WO2003091483A1 - Procede de production de silicium monocristallin, silicium monocristallin et plaquette de silicium - Google Patents

Procede de production de silicium monocristallin, silicium monocristallin et plaquette de silicium Download PDF

Info

Publication number
WO2003091483A1
WO2003091483A1 PCT/JP2003/005167 JP0305167W WO03091483A1 WO 2003091483 A1 WO2003091483 A1 WO 2003091483A1 JP 0305167 W JP0305167 W JP 0305167W WO 03091483 A1 WO03091483 A1 WO 03091483A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
silicon
single crystal
seed crystal
melt
Prior art date
Application number
PCT/JP2003/005167
Other languages
English (en)
French (fr)
Inventor
Izumi Fusegawa
Sadayuki Okuni
Nobuaki Mitamura
Tomohiko Ohta
Nobuo Katuoka
Original Assignee
Shin-Etsu Handotai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Handotai Co., Ltd. filed Critical Shin-Etsu Handotai Co., Ltd.
Priority to JP2003588003A priority Critical patent/JP4151580B2/ja
Priority to US10/510,695 priority patent/US7179330B2/en
Priority to EP03719172.3A priority patent/EP1498517B1/en
Priority to KR1020047016852A priority patent/KR100987470B1/ko
Publication of WO2003091483A1 publication Critical patent/WO2003091483A1/ja
Priority to US11/620,024 priority patent/US20070101926A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/36Single-crystal growth by pulling from a melt, e.g. Czochralski method characterised by the seed, e.g. its crystallographic orientation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling

