Derivate des Silans, insbesondere Vinyltrimethoxysilan, Vinyltriethoxysilan, Vinyltriisopropoxysilan, (-Methacryloxypropyltrimethoxysilan, Vinyl-tris-(2- methoxyethoxy)silan und (-Methacryloxypropyl-tris-(2-methoxyethoxy)silan, copolymerisiert enthalten sind oder Glycidyl(meth)acrylate und/oder andere ethylenisch ungesättigte Derivate des Glycidols, insbesondere Glycidylvinylether.
10. Wässrige Polymerdispersion nach Anspruch 1 , dadurch gekennzeichnet, dass als sonstige Monomere f) im Copolymerisat A) ungesättigte stickstoffhaltige Monomere, insbesondere Methacrylamid und Dimethylaminoethyl-(meth)acrylat, Abkömmlinge des Harnstoffs, insbesondere ß-Ureidoethylacrylat, ß-Ureidovinylether, sowie φ-Hydroxyalkyl(meth)acrylate und/oder bifunktionelle (Meth)acrylate, insbesondere 1 ,4- und 1 ,3-Butandioldi(meth)acrylat sowie 1 ,6- Hexandioldi(meth)acrylat, bifunktionelle Ethylenderivate, insbesondere Divinylbenzol und/oder Butadien, sowie trifunktionelle (Meth)acrylate, insbesondere Trimethylolpropantrimethacrylat copolymerisiert enthalten sind.
11. Wässrige Polymerdispersion nach Anspruch 1 , dadurch gekennzeichnet, dass als Bausteine g) im mindestens einen Copolymerisat A) solche Substanzen enthalten sind, die mit funktionellen Gruppen des Polymers durch polymeranaloge Reaktionen reagieren, vorzugsweise Epoxysilane, besonders bevorzugt Glycidyloxypropyltrimethoxysilan, ß-(3,4-Epoxycyclohexyl)-ethyltrieth-oxysilan, ß- (3,4-Epoxycyclohexyl)ethyltrimethoxysilan, oder oligofunktionelle Silane, insbesondere 1-(Triethoxysilyl)-2-(diethoxymethylsilyl)ethan und/oder Tris-[3- (trimethoxysilyl)-propyljisocyanurat.
12. Wässrige Polymerdispersion nach Anspruch 1 , dadurch gekennzeichnet, dass sie bis zu 5 Gew.-%, vorzugsweise bis zu 0,5 und besonders bevorzugt bis zu 0,3 Gew.-%, bezogen auf das Gewicht der zur Herstellung des Copolymerisats A) eingesetzten Monomere, an UV-vernetzenden Substanzen, die nicht ethylenisch ungesättigt sind, vorzugsweise Acetophenon, Benzophenon sowie Acetophenon- oder Benzophenonderivate, die keine ethylenisch ungesättigte polymerisierbare Gruppe enthalten, besonders bevorzugt Derivate des Benzophenons, die bei Raumtemperatur, gegebenenfalls unter Zusatz geeigneter Hilfssubstanzen, als flüssige Mischung vorliegen, oder Phosphinoxidderivate enthalten.
13. Wässrige Polymerdispersion nach Anspruch 1 , dadurch gekennzeichnet, dass sie neben den phosphat- und/oder phosphonatgruppenhaltigen Emulgatoren auch weitere Emulgatoren enthält, wobei die Gesamtmenge an Emulgatoren vorzugsweise im Bereich von 0,3 bis 10 Gew.-% liegt, besonders bevorzugt 0,3 bis 3,5 Gew.-% bezogen auf die Gesamtmenge der Monomeren des Copolymerisats A), vorzugsweise solche Emulgatoren, die Alkyl-, Aryl- oder Alkylarylgruppen enthalten, wobei als Spacer zwischen dem Kohlenwasserstoffrest und der polaren Kopfgruppe ein Poly(ethylenoxid), ein Poly(propylenoxid) oder ein Poly(ethylenoxid/propylenoxid) eingesetzt werden kann.
