WO2000074199A1 - Appareil de transmission d'energie et procede de transmission d'energie - Google Patents

Appareil de transmission d'energie et procede de transmission d'energie Download PDF

Info

Publication number
WO2000074199A1
WO2000074199A1 PCT/JP2000/003424 JP0003424W WO0074199A1 WO 2000074199 A1 WO2000074199 A1 WO 2000074199A1 JP 0003424 W JP0003424 W JP 0003424W WO 0074199 A1 WO0074199 A1 WO 0074199A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power supply
electrodes
power
current path
Prior art date
Application number
PCT/JP2000/003424
Other languages
English (en)
French (fr)
Inventor
Masaji Haneda
Someji Inoue
Original Assignee
Ntt Data Corporation
Sinano Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntt Data Corporation, Sinano Electric Co., Ltd. filed Critical Ntt Data Corporation
Priority to EP00931588A priority Critical patent/EP1102380A1/en
Priority to US09/744,863 priority patent/US6362985B1/en
Priority to JP2001500391A priority patent/JP3478338B2/ja
Priority to KR20017000809A priority patent/KR100419303B1/ko
Publication of WO2000074199A1 publication Critical patent/WO2000074199A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to a power transmission device and a power transmission method, and more particularly to a power transmission device and a power transmission method for supplying power to a commercial power system.
  • the DC voltage is converted to AC voltage using inverters, and the converted voltage is distributed to the commercial power system.
  • DC power is generated by a power generator such as a solar cell.
  • the voltage waveform is pulse width modulated during inversion, and the error between the converted AC waveform and the voltage waveform of the commercial power system is corrected.
  • the inverter fails, the power generated by the power generator may leak to the commercial power system without being controlled.
  • equipment connected to the utility grid may be damaged (ie, have secondary destruction) due to electrical leakage. Disclosure of the invention
  • the present invention has been made in view of the above circumstances, and has as its first object to provide a power transmission device and a power transmission method with simple configurations.
  • a power transmission device includes an AC power supply (8) for generating an AC voltage and a DC power supply (2, 3, 4, 5, 5) for generating a DC voltage. Power transmission device arranged in the
  • a switching switch connected between the DC power supply and the AC power supply, for supplying the DC voltage to the AC power supply according to a control signal supplied to the DC power supply, or cutting off the supply of the DC voltage to the AC power supply (6) and
  • the control signal for supplying the DC voltage to the AC power supply with the same polarity as the AC voltage is supplied to the switching switch.
  • the DC voltage output from the DC power supply is supplied to the AC power supply via the switching switch or stopped in accordance with the magnitude relationship between the AC voltage generated by the AC power supply and the voltage threshold. Is done. Therefore, it is not necessary to use pulse width modulation and its complicated control circuit. This simplifies the configuration.
  • An output impedance of the DC power supply is higher than an output impedance of the AC power supply, and a voltage drop generated in the load when current is supplied from the DC power supply to an external load to be connected to the AC power supply.
  • the magnitude may be higher than the AC voltage generated by the AC power supply. In this case, the voltage across the load is kept almost equal to the AC voltage generated by the AC power supply.
  • the AC voltage monitoring circuit is configured to determine whether a continuous period during which the DC power supply supplies the DC voltage to the AC power supply exceeds a half of a cycle of the AC power generated by the AC power supply. And a half-cycle monitoring circuit (104) for supplying the control signal to the switching switch for interrupting the supply of the DC voltage from the DC power supply to the AC power supply when determining that the power supply voltage has exceeded the power supply. You may have. According to this half-cycle monitoring circuit, if the AC power supply fails and the DC power supply continues to supply the DC voltage for more than half of the AC voltage cycle, the AC power supply Is shut off. Therefore, leakage from the DC power supply to the AC power supply is prevented.
  • the switching switch is, for example,
  • One end of the first current path and one end of the third current path are connected to one of a pair of electrodes provided with the DC power supply and outputting the DC voltage,
  • One end of the second current path and one end of the fourth current path are connected to the other of the pair of electrodes of the DC power supply,
  • the other end of the first current path and the other end of the fourth current path are connected to one of a pair of electrodes provided with the AC power supply and outputting the AC voltage,
  • the other end of the second current path and the other end of the third current path may be connected to the other of the pair of electrodes of the AC power supply.
  • the absolute value of the AC voltage is greater than or equal to the threshold value, and the one voltage of the pair of electrodes of the DC power supply and the one voltage of the pair of electrodes of the AC power supply have the same polarity.
  • the absolute value of the AC voltage is greater than or equal to the threshold value, and the one voltage of the pair of electrodes of the DC power supply and the one voltage of the pair of electrodes of the AC power supply have polarities different from each other.
  • the first to fourth control terminals control the voltage such that the first to fourth current paths are cut off. What is necessary is just to apply as a signal.
  • the first switching element has, for example, a first field-effect transistor (T) having its own drain and source functioning as both ends of the first current path, and its own gate functioning as the first control terminal. 1) What is necessary is just to be comprised.
  • the second switching element has, for example, a second field-effect transistor (T) having its own drain and source functioning as both ends of the second current path, and its own gate functioning as the second control end. 2) What is necessary is just to consist of.
  • T second field-effect transistor
  • the third switching element has, for example, its own drain and source It suffices if the gate functions as both ends of the third current path, and its own gate is constituted by a third field-effect transistor (T 3) functioning as the third control terminal.
  • T 3 third field-effect transistor
  • the fourth switching element is, for example, a fourth field-effect transistor in which its own drain and source function as both ends of the first current path, and its own gate functions as the fourth control end. (T 4).
  • the AC voltage monitoring circuit is configured to determine whether a continuous period during which the DC power supply supplies the DC voltage to the AC power supply exceeds a half of a cycle of the AC power generated by the AC power supply. If it is determined that the voltage has exceeded the threshold, a voltage may be applied to the first to fourth control terminals as the control signal so that the first to fourth current paths are cut off. .
  • the power transmission device includes:
  • a power transmission device disposed between an AC power supply (8) for generating an AC voltage and a DC power supply (2) for generating a first DC voltage
  • a switching switch (6) for shutting off the supply It is connected to the AC power supply and the switching switch, and determines whether or not the absolute value of the AC voltage generated by the AC power supply is equal to or greater than a predetermined threshold, and determines that the absolute value is equal to or greater than the threshold.
  • the control signal for supplying the second DC voltage to the AC power supply with the same polarity as the AC voltage is supplied to the switching switch, and when it is determined that the voltage is less than the threshold value,
  • the second DC voltage output from the rectifier is supplied to the AC power supply via the switching switch, or supplied to the AC power supply according to the magnitude relationship between the AC voltage generated by the AC power supply and the voltage threshold. Will be stopped. Therefore, it is not necessary to use pulse width modulation and its complicated control circuit. This simplifies the configuration.
  • the insulating transformer insulates the DC power supply from the AC power supply, and prevents leakage between the DC power supply and the AC power supply.
  • the output impedance of the rectifier is higher than the output impedance of the AC power supply, and the magnitude of the voltage drop generated in the load when current is supplied from the rectifier to an external load connected to the AC power supply is:
  • the voltage may be higher than the AC voltage generated by the AC power supply.
  • the voltage across the load is kept almost equal to the AC voltage generated by the AC power supply.
  • the power transmission method according to the third aspect of the present invention includes:
  • a method of transmitting a DC voltage to an AC power supply that generates an AC voltage including: determining whether an absolute value of the AC voltage generated by the AC power supply is equal to or greater than a predetermined threshold; When the DC voltage is determined to be greater than or equal to the value, the DC voltage is supplied to the AC power supply with the same polarity as the AC voltage, and when the DC voltage is determined to be less than the threshold, the DC voltage to the AC power supply is determined. Cut off the supply of
  • the DC voltage is supplied to the AC power supply via the switching switch or stopped in accordance with the magnitude relationship between the AC voltage generated by the AC power supply and the voltage threshold. Therefore, it is not necessary to use pulse width modulation and its complicated control circuit. This simplifies the configuration for performing this method.
  • the output impedance of the DC power supply that generates the DC voltage is higher than the output impedance of the AC power supply, and the current is supplied from the DC power supply to an external load to be connected to the AC power supply.
  • the magnitude of the generated voltage drop may be larger than the AC voltage generated by the AC power supply.
  • the voltage across the load is kept almost equal to the AC voltage generated by the AC power supply.
  • the supply of the DC voltage to the AC power supply may be cut off.
  • the DC power supply that generates the DC voltage includes a pair of electrodes that output the DC voltage
  • the AC power supply includes a pair of electrodes that output the AC voltage
  • the absolute value of the AC voltage is greater than or equal to the threshold value, and the one voltage of the pair of electrodes of the DC power supply and the one voltage of the pair of electrodes of the AC power supply have the same polarity.
  • the one of the electrodes of the DC power supply is connected to the one of the electrodes of the AC power supply, and the other of the electrodes of the DC power supply and the other of the electrodes of the AC power supply are connected to each other. connection,
  • the absolute value of the AC voltage is greater than or equal to the threshold value, and the one voltage of the pair of electrodes of the DC power supply and the one voltage of the pair of electrodes of the AC power supply have polarities different from each other.
  • the one of the electrodes of the DC power supply and the other of the electrodes of the AC power supply are connected to each other, and the other of the electrodes of the DC power supply and the one of the electrodes of the AC power supply are connected to each other.
  • the DC voltage may be generated by converting a DC voltage for conversion into an AC voltage, transforming the AC voltage obtained by the conversion with an insulating transformer, and rectifying the AC voltage obtained by the voltage transformation. .
  • the insulating transformer insulates the DC voltage power supply for conversion from the AC power supply, and prevents leakage from the DC voltage power supply for conversion to the AC power supply.
  • a power transmission device is:
  • a power transmission device for supplying a DC voltage generated by a DC power supply (2, 3, 4, 5) to an AC power supply (8) generating an AC voltage
  • Determining means (7) for determining whether or not the absolute value of the AC voltage generated by the AC power supply is equal to or greater than a predetermined threshold value
  • the DC voltage output from the DC power supply is supplied to the AC power supply in accordance with the magnitude relationship between the AC voltage generated by the AC power supply and the voltage threshold, or the supply is stopped. Therefore, it is not necessary to use pulse width modulation and its complicated control circuit. This simplifies the configuration.
  • FIG. 1 is a schematic configuration diagram of a power transmission device according to an embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram illustrating an example of the DC-AC converter according to the embodiment of the present invention.
  • FIG. 3 is a graph showing a waveform of an AC voltage generated by a commercial power system and a voltage threshold.
  • (B) is a graph schematically showing the relationship between the conduction angle and the value of the first control signal.
  • FIG. 4 is a schematic configuration diagram showing a modified example of the switching switch. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 schematically shows a configuration of a power transmission device according to an embodiment of the present invention.
  • the power transmission device 1 is disposed between the power generation device 2 and the commercial power system 8.
  • the power transmission device 1 includes a DC-AC converter 3, an isolation transformer 4, a DC power supply unit 5, a switching switch 6, and a commercial voltage monitoring unit 7.
  • the power generator 2 is a DC power supply that generates DC power (DC voltage).
  • the power generator 2 is composed of, for example, a solar cell.
  • the DC-AC converter (DC-AC converter) 3 converts the DC power generated by the power generator 2 from DC to AC. As shown in FIG. 1, the DC—AC converter (DC-AC converter) 3 includes an inverter circuit 100 and a voltage monitoring circuit 101.
  • the overnight circuit circuit 100 includes a bridge circuit 105 and an inverter controller 106 for controlling the bridge circuit 105.
  • the bridge member 105 includes switching elements S1 to S4 each having a current path and a control terminal (not shown).
  • the switching elements S :! to S4 are composed of, for example, field effect transistors.
  • One end of the current path of the switching element S1 and one end of the current path of the switching element S3 are connected to one end of the power generator 2.
  • One end of the current path of the switching element S2 and one end of the current path of the switching element S4 are connected to the other end of the power generator 2.
  • the other end of the current path of the switching element S1 and the other end of the current path of the switching element S2 are connected to one end of a primary winding of the insulating transformer 4.
  • the other end of the current path of the switching element S3 and the other end of the current path of the switching element S4 are The insulation transformer 4 is connected to the other end of the primary winding.