Definitions

  • the present invention relates to a method for producing a silicon single crystal using the Czochralski method (hereinafter, also referred to as the “cz method”), and more particularly, to a seed having a sharp or sharp tip.
  • the present invention relates to a method for growing and producing a silicon single crystal by the Tyokuralski method without using a dash-necking method using a crystal, and a silicon single crystal and a silicon wafer produced by the method.
  • a silicon wafer obtained by processing a silicon single crystal grown mainly by a CZ method into a wafer shape is used.
  • a seed crystal having the shape shown in Figs. 2 (A) and (B) is melted at a melting point of 144 ° C or higher.
  • the seed crystal temperature stabilizes, the seed crystal is gradually pulled up above the melt to grow a silicon single crystal below the seed crystal.
  • thermal shock caused when the seed crystal is immersed in the high-temperature silicon melt generates countless slip dislocations in the seed crystal, and the purpose is to remove these slip dislocations.
  • a drawing portion is formed to gradually reduce the diameter of the crystal growing below the seed crystal to about 3 to 5 mm. Then, when the slip dislocations were removed from the grown crystal, the crystal diameter was gently expanded to the desired diameter (formation of the enlarged diameter portion), and the columnar shape with the required constant diameter portion diameter was obtained. Pull up the silicon single crystal.
  • the method of removing the slip dislocation generated when the seed crystal comes into contact with the silicon melt by narrowing the crystal diameter to about 3 to 5 mm is called the dashing necking method. This is a widely used manufacturing method for growing silicon single crystals.
  • Japanese Patent Application Laid-Open No. H10-230398 discloses that a silicon single crystal having a sharp tip or a sharp tip is used to form a silicon single crystal without forming a constricted portion. The technology to grow the liquor is disclosed.
  • this silicon wafer has physical orientation, crystal growth, or superiority in the process of manufacturing a semiconductor device, and therefore, the plane orientation force S (100) or (1) of the main surface of the wafer forming the semiconductor device.
  • Silicon wafers have been heavily used. However, in recent years, the movement of the carrier during the formation of a semiconductor device depends greatly on the crystal orientation. In order to increase the operating speed of the semiconductor device, a higher switching speed can be expected. (110) silicon wafers are attracting attention (Nikkei Microdevices, February 2001 No. 188, Nikkei BP, February 1, 2001) Issue).
  • a silicon single crystal with a crystal orientation of ⁇ 100> or 111> is used, and the (110) plane becomes the principal plane of silicon.
  • the principal plane is (1100).
  • the same method as that for silicon wafers with other plane orientations is used.
  • a silicon single crystal is sliced perpendicularly to the pulling axis direction and mirror-polished, a silicon wafer having a (110) plane as a main surface can be obtained.
  • the processing in the processing step after the single crystal is pulled, the processing can be performed in the same manner as the plane orientation (100) or (111), so that when the shape of the wafer is adjusted, Grinding loss and processing time for shaping are minimized, and efficient wafer processing can be performed without waste.
  • this method has a problem in growing a silicon single crystal having a crystal orientation of 110>.
  • the slip dislocations brought into the seed crystal by thermal shock are, when the crystal orientation is ⁇ 100> ⁇ ⁇ 111>, an angle of about 50 to 70 ° with respect to the crystal growth interface. Therefore, slip dislocations can be removed (removed) from the grown crystal by narrowing the crystal diameter to about 3 to 5 mm.
  • the slip dislocations are almost perpendicular to the crystal growth interface, so it is difficult to easily remove the slip dislocations from the grown crystal. As shown in Japanese Patent Application Laid-Open No.
  • 9-11652 / 98 a method of extremely narrowing the aperture diameter to less than 2 mm, Using a special method, such as reducing the diameter of the narrowed part to about 3 to 5 mm and then repeatedly increasing the diameter, creating a multi-level unevenness in the narrowed part to remove slip dislocations, etc. It is required to grow crystals.
  • the crystal orientation ⁇ 1 It was necessary to form more optimal operating conditions than to grow silicon single crystals of 0 0> 0 ⁇ 111>.
  • the dash-necking method was used to remove slip dislocations in order to produce silicon single crystals with a large weight and a large diameter. If the minimum diameter of the narrowed portion was reduced to about 2 to 3 mm in order to form the narrowed portion and further reduce dislocations, a large diameter of 200 mm or more would be required. It is not possible to pull silicon single crystals weighing more than kg. In order to support and pull such a high-weight, large-diameter silicon single crystal, the diameter of the crystal formed at the tip of the seed crystal must be 5 mm or more even at the minimum diameter. Disclosure of the invention
  • An object of the present invention is to grow a silicon single crystal by a CZ method without using a dash-necking method by using a seed crystal having a sharp tip or a shape obtained by cutting a sharp tip.
  • the minimum diameter of the crystal formed at the tip of the seed crystal is 5 m even when growing a silicon single crystal with a crystal orientation of ⁇ 110>.
  • the diameter of the single crystal constant diameter part is 200 m
  • Production method of silicon single crystal capable of growing silicon single crystal of large diameter of m or more, silicon single crystal, and plane orientation with diameter of 200 mm or more (11 0) is to provide a silicon wafer with a large diameter.
  • a method for producing a silicon single crystal according to the present invention is a method for producing a silicon single crystal by the Chiyoklarski method without performing the dashboard necking method.
  • the tip of the seed crystal is brought into contact with the silicon melt and submerged in the silicon melt to a desired diameter, and then turned to pulling, the single crystal is pulled at least. Until the tip of the crystal comes into contact with the silicon melt and starts to be pulled up, the temperature fluctuation on the surface of the silicon melt is kept below 5 ° C.
  • the diameter of the crystal formed at the tip of the seed crystal can be secured to a diameter of 5 mm or more, a large diameter of 200 mm or more, and a high diameter of 100 kg or more.
  • a heavy silicon single crystal can be pulled.
  • a sharp or sharp tip using a seed crystal having a sharp or sharp tip, dash-necking (the diameter of the crystal formed at the tip of the seed crystal is reduced to about 3 to 5 mm and the thread is thinned.
  • a sharp or sharp tip with a tip angle of 28 ° or less is used as a seed crystal. It is desirable to perform crystal growth using a seed crystal having a cut shape. By using a seed crystal having a tip angle of 28 ° or less, the success rate of pulling a single crystal without dislocation can be increased.
  • the angle of the tip is 28 ° or less, the thermal shock that occurs when the seed crystal is brought into contact with the silicon melt is easily reduced, and even when slight slip dislocation occurs.
  • slip dislocations can easily escape from the seed crystal.
  • the angle of the tip exceeds 28 °, the heat capacity increases at the tip of the seed crystal, and a temperature difference is generated when the tip contacts the silicon melt, causing thermal shock.
  • slip dislocations are introduced into the crystal.
  • the diameter of the seed crystal tip after immersion in the silicon melt is naturally large. Therefore, the introduced slip dislocations are difficult to escape out of the crystal.
  • the tip of the seed crystal has an acute angle of 28 ° or less.
  • a seed crystal having a sharp tip is used.
  • the silicon crystal just above the silicon melt Before the above-mentioned seed crystal is brought into contact with the silicon melt, it is necessary to heat the silicon crystal just above the silicon melt to a temperature substantially equal to the temperature of the silicon melt surface.
  • the seed crystal tip immersed in the silicon melt and the silicon Eliminates the difference in temperature of the melt and suppresses thermal shock.
  • the heating of the seed crystal just above the silicon melt is preferably about 5 to 6.0 minutes, and most preferably about 20 to 30 minutes.
  • Heating the seed crystal tip within the range of 5 to 60 minutes can sufficiently bring the temperature of the seed crystal tip to the temperature of the surface of the silicon melt. There is no loss in crystal productivity. More optimally, the seed crystal is heated by keeping the gap between the silicon melt and the tip of the seed crystal in the range of about 1 to 5 mm, and heating the silicon melt for 20 to 30 minutes. By immersing the seed crystal, the thermal shock when the seed crystal comes into contact with the silicon melt can be minimized.
  • the temperature fluctuation of the silicon melt surface near the seed crystal is reduced. It is necessary to keep the temperature below 5 ° C and perform immersion.
  • the silicon melt Since the silicon melt is heated by a heater disposed around the silicon melt and held as the melt, the silicon melt always generates heat convection, and the temperature constantly changes slightly. If the temperature change due to the thermal convection is too large, even if the seed crystal is heated and brought into contact with the temperature of the silicon melt, thermal shock will run at the tip of the seed crystal and slip dislocation will occur. Become. Also, when the tip of the seed crystal is submerged in the silicon melt, if the temperature of the silicon melt near the seed crystal changes drastically during the submersion of the tip, the seed crystal and the melt will be displaced. Due to the temperature difference, thermal distortion occurs in the seed crystal, slip dislocations enter the seed crystal, and thereafter, it becomes difficult to grow a single crystal without dislocations.
  • the tip of the seed crystal which has a sharp tip or a sharp-cut tip, is brought into contact with the silicon melt from the point of contact.
  • the temperature of the melt surface near the tip of the seed crystal until the tip sinks into the silicon melt until it reaches the desired diameter and starts to be pulled up should be 5 ° C or less from the temperature at the time of contact with the seed crystal. It is necessary to carry out single crystal pulling while maintaining the temperature. If the temperature fluctuation of the silicon melt exceeds 5 ° C on the soil, slip dislocations easily enter the seed crystal during immersion, and the silicon single crystal can be pulled up without dislocations. The rate drops.
  • the temperature fluctuation of the silicon melt is ⁇ 3. It is best to keep it below C. If the fluctuation of the melt temperature near the immersion part of the seed crystal is further reduced and the temperature is kept at ⁇ 3 ° C or less with respect to the melt temperature when the seed crystal is brought into contact, the crystal orientation ⁇ 110 Even in the case of single crystals of>, slip dislocations caused by temperature fluctuations of the silicon melt hardly occur, so it is almost certain that a silicon single crystal having no dislocation and a desired diameter is drawn. Can be raised.
  • the temperature of the silicon melt when the tip of the seed crystal is brought into contact with the silicon melt is adjusted by the method of manufacturing a silicon single crystal using the dash-necking method.
  • the seed crystal is brought into contact with the silicon melt at a temperature of 10 to 20 ° C higher than the temperature that is considered to be suitable for contact with the silicon melt and submerges, and at least the seed crystal falls
  • the formation of the diameter-reduced portion while the crystal diameter formed below the seed crystal begins to expand, the pulling speed is set to 0.5 mm Zin in or less, and the single crystal is pulled. It is good to raise.
  • a seed crystal is produced by the silicon single crystal manufacturing method using the dash-necking method.
  • the seed crystal was immersed in the silicon melt when the temperature of the silicon melt was lower or higher than the temperature that was considered appropriate for contact with the silicon melt, but the difference was less than 1 ° C. In such a case, abnormal crystal growth may occur such that the immersion site does not dissolve smoothly in the silicon melt, resulting in solidification.
  • the temperature of the silicon melt is set to be 20 ° C higher than the temperature that is appropriate for bringing the seed crystal into contact with the silicon melt by the method of manufacturing a silicon single crystal using the dash-necking method. If it is too high, the tip may melt before the seed crystal is brought into contact with the silicon melt, and the seed crystal may not be able to contact the silicon melt well.
  • the temperature of the silicon melt at the time of immersing the seed crystal is determined by the method of manufacturing the silicon single crystal using the dash-necking method.
  • the seed crystal should be submerged in contact with the silicon melt at a temperature that is 10 to 20 ° C higher than the optimum temperature.
  • the diameter of the crystal formed below the seed crystal increases.
  • the crystal formed below the seed crystal once has a somewhat larger crystal diameter than the diameter at the end of the seed crystal subsidence. It becomes thinner and crystal growth takes place (formation of reduced diameter portion).
  • the pulling speed is set to 0 in the formation of the reduced diameter portion while the crystal diameter formed below the seed crystal begins to expand. It is appropriate to keep the crystal growth below 5 mm / min.
  • At least a point at which the tip of the seed crystal is brought into contact with the silicon melt and a reduced-diameter portion formed below the seed crystal are used. Until the formation is completed and the crystal diameter begins to expand, a horizontal magnetic field with a central magnetic field strength of 100 G or more is applied to the silicon melt to grow the silicon single crystal. Good.
  • the silicon melt it is possible to grow the silicon melt while keeping the temperature fluctuation of the silicon melt in the vicinity of immersing the seed crystal tip portion at ⁇ 5 ° C. or less with respect to the melt temperature when the seed crystal is brought into contact with the melt. is important.
  • a magnetic field applying CZ method hereinafter, referred to as a MCZ method
  • MCZ method magnetic field applying CZ method
  • a horizontal magnetic field that has a large effect to reduce the temperature gradient of the silicon melt in the crucible is large. It is desirable to apply the solution to the process from contact of the seed crystal to immersion.
  • a horizontal magnetic field applying CZ method hereinafter referred to as an HMCCZ method.
  • the tip of the seed crystal is brought into contact with the silicon melt to a desired diameter while applying a magnetic field strength of 1000 G (Gauss) or more to the silicon melt.
  • the present invention is not limited to such a control method.
  • other control means for example, heating the surface of the silicon melt by lamp heating to make the silicon
  • the heat convection can be suppressed by reducing the temperature gradient in the vertical direction in the silicon melt, and the heat convection of the silicon melt can be reduced by setting the amount of silicon melt small and reducing the melt depth. Similar effects can be obtained if the seed crystal is immersed and the temperature fluctuation of the silicon melt is kept at 5 ° C or less to prevent the silicon melt from growing. .
  • a magnetic field is applied to the silicon melt to appropriately suppress the temperature fluctuation of the silicon melt, a horizontal magnetic field at which the magnetic field intensity at the center becomes 100 G or more is applied. It is preferable to apply a seed crystal and contact a seed crystal having a sharp tip or a shape with a sharp tip cut off to achieve immersion.
  • the maximum magnetic field intensity applied to the silicon melt is 900 to 1 in the HMCZ method at present, considering the device configuration and the application of a magnetic field within a practical range. Approximately 0 0 0 0 G is the upper limit.
  • a large silicon crystal with a crystal diameter exceeding 200 mm is particularly used. It also works effectively when growing con single crystals. When growing a single crystal with a large crystal diameter, use a large crucible to hold the silicon melt in consideration of productivity and yield. In general, single crystal growth is carried out.
  • the amount of the raw material held in the crucible that is, the amount of the silicon melt
  • the temperature difference between the outer edge of the silicon melt near the heater and the vicinity of the center of the melt increases. It becomes difficult to stabilize the melt temperature near the immersion part.
  • a desired magnetic field of 100 G or more is applied to the silicon melt, the heat convection in the crucible is suppressed, and the temperature of the melt near the immersion portion of the seed crystal can be stabilized.
  • the strength of the horizontal magnetic field applied to the silicon melt may be appropriately selected according to the diameter of the single crystal to be grown and quality conditions in addition to the temperature stability of the silicon melt.
  • the temperature of the melt at the time of contacting and immersing a seed crystal having a sharp tip or a shape obtained by cutting the sharp tip into a silicon melt is stabilized,
  • the occurrence of slip dislocations due to thermal shock is reduced as much as possible, or the seed crystal can be immersed to a desired diameter without causing agitation.
  • the success rate of pulling a silicon single crystal having a desired constant diameter portion without dislocations can be increased, and at the same time, the CZ method has been used because of the limitations of the dash-necking method. It has been considered difficult to grow the silicon single crystal used. It is possible to pull up a silicon single crystal having a crystal orientation of ⁇ 110> using the seed crystal having a crystal orientation of ⁇ 110>.
  • a silicon single crystal grown by the Czochralski method wherein the crystal orientation of the silicon single crystal is ⁇ 110> and the diameter of the single crystal is 200 mm or more. Part single crystal or a silicon single crystal of this kind, wherein the total weight of the crystal pulled from the silicon melt is 100 kg or more, or even more than 300 k Even with this, it is possible to raise.
  • the silicon single crystal with a crystal orientation of 110> grown by the above-described manufacturing method is used.
