WO2000044841A1 - Surface-protective film - Google Patents

Surface-protective film Download PDF

Info

Publication number
WO2000044841A1
WO2000044841A1 PCT/JP2000/000406 JP0000406W WO0044841A1 WO 2000044841 A1 WO2000044841 A1 WO 2000044841A1 JP 0000406 W JP0000406 W JP 0000406W WO 0044841 A1 WO0044841 A1 WO 0044841A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
surface protective
protective film
polymer film
laminated
Prior art date
Application number
PCT/JP2000/000406
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Nagahama
Toshiyuki Ohya
Seiichiro Yokoyama
Naonobu Oda
Original Assignee
Toyo Boseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Boseki Kabushiki Kaisha filed Critical Toyo Boseki Kabushiki Kaisha
Priority to JP2000596089A priority Critical patent/JP3518677B2/en
Publication of WO2000044841A1 publication Critical patent/WO2000044841A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • G02B1/105
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings

Definitions

  • the present invention relates to a surface protection film suitable for use as a protection film / separator of a component of a liquid crystal display device such as a polarizing plate or a retardation plate, particularly a surface protection film such as a synthetic resin plate.
  • a liquid crystal display device is generally manufactured by laminating a polarizing plate, a liquid crystal cell, and a polarizing plate from the backlight side. Further, various compensating plates such as a phase difference plate are inserted depending on the display mode, the viewing angle, and the like.
  • a method of attaching a polarizing plate with an adhesive layer or a retardation plate with an adhesive layer to an object is usually adopted.
  • the above-mentioned polarizing plate has a configuration in which a polarizing film is sandwiched with triacetyl cellulose, and usually has an adhesive layer for bonding on one side thereof.
  • Triacetylcellulose of the polarizing plate is provided with surface protection films on both sides for the purpose of preventing scratch resistance and moisture resistance from being inferior, damage during handling and a process for manufacturing a liquid crystal display device, or adhesion of dust.
  • a surface protection film having a release layer laminated on the pressure-sensitive adhesive layer side of the deflection plate is used, and a surface protection film having an adhesive layer laminated on the surface of the deflection plate opposite to the pressure-sensitive adhesive layer side is used.
  • a retardation film or the like is used for the purpose of preventing various compensators such as a retardation film from being damaged or adhering dust during handling or during the manufacturing process of the liquid crystal display device.
  • An adhesive layer for bonding is provided on one side of each compensator.
  • a surface protection film is provided on the outermost layers on both sides. A surface protection film having a release layer laminated on the pressure-sensitive adhesive layer side of the deflection plate is used, and a surface protection film having a pressure-sensitive adhesive layer laminated on the side opposite to the pressure-sensitive adhesive layer side of the deflection plate is used.
  • a surface protection film is required. The film is peeled and used.
  • thermocompression bonding type such as a polyethylene film, a polyethylene-vinyl acetate copolymer film, or a pressure-sensitive adhesive such as a polyester film provided with a pressure-sensitive adhesive layer is used.
  • Type is used as the surface protective film on which the pressure-sensitive adhesive layer is formed.
  • Examples of the surface protective film on which the pressure-sensitive adhesive layer is formed which is used for the above-mentioned polarizing plate and the like, include, for example, JP-A-9-111208, JP-A-54-1333578 As proposed in the official gazettes, etc., a surface protection film in which an adhesive layer is formed on a specific polyethylene resin, a polyethylene comprising a specific low-density polyethylene and a high-density polyethylene, and an ethylene-unsaturated polyester copolymer There has been proposed a laminated film or the like obtained by coextruding an adhesive resin layer made of a united product.
  • JP-A-6-148431 JP-A-6-164030 and the like
  • an optically isotropic base such as polycarbonate and polyarylate
  • a surface protective film or the like in which an adhesive resin layer is provided on one side of a sheet and a metal oxide is provided on the other side has been proposed.
  • a film obtained by applying a release agent such as silicone to at least one surface of a biaxially stretched film such as polyester or polypropylene is used.
  • the manufactured liquid crystal display device is inspected in a timely manner in order to evaluate display capability, hue, contrast, and the like.
  • conventionally used surface protection films have anisotropy in their base material, which hinders inspections involving optical evaluation of components to which such surface protection films are attached. Therefore, the surface protection film is peeled off and removed before the inspection, and a new surface protection film is applied again after the inspection. The reason for reapplying with a new surface protection film is that even if the surface protection film can be reapplied, the reapplying will impair the beauty.
  • Such a non-oriented film has a great advantage that it does not need to be peeled off during inspection because it has optical isotropy.However, it is difficult to suppress the orientation by ordinary methods such as melt extrusion. Since it is necessary to use a manufacturing method such as the casting method, and the base film itself becomes expensive, it is hardly used for surface protection films that are ultimately peeled off.
  • the present invention is intended to solve the above-mentioned drawbacks, and an object of the present invention is to provide a low-cost surface protection film that does not require peeling of the surface protection film during inspection, has good inspection properties, and is low in cost. It is assumed that. Disclosure of the invention
  • the present invention has been made in view of the above situation, and a surface protective film that can solve the above problems is as follows.
  • the first invention of the present invention is a surface protection film in which an adhesive layer is laminated on one surface of a polymer film, wherein the maximum distortion of the main orientation axis of the polymer film is 10 degrees or less. Characteristic surface protection film.
  • a second invention is a surface protection film in which a release layer is laminated on one surface of a polymer film, wherein the maximum distortion of the main axis of orientation of the polymer film is 10 degrees or less. Film.
  • a third invention is the surface protective film according to the first or second invention, wherein the polymer film has a retardation value of 1 OOOnm or more.
  • a contrast film represented by the following general formula (I)
  • Y 1 is the amount of transmitted light when the optical axes of the two polarizers are parallel, and a polymer film is inserted between the two polarizers
  • Y 2 is the two polarizers
  • the figure shows the amount of transmitted light when the optical axis of the polarizer is in a perpendicular state and a polymer film is inserted between the two polarizers.
  • a fifth invention is the surface protective film according to the first or second invention, wherein the polymer film has a heat shrinkage at 120 ° C. of 4% or less.
  • a sixth invention is the surface protective film according to the first or second invention, wherein the polymer film has a haze of 10% or less.
  • a seventh invention is a surface protection film, wherein the polymer film according to any one of the first and second inventions is a polyester film.
  • An eighth invention is a surface protection film, characterized in that the polyester film according to the seventh invention is made of polyethylene terephthalate or polyester mainly composed of the same.
  • a ninth invention is a surface protective film, wherein the polyester film according to the seventh invention comprises polylactic acid as a main constituent.
  • a tenth invention is the surface protection film according to the first invention, wherein an antistatic layer is laminated on the surface of the surface protection film opposite to the pressure-sensitive adhesive layer.
  • An eleventh invention is the surface protection film according to the first invention, wherein an antistatic layer is laminated between the pressure-sensitive adhesive layer and the polymer film of the surface protection film.
  • the 12th invention is the surface protection film according to the 2nd invention, wherein an antistatic layer is formed on the surface of the surface protection film opposite to the release layer.
  • a thirteenth invention is the surface protection film according to the second invention, wherein an antistatic layer is formed between the release layer and the polymer film of the surface protection film.
  • the release layer according to the second invention is a silicone resin, A surface protection film characterized in that at least one kind of resin is a main component.
  • a fifteenth invention is a surface protective film, wherein the silicone resin according to the fifteenth invention is a thermosetting silicone resin or a radiation curing silicone resin.
  • a sixteenth invention is the surface protective film according to the first or second invention, wherein the polymer film is a uniaxially stretched polymer film.
  • the surface protective film in the present invention is a surface protective film in which a pressure-sensitive adhesive layer or a release layer is stacked on one surface of a polymer film, and the polymer film has a maximum distortion of a main axis of 10 degrees.
  • the following surface protection film is provided.
  • These surface protective films can be manufactured by the following method. However, it is not limited to this method.
  • the polymer film in the present invention is a film obtained by subjecting an organic polymer to melt extrusion or solution extrusion, stretching in the longitudinal or width direction, cooling, and heat setting as necessary.
  • examples include polyethylene, polypropylene, polyethylene terephthalate, polyethylene mono 2,6-naphtholate, polypropylene terephthalate, polylactic acid, polyglycolic acid, poly (2-oxybutyric acid), nylon 6, nylon 4, nylon 6,6.
  • Nylon 12 Polyimide, Polyamide imide, Polyethersulfone, Polysulfone, Polyetheretherketone, Polycarbonate, Polyarylate, Polyacryl, Cellulose Probionate, Polyvinylchloride, Polyvinylidene chloride, Polyvinyl alcohol , Pollier (1) Terimide, polyphenylene sulfide, polyphenylene oxide, polystyrene, syndiotactic polystyrene, norpoleneene-based polymer, and the like. In addition, these organic polymers may be copolymerized with a small amount of another organic polymer or blended.
  • aromatic polyester films such as polyethylene terephthalate, polyethylene 1,2-naphtholate and polypropylene terephthalate, and aliphatic polyesters such as polylactic acid are preferably used.
  • polyethylene terephthalate is particularly low in impurities and has high transparency. It is most suitable for its overall performance including mechanical properties, surface smoothness, solvent resistance, scratch resistance, moisture impermeability, and cost.
  • the surface protective film of the present invention has been tested for optical evaluation of components such as a polarizing plate and a retardation plate of a liquid crystal display device such as display capability, hue, contrast, and optical defects, and is incorporated into the liquid crystal display device. At the time of removal. That is, it becomes unnecessary after the inspection is completed.
  • the main repeating unit which is biodegradable in the natural world, has a small amount of heat during combustion, does not damage the incinerator, has a low environmental load, and is excellent in transparency and mechanical strength, has the following general formula:
  • An aliphatic polyester film comprising a unit represented by 0—CHR—CO— (R is H or an alkyl group having 1 to 3 carbon atoms) is also suitable as the base film of the surface protective film of the present invention.
  • the aliphatic polyester having a repeating unit include polylactic acid, polyglycolic acid, and poly (2-oxybutyric acid). One or more of these are selected and used. When two or more kinds are used, a mixture or a copolymer may be used.
  • optical isomers such as L-integral, DL-integral and D-isomer, but any of these may be used, or two or more isomers may be mixed. It may be something.
  • the aliphatic polyester can be produced by a known method such as ring-opening polymerization using the corresponding dehydrated cyclic ester compound of monooxyacid. Among these aliphatic polyesters, polylactic acid is most preferred.
  • the polymer film can be obtained by forming a film by an ordinary method. Among them, a homopolymer or copolymer melt or solution is formed into a film by extrusion, calendaring, casting, or the like, and then vertically or horizontally by a roll method, tenter method, or tubular method. A method of uniaxially stretching in the direction is preferable. However, as long as the range of the film characteristics described in the present invention is satisfied, biaxial stretching may be performed.
  • the maximum distortion of the main axis of orientation of the polymer film is a numerical value of a phenomenon in which the direction of the main axis of orientation is bent in the film width direction due to heat shrinkage.
  • a phenomenon occurs in which the phase of light shifts due to a birefringence effect and light leaks to the analyzer side.
  • the maximum distortion of the main orientation axis of the polymer film needs to be 10 degrees or less. It is preferably at most 8 degrees, particularly preferably at most 5 degrees. If the maximum distortion of the main alignment axis is more than 10 degrees, the contrast of the specimen decreases during the test, which is not preferable.
  • the retardation value of the polymer film is preferably at least 1000 nm, particularly preferably at least 500 nm. If the retardation value is 100 nm or more, there is no problem in inspection. If the thickness is 500 nm or more, the interval between interference fringes is sufficiently widened in the visible light region, and thus it is more preferably optically isotropic.
  • the thickness of the polymer film is not particularly limited, it is appropriate to set the thickness to 300 ⁇ m or less in consideration of use and workability. If the thickness exceeds 300 m, the advantage of a thin polymer film is lost. Further, the polymer film may be not only a single layer but also a multilayer.
  • the biaxial refractive index anisotropy ( ⁇ ⁇ ⁇ ⁇ ).
  • a tensile film in which uniaxial stretching is reinforced is preferred.
  • the stretching tension in one axis direction is The biaxial refractive index anisotropy ( ⁇ ) can be increased by increasing the draw ratio or lowering the draw temperature so as to increase the draw ratio.
  • the polymer film serving as the base material of the surface protective film of the present invention preferably has a minimum value of 70 or more of its contrast (C) represented by the following general formula (I), more preferably Is 110 or more, particularly preferably 150 or more.
  • C its contrast
  • Is 110 or more particularly preferably 150 or more.
  • Polymer films with a minimum contrast value of less than 70 tend to be difficult to detect foreign substances in the specimen and confirm the display ability during the test. In practice, the minimum value of contrast should be 50 or more.
  • Y 1 is the amount of transmitted light when the optical axes of the two polarizers are parallel, and a polymer film is inserted between the two polarizers
  • Y 2 is the two polarizers
  • the figure shows the amount of transmitted light when the optical axis of the polarizer is in a perpendicular state and a polymer film is inserted between the two polarizers.
  • the minimum value of the contrast is measured by the following method. First, if the film is in the form of a roll, cut out a rectangle of 500 mm in the longitudinal direction and full width in the width direction. Then, as shown in FIG. 8, a square of 100 mm square in the width direction (tenter direction) including the same edge is cut out at three or more places including two vertexes of the rectangle and the center thereof.
  • 21 is the longitudinal direction
  • 22 is the width direction
  • 23 is the edge
  • 24 is the vertex
  • 25 is the center of the vertex.
  • the optical axes of the two polarizers in parallel state is placed in advance either to the polarizer support Npuruhoruda one you exactly parallel to the polarization direction and the bottom of the 1 0 0 mm square film sample 2
  • the amount of light transmitted through the two polarizers and the film sample is measured.
  • the amount of transmitted light when the optical axes of the two polarizers are set to be orthogonal is measured, and the contrast of each film sample is calculated according to the above formula (I).
  • the lowest value of the contrast for each film sample obtained in this way is defined as the “lowest value of contrast” here.
  • the film is stretched 90 degrees in the longitudinal direction before the heat-setting treatment after the transverse stretching. Relaxation of 1 to 10% at ⁇ 200 ° C , A method of heat setting at 140 to 250 ° C., a method of relaxing at 1 to 10% in the width direction after the heat setting, and the like.
  • the heat shrinkage at 120 ° C. of the polymer film of the present invention is preferably 4% or less. Particularly preferably, it is 1% or less. If the heat shrinkage at 120 ° C. is more than 4%, it is not preferable because flatness is disturbed when passing through a process involving heating such as formation of an adhesive layer or a release layer.
  • the haze of the polymer film is preferably 10% or less. It is more preferably at most 5%, particularly preferably at most 1%. If the haze is more than 10%, the light is scattered when the light passes through the polymer film, and the contrast is unfavorably reduced.
  • the method for producing a polymer film in the present invention is not particularly limited, but it is necessary to appropriately adjust the method according to the characteristics of the polymer used.
  • a polyethylene terephthalate film a polyethylene terephthalate film is melted, and a non-oriented polyethylene terephthalate film extruded into a sheet is stretched laterally with a tenter at a temperature equal to or higher than the glass transition temperature.
  • a method of performing a heat setting treatment is preferably from 80 to 130 ° C, particularly preferably from 90 to 120 ° C.
  • the stretching ratio is preferably 2.5 to 6.0 times, particularly preferably 3.0 to 5.5 times.
  • the stretching ratio is low, the haze becomes high, and the transparency of the film becomes poor.
  • the stretching tension is also small, so that the biaxial refractive index anisotropy ( ⁇ ⁇ ⁇ ⁇ ) is small. As a result, the retardation value becomes small, which is not preferable.
  • the relaxation treatment of the film in the longitudinal direction before the heat setting treatment after the transverse stretching is effective in reducing the decrease in the maximum distortion of the main orientation axis ⁇ contrast.
  • the temperature at the time of the relaxation treatment in the longitudinal direction is 90 to 20 (preferably in the range of TC, particularly preferably in the range of 120 to 180 ° C.
  • the amount of relaxation varies depending on the transverse stretching conditions. It is preferable to set the relaxation amount and the relaxation temperature so that the heat shrinkage at 4 ° C. becomes 4%.
  • the heat-setting temperature is preferably in the range of 130 to 250 ° C, particularly preferably in the range of 180 to 245 ° C.
  • the heat setting process is first performed at a fixed length.
  • the polymer film of the present invention can be surface-treated by a known method. For example, in the case of a film that has been subjected to corona discharge treatment (in air, nitrogen, carbon dioxide gas, etc.) or easy adhesion treatment, the adhesiveness to the coating layer, water resistance, chemical resistance, etc. are improved, so that preferable.
  • Various known methods can be used for the easy-adhesion treatment, and those obtained by applying various well-known easy-adhesives to the film after the film production process or after uniaxial or biaxial stretching are preferably used.
  • the polymer film of the present invention can contain a known additive as needed, in order to impart various functions, as long as the effects of the present invention are not impaired.
  • a known additive for example, inorganic and / or heat-resistant organic particles, lubricants, antiblocking agents, electrostatic adhesion promoters, heat stabilizers, antioxidants, antistatic agents, light resistance agents, impact resistance improvers, etc. You may. However, since transparency is required for optical applications, it is preferable to minimize the content of the above additives in the film.