  • the switching elements S1 to S4 are turned on and off according to control signals applied to their control terminals.
  • the inverter control unit 106 is driven by electric power supplied from the power generator 2.
  • the overnight control unit 106 is provided with a switching element S that constitutes the first night 105. Control S4 to turn it on and off.
  • the inverter control unit 106 supplies a control signal to each control terminal of the switching elements S1 to S4 so that switching is performed when the switching elements S1 and S4 are on.
  • the switching elements S1 to S4 are controlled so that the switching elements S1 and S4 are turned off when the elements S2 and S3 are turned off and the switching elements S2 and S3 are turned on.
  • the switching elements S1 to S4 are turned on and off according to the above-described control performed by the inverter controller 106. With this operation, the bridge inverter 105 converts the DC power supplied from the power generator 2 from DC to AC.
  • the voltage monitoring circuit 101 determines whether the DC voltage applied from the power generator 2 has reached a set value. Then, when it is determined that the DC voltage has reached the set value, the DC power output from the power generation device 2 is supplied to the power supply of the inverter controller 106. The DC circuit 100 is driven by the DC power supplied from the voltage monitoring circuit 101.
  • the insulating transformer 4 includes a primary winding and a secondary winding.
  • the primary and secondary windings are wound on the same iron core.
  • the primary and secondary windings are insulated from each other.
  • the primary winding is connected to DC-AC converter 3.
  • the secondary winding is connected to DC power supply unit 5.
  • the AC voltage applied from the DC-AC converter 3 is transformed according to the turns ratio between the primary winding and the secondary winding. This transformed AC voltage Output to DC power supply unit 5.
  • the DC power supply unit 5 converts an AC voltage applied from the insulating transformer 4 into a DC voltage.
  • the DC power supply unit 5 includes a rectifier circuit 102.
  • the rectifier circuit 102 includes a diode, a capacitor, and the like, and has a positive electrode and a negative electrode.
  • the rectifier circuit 102 rectifies the AC voltage applied from the insulating transformer 4 with a diode, smoothes the rectified voltage with a capacitor or the like, and converts the rectified voltage into a DC voltage. This DC voltage is generated between the positive electrode and the negative electrode of the rectifier circuit 102. (The potential of the positive electrode is higher than that of the negative electrode.)
  • the switching switch 6 is driven by power supplied from the commercial power system 8.
  • the switching switch 6 supplies or shuts off a regulated voltage to be supplied from the rectifier circuit 102 to the commercial power system 8 according to a control signal transmitted from the commercial voltage monitoring unit 7.
  • the commercial power system 8 includes a pair of output terminals for generating an AC voltage.
  • the switching switch 6 supplies the rectified voltage between the output terminals of the commercial power system 8 so that the rectified voltage is applied with the same polarity as the AC voltage. .
  • the output impedance between the positive electrode and the negative electrode of the rectifier circuit 102 is larger than the output impedance of the output terminal of the commercial power system 8. Also,
  • the commercial voltage monitoring unit 7 includes a switch control circuit 103 and a half cycle monitoring circuit 104.
  • the switch control circuit 103 controls the switching switch 6 by transmitting a control signal to the switching switch 6.
  • the switch control circuit 103 is driven by power supplied from the commercial power system 8 (however, while power is supplied from the DC power supply unit 5 to the commercial power system 8, this power is also supplied to the switch control circuit 1). 0 3 contributes to driving).
  • the switch control circuit 103 detects the voltage Vc of the commercial power generated by the commercial power system 8, and determines the magnitude relationship between the detected voltage Vc and predetermined voltage thresholds + Vth and -Vth. . Then, by transmitting the first control signal to the switching switch 6, the switching switch 6 is controlled according to the determination result. (However, the value of + Vth is positive and the value of one Vth is negative.)
  • the first control signal at the mouth level is supplied to the switching switch 6.
  • the negative voltage of the rectifier circuit 102 is applied to the above-mentioned one of the output terminals of the commercial power system 8, and the positive voltage of the rectifier circuit 102 is applied to the other output terminal of the commercial power system 8. Is done. That is, the DC voltage supplied from the DC power supply unit 5 is supplied to the commercial power system 8 in a state where the polarity is inverted in view of the state (1).
  • the half-period monitoring circuit 104 is connected to the commercial switch during the continuous period during which the switch 6 is on (the continuous period during which the DC voltage is supplied from the DC power supply unit 5 to the commercial power system 8). It is determined whether or not the length of a half cycle of the voltage generated by the power system 8 has been exceeded. Then, when it is determined that it has exceeded, the half-cycle monitoring circuit 104 supplies the second control signal to the switching switch 6. As a result, the switching switch 6 electrically disconnects the commercial power system 8 from the DC power supply unit 5.
  • the power generation device 2 When light is irradiated on the power generation device 2 including a solar cell, the power generation device 2 generates electric power.
  • the DC-AC converter 3 converts the power generated by the power generator 2 from DC to AC.
  • the voltage converted into AC is transformed by the insulating transformer 4 (usually stepped up).
  • the transformed AC voltage is converted from AC to DC by the DC power supply unit 5.
  • the switch control circuit 103 transmits to the switching switch 6 a first control signal indicating the magnitude relationship between the voltage Vc of the commercial power system 8 and the voltage threshold Vth and one Vth.
  • the DC voltage output from the DC power supply unit 5 is supplied to the commercial power system 8 with the polarity described above as (1) or (3) or cut off by switching the switching switch 6.
  • the switching switch 6 switches according to a first control signal supplied from the switch control circuit 103.
  • FIG. 3 (A) of FIG. 3 is a graph showing the waveform of the AC voltage generated by the commercial power system 8 and the voltage thresholds + Vth and Vth.
  • Fig. 3 (b) shows the conduction angle (DC power supply 5 is a graph schematically showing the relationship between the value of a first control signal and a period during which conduction is made between the power supply system 5 and the commercial power system 8).
  • the switch control circuit 103 determines that the voltage Vc of the commercial power system 8 is equal to or more than the positive voltage threshold value + Vth, the switch control circuit 103 supplies a high-level first control signal to the switching switch 6. .
  • the switching switch 6 switches in response to the high-level first control signal so that the DC voltage is supplied from the DC power supply unit 5 to the commercial power system 8 in the state of (1) described above (commercial power supply).
  • the polarity of the voltage is the same as the polarity of the supplied DC voltage).
  • the switch control circuit 103 determines that the voltage Vc is less than the positive voltage threshold + Vth and is greater than the negative voltage threshold-one Vth, the switch control circuit 103 performs the first control of the ground level. The signal is supplied to the switching switch 6.
  • the period during which the first control signal of the ground level is supplied to the switching switch 6 is a section B to (: and a section D to A shown in FIG.
  • the switching switch 6 cuts off the supply of the DC voltage from the DC power supply unit 5 to the commercial power system 8 according to the ground level first control signal.
  • the switch control circuit 103 determines that the voltage Vc is equal to or lower than the negative voltage threshold value Vth (that is, the polarity is negative and the absolute value of the voltage is equal to or higher than Vth), the switch control circuit 103 sets the low level.
  • the first control signal is supplied to the switching switch 6.
  • the switching switch 6 responds to the low-level first control signal and changes the DC voltage generated by the DC power supply unit 5 in the above-mentioned state (3) (that is, the polarity with respect to the above-mentioned state (1)).
  • the polarity of the voltage of the commercial power becomes the same as the polarity of the supplied DC voltage.
  • the voltage monitoring circuit 101 stops the supply of the output power of the power generator 2 to the inverter controller 106, and stops the operation of the inverter circuit 100. Therefore, power transmission from the power generator 2 to the commercial power system 8 stops. It is also assumed that the commercial power system 8 has short-circuited. At this time, the absolute value of the voltage Vc of the commercial power system 8 decreases and becomes an intermediate value between the voltage threshold + Vth and one Vth. Accordingly, the switch control circuit 103 transmits the ground level first control signal to the switching switch 6. The switching switch 6 cuts off the connection between the commercial power system 8 and the DC power supply unit 5.
  • the half-period monitoring circuit 104 detects that the continuous period during which the switch 6 is on exceeds one half of the period of the AC voltage generated by the commercial power system 8. The result of the detection is transmitted to the switching switch 6 as a second control signal indicating the mouth level. The switching switch 6 cuts off the connection between the commercial power system 8 and the DC power supply unit 5.
  • the DC power generated by the DC power supply unit 5 is not supplied to the devices connected to the commercial power system 8.
  • the voltage monitoring circuit 101 stops the operation of the inverter circuit 100 or monitors the commercial voltage.
  • the switching switch 6 By controlling the switching switch 6 by the unit 7, the connection between the commercial power system 8 and the DC power supply unit 5 is cut off. Therefore, earth leakage is suppressed.
  • power generation device 2 and commercial power system 8 are insulated by insulation transformer 4. Further, the DC-AC converter 3 is operated by the power supplied from the power generator 2. In addition, the commercial voltage monitoring unit 7 and the switching switch 6 operate with power supplied from the commercial power system 8.
  • the present invention is not limited to the above embodiment.
  • the switching switch 6 may be composed of switching elements T1 to T4 each having a current path and a control terminal as shown in FIG.
  • the switching elements # 1 to # 4 may be composed of, for example, field effect transistors.
  • the current paths of the switching elements ⁇ 1 to ⁇ 4 are formed of current paths having both ends of the drain and source of the field effect transistor.
  • the control terminals 1 to 4 need only be constituted by the gates of the field effect transistors.
  • One end of the current path of the switching element # 1 and one end of the current path of the switching element # 3 are connected to the positive electrode of the rectifier circuit 102.
  • One end of the current path of the switching element # 2 and one end of the current path of the switching element # 4 are connected to the negative electrode of the rectifier circuit 102.
  • the other end of the current path of switching element # 1 and the other end of the current path of switching element # 4 are connected to one of the output terminals of commercial power system 8.
  • the other end of the current path of the switching element # 2 and the other end of the current path of the switching element # 3 are connected to the other output terminal of the commercial power system 8.
  • the switching elements ⁇ 1 to ⁇ 4 follow the control signals applied to their own control terminals. On and off.
  • the switch control circuit 103 supplies, for example, a first control signal to each control terminal of the switching elements T1 to T4.
  • the negative voltage of the rectifier circuit 102 is applied to one of the output terminals of the commercial power system 8 described above, and the positive voltage of the rectifier circuit 102 is applied to the other output terminal of the commercial power system 8.
  • the DC voltage supplied from the DC power supply unit 5 is supplied to the commercial power system 8 in a state where the polarity is inverted in view of the state of the above (1).
  • the switching elements # 1 to # 4 are turned on and off according to the above-described control performed by the switch control circuit 103.
  • the switching switch 6 determines whether or not the length of the continuous period during which any of the switching elements T1 to ⁇ ⁇ 4 is on exceeds the length of a half cycle of the voltage generated by the commercial power system 8. If it is determined that the output voltage has exceeded the threshold value, the switching switch 6 may be controlled so that all the switching elements # 1 to # 4 are turned off. As a result, the switching switch 6 electrically cuts off the connection between the commercial power system 8 and the DC power supply unit 5.
  • the insulating transformer 4 may be constituted by a magnetic leakage transformer having a large leakage reactance.
  • Magnetic leakage transformers have the property that when the current flowing through the windings increases, the leakage flux increases and the leakage reactance increases. Therefore, an increase in current flowing through the secondary winding of the insulating transformer 4 is suppressed, and an overcurrent on the secondary side is suppressed.
  • the DC power supply unit 5 may include an overvoltage suppression circuit that suppresses the rise of the DC voltage when the DC voltage output from the rectifier circuit 102 excessively rises. Excessive rise of the DC voltage output by the DC power supply unit 5 is suppressed.
  • DC power supply unit 5 may include a filter circuit for slowing the response of the rise and fall of the current supplied from DC power supply unit 5 to commercial power system 8. This filter circuit suppresses high frequency noise from entering the commercial power system 8.
  • a power transmission device and a power transmission method with a simple configuration are provided.
  • a low-cost power transmission device and power transmission method are provided. Further, according to the present invention, there is provided a power transmission device and a power transmission method that can prevent a power leakage from a power generation device to a commercial power system, and can prevent occurrence of secondary destruction. Note that the present invention is not limited to the above embodiment, and various modifications and applications are possible.
  • This patent application is a patent application filed with the Japan Patent Office on May 27, 2001, which claims priority based on the Paris Convention of Japanese Patent Application No. 11-147-74. The contents of this Japanese patent application are incorporated herein by reference.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Description