14. Wässrige Polymerdispersion nach Anspruch 1 , dadurch gekennzeichnet, dass sie zusätzlich bis zu 5 Gew.-%, vorzugsweise bis zu 1 Gew.-%, bezogen auf das Gewicht der zur Herstellung des Copolymerisats A) eingesetzten Monomeren, an Schutzkolloiden enthält, vorzugsweise wasserlösliche Carboxymethylcellulosen, besonders bevorzugt in Form ihrer Ammonium- oder Alkalisalze, oder Carboxymethylcellulosen, die gegebenenfalls weitere Substituenten, insbesondere Alkyl- oder Hydroxyalkylreste, Alkyloxyalkylreste sowie Dialkylaminogruppen, tragen, vorzugsweise Methylcarboxymethylcellulose, Ethylcarboxymethylcellulose, Hydroxyethylcarboxymethylcellulose, Hydroxypropylcarboxymethylcellulose, Methoxyethylcarboxymethylcellulose und Ethoxyethylcarboxymethylcellulose und/oder Polyvinylalkohole, Polyvinylpyrrolidone, Polyacrylamide,
Polymethacrylamide und/oder Polycarbonsäuren sowie deren Alkalimetall- bzw. Ammoniumsalze.
15. Wässrige Polymerdispersion nach Anspruch 1 , dadurch gekennzeichnet, dass sie zusätzlich bis zu 10 Gew.-%, vorzugsweise 0,05 bis 3 Gew.-%, bezogen auf das
Gewicht der zur Herstellung des Copolymerisats A) eingesetzten Monomeren, an Dispergiermittel enthält, vorzugsweise hydrophobe Anteile enthaltende Dispergiermittel, insbesondere wasserlösliche Copolymerisate des Styrols mit ethylenisch ungesättigten Carbonsäuren und/oder Anhydriden, besonders bevorzugt in Form der entsprechenden Ammonium- und Alkalisalze.
16. Verfahren zum Herstellen einer wässrigen Polymerdispersion nach Anspruch 1 durch radikalische Suspensions-, Miniemulsions-, Mikroemulsions- und Emulsionspolymerisation, umfassend die Schritte:
i) Vorlage mindestens einer Monomeremulsionsvorlage enthaltend Monomer a) und/oder b) und/oder c) nach Anspruch 1 in einem Polymerisationsreaktor, ii) gegebenenfalls Zugabe mindestens einer weiteren Monomeremulsionsvorlage enthaltend weitere das Copolymer A) aufbauende Comonomere, und iii) Durchführung der Polymerisation in an sich bekannter Weise, dadurch gekennzeichnet, dass iv) die Polymerisation in Gegenwart von mindestens 0,3 Gew.-%, vorzugsweise 0,3 bis 5 Gew.-%, bezogen auf das Gewicht der zur Herstellung des Copolymerisats eingesetzten Monomeren, an phosphat- und/oder phosphonatgruppenhaltigen Emulgatoren erfolgt und dass v) die das mindestens eine Monomere b) und falls anwesend das mindestens eine Monomere c) enthaltende mindestens eine Monomeremulsionsvorlage einen pH-Wert von > 4,7 aufweist.
17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass die die Komponente b) und falls anwesend die Komponente c) enthaltende mindestens eine Monomeremulsionsvorlage auf einen pH-Wert von > 4,7 mit Basen, bevorzugt mit Natrium- oder Kaliumhydroxid und ganz besonders bevorzugt mit Ammoniakwasser, eingestellt wird.
18. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass der pH-Wert der mindestens einen Monomeremulsionsvorlage auf einen Wert im Bereich von 5,0 bis 7,0 eingestellt wird.
19. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass das Copolymerisat A) durch freie radikalische Emulsionspolymerisation in wässrigem Medium in Gegenwart von radikalbildenden Initiatoren und Emulgatoren sowie gegebenenfalls in Gegenwart von Schutzkolloiden, Reglern und weiteren Hilfsstoffen hergestellt wird.
20. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass die Monomeren in der wässrigen Phase in Anwesenheit von Emulgatoren, Initiatoren und gegebenenfalls von Schutzkolloid emulgiert und bei Temperaturen im Bereich von 25 bis 95°C polymerisiert werden, wobei die Emulsionspolymerisation als Batch- oder vorzugsweise als Emulsions-Zulaufverfahren erfolgt, bei dem ein Teil der Monomeremulsion vorgelegt und auspolymerisiert wird, bevor die Dosierung der restlichen Monomeren als wässrige Monomeremulsion erfolgt.
21. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass mehrere Monomer(emulsions)zuläufe unterschiedlicher Zusammensetzung nacheinander zudosiert werden.
22. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass zum Starten und Durchführen der Polymerisation öl- und/oder wasserlösliche Radikalbildner oder Redoxinitiatorsysteme verwendet werden, vorzugsweise Kalium-, Natrium- oder Ammoniumperoxodisulfat, Wasserstoffperoxid, Dibenzoylperoxid, Laurylperoxid, tert.-Butylhydroperoxid, Azoisobutyronitril und andere Azoinitiatoren, gegebenenfalls zusammen mit reduzierenden Reagenzien, insbesondere Natriumbisulfit, das Natriumsalz der Hydroxymethansulfinsäure, Glucose, Ascorbinsäure oder Weinsäure.
23. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass Polymerisationsinitiatoren in einer Menge im Bereich von 0,1 bis 10 Gew.-%, vorzugsweise von 0,1 bis 1 Gew.-%, eingesetzt werden, jeweils bezogen auf das Gesamtgewicht der zur Herstellung des Copolymerisats A) eingesetzten Monomeren.
24. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass für die Emulsionspolymerisation zusätzlich Regler, insbesondere Thiole, eingesetzt werden, wobei n-Dodecylmercaptan, Thiophenol sowie 2-Methyl-5-tert-butylthiophenol bevorzugt in einer Menge im Bereich von bis zu 1 Gew.-% verwendet werden, bezogen auf das Gewicht der zur Herstellung des Copolymerisats A) eingesetzten Monomeren.
25. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass der End-pH-Wert der wässrigen Dispersionen mit wässrigen Lösungen von Ammoniak oder
Alkalihydroxidlösungen auf einen pH-Wert im Bereich von 6 bis 10 eingestellt wird.
26. Verwendung von Polymerdispersionen gemäß Anspruch 1 als Bindemittel in Korrosionsschutzbeschichtungen.
PCT/EP2003/007931 2002-08-08 2003-07-21 Wässrige polymerdispersionen, verfahren zu ihrer herstellung sowie ihre verwendung, insbesondere in korrosionsschutzbeschichtungen WO2004020477A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004531809A JP4979192B2 (ja) 2002-08-08 2003-07-21 水性ポリマー分散液、その製造方法および使用、とくに防食コーティング剤における使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2002136395 DE10236395A1 (de) 2002-08-08 2002-08-08 Wässrige Polymerdispersionen, Verfahren zu ihrer Herstellung sowie ihre Verwendung, insbesondere in Korrosionsschutzbeschichtung
DE10236395.1 2002-08-08