  • a layer having an adhesive property to an optical member for example, a heat-sensitive adhesive resin layer such as a polyester-based, a polyolefin-based, or a polyamide-based, an acrylic-based, a polyester-based, a urethane-based, or a polyether-based resin.
  • Hardening agents to resins having functional groups such as pressure-sensitive adhesive resin layers such as rubber-based and rubber-based resins, saturated polyester resins, polyurethane-based resins, polybutadiene polyols, polyolefin polyols, and functional group-containing acrylyl copolymers.
  • a plasticizer for example, 20% by weight or more
  • a plasticizer for example, 20% by weight or more
  • a plasticizer for example, 20% by weight or more
  • a saturated polyester resin film for example, 20% by weight or more
  • a film obtained by forming an ethylene-based resin, an ethylene-vinyl acetate copolymer, an ethylene-acrylic acid copolymer, an ethylene-acrylic acid ester copolymer, and other ethylene-based copolymers are formed. And the like. If rework is required, select an adhesive resin that has peelability. If permanent adhesion is required, select a resin that can provide strong adhesive or adhesive strength. The thickness of the adhesive resin layer is often set to about l to 50 // m.
  • the release layer includes a layer having a release property from the optical member, for example, a silicone resin, a fluororesin, or the like.
  • silicone resin those generally known as release agents can be used, and are selected from known ones described in “Silicone Material Handbook” (edited by Toray Dow Corning, Ltd., 1989.3). Can be used with Generally, a thermosetting or ionizing radiation curing type is used. As the thermosetting type, for example, a condensation reaction type and an addition reaction type can be used, and as the ionizing radiation curing type, any reaction type such as an ultraviolet ray or electron beam curing type can be used.
  • condensation reaction type silicone resin for example, a polydimethylsiloxane having a terminal OH group and a polydimethylsiloxane having a terminal H group (hydrogensilane) are used with an organic tin catalyst (for example, an organic tin acylate catalyst). And a condensation reaction to form a three-dimensional crosslinked structure.
  • an organic tin catalyst for example, an organic tin acylate catalyst
  • addition reaction type silicone resin examples include those which form a three-dimensional crosslinked structure by reacting a polydimethylsiloxane having a vinyl group introduced into a terminal with a hydrogen silane using a platinum catalyst.
  • UV-curable silicone resins are, for example, those that utilize the same radical reaction as ordinary silicone rubber crosslinking, those that introduce an acryl group and are photocured, and those that decompose onium salts with ultraviolet light.
  • a strong acid to generate a strong acid thereby cleaving the epoxy ring to crosslink, and a crosslink by addition reaction of thiol to vinyl siloxane.
  • Electron beams have higher energy than ultraviolet light, and radical crosslinking reaction occurs without using an initiator as in the case of ultraviolet curing.
  • the above-mentioned curable silicone resin preferably has a degree of polymerization of about 500 to 200,000, and particularly about 100,000 to 100,000. Specific examples thereof include Shin-Etsu Chemical Co., Ltd. KS-7 18,-7 7 4,-7 7 5,-7 7 8,-7 7 H, 1 8 3 0,- 835, 1 837, 1 838, 1 839, 1 841, 1 843, 1 847, 1 847 H, X-62-2418, 1 2422, 1 2125, -2492. -249 4, 1 5048,-470, 1 2366, 1 630, X-92-140, 1 12
  • the silicone resin described in JP-A-52-40918 can also be used. Further, one of these curable silicone resins may be used alone, or two or more thereof may be used in combination.
  • a known release resin can be used as the fluororesin.
  • a fluorine resin include a polymer (including an oligomer) composed of a fluorine-containing vinyl polymerizable monomer or a copolymer thereof, or a fluorine-containing vinyl polymerizable monomer and a fluorine atom.
  • Copolymers with at least one kind of vinyl polymerizable monomer containing no substituted alkyl group or functional group, or a mixture thereof and having 5 to 80 mol% of fluorine atoms Can be
  • polymer comprising the fluorine-containing vinyl polymerizable monomer examples include poly [2- (perfluorononenyloxy) ethyl methacrylate] and poly [2- (per Fluorononenyloxy) Ethyl atalylate], Poly [2- (Perfluorononenyloxybenzoyloxy) ethyl methacrylate], Poly [2— (Perfluorononenyloxy) [Xybenzoyloxy) ethyl acrylate], poly [2,2,2-trifluoroethyl methacrylate], poly [2,2,2-trifluoroethyl acrylate], poly [2,2,3 3, 3?
  • Ntafluo Methyl propyl methacrylate Poly [2.2,3,3.3-Pentafluoro mouth propyl acrylate], Poly [1-methyl-2,2,3,3,4,4-hexafluorobutyl methacrylate], Poly [1-Methyl-2,2,3,3,4,4-—Hexafluorobutyl acrylate], Poly [Perfluo-butyl methacrylate], Poly [Perfluoro-mouth butyl acrylate] ], Poly [perfluorohexyl vinyl ether], poly [ ⁇ , ⁇ ,) 3-trifluorostyrene], polyvinylidene fluoride, polyhexafluoropropylene, polytetrafluoroethylene, etc. Can be
  • Examples of the vinyl polymerizable monomer which is copolymerizable with the above-mentioned fluorine-containing vinyl polymerizable monomer and does not contain an alkyl group substituted with a fluorine atom, a functional group, and the like include a hydrocarbon-based vinyl polymerizable monomer, Examples of the compound include a hydrocarbon-based non-conjugated divinyl polymerizable monomer and a functional group-containing vinyl polymerizable monomer. Examples of the hydrocarbon-based vinyl polymerizable monomer include methyl acrylate and propyl acrylate.
  • hydrocarbon-based non-conjugated divinyl polymerizable monomers such as 2-chloro-1,3-butadiene, 2,3-dichloro-1,3-butadiene and isoprene include, for example, ethylene glycol diatalylate, ethylene glycol Jim crete, propylene glycol Diol diacrylate, propylene glycol dimeth
  • N-butoxymethyl acrylamide diacetone acrylamide, methylol diacetone acrylamide, 2-hydroxyshethyl acrylate, 2-hydroxyshethyl methacrylate, hydroxypropyl acrylate, 3 —Chloro-2-hydroxypropyl methacrylate and the like, and are selected from these, but are not particularly limited.
  • the thickness of the release layer in the present invention is not particularly limited, but is preferably in the range of 0.05 to 5 ⁇ m. If the thickness of the coating film is thinner than this range, the release performance is reduced, and satisfactory performance cannot be obtained. Conversely, if the thickness of the coating film exceeds this range, curing takes a long time, which is not preferable in terms of production.
  • the release layer may contain known additives within a range that does not impair the object of the present invention, such as an antifoaming agent, a coating improver, a thickener, an antistatic agent, an antioxidant, an ultraviolet absorber, and a curing agent. , A dye or the like.
  • the method for forming the pressure-sensitive adhesive layer or the release layer of the present invention on the surface of the polymer film as the base film is not particularly limited, but a coating method is preferably used.
  • coating methods include air-coating, knife coating, rod coating, forward rotation roll coating, reverse roll coating, gravure coating, kiss coating, bead coating, and slit orifice coating. And the cast coat method.
  • Drying and / or curing (thermal curing, ionizing radiation curing, etc.) of the coating film of the pressure-sensitive adhesive layer or the release layer can be performed individually or simultaneously. If they are performed simultaneously, it is preferable to perform them at a temperature of 80 ° C. or higher.
  • the drying and curing conditions are preferably at 80 ° C. or more and 10 seconds or more. If the drying temperature is less than 80 ° C or the curing time is less than 10 seconds, the curing of the coating film is incomplete and the coating film tends to fall off, which is not preferable.
  • the surface protective film of the present invention is preferably provided with an antistatic layer for the purpose of suppressing generation of static electricity.
  • an antistatic resin composition for the antistatic layer, apply an antistatic resin composition. 406.
  • the antistatic resin composition needs to contain an antistatic agent, and the surface specific resistance of the antistatic layer is preferably set to 1 ⁇ 1 1 ⁇ or less. Further, it is preferable to select an antistatic agent so that the surface specific resistance value shows the surface specific resistance value not only on the coated surface but also on the opposite surface where the coating is not performed.
  • quaternary ammonium salts pyridinium salts, various cationic antistatic agents having a cationic group such as a primary to tertiary amino group, sulfonate groups, sulfate bases, phosphate bases, phosphonate bases
  • Various surface activities such as anionic antistatic agents having anionic groups such as amino acids, amphoteric antistatic agents such as amino acids and amino sulfates, and nonionic antistatic agents such as amino alcohols, glycerin and polyethylene glycol.
  • Formulation type antistatic agent furthermore, a high molecular weight antistatic agent having a high molecular weight of the above antistatic agent, and the like.They also have a tertiary amino group to a quaternary ammonium group, Monomers and oligomers polymerizable by ionizing radiation, for example, ⁇ , ⁇ -dialkylaminoalkyl (meth) acrylate monomers, Polymerizable antistatic agents such as quaternary compounds can also be used.
  • a binder is used to improve the strength of the coating of the antistatic layer, adhesion to the base film, water resistance, solvent resistance, blocking property, etc.
  • thermoplastic resin such as thermoplastic polyester resin, acrylic resin, polyvinyl resin, etc. and / or polymer compound such as thermosetting resin such as thermosetting acrylic resin, urethane resin, melamine resin, epoxy resin, etc. Is preferred.
  • a methylolated or alkylolated melamine-based, urea-based, glyoxal-based, acrylamide-based compound, an epoxy compound, and a polyisocyanate as a cross-linking agent.
  • the surface specific resistance of the antistatic layer can be arbitrarily set according to the purpose of use. For example, when ordinary dust does not adhere, it is about 1 X 1 ⁇ 1].
  • the method for forming the antistatic layer on the surface of the substrate film is not particularly limited, but a coating method is preferably used.
  • a coating method there are an advector coat method, a knife coat method, a rod coat method, a forward rotation roll coat method, a roll coat method, a gravure coat method, a kiss coat method, a bead coat method, T / JP00 / 00406 Slit orifice coat method, cast coat method and the like.
  • the drying temperature of the antistatic layer may be in the range of 60 to 150 ° C, preferably in the range of 80 to 130 ° C. If the drying temperature is lower than 60 ° C., the curing time is prolonged, and the productivity is undesirably reduced.
  • the antistatic layer is provided on the surface of the polymer film, but the pressure-sensitive adhesive and the release layer can be provided on the surface of the polymer film opposite to the surface on which the antistatic layer is formed, even if provided on the antistatic layer. Is also good.
  • the film shape is on a roll, cut out the entire width in the length direction of 1000 mm and the width direction.For a sheet-like sample, draw the rectangle with the largest area inscribed in the sample shape, and share two sides with the vertex of the rectangle 10 Omm A square is cut out from four vertices.
  • the major axis of orientation was determined by microwave, and when the molecular orientation angle of the first measured point was 0 degree, the maximum value was determined from the one with the largest difference in the orientation angle of the other three points, and the maximum value was defined as the maximum distortion of the major axis of orientation. .
  • a molecular orientation meter MOA-2001A manufactured by Kanzaki Paper Co., Ltd. was used.
  • the biaxial refractive index anisotropy ( ⁇ ) was determined by the following method. Using two polarizing plates, the orientation axis direction of the film was determined, and a 4 cm x 2 cm rectangle was cut out so that the orientation axis was almost perpendicular to obtain a measurement sample.
  • the biaxial refractive index of the sample which is almost perpendicular, is determined by an Abbe refractometer (ATAGO 4T manufactured by Atago Co., Ltd.), and the absolute value of the biaxial refractive index difference is determined by the refractive index anisotropy ( ⁇ ).
  • the thickness d (nm) of the film was measured using an electric micrometer (Miritron 1245D manufactured by Fine Lieuf), and the unit was converted to nm.
  • the film shape is on a roll, cut out the entire width in the length direction of 1000 mm and the width direction.For a sheet-like sample, draw the rectangle with the largest area inscribed in the sample shape, and share two sides with the vertex of the rectangle Cut a 10 Omm square from four vertices.
  • Example 1 A 10 Omm square film is placed between two polarizing plates arranged in the perpendicular direction, a fluorescent lamp is used as the light source from the bottom of the two polarizing plates, and the sample is inserted visually from the opposite direction. The change in the amount of transmitted light in each case was observed.
  • Example 1 A 10 Omm square film is placed between two polarizing plates arranged in the perpendicular direction, a fluorescent lamp is used as the light source from the bottom of the two polarizing plates, and the sample is inserted visually from the opposite direction. The change in the amount of transmitted light in each case was observed.
  • Polyethylene terephthalate was melt extruded through a film forming die onto a water-cooled rotating quenching drum to produce an unstretched film.
  • This unstretched film was stretched 3.7 times in the width direction at 90 ° C, and then annealed at 120 ° C for 10 seconds. After leaving the tenter, both ends of the film were trimmed at a position of 2 Omm from the end, and a portion having a small heat shrinkage was cut off. Subsequently, the film was heated to 100 ° C by a ceramic roll, and a 3% relaxation treatment was performed in the vertical direction while heating using four infrared heaters with a surface temperature of 700 ° C.
  • the maximum distortion of the orientation main axis is 5 degrees
  • the minimum value of the contrast is 94
  • the heat shrinkage at 120 ° C is 0.7%
  • the haze is 0.1%
  • the total light transmittance is 90%
  • the retardation value is 5100 nm.
  • a surface protection film was obtained in the same manner as in Example 1, except that only the thickness of the uniaxially stretched polyethylene terephthalate film was changed from 46 to 110 m.
  • the maximum distortion of the main orientation axis is 7 degrees
  • the minimum value of the contrast is 60
  • the heat shrinkage at 120 ° C is 1.0%
  • the haze is 0%. 1%
  • the total light transmittance was 90%
  • the retardation value was 1100 nm.
  • Example 3 In the same manner as in Example 1, a surface protection film having a pressure-sensitive adhesive layer laminated on one side was obtained. When the contrast of the surface protective film was evaluated, a slight difference in contrast was observed, but the film was practically usable.
  • Example 3 When the contrast of the surface protective film was evaluated, a slight difference in contrast was observed, but the film was practically usable.
  • Example 1 Example 1 was repeated except that polyethylene 1,2,6-naphthalate was used instead of polyethylene terephthalate as the polymer for the polymer film. 0 6
  • the maximum principal axis distortion is 6 degrees
  • the minimum contrast is 71
  • the heat shrinkage at 120 ° C is 0.9%
  • the haze is 0.1. %
  • the total light transmittance was 89%
  • the retardation value was 5200 nm.
  • Example 4 In the same manner as in Example 1, a surface protection film having a pressure-sensitive adhesive layer laminated on one side was obtained. When the contrast of this surface protective film was evaluated, the difference in contrast was small and good as in Example 1.
  • Example 4
  • Poly-L-lactic acid having a weight-average molecular weight of 200,000 was melt-extruded through a film forming die onto a water-cooled rotary quenching drum to produce an unstretched film.
  • the unstretched film was stretched 4 times in the width direction at 100 ° C, and then annealed at 120 ° C for 10 seconds. After exiting the tenter, both ends of the film were trimmed at 2 Omm from the ends, and sites with small heat shrinkage were cut off. Subsequently, the film was heated to 100 ° C by a ceramic roll, and further subjected to a 3% relaxation treatment in the longitudinal direction while heating using four infrared heaters having a surface temperature of 700 ° C.
  • the film was subjected to a 2% relaxation treatment while heating the film to 135 ° C with a ceramic aperture. Thereafter, both ends of the film were gripped with clips, heat-set at 155 ° C, and 3% relaxed in the width direction at 135 ° C. Thus, a uniaxially stretched poly-L-lactic acid film having a thickness of 46 was obtained.
  • Example 5 In the obtained uniaxially stretched poly-L-lactic acid film, the maximum distortion of the main orientation axis is 6 degrees, the minimum value of contrast is 78, the heat shrinkage at 120 ° C is 0.7%, the haze is 0.2%, The total light transmittance was 90% and the retardation value was 5000 nm.
  • a surface protection film having a pressure-sensitive adhesive layer laminated on one side was obtained. When the contrast of this surface protective film was evaluated, the difference in contrast was small and good as in Example 1.
  • Example 5 Example 5
  • Example 2 In the same manner as in Example 1, a uniaxially stretched polyethylene terephthalate film having a thickness of 46 m was obtained. On the obtained uniaxially stretched polyethylene terephthalate film, an ultraviolet-curable antistatic resin composition (manufactured by Dainichi Seika Kogyo Co., Ltd .: EXG 40-13 S-1) with a solid thickness of 5 m It applied so that it might become. The coating layer was irradiated with ultraviolet light to cure the coating layer, thereby laminating an antistatic layer on the film.
  • an ultraviolet-curable antistatic resin composition manufactured by Dainichi Seika Kogyo Co., Ltd .: EXG 40-13 S-1
  • the coating layer was irradiated with ultraviolet light to cure the coating layer, thereby laminating an antistatic layer on the film.
  • a pressure-sensitive adhesive layer was laminated on the surface of the uniaxially stretched polyethylene terephthalate film on which the antistatic layer was not laminated in the same manner as in Example 1, and a surface on which a pressure-sensitive adhesive layer was laminated on one surface and an antistatic layer was laminated on the other surface.