明細書 送電装置及び送電方法 技術分野
この発明は、 送電装置及び送電方法に関し、 特に商用電力系統へ電力を供給 する送電装置及び送電方法に関する。 背景技術
直流電力を商用電力系統に配電する場合、 インバー夕を用いて直流電圧を交 流電圧に変換し、 変換した電圧を商用電力系統に配電する。 直流電力は、 太陽 電池等の発電装置が発生する。なお、 インバー夕は電圧波形をパルス幅変調し、 変換後の交流波形と商用電力系統の電圧波形との誤差を修正する。
また、 パルス幅変調を行う場合、 電圧の周波数や位相を制御するために複雑 な制御回路を必要とする。この制御回路は送電装置の構成を複雑にすると共に、 送電装置の価格を上昇させる。
また、 インバー夕が故障すると、 発電装置の発生する電力が、 制御されるこ となく商用電力系統に漏電するおそれがある。 さらに、 商用電力系統に接続さ れている装置が漏電により破損する (つまり、 二次破壊を起こす) おそれもあ る。 発明の開示
この発明は、 上述した事情に鑑みてなされたもので、 構成が簡単な送電装置 及び送電方法を提供することを第 1の目的とする。
さらに、 低コストの送電装置及び送電方法を提供することを第 2の目的とす る。
また、 発電装置から商用電力系統への漏電が防止でき、 ひいては、 二次破壊 の発生を防止できる送電装置及び送電方法を提供することを第 3の目的とする。 上記目的を達成するため、 この発明の第 1の観点にかかる送電装置は、 交流電圧を発生する交流電源 (8 ) と直流電圧を発生する直流電源 (2 , 3 , 4, 5 ) との間に配置される送電装置であって、
前記直流電源と前記交流電源との間に接続され、 自己に供給される制御信号 に従い、 前記直流電圧を前記交流電源に供給し、 又は当該直流電圧の前記交流 電源への供給を遮断する切替スィッチ (6 ) と、
前記交流電源と前記切替スィッチとに接続され、 前記交流電源が発生する交 流電圧の絶対値が所定のしきい値以上であるか否かを判別し、 当該しきい値以 上であると判別したときに、 前記直流電圧を前記交流電圧と同一極性で前記交 流電源へと供給させるための前記制御信号を前記切替スィツチに供給し、 当該 しきい値未満であると判別したとき、 前記交流電源への前記直流電圧の供給を 遮断させるための前記制御信号を前記切替スィツチに供給する交流電圧監視回 路 (7 ) と、
を備えることを特徴とする。
この構成によれば、 直流電源が出力する直流電圧は、 交流電源が発生する交 流電圧と電圧しきい値との大小関係に従い、 切替スィツチを介して交流電源へ と供給され、 又は供給を停止される。 従って、 パルス幅変調及びその複雑な制 御回路を用いなくてよい。 このため、 構成が簡単になる。
前記直流電源の出力インピーダンスは前記交流電源の出力インピーダンスよ り高く、 且つ、 前記交流電源に接続する対象の外部の負荷へ前記直流電源から 電流が供給されることにより当該負荷に発生する電圧降下の大きさは、 前記交 流電源が発生する交流電圧より大きくてもよい。 この場合、 負荷の両端間の電圧は、 交流電源が発生する交流電圧にほぼ等し く保たれる。
前記交流電圧監視回路は、 前記直流電源が前記交流電源に前記直流電圧を供 給している連続した期間が、 前記交流電源が発生する交流電力の周期の 2分の 1を越えたか否かを判別し、 越えたと判別したときに、 前記直流電源から前記 交流電源への前記直流電圧の供給を遮断させるための前記制御信号を前記切替 スィッチに供給する半周期監視回路 ( 1 0 4 ) を更に備えていてもよい。 この半周期監視回路によれば、 交流電源に異常が生じ、 直流電源が直流電圧 を供給し続けている期間が交流電圧の周期の 2分の 1を越えると、 交流電源と 直流電源との間が遮断される。 従って直流電源から交流電源への漏電が防止さ れる。
前記切替スィッチは、 例えば、
第 1の電流路及び第 1の制御端を備える第 1のスイッチング素子 (T 1 ) と、 第 2の電流路及び第 2の制御端を備える第 2のスイッチング素子 (T 2 ) と、 第 3の電流路及び第 3の制御端を備える第 3のスイッチング素子 (T 3 ) と、 第 4の電流路及び第 4の制御端を備える第 4のスイッチング素子 (T 4 ) と、 を備えていてもよく、 この場合、
前記第 1の電流路の一端及び前記第 3の電流路の一端は、 前記直流電源が備 え前記直流電圧を出力する一対の電極の一方に接続され、
前記第 2の電流路の一端及び前記第 4の電流路の一端は、 前 直流電源の一 対の電極の他方に接続され、
前記第 1の電流路の他端及び前記第 4の電流路の他端は、 前記交流電源が備 え前記交流電圧を出力する一対の電極の一方に接続され、
前記第 2の電流路の他端及び前記第 3の電流路の他端は、 前記交流電源の一 対の電極の他方に接続されていればよい。 また、 この場合、 前記交流電圧監視回路は、
前記直流電源の一対の電極の前記一方の電圧と前記交流電源の一対の電極の 前記一方の電圧との極性の異同を判別し、
前記交流電圧の絶対値が前記しきい値以上であり、 且つ、 前記直流電源の一 対の電極の前記一方の電圧と前記交流電源の一対の電極の前記一方の電圧とが 互いに同極性であると判別したとき、 前記第 1及び第 2の制御端に、 前記第 1 及び第 2の電流路が導通するような電圧を前記制御信号として印加し、 前記第 3及び第 4の制御端に、 前記第 3及び第 4の電流路が遮断されるような電圧を 前記制御信号として印加し、
前記交流電圧の絶対値が前記しきい値以上であり、 且つ、 前記直流電源の一 対の電極の前記一方の電圧と前記交流電源の一対の電極の前記一方の電圧とが 互いに異なる極性であると判別したとき、 前記第 1及び第 2の制御端に、 前記 第 1及び第 2の電流路が遮断されるような電圧を前記制御信号として印加し、 前記第 3及び第 4の制御端に、 前記第 3及び第 4の電流路が導通するような電 圧を前記制御信号として印加し、
前記交流電圧の絶対値が前記しきい値未満であると判別したとき、 前記第 1 乃至第 4の制御端に、 前記第 1乃至第 4の電流路が遮断されるような電圧を前 記制御信号として印加するものであればよい。
前記第 1のスイッチング素子は、 例えば、 自己のドレイン及びソースが前記 第 1の電流路の両端として機能し、 自己のゲートが前記第 1の制御端として機 能する第 1の電界効果トランジスタ (T 1 ) より構成されていればよい。
前記第 2のスイッチング素子は、 例えば、 自己のドレイン及びソースが前記 第 2の電流路の両端として機能し、 自己のゲートが前記第 2の制御端として機 能する第 2の電界効果トランジスタ (T 2 ) より構成されていればよい。
前記第 3のスイッチング素子は、 例えば、 自己のドレイン及びソースが前記 第 3の電流路の両端として機能し、 自己のゲ一トが前記第 3の制御端として機 能する第 3の電界効果トランジスタ (T 3 ) より構成されていればよい。
前記第 4のスイッチング素子は、 例えば、 自己のドレイン及びソースが前記 第 1の電流路の両端として機能し、 自己のゲ一トが前記第 4の制御端として機 能する第 4の電界効果トランジスタ (T 4 ) より構成されていればよい。
前記交流電圧監視回路は、 前記直流電源が前記交流電源に前記直流電圧を供 給している連続した期間が、 前記交流電源が発生する交流電力の周期の 2分の 1を越えたか否かを判別し、 越えたと判別したとき、 前記第 1乃至第 4の制御 端に、 前記第 1乃至第 4の電流路が遮断されるような電圧を前記制御信号とし て印加するものであってもよい。
このような構成によれば、 交流電源に異常が生じ、 直流電源が直流電圧を供 給し続けている期間が交流電圧の周期の 2分の 1を越えると、 交流電源と直流 電源との間が遮断される。従って直流電源から交流電源への漏電が防止される。 また、 この発明の第 2の観点にかかる送電装置は、
交流電圧を発生する交流電源( 8 )と第 1の直流電圧を発生する直流電源( 2 ) との間に配置される送電装置であって、
前記第 1の直流電圧を交流電圧に変換して出力する直流一交流コンバータ ( 3 ) と、
前記直流一交流コンバ一夕が出力する交流電圧を変圧して出力する絶縁トラ ンス (4 ) と、
前記絶縁トランスが出力する交流電圧を変換して前記第 2の直流電圧を発生 する整流器 (5 ) と、
前記整流器と前記交流電源との間に接続され、 自己に供給される制御信号に 従い、 前記第 2の直流電圧を前記交流電源に供給し、 又は前記第 2の直流電圧 の前記交流電源への供給を遮断する切替スィッチ (6 ) と、 前記交流電源と前記切替スィツチとに接続され、 前記交流電源が発生する交 流電圧の絶対値が所定のしきい値以上であるか否かを判別し、 当該しきい値以 上であると判別したときに、 前記第 2の直流電圧を前記交流電圧と同一極性で 前記交流電源へと供給させるための前記制御信号を前記切替スィツチに供給し、 当該しきい値未満であると判別したとき、 前記交流電源への前記第 2の直流電 圧の供給を遮断させるための前記制御信号を前記切替スィツチに供給する交流 電圧監視回路 (7 ) と、