  • the same manufacturing process as for the crystal with a crystal orientation of 100> ⁇ ⁇ 111> can be used as a main material in the manufacture of semiconductor devices if it is cylindrically ground, sliced, and mirror-polished. Silicon wafers with plane orientation of (110) can be industrially and efficiently produced.
  • the growth of silicon single crystals with a crystallographic orientation of 110> which is considered to be difficult to grow by the conventional method
  • the main diameter of the silicon wafer indicates the diameter of the main surface of the wafer which does not include the orientation flat or the orientation notch.
  • a silicon single crystal having a crystal diameter of ⁇ 110> with a crystal diameter of more than 200 mm and a crystal part having a crystal diameter of ⁇ 110>, or the diameter of a constant diameter portion was pulled as long as possible. Even a silicon single crystal with a crystal orientation ⁇ 110> weighing 100 kg or more can be produced safely and efficiently.
  • FIG. 1 is a schematic diagram of a CZ method single crystal manufacturing apparatus provided with a magnetic field applying device for performing a silicon single crystal manufacturing method according to the present invention.
  • FIG. 2 is a diagram showing a seed crystal used in the dash-necking method and a seed crystal used in the production method of the present invention, which has a sharp or sharp tip.
  • FIG. 3 is a photograph showing a part of a silicon single crystal having a crystal orientation of ⁇ 110> and a diameter of about 200 mm grown using the manufacturing method of the present invention.
  • FIG. 4 is a drawing for explaining the removal of slip dislocations by the dash-necking method.
  • FIG. 2 are schematic views showing a seed crystal having a sharp or sharpened tip used for growing a silicon single crystal according to the present invention.
  • FIG. (C) and (D) in FIG. 2 show a seed crystal 1c in which (C) has a conical tip 4c having a cylindrical straight body 3c, and (D) This shows a seed crystal Id having a pyramidal tip 4 d with a prismatic straight body 3 d.
  • the angle of the seed crystal tip portion refers to a seed crystal having a shape obtained by cutting the tip portion 4c shown in FIGS. 2 (E) and (F), before cutting the tip portion 4c. This refers to the apex angle of the seed crystal tip assuming the tip shape.
  • These seed crystals are placed on the seed crystal straight body 3c and 3d during single crystal growth.
  • the straight body portions 3c, 3d are locked in the seed holders 28 of the single crystal manufacturing apparatus 10 shown in FIG. 1 through the locking portions 2c, 2d used for manufacturing the single crystal.
  • a single crystal is grown by using a seed crystal having the same crystal orientation as the single crystal to be grown so that the crystal orientation of the silicon single crystal to be grown is a desired one. Plan. For example, if a single crystal having a crystal orientation of 110> is to be grown, a seed crystal having a crystal orientation of ⁇ 110> in the pull-up axis direction may be used.
  • the seed crystal 1c or 1d shown in Fig. 2 is almost the same as the silicon melt M.
  • the tip 4c, 4d or 4e, 4f was gently immersed in the silicon melt M, and the tip was immersed to the desired diameter.
  • the silicon single crystal S shown in FIG. 1 having an arbitrary reduced diameter portion S 0 is grown.
  • FIG. 1 is a schematic view showing a manufacturing apparatus for growing a silicon single crystal by the method of the present invention.
  • the single crystal manufacturing apparatus 10 includes a growth furnace 12 for holding a silicon melt M and growing a single crystal, and a silicon furnace for storing and extracting the silicon single crystal S pulled from the silicon melt M. It consists of an upper growth furnace 14.
  • a winding rotation mechanism 26 for rotating and pulling up a crystal when growing a single crystal, and a wire unwound from the winding rotation mechanism 26.
  • a seed holder 28 for locking a seed crystal 27 (seed crystal 1c or 1d illustrated in FIG. 2).
  • seed crystal 1c or 1d illustrated in FIG. 2 seed crystal 1c or 1d illustrated in FIG. 2.
  • a crucible 18 for holding the silicon melt M is provided inside the growth furnace 12, and the inside of the crucible 18 is made of quartz because the high temperature silicon melt M is held.
  • the crucible 18a is made of graphite crucible 18b to protect the crucible 18a.
  • the crucible 18 is disposed at the approximate center of the growth furnace 12 by a crucible support shaft 16, and below the crucible support shaft 16, a melt surface is kept constant when growing a single crystal.
  • a crucible drive mechanism 20 is attached to grow a crystal while rotating the rutupo 18.
  • a graphite heater 23 is placed outside the crucible 18 to melt the polycrystalline silicon as a raw material and hold it as a silicon melt, and by adjusting the calorific value of the heater 23, The operation is performed while maintaining the temperature of the silicon melt M at a temperature suitable for crystal growth.
  • a heat insulating material 22 and a bottom heat insulating material 21 are provided on the outside of the heater 23 and on the bottom of the growing furnace 1 2 to keep the inside of the growing furnace 1 2 at the same time as the radiant heat from the heater 23 is directly grown in the growing furnace 1. 2Prevents hitting the furnace wall.
  • the single-crystal manufacturing apparatus 10 shown in FIG. 1 has a horizontal magnetic field outside the growth furnace 12 for the purpose of controlling the convection of the silicon melt M and stabilizing the temperature.
  • An electromagnet 33 which is a device for applying the liquid M, is provided.
  • the center of the horizontal magnetic field is arranged in the silicon melt M in order to efficiently suppress the fluctuation of the melt temperature, and when the seed crystal 27 is immersed, the center having the desired magnetic field strength is obtained.
  • a horizontal magnetic field having a magnetic field strength of 1,000 G or more is obtained in the silicon melt M.
  • argon (Ar) is used for the purpose of preventing the silicon melt M and structures disposed in the single crystal manufacturing apparatus 10 from being oxidized. It is necessary to start the operation by flowing an inert gas such as) into the furnace. For this reason, the upper growth furnace 14 has a gas flow controller 30 for controlling the flow rate of the inert gas flowing into the manufacturing apparatus 10, and the pressure for adjusting the internal pressure at the bottom of the growth furnace 12. Control device 32 is installed. During operation, these devices are used to adjust the single crystal growth conditions. The flow rate and pressure of the inert gas flowing into the crystal manufacturing apparatus 10 are adjusted.
  • polycrystalline silicon as a raw material is charged into a crucible 18 and a heater 23 is heated to melt the polycrystalline silicon.
  • the silicon melt M is cooled to a temperature suitable for growing a single crystal.
  • the central magnetic field strength is reduced by the electromagnet 33. Magnetic field application is started so that a horizontal magnetic field of at least 0 G is applied to the silicon melt M. This magnetic field starts to form the reduced diameter portion S0 formed under the seed crystal 27 at least from the point when the tip of the seed crystal 27 comes into contact with the silicon melt M, and the crystal diameter increases. Until it starts, it is applied.
  • the temperature of the silicon melt M is set to a predetermined temperature (preferably, 10 degrees lower than a temperature that is set to a suitable temperature for bringing the seed crystal into contact with the silicon melt in the method of manufacturing a silicon single crystal using the dash-necking method). (20 ° C higher temperature), wait for stabilization, and lower the seed crystal 27 with the apex angle of the tip not more than 28 ° to just above the silicon melt M. Wait until the temperature at the tip is heated to approximately the same level as the temperature of the silicon melt M.
  • the seed crystal 27 is heated to approximately the same temperature as the temperature of the silicon melt M, and the temperature of the surface of the silicon melt M near the center of the root 18 where the seed crystal S is immersed is less than ⁇ 5 ° C.
  • the temperature is stabilized by the time the temperature fluctuates, the seed crystal 27 is gently brought into contact with the silicon melt M and immersed. At least until the tip of this seed crystal 27 comes into contact with the silicon melt M and starts pulling, the silicon in the part where the seed crystal S is immersed to suppress the introduction of slip dislocations.
  • the temperature fluctuation on the surface of the melt M should be kept at 5 ° C or less, preferably ⁇ 3 ° C or less.
  • the tip sinks into the silicon melt M to a predetermined diameter the lowering speed of the seed crystal 27 is stopped, and the raising speed is adjusted while adjusting the rising speed of the seed crystal 27 and the temperature of the silicon melt. Move on.
  • the tip of the seed crystal 27 will separate from the melt or the crystal diameter formed at the tip May be thinner than desired.
  • the pulling speed at this time is maintained at 0.5 mmZmin or less.
  • the submerged diameter at the tip of the seed crystal 27 needs to be immersed in consideration of the fact that the crystal formed at the tip when turning to pulling is once thinned.
  • the diameter of the single crystal S formed below the seed crystal 27 in the diameter expanding step is increased to a desired diameter.
  • the formation of the expanded diameter part S 1 is stopped, and the pulling speed and / or Moves to the formation of the single crystal constant diameter portion S2 by adjusting the melt temperature.
  • the length of the fixed diameter portion S2 is pulled up to a predetermined length while adjusting operating conditions in accordance with the quality of the crystal to be grown and the furnace environment. ).
  • the grown crystal is cut off from the silicon melt M, rolled up to the upper growth furnace 14, and waited for the crystal temperature to drop to room temperature before the silicon single crystal from the single crystal manufacturing apparatus 10 to the outside. Take out S and end upbringing.
  • the single crystal grown by the above-described method is subjected to cutting / cylindrical grinding, and then processed into a mirror-finished wafer by a known method, to produce a semiconductor device.
  • Silicon wafer which is the main material of
  • the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto.
  • a silicon single crystal manufacturing equipment shown in Fig. 1 was used. Without applying a magnetic field to the silicon melt, a pull-up method using the dash-necking method was adopted, and a silicon single crystal with a crystal diameter of approximately 150 mm (6 inches) was used. Was manufactured.
  • the seed crystal uses a dash-necking method to remove dislocations and grow a silicon single crystal
  • the crystal orientation of a prismatic crystal with a flat surface of 15 mm on a side, which is in contact with the silicon melt is ⁇ 1.
  • a seed crystal with a 10> (a seed crystal having the shape shown in Fig. 2 (b)) was used.
  • a quartz crucible with a diameter of 450 mm was placed in a silicon single crystal manufacturing apparatus, and the crucible was filled with 60 kg of polycrystalline silicon as a raw material. ) After replacement with gas, the graphite heater was heated to make the polycrystalline silicon a silicon melt.
  • the seed crystal was measured from the outside of the single crystal manufacturing equipment through a glass window provided for visual observation of the inside of the manufacturing equipment, and using a radiation thermometer (IR-0 C made by CHIN ⁇ ). This was confirmed by measuring the temperature of the melt surface at the center of the crucible into which the sample was immersed. Measure the temperature where it seems that the temperature was suitable for growing the single crystal. Specified.
  • Table 1 summarizes the pull-up results of Experiment 1 and Experiment 2 and Example 1 described below for comparison.
  • a single crystal with a large crystal diameter is grown by using a seed crystal with a sharp tip without using the dash-necking method to grow a silicon single crystal without dislocations (hereinafter referred to as a dislocation-free seeding method). It was confirmed that a single crystal with a diameter of about 200 mm (8 inches) was actually pulled.
  • the equipment used for growing the single crystal was the same as that used in Experiment 1, and was manufactured without applying a magnetic field to the silicon melt.
  • the stone crucible used in the production equipment was assumed to have a diameter of 600 mm. Then, 150 kg of polycrystalline silicon as a raw material was charged and heated in the same manner as in Experiment 1 to obtain a silicon melt.
  • a doping agent is added to the melt so that the crystal resistivity becomes a value of about 10 ⁇ cm in p-type.
  • We adjusted the operating conditions such as the amount of Ar gas and the pressure in the production equipment, and waited for the temperature to stabilize.
  • the seed crystal used in Experiment 2 had to be pulled up without dash-necking and without introducing slip dislocations due to thermal shock, the shape shown in Fig. 2 (C) was used.
  • the seed crystal used was a cylindrical one with a diameter of 15 mm and a sharp cone with a tip angle of 15 °.
  • the seed crystal is gently lowered to a point 1 mm above the silicon melt surface, and heated for about 20 minutes until the temperature of the seed crystal becomes almost the same as the melt temperature.
  • the reason for this is that the temperature of the silicon melt in the crucible increases due to the increase in the amount of silicon melt contained in the crucible and the amount of silicon melt contained, and the melt temperature becomes unstable as a whole. It is considered that the top dislocation was caused.
  • the presence or absence of slip dislocation in the seed crystal was confirmed by immersing the seed crystal to a predetermined length, forming a reduced diameter part, expanding the diameter to 200 mm, and then confirming the habit line that indicates the state of the single crystal. was determined as no dislocation.
  • This is a general method that makes it easy to determine single crystallization because the characteristic habit lines appearing on the surface of a single crystal disappear when dislocations remain in the seed crystal.
  • the seed crystal used was a seed crystal having the shape shown in Fig. 2 (C), a cylindrical shape having a diameter of the straight body of the seed crystal of 15 mm, and a pointed apex with a tip angle of 15 °. A conical shape was used.
  • the temperature is lowered to a desired temperature suitable for growing a single crystal, and a doping agent is added to the melt so that the crystal resistivity becomes P-type 10 ⁇ cm. Waited for him to stabilize.
  • the magnetic field applying device electromagnet placed outside the silicon single crystal manufacturing device was operated, and the intensity of the magnetic field center reached 400 G. A horizontal magnetic field was applied to the silicon melt.
  • Example 1 From the time when the melting was completed and the melt temperature was stabilized, the growth of the silicon single crystal was completed, and the application of the magnetic field was continued until the crystal tail was separated from the melt. After the magnetic field was applied to the silicon melt, the melt temperature was considered to have stabilized at a temperature approximately the same as the melt temperature in Experiment 2, and the surface temperature of the melt near the center of the crucible was measured in the same manner as in Experiment 2. As a result, it was confirmed that the temperature fluctuation was settled in a range of ⁇ 1.5 ° C., and that the seed crystal was kept in a good condition for being immersed in the melt.
  • the seed crystal was mounted.
  • the seed crystal was gently lowered to 1 mm just above the silicon melt, and waited for about 20 minutes until the seed crystal was heated. Then, when the temperature of the seed crystal is increased to the same level as the temperature of the silicon melt, the tip of the seed crystal is gradually lowered into the melt until the conical portion (tip) of the seed crystal has a desired diameter. Submerged in silicon melt.
  • the crystal diameter is gradually reduced to form a tail, and the crystal grown from the silicon melt is separated from the silicon single crystal. The growth of the crystal has been completed.
  • the grown silicon single crystal was gently cooled, taken out of the manufacturing equipment and weighed.As shown in Fig. 3, a large diameter high weight single crystal with a diameter of 208 mm and a weight of 120 kg was obtained. Was obtained. There was no failure to restart the crystal growth from the beginning due to slip dislocations during the growth, and the target crystal orientation ⁇ 11 0> large diameter and heavy crystals could be grown without any problem.
  • the minimum diameter of the reduced diameter portion formed at the lower end of the seed crystal shown in Fig. 3 was 5 mm or more, and a single crystal could be grown without using the dashing necking method. It was confirmed.
  • a dislocation-free seeding method of growing a silicon single crystal without using a dash-necking method by using a seed crystal having a sharp or sharp tip is used. In some cases, the success rate could be increased.
  • the manufacturing method of the present invention is not limited to the above embodiment.
  • the above embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and has the same effect.
  • the technical scope of the present invention is not limited to the above embodiment.
  • the above embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and has the same effect.
  • crystal growth of a silicon single crystal having a diameter of 200 mm (8 inches) has been described as an example. It is effective in increasing the weight of the seed crystal because it is not necessary to narrow down the seed crystal by the dash-necking method.
  • the seed crystal is formed at the tip of the seed crystal. Since the diameter of the smallest crystal part can be as large as 5 mm or more, the use of large-diameter silicon single crystals of 300 mm (12 inches) or larger has recently increased.
  • the present invention can be applied to the production of a silicon single crystal having a high crystal weight of more than 300 kg.
  • the crystal orientation has been described as an example in which 110> is most difficult to pull up.
  • the present invention can naturally be applied to pulling up other crystal orientations. Pulling a crystal with a crystal orientation of ⁇ 100> 1 ⁇ 111> is a force that is not as difficult as pulling a 110> crystal, but the method of the present invention reduces the frequency of seeding failures. It is valid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