  • a protective film was obtained.
  • Polyethylene terephthalate was melt-extruded through a film forming die onto a water-cooled rotary quenching drum to produce an unstretched film.
  • This unstretched film was stretched 4.0 times at 90 ° C. in the width direction. Further, the film was heat-set in the width direction at 220 ° C., and then relatated at 200 ° C. by 4% to obtain a uniaxially stretched polyethylene terephthalate film having a thickness of 46 m.
  • the maximum distortion of the main orientation axis is 12 degrees
  • the minimum value of contrast is 22
  • the heat shrinkage at 120 ° C is 0.7%
  • the haze is 0.1%.
  • the total light transmittance was 90%
  • the retardation value was 5100 nm.
  • a surface protection film having an adhesive layer laminated on one surface was obtained in the same manner as in Example 1 except that this uniaxially stretched polyethylene terephthalate film was used. When the contrast of this surface protective film was evaluated, the difference in contrast was large, which was not preferable.
  • Comparative Example 2 Polyethylene terephthalate was melt-extruded through a film forming die onto a water-cooled rotary quenching drum to produce an unstretched film. The unstretched film was stretched 3.8 times in the width direction at 90 ° C. to obtain a uniaxially stretched polyethylene terephthalate film having a thickness of 20 ⁇ m.
  • the maximum distortion of the main orientation axis is 12 degrees
  • the minimum value of contrast is 20
  • the heat shrinkage at 120 ° C is 0.6%
  • the haze is 0.1%
  • the light transmittance was 90% and the retardation value was 800 nm.
  • Example 6 The procedure was performed in the same manner as in Example 1 except that this uniaxially stretched polyethylene terephthalate film was used, to obtain a surface protective film having an adhesive layer laminated on one side. When the contrast of this surface protection film was evaluated, light interference was observed, which was not preferable.
  • Example 6 The procedure was performed in the same manner as in Example 1 except that this uniaxially stretched polyethylene terephthalate film was used, to obtain a surface protective film having an adhesive layer laminated on one side. When the contrast of this surface protection film was evaluated, light interference was observed, which was not preferable.
  • Polyethylene terephthalate was melt-extruded through a film forming die onto a water-cooled rotary quenching drum to produce an unstretched film.
  • This unstretched film was stretched 3.2 times at 90 ° C in the width direction, and then annealed at 80 ° C for 10 seconds.
  • After leaving the tenter preheat the film using a ⁇ 5 ° C roll, and then install three infrared heaters with a diameter of 10 mm and a surface temperature of 700 ° C at a distance of 20 mm from the film. It was heated and stretched 3.0 times in the machine direction. After that, both ends of the film were trimmed, and portions where the heat shrinkage differs by more than 20% from the center of the film were cut off.
  • the film was heated to 100 ° C by a ceramic roll, and further subjected to a 7% relaxation treatment in the vertical direction while heating using four infrared heaters having a surface temperature of 700 ° C.
  • a 2% relaxation treatment was performed while heating the film between the ceramic rolls to 160 ° C by hot air.
  • both ends of the film are held with clips, subjected to a heat treatment at 235 ° C, reluctant such further cooled from 200 ° C to 120 e C, was 3% relaxation treatment in the transverse direction.
  • a biaxially stretched polyethylene terephthalate film having a thickness of 46 m was obtained.
  • a slight change in the amount of transmitted light was observed when the sample was inserted and when the sample was not inserted, but the sample was practically usable.
  • a uniaxially stretched polyethylene terephthalate film having a thickness of 46 m was obtained in the same manner as in Example 1 except that the heat setting temperature was changed from 235 ° C to 220 ° C.
  • the maximum distortion of the main orientation axis is 4 degrees
  • the minimum value of the contrast is 153
  • the heat shrinkage at 120 ° C is 0.8%
  • the haze is 0.1%
  • the total light transmission was 90% and the retardation value was 5100 nm.
  • Polyethylene terephthalate was melt-extruded through a film forming die onto a water-cooled rotary quenching drum to produce an unstretched film.
  • the unstretched film was stretched 4.0 times at 90 ° C in the width direction. Further, the film was heat-set in the width direction at 180 ° C, and subsequently subjected to a 4% relaxation treatment at 170 ° C to obtain a uniaxially stretched polyethylene terephthalate film having a thickness of 46.
  • Example 9 In the obtained uniaxially stretched polyethylene terephthalate film, the maximum distortion of the orientation main axis was 5 degrees, the minimum value of contrast was 94, the heat shrinkage at 12 CTC was 1.0%, the haze was 0.1%, and the total The light transmittance was 90% and the retardation value was 5100 nm. Further, in the same manner as in Example 1, a surface protective film having an adhesive layer laminated on one side was obtained. The testability of the polarizing plate using this surface protective film was good. Example 9
  • Example 10 In Example 1, except that the film thickness was changed from 46 ⁇ m to 110 1m and the heat setting temperature was changed from 235 ° C to 220 ° C, the thickness was 110 ⁇ m Of a uniaxially stretched polyethylene terephthalate film was obtained.
  • the maximum strain of the main axis of orientation of the obtained axially stretched polyethylene terephthalate film was 4 degrees, the minimum value of the contrast was 145, the heat shrinkage at 120 ° C was 1.0%, the haze was 0.2%, The total light transmittance was 90% and the retardation value was 11000 nm.
  • a surface protective film having a pressure-sensitive adhesive layer laminated on one surface was obtained in the same manner as in Example 1. The testability of the polarizing plate using this surface protective film was good.
  • Example 10 Example 10
  • Example 2 In the same manner as in Example 1, except that polyethylene 1,2-naphthalate was used instead of polyethylene terephthalate and the heat setting temperature was changed from 235 ° C to 220 ° C, 46 uniaxially stretched polyethylene terephthalate films were obtained.
  • the obtained uniaxially stretched polyethylene terephthalate film has a maximum orientation principal axis of 4 degrees, a minimum contrast of 160, a heat shrinkage of 0.9% at 120 ° C, a haze of 0.1%, and all rays.
  • the transmittance was 89% and the retardation value was 5200 nm.
  • Example 1 a surface protective film having an adhesive layer laminated on one side was obtained. The testability of the polarizing plate using this surface protective film was good.
  • a quaternary ammonium salt type cationic polymer compound manufactured by Nitto Boseki Co., Ltd .: PAS 10L
  • SUMI MALM—40W manufactured by Sumitomo Chemical Co., Ltd.
  • Paint 6 Epoxy-modified silicone (Shin-Etsu Chemical
  • the solution was applied at a coating amount of Ag Zm 2 (coating amount base), heated and dried at 120 ° C. for 1 minute, and cured to form an antistatic layer.
  • an adhesive layer was laminated on the surface of the uniaxially stretched polyethylene terephthalate film on which the antistatic layer was not laminated in the same manner as in Example 1, an adhesive layer was laminated on one surface, and an antistatic layer was laminated on the other surface. A surface protection film was obtained.
  • Example 11 a pressure-sensitive adhesive layer was laminated on the surface of the uniaxially stretched polyethylene terephthalate film on which the antistatic layer was laminated in the same manner as in Example 1, and the antistatic layer and the adhesive were laminated on one surface in this order. A protective film was obtained.
  • Example 7 an addition reaction type silicone resin (manufactured by Shin-Etsu Chemical Co., Ltd .; 3-7778, solid content: 30% dissolved in toluene) was used as a release agent instead of the ethylene vinyl acetate acetate-based adhesive-containing coating solution. 100 parts by weight) and 1 part by weight of a platinum catalyst (manufactured by Shin-Etsu Chemical Co., Ltd .; PL-50T) are dissolved in toluene, and a 3% by weight total toluene solid solution (solvent) is dissolved. 6 g / m 2 (coating liquid base) using a coating liquid for mold layer), heat-dry at 120 ° C for 1 minute, and carry out addition polymerization reaction. To produce a surface protective film. The testability of the polarizing plate using this surface protective film was good. 0/00406 Example 14
  • a protective film was obtained. The testability of the polarizing plate using this surface protective film was good. The surface protective film did not generate static electricity when peeled off, and had good adhesion with little dust.
  • Example 16 The same procedure as in Example 12 was carried out except that a UV-curable silicone resin (X-62-5048, manufactured by Shin-Etsu Chemical Co., Ltd.) was used instead of the addition-reaction silicone resin as the release agent. A surface protective film having a release layer laminated thereon was obtained. The testability of the polarizing plate using this surface protection film was good.
  • a UV-curable silicone resin X-62-5048, manufactured by Shin-Etsu Chemical Co., Ltd.
  • Example 13 instead of a coating solution containing an addition-reaction-type silicone resin as a release agent, a fluorine-based solvent (FC-77 “Fluorinert” manufactured by 3M) was used as a diluting solvent, which was used as a fluorine-containing resin.
  • FC-77 Fluorinert
  • a fluoroacrylic resin manufactured by Neos Corp .: RBX-725NF “Frerelease”
  • a fluorine-based oil manufactured by DuPont; 157FS-M "Crytotus
  • a coating solution having a concentration of 3.0% by weight was applied to a solid thickness of 0.4 m and dried by heating at 120 ° C for 1 minute to obtain a surface protective film having a release layer laminated on one side. .
  • the testability of the polarizing plate using this surface protective film was good.
  • Example 11 A main component of the addition-reaction-type silicone resin similar to that of Example 13 was formed on the surface of the -axis-stretched polyethylene terephthalate obtained by laminating the antistatic layer obtained in 1 where the antistatic layer was not laminated. A release layer as a component was laminated, and a surface protective film was obtained in which an antistatic layer was laminated on one side and a release layer was laminated on the other side. The testability of the polarizing plate using this surface protective film was good. In addition, the surface protective film did not generate static electricity when it was peeled off, and was good with little adhesion of dust. « ⁇ ⁇
  • Example 17 a release layer mainly composed of an addition reaction type silicone resin similar to that of Example 13 was laminated on the surface of the uniaxially stretched polyethylene terephthalate on which the antistatic layer was laminated, and charged on one side. A surface protection film laminated in the order of the prevention layer and the release layer was obtained. The testability of the polarizing plate using this surface protective film was good. The surface protective film did not generate static electricity when peeled off, and had good adhesion with little dust. Comparative Example 3
  • Polyethylene terephthalate was melt-extruded through a film forming die onto a water-cooled rotary quenching drum to produce an unstretched film.
  • This unstretched film was stretched 4.0 times at 90 ° C. in the width direction. Further, the film was thermally fixed in the width direction at 255 ° C., and subsequently subjected to a 4% relaxation treatment at 200 ° C. to obtain a uniaxially stretched polyethylene terephthalate film having a thickness of 46 ⁇ m.
  • a surface protection film having a pressure-sensitive adhesive layer laminated on one side was obtained in the same manner as in Example 1 except that the obtained uniaxially stretched polyethylene terephthalate film was used.
  • Polyethylene terephthalate was melt-extruded through a film forming die onto a rotating quenching drum cooled with water cooling water to produce an unstretched film.
  • This unstretched film was stretched 3.2 times at 90 ° C in the longitudinal direction, then stretched 3.5 times at 90 ° C in the width direction, and heat-fixed at 220 ° C, thickness of 50 m.
  • a biaxially stretched polyethylene terephthalate film instead of the uniaxially stretched polyethylene terephthalate film, A surface protection film having a pressure-sensitive adhesive layer laminated on one surface was obtained in the same manner as in Example 1 except that the biaxially stretched polyethylene terephthalate film obtained in Example No. 0/00406 was used.
  • the maximum distortion of the main orientation axis is 27 degrees
  • the minimum value of contrast is 2
  • the heat shrinkage at 120 ° C is 0.6%
  • the haze is 0.
  • the light transmittance was 1%
  • the total light transmittance was 90%
  • the retardation value was 900 nm.
  • This surface protective film had a large contrast difference in the width direction, and light interference was observed. Therefore, the testability of the polarizing plate using the surface protective film was poor.
  • the surface protective film of the present invention is characterized in that, by using a polymer film having a maximum distortion value of a specific orientation main axis as a base film, optical evaluation (for example, components of a liquid crystal display device such as a polarizing plate and a retardation plate) is performed. Inspection of the contrast, display ability, hue, optical defects, etc.) of the protective film can be performed without peeling off the protective film, and the defect can be seen more easily. The cost can be reduced by using an inexpensive resin with excellent overall performance, such as polyethylene terephthalate.
  • FIG. 1 is a cross-sectional view schematically showing one example of the surface protective film of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing one example of the surface protective film of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing one example of the surface protective film of the present invention.
  • FIG. 4 is a cross-sectional view schematically showing one example of the surface protective film of the present invention.
  • FIG. 5 is a cross-sectional view schematically showing one example of the surface protective film of the present invention.
  • FIG. 6 is a cross-sectional view schematically showing one example of the surface protective film of the present invention.
  • FIG. 7 is a cross-sectional view schematically showing an example in which the surface protective film of FIGS. 1 and 4 is bonded to a polarizing plate as an example of an optical member.
  • FIG. 8 is a schematic diagram of a sampling method for evaluating the lowest contrast of a polymer film>.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polarising Elements (AREA)

Abstract

A surface-protective film comprising a polymer film and formed on one side thereof a pressure-sensitive adhesive layer or a release layer, in which the polymer film has a maximum strain in the main orientation axis of 10 degrees or less. The surface-protective film is suitable for protecting a surface of, e.g., a synthetic resin plate, especially for protecting a surface of a constituent member of a liquid-crystal display, such as a polarizing plate or phase plate. This is because there is no need of peeling off the surface-protective film in the inspection of the protected product, i.e., the film brings about satisfactory inspection efficiency, and because the film is inexpensive.

Description

明 細 書 表面保護フイルム 技術分野  Description Surface protection film Technical field
本発明は、 合成樹脂板などの表面保護、 特に、 偏光板や位相差板などの液晶表 示装置の構成部材のプロテクトフィルムゃセパレ一ターとして好適に用いられる 表面保護フィルムに関するものである。 背景技術  The present invention relates to a surface protection film suitable for use as a protection film / separator of a component of a liquid crystal display device such as a polarizing plate or a retardation plate, particularly a surface protection film such as a synthetic resin plate. Background art
液晶表示装置は、 一般的にはバックライ ト側から、 偏光板、 液晶セル、 偏光板 を積層することにより作製される。更には、表示モード、視野角改善等によって、 位相差板等の各種補償板が挿入される。 この偏光板や位相差板の積層には、 通常 は粘着剤層付きの偏光板、 または粘着剤層付きの位相差板を対象物に貼着する方 法が採用されている。  A liquid crystal display device is generally manufactured by laminating a polarizing plate, a liquid crystal cell, and a polarizing plate from the backlight side. Further, various compensating plates such as a phase difference plate are inserted depending on the display mode, the viewing angle, and the like. For the lamination of the polarizing plate and the retardation plate, a method of attaching a polarizing plate with an adhesive layer or a retardation plate with an adhesive layer to an object is usually adopted.
上記の偏光板は、 偏光膜をトリァセチルセルロースでサンドィツチした構成を 有しており、 通常その片面に貼り合わせ用の粘着剤層が設けられている。 偏光板 のトリアセチルセルロースは、 耐擦傷性や耐湿性が劣ること、 取扱中や液晶表示 装置の作製工程中における損傷、 又はほこりの付着を防ぐ目的で、 両面に表面保 護フィルムが設けられる。 偏向板の粘着剤層側には離型層を積層した表面保護フ ィルムが使用され、 偏向板の粘着剤層側とは反対面には粘着剤層を積層した表面 保護フィルムが使用される。  The above-mentioned polarizing plate has a configuration in which a polarizing film is sandwiched with triacetyl cellulose, and usually has an adhesive layer for bonding on one side thereof. Triacetylcellulose of the polarizing plate is provided with surface protection films on both sides for the purpose of preventing scratch resistance and moisture resistance from being inferior, damage during handling and a process for manufacturing a liquid crystal display device, or adhesion of dust. A surface protection film having a release layer laminated on the pressure-sensitive adhesive layer side of the deflection plate is used, and a surface protection film having an adhesive layer laminated on the surface of the deflection plate opposite to the pressure-sensitive adhesive layer side is used.
また、 位相差フィルム等の各種補償板に対しても、 取扱中や液晶表示装置の作 製工程中における損傷、 又はほこりの付着を防ぐ目的で、 上記偏光板と同様に、 位相差フィルム等の各種補償板の片面に貼り合わせ用の粘着剤層が設けられてい る。 さらに、 両面最外層に表面保護フィルムが設けられる。 偏向板の粘着剤層側 には離型層を積層した表面保護フィルムが使用され、 偏向板の粘着剤層側とは反 対面には粘着剤層を積層した表面保護フィルムが使用される。  In addition, for the purpose of preventing various compensators such as a retardation film from being damaged or adhering dust during handling or during the manufacturing process of the liquid crystal display device, similar to the above-mentioned polarizing plate, a retardation film or the like is used. An adhesive layer for bonding is provided on one side of each compensator. Further, a surface protection film is provided on the outermost layers on both sides. A surface protection film having a release layer laminated on the pressure-sensitive adhesive layer side of the deflection plate is used, and a surface protection film having a pressure-sensitive adhesive layer laminated on the side opposite to the pressure-sensitive adhesive layer side of the deflection plate is used.