を備えることを特徴とする。
この構成によれば、 整流器が出力する第 2の直流電圧は、 交流電源が発生す る交流電圧と電圧しきい値との大小関係に従い、 切替スィッチを介して交流電 源へと供給され、 又は供給を停止される。 従って、 パルス幅変調及びその複雑 な制御回路を用いなくてよい。 このため、 構成が簡単になる。
また、 この構成によれば、 絶縁トランスが直流電源と交流電源とを絶縁し、 直流電源と交流電源との間の漏電を防止する。
前記整流器の出力インピーダンスは前記交流電源の出力インピーダンスより 高く、 且つ、 前記交流電源に接続された外部の負荷へ前記整流器から電流が供 給されることにより当該負荷に発生する電圧降下の大きさは、 前記交流電源が 発生する交流電圧より大きいものであってもよい。
この場合、 負荷の両端間の電圧は、 交流電源が発生する交流電圧にほぼ等し く保たれる。
前記直流一交流コンバータは、
前記第 1の直流電圧が自己に印加されたとき、 当該第 1の直流電圧を交流電 圧に変換するインバー夕 ( 1 0 0 ) と、
前記第 1の直流電圧の値が設定値に達したか否かを判別し、 達していると判 別したとき、 前記第 1の直流電圧を前記インバー夕に印加し、 達していないと 判別したとき、 前記ィンバ一夕への前記第 1の直流電圧の印加を阻止する直流 電圧監視回路 ( 1 0 1 ) と、
を備えることにより、第 2の直流電圧の値を適正値に保つようにしてもよい。 また、 この発明の第 3の観点にかかる送電方法は、
交流電圧を発生する交流電源へと直流電圧を供給する送電方法であって、 前記交流電源が発生する交流電圧の絶対値が所定のしきい値以上であるか否 かを判別し、 当該しきい値以上であると判別したときに、 前記直流電圧を前記 交流電圧と同一極性で前記交流電源へと供給し、 当該しきい値未満であると判 別したとき、 前記交流電源への前記直流電圧の供給を遮断する、
ことを特徴とする。
この方法によれば、 直流電圧は、 交流電源が発生する交流電圧と電圧しきい 値との大小関係に従い、 切替スィッチを介して交流電源へと供給され、 又は供 給を停止される。 従って、 パルス幅変調及びその複雑な制御回路を用いなくて よい。 このため、 この方法を行うための構成が簡単になる。
前記直流電圧を発生する直流電源の出力インピーダンスは前記交流電源の出 力インピーダンスより高く、 且つ、 前記交流電源に接続する対象の外部の負荷 へ前記直流電源から電流が供給されることにより当該負荷に発生する電圧降下 の大きさは、 前記交流電源が発生する交流電圧より大きくてもよい。
この場合、 負荷の両端間の電圧は、 交流電源が発生する交流電圧にほぼ等し く保たれる。
前記交流電源に前記直流電圧が供給されている連続した期間が、 前記交流電 源が発生する交流電力の周期の 2分の 1を越えたか否かを判別し、 越えたと判 別したときに、 前記交流電源への前記直流電圧の供給を遮断してもよい。
このような方法によれば、 交流電源に異常が生じ、 直流電圧の電源が直流電 圧を供給し続けている期間が交流電圧の周期の 2分の 1を越えると、 交流電源 と直流電圧の電源との間が遮断される。 従って直流電圧の電源から交流電源へ の漏電が防止される。
前記直流電圧を発生する直流電源が、 前記直流電圧を出力する一対の電極を 備え、 前記交流電源が、 前記交流電圧を出力する一対の電極を備えている場合 は、
前記直流電源の各電極の一方の電圧と前記交流電源の各電極の一方の電圧と の極性の異同を判別し、
前記交流電圧の絶対値が前記しきい値以上であり、 且つ、 前記直流電源の一 対の電極の前記一方の電圧と前記交流電源の一対の電極の前記一方の電圧とが 互いに同極性であると判別したとき、 前記直流電源の各電極の前記一方と前記 交流電源の各電極の前記一方とを互いに接続し、 前記直流電源の各電極の他方 と前記交流電源の各電極の他方とを互いに接続し、
前記交流電圧の絶対値が前記しきい値以上であり、 且つ、 前記直流電源の一 対の電極の前記一方の電圧と前記交流電源の一対の電極の前記一方の電圧とが 互いに異なる極性であると判別したとき、 前記直流電源の各電極の前記一方と 前記交流電源の各電極の前記他方とを互いに接続し、 前記直流電源の各電極の 前記他方と前記交流電源の各電極の前記一方とを互いに接続し、
前記交流電圧の絶対値が前記しきい値未満であると判別したとき、 前記直流 電源の各電極と前記交流電源の各電極との間を遮断するようにしてもよい。 前記直流電圧は、 変換用の直流電圧を交流電圧に変換し、 変換により得られ た交流電圧を絶縁トランスにより変圧し、 変圧により得られた交流電圧を整流 することにより発生するようにしてもよい。
この方法によれば、 絶縁トランスが変換用の直流電圧の電源と交流電源とを 絶縁し、 変換用の直流電圧の電源から交流電源への漏電を防止する。
前記変換用の直流電圧の値が設定値に達したか否かを判別し、 達していると 判別したとき、 前記変換用の直流電圧の交流電圧への変換を阻止することによ り、 交流電源に印加する直流電圧の値を適正値に保つようにしてもよい。 また、 この発明の第 4の観点にかかる送電装置は、
直流電源 (2, 3, 4, 5 ) が発生する直流電圧を交流電圧を発生する交流 電源 (8 ) へと供給する送電装置であって、
前記交流電源が発生する交流電圧の絶対値が所定のしきい値以上であるか否 かを判別する判別手段 (7 ) と、
前記判別手段が、 前記交流電圧の絶対値が前記しきい値以上であると判別し たときに、 前記直流電圧を前記交流電圧と同一極性で前記交流電源へと供給す る手段 (6 ) と、
前記判別手段が、 前記交流電圧の絶対値が前記しきい値未満であると判別し たときに、 前記交流電源への前記直流電圧の供給を遮断する手段 (6 ) と、 を備えることを特徴とする。
この構成によれば、 直流電源が出力する直流電圧は、 交流電源が発生する交 流電圧と電圧しきい値との大小関係に従って交流電源へと供給され、 又は供給 を停止される。 従って、 パルス幅変調及びその複雑な制御回路を用いなくてよ レ 。 このため、 構成が簡単になる。 図面の簡単な説明
図 1は、 この発明の実施の形態に係る送電装置の模式的構成図である。
図 2は、 この発明の実施の形態に係る D C— A Cコンバータの一例を示す模 式的構成図である。
図 3の (a ) は、 商用電力系統が発生する交流電圧の波形及び電圧しきい値 を示すグラフである。 (b ) は、 導通角と第 1の制御信号の値と関係を模式的 に示すグラフである。 図 4は、 切替スィッチの変形例を示す模式的構成図である。 発明を実施するための最良の形態
以下、 図面を参照しながら、 この発明の実施の形態を説明する。
図 1は、この発明の実施の形態に係る送電装置の構成を模式的に示している。 図 1に示すように、 この送電装置 1は、 発電装置 2と商用電力系統 8との間 に配置されている。 送電装置 1は、 D C— A Cコンバータ 3と、 絶縁トランス 4と、 直流電源部 5と、 切替スィッチ 6と、 商用電圧監視部 7とを備える。 発電装置 2は、 直流電力 (直流電圧) を発生する直流電源である。 発電装置 2は、 例えば太陽電池から構成される。
D C— A Cコンパ一夕 (直流一交流変換器) 3は、 発電装置 2が発生した直 流電力を、 直流から交流に変換する。 図 1に示すように、 D C— A Cコンバー 夕 (直流一交流変換器) 3は、 インバ一夕回路 1 0 0と、 電圧監視回路 1 0 1 とを備える。
ィンバ一夕回路 1 0 0は、 図 2に示すように、 プリッジィンバ一夕 1 0 5と、 このプリッジィンバ一夕 1 0 5を制御するインバー夕制御部 1 0 6とを備える。 プリッジィンバ一夕 1 0 5は、 各々が電流路及び図示しない制御端を備えるス ィツチング素子 S 1〜S 4より構成されている。 スィツチング素子 S :!〜 S 4 は、 例えば、 電界効果トランジスタより構成されている。
スイッチング素子 S 1の電流路の一端及びスイッチング素子 S 3の電流路の 一端は、 発電装置 2の一端に接続されている。 スイッチング素子 S 2の電流路 の一端及びスィツチング素子 S 4の電流路の一端は、 発電装置 2の他端に接続 されている。 スィツチング素子 S 1の電流路の他端及びスィツチング素子 S 2 の電流路の他端は、 絶縁トランス 4の一次卷線の一端に接続されている。 スィ ツチング素子 S 3の電流路の他端及びスイッチング素子 S 4の電流路の他端は、 絶縁トランス 4の一次巻線の他端に接続されている。
スイッチング素子 S 1〜S 4は、 各自の制御端に印加された制御信号に従つ てオン及びオフする。