Publications (1)

Publication Number Publication Date
WO2004020477A1 true WO2004020477A1 (de) 2004-03-11

Family

ID=30469599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/007931 WO2004020477A1 (de) 2002-08-08 2003-07-21 Wässrige polymerdispersionen, verfahren zu ihrer herstellung sowie ihre verwendung, insbesondere in korrosionsschutzbeschichtungen

Country Status (4)

Country Link
JP (2) JP4979192B2 (de)
CN (1) CN100345869C (de)
DE (1) DE10236395A1 (de)
WO (1) WO2004020477A1 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1926787B2 (de) 2005-09-12 2013-07-10 Basf Se Verfahren zur erhöhung des fleckenschutzes von wässrigen beschichtungszusammensetzungen
CN103773142A (zh) * 2014-01-20 2014-05-07 南通华新环保设备工程有限公司 一种设备用环保防锈涂料及其制备方法
US9102848B2 (en) 2011-02-28 2015-08-11 Basf Se Environmentally friendly, polymer dispersion-based coating formulations and methods of preparing and using same
CN105541225A (zh) * 2015-12-25 2016-05-04 常熟市奇越新型建材科技有限公司 抹墙干粉涂料
CN106867347A (zh) * 2017-04-05 2017-06-20 武汉迪赛环保新材料股份有限公司 一种热轧h型钢临时防锈液
CN108017972A (zh) * 2017-11-24 2018-05-11 鹤山市信兴化工有限公司 有机硅改性丙烯酸聚氨酯杂合乳液及由其制成的水性涂料
CN111286312A (zh) * 2020-02-20 2020-06-16 中国石油天然气股份有限公司 一种油井用缓释型缓蚀阻垢剂胶囊及其制备方法
CN113201087A (zh) * 2020-11-20 2021-08-03 联固新材料科技(广州)有限公司 羟基丙烯酸分散体及其制备方法和双组分聚氨酯漆
CN114591665A (zh) * 2021-12-28 2022-06-07 天津市新丽华色材有限责任公司 一种低voc乳液型水性铝镜镜背涂料
FR3117794A1 (fr) * 2020-12-23 2022-06-24 L'oreal Dispersion aqueuse d’un copolymère spécifique et ses applications cosmétiques
WO2022136114A1 (fr) * 2020-12-23 2022-06-30 L'oreal Dispersion aqueuse d'un copolymère spécifique et ses applications cosmétiques
CN117567688A (zh) * 2024-01-15 2024-02-20 星宇新材料股份有限公司 一种丁腈乳液及其合成方法和应用

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1582567B2 (de) * 2004-04-01 2011-11-16 Rohm And Haas Company Wässerige Beschichtungszusammensetzung
DE102005008671A1 (de) * 2005-02-25 2006-08-31 Construction Research & Technology Gmbh Phosphor-haltige Copolymere, Verfahren zu ihrer Herstellung und deren Verwendung
CA2610973A1 (en) 2005-07-01 2007-01-11 F. Hoffmann-La Roche Ag Carboxylated latex particles
DE102007033595A1 (de) 2007-07-19 2009-01-22 Celanese Emulsions Gmbh Polyvinylesterdispersionen, Verfahren zu deren Herstellung und deren Verwendung
DE102007033596A1 (de) 2007-07-19 2009-01-22 Celanese Emulsions Gmbh Beschichtungsmittel mit hoher Bewitterungsbeständigkeit, Verfahren zu deren Herstellung und deren Verwendung
DE102007059844A1 (de) * 2007-12-12 2009-06-25 Basf Construction Polymers Gmbh Copolymer auf Basis einer Sulfonsäure-haltigen Verbindung
CA2971498A1 (en) * 2016-07-14 2018-01-14 Dow Global Technologies Llc Latex functionalized with phosphorus acid and photoinitiator groups
EP3630900B1 (de) * 2017-06-02 2022-10-19 Dow Global Technologies LLC Wässrige epoxidbeschichtungszusammensetzung
CN107478767B (zh) * 2017-09-05 2019-09-06 中国科学院长春应用化学研究所 一种测定有机膦酸溶液中长链脂肪醇含量的方法
EP3775037A4 (de) * 2018-04-02 2021-12-01 Polygreen Ltd. Verfahren zur herstellung eines biologisch abbaubaren superabsorbierenden polymers mit hoher saugfähigkeit unter belastung auf der grundlage von styrolmaleinsäure-copolymeren und biopolymer
US11912871B2 (en) * 2018-07-12 2024-02-27 Dow Global Technologies Llc Aqueous polymer dispersion and process of making the same
JP6915760B1 (ja) * 2019-10-07 2021-08-04 Dic株式会社 水性樹脂組成物、水性塗料及び該水性塗料で塗装されたプラスチック成形品