そして、 実際に偏光板、 位相差板等を液晶セルに貼着する際には、 表面保護フ ィルムは剥離除去されて用いられる。 Then, when actually attaching a polarizing plate, a retardation plate, etc. to the liquid crystal cell, a surface protection film is required. The film is peeled and used.
従来、 前記の粘着剤層が形成された表面保護フィルムとしては、 ポリエチレン フィルムゃェチレン一酢酸ビニル共重合体フィルム等の熱圧着タイブのもの、 粘 着剤層を設けたポリエステルフィルム等の感圧接着タイプのものが使用されてい る。  Conventionally, as the surface protective film on which the pressure-sensitive adhesive layer is formed, a thermocompression bonding type such as a polyethylene film, a polyethylene-vinyl acetate copolymer film, or a pressure-sensitive adhesive such as a polyester film provided with a pressure-sensitive adhesive layer is used. Type is used.
前記の偏光板等に用いられる、 粘着剤層が形成された表面保護フィルムとして は、 例えば、 特開平 9— 1 1 1 2 0 8号公報、 特開昭 5 4— 1 3 3 5 7 8号公報 等において提案されているように、 特定のポリエチレン系樹脂に粘着剤層が形成 された表面保護フイルムや、 特定の低密度ポリエチレンと高密度ポリエチレンと からなるポリエチレンと、 エチレン—不飽和ポリエステル共重合体からなる接着 性樹脂層とを共押出しした積層フィルム等が提案されている。  Examples of the surface protective film on which the pressure-sensitive adhesive layer is formed, which is used for the above-mentioned polarizing plate and the like, include, for example, JP-A-9-111208, JP-A-54-1333578 As proposed in the official gazettes, etc., a surface protection film in which an adhesive layer is formed on a specific polyethylene resin, a polyethylene comprising a specific low-density polyethylene and a high-density polyethylene, and an ethylene-unsaturated polyester copolymer There has been proposed a laminated film or the like obtained by coextruding an adhesive resin layer made of a united product.
また、 例えば、 特開平 6— 1 4 8 4 3 1号公報、 特開平 6— 1 6 0 6 3 0号公 報等において提案されているように、 ポリカーボネート、 ポリアリレート等の光 等方性ベースシートの片面に粘着性樹脂層を設け、 他面に金属酸化物曆を設けた 表面保護フィルム等が提案されている。  Further, for example, as proposed in JP-A-6-148431, JP-A-6-164030 and the like, an optically isotropic base such as polycarbonate and polyarylate is proposed. A surface protective film or the like in which an adhesive resin layer is provided on one side of a sheet and a metal oxide is provided on the other side has been proposed.
また、 従来の離型層を形成させた表面保護フィルムとしては、 ポリエステル、 ポリプロピレン等の二軸延伸されたフィルムの少なくとも片面にシリコーン等の 離型剤を塗布したものが使われている。  As a conventional surface protective film having a release layer formed thereon, a film obtained by applying a release agent such as silicone to at least one surface of a biaxially stretched film such as polyester or polypropylene is used.
作製した液晶表示装置は、 表示能力、 色相、 コントラスト等の評価のために、 適時に検査を行うのが通例である。 ところが、 従来から汎用されている表面保護 フィルムは、 それらの基材が異方性を有するため、 このような表面保護フィルム が貼り付けられた構成部材について、光学的評価を伴う検査には支障となるので、 検査に先立ち一旦この表面保護フィルムを剥離除去し、 検査終了後にもう一度新 しい表面保護フィルムを貼り直すことが行われる。 新しい表面保護フィルムで貼 り直すのは、 表面保護フィルムが再貼着可能でも再貼着すると美麗さが損なわれ るからである。  Usually, the manufactured liquid crystal display device is inspected in a timely manner in order to evaluate display capability, hue, contrast, and the like. However, conventionally used surface protection films have anisotropy in their base material, which hinders inspections involving optical evaluation of components to which such surface protection films are attached. Therefore, the surface protection film is peeled off and removed before the inspection, and a new surface protection film is applied again after the inspection. The reason for reapplying with a new surface protection film is that even if the surface protection film can be reapplied, the reapplying will impair the beauty.
上述の検査において、 表面保護フィルムの剥離および再貼着は、 工程に 2工程 を要し、 極限までコストダウンが追求されるこの分野においては、 大きな支障と なる。 CT/JP00/00406 上記の如き従来の問題点を解消し、 表面保護フィルムを被覆したまま粘着剤層 が設けられた偏光板または位相差板の検査を行う試みとして、 例えば、 特開平 4 — 3 0 1 2 0号公報等には、 ポリ力一ポネート、 ポリアリレート等の光等方性基 材の片面に粘着性樹脂層を設けた表面保護フィルム等が、 また、 特開平 6— 1 4 8 4 3 1号公報には、 ポリエステル、 ポリプロピレン等の無配向フィルムからな る基材の少なくとも片面に離型層が設けられた表面保護フィルムが提案されてい る。 In the above-mentioned inspection, peeling and re-attachment of the surface protection film requires two steps, which is a great obstacle in this field where cost reduction is pursued to the utmost. CT / JP00 / 00406 In order to solve the conventional problems as described above and to inspect a polarizing plate or a retardation plate provided with an adhesive layer while covering a surface protective film, for example, see JP-A-4-3. Japanese Patent Publication No. 0120/1999 and the like include a surface protection film in which an adhesive resin layer is provided on one surface of an optically isotropic substrate such as a polyacrylonitrile or polyarylate. No. 1 proposes a surface protective film in which a release layer is provided on at least one surface of a substrate made of a non-oriented film such as polyester or polypropylene.
このような無配向フィルムは光等方性を有することから、 検査時に剥離を要し ないという大きな利点を有するが、 通常の溶融押出し等の方法では、 配向を押さ えることが困難であるため、 流延法のような製法を用いる必要があり、 基材フィ ルム自体が高価なものになるため、 最終的に剥離除去される表面保護フイルムに はほとんど使われていないのが現状である。  Such a non-oriented film has a great advantage that it does not need to be peeled off during inspection because it has optical isotropy.However, it is difficult to suppress the orientation by ordinary methods such as melt extrusion. Since it is necessary to use a manufacturing method such as the casting method, and the base film itself becomes expensive, it is hardly used for surface protection films that are ultimately peeled off.
本発明は、 前記欠点を解決しょうとするものであり、 その目的は、 検査時に表 面保護フィルムの剥離を必要とせず、 検査性が良好で、 更に、 低コストの表面保 護フィルムを提供しょうとするものである。 発明の開示  The present invention is intended to solve the above-mentioned drawbacks, and an object of the present invention is to provide a low-cost surface protection film that does not require peeling of the surface protection film during inspection, has good inspection properties, and is low in cost. It is assumed that. Disclosure of the invention
本発明は、 上記のような状況に鑑みなされたものであって、 上記の課題を解決 することができた表面保護フィルムとは、 以下のとおりである。  The present invention has been made in view of the above situation, and a surface protective film that can solve the above problems is as follows.
即ち、 本発明の第 1の発明は、 高分子フィルムの片面に粘着剤層が積層された 表面保護フィルムであって、 前記高分子フィルムの配向主軸の最大歪みが 1 0度 以下であることを特徴とする表面保護フィルムである。  That is, the first invention of the present invention is a surface protection film in which an adhesive layer is laminated on one surface of a polymer film, wherein the maximum distortion of the main orientation axis of the polymer film is 10 degrees or less. Characteristic surface protection film.
第 2の発明は、 高分子フィルムの片面に離型層が積層された表面保護フィルム であって、 前記高分子フィルムの配向主軸の最大歪みが 1 0度以下であることを 特徴とする表面保護フィルムである。  A second invention is a surface protection film in which a release layer is laminated on one surface of a polymer film, wherein the maximum distortion of the main axis of orientation of the polymer film is 10 degrees or less. Film.
第 3の発明は、 前記高分子フィルムのリタ一デーシヨン値が 1 O O O n m以上 であることを特徴とする前記第 1または第 2の発明に記載の表面保護フィルムで ある。  A third invention is the surface protective film according to the first or second invention, wherein the polymer film has a retardation value of 1 OOOnm or more.
第 4の発明は、 前記高分子フィルムの下記一般式 (I ) で表されるコントラス ト (C ) の最低値が少なくとも 7 0以上であることを特徴とする前記第 3の発明 に記載の表面保護フィルムである。 According to a fourth aspect of the present invention, there is provided a contrast film represented by the following general formula (I) The surface protective film according to the third aspect of the present invention, wherein the minimum value of (C) is at least 70 or more.
C = Y 1 /Y 2 · · · ( I )  C = Y 1 / Y 2 (I)
[ここで、 Cはコントラスト、 Y 1は 2つの偏光子の光軸を平行状態にし、 高分 子フィルムをその 2つの偏光子の間に挿入したときの透過光量、 Y 2は 2つの偏 光子の光軸を直行状態にし、 高分子フィルムをその 2つの偏光子の間に挿入した ときの透過光量を示す。 ]  [Where C is the contrast, Y 1 is the amount of transmitted light when the optical axes of the two polarizers are parallel, and a polymer film is inserted between the two polarizers, and Y 2 is the two polarizers The figure shows the amount of transmitted light when the optical axis of the polarizer is in a perpendicular state and a polymer film is inserted between the two polarizers. ]
第 5の発明は、 前記高分子フィルムの 1 2 0 °Cにおける熱収縮率が 4 %以下で あることを特徴とする第 1または第 2の発明に記載の表面保護フィルムである。 第 6の発明は、 前記高分子フィルムのヘイズが 1 0 %以下であることを特徴と する第 1または第 2の発明に記載の表面保護フィルムである。  A fifth invention is the surface protective film according to the first or second invention, wherein the polymer film has a heat shrinkage at 120 ° C. of 4% or less. A sixth invention is the surface protective film according to the first or second invention, wherein the polymer film has a haze of 10% or less.
第 7の発明は、 前記第 1または第 2の発明のいずれかに記載の高分子フィルム が、 ポリエステルフィル厶であることを特徴とする表面保護フィルムである。 第 8の発明は、 前記第 7の発明に記載のポリエステルフィルムが、 ポリエチレ ンテレフタレート又はこれを主体とするポリエステルで構成されていることを特 徴とする表面保護フィルムである。  A seventh invention is a surface protection film, wherein the polymer film according to any one of the first and second inventions is a polyester film. An eighth invention is a surface protection film, characterized in that the polyester film according to the seventh invention is made of polyethylene terephthalate or polyester mainly composed of the same.
第 9の発明は、 前記第 7の発明に記載のポリエステルフィルムが、 ポリ乳酸を 主たる構成成分とすることを特徴とする表面保護フィルムである。  A ninth invention is a surface protective film, wherein the polyester film according to the seventh invention comprises polylactic acid as a main constituent.
第 1 0の発明は、 前記表面保護フィルムの粘着剤層の反対面に帯電防止層が積 層されていることを特徴とする第 1の発明に記載の表面保護フィルムである。 第 1 1の発明は、 前記表面保護フィルムの粘着剤層と高分子フィルムの間に帯 電防止層が積層されていることを特徴とする第 1の発明に記載の表面保護フィル ムである。  A tenth invention is the surface protection film according to the first invention, wherein an antistatic layer is laminated on the surface of the surface protection film opposite to the pressure-sensitive adhesive layer. An eleventh invention is the surface protection film according to the first invention, wherein an antistatic layer is laminated between the pressure-sensitive adhesive layer and the polymer film of the surface protection film.
第 1 2の発明は、 前記表面保護フィルムの離型層の反対面に帯電防止層が形成 されていることを特徴とする第 2の発明に記載の表面保護フィルムである。 第 1 3の発明は、 前記表面保護フィルムの離型層と高分子フィルムの間に帯電 防止層が形成されていることを特徴とする第 2の発明に記載の表面保護フィルム である。  The 12th invention is the surface protection film according to the 2nd invention, wherein an antistatic layer is formed on the surface of the surface protection film opposite to the release layer. A thirteenth invention is the surface protection film according to the second invention, wherein an antistatic layer is formed between the release layer and the polymer film of the surface protection film.
第 1 4の発明は、 前記第 2の発明に記載の離型層が、 シリコーン樹脂、 フッ素 樹脂の少なくとも一種以上を主たる構成成分とすることを特徴とする表面保護フ ィルムである。 According to a fifteenth invention, the release layer according to the second invention is a silicone resin, A surface protection film characterized in that at least one kind of resin is a main component.
第 1 5の発明は、 前記第 1 4の発明に記載のシリコーン樹脂が、 熱硬化型シリ コ一ン樹脂または放射線硬化型シリコーン樹脂であることを特徴とする表面保護 フィルムである。  A fifteenth invention is a surface protective film, wherein the silicone resin according to the fifteenth invention is a thermosetting silicone resin or a radiation curing silicone resin.
第 1 6の発明は、 前記高分子フィルムがー軸延伸高分子フィルムであることを 特徴とする第 1または第 2の発明に記載の表面保護フィルムである。  A sixteenth invention is the surface protective film according to the first or second invention, wherein the polymer film is a uniaxially stretched polymer film.
以下、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明における表面保護フィルムは、 高分子フィルムの片面に粘着剤層あるい は離型層が積曆された表面保護フィルムであって、 前記高分子フィルムの配向主 軸の最大歪みが 1 0度以下である表面保護フィルムである。 これらの表面保護フ イルムは、 次の方法によって製造することができる。 但し、 この方法に限定され るものではない。  The surface protective film in the present invention is a surface protective film in which a pressure-sensitive adhesive layer or a release layer is stacked on one surface of a polymer film, and the polymer film has a maximum distortion of a main axis of 10 degrees. The following surface protection film is provided. These surface protective films can be manufactured by the following method. However, it is not limited to this method.
本発明における高分子フィルムとは、 有機高分子を溶融押出し又は溶液押出し をして、 必要に応じ、 長手方向、 または、 幅方向に延伸、 冷却、 熱固定を施した フィルムであり、 有機高分子としては、 ポリエチレン、 ポリプロピレン、 ポリエ チレンテレフタレート、 ポリエチレン一 2 , 6—ナフ夕レート、 ポリプロピレン テレフタレート、 ポリ乳酸、 ポリグリコール酸、 ポリ (2—ォキシ酪酸) 、 ナイ ロン 6、 ナイロン 4、 ナイロン 6 , 6、 ナイロン 1 2、 ポリイミ ド、 ポリアミ ド イミ ド、 ポリエ一テルサルフォン、 ポリサルフォン、 ポリエーテルエーテルケト ン、 ポリカーボネート、 ポリアリレート、 ポリアクリル、 セルロースプロビオネ ート、 ポリ塩化ビニル、 ポリ塩化ビニリデン、 ポリビニルアルコール、 ポリエ一 テルイミ ド、 ポリフエ二レンスルフイ ド、 ポリフヱニレンオキサイ ド、 ポリスチ レン、 シンジオタクチックポリスチレン、 ノルポルネン系ポリマーなどがあげら れる。 また、 これらの有機高分子は他の有機重合体を少量共重合したり、 プレン ドしたりしてもよい。 これらのうち、 ポリエチレンテレフタレート、 ポリエチレ ン一 2 , 6—ナフ夕レート、 ポリプロピレンテレフ夕レートなどの芳香族ポリエ ステルフィルムゃポリ乳酸などの脂肪族ポリエステルが好ましく用いられる。 これらの中でも、特にポリエチレンテレフ夕レートは、不純物が少なく透明性、 機械的性質、 表面平滑性、 耐溶剤性、 耐スクラッチ性、 非透湿性、 コストなどの 総合性能から最も好適に用いられる。 The polymer film in the present invention is a film obtained by subjecting an organic polymer to melt extrusion or solution extrusion, stretching in the longitudinal or width direction, cooling, and heat setting as necessary. Examples include polyethylene, polypropylene, polyethylene terephthalate, polyethylene mono 2,6-naphtholate, polypropylene terephthalate, polylactic acid, polyglycolic acid, poly (2-oxybutyric acid), nylon 6, nylon 4, nylon 6,6. , Nylon 12, Polyimide, Polyamide imide, Polyethersulfone, Polysulfone, Polyetheretherketone, Polycarbonate, Polyarylate, Polyacryl, Cellulose Probionate, Polyvinylchloride, Polyvinylidene chloride, Polyvinyl alcohol , Pollier (1) Terimide, polyphenylene sulfide, polyphenylene oxide, polystyrene, syndiotactic polystyrene, norpoleneene-based polymer, and the like. In addition, these organic polymers may be copolymerized with a small amount of another organic polymer or blended. Of these, aromatic polyester films such as polyethylene terephthalate, polyethylene 1,2-naphtholate and polypropylene terephthalate, and aliphatic polyesters such as polylactic acid are preferably used. Among these, polyethylene terephthalate is particularly low in impurities and has high transparency. It is most suitable for its overall performance including mechanical properties, surface smoothness, solvent resistance, scratch resistance, moisture impermeability, and cost.