インバー夕制御部 1 0 6は、 発電装置 2より供給される電力により駆動され る。 ィンバ一夕制御部 1 0 6は、 プリッジィンバ一夕 1 0 5を構成するスィッ チング素子 S ;!〜 S 4を制御してオン及びオフさせる。
具体的には、 インバ一タ制御部 1 0 6は、 スイッチング素子 S 1〜S 4の各 制御端に制御信号を供給することにより、 スイッチング素子 S 1及び S 4がォ ンしているときスィツチング素子 S 2及び S 3がオフし、 スィツチング素子 S 2及び S 3がオンしているときスイッチング素子 S 1及び S 4がオフするよう、 スィツチング素子 S 1〜S 4を制御する。
スィッチング素子 S 1〜 S 4は、 インバー夕制御部 1 0 6が行う上述の制御 に従ってオン及びオフする。 この動作により、 ブリッジインバ一夕 1 0 5は、 発電装置 2より供給された直流電力を、 直流から交流に変換する。
電圧監視回路 1 0 1は、 発電装置 2より印加された直流電圧が設定値に達し たか否かを判別する。 そして、 この直流電圧が設定値に達したと判別すると、 発電装置 2が出力した直流電力を、インバー夕制御部 1 0 6の電源に供給する。 電圧監視回路 1 0 1が供給する直流電力により、 ィンバ一夕回路 1 0 0は駆動 される。
絶縁トランス 4は、 一次卷線と二次巻線とを備える。 一次巻線及び二次巻線 は同一の鉄心に巻かれている。 また、 一次巻線と二次巻線とは互いに絶縁され ている。
一次巻線は D C— A Cコンバータ 3に接続されている。 二次巻線は直流電源 部 5に接続されている。 D C— A Cコンバータ 3より印加される交流電圧は、 一次巻線と二次巻線と巻数比に応じて変圧される。変圧されたこの交流電圧は、 直流電源部 5に出力される。
直流電源部 5は、 絶縁トランス 4より印加された交流電圧を直流電圧に変換 する。 直流電源部 5は、 整流回路 1 0 2を備える。
整流回路 1 0 2は、 ダイオード及びコンデンサ等より構成されており、 正極 及び負極を備える。 整流回路 1 0 2は、 絶縁トランス 4より印加された交流電 圧を、 ダイォードにより整流し、 整流した電圧をコンデンサ等により平滑して、 直流電圧に変換する。 この直流電圧は、 整流回路 1 0 2の正極と負極との間に 発生する。 (負極より正極の方が電位が高い。 )
切替スィツチ 6は、 商用電力系統 8より供給された電力により駆動される。 切替スィッチ 6は、 整流回路 1 0 2から商用電力系統 8へと供給されるべき整 流電圧を、 商用電圧監視部 7より伝達された制御信号に従って供給又は遮断す る。 なお、 商用電力系統 8は、 交流電圧を発生する一対の出力端子を備える。 切替スィッチ 6は、 整流電圧を商用電力系統 8へと供給する場合、 整流電圧が この交流電圧と同一極性で印加されるようにして、 商用電力系統 8の出力端子 間へと整流電圧を供給する。
なお、
( A ) 整流回路 1 0 2の正極一負極間の出力インピーダンスは、 商用電力系統 8の出力端子の出力インピーダンスより大きいものとする。 また、
( B ) 商用電力系統 8と直流電源部 5との間が遮断された状態で、 商用電力系 統 8の出力端子間に接続する対象の負荷を整流回路 1 0 2の正極一負極間に接 続したと仮定する。 このとき、 整流電圧の印加により負荷に電流が流れ、 負荷 には電圧降下が発生する。 この電圧降下の大きさが、 商用電力系統 8が発生す る交流電圧より大きいものとする。
( A ) 及び (B ) として上述した条件が満たされることにより、 負荷の両端 間の電圧は、 商用電力系統 8が発生する交流電圧にほぼ等しく保たれる。 商用電圧監視部 7は、 スィッチ制御回路 1 0 3と、 半周期監視回路 1 0 4と を備える。 スィッチ制御回路 1 0 3は、 切替スィッチ 6に制御信号を伝達する ことにより、 切替スィッチ 6を制御する。
スィッチ制御回路 1 0 3は、 商用電力系統 8より供給される電力により駆動 される (ただし、 直流電源部 5から商用電力系統 8へと電力が供給される間は、 この電力もスィッチ制御回路 1 0 3の駆動に寄与する) 。 スィッチ制御回路 1 0 3は、 商用電力系統 8が発生する商用電力の電圧 V cを検出し、 検出した電 圧 V cと所定の電圧しきい値 + Vth及び— Vthとの大小関係を判別する。 そし て、 第 1の制御信号を切替スィッチ 6に伝達することにより、 判別結果に従つ て切替スィッチ 6を制御する。 (ただし、 + Vthの値は正であり、 一 V thの値 は負であるものとする。 )
具体的には、 スィツチ制御回路 1 0 3は、
( 1 ) 電圧 V cが正極性の電圧しきい値 + Vth以上であると判別すると、 ハイ レベルの第 1の制御信号を切替スィッチ 6に供給する。 この結果、 直流電源部 5の整流回路 1 0 2の正極の電圧が商用電力系統 8の出力端子の上述の一方に 印加され、 整流回路 1 0 2の負極の電圧が商用電力系統 8の出力端子の他方に 印加される。
( 2 ) 電圧 V cが正極性の電圧しきい値 + Vth未満で、 負極性のしきい値一 Vt hより大きいと判別すると、グラウンドレベルの第 1の制御信号を切替スィツチ 6に供給する。 この結果、 商用電力系統 8と直流電源部 5とが電気的に遮断さ れる。
( 3 ) 商用電力の電圧 V cが、 負極性の電圧しきい値一 Vth以下であると判別 すると、 口一レベルの第 1の制御信号を切替スィッチ 6に供給する。 この結果、 整流回路 1 0 2の負極の電圧が商用電力系統 8の出力端子の上述の一方に印加 され、 整流回路 1 0 2の正極の電圧が商用電力系統 8の出力端子の他方に印加 される。 すなわち、 直流電源部 5から供給された直流電圧が、 上述の ( 1 ) の 状態からみて極性を反転された状態で商用電力系統 8に供給される。
半周期監視回路 1 0 4は、 切替スィッチ 6がオンしている連続した期間 (直 流電源部 5から商用電力系統 8へと直流電圧が供給されている連続した期間) の長さが、 商用電力系統 8が発生する電圧の半周期分の長さを超えたか否かを 判別する。 そして、 超えたと判別すると、 半周期監視回路 1 0 4は、 第 2の制 御信号を切替スィッチ 6に供給する。 この結果、 切替スィッチ 6は、 商用電力 系統 8と直流電源部 5との間を電気的に遮断する。
次に、 この発明の実施の形態に係る送電装置の送電動作を説明する。
太陽電池から構成される発電装置 2に光が照射されると、 発電装置 2は電力 を生成する。 D C— A Cコンバータ 3は、 発電装置 2が発生した電力が所定の しきい値を超えると、 発電装置 2が発生した電力を直流から交流に変換する。 交流に変換された電圧は、 絶縁トランス 4により変圧される (通常は昇圧され る) 。 変圧された交流電圧は、 直流電源部 5により、 交流から直流に変換され る。
スィツチ制御回路 1 0 3は、 商用電力系統 8の電圧 V cと電圧しきい値 V th 及び一 V thとの大小関係を示す第 1の制御信号を切替スィツチ 6に伝達する。 直流電源部 5が出力する直流電圧は、 切替スィツチ 6が切り替わることによ り、 商用電力系統 8に、 (1 ) 若しくは (3 ) として上述した極性で供給され、 又は遮断される。 切替スィッチ 6は、 スィッチ制御回路 1 0 3より供給される 第 1の制御信号に従って切り替わる。
次に、 図 3を参照して、 スィッチ制御回路 1 0 3及び切替スィッチ 6の動作 を説明する。
図 3の (a ) は、 商用電力系統 8が発生する交流電圧の波形、 電圧しきい値 + V th及び Vthを示すグラフである。 図 3の (b ) は、 導通角 (直流電源部 5と商用電力系統 8との間が導通している期間) と第 1の制御信号の値と関係 を模式的に示すグラフである。
スィッチ制御回路 1 0 3は、 商用電力系統 8の電圧 V cが正極性の電圧しき い値 + Vth以上であると判別すると、 ハイレベルの第 1の制御信号を、 切替ス イッチ 6に供給する。 切替スィッチ 6は、 ハイレベルの第 1の制御信号に応答 して、 直流電源部 5から商用電力系統 8へと直流電圧が上述の (1 ) の状態で 供給されるように切り替わる (商用電力の電圧の極性と供給される直流電圧の 極性とは同一になる) 。
また、 スィッチ制御回路 1 0 3は、 電圧 V cが正極性の電圧しきい値 + Vth 未満で、 負極性の電圧しきい値一 Vthより大きいと判別した場合は、 グラウン ドレベルの第 1の制御信号を、 切替スィツチ 6に供給する。
切替スィツチ 6にグラウンドレベルの第 1の制御信号が供給される期間は、 図 3の (a ) に示す区間 B〜(:及び区間 D〜 Aである。
切替スィッチ 6は、 グラウンドレベルの第 1の制御信号に従って、 直流電源 部 5から商用電力系統 8への直流電圧の供給を遮断する