明 細 書 シリ コン単結晶の製造方法並びにシリ コン単結晶と シリ コンゥエーノヽ 技術分野
本発明は、 チヨクラルスキー法 (以下、 「c z法」 とも称する。) を用いたシリ コン単結晶の製造方法に関し、 より詳しくは先端の尖ったまたは尖った先端を切 り取った形状の種結晶を用いて、 ダッシュ一ネッキング (Dash Necking) 法を 用いることなくチヨクラルスキー法によりシリ コン単結晶を育成製造する方法と、 それにより製造されたシリ コン単結晶並びにシリ コンゥエーハに関する。 背景技術
半導体素子を形成する基板材料であるゥエーハには、 主に C Z法により育成さ れたシリコン単結晶をゥエーハ状に加工した、 シリ コンゥエーハが用いられてい る。 一般的に、 C Z法を用いたシリ コン単結晶の育成では、 図 2 ( A ) ( B ) に示 す形状の種結晶を、 融点である 1 4 2 0 °C以上に加熱されたシリコン融液に静か に接触させ、 種結晶温度が安定したところで、 融液上方へ種結晶を徐々に引上げ ることによって、 種結晶の下方にシリ コ ン単結晶の育成を図る。 この時、 種結晶 を高温のシリ コン融液に着液した際にもたらされる熱衝撃で、 種結晶には無数の ス リ ップ転位が発生するため、 このスリ ップ転位を除去する目的で、 図 4に図示 するように、 種結晶下方に成長する結晶の径を、 一旦、 3 〜 5 m m程度まで徐々 に細くする絞り部を形成する。 そして、 ス リ ップ転位が育成結晶から除去できた 時点で、 今度は静かに所望の直径まで結晶径を広げ (拡径部の形成)、 必要とする 定径部直径を持った略円柱状のシリ コン単結晶を引上げる。
種結晶をシリ コン融液に接触した際に生じるス リ ップ転位を、 結晶径を 3 〜 5 m m程度まで細く絞ることによつて除去する方法は、 ダッシユ ーネッキング法と 呼ばれ、 C Z法を用いたシリコン単結晶の育成では広く利用されている製造方法 である。
一方、 昨今のシリ コン単結晶製造では、 シリ コン単結晶そのものの生産性を高 めるため、 単結晶の定径部を可能な限り長くする生産形態を取り入れたり、 半導 体素子の大型化や歩留り向上を目指し、 直径の大きなシリ コンゥエーハが必要と されることから、 引上げる単結晶の大直径化、 高重量化が進んでいる。
このよ うな大直径、 高重量のシリ コン単結晶を育成するには、 絞り部の径を 5 m m以下にしなくてはスリ ップ転位を除去できないダッシューネッキング法に頼 つて生産を行っていたのでは、 自ずと限界が生じてしまう。
このため、 最近ではダッシュ一ネッキング法を用いることなく、 無転位でシリ コン単結晶を育成する方法も検討されつつある。 例えば、 特開平 1 0— 2 0 3 8 9 8号公報には、 先端の尖った形状あるいは尖った先端を切り取った形状の種結 晶を用いて、 絞り部を形成することなくシリ コン単結晶を成長させる技術が開示 されている。
この特開平 1 0 — 2 0 3 8 9 8号公報に開示されている技術を用いれば、 種結 晶先端に成長する結晶の径を 5 m m以下に細く絞らなく とも、 無転位のシリ コ ン 結晶を成長させることができるため、 大直径結晶や高重量結晶を育成するのに有 利となる。
しかしながら、 上述の特開平 1 0 — 2 0 3 8 9 8号公報に記載されたシリ コン 単結晶の製造技術では、 種結晶をシリ コ ン融液に着液させた際に、 いかにスリ ツ プ転位を生じさせないよう操業条件を整えるかが問題となる。 例え、 先端の形状 が尖ったまたは尖つた先端を切り取つた形状の種結晶であっても、 シリ コン融液 に着液した際に種結晶とシリ コン融液の温度の差が必要以上に大きい場合は、 無 数のスリ ップ転位が種結晶に入り、 ネッキングを施さなければスリ ップ転位を消 滅させることが不可能になる。 また、 種結晶先端部を所望の径までシリ コン融液 に浸漬する間でも、 シリ コ ン融液の温度が大きく変化すると種結晶にス リ ップ転 位が入ってしまう等、 操業面で検討されるべき点も数多く残されていた。
また、 このシリ コンゥエーハには、 物理的な特徴や結晶成長あるいは半導体素 子を製造する工程での優位性から、 半導体素子を形成するゥエーハ主面の面方位 力 S ( 1 0 0 ) や ( 1 1 1 ) のシリ コンゥエーハが多用されてきた。 しかし、 近年、 半導体素子を形成した際のキヤリァの移動が結晶方位に大きく依存することから. 半導体素子の動作速度の高速化を目指し、 スィツチング速度の高速化が期待でき る面方位 ( 1 1 0 ) のシリ コンゥエーハが注目 されつつある (日経マイクロデバ イス、 2 0 0 1年 2月号 N o . 1 8 8、 日経 B P社、 2 0 0 1年 2月 1 日発行)。 この面方位 ( 1 1 0 ) のシリ コンゥエーハを得るには、 結晶方位が < 1 0 0 > やく 1 1 1 >であるシリ コ ン単結晶を、 ( 1 1 0 )面がゥエーハ主面となるよ うに 加工を施すか、 始めから結晶方位が < 1 1 0 >のシリ コン単結晶を育成しシリ コ ンゥエーハに加工する方法がある。 しかし、 前者の結晶方位 < 1 0 0 >ゃ< 1 1 1 >の単結晶から、 主面の面方位が ( 1 1 0 ) となるシリ コンゥエーハを製造す る方法には、 主面が ( 1 1 0 ) 面となるよう円筒状の結晶を斜めに切断する必要 があることから、 一般的な半導体素子の基板とされる略円形のシリ コンゥエーハ を得るには、 形状を整えるための削り代が大きなロスとなるし、 加工に要する時 間も長くなるので、 工業的にシリ コンゥエーハを量産するのには効率の良い方法 ではない。
これに対し、 始めから結晶方位が < 1 1 0 >の単結晶を育成し、 ( 1 1 0 )面を 主面とするシリ コンゥエーハを製造する方法では、 他の面方位のシリ コンゥエー ハと同じように、 シリ コン単結晶を引上軸方向に対し垂直にスライスし、 鏡面研 磨加工を施せば ( 1 1 0 ) 面を主面とするシリ コンゥエーハを得ることができる。 この方法によれば、 単結晶を引上げた後の加工工程では、 面方位 ( 1 0 0 ) や ( 1 1 1 ) のゥエーハと同じよ うに加工を行うことができるため、 ゥエーハ形状を整 える時にでる研削ロスや、 形を整えるための加工時間を最小限に抑えられ、 無駄 のない効率的なゥエーハ加工を行うことができる。
但し、 この方法は、 結晶方位がく 1 1 0 >となるシリ コン単結晶を育成するの に課題がある。
つまり熱衝撃により種結晶にもたらされるス リ ップ転位は、 結晶方位が < 1 0 0 >ゃ< 1 1 1 >の結晶であれば、 結晶成長界面に対し 5 0〜 7 0 ° 前後の角度 で導入されるので、 結晶径を 3〜 5 m m程度まで細く絞れば育成結晶からスリ ツ プ転位を抜く (除去する) ことができる。 しかし、 結晶方位が < 1 1 0 >の結晶 では、 ス リ ップ転位が結晶成長界面に対し略垂直方向近くに入るため、 ス リ ップ 転位を育成結晶から簡単に除去することは難しく、 特開平 9一 1 6 5 2 9 8号公 報等に示されているように、絞り部径を 2 mm未満にまで極端に細くする方法や、 絞り部径を 3 〜 5 m m程度に細く絞り、 その後、 径を太くする操作を繰り返し、 絞り部に多段の凹凸を作ってスリ ップ転位を抜く等の特別な方法を用いて、 シリ コン単結晶を育成することが要求される。
特に、 結晶方位が < 1 0 0 >ゃ< 1 1 1 >のシリ コン単結晶を育成する場合で は、 熱衝撃で種結晶先端に生じたス リ ップ転位がわずかであれば、 先端の形状が 尖ったまたは尖った先端を切り取った形状の種結晶を用いた効果により、 所望径 まで種結晶を浸漬する間にスリ ップ転位を消滅させてしまうこともできる。 しか し、 結晶方位が < 1 1 0 >の結晶では、 上述したよ うに種結晶の溶融面に対しス リ ップ転位が略垂直方向近くに入るため、 わずかであっても種結晶に一度スリ ッ プ転位が入ると消滅させるのは極めて難しい。
従って、 先端の尖ったまたは尖った先端を切り取った形状の種結晶により、 ダ ッシユ ーネッキング法を用いずに結晶方位く 1 1 0 >のシリ コン単結晶を育成す るには、 結晶方位 < 1 0 0 >ゃ< 1 1 1 >のシリ コン単結晶を育成する場合より も、 更に最適な操業条件を形成する必要があった。 ,
また、 結晶方位 < 1 1 0 >のシリ コン単結晶の育成においても、 高重量、 大直 径のシリ コン単結晶を生産するには、 スリ ップ転位を除去するためにダッシュ一 ネッキング法を用い絞り部を形成し、 更に転位除去を確実なものとするため絞り 部の最少直径を 2 〜 3 m m程度まで細く していたのでは、 とても直径 2 0 0 m m 以上の大直径、 1 0 0 k g以上の高重量のシリ コン単結晶を引上げることはでき ない。 このよ うな高重量、 大直径のシリ コン単結晶を支え引上げるためには、 種 結晶先端に形成される結晶径は、 最小径部分でも 5 m m以上の直径を確保する必 要がある。 発明の開示
本発明の課題は、 先端の尖ったまたは尖った先端を切り取った形状の種結晶を 使用して、 ダッシュ一ネッキング法を用いることなく C Z法によりシリ コン単結 晶を育成するにあたり、 無転位で単結晶を引上げることができる成功率を高める と同時に、 結晶方位が < 1 1 0 >のシリ コン単結晶の育成であっても、 種結晶先 端に形成される結晶の最小径を 5 m m.以上とし、 単結晶定径部の直径が 2 0 0 m m、 あるいはそれ以上の大直径のシリ コン単結晶を育成することが可能なシリ コ ン単結晶の製造方法とシリ コン単結晶、 並びに直径が 2 0 0 m m以上である面方 位 ( 1 1 0 ) の直径の大きなシリ コンゥエーハを提供するところにある。
上記の課題を解決するために、 本発明のシリ コン単結晶の製造方法は、 ダッシ ュ一ネッキング法を行わないチヨクラルスキー法によるシリ コン単結晶の製造方 法において、 先端部の角度が 2 8 ° 以下である先端の尖ったまたは尖った先端を 切り取った形状の種結晶を用い、 前記種結晶の先端部をシリ コン融液に接触させ る前にシリ コン融液の直上で止め加温し、 その後、 前記種結晶の先端部をシリ コ ン融液に接触させ、 所望径までシリ コ ン融液に沈め、 その後、 引上げに転じて単 結晶の引上げを行う場合に、 少なく とも前記種結晶の先端部をシリ コン融液に接 触させ引上げに転じるまでの間は、 シリ コン融液表面の温度変動を士 5 °C以下に 保つことを特徴とする。
ダッシュ一ネッキングを行っていないことから種結晶先端に形成される結晶径 は、 5 m m以上の直径を確保する事が可能となり、直径 2 0 0 m m以上の大直径、 1 0 0 k g以上の高重量のシリコン単結晶を引上げることができる。
特に先端の尖ったまたは尖った先端を切り取った形状の種結晶を用いて、 ダッ シュ—ネッキング (種結晶先端に形成される結晶径を、 一且、 3 〜 5 m m程度ま で細く しス リ ップ転位を除去する。)を行わずに無転位でシリ コン単結晶を育成す る場合には、 種結晶として先端部の角度が 2 8 ° 以下である先端の尖ったまたは 尖った先端を切り取った形状の種結晶を用いて結晶成長を行うのが望ましい。 種 結晶先端部の角度が、 2 8 ° 以下である種結晶を用いることによって、 無転位で 単結晶を引上げる成功率を高めることができる。
先端部の角度が 2 8 ° 以下であれば、 シリ コン融液に種結晶を接触させた際に 生じる熱衝撃を緩和しやすくなり、 また、 わずかにス リ ップ転位が生じた場合で も、 種結晶先端部の角度を 2 8 ° 以下とすることによって、 スリ ップ転位を種結 晶の外に逃がしやすくなる。 しかし、 先端部の角度が 2 8 ° を超えた場合には、 種結晶の先端部位で熱容量が大きくなり、 シリ コン融液に先端部を接触した際に 温度差ができて熱衝撃が生じ、 これによつてスリ ップ転位が結晶に導入されるこ とになる。 また、 シリ コン融液に浸漬した後の種結晶先端部の径もおのずと太く なるため、 導入されたス リ ップ転位も結晶の外へ逃げ難くなつてしまう。
このような理由から、 本発明の製造方法では、 シリ コン融液と種結晶を接触さ せた際の熱衝撃を抑えるため、 種結晶先端部の角度が 2 8 ° 以下である先端の尖 つたあるいは尖った先端を切り取った形状の種結晶を用いる。
そして、 上述の種結晶をシリ コン融液に接融させる前には、 シリ コ ン融液の直 上で、 シリコン融液表面の温度と略同じ温度になるまで加温する必要がある。 シリ コン融液に種結晶を接触させる前に加温し、 十分に種結晶先端部の温度を シリ コン融液の温度に近づけることで、 シリ コン融液に浸漬する種結晶先端部と シリ コン融液の温度差を無く し、 熱衝撃の発生を押さえられる。 この時、 シリ コ ン融液直上での種結晶の加温は、 好ましくは、 5〜 6. 0分程度、 最適には、 2 0 〜 3 0分程度とするのが適切である。
5〜 6 0分の範囲で種結晶先端部を加温すれば、 十分に種結晶先端部の温度を シリ コ ン融液表面の温度に近づけられるし、 加温を行うことで、 シリ コン単結晶 の生産性も損なうことはない。 より最適には、 種結晶の加温は、 シリ コン融液と 種結晶先端部の隙間を 1〜 5 m m程度の範囲に保ち、 2 0〜 3 0分間の加温を加 ぇシリ コン融液への浸漬を行えば、 種結晶をシリ コン融液に接触した際の熱衝撃 を可能な限り小さなものとすることが可能である。
更に、 前記種結晶の先端部をシリ コン融液に接触し所望の径となるまでシリ コ ン融液に沈め引上げに転じるまでの間は、 種結晶近傍のシリコン融液表面の温度 変動を ± 5 °C以下に保ち浸漬を行う必要がある。
シリ コン融液は、 その周囲に配置されたヒータにより加熱され融液として保持 されていることから、 シリ コン融液は常に熱対流を生じ、 絶えず温度が微妙に変 ィ匕している。 この熱対流による温度変化が大き過ぎると、 シリ コン融液の温度に 合わせ種結晶を加温し着液させても、 種結晶先端部に熱衝擊が走りス リ ップ転位 が発生することになる。 また、 種結晶の先端部をシリ コン融液中に沈み込ませる にあたつても、 先端部の沈み込みの途中で種結晶近傍のシリコン融液温度が大き く変化すると、 種結晶と融液温度の温度差により種結晶に熱的な歪みが生じ、 ス リ ップ転位が種結晶に入り、 それ以降、 無転位で単結晶を成長させることが難し くなる。 このよ うなス リ ップ転位の導入を可能な限り抑えるためには、 先端の尖ったま たは尖った先端を切り取った形状の種結晶の先端部を、 シリ コン融液に接触する 時点から、 所望径となるまで先端部をシリ コン融液に沈め引上げに転じるまでの 間の種結晶先端部近傍の融液表面温度の変動を、 種結晶接触時の温度から土 5 °C 以下となるように保って単結晶引上げを行う必要がある。 シリ コン融液の温度変 動が土 5 °Cを超えると、 着液した際ゃ浸漬時にスリ ップ転位が種結晶に入り易く なり、無転位でシリ コン単結晶を引上げることができる成功率が低下してしまう。 特に、 一度ス リ ップ転位が導入されると転位消滅を図るのが難しい結晶方位 < 1 1 0 >のシリ コン単結晶においては、 種結晶を浸漬する部分のシリ コン融液の 温度変動が ± 5 °Cを超えると、 無転位でシリ コ ン単結晶を育成できる可能性が極 めて小さくなる。 少なく とも、 結晶方位く 1 1 0 >のシリ コン単結晶を、 先端の 尖ったまたは尖った先端を切り取った形状の種結晶を用いて、 ダッシュ一ネツキ ングを行わずに引上げるには、 種結晶先端部を浸漬する近傍のシリ コン融液の温 度変動を、 種結晶を融液に接触した際の融液温度に対し ± 5 °C以下に保って、 種 結晶の所望径となるまでの浸漬を行う必要がある。
なお、 より好ましくは、 シリ コ ン融液の温度変動を ± 3。C以下に抑えるのが好 適である。 種結晶の浸漬部付近の融液温度変動を更に小さ'く し、 種結晶を接触し た際の融液温度に対し ± 3 °C以下に保って引上げを行えば、 結晶方位 < 1 1 0 > の単結晶であっても、 シリ コン融液の温度変動によりもたらされるス リ ップ転位 が発生することがほとんど無くなるので、 ほぼ確実に無転位で所望径を有するシ リ コン単結晶の引上げることが可能となる。
また、 前記種結晶の先端部をシリ コン融液に接触させる際のシリ コン融液の温 度を、 ダッシュ一ネッキング法を用いたシリ コン単結晶の製造方法で種結晶をシ リ コン融液に接触するのに適温とされる温度よりも、 1 0〜 2 0 °c高いシリ コン 融液温度として種結晶をシリ コン融液に接触させ沈み込みを行い、 少なく とも前 記種結晶の降下を止め引上げに転じた直後から、 種結晶下方に形成される結晶径 の拡大が始まる間の減径部の形成では、 引上速度を 0 . 5 m m Z in i n以下とし て、 単結晶を引上げるのがよい。
ダッシュ一ネッキング法を用いたシリ コン単結晶の製造方法で種結晶をシリ コ ン融液に接触するのに適温とされる温度よりも、 シリ コン融液の温度が低い場合 または高いとしても差が 1 o °c未満であると、 種結晶をシリ コン融液に浸漬した 際に、 浸漬部位がスムーズにシリ コン融液に溶けず、 結果、 固化が生じる等、 異 常な結晶成長が起こる可能性がある。
他方、 シリ コン融液の温度が、 ダッシュ一ネッキング法を用いたシリ コン単結 晶の製造方法で種結晶をシリ コン融液に接触するのに適温とされる温度よりも 2 0 °Cを越えて高くなり過ぎると、 今度は種結晶をシリ コン融液に接触させる前に 先端部が溶け、 種結晶をうまくシリ コン融液に接触させることができなくなる可 能性がある。
以上のことを考慮すれば、 種結晶を浸漬させる際のシリ コン融液の温度は、 ダ ッシュ一ネッキング法を用いたシリ コン単結晶の製造方法で種結晶をシリ コン融 液に接触するのに適温とされる温度よりも、 1 0〜 2 0 °C高い温度範囲に保って、 種結晶をシリ コン融液に接触し沈み込ませるべきである。