また、 本発明の表面保護フィルムは、 偏光板や位相差板などの液晶表示装置の 構成部材の、 表示能力、 色相、 コントラスト、 光学欠点などの光学的評価の検査 が終わり、 液晶表示装置に組み込まれる際に、 剥離除去される。 すなわち、 検査 完了後には不要なものとなる。 したがって、 自然界で分解する生分解性を有し、 燃焼時にも熱量が少なく焼却炉を痛めないなど環境負荷が少なく、 かつ透明性、 機械的強度に優れた、主たる繰り返し単位が、一般式、 一 0— C H R— C O— (R は Hまたは炭素数 1〜 3のアルキル基) で示される単位からなる脂肪族ポリエス テルフィルムも、 本発明の表面保護フィルムの基材フィルムとして好適である。 前記繰り返し単位を有する脂肪族ポリエステルとしては、 例えば、 ポリ乳酸、 ポ リグリコール酸、 ポリ (2—ォキシ酪酸) などを挙げることができるが、 これら の一種または二種以上が選択して用いられる。二種以上を用いる場合は、混合物、 共重合体でもよい。 また、 ポリマ一中に不斉炭素を有するものでは、 L一体、 D L一体、 D—体といった光学異性体が存在するが、 これらのいずれでもよく、 ま た、 二種以上の異性体が混在したものであってもよい。 前記脂肪族ポリエステル は、 対応する 一ォキシ酸の脱水環状エステル化合物を用い、 開環重合などの公 知の方法で製造することができる。 これらの脂肪族ポリエステルの中でも、特に、 ポリ乳酸が最も好適である。  In addition, the surface protective film of the present invention has been tested for optical evaluation of components such as a polarizing plate and a retardation plate of a liquid crystal display device such as display capability, hue, contrast, and optical defects, and is incorporated into the liquid crystal display device. At the time of removal. That is, it becomes unnecessary after the inspection is completed. Therefore, the main repeating unit, which is biodegradable in the natural world, has a small amount of heat during combustion, does not damage the incinerator, has a low environmental load, and is excellent in transparency and mechanical strength, has the following general formula: An aliphatic polyester film comprising a unit represented by 0—CHR—CO— (R is H or an alkyl group having 1 to 3 carbon atoms) is also suitable as the base film of the surface protective film of the present invention. Examples of the aliphatic polyester having a repeating unit include polylactic acid, polyglycolic acid, and poly (2-oxybutyric acid). One or more of these are selected and used. When two or more kinds are used, a mixture or a copolymer may be used. In the case of a polymer having an asymmetric carbon in the polymer, there are optical isomers such as L-integral, DL-integral and D-isomer, but any of these may be used, or two or more isomers may be mixed. It may be something. The aliphatic polyester can be produced by a known method such as ring-opening polymerization using the corresponding dehydrated cyclic ester compound of monooxyacid. Among these aliphatic polyesters, polylactic acid is most preferred.
高分子フィルムは、 常法により製膜することにより得ることができる。 なかで も、 ホモポリマーあるいはコポリマーの融液あるいは溶液を、 押出法、 カレンダ —法ゃ流延法などによりフィルム状に成形し、 次いで、 ロール法、 テンタ一法、 チューブラー法などにより縦あるいは横方向に一軸延伸する方法が好適である。 しかしながら、 本発明に記載したフィルム特性の範囲を満足すれば、 二軸延伸し てもかまわない。  The polymer film can be obtained by forming a film by an ordinary method. Among them, a homopolymer or copolymer melt or solution is formed into a film by extrusion, calendaring, casting, or the like, and then vertically or horizontally by a roll method, tenter method, or tubular method. A method of uniaxially stretching in the direction is preferable. However, as long as the range of the film characteristics described in the present invention is satisfied, biaxial stretching may be performed.
本発明において、 高分子フィルムの配向主軸の最大歪みとは、 熱収縮によりフ ィルム幅方向で配向主軸の方向が曲がる現象を数値化したものである。 偏光板の 光学検査において、 配向主軸の最大歪みが大きくなると、 複屈折率効果で光の位 相がずれ検光子側に光が漏れてくるという現象が発生する。 その結果、 偏光板の 検査をしているのか、 貼った高分子フィルムの検査をしているのか分からなくな り、 好ましくない。 In the present invention, the maximum distortion of the main axis of orientation of the polymer film is a numerical value of a phenomenon in which the direction of the main axis of orientation is bent in the film width direction due to heat shrinkage. In the optical inspection of a polarizing plate, when the maximum distortion of the principal axis of alignment becomes large, a phenomenon occurs in which the phase of light shifts due to a birefringence effect and light leaks to the analyzer side. As a result, It is not preferable because it is not clear whether the inspection is being performed or the inspection of the applied polymer film.
高分子フィルムの配向主軸の最大歪みは 1 0度以下であることが必要である。 好ましくは 8度以下、 特に好ましくは 5度以下である。 配向主軸の最大歪みが 1 0度より大きいと、 検査時に検体のコントラストが低下するため好ましくない。 また、 高分子フィルムのリタ一デーシヨン値は 1 0 0 0 n m以上であることが 好ましく、 特に好ましくは 5 0 0 0 n m以上である。 リタ一デーシヨン値が 1 0 0 0 n m以上であれば検査上問題とならない。 また、 5 0 0 0 n m以上であれば 可視光領域において干渉縞の間隔が十分広がるため、 光学的に等方であるのと同 様となりさらに好ましい。 しかし、 1 0 0 0 n m未満の場合には、 視角により干 渉が表れ易く、 検査精度が低下するため好ましくない。 また可視光線透過率は、 7 5 %以上のものが用いられる。 ここで、 リタ一デーシヨン値とは、 フィルム上 の直交する二軸の屈折率の異方性(ΔΝ = I N x - N y I ) とフィルム厚み d (n m) との積 (AN x d ) と定義されるパラメーターであり、 光学的等方性、 異方 性を示す尺度である。光学的等方性の場合、 N Xと N yはほぼ同じ値となるので、 厶 Nはゼロに近づく。 すなわち、 リタ一デーシヨン値はゼロに近づく。  The maximum distortion of the main orientation axis of the polymer film needs to be 10 degrees or less. It is preferably at most 8 degrees, particularly preferably at most 5 degrees. If the maximum distortion of the main alignment axis is more than 10 degrees, the contrast of the specimen decreases during the test, which is not preferable. The retardation value of the polymer film is preferably at least 1000 nm, particularly preferably at least 500 nm. If the retardation value is 100 nm or more, there is no problem in inspection. If the thickness is 500 nm or more, the interval between interference fringes is sufficiently widened in the visible light region, and thus it is more preferably optically isotropic. However, if the diameter is less than 1000 nm, interference tends to appear due to the viewing angle, and the inspection accuracy is undesirably reduced. Further, those having a visible light transmittance of 75% or more are used. Here, the retardation value is defined as the product (AN xd) of the biaxial orthogonal refractive index anisotropy (ΔΝ = IN x-N y I) on the film and the film thickness d (nm). It is a parameter that indicates optical isotropy and anisotropy. In the case of optical isotropy, N X and N y have almost the same value, so that the distance N approaches zero. That is, the retardation value approaches zero.
リタ一デーシヨン値を大きくするには、 上記定義より、 二軸の屈折率の異方性 To increase the retardation value, from the above definition, the biaxial refractive index anisotropy
(ΔΝ) を大きくするか、 フィルム厚み (d ) を大きくすることが必要である。 高分子フィルムの厚さは、 特に限定するものではないが、 用途や作業性を考慮す ると、 3 0 0〃m以下に設定するのが適当である。 厚さが 3 0 0 mを越える厚 さの場合、 薄いという高分子フィルムの利点がなくなる。 また、 高分子フィルム は、 単層のみならず、 複層であってもよい。 It is necessary to increase (ΔΝ) or increase the film thickness (d). Although the thickness of the polymer film is not particularly limited, it is appropriate to set the thickness to 300 μm or less in consideration of use and workability. If the thickness exceeds 300 m, the advantage of a thin polymer film is lost. Further, the polymer film may be not only a single layer but also a multilayer.
したがって、 薄いという高分子フィルムの利点を維持し、 かつリタ—デ一ショ ン値を大きくするには、 二軸の屈折率の異方性 (ΔΝ) を大きくすればよい。 そ のためには、 一軸方向のみに延伸することが好ましい。 一軸方向のみに延伸する と、 その方向の屈折率 (N yまたは N x) は大きくなり、 直行方向の屈折率 (N Xまたは N y ) は殆ど変化しないため、 二軸の屈折率の異方性 (ΔΝ) は大きく なる。 また、 二軸延伸の場合には、 一軸のみ延伸を強化したテンシライズドフィ ルムが好ましい。 延伸条件としては、 一軸方向の延伸張力を他の直行方向の軸よ りも高めるよう延伸倍率を高くする、 あるいは延伸温度を低くすることにより、 二軸の屈折率の異方性 (ΔΝ) を大きくすることができる。 Therefore, in order to maintain the advantage of a thin polymer film and to increase the retardation value, it is necessary to increase the biaxial refractive index anisotropy (Δ 大 き く). For that purpose, it is preferable to stretch only in the uniaxial direction. If the film is stretched in only one axis direction, the refractive index (Ny or Nx) in that direction increases, and the refractive index in the orthogonal direction (NX or Ny) hardly changes. (ΔΝ) increases. In the case of biaxial stretching, a tensile film in which uniaxial stretching is reinforced is preferred. As stretching conditions, the stretching tension in one axis direction is The biaxial refractive index anisotropy (ΔΝ) can be increased by increasing the draw ratio or lowering the draw temperature so as to increase the draw ratio.
さらに、 本発明の表面保護フィルムの基材となる高分子フィルムは、 下記一般 式 (I ) で表されるそのコントラスト (C ) の最低値が 7 0以上であることが好 ましく、 より好ましくは 1 1 0以上、 特に好ましくは 1 5 0以上である。 当該コ ントラス卜の最低値が 7 0未満の高分子フィルムでは、 検査時に検体中の異物の 発見、 表示能力の確認等に支障をきたしゃすい傾向にある。 実用上、 コントラス トの最低値は 5 0以上あればよい。  Further, the polymer film serving as the base material of the surface protective film of the present invention preferably has a minimum value of 70 or more of its contrast (C) represented by the following general formula (I), more preferably Is 110 or more, particularly preferably 150 or more. Polymer films with a minimum contrast value of less than 70 tend to be difficult to detect foreign substances in the specimen and confirm the display ability during the test. In practice, the minimum value of contrast should be 50 or more.
C = Y 1 /Y 2 · · · ( I )  C = Y 1 / Y 2 (I)
[ここで、 Cはコントラスト、 Y 1は 2つの偏光子の光軸を平行状態にし、 高分 子フィルムをその 2つの偏光子の間に挿入したときの透過光量、 Y 2は 2つの偏 光子の光軸を直行状態にし、 高分子フィルムをその 2つの偏光子の間に挿入した ときの透過光量を示す。 ]  [Where C is the contrast, Y 1 is the amount of transmitted light when the optical axes of the two polarizers are parallel, and a polymer film is inserted between the two polarizers, and Y 2 is the two polarizers The figure shows the amount of transmitted light when the optical axis of the polarizer is in a perpendicular state and a polymer film is inserted between the two polarizers. ]
本発明において、 コントラストの最低値とは、 以下の方法により測定されるも のである。 まず、 フィルム形状がロール状の場合は、 長手方向に 5 0 0 mm、 幅 方向には全幅の長方形を切り出す。 そして、 図 8に示すように、 同一端辺を含む 幅方向 (テンター方向) に 1 0 0 mm四方の正方形を該長方形の 2頂点及びその 中心を含む 3箇所以上で切り出す。 図 8中、 2 1は長手方向、 2 2は幅方向、 2 3は端辺、 2 4は頂点、 2 5は頂点の中心である。 次に、 2つの偏光子の光軸を 平行の状態にし、 予めどちらかの偏光子の偏光方向と底辺を正確に平行にしたサ ンプルホルダ一へ 1 0 0 mm四方のフィルムサンプルを設置し、 2つの偏光子及 びフィルムサンプルを透過してきた光の透過光量を測定する。 同様に 2つの偏光 子の光軸を直行の状態にしたときの透過光量を測定し、 各フィルムサンプルごと のコントラストを上記式 (I ) に従い計算する。 このようにして得られた各フィ ルムサンプルごとのコントラス卜の中で最低の値をここで言う 「コントラストの 最低値」 と定義する。  In the present invention, the minimum value of the contrast is measured by the following method. First, if the film is in the form of a roll, cut out a rectangle of 500 mm in the longitudinal direction and full width in the width direction. Then, as shown in FIG. 8, a square of 100 mm square in the width direction (tenter direction) including the same edge is cut out at three or more places including two vertexes of the rectangle and the center thereof. In FIG. 8, 21 is the longitudinal direction, 22 is the width direction, 23 is the edge, 24 is the vertex, and 25 is the center of the vertex. Next, the optical axes of the two polarizers in parallel state, is placed in advance either to the polarizer support Npuruhoruda one you exactly parallel to the polarization direction and the bottom of the 1 0 0 mm square film sample 2 The amount of light transmitted through the two polarizers and the film sample is measured. Similarly, the amount of transmitted light when the optical axes of the two polarizers are set to be orthogonal is measured, and the contrast of each film sample is calculated according to the above formula (I). The lowest value of the contrast for each film sample obtained in this way is defined as the “lowest value of contrast” here.
高分子フィルムのコントラストの最低値を上記範囲とする方法としては、 例え ば、 ポリエチレンテレフタレートの場合には、 後述するように、 横延伸後熱固定 処理を行う前に、 フィルムを長手方向に 9 0〜2 0 0 °Cで 1〜 1 0 %の弛緩処理 を行う方法、 140〜250°Cで熱固定処理する方法、 熱固定処理後幅方向に 1 〜 10%で弛緩処理する方法、 等が好適である。 As a method for setting the minimum value of the contrast of the polymer film in the above range, for example, in the case of polyethylene terephthalate, as described later, the film is stretched 90 degrees in the longitudinal direction before the heat-setting treatment after the transverse stretching. Relaxation of 1 to 10% at ~ 200 ° C , A method of heat setting at 140 to 250 ° C., a method of relaxing at 1 to 10% in the width direction after the heat setting, and the like.
また、 本発明の高分子フィルムの 120°Cにおける熱収縮率は、 4%以下であ ることが好ましい。 特に好ましくは、 1%以下である。 120°Cにおける熱収縮 率が 4%より大きいと、 粘着剤層または離型層形成時等の加熱を伴うプロセスを 通過したときに、 平面性の乱れ等を生じるため好ましくない。  Further, the heat shrinkage at 120 ° C. of the polymer film of the present invention is preferably 4% or less. Particularly preferably, it is 1% or less. If the heat shrinkage at 120 ° C. is more than 4%, it is not preferable because flatness is disturbed when passing through a process involving heating such as formation of an adhesive layer or a release layer.
高分子フィルムのヘイズは 10%以下が好ましい。 さらに好ましくは 5%以下 であり、 特に好ましくは 1 %以下である。 ヘイズが 10%より大きいと、 高分子 フィルムを光が透過する際に光が散乱し、 コントラス トを低下させるため好まし くない。  The haze of the polymer film is preferably 10% or less. It is more preferably at most 5%, particularly preferably at most 1%. If the haze is more than 10%, the light is scattered when the light passes through the polymer film, and the contrast is unfavorably reduced.
本発明における高分子フィルムの製造方法は、特に限定されるものではないが、 使用するポリマーの特性に応じて、 適宜調整することが必要である。 例えば、 ポ リエチレンテレフ夕レ一トフイルムの場合には、 ポリエチレンテレフタレ一トフ ィルムを溶融し、 シート状に押出し成形された無配向ポリエチレンテレフタレー トフィルムをガラス転移温度以上の温度においてテンターで横延伸後、 熱固定処 理を施す方法が挙げられる。 延伸温度は 80〜130°Cが好ましく、 90〜12 0°Cが特に好ましい。 また、 延伸倍率は 2. 5〜6. 0倍が好ましく、 3. 0〜 5. 5倍が特に好ましい。 延伸倍率が低くなると、 ヘーズが高くなり、 フィルム の透明性が不良となるため好ましくない。 また、 延伸倍率が低いと延伸張力も小 さくなるため、 二軸の屈折率の異方性 (ΔΝ) が小さくなる。 その結果、 リタ一 デーション値が小さくなり好ましくない。  The method for producing a polymer film in the present invention is not particularly limited, but it is necessary to appropriately adjust the method according to the characteristics of the polymer used. For example, in the case of polyethylene terephthalate film, a polyethylene terephthalate film is melted, and a non-oriented polyethylene terephthalate film extruded into a sheet is stretched laterally with a tenter at a temperature equal to or higher than the glass transition temperature. And a method of performing a heat setting treatment. The stretching temperature is preferably from 80 to 130 ° C, particularly preferably from 90 to 120 ° C. The stretching ratio is preferably 2.5 to 6.0 times, particularly preferably 3.0 to 5.5 times. If the stretching ratio is low, the haze becomes high, and the transparency of the film becomes poor. In addition, when the stretching ratio is low, the stretching tension is also small, so that the biaxial refractive index anisotropy (Δ 小 さ く) is small. As a result, the retardation value becomes small, which is not preferable.