また、 スィッチ制御回路 1 0 3は、 電圧 V cが負極性の電圧しきい値一 Vth 以下 (つまり、 極性が負極性で、 電圧の絶対値が Vth以上) であると判別する と、 ローレベルの第 1の制御信号を切替スィツチ 6に供給する。
切替スィッチ 6は、 ローレベルの第 1の制御信号に応答し、 直流電源部 5が 発生する直流電圧を、 上述の (3 ) の状態で (つまり、 上述の ( 1 ) の状態に 対して極性を反転された状態で) 、 商用電力系統 8へと供給する。 この結果、 商用電力の電圧の極性と供給される直流電圧の極性とは同一になる。
従って、 導通角と商用電力系統 8の電圧波形との位相差を所定の範囲に収め るためにパルス幅変調を行う必要がない。 従って、 パルス幅変調のための複雑 な制御回路を用いなくてよい。 このため、 構成が簡単になる。 なお、 第 1の制御信号のレベルがハイレベル、 グラウンドレベル及びローレ ベルの相互間で遷移する瞬間には、 直流電源部 5から商用電力系統 8へと供給 される電圧にスパイク状のノイズが若干混入するおそれがある。 しかし、 この ノイズは、 例えば、 コイル及びコンデンサより構成されるフィルタを用いて除 去できる。
また、 発電装置 2が停止し、 又は発電装置 2が発生する直流電圧が設定値以 下まで低下したとする。 このとき、 電圧監視回路 1 0 1は、 発電装置 2の出力 電力のインバー夕制御部 1 0 6への供給を停止し、 インバー夕回路 1 0 0の動 作を停止させる。従って、発電装置 2から商用電力系統 8への送電は停止する。 また、 商用電力系統 8が短絡したとする。 このとき、 商用電力系統 8の電圧 V cの絶対値が低下し、 電圧しきい値 + Vthと一 V thとの中間の値になる。 従 つて、 スィッチ制御回路 1 0 3は、 切替スィッチ 6に、 グランドレベルの第 1 の制御信号を伝達する。 切替スィッチ 6は、 商用電力系統 8と直流電源部 5と の間を遮断する。
このため、 商用電力系統 8に接続された装置には、 直流電源部 5が発生する 直流電力が供給されない。
商用電力系統 8が断線又は停電したとする。 このとき、 半周期監視回路 1 0 4は、 切替スィッチ 6がオンしている連続した期間が、 商用電力系統 8が発生 する交流電圧の周期の 2分の 1を越えたことを検出する。 検出の結果は、 口一 レベルを示す第 2の制御信号として切替スィッチ 6に伝達される。 切替スイツ チ 6は、 商用電力系統 8と直流電源部 5との間を遮断する。
従って、 商用電力系統 8に接続された装置には、 直流電源部 5が発生する直 流電力が供給されない。
このように、 発電装置 2又は商用電力系統 8に短絡や断線が生じても、 電圧 監視回路 1 0 1がインバー夕回路 1 0 0の動作を停止させ、 又は商用電圧監視 部 7が切替スィツチ 6を制御することにより、 商用電力系統 8と直流電源部 5 との間が遮断される。 従って、 漏電が抑止される。
以上説明したように、 この発明の実施の形態に係る送電装置においては、 発 電装置 2と商用電力系統 8とは絶縁トランス 4により絶縁されている。 また、 D C— A Cコンバータ 3は、発電装置 2が供給する電力により動作する。 また、 商用電圧監視部 7及び切替スィツチ 6は、 商用電力系統 8が供給する電力によ り動作する。
従って、 発電装置 2から商用電力系統 8への漏電が防止される。 従って、 商 用電力系統 8に接続された装置は漏電から保護される。
なお、 この発明は上記実施の形態に限定されない。
例えば、 切替スィッチ 6は、 例えば図 4に示すように、 各々が電流路及び制 御端を備えるスイッチング素子 T 1〜T 4より構成されていてもよい。 スイツ チング素子 Τ 1〜Τ 4は、 例えば、 電界効果トランジスタより構成されていれ ばよい。 スィツチング素子 Τ 1〜Τ 4が電界効果トランジスタから構成されて いる場合、 スイッチング素子 Τ 1〜Τ 4の電流路は、 電界効果トランジスタの ドレイン及びソースを両端とする電流路から構成され、 スイッチング素子 Τ 1 〜Τ 4の制御端は、電界効果トランジスタのゲートから構成されていればよい。 スィツチング素子 Τ 1の電流路の一端及びスィツチング素子 Τ 3の電流路の 一端は、 整流回路 1 0 2の正極に接続されている。 スイッチング素子 Τ 2の電 流路の一端及びスイッチング素子 Τ 4の電流路の一端は、 整流回路 1 0 2の負 極に接続されている。 スィツチング素子 Τ 1の電流路の他端及びスィツチング 素子 Τ 4の電流路の他端は、 商用電力系統 8の出力端子の一方に接続されてい る。 スィツチング素子 Τ 2の電流路の他端及びスィツチング素子 Τ 3の電流路 の他端は、 商用電力系統 8の出力端子の他方に接続されている。
スイッチング素子 Τ 1〜Τ 4は、 各自の制御端に印加された制御信号に従つ てオン及びオフする。
切替スィツチ 6が図 4に示す構成を有する場合、スィツチ制御回路 1 0 3は、 例えば、 スィツチング素子 T 1〜T 4の各制御端に第 1の制御信号を供給する ことにより、
( 4 ) 電圧 V cが正極性の電圧しきい値 + Vth以上であると判別すると、 スィ ツチング素子 T 1及び T 2がオンしてスィツチング素子 T 3及び T 4がオフす るよう、 スイッチング素子 T 1〜T 4を制御する。 この結果、 直流電源部 5の 整流回路 1 0 2の正極の電圧が商用電力系統 8の出力端子の上述の一方に印加 され、 整流回路 1 0 2の負極の電圧が商用電力系統 8の出力端子の他方に印加 される。
( 5 ) 電圧 V cが正極性の電圧しきい値 + Vth未満で、 負極性のしきい値一 Vt hより大きいと判別すると、スィツチング素子 T 1〜T 4がいずれもオフするよ う、 スイッチング素子 Τ 1〜Τ 4を制御する。 この結果、 商用電力系統 8と直 流電源部 5とが電気的に遮断される。
( 6 ) 商用電力の電圧 V cが、 負極性の電圧しきい値一 Vth以下であると判別 すると、 スィツチング素子 T 1及び T 2がオフしてスィツチング素子 T 3及び T 4がオンするよう、 スィツチング素子 T 1〜T 4を制御する。
この結果、 整流回路 1 0 2の負極の電圧が商用電力系統 8の出力端子の上述 の一方に印加され、 整流回路 1 0 2の正極の電圧が商用電力系統 8の出力端子 の他方に印加される。 すなわち、 直流電源部 5から供給された直流電圧が、 上 述の ( 1 ) の状態からみて極性を反転された状態で商用電力系統 8に供給され る。
スイッチング素子 Τ 1〜Τ 4は、 スィッチ制御回路 1 0 3が行う上述の制御 に従つてオン及びォフする。
また、 切替スィッチ 6が図 4に示す構成を有する場合、 半周期監視回路 1 0 4は、 スィツチング素子 T 1〜Τ 4のいずれかがオンしている連続した期間の 長さが、 商用電力系統 8が発生する電圧の半周期分の長さを超えたか否かを判 別し、 超えたと判別すると、 スイッチング素子 Τ 1〜Τ 4をすベてオフさせる よう切替スィッチ 6を制御してもよい。 この結果、 切替スィッチ 6は、 商用電 力系統 8と直流電源部 5との間を電気的に遮断する。
また、 絶縁トランス 4は、 大きな漏れリアクタンスを有する磁気漏れ変圧器 より構成されていてもよい。 磁気漏れ変圧器は、 巻線に流れる電流が増加する と、 漏れ磁束が増加して漏れリアクタンスが増加するという性質を有する。 こ のため、 絶縁トランス 4の 2次側の巻線に流れる電流の増加が抑止され、 2次 側の過電流が抑止される。
さらに、 直流電源部 5は、 整流回路 1 0 2が出力した直流電圧が過度に上昇 したときにこの直流電圧の上昇を抑止する過電圧抑止回路を備えていてもよレ^ この過電圧抑止回路により、 直流電源部 5が出力する直流電圧が過度に上昇す ることが抑止される。
また、 直流電源部 5は、 直流電源部 5から商用電力系統 8へと供給する電流 の立ち上がり及び立ち下がりの応答を緩慢にするためのフィル夕回路を備えて いてもよい。 このフィルタ回路により、 商用電力系統 8への高周波ノイズの混 入が抑制される。
以上説明したように、 この発明によれば、 構成が簡単な送電装置及び送電方 法が提供される。
さらに、 この発明によれば、 低コストの送電装置及び送電方法が提供される。 また、 この発明によれば、 発電装置から商用電力系統への漏電が防止でき、 ひいては二次破壊の発生を防止できる送電装置及び送電方法が提供される。 なお、 この発明は上記実施の形態に限定されず、 種々の変形及び応用が可能 である。 なお、 この特許出願は、 平成 1 1年 5月 2 7日に日本国特許庁に出願された 特願平 1 1 一 1 4 7 3 7 4のパリ条約に基づく優先権を主張する出願であり、 この日本国特許出願の内容は、参照のため、 この明細書に取り込むものとする。