そして、 所望径までの種結晶先端部のシリ コン融液への沈み込みを終え、 種結 晶の降下を止めて引上げに転じた直後から、 種結晶下方に形成される結晶径の拡 大が始まるまでの間の減径部の形成では、 引上速度を 0 . 5 m m / m i n以下に 保ってシリ コン単結晶の育成を行うのが望ましい。
所望径までの種結晶先端部の沈み込みを終了し、 引上げに転じた直後は、 種結 晶下方に形成される結晶は、 一旦、 結晶径が種結晶沈み込み終了時点の径より も 幾分細くなり結晶成長が行われる (減径部の形成)。 この時、 必要以上に早い速度 で引上げを行う と、 種結晶下方に成長する結晶径が所望径ょり も細くなり過ぎた り、 場合によっては結晶がシリ コン融液から離れてしまう等の不具合が生じる。 このよ うな問題を抑えるには、 種結晶の沈み込みを止め引上げに転じた後、 種 結晶下方に形成される結晶径の拡大が始まる間の減径部の形成においては、 引上 速度を 0 . 5 m m / m i n以下に保って結晶成長を行うのが適切である。
また、 上述の種結晶の着液浸漬条件を形成し易くする為には、 少なく とも前記 種結晶の先端部をシリ コン融液に接触する時点から、 種結晶下方に形成される減 径部の形成が終了し結晶径の拡大が始まるまでの間は、 シリコン融液に中心磁場 強度が 1 0 0 0 G以上となる水平磁場を印加し、 シリ コン単結晶の育成を図ると よい。
本発明では、 種結晶先端部を浸漬する近傍のシリ コン融液の温度変動を、 種結 晶を融液に接触した際の融液温度に対し ± 5 °C以下に保って育成することが重要 である。このようなルツボに収容されたシリ コン融液の温度変動を抑制するには、 ルツボ外周に配置されたヒータからの加熱により生じるシリ コン融液の熱対流を 可能な限り小さく抑える必要がある。 この熱対流を効率的に抑制するには、 シリ コン融液に磁場を印加しながら単結晶の育成を図る磁場印加 C Z法 (以下、 M C Z法と称する。) を用いるのが適している。 なかでも、 種結晶を接触し浸漬する際 の種結晶近傍のシリ コン融液温度を安定させるためには、 ルツボ内のシリ コン融 液の温度勾配を小さくする効果が大きい水平磁場をシリ コン融液に印加して、 種 結晶の接触から浸漬までを行うのが望ましい。 このようなシリ コン単結晶の育成 方法としては、 水平磁場印加 C Z法 (以下、 H M C Z法と称する。) がある。 この H M C Z法を用いて、 シリ コン融液に磁場強度が 1 0 0 0 G (ガウス) 以 上の磁場を印加しながら、 種結晶の先端部をシリ コン融液に接触して所望径まで 融液中に浸漬を行えば、 その間は浸漬部位付近のシリ コン融液の温度変動を士 5 °C以下に抑えることが容易となる。 但し、 このような制御方法に限らず、 磁場 強度が 1 0 0 0 Gより小さい場合、 または磁場を印加しない場合でも、 その他の 制御手段、 例えばシリ コン融液の表面をランプ加熱により加熱しシリ コン融液内 の上下方向の温度勾配を緩やかにすることで熱対流が抑制できるし、 シリ コン融 液量を少なく設定し、 融液深さを浅くすることによりシリ コン融液の熱対流の抑 制が可能であり、 また、 磁場印加と併用するなどし、 種結晶を浸漬する部分のシ リ コン融液の温度変動を土 5 °C以下に抑えて育成すれば同様な効果は得られる。 シリ コン融液に磁場を印加して、 適切にシリコン融液の温度変動を抑制しよ う とするのであれば、 中心の磁場強度が 1 0 0 0 G以上となる水平磁場をシリ コン 融液に印加して、 先端の尖ったあるいは尖った先端を切り取った形状の種結晶を 接触し浸漬を図るのが好適である。
なお、 シリ コン融液に印加する磁場の最大強度は、 装置構成や実用的な範囲で の磁場印加を考えれば、 H M C Z法であれば現状では最大でも中心の磁場強度が 9 0 0 0〜 1 0 0 0 0 G程度が上限である。 この H M C Z法を用いて、 シリ コン融液に 1 0 0 0 G以上の水平磁場を印加し てシリ コン単結晶を引上げる方法では、 特に結晶直径が 2 0 0 m mを超えるよう な大型のシリ コン単結晶を育成する場合にも効果的に作用する。 結晶直径の大き な単結晶を育成する場合、 生産性や歩留りに配慮して、 シリ コン融液を保持する ルツボに大型のものを使用し、 1 0 0 k gを超える多量の原料を一度にルツボに 入れ単結晶育成を行うのが一般的である。
ルツボに保持する原料、 即ちシリ コン融液の量が増えると、 ヒータに近いシリ コン融液の外縁部と融液中心付近での温度差が大きくなり、' 熱対流が活発となつ て種結晶浸漬部分近傍の融液温度を安定させることが難しくなる。 この時、 シリ コン融液に 1 0 0 0 G以上の所望磁場を印加すれば、 ルツボ内の熱対流が抑えら れ、 種結晶の浸漬部分付近での融液温度の安定を図ることができる。
なお、 シリ コン融液に印加する水平磁場の強度は、 シリ コン融液の温度安定に 加え、 育成する単結晶の直径や品質条件にあわせ適宜選択すればよい。
このようなシリコン単結晶の製造方法を用いることにより、 先端の尖ったある いは尖った先端を切り取った形状の種結晶をシリ コン融液に接触し浸漬する際の 融液温度が安定し、 熱衝撃によるス リ ップ転位の発生を可能な限り減らす、 ある いはまつたく発生させることなく種結晶を所望径まで浸潰させることができるよ うになる。
これによつて、 無転位で所望定径部径を有するシリ コン単結晶を引上げること ができる成功率を高められると同時に、 これまではダッシュ一ネッキング法によ る制約のため、 C Z法を用いたシリ コン単結晶の育成では困難と思われてきた、 結晶方位が < 1 1 0 >である前記種結晶を用い、 結晶方位 < 1 1 0 >のシリ コ ン 単結晶を引上げることが可能となり、 またチヨクラルスキー法を用いて育成した シリ コ ン単結晶であって、 シリ コン単結晶の結晶方位がく 1 1 0 >であり、 かつ 直径が 2 0 0 m m以上の単結晶定径部を有するシリ コン単結晶、 あるいはこのよ うなシリ コン単結晶であって、 シリ コン融液から引上げる結晶の総重量が 1 0 0 k g以上、 さらには 3 0 0 k を超えるシリ コン単結晶であっても引上げが可能 となる。
そして、 上述の製造方法によって育成された結晶方位く 1 1 0 >のシリ コン単 結晶を、 結晶方位がく 1 0 0 >ゃ< 1 1 1 >の結晶と同じ製造工程によって、 円 筒研削を行いスライスし鏡面研磨加工を施せば、 半導体素子を作る際の主材料と なるゥエーハ主面の面方位が ( 1 1 0 ) のシリ コンゥエーハを、 工業的に効率良 く生産することができるよ うになる。
特に、 従来の方法では育成が困難と考えられていた、 定径部直径が 2 0 0 mm を超える結晶方位く 1 1 0 >のシリ コン単結晶が得られるようになったことで、 ゥエーハの主直径が 2 0 0 mm以上であり、 かつゥエーハ主面の面方位が ( 1 1 0 ) であるシリ コンゥエーハを容易に生産することが可能となる。 なお、 ここで シリ コンゥエーハの主直径とは、 オリエンテーションフラッ トあるいはオリエン テーショ ンノ ツチを含まないゥエーハ主面の直径を指す。
この面方位 ( 1 1 0 ) で直径が 2 0 0 mm以上あるシリ コンゥエーハを用いれ ば、 高い機能を有する半導体素子を、 歩留り よく大量に生産することができるよ うになる。
結晶軸方位がく 1 1 0 >のシリ コン単結晶の育成は、 種結晶をシリ コン融液に 着液した際の熱衝撃によりもたらされるス リ ップ転位が、 結晶成長界面に対し略 垂直に入るため、 ダッシューネッキング法を用いた方法ではスリ ップ転位を消滅 さえることが難しく、 大量に生産するのは困難であった。 また、 ダッシューネ ッ キング法を用いた結晶方位がく 1 1 0 >のシリコン単結晶の育成では、 ス リ ップ 転位を消滅させるため、 絞り部の径を 2 mm以下まで細くする必要があり、 結晶 直径の大きな 2 0 0 mmあるいは 3 0 0 mm以上の大直径高重量の結晶を、 効率 良く生産することは難しいと考えられていた。
しかし、 本発明の製造方法を用いることによって、 結晶直径が 2 0 0 mmを超 える大直径の結晶方位 < 1 1 0 >のシリ コン単結晶、 あるいは定径部径を可能な 限り長く引上げた重量が 1 0 0 k g以上の結晶方位 < 1 1 0 >のシリ コン単結晶 であっても、 安全に効率良く生産することが可能となる。
そして、 同時に結晶方位く 1 1 0 >以外のダッシューネッキング法によらずシ リコン単結晶を育成する無転位種付け法を採用したシリ コン単結晶の育成におい ては、 無転位で単結晶を引上げる成功率を高める効果を得ることができる。 図面の簡単な説明
図 1は、 本発明によるシリ コン単結晶の製造方法を実施するための、 磁場印加 装置を設けた C Z法単結晶製造装置の概略図である。
図 2は、 ダッシュ一ネッキング法で使用する種結晶と、 本発明の製造方法で使 用する先端の尖ったあるいは尖った先端部を切り落とした形状の種結晶を示す図 面である。
図 3は、 本発明の製造方法を用いて育成した、 結晶方位 < 1 1 0 >で直径が約 20 0 mmのシリ コン単結晶の一部を示す写真である。
図 4は、 ダッシュ一ネッキング法によるスリ ップ転位の除去を説明するための 図面である。 発明を実施するための最良の形態
以下に、本発明の実施の形態を、添付図面を参照しながら説明する。図 2の( C ) (D) (E) (F) に示す図面は、 本発明によるシリ コン単結晶の育成に用いる先 端の尖ったあるいは尖った先端を切り取った形状の種結晶を示す概略図である。 図 2の (C) (D) は、 (C) が円柱状の直胴部 3 cを持った円錐状の先端部 4 cを有する種結晶 1 cを示したものであり、 (D)は角柱状の直胴部 3 dを持った 角錐状の先端部 4 dを有する種結晶 I dを示したものである。
また、 図 2 (E) 及ぴ (F) は、 図 2 (C ) の種結晶の先端部 4 c を切り取つ た形状の種結晶先端部を示したもので、 (E)は種結晶 1 cの先端部 4 cを水平に 切り取った先端部 4 eを示し、 (F)は先端部 4 cを斜めに切り取った先端部 4 f を図示している。 先端部を切り取った形状の種結晶では、 図 2 (E) (F) に示す 先端部 4 e、 4 f の最下端の面積が大き過ぎると、 種結晶を融液に接触した際に 熱衝撃を生じ易くなるので、 種結晶が最初にシリ コン融液に接触する際の面積が 5 mm2以下となるよ うにするのが好ましい。
なお、 本発明でいう種結晶先端部の角度とは、 図 2 (E) や (F) に示す先端 部 4 cを切り取った形状の種結晶である場合は、 先端部 4 cを切り取る前の先端 部形状を想定した時の種結晶先端部の頂角を指す。
そして、 これらの種結晶は、 単結晶育成時には種結晶直胴部 3 c及ぴ 3 dに設 けられた係止部 2 c、 2 dを介して、 直胴部 3 c、 3 dが図 1に示す単結晶製造 装置 1 0の種ホルダー 2 8内に係止され単結晶の製造に用いられる。
本発明のシリ コン単結晶の製造方法では、 図 2の (C ) ( D ) ( E ) 及び (F ) に示すように、 種結晶をシリ コン融液に着液した際に、 熱衝撃で種結晶にスリ ツ プ転位が入らないよう、 例え入ったとしてもわずかであるよ うに種結晶先端部 4 c〜 4 f が尖ったあるいは尖った先端を切り取った形状をしており、 ダッシュ一 ネッキング法を用いた製造方法で使う種結晶とは、明らかに違った形をしている。 ダッシューネッキング法を用いたシリ コン単結晶の育成で利用する種結晶の例 示として、 図 2 ( A ) に略円柱状の種結晶、 (B ) に角柱状の種結晶を示す。 また、 シリ コン単結晶の育成においては、 育成するシリ コン単結晶の結晶方位 を所望のものとするために、 育成する単結晶と同じ結晶方位を持った種結晶を使 用し単結晶の育成を図る。 例えば、 結晶方位く 1 1 0 >の単結晶を育成するので あれば、 引上軸方向の結晶方位が < 1 1 0 >の種結晶を用いればよい。
そして、 先端の尖ったあるいは尖った先端を切り取った形状の種結晶をシリ コ ン融液に浸漬する際には、 図 2に示す種結晶 1 c又は 1 dをシリ コン融液 Mと略 同じ温度まで融液直上で加温し、 種結晶の温度が安定したところで静かに先端部 4 c、 4 dあるいは 4 e、 4 f をシリ コン融液 Mに沈め、 先端部が所望径まで没 したところで引上げに転じることによって、 任意の減径部 S 0を持った図 1に示 すシリコン単結晶 Sが育成される。
図 1は、本発明の方法によりシリ コン単結晶を育成するための製造装置を示す、 概略図である。 単結晶製造装置 1 0は、 シリ コン融液 Mを保持し単結晶育成が行 なわれる育成炉 1 2と、 シリ コン融液 Mから引上げられたシリ コン単結晶 Sを収 容し取出すための上部育成炉 1 4から成る。
上部育成炉 1 4の上方には、 単結晶を育成する際に結晶を回転し引上げるため の卷取り回転機構 2 6が設けられ、 この卷取り回転機構 2 6から卷き出されたヮ ィヤー 2 4の先端には、 種結晶 2 7 (図 2に例示した種結晶 1 cまたは 1 d ) を 係止するための種ホルダー 2 8がある。 単結晶育成時には、 種結晶 2 7の直胴部 を種ホルダー 2 8に係止し、 卷取り回転機構 2 6からワイヤー 2 4を巻き出し、 種結晶先端部を所望位置までシリ コン融液 Mに浸潰し、 種結晶 2 7を回転させな がら所定の速度で引上げることによって、 種結晶 2 7下方にシリコン単結晶 Sの 育成を図るものである。
一方、 育成炉 1 2の内部にはシリ コン融液 Mを保持するためのルツボ 1 8が備 えられ、 高温のシリ コン融液 Mを保持することから、 ルツボ 1 8の内側は石英製 ルツボ 1 8 aで、 その外側は石英製ルツボ 1 8 aを保護するために黒鉛製ルツボ 1 8 bで構成されている。 このルツボ 1 8は、 ルツボ支持軸 1 6によつて育成炉 1 2の略中央に配置され、 ルツボ支持軸 1 6の下方には、 単結晶を育成する際に 融液面を一定に保つことや、 C Z法あるいは M C Z法ではルツポ 1 8を回転させ ながら結晶育成を行うため、 ルッボ駆動機構 2 0が取付けられている。
更に、 ルツボ 1 8の外側には原料である多結晶シリ コンを融解し、 シリ コン融 液 として保持するため黒鉛製のヒータ 2 3が置かれ、 ヒータ 2 3の発熱量を調 整することによって、 シリ コン融液 Mの温度を結晶育成に適した温度に保ち操業 が行われる。
ヒータ 2 3の外側と育成炉 1 2の底部には、 断熱材 2 2及ぴ底部断熱材 2 1 を 備え、 育成炉 1 2内部を保温すると同時に、 ヒータ 2 3からの輻射熱が直接育成 炉 1 2炉壁にあたるのを防いでいる。
そして、 図 1 の単結晶製造装置 1 0には、 シリ コン融液 Mの対流を制御しより 温度の安定を図ることを目的とし、 育成炉 1 2の外側には、 水平磁場をシリ コン 融液 Mに印加するための装置である電磁石 3 3が装備されている。
この単結晶製造装置 1 0では、 融液温度の変動を効率的に抑制するため、 水平 磁場の中心をシリ コン融液 M内に配置し、 種結晶 2 7浸漬時には所望の磁場強度 である中心磁場強度が 1, 0 0 0 G以上となる水平磁場がシリコン融液 M内で得ら れるようにしている。
また、 単結晶育成開始から炉內が常温に戻るまでは、 シリ コン融液 Mや単結晶 製造装置 1 0内に配置された構造物が酸化するのを防ぐ等の目的で、アルゴン(A r ) 等の不活性ガスを炉内に流し操業を行う必要がある。 この為、 上部育成炉 1 4には製造装置 1 0内に流す不活性ガス流量を制御するためのガス流量制御装置 3 0 と、 育成炉 1 2の底部に内部の圧力を調整するための圧力制御装置 3 2が取 付けられている。 操業時は、 単結晶の育成条件に合わせ、 これらの装置により単 結晶製造装置 1 0内に流れる不活性ガスの流量や圧力の調整を図る。
次に、 本発明の方法によるシリ コン単結晶の育成方法を詳述する。
まず、 原料である多結晶シリ コンをルツボ 1 8に仕込み、 ヒータ 2 3を発熱さ せ多結晶シリ コンを溶融する。多結晶シリ コンが全て溶け融液となったところで、 シリ コ ン融液 Mを単結晶育成に適した温度まで降温する。 この時、 ドープ剤の投 入、 シリ コン融液 M面の位置調整等、 種結晶 2 7を融液に接触し浸漬するために 必要な条件を整えつつ、 電磁石 3 3により中心磁場強度が 1 0 0 0 G以上となる 水平磁場がシリ コ ン融液 Mに加わるよう磁場印加を開始する。 なお、 この磁場は 少なく とも種結晶 2 7の先端部をシリ コン融液 Mに接触する時点から、 種結晶 2 7下部に形成される減径部 S 0の形成が終了し結晶径の拡大が始まるまでの間は. 印加される。
シリ コン融液 Mの温度が所定温度 (好ましくは、 ダッシュ一ネッキング法を用 いたシリコン単結晶の製造方法で種結晶をシリ コン融液に接触するのに適温とさ れる温度よりも、 1 0〜 2 0 °C高い温度) に達したら、 安定するのを待って、 先 端部の頂角が 2 8 ° 以下である種結晶 2 7をシリ コン融液 M直上まで降ろし、 種 結晶 2 7先端部の温度がシリ コン融液 Mの温度と略同じ程度まで加温されるのを 待つ。
その後、 種結晶 2 7がシリコン融液 Mの温度と略同じ程度まで加温され、 更に 種結晶 Sを浸漬するルツポ 1 8中心付近のシリコン融液 M表面の温度が、 ± 5 °C 以下の変動で推移するまでに温度安定が図られたら、 静かに種結晶 2 7をシリ コ ン融液 Mに接触させ浸漬する。 少なく とも、 この種結晶 2 7 の先端部をシリ コン 融液 Mに接触させ引上げに転じるまでの間は、 スリ ップ転位の導入を抑制するた めに、 種結晶 Sが浸漬する部分のシリ コン融液 M表面の温度変動を土 5 °C以下、 好ましくは ± 3 °C以下に保つのがよい。