本発明において、 横延伸後熱固定処理を行う前にフィルムを長手方向に弛緩処 理することは、 配向主軸の最大歪みゃコントラス卜の低下を低減するのに有効で ある。 前記長手方向の弛緩処理時の温度は 90〜 20 (TCの範囲が好ましく、 特 に好ましくは 120〜 180 °Cの範囲である。弛緩量は横延伸条件により異なり、 弛緩処理後のフィルムを 120°Cにおける熱収縮率が 4%となるように弛緩量及 び弛緩温度を設定することが好ましい。  In the present invention, the relaxation treatment of the film in the longitudinal direction before the heat setting treatment after the transverse stretching is effective in reducing the decrease in the maximum distortion of the main orientation axis ゃ contrast. The temperature at the time of the relaxation treatment in the longitudinal direction is 90 to 20 (preferably in the range of TC, particularly preferably in the range of 120 to 180 ° C. The amount of relaxation varies depending on the transverse stretching conditions. It is preferable to set the relaxation amount and the relaxation temperature so that the heat shrinkage at 4 ° C. becomes 4%.
また、 熱固定処理温度は 130〜250°Cの範囲が好ましく、 特に好ましくは 180〜245°Cの範囲である。 熱固定処理において、 まず定長で熱固定処理を 行い、 さらに幅方向の弛緩処理を 1〜 1 0 %、 好ましくは 2 ~ 5 %にすることに よって、 配向主軸の最大歪みやコントラス卜の低下を低減することができる。 本発明の高分子フィルムは、公知の方法で表面処理することができる。例えば、 コロナ放電処理 (空気中、 窒素中、 炭酸ガス中など) や易接着処理が施されたフ イルムである場合、 被覆層との接着性、 耐水性、 耐薬品性等が改良されのでより 好ましい。 易接着処理は公知の各種の方法を用いることができ、 フィルム製造ェ 程中で、 あるいは一軸または二軸延伸後のフィルムに公知の各種易接着剤を塗布 したものなどが好適に用いられる。 The heat-setting temperature is preferably in the range of 130 to 250 ° C, particularly preferably in the range of 180 to 245 ° C. In the heat setting process, the heat setting process is first performed at a fixed length. By carrying out the relaxation treatment in the width direction at 1 to 10%, preferably 2 to 5%, it is possible to reduce the maximum distortion of the main alignment axis and the decrease in contrast. The polymer film of the present invention can be surface-treated by a known method. For example, in the case of a film that has been subjected to corona discharge treatment (in air, nitrogen, carbon dioxide gas, etc.) or easy adhesion treatment, the adhesiveness to the coating layer, water resistance, chemical resistance, etc. are improved, so that preferable. Various known methods can be used for the easy-adhesion treatment, and those obtained by applying various well-known easy-adhesives to the film after the film production process or after uniaxial or biaxial stretching are preferably used.
また、 本発明の高分子フィルムは、 各種の機能性付与のために、 本発明の効果 を阻害しない範囲で、 公知の添加剤を必要に応じて含有させることができる。 例 えば、 無機及びノ又は耐熱性有機粒子、 潤滑剤、 ブロッキング防止剤、 静電密着 付与剤、 熱安定剤、 酸化防止剤、 帯電防止剤、 耐光剤、 耐衝撃性改良剤などを含 有させてもよい。 ただし、 光学用途においては透明性が必要とされるため、 上記 添加剤のフィルム中への含有量は最小限にとどめておくことが好ましい。  In addition, the polymer film of the present invention can contain a known additive as needed, in order to impart various functions, as long as the effects of the present invention are not impaired. For example, inorganic and / or heat-resistant organic particles, lubricants, antiblocking agents, electrostatic adhesion promoters, heat stabilizers, antioxidants, antistatic agents, light resistance agents, impact resistance improvers, etc. You may. However, since transparency is required for optical applications, it is preferable to minimize the content of the above additives in the film.
粘着性樹脂層としては、 光学用部材に対して粘着性を有する層、 例えば、 ポリ エステル系、 ポリオレフイ ン系、 ポリアミ ド系等の感熱接着樹脂層、 アクリル系、 ポリエステル系、 ウレタン系、 ポリエーテル系、 ゴム系等の感圧接着樹脂層、 飽 和ポリエステル樹脂、 ポリウレタン系樹脂、 ポリブタジエンポリオ一ル、 ポリオ レフインポリオール、 官能基含有ァクリル共重合体等の官能基を有する樹脂に硬 化剤を配合して製膜し、 部分架橋または不完全架橋させたフィルム、 ポリ塩化ビ 二ルに可塑剤を例えば 2 0重量%以上配合した軟質ポリ塩化ビニルフィルム、 飽 和ポリエステル樹脂フィルム、 アクリル系共重合体フィルム、 ブチルゴム、 ウレ タンゴム、 ブタジエン系ゴム (ポリブタジエンゴム、 スチレン一ブタジエンゴム、 スチレン一ブタジエン一スチレンブロック共重合体等) 、 スチレン一イソプレン 一スチレンゴムなどの合成ゴムを製膜して得られたフイルム、 低分子量ポリェチ レン、 ァタクチックポリプロピレン、 塩素化ポリプロピレンなどのポリオレフィ ン系樹脂を製膜して得られたフィルム、 エチレン一酢酸ビニル共重合体、 ェチレ ン—ァクリル酸共重合体、 エチレン—ァクリル酸エステル共重合体などのェチレ ン系共重合体を製膜して得られたフィルムなどが挙げられる。 リワーク (r e w o r k ) 性が求められる場合には、 粘着性樹脂曆は可剥性を 有するものを選択し、 永久接着が求められる場合には強い接着力または粘着力が 得られる物を選択する。 粘着性樹脂層の厚さは、 l〜5 0 // m程度に設定するこ とが多い。 As the adhesive resin layer, a layer having an adhesive property to an optical member, for example, a heat-sensitive adhesive resin layer such as a polyester-based, a polyolefin-based, or a polyamide-based, an acrylic-based, a polyester-based, a urethane-based, or a polyether-based resin. Hardening agents to resins having functional groups such as pressure-sensitive adhesive resin layers such as rubber-based and rubber-based resins, saturated polyester resins, polyurethane-based resins, polybutadiene polyols, polyolefin polyols, and functional group-containing acrylyl copolymers. A film formed by mixing and forming a film, partially crosslinked or incompletely crosslinked, a soft polyvinyl chloride film in which polyvinyl chloride is mixed with a plasticizer, for example, 20% by weight or more, a saturated polyester resin film, an acrylic copolymer United film, butyl rubber, urethane rubber, butadiene rubber (polybutadiene rubber, styrene-butadiene Film, styrene-butadiene-styrene block copolymer, etc.), films obtained by forming synthetic rubber such as styrene-isoprene-styrene rubber, polyolefins such as low molecular weight polyethylene, atactic polypropylene, and chlorinated polypropylene. A film obtained by forming an ethylene-based resin, an ethylene-vinyl acetate copolymer, an ethylene-acrylic acid copolymer, an ethylene-acrylic acid ester copolymer, and other ethylene-based copolymers are formed. And the like. If rework is required, select an adhesive resin that has peelability. If permanent adhesion is required, select a resin that can provide strong adhesive or adhesive strength. The thickness of the adhesive resin layer is often set to about l to 50 // m.
また、 離型層は、 光学用部材に対して離型性を有する層、 例えば、 シリコーン 樹脂、 フッ素樹脂等が挙げられる。  The release layer includes a layer having a release property from the optical member, for example, a silicone resin, a fluororesin, or the like.
シリコーン樹脂としては、 一般に離型剤として知られたものを用いることがで き、 「シリコーン材料ハンドブック」 (東レダウコ一ニング編、 1 9 9 3. 8 ) などに記載の公知のものの中から選んで使用することができる。 一般的に、 熱硬 化または電離放射線硬化型が用いられる。 熱硬化型としては、 例えば縮合反応型 および付加反応型のもの、 電離放射線硬化型としては、 紫外線もしくは電子線硬 化型のもの等いずれの反応型のものも用いることができる。  As the silicone resin, those generally known as release agents can be used, and are selected from known ones described in “Silicone Material Handbook” (edited by Toray Dow Corning, Ltd., 1989.3). Can be used with Generally, a thermosetting or ionizing radiation curing type is used. As the thermosetting type, for example, a condensation reaction type and an addition reaction type can be used, and as the ionizing radiation curing type, any reaction type such as an ultraviolet ray or electron beam curing type can be used.
上記縮合反応型のシリコーン樹脂としては、 例えば、 末端一 O H基を持つポリ ジメチルシロキサンと末端一 H基を持つポリジメチルシロキサン (ハイ ドロジェ ンシラン) を有機錫触媒 (例えば、 有機錫ァシレート触媒) を用いて縮合反応さ せ、 三次元架橋構造をつくるものが挙げられる。  As the condensation reaction type silicone resin, for example, a polydimethylsiloxane having a terminal OH group and a polydimethylsiloxane having a terminal H group (hydrogensilane) are used with an organic tin catalyst (for example, an organic tin acylate catalyst). And a condensation reaction to form a three-dimensional crosslinked structure.
付加反応型のシリコーン樹脂としては、 例えば、 末端にビニル基を導入したポ リジメチルシロキサンとハイ ドロジェンシランを白金触媒を用いて反応させ、 三 次元架橋構造をつくるものが挙げられる。  Examples of the addition reaction type silicone resin include those which form a three-dimensional crosslinked structure by reacting a polydimethylsiloxane having a vinyl group introduced into a terminal with a hydrogen silane using a platinum catalyst.
紫外線硬化型のシリコーン樹脂としては、 例えば、 最も基本的なタイプとして 通常のシリコーンゴム架橋と同じラジカル反応を利用するもの、 ァクリル基を導 入して光硬化させるもの、 紫外線でォニゥム塩を分解して強酸を発生させ、 これ によりエポキシ環を開裂させて架橋させるもの、 ビニルシロキサンへのチオール の付加反応で架橋させるもの等が挙げられる。 電子線は紫外線よりもエネルギー が強く、 紫外線硬化の場合のように開始剤を用いなくてもラジカルによる架橋反 応が起こる。  The most basic types of UV-curable silicone resins are, for example, those that utilize the same radical reaction as ordinary silicone rubber crosslinking, those that introduce an acryl group and are photocured, and those that decompose onium salts with ultraviolet light. A strong acid to generate a strong acid, thereby cleaving the epoxy ring to crosslink, and a crosslink by addition reaction of thiol to vinyl siloxane. Electron beams have higher energy than ultraviolet light, and radical crosslinking reaction occurs without using an initiator as in the case of ultraviolet curing.
上記の硬化型シリコーン樹脂は、 その重合度が 5 0〜2 0万程度、 特に 1 0 0 0〜1 0万程度のものが好ましく、 これらの具体例としては、 信越化学工業(株) 製の K S— 7 1 8、 - 7 7 4 , —7 7 5、 —7 7 8、 — 7 7 9 H、 一 8 3 0、 - 835、 一 837、 一 838、 一 839、 一 841、 一 843、 一 847、 一 8 47 H、 X— 62 - 2418、 一 2422、 一 2125、 -2492. -249 4、 一 5048、 —470、 一 2366、 一 630、 X - 92— 140、 一 12The above-mentioned curable silicone resin preferably has a degree of polymerization of about 500 to 200,000, and particularly about 100,000 to 100,000. Specific examples thereof include Shin-Etsu Chemical Co., Ltd. KS-7 18,-7 7 4,-7 7 5,-7 7 8,-7 7 H, 1 8 3 0,- 835, 1 837, 1 838, 1 839, 1 841, 1 843, 1 847, 1 847 H, X-62-2418, 1 2422, 1 2125, -2492. -249 4, 1 5048,-470, 1 2366, 1 630, X-92-140, 1 12
8、 KS - 723Α · Β、 —705F、 — 708A、 — 883、 —709、 - 7 19、 東芝シリコン (株) 製の TP R— 6701、 一 6702、 —6703、 ― 3704、 一 6705、 一 6721、 一 6722、 一 6700、 XSR- 7028, KS-723Α, 705705F, 708708A, 883883, 709709, 7719, TPR manufactured by Toshiba Silicon Co., Ltd. 66701, one 6702, 6706703, ―3704, one 6705, one 6721 , 1 6722, 1 6700, XSR-702
9、 YSR— 3022、 YR— 3286、 ダウコーニング (株) 製の DK— Q3 -202, 一 203、 一 204、 一 205、 一 210、 一 240、 一 3003、 — 3057、 SFXF— 2560、 東レ 'ダウコーニング ' シリコーン (株) 製 の SD_7226、 —7229、 一 7320、 BY - 24 - 900、 — 171、 一 312、 一 374、 SRX - 375、 S YL-OFF 23. SRX - 244、 SEX— 290、 アイ 'シ一 · アイ 'ジャパン (株) 製の S I LCOLEASE9, YSR—3022, YR—3286, DK manufactured by Dow Corning Co., Ltd.—Q3-202, one 203, one 204, one 205, one 210, one 240, one 3003, — 3057, SFXF—2560, Toray ' Dow Corning 'Silicone Co., Ltd. SD_7226,-7229, 1 7320, BY-24-900,-171, 1 312, 1 374, SRX-375, SYL-OFF 23. SRX-244, SEX- 290, SI LCOLEASE manufactured by Ai 'Shi-I' Japan Co., Ltd.
425等を挙げることができる。 また、 特開昭 47— 34447号公報、 特公昭425 and the like. Also, Japanese Patent Application Laid-Open No. 47-34447,
52-40918号公報等に記載のシリコーン樹脂も用いることができる。 更に は、 これらの硬化型シリコーン樹脂は、 一種を単独で用いてもよいし、 二種以上 を併用してもよい。 The silicone resin described in JP-A-52-40918 can also be used. Further, one of these curable silicone resins may be used alone, or two or more thereof may be used in combination.