Claims

請求の範囲
1 . 交流電圧を発生する交流電源 (8 ) と直流電圧を発生する直流電源 (2, 3 , 4, 5 ) との間に配置される送電装置であって、
前記直流電源と前記交流電源との間に接続され、 自己に供給される制御信号 に従い、 前記直流電圧を前記交流電源に供給し、 又は当該直流電圧の前記交流 電源への供給を遮断する切替スィッチ (6 ) と、
前記交流電源と前記切替スィツチとに接続され、 前記交流電源が発生する交 流電圧の絶対値が所定のしきい値以上であるか否かを判別し、 当該しきい値以 上であると判別したときに、 前記直流電圧を前記交流電圧と同一極性で前記交 流電源へと供給させるための前記制御信号を前記切替スィツチに供給し、 当該 しきい値未満であると判別したとき、 前記交流電源への前記直流電圧の供給を 遮断させるための前記制御信号を前記切替スィツチに供給する交流電圧監視回 路 (7 ) と、
を備えることを特徴とする送電装置。
2 . 前記直流電源の出カインピーダンスは前記交流電源の出力インピーダン スより高く、 且つ、 前記交流電源に接続する対象の外部の負荷へ前記直流電源 から電流が供給されることにより当該負荷に発生する電圧降下の大きさは、 前 記交流電源が発生する交流電圧より大きい、
ことを特徴とする請求項 1に記載の送電装置。
3 . 前記交流電圧監視回路は、 前記直流電源が前記交流電源に前記直流電圧 を供給している連続した期間が、 前記交流電源が発生する交流電力の周期の 2 分の 1を越えたか否かを判別し、 越えたと判別したときに、 前記直流電源から 前記交流電源への前記直流電圧の供給を遮断させるための前記制御信号を前記 切替スィッチに供給する半周期監視回路 ( 1 0 4 ) を更に備える、
ことを特徴とする請求項 1に記載の送電装置。
4 . 前記切替スィッチは、
第 1の電流路及び第 1の制御端を備える第 1のスイッチング素子 (T 1 ) と、 第 2の電流路及び第 2の制御端を備える第 2のスイッチング素子 (T 2 ) と、 第 3の電流路及び第 3の制御端を備える第 3のスイッチング素子 (T 3 ) と、 第 4の電流路及び第 4の制御端を備える第 4のスイッチング素子 (T 4 ) と、 を備え、
前記第 1の電流路の一端及び前記第 3の電流路の一端は、 前記直流電源が備 え前記直流電圧を出力する一対の電極の一方に接続され、
前記第 2の電流路の一端及び前記第 4の電流路の一端は、 前記直流電源の一 対の電極の他方に接続され、
前記第 1の電流路の他端及び前記第 4の電流路の他端は、 前記交流電源が備 え前記交流電圧を出力する一対の電極の一方に接続され、
前記第 2の電流路の他端及び前記第 3の電流路の他端は、 前記交流電源の一 対の電極の他方に接続されており、
前記交流電圧監視回路は、
前記直流電源の一対の電極の前記一方の電圧と前記交流電源の一対の電極の 前記一方の電圧との極性の異同を判別し、
前記交流電圧の絶対値が前記しきい値以上であり、 且つ、 前記直流電源の一 対の電極の前記一方の電圧と前記交流電源の一対の電極の前記一方の電圧とが 互いに同極性であると判別したとき、 前記第 1及び第 2の制御端に、 前記第 1 及び第 2の電流路が導通するような電圧を前記制御信号として印加し、 前記第 3及び第 4の制御端に、 前記第 3及び第 4の電流路が遮断されるような電圧を 前記制御信号として印加し、
前記交流電圧の絶対値が前記しきい値以上であり、 且つ、 前記直流電源の一 対の電極の前記一方の電圧と前記交流電源の一対の電極の前記一方の電圧とが 互いに異なる極性であると判別したとき、 前記第 1及び第 2の制御端に、 前記 第 1及び第 2の電流路が遮断されるような電圧を前記制御信号として印加し、 前記第 3及び第 4の制御端に、 前記第 3及び第 4の電流路が導通するような電 圧を前記制御信号として印加し、
前記交流電圧の絶対値が前記しきい値未満であると判別したとき、 前記第 1 乃至第 4の制御端に、 前記第 1乃至第 4の電流路が遮断されるような電圧を前 記制御信号として印加する、
ことを特徴とする請求項 1に記載の送電装置。
5 . 前記第 1のスイッチング素子は、 自己のドレイン及びソースが前記第 1 の電流路の両端として機能し、 自己のゲートが前記第 1の制御端として機能す る第 1の電界効果トランジスタ (T 1 ) より構成されており、
前記第 2のスィツチング素子は、 自己のドレイン及びソースが前記第 2の電 流路の両端として機能し、 自己のゲートが前記第 2の制御端として機能する第
2の電界効果トランジスタ (T 2 ) より構成されており、
前記第 3のスイッチング素子は、 自己のドレイン及びソースが前記第 3の電 流路の両端として機能し、 自己のゲー卜が前記第 3の制御端として機能する第
3の電界効果トランジスタ (T 3 ) より構成されており、
前記第 4のスィツチング素子は、 自己のドレイン及びソースが前記第 1の電 流路の両端として機能し、 自己のゲートが前記第 4の制御端として機能する第 4の電界効果トランジスタ (T 4 ) より構成されている、 ことを特徴とする請求項 4に記載の送電装置。
6 . 前記交流電圧監視回路は、 前記直流電源が前記交流電源に前記直流電圧 を供給している連続した期間が、 前記交流電源が発生する交流電力の周期の 2 分の 1を越えたか否かを判別し、 越えたと判別したとき、 前記第 1乃至第 4の 制御端に、 前記第 1乃至第 4の電流路が遮断されるような電圧を前記制御信号 として印加する、
ことを特徴とする請求項 4に記載の送電装置。
7 . 交流電圧を発生する交流電源 (8 ) と第 1の直流電圧を発生する直流電 源 (2 ) との間に配置される送電装置であって、
前記第 1の直流電圧を交流電圧に変換して出力する直流一交流コンバータ ( 3 ) と、
前記直流一交流コンバータが出力する交流電圧を変圧して出力する絶縁トラ ンス (4 ) と、
前記絶縁卜ランスが出力する交流電圧を変換して前記第 2の直流電圧を発生 する整流器 (5 ) と、
前記整流器と前記交流電源との間に接続され、 自己に供給される制御信号に 従い、 前記第 2の直流電圧を前記交流電源に供給し、 又は前記第 2の直流電圧 の前記交流電源への供給を遮断する切替スィッチ (6 ) と、
前記交流電源と前記切替スィツチとに接続され、 前記交流電源が発生する交 流電圧の絶対値が所定のしきい値以上であるか否かを判別し、 当該しきい値以 上であると判別したときに、 前記第 2の直流電圧を前記交流電圧と同一極性で 前記交流電源へと供給させるための前記制御信号を前記切替スィツチに供給し、 当該しきい値未満であると判別したとき、 前記交流電源への前記第 2の直流電 圧の供給を遮断させるための前記制御信号を前記切替スィツチに供給する交流 電圧監視回路 (7 ) と、
を備えることを特徴とする送電装置。
8 . 前記整流器の出力インピーダンスは前記交流電源の出力インピーダンス より高く、 且つ、 前記交流電源に接続された外部の負荷へ前記整流器から電流 が供給されることにより当該負荷に発生する電圧降下の大きさは、 前記交流電 源が発生する交流電圧より大きい、
ことを特徴とする請求項 7に記載の送電装置。
9 . 前記直流一交流コンバータは、
前記第 1の直流電圧が自己に印加されたとき、 当該第 1の直流電圧を交流電 圧に変換するインバー夕 ( 1 0 0 ) と、
前記第 1の直流電圧の値が設定値に達したか否かを判別し、 達していると判 別したとき、 前記第 1の直流電圧を前記インバー夕に印加し、 達していないと 判別したとき、 前記ィンバ一夕への前記第 1の直流電圧の印加を阻止する直流 電圧監視回路 ( 1 0 1 ) と、
を備えることを特徴とする請求項 7に記載の送電装置。
1 0 . 交流電圧を発生する交流電源へと直流電圧を供給する送電方法であつ て、
前記交流電源が発生する交流電圧の絶対値が所定のしきい値以上であるか否 かを判別し、 当該しきい値以上であると判別したときに、 前記直流電圧を前記 交流電圧と同一極性で前記交流電源へと供給し、 当該しきい値未満であると判 別したとき、 前記交流電源への前記直流電圧の供給を遮断する、 ことを特徴とする送電方法。
1 1 . 前記直流電圧を発生する直流電源の出力インピーダンスは前記交流電 源の出力インピーダンスより高く、 且つ、 前記交流電源に接続する対象の外部 の負荷へ前記直流電源から電流が供給されることにより当該負荷に発生する電 圧降下の大きさは、 前記交流電源が発生する交流電圧より大きい、
ことを特徴とする請求項 1 0に記載の送電方法。
1 2 . 前記交流電源に前記直流電圧が供給されている連続した期間が、 前記 交流電源が発生する交流電力の周期の 2分の 1を越えたか否かを判別し、 越え たと判別したときに、 前記交流電源への前記直流電圧の供給を遮断する、 ことを特徴とする請求項 1 0に記載の送電方法。
1 3 . 前記直流電圧を発生する直流電源は、 前記直流電圧を出力する一対の 電極を備え、 前記交流電源は、 前記交流電圧を出力する一対の電極を備えてお り、
前記直流電源の各電極の一方の電圧と前記交流電源の各電極の一方の電圧と の極性の異同を判別し、
前記交流電圧の絶対値が前記しきい値以上であり、 且つ、 前記直流電源の一 対の電極の前記一方の電圧と前記交流電源の一対の電極の前記一方の電圧とが 互いに同極性であると判別したとき、 前記直流電源の各電極の前記一方と前記 交流電源の各電極の前記一方とを互いに接続し、 前記直流電源の各電極の他方 と前記交流電源の各電極の他方とを互いに接続し、
前記交流電圧の絶対値が前記しきい値以上であり、 且つ、 前記直流電源の一 対の電極の前記一方の電圧と前記交流電源の一対の電極の前記一方の電圧とが 互いに異なる 性であると判別したとき、 前記直流電源の各電極の前記一方と 前記交流電源の各電極の前記他方とを互いに接続し、 前記直流電源の各電極の 前記他方と前記交流電源の各電極の前記一方とを互いに接続し、
前記交流電圧の絶対値が前記しきい値未満であると判別したとき、 前記直流 電源の各電極と前記交流電源の各電極との間を遮断する、
ことを特徴とする請求項 1 0に記載の送電方法。
1 4 . 前記直流電圧は、 変換用の直流電圧を交流電圧に変換し、 変換により 得られた交流電圧を絶縁トランスにより変圧し、 変圧により得られた交流電圧 を整流することにより発生する、
ことを特徴とする請求項 1 0に記載の送電方法。
1 5 . 前記変換用の直流電圧の値が設定値に達したか否かを判別し、 達して いると判別したとき、 前記変換用の直流電圧の交流電圧への変換を阻止する、 ことを特徴とする請求項 1 4に記載の送電方法。
1 6 . 直流電源 (2 , 3, 4, 5 ) が発生する直流電圧を交流電圧を発生す る交流電源 (8 ) へと供給する送電装置であって、
前記交流電源が発生する交流電圧の絶対値が所定のしきい値以上であるか否 かを判別する判別手段 (7 ) と、
前記判別手段が、 前記交流電圧の絶対値が前記しきい値以上であると判別し たときに、 前記直流電圧を前記交流電圧と同一極性で前記交流電源へと供給す る手段 (6 ) と、
前記判別手段が、 前記交流電圧の絶対値が前記しきい値未満であると判別し たときに、 前記交流電源への前記直流電圧の供給を遮断する手段 (6 ) と、 を備えることを特徴とする送電装置。
PCT/JP2000/003424 1999-05-27 2000-05-29 Appareil de transmission d'energie et procede de transmission d'energie WO2000074199A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP00931588A EP1102380A1 (en) 1999-05-27 2000-05-29 Power transmission apparatus and method for power transmission
US09/744,863 US6362985B1 (en) 1999-05-27 2000-05-29 Power transmission apparatus and method for power transmission
JP2001500391A JP3478338B2 (ja) 1999-05-27 2000-05-29 送電装置
KR20017000809A KR100419303B1 (ko) 1999-05-27 2000-05-29 송전장치 및 송전방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP14737499 1999-05-27
JP11/147374 1999-05-27