そして、 先端部が所定径までシリ コン融液 Mに沈んだところで種結晶 2 7 の降 下速度を落とし止め、 種結晶 2 7の上昇速度とシリコン融液の温度を調整しなが ら引上げに移る。
なお、 種結晶 2 7を引上げに転じるにあたり、 引上速度が速過ぎたり融液温度 が適切でないと種結晶 2 7 の先端が融液から離れたり、 先端に形成される結晶径 が所望径ょり細くなってしまうことがある。 種結晶 2 7を引上げに転じる際は、 種結晶先端に形成される結晶径を見ながら、 育成される結晶径が所望径以下にな らないよう引上速度を調整しながら静かに引上げる。
特に、 種結晶 2 7を引上げに転じた直後は、 種結晶先端部の沈み込み後の先端 径より も、 種結晶 2 7下端に成長する結晶径が細くなる傾向を示しながら結晶が 形成されていく。 この時、 無理に結晶径を拡大しょうとすると、 種結晶 2 7にス リ ップ転位が導入されたり育成結晶が融液から離れてしまう等の不具合が起こる ので、 浸漬から引上げに転じた直後は、 種結晶 2 7先端に形成される結晶が、 浸 漬した種結晶 2 7先端部の沈み込み径ょりも少し減径するよう、 引上速度を調整 して引上げを行う必要がある (減径部 S 0の形成)。 望ましくは、 この時の引上速 度は 0 . 5 m m Z m i n以下に保って引上げるとよい。
また、 種結晶 2 7の先端部の沈み込み径は、 引上げに転じた際に先端に形成さ れる結晶が、 一旦細るのを考慮に入れ浸漬を行う必要がある。
種結晶 2 7の下端に先端部の沈み込み径ょり細い結晶が形成されたのを確認し たら、 引上速度および/または融液温度を徐々に変化させ、 結晶径を拡大する拡 径工程に移行する (拡径部 S 1 の形成)。
拡径工程により種結晶 2 7下方に形成される単結晶 Sの径を所望径まで拡大し. 所定直径に達したところで拡径部 S 1の形成をやめ、 再度、 引上速度および/ま たは融液温度を調整して単結晶定径部 S 2の形成に移行する。 定径部 S 2の形成 では、 育成される結晶の品質ゃ炉内環境に合わせ操業条件を調整しながら、 定径 部 S 2の長さを所定長まで引上げる (定径部 S 2の形成)。
そして、 所定長の定径部 S 2の形成が完了した時点で育成条件 (引上速度、 融 液温度、 等) を変更し、 結晶径を徐々に小さく していき尾部 S 3を形作る (尾部 S 3の形成)。 '
尾部形成が完了したら育成結晶をシリ コン融液 Mから切離し、 上部育成炉 1 4 まで卷き上げ、 常温に結晶温度が下がるのを待って単結晶製造装置 1 0から外部 へとシリ コン単結晶 Sを取出し育成を終了する。
そして、上述の方法によつて育成された単結晶に切断/円筒研削加工を施し、 その後、 公知の方法によって鏡面ゥエーハに加工すれば、 半導体素子を作るため の主材料であるシリ コンゥエーハを得ることができる。 以下に、 実施例を示し本発明を具体的に説明するが、 本発明はこれらに限定さ れるものではない。
(実験 1 )
始めに、 製造の難しい結晶方位く 1 1 0 >のシリ コン単結晶を育成するために は、 どのような操業条件が望ましいか検討するため、 図 1に示すシリ コン単結晶 の製造装置を用い、 シリ コン融液には磁場を印加することなく、 ダッシューネッ キング法を用いた引上方法を採用して、 結晶定径部の直径が約 1 5 0 m m ( 6ィ ンチ) のシリ コン単結晶を製造した。
種結晶には、 ダッシューネッキング法を用いて転位除去を図りシリコン単結晶 を育成することから、 シリ コン融液と接触する面が平らな、 一辺 1 5 m mの角柱 状の結晶方位が < 1 1 0 >である種結晶 (図 2 ( b ) に示す形状の種結晶) を用 いた。
まず、 シリ コン単結晶の製造装置に口径が 4 5 0 m mの石英製ルツボを入れ、 そのルツボに原料である多結晶シリ コンを 6 0 k g充填し、 製造装置の内部をァ ルゴン (A r ) ガスで置換した後に黒鉛製ヒータを発熱させ、 多結晶シリ コンを シリコン融液とした。
全ての原料が溶け終えたのを確認した上で、 育成単結晶の抵抗率が p型で 1 0 Ω c m前後の抵抗率となるようにドープ剤を調整投入し、 その後、 シリ コン融液 を単結晶の育成に適した温度に降温調整しながら、 融液の温度が安定するのを待 つた。 その間、 製造装置に流す不活性ガス (A r ガス) の量と内部の圧力、 並ぴ にルツボ回転等の操業条件を、 単結晶を育成するための製造条件に整えながら融 液温度の安定を待った。
融液温度の安定については、 単結晶製造装置の外から、 製造装置の内部を目視 するために設けられたガラス窓を通し、 放射温度計 (C H I N〇製 I R— 0 2 C ) により、 種結晶を浸漬するルツボ中心の融液表面の温度を測定することによ つて確かめた。 単結晶育成に適じた温度になったと思われるところで、 温度を測 定した。
結果は、 表 1の 「融液温度変動幅」 に示す通りであり、 温度が安定したと思わ れる時点で、 ルツポ中心の融液表面温度を繰り返し計測したが、 計測点での温度 変動は土 6 °Cの範囲で上下動を繰り返すばかりであり、 それ以上温度変動が小さ くなることはなかった。
この時点で温度計測を止め、 種結晶を 5分程シリ コン融液直上で加温した後に 静かにシリ コン融液に接融し、 ダッシュ一ネッキング法を用いてスリ ップ転位の 除去を試みた。
しかし、 ダッシュ一ネッキング法では結晶方位く 1 1 0 >の種結晶のス リ ップ 転位を消滅させることは難しく、 5回程転位除去に失敗した後に、 6回目のダッ シユ ーネッキングで結晶絞り部の最少直径を 2 m mまで細く したところでス リ ッ プ転位が消え、 絞り部での無転位化に成功した。
但し、ダッシュ一ネッキング法により絞り部での転位消滅には成功したものの、 シリ コン融液の温度変動が大きかったためか、 結晶定径部を 6 0 c mまで育成し たところでス リ ップ転位が単結晶に入り、 結局、 無転位の状態で結晶を引上げる ことはできなかった。 (表 1の 「引上げ成功の有無」 欄を参照。 〇印は、 無転位で シリ コン単結晶を引上げられた場合であり、 X印は、 無転位で単結晶を育成でき なかった場合を示す。)
なお、 実験 1 と後述する実験 2及ぴ実施例 1の引上げ結果に付いては、 比較の ため詳細を表 1にまとめた。
(表 1 )
(結晶方位 〈 0〉 シリ コン単結晶の育成結果)
印加磁場強度 種付け 融液温度 結晶引上げ
(水 兹場) 育成結晶径 種絞り方法 失敗数 変動幅 成功の有無 実験 1 無印加 1 5 cm ダッシュ 6回 ± 6 °C X
ネッキング法
無印加 2 O cm 無転位 9回 ± 8 °C X
種付け法
実施例 1 4 0 0 0 G 2 O cm 無転位 0回 ± 1 . 5 °C 〇
種付け法 (実験 2 )
実験 1により、 ダッシュ一ネッキング法によるスリ ップ転位の除去は、 結晶方 位が < 1 1 0 >の単結晶では成功率が低く、 加えて、 無転位化を図るには絞り部 分の最少径を 2 m m程度まで細くする必要があり、 重量のある大直径結晶を引上 げる方法としては限界があることが判った。
そこで、 ダッシュ一ネッキング法を用いずに先端が尖った種結晶を用いて、 無 転位でシリ コン単結晶を育成する方法 (以下、 無転位種付け法と称する。) により, 結晶径の大きな単結晶を育成することが可能であるか、 実際に定径部直径が約 2 0 0 m m ( 8インチ) の単結晶を引上げて確認を行った。
単結晶育成に用いた装置は、 実験 1 と同様の装置を用いて、 シリ コン融液への 磁場印加は行わずに製造を実施した。 但し、 実験 2では、 結晶直径が約 2 O O m mの結晶方位 < 1 1 0 >のシリ コン単結晶を育成することから、 製造装置に入れ る石 製ルツボは口径が 6 0 0 m mのものとし、 原料である多結晶シリ コンを 1 5 0 k g仕込んで、 実験 1 と同じよ うに加熱を行ってシリコン融液とした。
そして、 シリ コン融液が単結晶育成に適した温度に安定するまでの間に、 融液 に結晶抵抗率が p型 1 0 Ω c m前後の値となるようにドープ剤を投入した上で、 A r ガス量、 製造装置内の圧力等の操業条件を整え温度の安定を待った。
なお、 実験 2で使用した種結晶には、 ダッシュ一ネッキングを行わずに熱衝撃 によるスリ ップ転位の導入を排除して引上げを行う必要があることから、 図 2 ( C ) に示す形状の種結晶で、 種結晶直胴部の直径が 1 5 m mの円柱状で、 先端 部の頂角が 1 5 ° の尖った円錐形状のものを使用した。
そして、 シリコン融液の温度が、 実験 1で種結晶をシリコン融液に接触させた 際の温度よりも 1 3 °C高い温度に安定した時点で、 実験 1 と同じように放射温度 計を用い、 育成装置の外からルツボ中心のシリ コン融液表面温度を測定したとこ ろ、 表 1に示したように ± 8 °C程度の変動幅で上下を繰り返していた。 しかし、 それ以上温度変動幅を小さく し、 融液温度が安定するように調整することはでき な力 つた。
この状態で、 種結晶を静かにシリ コン融液面の直上 1 m mの所まで降ろし、 約 2 0分程、 種結晶の温度が略融液温度と同じになるまで加温した後に、 種結晶を シリ コン融液に接触させ融液に所望径まで沈め、 その後、 引上速度を 0 . 5 m m / m i II以下に保ちつつ徐々に引上げることによって種結晶下方にシリ コン単結 晶の形成を試みた。
しかし、 ほとんどの場合、 種結晶先端部を所望径まで融液中に浸漬している間 に、 熱衝撃によると思われるス リ ップ転位が種結晶に入り、 種結晶を交換しなが ら 9回まで同様の無転位種付け法による結晶育成を試みたが、 9回とも無転位で 単結晶を引上げることはできなかった。
この理由として レツボが大きくなり収容するシリ コン融液の量が増えたため、 ルツボ内のシリ コン融液の温度差が拡大し、 全体的に融液温度が不安定となり、 浸漬途中の種結晶ヘスリ ップ転位がもたらされたものと考えられる。
実験 2の結果から、 先端部の尖った種結晶を用いて、 ダッシュ一ネッキングを 行わずに熱衝撃によるスリ ップ転位の導入を無く しシリ コン単結晶の育成を行う には、 更に種結晶浸漬時のシリ コン融液の温度変動を小さく抑える必要があるこ とが判明した。
(実験 3〜 5 )
種結晶浸漬時のシリ コン融液の温度変動の種結晶へのス リ ップ転位の影響につい て確認した。 この温度の制御方法は、 実験例の表 2に示したよ うな一定の育成条 件を設定し、 実験 3では磁場強度を 5 0 0 G、 実験 4では磁場強度を 7 5 0 G、 更に実験 5ではシリ コン融液の深さ方向の温度差を少なく して熱膨張による自然 対流を抑制し、 温度変動を低減させる目的でランプ加熱により赤外線をシリ コン 融液表面に照射した。 種結晶へのス リ ッフ転位の有無は種結晶を所定の長さまで 浸漬した後に減径部を形成した後に直径 2 0 0 m mまで拡径し、 単結晶の状態を 表す晶癖線の確認により無転位の判断を行なった。 これは、 転位が種結晶に残つ ていた場合には単結晶である表面に現れる特徴的な晶癖線が消えてしまうので容 易に単結晶化が判断できる一般的な方法である。 なお、 用いた種結晶は前記、 図 2 ( C ) に示す形状の種結晶で、 種結晶直胴部の直径が 1 5 m mの円柱状で、 先 端部の頂角が 1 5 ° の尖った円錐形状のものを使用した。 03 05167
21
(表 2 )
(結晶方位 く 0 ) シリコン種単結晶の有転位化の結果)
Figure imgf000023_0001
表 2の実験 4及び実験 5から融液温度変動幅が 5 °Cを超えた条件では拡径部に て結晶表面の晶癖線が消えてしまい有転位化することが判った。 また、 実験 5よ り融液温度変動幅が 5 °C以下であれば、 有転位化せず単結晶で育成することが可 能であることが確認できた。
なお、 実験 2のよ うな育成条件で磁場を印加してシリ コン融液の温度変動を制 御する場合、 1 0 0 0 G以上の磁場を印加すれば、 容易に ± 5 °C以内に制御でき た。 育成条件等によ り最適な磁場強度等は若干異なるが、 このよ うなレベルの磁 場を印加することが有効であることがわかる。 なお、 本発明ではシリ コン融液の 温度変動を制御すること、 特に ± 5 °C以内に制御することが重要であり、 このよ うな条件で制御できれば、 磁場を印加する方法以外でも有効であった。 (実施例 1 )
そこで、 実験 2と同じ結晶直径が約 2 0 0 m mで結晶方位 < 1 1 0 >のシリ コ ン単結晶を育成するにあたり、 シリ コン融液に水平磁場を印加しつつ種結晶の融 液への接触と浸漬を行ぅシリ コン単結晶の育成を試みた。
まず、 実験 2で使用した装置と同じ装置を用い、 口径が 6 0 0 m mの石英製ル ッボを装置に入れ 1 5 0 k gの多結晶シリコンを充填し、 黒鉛製のヒータを発熱 させ原料を加熱しシリコン融液とした。
多結晶シリ コンが全て溶け終ったところで、 単結晶育成に適した所望温度に降 温を行い、 融液に結晶抵抗率が P型 1 0 Ω c mとなるようにドープ剤を入れ、 融 液温度が安定するのを待った。 この間に、 シリ コン単結晶の製造装置の外側に配 置された磁場印加装置 (電磁石) を動作させ、 磁場中心の強度が 4 0 0 0 Gとな る水平磁場をシリコン融液に印加した。
なお、 実施例 1では、 溶融が完了し融液温度の安定を図る時点から、 シリ コン 単結晶育成が終了し、結晶尾部が融液から離れるところまで磁場印加を継続した。 シリコン融液に磁場印加後、 融液温度が実験 2の融液温度と略同様の温度に安 定したと思われるところで、 ルツボ中心付近の融液表面温度を実験 2と同様に放 射温度計で計測したところ、 ± 1 . 5 °Cの範囲に温度変動が落ち着いており、 種 結晶を融液に着液するのに良好な状態に保たれていることを確認した。
製造装置の種ホルダーには、 種結晶の直胴部径が 1 5 m m、 先端部の頂角が 1 5 ° の円錐状に尖らせた実験 2と同形状である結晶方位が < 1 1 0 >の種結晶を 装着した。
融液温度の安定を確認した後、 静かに種結晶をシリ コン融液直上 1 m mまで降 ろし、 2 0分前後、 種結晶が加温されるのを待った。 そして、 種結晶温度がシリ コン融液の温度と同程度まで加温されたところで、 徐々に種結晶先端を融液中に 降ろし、 種結晶先端の円錐部 (先端部) が所望径となるまでシリ コン融液に沈め た。
種結晶を所望径まで沈めたところで種結晶の下降を止め、 静かに引上げに転じ た。 なお、 この種結晶をシリ コン融液に接触させてから、 引上げに転じるまでの 間のシリ コン融液表面の温度変動を、 放射温度計で計測したところ、 ± 1 . 5 °C の範囲に温度変動が保たれていることを確認した。 そして、 種結晶の引上速度を 0 . 5 m m / m i n以下に保ちつつシリ コン融液の温度を調整しながら種結晶下 方に減径部を形成し、 その後、 結晶径を所定径まで広げ、 定径部直径が約 2 0 0 m mとなるシリ コン単結晶を育成した。
単結晶定径部長さが所定長となるまで定径部を育成した後、 結晶径を徐々に細 く していき尾部を形成し、 シリ コン融液から育成した結晶を切り離すことでシリ コン単結晶の育成を終了した。
育成したシリ コン単結晶を静かに冷却し、 製造装置外へと取り出して重さを測 定したところ、 図 3に示す直径 2 0 8 m m、 重量 1 2 0 k gの大直径高重量単結 晶が得られていた。 そして、 育成の途中でス リ ップ転位が入ったことにより始め から結晶育成をやり直すような失敗もなく、 無転位で目的とする結晶方位 < 1 1 0 >の大直径高重量結晶を問題なく育成することができた。 また、 引上げ後の測 定の結果、 図 3に示す種結晶の下端に形成された減径部の最少直径は 5 m m以上 あり、 ダッシユ ーネッキング法によらなく とも単結晶が育成可能であることが確 かめられた。
これにより、 本発明の製造方法を用いることによって、 大直径高重量の単結晶 を育成するのは不可能であると思われてきた、 結晶方位 < 1 1 0 >のシリ コン単 結晶であっても、 M C Z法を含む C Z法で、 最適に製造することが可能であるこ とが判った。
また、 本発明の方法によれば、 先端の尖ったあるいは尖った先端を切り取った 形状の種結晶を使用し、 ダッシュ一ネッキング法によらずシリ コン単結晶を育成 する無転位種付け法を採用する場合に、 その成功率を高めることができることも 判った。
なお、 本発明の製造方法は、 上記の実施形態に限定されるものではない。 上記 の実施形態は例示であり、 本発明の特許請求の範囲に記載された技術思想と実質 的に同一な構成を有し、 同様の作用効果を奏するものは、 いかなるものであって も本発明の技術的範囲に包含される。
例えば、 本発明の実施形態では、 直径が 2 0 0 m m ( 8インチ) のシリ コン単 結晶の結晶育成を例に挙げて説明したが、 それ以下の直径のシリ コン単結晶を育 成する場合もの十分にその効果を得られるものであるし、 ダッシュ一ネッキング 法による種結晶の絞込みを行う必要がないため、 高重量化に対しても有効で、 例 えば本発明では種結晶先端に形成される結晶径が最小径部分でも 5 m m以上の直 径を確保することができるため、 近年、 利用が拡大している 3 0 0 m m ( 1 2ィ ンチ) あるいはそれ以上の大直径シリ コン単結晶、 特に結晶重量が 3 0 0 k gを 超える高重量のシリ コン単結晶の製造にも、 適用することができる。
また、 本実施形態では、 結晶方位については最も引上げが困難なく 1 1 0 >を 例に説明したが、 他の結晶方位の引上げにも当然適用することができる。 結晶方 位が < 1 0 0 >ゃ< 1 1 1 >の結晶の引上げは、 く 1 1 0 >結晶の引上げほど困 難性はない力 s、それでも本発明方法により種付けの失敗頻度は減少し有効である。