フッ素樹脂としては、 公知の離型用のものを用いることができる。 この様なフ ッ素樹脂としては、 例えばフッ素含有ビニル重合性単量体からなる重合体 (オリ ゴマーを含む) またはその共重合体、 またはフッ素含有ビニル重合性単量体とフ ッ素原子で置換されたアルキル基、 官能基等を含まないビニル重合性単量体の少 なくとも 1種との共重合体、 または、 これらの混合物であってフッ素原子を 5〜 80モル%有するものが挙げられる。  As the fluororesin, a known release resin can be used. Examples of such a fluorine resin include a polymer (including an oligomer) composed of a fluorine-containing vinyl polymerizable monomer or a copolymer thereof, or a fluorine-containing vinyl polymerizable monomer and a fluorine atom. Copolymers with at least one kind of vinyl polymerizable monomer containing no substituted alkyl group or functional group, or a mixture thereof and having 5 to 80 mol% of fluorine atoms Can be
上記フッ素含有ビ二ル重合性単量体からなる重合体としては、 これらの具体例 として、 ポリ [2— (パ一フルォロノネニルォキシ) ェチルメタクリレート] 、 ポリ [2— (パーフルォロノネニルォキシ) ェチルアタリレート] 、 ポリ [2— (パーフルォロノネニルォキシベンゾィルォキシ) ェチルメタクリレート] 、 ポ リ [2— (パーフルォロノネニルォキシベンゾィルォキシ)ェチルァクリ レート]、 ポリ [2. 2, 2—トリフルォロェチルメタクリ レート] 、 ポリ [2, 2, 2- トリフルォロェチルアタリ レート] 、 ポリ [2, 2, 3, 3, 3 ?ンタフルォ 口プロピルメタクリ レート] 、 ポリ [ 2. 2 , 3 , 3. 3—ペンタフルォ口プロ ピルアタリ レート] 、 ポリ [ 1 ーメチルー 2 , 2 , 3 , 3 , 4 , 4—へキサフル ォロブチルメ夕クリ レート] 、 ポリ [ 1 ーメチルー 2 , 2 , 3, 3 , 4 , 4—へ キサフルォロブチルアタリ レート] 、 ポリ [パーフルォ口へプチルェチルメタク リ レート] 、 ポリ [パーフルォ口へプチルェチルァクリ レート] 、 ポリ [パ一フ ルォ口へプチルビニルエーテル] 、 ポリ [ α , β , )3—トリフルォロスチレン] 、 ポリフッ化ビニリデン、 ポリへキサフルォロプロピレン、 ポリテトラフルォロェ チレン等が挙げられる。 Specific examples of the polymer comprising the fluorine-containing vinyl polymerizable monomer include poly [2- (perfluorononenyloxy) ethyl methacrylate] and poly [2- (per Fluorononenyloxy) Ethyl atalylate], Poly [2- (Perfluorononenyloxybenzoyloxy) ethyl methacrylate], Poly [2— (Perfluorononenyloxy) [Xybenzoyloxy) ethyl acrylate], poly [2,2,2-trifluoroethyl methacrylate], poly [2,2,2-trifluoroethyl acrylate], poly [2,2,3 3, 3? Ntafluo Methyl propyl methacrylate], Poly [2.2,3,3.3-Pentafluoro mouth propyl acrylate], Poly [1-methyl-2,2,3,3,4,4-hexafluorobutyl methacrylate], Poly [1-Methyl-2,2,3,3,4,4-—Hexafluorobutyl acrylate], Poly [Perfluo-butyl methacrylate], Poly [Perfluoro-mouth butyl acrylate] ], Poly [perfluorohexyl vinyl ether], poly [α, β,) 3-trifluorostyrene], polyvinylidene fluoride, polyhexafluoropropylene, polytetrafluoroethylene, etc. Can be
上記フッ素含有ビニル重合性単量体と共重合し得る、 フッ素原子で置換された アルキル基、 官能基等を含まないビニル重合性単量体としては、 炭化水素系ビニ ル重合性単量体、 炭化水素系非共役ジビニル重合性単量体、 官能基含有ビニル重 合性単量体等の化合物が挙げられ、 炭化水素系ビニル重合性単量体としては、 例 えばアクリル酸メチル、 アクリル酸プロピル、 アクリル酸ブチル、 アクリル酸ィ ソァミル、 アクリル酸 2—ェチルへキシル、 アクリル酸ォクチル、 アクリル酸ォ クタデシル、 アクリル酸ラウリル、 アクリル酸セシル、 アクリル酸 Ν, Ν—ジェ チルアミノエチル、 メタクリル酸メチル、 メタクリル酸プロピル、 メタクリル酸 ブチル、 メタクリル酸イソァミル、 メタクリル酸 2—ェチルへキシル、 メタクリ ル酸ォクチル、 メタクリル酸ォクタデシル、 メタクリル酸ラウリル、 メタクリル 酸セシル、 メタクリル酸 Ν. Ν—ジェチルアミノエチル、 酢酸ビニル、 プロピオ ン酸ビニル、 カプリン酸ビニル、 ラウリン酸ビニル、 ステアリン酸ビニル、 スチ レン、 α—メチルスチレン、 ρ—メチルスチレン、 塩化ビニル、 臭化ビニル、 塩 ィ匕ビニリデン、 ヘプタン酸ァリル、 酢酸ァリル、 カプリン酸ァリル、 カブロン酸 ァリル、 ビニルメチルケトン、 ビニルェチルケトン、 1, 3—ブタジエン、 2— クロロー 1, 3—ブタジエン、 2 , 3—ジクロ口一 1 , 3—ブタジエン、 イソプ レン等、 炭化水素系非共役ジビニル重合性単量体としては、 例えば、 エチレング リコールジアタリ レート、 エチレングリコールジメ夕クリ レート、 プロピレング リコールジアタリ レート、 プロピレングリコ一ルジメタクリ レート、 ジエチレン グリコールジアタリ レート、 ジェチレングリコールジメタクリ レート、 ポリェチ レングリコ一ルジァクリ レート、 ポリエチレングリコールジメタクリ レート、 ジ ビニルベンゼン、 ビニルアタリ レート、 ジブロモネオペンチルグリコールジメタ クリレート等、 官能基含有ビニル重合性単量体としては、 例えば、 アクリル酸、 メタクリル酸、 アクリルアミ ド、 メタクリルアミ ド、 N—メチロールアクリルァ ミ ド、 N—ブトキシメチルアクリルアミ ド、 ダイアセトンアクリルアミ ド、 メチ ロールダイアセトンアクリルアミ ド、 2—ヒ ドロキシェチルアタリ レート、 2— ヒ ドロキシェチルメタクリ レート、 ヒ ドロキシプロピルアタリ レート、 3—クロ ロー 2—ヒドロキシプロピルメタクリレート等が挙げられ、 これらの中から選択 されるが、 特に限定されるものではない。 Examples of the vinyl polymerizable monomer which is copolymerizable with the above-mentioned fluorine-containing vinyl polymerizable monomer and does not contain an alkyl group substituted with a fluorine atom, a functional group, and the like include a hydrocarbon-based vinyl polymerizable monomer, Examples of the compound include a hydrocarbon-based non-conjugated divinyl polymerizable monomer and a functional group-containing vinyl polymerizable monomer. Examples of the hydrocarbon-based vinyl polymerizable monomer include methyl acrylate and propyl acrylate. , Butyl acrylate, isoamyl acrylate, 2-ethylhexyl acrylate, octyl acrylate, octadecyl acrylate, lauryl acrylate, cesyl acrylate, Ν, Ν-methylaminoethyl acrylate, methyl methacrylate, Propyl methacrylate, butyl methacrylate, isoamyl methacrylate, 2-ethylhexyl methacrylate, methacryl Octyl, octadecyl methacrylate, lauryl methacrylate, cesyl methacrylate, methacrylic acid Ν. Ν—Jethylaminoethyl, vinyl acetate, vinyl propionate, vinyl caprate, vinyl laurate, vinyl stearate, styrene, α- Methyl styrene, ρ-methyl styrene, vinyl chloride, vinyl bromide, vinylidene chloride, aryl aryl heptanoate, aryl aryl acetate, aryl aryl caprate, aryl aryl caproate, vinyl methyl ketone, vinyl ethyl ketone, 1,3-butadiene, Examples of hydrocarbon-based non-conjugated divinyl polymerizable monomers such as 2-chloro-1,3-butadiene, 2,3-dichloro-1,3-butadiene and isoprene include, for example, ethylene glycol diatalylate, ethylene glycol Jim crete, propylene glycol Diol diacrylate, propylene glycol dimethacrylate, diethylene glycol diatalylate, methylene glycol dimethacrylate, polyethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, diethylene glycol dimethacrylate Examples of functional group-containing vinyl polymerizable monomers such as vinyl benzene, vinyl acrylate, and dibromoneopentyl glycol dimethacrylate include acrylic acid, methacrylic acid, acrylamide, methacrylamide, and N-methylolacrylamide. , N-butoxymethyl acrylamide, diacetone acrylamide, methylol diacetone acrylamide, 2-hydroxyshethyl acrylate, 2-hydroxyshethyl methacrylate, hydroxypropyl acrylate, 3 —Chloro-2-hydroxypropyl methacrylate and the like, and are selected from these, but are not particularly limited.
本発明における離型層の厚みは、 特に限定されないが、 0. 0 5〜5〃mの範 囲が好ましい。 塗膜の厚みがこの範囲より薄くなると、 離型性能が低下し、 満足 すべき性能が得られない。 逆に、 塗膜の厚みがこの範囲より厚くなるとキュアリ ングに時間がかかり生産上好ましくない。  The thickness of the release layer in the present invention is not particularly limited, but is preferably in the range of 0.05 to 5 μm. If the thickness of the coating film is thinner than this range, the release performance is reduced, and satisfactory performance cannot be obtained. Conversely, if the thickness of the coating film exceeds this range, curing takes a long time, which is not preferable in terms of production.
また、 離型層には、 本発明の目的を損なわない範囲で公知の添加剤、 例えば消 泡剤、 塗布性改良剤、 増粘剤、 帯電防止剤、 酸化防止剤、 紫外線吸収剤、 硬化剤、 染料等を含有させてもよい。  The release layer may contain known additives within a range that does not impair the object of the present invention, such as an antifoaming agent, a coating improver, a thickener, an antistatic agent, an antioxidant, an ultraviolet absorber, and a curing agent. , A dye or the like.
本発明の粘着剤層あるいは離型層を基材フィルムである上記高分子フィルム表 面に形成させる方法としては、 特に限定されないが、 コーティング法が好ましく 用いられる。 例えば、 コーティング法としては、 エアドク夕コート法、 ナイフコ ート法、 ロッ ドコート法、 正回転ロールコート法、 リバ一スロールコ一ト法、 グ ラビアコート法、 キスコート法、 ビードコート法、 スリッ トオリフェスコート法、 キャストコ一ト法などが挙げられる。  The method for forming the pressure-sensitive adhesive layer or the release layer of the present invention on the surface of the polymer film as the base film is not particularly limited, but a coating method is preferably used. For example, coating methods include air-coating, knife coating, rod coating, forward rotation roll coating, reverse roll coating, gravure coating, kiss coating, bead coating, and slit orifice coating. And the cast coat method.
また、 粘着剤層あるいは離型層の塗膜の乾燥および/または硬化 (熱硬化、 電 離放射線硬化等) は、 それぞれ個別又は同時に行うことができる。 同時に行う場 合には、 8 0 °C以上の温度で行うことが好ましい。 乾燥および硬化の条件として は、 8 0 °C以上で 1 0秒以上が好ましい。 乾燥温度が 8 0 °C未満または硬化時間 が 1 0秒未満では塗膜の硬化が不完全であり、 塗膜が脱落しやすくなるため好ま しくない。  Drying and / or curing (thermal curing, ionizing radiation curing, etc.) of the coating film of the pressure-sensitive adhesive layer or the release layer can be performed individually or simultaneously. If they are performed simultaneously, it is preferable to perform them at a temperature of 80 ° C. or higher. The drying and curing conditions are preferably at 80 ° C. or more and 10 seconds or more. If the drying temperature is less than 80 ° C or the curing time is less than 10 seconds, the curing of the coating film is incomplete and the coating film tends to fall off, which is not preferable.
さらに本発明の表面保護フィルムには、 静電気の発生を抑制する目的で帯電防 止層を設けることが好ましい。 帯電防止層は、 帯電防止樹脂組成物を塗布するこ 麵 406 とによって形成される。 この帯電防止樹脂組成物には、 帯電防止剤を含有させる ことが必要であり、 帯電防止層の表面固有抵抗値が 1 X 1 Ο ^ ΩΖΕ]以下にする ことが好ましい。 また、 表面固有抵抗値が塗布面のみならず、 塗布していない反 対面にも前記表面固有抵抗値を示すよう帯電防止剤を選択することが好ましい。 例えば、 第 4級アンモニゥム塩、 ピリジニゥム塩、 第 1〜3級ァミノ基等のカチ オン性基を有する各種のカチオン性帯電防止剤、 スルホン酸塩基、 硫酸エステル 塩基、 リン酸エステル塩基、 ホスホン酸塩基等のァニオン性基を有するァニオン 系帯電防止剤、 アミノ酸系、 ァミノ硫酸エステル系等の両性帯電防止剤、 ァミノ アルコール系、 グリセリン系、 ポリエチレングリコール系等のノニオン性の帯電 防止剤等の各種界面活性剤型帯電防止剤、 更には上記のような帯電防止剤を高分 子量化した高分子型帯電防止剤等が挙げられ、 また、 第 3級アミノ基ゃ第 4級ァ ンモニゥム基を有し、 電離放射線により重合可能なモノマーやオリゴマー、 例え ば、 Ν, Ν—ジアルキルアミノアルキル (メタ) ァクリ レートモノマー、 それら の第 4級化合物等の重合性帯電防止剤も使用できる。 Further, the surface protective film of the present invention is preferably provided with an antistatic layer for the purpose of suppressing generation of static electricity. For the antistatic layer, apply an antistatic resin composition. 406. The antistatic resin composition needs to contain an antistatic agent, and the surface specific resistance of the antistatic layer is preferably set to 1 × 1 1Ω or less. Further, it is preferable to select an antistatic agent so that the surface specific resistance value shows the surface specific resistance value not only on the coated surface but also on the opposite surface where the coating is not performed. For example, quaternary ammonium salts, pyridinium salts, various cationic antistatic agents having a cationic group such as a primary to tertiary amino group, sulfonate groups, sulfate bases, phosphate bases, phosphonate bases Various surface activities such as anionic antistatic agents having anionic groups such as amino acids, amphoteric antistatic agents such as amino acids and amino sulfates, and nonionic antistatic agents such as amino alcohols, glycerin and polyethylene glycol. Formulation type antistatic agent, furthermore, a high molecular weight antistatic agent having a high molecular weight of the above antistatic agent, and the like.They also have a tertiary amino group to a quaternary ammonium group, Monomers and oligomers polymerizable by ionizing radiation, for example, Ν, Ν-dialkylaminoalkyl (meth) acrylate monomers, Polymerizable antistatic agents such as quaternary compounds can also be used.
帯電防止層中には、 帯電防止樹脂組成物のほかに、 帯電防止層の塗膜の強度、 基材フィルムへの密着性、 耐水性、 耐溶剤性、 ブロッキング性等の向上のために、 バインダーとして熱可塑性ポリエステル樹脂、 アクリル樹脂、 ポリビニル系樹脂 等の熱可塑性樹脂および/または熱硬化性アクリル樹脂、 ウレタン樹脂、 メラミ ン樹脂、 エポキシ樹脂等の熱硬化性樹脂等の高分子化合物を含有させることが好 ましい。 さらに架橋剤として、 メチロール化あるいはアルキロール化したメラミ ン系、 尿素系、 グリオキザ一ル系、 アクリルアミ ド系等の化合物、 エポキシ化合 物、 ポリイソシァネートの少なくとも 1種類を含有することが特に好ましい。 帯電防止層の表面固有抵抗値は、 使用する目的に応じ任意に設定することがで きる。 例えば、 通常のほこりが付着しない程度の場合には、 1 X 1 θ ΩΖΕ]程 度である。  In the antistatic layer, in addition to the antistatic resin composition, a binder is used to improve the strength of the coating of the antistatic layer, adhesion to the base film, water resistance, solvent resistance, blocking property, etc. Contain thermoplastic resin such as thermoplastic polyester resin, acrylic resin, polyvinyl resin, etc. and / or polymer compound such as thermosetting resin such as thermosetting acrylic resin, urethane resin, melamine resin, epoxy resin, etc. Is preferred. In addition, it is particularly preferable to include at least one of a methylolated or alkylolated melamine-based, urea-based, glyoxal-based, acrylamide-based compound, an epoxy compound, and a polyisocyanate as a cross-linking agent. preferable. The surface specific resistance of the antistatic layer can be arbitrarily set according to the purpose of use. For example, when ordinary dust does not adhere, it is about 1 X 1 θΩ 1].
帯電防止層を基材フィルム表面に形成させる方法としては、 特に限定されない が、 コ一ティング法が好ましく用いられる。 例えばコーティング法としては、 ェ アドクタコート法、 ナイフコート法、 ロッ ドコート法、 正回転ロールコート法、 :―スロールコート法、 グラビアコート法、 キスコート法、 ビ一ドコート法、 T/JP00/00406 スリ ッ トオリフェスコート法、 キャストコート法などが挙げられる。 The method for forming the antistatic layer on the surface of the substrate film is not particularly limited, but a coating method is preferably used. For example, as a coating method, there are an advector coat method, a knife coat method, a rod coat method, a forward rotation roll coat method, a roll coat method, a gravure coat method, a kiss coat method, a bead coat method, T / JP00 / 00406 Slit orifice coat method, cast coat method and the like.
また、 帯電防止層の乾燥温度は、 60〜150°Cの範囲であればよく、 80〜 1 30°Cの範囲が好ましい。 乾燥温度が 60°C未満であると、 硬化時間が長くな り、 生産性が低下するので好ましくない。  The drying temperature of the antistatic layer may be in the range of 60 to 150 ° C, preferably in the range of 80 to 130 ° C. If the drying temperature is lower than 60 ° C., the curing time is prolonged, and the productivity is undesirably reduced.
帯電防止曆は高分子フィルム表面に設けられるが、 粘着剤曆及び離型層は、 当 該帯電防止層上に設けても、 高分子フィルムの帯電防止層形成面と反対面上に設 けてもよい。 実施態様例  The antistatic layer is provided on the surface of the polymer film, but the pressure-sensitive adhesive and the release layer can be provided on the surface of the polymer film opposite to the surface on which the antistatic layer is formed, even if provided on the antistatic layer. Is also good. Example of embodiment
次に、 実施例をあげて本説明をさらに説明する。 但し、 本発明は、 その要旨を 逸脱しない限り以下の実施例に限定されるものではない。 なお、 以下の実施例、 比較例における物性の評価方法は以下の通りである。  Next, the present description will be further described with reference to examples. However, the present invention is not limited to the following examples unless departing from the gist thereof. The methods for evaluating physical properties in the following Examples and Comparative Examples are as follows.
ぐ配向主軸の最大歪み > Maximum orientation main axis distortion>
フィルム形状がロール上の場合は、 長手方向に 1000mm、 幅方向に全幅を 切り出し、 シート状サンプルの場合は、 試料形状に内接する面積最大の長方形を 描き、 該長方形の頂点と 2辺を共有する 1 0 Omm四方の正方形を 4つの頂点か ら切り出す。 配向主軸をマイクロ波によって求め、 最初に測定した点の分子配向 角を 0度としたときに他の三点の配向角が最も差の大きいものから最大値を求め、 配向主軸の最大歪みとした。 マイクロ波による主軸の配向角を測定するために、 神崎製紙 (株)製の分子配向計 (MOA—200 1 A) を用いた。  If the film shape is on a roll, cut out the entire width in the length direction of 1000 mm and the width direction.For a sheet-like sample, draw the rectangle with the largest area inscribed in the sample shape, and share two sides with the vertex of the rectangle 10 Omm A square is cut out from four vertices. The major axis of orientation was determined by microwave, and when the molecular orientation angle of the first measured point was 0 degree, the maximum value was determined from the one with the largest difference in the orientation angle of the other three points, and the maximum value was defined as the maximum distortion of the major axis of orientation. . In order to measure the orientation angle of the main axis by microwaves, a molecular orientation meter (MOA-2001A) manufactured by Kanzaki Paper Co., Ltd. was used.
<リタ一デ一ション値〉 <Rita value>
リタ一デ―シヨン値は、 フィルム上の直交する二軸の屈折率の異方性 (ΔΝ = The retardation value is determined by the biaxial orthogonal refractive index anisotropy (ΔΝ =
I Nx-Ny I ) とフィルム厚み d (nm) との積 (ΔΝχ d) で定義される数 値である。 It is a numerical value defined by the product (ΔΝχd) of I Nx-Ny I) and the film thickness d (nm).