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4968741A (en) * 1989-10-06 1990-11-06 The Goodyear Tire & Rubber Company Latex for coatings having reduced blushing characteristics
WO1999014279A1 (en) * 1997-09-18 1999-03-25 Eastman Chemical Company Stable low foam waterborne polymer compositions containing poly(alkyleneimines)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19810658A1 (de) * 1998-03-12 1999-11-25 Basf Ag Wäßrige Polymerdispersion, enthaltend einen Emulgator mit Phosphatgruppen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4968741A (en) * 1989-10-06 1990-11-06 The Goodyear Tire & Rubber Company Latex for coatings having reduced blushing characteristics
WO1999014279A1 (en) * 1997-09-18 1999-03-25 Eastman Chemical Company Stable low foam waterborne polymer compositions containing poly(alkyleneimines)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1926787B2 (de) 2005-09-12 2013-07-10 Basf Se Verfahren zur erhöhung des fleckenschutzes von wässrigen beschichtungszusammensetzungen
US9102848B2 (en) 2011-02-28 2015-08-11 Basf Se Environmentally friendly, polymer dispersion-based coating formulations and methods of preparing and using same
CN103773142A (zh) * 2014-01-20 2014-05-07 南通华新环保设备工程有限公司 一种设备用环保防锈涂料及其制备方法
CN103773142B (zh) * 2014-01-20 2015-12-02 南通华新环保设备工程有限公司 一种设备用环保防锈涂料及其制备方法
CN105541225A (zh) * 2015-12-25 2016-05-04 常熟市奇越新型建材科技有限公司 抹墙干粉涂料
CN106867347A (zh) * 2017-04-05 2017-06-20 武汉迪赛环保新材料股份有限公司 一种热轧h型钢临时防锈液
CN108017972A (zh) * 2017-11-24 2018-05-11 鹤山市信兴化工有限公司 有机硅改性丙烯酸聚氨酯杂合乳液及由其制成的水性涂料
CN111286312A (zh) * 2020-02-20 2020-06-16 中国石油天然气股份有限公司 一种油井用缓释型缓蚀阻垢剂胶囊及其制备方法
CN113201087A (zh) * 2020-11-20 2021-08-03 联固新材料科技(广州)有限公司 羟基丙烯酸分散体及其制备方法和双组分聚氨酯漆
FR3117794A1 (fr) * 2020-12-23 2022-06-24 L'oreal Dispersion aqueuse d’un copolymère spécifique et ses applications cosmétiques
FR3117788A1 (fr) * 2020-12-23 2022-06-24 L'oreal Dispersion aqueuse d’un copolymère spécifique et ses applications cosmétiques
WO2022136114A1 (fr) * 2020-12-23 2022-06-30 L'oreal Dispersion aqueuse d'un copolymère spécifique et ses applications cosmétiques
CN114591665A (zh) * 2021-12-28 2022-06-07 天津市新丽华色材有限责任公司 一种低voc乳液型水性铝镜镜背涂料
CN114591665B (zh) * 2021-12-28 2022-11-01 天津市新丽华色材有限责任公司 一种低voc乳液型水性铝镜镜背涂料
CN117567688A (zh) * 2024-01-15 2024-02-20 星宇新材料股份有限公司 一种丁腈乳液及其合成方法和应用
CN117567688B (zh) * 2024-01-15 2024-04-05 星宇新材料股份有限公司 一种丁腈乳液及其合成方法和应用