Claims

請 求 の 範 囲
1 . ダッシュ一ネッキング法を行わないチヨクラルスキー法によるシリ コン単 結晶の製造方法において、 先端部の角度が 2 8 ° 以下である先端の尖ったまたは 尖った先端を切り取った形状の種結晶を用い、 前記種結晶の先端部をシリ コン融 液に接触させる前にシリ コン融液の直上で止め加温し、 その後、 前記種結晶の先 端部をシリ コン融液に接触させ、 所望径までシリ コン融液に沈め、 その後、 引上 げに転じて単結晶の引上げを行う場合に、 少なく とも前記種結晶の先端部をシリ コン融液に接触させ引上げに転じるまでの間は、 シリ コン融液表面の温度変動を 土 5 °C以下に保つことを特徴とするシリコン単結晶の製造方法。
2 . 前記種結晶の先端部をシリ コン融液に接触させる際のシリ コン融液の温度 を、 ダッシュ一ネッキング法を用いたシリ コン単結晶の製造方法で種結晶をシリ コン融液に接触するのに適温とされる温度よりも、 1 0〜 2 0 °C高いシリ コン融 液温度として種結晶をシリ コン融液に接触させ沈み込みを行い、 少なく とも前記 種結晶の降下を止め引上げに転じた直後から、 種結晶下方に形成される結晶径の 拡大が始まる間の減径部の形成では、 引上速度を 0 . 5 m rn / m i η以下として、 単結晶を引上げることを特徴とする請求項 1に記載のシリ コン単結晶の製造方法 c
3 . 少なく とも前記種結晶の先端部をシリ コ ン融液に接触する時点から、 種結 晶下方に形成される減径部の形成が終了し結晶径の拡大が始まるまでの間は、 中 心磁場強度が 1 0 0 0 G以上となる水平磁場をシリ コン融液に印加し、 単結晶を 引上げることを特徴とする請求項 2に記載のシリ コン単結晶の製造方法。
4 . 結晶方位が < 1 1 0 >である前記種結晶を用い、 結晶方位く 1 1 0 >のシ リ コン単結晶を引上げることを特徴とする請求項 1乃至請求項 3のいずれか 1項 に記載のシリ コン単結晶の製造方法。
5 . チヨクラルスキー法を用いて育成したシリ コン単結晶であって、 シリ コ ン 単結晶の結晶方位が < 1 1 0 >であり、 かつ直径が 2 0 0 mm以上の単結晶定径 部を有することを特徴とするシリコン単結晶。
6. シリ コン融液から引上げた前記単結晶の総重量が、 1 0 0 k g以上である ことを特徴とする請求項 5に記載のシリコン単結晶。
7. シリ コンゥエーハであって、 ゥエーハの主直径が 2 0 0 mm以上であり、 かつゥエーハ主面の面方位が ( 1 1 0 ) であることを特徴とするシリ コンゥエー
PCT/JP2003/005167 2002-04-24 2003-04-23 Procede de production de silicium monocristallin, silicium monocristallin et plaquette de silicium WO2003091483A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003588003A JP4151580B2 (ja) 2002-04-24 2003-04-23 シリコン単結晶の製造方法並びにシリコン単結晶とシリコンウエーハ
US10/510,695 US7179330B2 (en) 2002-04-24 2003-04-23 Method of manufacturing silicon single crystal, silicon single crystal and silicon wafer
EP03719172.3A EP1498517B1 (en) 2002-04-24 2003-04-23 Method of manufacturing silicon single crystal
KR1020047016852A KR100987470B1 (ko) 2002-04-24 2003-04-23 실리콘 단결정의 제조방법 및 실리콘 단결정과 실리콘웨이퍼
US11/620,024 US20070101926A1 (en) 2002-04-24 2007-01-04 Method of manufacturing silicon single crystal, silicon single crystal and silicon wafer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-122250 2002-04-24
JP2002122250 2002-04-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/620,024 Division US20070101926A1 (en) 2002-04-24 2007-01-04 Method of manufacturing silicon single crystal, silicon single crystal and silicon wafer