Publications (1)

Publication Number Publication Date
WO2000074199A1 true WO2000074199A1 (fr) 2000-12-07

Family

ID=15428798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/003424 WO2000074199A1 (fr) 1999-05-27 2000-05-29 Appareil de transmission d'energie et procede de transmission d'energie

Country Status (5)

Country Link
US (1) US6362985B1 (ja)
EP (1) EP1102380A1 (ja)
JP (1) JP3478338B2 (ja)
KR (1) KR100419303B1 (ja)
WO (1) WO2000074199A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004077637A1 (en) * 2003-02-20 2004-09-10 Ebara Corporation Power generating apparatus
CN102338833B (zh) * 2011-06-03 2013-04-17 厦门科华恒盛股份有限公司 一种市电异常的快速检测方法
CN102255332A (zh) * 2011-06-29 2011-11-23 黄俊嘉 并网逆变装置
US9281716B2 (en) 2011-12-20 2016-03-08 Kohler Co. Generator controller configured for preventing automatic transfer switch from supplying power to the selected load
US20130158726A1 (en) 2011-12-20 2013-06-20 Kohler Co. System and method for using a network to control multiple power management systems
KR101373850B1 (ko) 2014-02-07 2014-03-26 주식회사 네스앤텍 유선 비행체의 전원공급시스템
JP6295782B2 (ja) * 2014-03-31 2018-03-20 株式会社安川電機 電力変換装置、発電システム、制御装置および電力変換方法
JP6305861B2 (ja) * 2014-07-25 2018-04-04 Ntn株式会社 送電装置
WO2016013549A1 (ja) 2014-07-24 2016-01-28 Ntn株式会社 送電装置
JP2020167747A (ja) * 2017-07-31 2020-10-08 日本電産株式会社 電源装置、駆動装置、制御方法、及びプログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63124771A (ja) * 1986-11-14 1988-05-28 Shikoku Electric Power Co Inc インバ−タ装置
JPH09172784A (ja) * 1995-12-19 1997-06-30 Sharp Corp 連系型インバータ装置
JPH1014252A (ja) * 1996-06-19 1998-01-16 Daikin Ind Ltd 電力変換装置
JPH10207559A (ja) * 1997-01-22 1998-08-07 Sharp Corp 連系形電力変換装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3742330A (en) * 1971-09-07 1973-06-26 Delta Electronic Control Corp Current mode d c to a c converters
JPS61214775A (ja) * 1985-03-19 1986-09-24 Mitsubishi Electric Corp インバ−タの異常検出回路
JP2918430B2 (ja) * 1993-04-02 1999-07-12 三菱電機株式会社 電力変換装置
JPH09107637A (ja) * 1995-10-09 1997-04-22 Hitachi Ltd 太陽光発電システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63124771A (ja) * 1986-11-14 1988-05-28 Shikoku Electric Power Co Inc インバ−タ装置
JPH09172784A (ja) * 1995-12-19 1997-06-30 Sharp Corp 連系型インバータ装置
JPH1014252A (ja) * 1996-06-19 1998-01-16 Daikin Ind Ltd 電力変換装置
JPH10207559A (ja) * 1997-01-22 1998-08-07 Sharp Corp 連系形電力変換装置

Also Published As

Publication number Publication date
EP1102380A1 (en) 2001-05-23
JP3478338B2 (ja) 2003-12-15
US6362985B1 (en) 2002-03-26
KR20010071977A (ko) 2001-07-31
KR100419303B1 (ko) 2004-02-21

Similar Documents

Publication Publication Date Title
JP6052554B2 (ja) 電気エネルギーをdc発電機から2本の電力線を有するacグリッドに供給する電力インバータ
US9948175B2 (en) Soft-start control system and method for an isolated DC-DC converter with secondary controller
US8837178B2 (en) Method and apparatus for single-path control and monitoring of an H-bridge
US20140265979A1 (en) System and method for fault protection of a motor
US5896280A (en) Frequency converter and improved UPS employing the same
CN108701556B (zh) 直流电压开关
CN208401757U (zh) 一种驱动电路
JP5328483B2 (ja) 非常用電源装置
JP3478338B2 (ja) 送電装置
JP2008017650A (ja) 電力変換装置
KR20190110704A (ko) 고압 인버터 초기충전 시스템 및 그 제어방법
JP2002315351A (ja) Acインバータ
JP2013165578A (ja) 自己消弧形半導体素子のゲート駆動回路及び電力変換装置
WO2014013574A1 (ja) 電力変換器
WO2010084588A1 (ja) 電源回路及びこの電源回路を備えたパワーアンプ、並びに放送設備
JP2000023370A (ja) 太陽光発電システム
JP2010016962A (ja) スイッチング電源装置
KR100549081B1 (ko) 모터전원공급장치
JP2005176460A (ja) 無停電電源装置
JP6301213B2 (ja) 送電装置
JPH09285122A (ja) Rccスイッチング方式電源回路
KR100281053B1 (ko) 인버터 보호장치가 포함된 모터구동회로
JP2004147441A (ja) 電力供給装置および電力供給方法
JPH10304661A (ja) スイッチング電源装置
JP2000125549A (ja) 補助電源なしでオンオフ制御を可能にするスイッチング電源装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 500391

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020017000809

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2000931588

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09744863

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2000931588

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017000809

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020017000809

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 2000931588

Country of ref document: EP