Also Published As

Publication number Publication date
JP2005534799A (ja) 2005-11-17
CN100345869C (zh) 2007-10-31
JP4979192B2 (ja) 2012-07-18
DE10236395A1 (de) 2004-02-19
CN1688614A (zh) 2005-10-26
JP2011225893A (ja) 2011-11-10

Similar Documents

Publication Publication Date Title
WO2004020477A1 (de) Wässrige polymerdispersionen, verfahren zu ihrer herstellung sowie ihre verwendung, insbesondere in korrosionsschutzbeschichtungen
EP1840136B1 (de) Polymerdispersionen, Verfahren zu deren Herstellung und deren Verwendung
DE19609509B4 (de) Wäßrige Polymerdispersionen als Bindemittel für elastische block- und kratzfeste Beschichtungen
EP0773245B1 (de) Verwendung einer wässrigen Polymerisatdispersion zur Herstellung von Wasserdampfsperren
EP0003235A1 (de) Wasserlösliche Copolymerisate auf der Basis von hydrophilen äthylenisch ungesättigten Monomeren;Verfahren zur Herstellung dieser Copolymerisate und ihre Verwendung
EP0379892A2 (de) Bindemittel für wässrige Glanzfarben
EP0727441B1 (de) Verfahren zur Herstellung von emulgatorfreien wässrigen Polymerdispersionen
DE2943030A1 (de) Verfahren zur herstellung einer waessrigen emulsion eines mischpolymers
DE3200765A1 (de) Cellulosederivat enthaltende waessrige dispersion, verfahren zur herstellung von emulsionen und waessrige ueberzugszusammensetzung
DE69933360T2 (de) Redispergierbare emulsionspulver und verfahren zu ihrer herstellung
DE3235043C2 (de) Verfahren zur Herstellung eines kationischen Acryllatex
DE69926909T2 (de) Latexteilchen aus vinylacetate-ethylen copolymerisaten, verfahren zu deren herstellung, und ihre anwendung
EP0511520A1 (de) Verfahren zur Herstellung einer emulgatorfreien Polymerdispersion
EP0655481B1 (de) Verfahren zur Herstellung von wässrige Polymerdispersionen die als Bindemittel für blockfeste, kratzfeste und chemikalienbeständige Beschichtungen geeignet sind
EP0022514B1 (de) Wässrige Dispersion auf Grundlage von (Meth-)Acrylsäurederivaten, ihre Herstellung und Verwendung
EP0401200B1 (de) Copolymerisat sowie dessen Verwendung
DE10158652A1 (de) Wäßrige Polymerisatdispersion und ihre Verwendung als Wasserdampfsperre
EP0009186A1 (de) Azo-di-isobuttersäure-(N,N&#39;-hydroxialkyl)-amidine, ihre Herstellung und Verwendung als Polymerisationsinitiatoren, als Vernetzungsmittel und als Treibmittel
DE3235044C2 (de) Kationische Acryllatexzusammensetzung und ihre Verwendung
EP0444509A2 (de) Fluorurethangruppen enthaltende Polymerisate aus ethylenisch ungesättigten Monomeren, Verfahren zu ihrer Herstellung und ihre Verwendung
DE69908941T2 (de) Waessrige dispersionen auf basis von ungesaettigten heterozyklischen monomeren und deren verwendung in der vernetzung
DE2658118A1 (de) Waessrige harzdispersionen und daraus hergestellte hitzehaertbare ueberzugsmittel
EP1481995B1 (de) Wässrige Copolymerisatdispersionen, Verfahren zu ihrer Herstellung und Zusammensetzungen enthaltend dieselben für Beschichtungen
DE3724858A1 (de) Waessrige kunststoffdispersion
EP1064239B1 (de) Dispersionen zur herstellung von dachsteinfarben, dachsteinfarben sowie mit dachsteinfarben beschichtete dachsteine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN ID JP MX US ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004531809

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038192098

Country of ref document: CN

122 Ep: pct application non-entry in european phase