Publications (1)

Publication Number Publication Date
WO2003091483A1 true WO2003091483A1 (fr) 2003-11-06

Family

ID=29267437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005167 WO2003091483A1 (fr) 2002-04-24 2003-04-23 Procede de production de silicium monocristallin, silicium monocristallin et plaquette de silicium

Country Status (7)

Country Link
US (2) US7179330B2 (ja)
EP (1) EP1498517B1 (ja)
JP (1) JP4151580B2 (ja)
KR (1) KR100987470B1 (ja)
CN (1) CN1323196C (ja)
TW (1) TW200305664A (ja)
WO (1) WO2003091483A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266068A (ja) * 2007-04-19 2008-11-06 Sumco Corp シリコン単結晶の育成方法、評価方法および生産方法
JP2010042977A (ja) * 2008-05-21 2010-02-25 Shin Etsu Handotai Co Ltd シリコン単結晶の製造方法
JP2012031005A (ja) * 2010-07-30 2012-02-16 Shin Etsu Handotai Co Ltd シリコン単結晶の製造方法
JP2013139350A (ja) * 2011-12-29 2013-07-18 Globalwafers Japan Co Ltd シリコン単結晶の製造方法
JP2015505800A (ja) * 2011-12-01 2015-02-26 アールイーシー ソーラー プライベート リミテッド 単結晶シリコンの作製
JP2015514674A (ja) * 2012-04-23 2015-05-21 エルジー シルトロン インコーポレイテッド インゴットの成長方法およびインゴット
US9476142B2 (en) 2011-12-16 2016-10-25 Shin-Etsu Handotai Co., Ltd. Method for manufacturing silicon single crystal

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100585031C (zh) * 2006-12-06 2010-01-27 天津市环欧半导体材料技术有限公司 <110>无位错硅单晶的制造方法
JP5083001B2 (ja) * 2008-04-08 2012-11-28 株式会社Sumco シリコン単結晶の引上げ方法
JP5229017B2 (ja) * 2009-03-11 2013-07-03 信越半導体株式会社 単結晶の製造方法
US8328937B2 (en) * 2009-07-21 2012-12-11 Toyota Jidosha Kabushiki Kaisha Seed crystal axis for solution growth of single crystal
CN102134739A (zh) * 2011-03-08 2011-07-27 宁夏日晶新能源装备股份有限公司 单晶炉自动引晶***及方法
CN102181916B (zh) * 2011-03-29 2013-04-10 浙江晨方光电科技有限公司 一种提高n型111晶向电阻率均匀性的方法
US9102035B2 (en) * 2012-03-12 2015-08-11 MEMC Electronics Materials S.p.A. Method for machining seed rods for use in a chemical vapor deposition polysilicon reactor
JP5831436B2 (ja) * 2012-12-11 2015-12-09 信越半導体株式会社 シリコン単結晶の製造方法
CN103436954A (zh) * 2013-09-11 2013-12-11 英利能源(中国)有限公司 制单晶硅棒时引晶用的籽晶和单晶硅棒的制作方法
DE102017215332A1 (de) * 2017-09-01 2019-03-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Einkristall aus Silizium mit <100>-Orientierung, der mit Dotierstoff vom n-Typ dotiert ist, und Verfahren zur Herstellung eines solchen Einkristalls
CN111139520A (zh) * 2018-11-05 2020-05-12 上海新昇半导体科技有限公司 一种直拉法引晶方法
JP7124938B1 (ja) 2021-07-29 2022-08-24 信越半導体株式会社 シリコン単結晶の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01203287A (ja) * 1988-02-08 1989-08-16 Nec Corp 単結晶引き上げ方法
EP0854211A1 (en) * 1997-01-17 1998-07-22 Shin-Etsu Handotai Company Limited Method of manufacturing silicon monocrystal, and seed crystal used in the method
EP0879903A1 (en) * 1997-05-21 1998-11-25 Shin-Etsu Handotai Company Limited Silicon seed crystal, method of manufacturing the same, and method of manufacturing a silicon monocrystal through use of the seed crystal
US5911823A (en) * 1995-12-13 1999-06-15 Komatsu Electronics Metals Co., Ltd. Method for pulling a single-crystal semiconductor

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4002523A (en) * 1973-09-12 1977-01-11 Texas Instruments Incorporated Dislocation-free growth of silicon semiconductor crystals with <110> orientation
US4891255A (en) * 1988-09-29 1990-01-02 The United States Of America As Represented By The United States Department Of Energy (110) Oriented silicon wafer latch accelerometer and process for forming the same
JP2601930B2 (ja) * 1990-03-29 1997-04-23 信越半導体株式会社 単結晶ネツク部直径制御方法及び装置
DE4106589C2 (de) * 1991-03-01 1997-04-24 Wacker Siltronic Halbleitermat Kontinuierliches Nachchargierverfahren mit flüssigem Silicium beim Tiegelziehen nach Czochralski
US5487355A (en) * 1995-03-03 1996-01-30 Motorola, Inc. Semiconductor crystal growth method
US5840120A (en) * 1996-01-22 1998-11-24 Memc Electronic Materials, Inc. Apparatus for controlling nucleation of oxygen precipitates in silicon crystals
US6217663B1 (en) * 1996-06-21 2001-04-17 Kokusai Electric Co., Ltd. Substrate processing apparatus and substrate processing method
JPH10101482A (ja) * 1996-10-01 1998-04-21 Komatsu Electron Metals Co Ltd 単結晶シリコンの製造装置および製造方法
JP3387364B2 (ja) 1997-05-21 2003-03-17 信越半導体株式会社 シリコン種結晶およびその製造方法、並びにこれらの種結晶を用いてシリコン単結晶を製造する方法
JP3684769B2 (ja) * 1997-06-23 2005-08-17 信越半導体株式会社 シリコン単結晶の製造方法および保持する方法
JP3440802B2 (ja) * 1998-01-14 2003-08-25 信越半導体株式会社 シリコン単結晶の製造方法
JP2000203287A (ja) * 1999-01-13 2000-07-25 Toyota Motor Corp 動力出力装置およびこれを備えるハイブリッド車
DE19938340C1 (de) * 1999-08-13 2001-02-15 Wacker Siltronic Halbleitermat Verfahren zur Herstellung einer epitaxierten Halbleiterscheibe
US6869477B2 (en) * 2000-02-22 2005-03-22 Memc Electronic Materials, Inc. Controlled neck growth process for single crystal silicon
DE60138443D1 (de) * 2000-02-25 2009-06-04 Shinetsu Handotai Kk Verfahren zur herstellung von siliziumeinkristallen
JP4808832B2 (ja) * 2000-03-23 2011-11-02 Sumco Techxiv株式会社 無欠陥結晶の製造方法
US6428619B1 (en) * 2000-10-23 2002-08-06 Mitsubishi Materials Silicon Corporation Silicon wafer, and heat treatment method of the same and the heat-treated silicon wafer
JP3994665B2 (ja) * 2000-12-28 2007-10-24 信越半導体株式会社 シリコン単結晶ウエーハおよびシリコン単結晶の製造方法
JP4215249B2 (ja) * 2003-08-21 2009-01-28 コバレントマテリアル株式会社 シリコン種結晶およびシリコン単結晶の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01203287A (ja) * 1988-02-08 1989-08-16 Nec Corp 単結晶引き上げ方法
US5911823A (en) * 1995-12-13 1999-06-15 Komatsu Electronics Metals Co., Ltd. Method for pulling a single-crystal semiconductor
EP0854211A1 (en) * 1997-01-17 1998-07-22 Shin-Etsu Handotai Company Limited Method of manufacturing silicon monocrystal, and seed crystal used in the method
EP0879903A1 (en) * 1997-05-21 1998-11-25 Shin-Etsu Handotai Company Limited Silicon seed crystal, method of manufacturing the same, and method of manufacturing a silicon monocrystal through use of the seed crystal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1498517A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266068A (ja) * 2007-04-19 2008-11-06 Sumco Corp シリコン単結晶の育成方法、評価方法および生産方法
JP2010042977A (ja) * 2008-05-21 2010-02-25 Shin Etsu Handotai Co Ltd シリコン単結晶の製造方法
JP2012031005A (ja) * 2010-07-30 2012-02-16 Shin Etsu Handotai Co Ltd シリコン単結晶の製造方法
JP2015505800A (ja) * 2011-12-01 2015-02-26 アールイーシー ソーラー プライベート リミテッド 単結晶シリコンの作製
US9476142B2 (en) 2011-12-16 2016-10-25 Shin-Etsu Handotai Co., Ltd. Method for manufacturing silicon single crystal
JP2013139350A (ja) * 2011-12-29 2013-07-18 Globalwafers Japan Co Ltd シリコン単結晶の製造方法
JP2015514674A (ja) * 2012-04-23 2015-05-21 エルジー シルトロン インコーポレイテッド インゴットの成長方法およびインゴット

Also Published As

Publication number Publication date
KR20040104569A (ko) 2004-12-10
EP1498517B1 (en) 2016-08-31
KR100987470B1 (ko) 2010-10-13
TWI324643B (ja) 2010-05-11
CN1646736A (zh) 2005-07-27
US7179330B2 (en) 2007-02-20
EP1498517A4 (en) 2008-09-17
JPWO2003091483A1 (ja) 2005-09-02
US20050160966A1 (en) 2005-07-28
US20070101926A1 (en) 2007-05-10
EP1498517A1 (en) 2005-01-19
TW200305664A (en) 2003-11-01
CN1323196C (zh) 2007-06-27
JP4151580B2 (ja) 2008-09-17

Similar Documents

Publication Publication Date Title
JP4151580B2 (ja) シリコン単結晶の製造方法並びにシリコン単結晶とシリコンウエーハ
KR19980070422A (ko) 실리콘 단결정 제조방법 및 그 방법에 사용되는 종자 결정
JP4142332B2 (ja) 単結晶シリコンの製造方法、単結晶シリコンウェーハの製造方法、単結晶シリコン製造用種結晶、単結晶シリコンインゴットおよび単結晶シリコンウェーハ
CN110629283A (zh) 一种硅单晶的生长方法
JP2002020193A (ja) 単結晶棒及びその製造方法
US6802899B1 (en) Silicon single crystal wafer and manufacturing process therefor
WO2001063026A1 (fr) Procede de production de monocristal de silicium
JP2937115B2 (ja) 単結晶引き上げ方法
JP2973917B2 (ja) 単結晶引き上げ方法
JP3016126B2 (ja) 単結晶の引き上げ方法
JP4013324B2 (ja) 単結晶成長方法
JP4224906B2 (ja) シリコン単結晶の引上げ方法
JP4640796B2 (ja) シリコン単結晶の製造方法
JP2000128691A (ja) シリコン種結晶およびシリコン単結晶の製造方法
JP2003246695A (ja) 高濃度にドーピングされたシリコン単結晶の製造方法
JP3473477B2 (ja) シリコン単結晶の製造方法
KR100581045B1 (ko) 실리콘 단결정 제조방법
TWI751028B (zh) 單晶矽的製造方法
JP2011251892A (ja) InP単結晶およびその製造方法
JPH11209197A (ja) シリコン単結晶の製造方法
JP6070626B2 (ja) シリコン単結晶の育成方法
WO2002016678A1 (fr) Procede de production d&#39;un monocristal de silicium
JPH11106292A (ja) 半導体単結晶の製造方法
JP2002220297A (ja) 種結晶およびこれを用いたシリコン単結晶の製造方法
KR20100040043A (ko) 단결정 잉곳 성장방법 및 이의 전위제어방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003588003

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10510695

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2003719172

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003719172

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020047016852

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038089580

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020047016852

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003719172

Country of ref document: EP