二軸の屈折率の異方性 (ΔΝ) は、 次の方法により求めた。 二枚の偏光板を用 いて、 フィルムの配向軸方向を求め、 配向軸がほぼ直行するように、 4 cmx 2 cmの長方形に切り出し、 測定用サンプルとした。 該サンプルについて、 ほぼ直 行する二軸の屈折率をアッベ屈折率計 ( (株) ァタゴ製 ATAGO 4T) に よって求め、 前記二軸の屈折率差の絶対値を屈折率の異方性 (ΔΝ) とした。 フィルムの厚み d (nm)は、電気マイクロメータ (ファインリユーフ社製 ミ リ トロン 1245D) を用いて測定し、 単位を nmに換算した。 The biaxial refractive index anisotropy (ΔΝ) was determined by the following method. Using two polarizing plates, the orientation axis direction of the film was determined, and a 4 cm x 2 cm rectangle was cut out so that the orientation axis was almost perpendicular to obtain a measurement sample. The biaxial refractive index of the sample, which is almost perpendicular, is determined by an Abbe refractometer (ATAGO 4T manufactured by Atago Co., Ltd.), and the absolute value of the biaxial refractive index difference is determined by the refractive index anisotropy (ΔΝ ). The thickness d (nm) of the film was measured using an electric micrometer (Miritron 1245D manufactured by Fine Lieuf), and the unit was converted to nm.
< 120°Cにおける熱収縮率〉 <Heat shrinkage at 120 ° C>
一辺 1 00mmの正方形に切ったフィルムの対角線の交点を中心に直径 5 Om mの円を描き、 120°Cに加熱した熱風乾燥機中に無荷重の状態で 30分放置し た後取り出し、 デジタイザ一によつて寸法変化を読み取り、 対角線の交点をとお る収縮の最大位置の長さ (B) から下式により求めた。  Draw a circle with a diameter of 5 Om m centering on the intersection of the diagonal lines of the film cut into a square of 100 mm on a side, leave it in a hot air dryer heated to 120 ° C for 30 minutes with no load, take it out, and take it out. The dimensional change was read and the length was calculated from the length (B) of the maximum position of contraction at the intersection of the diagonal lines according to the following equation.
120°Cにおける熱収縮率 = (50— B) /50 X 100 (%)  Heat shrinkage at 120 ° C = (50— B) / 50 X 100 (%)
<ヘイズおよび全光線透過率〉 <Haze and total light transmittance>
日本電色工業株式会社製濁度計 (NDH—300) を用い、 5個所のサンプル をとり、 その平均値を求めた。  Using a turbidity meter (NDH-300) manufactured by Nippon Denshoku Industries Co., Ltd., five samples were taken and the average value was determined.
<表面保護フィルムのコントラスト評価〉 <Contrast evaluation of surface protective film>
フィルム形状がロール上の場合は、 長手方向に 1000mm、 幅方向に全幅を 切り出し、 シート状サンプルの場合は、 試料形状に内接する面積最大の長方形を 描き、 該長方形の頂点と 2辺を共有する 10 Omm四方の正方形を 4つの頂点か ら切り出す。  If the film shape is on a roll, cut out the entire width in the length direction of 1000 mm and the width direction.For a sheet-like sample, draw the rectangle with the largest area inscribed in the sample shape, and share two sides with the vertex of the rectangle Cut a 10 Omm square from four vertices.
二枚の直行方向に配置した偏光板の間に 10 Omm四方のフィルムを設置し、 二枚の偏光板の下部から蛍光燈を光源とし、 反対方向から目視で、 サンプルを挿 入した場合と揷入しない場合における光の透過光量の変化を観察した。 実施例 1  A 10 Omm square film is placed between two polarizing plates arranged in the perpendicular direction, a fluorescent lamp is used as the light source from the bottom of the two polarizing plates, and the sample is inserted visually from the opposite direction. The change in the amount of transmitted light in each case was observed. Example 1
ポリエチレンテレフタレートを、 水冷却した回転急冷ドラム上にフィルム形成 ダイを通して溶融押出しし、 未延伸フィルムを作製した。 この未延伸フィルムを 幅方向に 90°Cで 3. 7倍延伸した後、 120°Cで 10秒間ァニール処理を行つ た。 テンターを出た後、 フィルムの両端部を端から 2 Ommの位置でトリミング し、 熱収縮量の小さい部位を切除した。 続いて、 セラミ ックロールによりフィル ムを 100°Cに加熱し、 更に表面温度が 700°Cの赤外線ヒーターを 4本用い加 熱しながら、 縦方向に 3%弛緩処理を行った。 続いて、 セラミックロールでフィ ルムを 160°Cに加熱しながら、 2%弛緩処理を行った。 その後、 フィルムの両 6 端部をクリップで把持し、 2 3 5 Cで熱固定処理を施し、 更に 1 8 0 °Cから 1 2 0 °Cに冷却しながら、 幅方向に 3 %弛緩処理を行った。 このようにして、 厚み 4 6; u mの一軸延伸ポリエチレンテレフ夕 レートフィルムを得た。 Polyethylene terephthalate was melt extruded through a film forming die onto a water-cooled rotating quenching drum to produce an unstretched film. This unstretched film was stretched 3.7 times in the width direction at 90 ° C, and then annealed at 120 ° C for 10 seconds. After leaving the tenter, both ends of the film were trimmed at a position of 2 Omm from the end, and a portion having a small heat shrinkage was cut off. Subsequently, the film was heated to 100 ° C by a ceramic roll, and a 3% relaxation treatment was performed in the vertical direction while heating using four infrared heaters with a surface temperature of 700 ° C. Subsequently, a 2% relaxation treatment was performed while heating the film to 160 ° C with a ceramic roll. Then both sides of the film 6 The end was gripped with a clip, heat-set at 235 ° C., and 3% relaxed in the width direction while cooling from 180 ° C. to 120 ° C. Thus, a uniaxially stretched polyethylene terephthalate film having a thickness of 46 μm was obtained.
得られた一軸延伸ポリエチレンテレフタレートフィルムの、 配向主軸の最大歪 みは 5度、 コントラス トの最低値は 9 4、 1 2 0 °Cにおける熱収縮率は 0. 7 %、 ヘイズは 0. 1 %、 全光線透過率は 9 0 %、 リタ一デ一シヨン値は 5 1 0 0 n m であつに。  In the obtained uniaxially stretched polyethylene terephthalate film, the maximum distortion of the orientation main axis is 5 degrees, the minimum value of the contrast is 94, the heat shrinkage at 120 ° C is 0.7%, and the haze is 0.1%. The total light transmittance is 90%, and the retardation value is 5100 nm.
この厚み 4 6〃mの一軸延伸ポリエチレンテレフ夕レートフィルムに、 ェチレ ンー酢酸ビニル系接着剤 1 0 0重量部に対して溶剤としてトルエン 4 0 0重量部 を加えた塗布液を、乾燥後の膜厚が 1 0 mになるように塗布して乾燥固化させ、 片面に粘着剤層を積層した表面保護フィルムを得た。  A coating solution obtained by adding 400 parts by weight of toluene as a solvent to 100 parts by weight of an ethylene-vinyl acetate adhesive to a uniaxially stretched polyethylene terephthalate film having a thickness of 46 μm, and drying the film. It was applied to a thickness of 10 m and dried and solidified to obtain a surface protective film having an adhesive layer laminated on one side.
この表面保護フィルムのコントラストを評価したところ、 サンプルを挿入した 場合と挿入しない場合における光の透過光量の変化はほとんどなく良好であった。 実施例 2  When the contrast of the surface protective film was evaluated, there was almost no change in the amount of transmitted light between the case where the sample was inserted and the case where the sample was not inserted. Example 2
実施例 1において、 一軸延伸ポリエチレンテレフタレートフィルムの厚みのみ を 4 6 から 1 1 0 mに変更した以外は実施例 1と同様に実施し、 表面保護 フィルムを得た。  A surface protection film was obtained in the same manner as in Example 1, except that only the thickness of the uniaxially stretched polyethylene terephthalate film was changed from 46 to 110 m.
得られた一軸延伸ポリエチレンテレフタレ一トフィル厶の、 配向主軸の最大歪 みは 7度、 コントラス トの最低値は 6 0、 1 2 0 °Cにおける熱収縮率は 1 . 0 %、 ヘイズは 0. 1 %、 全光線透過率は 9 0 %、 リタ一デーシヨン値は 1 1 0 0 0 n mでめつた。  In the obtained uniaxially stretched polyethylene terephthalate film, the maximum distortion of the main orientation axis is 7 degrees, the minimum value of the contrast is 60, the heat shrinkage at 120 ° C is 1.0%, and the haze is 0%. 1%, the total light transmittance was 90%, and the retardation value was 1100 nm.
実施例 1と同様に、 片面に粘着剤層を積層した表面保護フィルムを得た。 この 表面保護フィルムのコントラストを評価したところ、 コントラス卜の差が若干見 られたが、 実用上使用可能であった。 実施例 3  In the same manner as in Example 1, a surface protection film having a pressure-sensitive adhesive layer laminated on one side was obtained. When the contrast of the surface protective film was evaluated, a slight difference in contrast was observed, but the film was practically usable. Example 3
実施例 1において、 高分子フィルム用ポリマーとして、 ポリエチレンテレフ夕 レートの代わりに、 ポリエチレン一 2 , 6—ナフタレートを用いた以外は実施例 0 6 Example 1 Example 1 was repeated except that polyethylene 1,2,6-naphthalate was used instead of polyethylene terephthalate as the polymer for the polymer film. 0 6
1と同様に実施し、 厚み 46 mの一軸延伸ポリエチレン一 2, 6—ナフタレー トフィルムを得た。 This was carried out in the same manner as in Example 1 to obtain a uniaxially stretched polyethylene 1,2,6-naphthalate film having a thickness of 46 m.
得られた一軸延伸ポリエチレン一 2, 6—ナフタレートフィルムの、 配向主軸 の最大歪みは 6度、 コントラストの最低値は 71、 120°Cにおける熱収縮率は 0. 9%、 ヘイズは 0. 1%、 全光線透過率は 89%、 リタ一デーシヨン値は 5 200 nmであった。  In the obtained uniaxially stretched polyethylene-1,6-naphthalate film, the maximum principal axis distortion is 6 degrees, the minimum contrast is 71, the heat shrinkage at 120 ° C is 0.9%, and the haze is 0.1. %, The total light transmittance was 89%, and the retardation value was 5200 nm.
実施例 1と同様に、 片面に粘着剤層を積層した表面保護フィルムを得た。 この 表面保護フィルムのコントラストを評価したところ、 実施例 1と同様にコントラ ストの差は小さく良好であつた。 実施例 4  In the same manner as in Example 1, a surface protection film having a pressure-sensitive adhesive layer laminated on one side was obtained. When the contrast of this surface protective film was evaluated, the difference in contrast was small and good as in Example 1. Example 4
重量平均分子量が 20万のポリ一 L一乳酸を、 水冷却した回転急冷ドラム上に フイルム形成ダイを通して溶融押出しし、 未延伸フィルムを作製した。 この未延 伸フィルムを幅方向に 100°Cで 4倍延伸した後、 120°Cで 10秒間ァニール 処理を行った。 テンターを出た後、 フィルムの両端部を端から 2 Ommの位置で トリミングし、 熱収縮量の小さい部位を切除した。 続いて、 セラミックロールに よりフィルムを 100°Cに加熱し、 更に表面温度が 700°Cの赤外線ヒ一ターを 4本用い加熱しながら、 縦方向に 3%弛緩処理を行った。 続いて、 セラミック口 —ルでフィルムを 135°Cに加熱しながら、 2%弛緩処理を行った。 その後、 フ ィルムの両端部をクリップで把持し、 155 °Cで熱固定処理を施し、更に 135°C で幅方向に 3%弛緩処理を行った。 このようにして、 厚み 46 の一軸延伸ポ リー L一乳酸フィルムを得た。  Poly-L-lactic acid having a weight-average molecular weight of 200,000 was melt-extruded through a film forming die onto a water-cooled rotary quenching drum to produce an unstretched film. The unstretched film was stretched 4 times in the width direction at 100 ° C, and then annealed at 120 ° C for 10 seconds. After exiting the tenter, both ends of the film were trimmed at 2 Omm from the ends, and sites with small heat shrinkage were cut off. Subsequently, the film was heated to 100 ° C by a ceramic roll, and further subjected to a 3% relaxation treatment in the longitudinal direction while heating using four infrared heaters having a surface temperature of 700 ° C. Subsequently, the film was subjected to a 2% relaxation treatment while heating the film to 135 ° C with a ceramic aperture. Thereafter, both ends of the film were gripped with clips, heat-set at 155 ° C, and 3% relaxed in the width direction at 135 ° C. Thus, a uniaxially stretched poly-L-lactic acid film having a thickness of 46 was obtained.
得られた一軸延伸ポリ— L一乳酸フィルムの、 配向主軸の最大歪みは 6度、 コ ントラストの最低値は 78、 120°Cにおける熱収縮率は 0. 7%、 ヘイズは 0. 2%、 全光線透過率は 90%、 リタ一デーシヨン値は 5000 nmであった。 実施例 1と同様に、 片面に粘着剤層を積層した表面保護フィルムを得た。 この 表面保護フイルムのコントラストを評価したところ、 実施例 1と同様にコントラ ス卜の差は小さく良好であった。 実施例 5 In the obtained uniaxially stretched poly-L-lactic acid film, the maximum distortion of the main orientation axis is 6 degrees, the minimum value of contrast is 78, the heat shrinkage at 120 ° C is 0.7%, the haze is 0.2%, The total light transmittance was 90% and the retardation value was 5000 nm. In the same manner as in Example 1, a surface protection film having a pressure-sensitive adhesive layer laminated on one side was obtained. When the contrast of this surface protective film was evaluated, the difference in contrast was small and good as in Example 1. Example 5
実施例 1と同様にして、 厚み 4 6 mの一軸延伸ポリエチレンテレフタレート フィルムを得た。 得られた一軸延伸ポリエチレンテレフタレートフィルム上に、 紫外線硬化型帯電防止樹脂組成物(大日精化工業(株)製: E X G 4 0— 1 3 ΓΑ S— 1」 ) を固形分厚みが 5〃mとなるように塗布した。 この塗布層に紫外線を 照射し、 塗布層を硬化させることにより、 フィルム上に帯電防止層を積層した。 引き続き、 この一軸延伸ポリエチレンテレフタレートフィルムの帯電防止層を積 層していない面に実施例 1と同様にして粘着剤層を積層し、 片面に粘着剤層と他 面に帯電防止層を積層した表面保護フィルムを得た。  In the same manner as in Example 1, a uniaxially stretched polyethylene terephthalate film having a thickness of 46 m was obtained. On the obtained uniaxially stretched polyethylene terephthalate film, an ultraviolet-curable antistatic resin composition (manufactured by Dainichi Seika Kogyo Co., Ltd .: EXG 40-13 S-1) with a solid thickness of 5 m It applied so that it might become. The coating layer was irradiated with ultraviolet light to cure the coating layer, thereby laminating an antistatic layer on the film. Subsequently, a pressure-sensitive adhesive layer was laminated on the surface of the uniaxially stretched polyethylene terephthalate film on which the antistatic layer was not laminated in the same manner as in Example 1, and a surface on which a pressure-sensitive adhesive layer was laminated on one surface and an antistatic layer was laminated on the other surface. A protective film was obtained.
この表面保護フィルムのコントラス トを評価したところ、 コントラス卜の差は 小さく良好であった。 また、 この表面保護フィルムは、 剥離する際に静電気の発 生がなく、 ゴミの付着がほとんどなく良好であった。 比較例 1  When the contrast of this surface protective film was evaluated, the difference in contrast was small and good. In addition, the surface protective film did not generate static electricity when it was peeled off, and was good with little adhesion of dust. Comparative Example 1
ポリエチレンテレフタレ一トを水冷却した回転急冷ドラム上にフィルム形成ダ ィを通して溶融押出しし、 未延伸フィルムを作製した。 この未延伸フィルムを幅 方向に 9 0 °Cで 4. 0倍延伸した。 さらに、 2 2 0 °Cで幅方向に熱固定し、 続い て 2 0 0 °Cで 4 %リラッタスして、 厚み 4 6 mの一軸延伸ポリエチレンテレフ 夕レートフィルムを得た。  Polyethylene terephthalate was melt-extruded through a film forming die onto a water-cooled rotary quenching drum to produce an unstretched film. This unstretched film was stretched 4.0 times at 90 ° C. in the width direction. Further, the film was heat-set in the width direction at 220 ° C., and then relatated at 200 ° C. by 4% to obtain a uniaxially stretched polyethylene terephthalate film having a thickness of 46 m.
得られた一軸延伸ポリエチレンテレフタレートフィルムの、 配向主軸の最大歪 みは 1 2度、コントラストの最低値は 2 2、 1 2 0 °Cにおける熱収縮率は 0. 7 %、 ヘイズは 0. 1 %、 全光線透過率は 9 0 %、 リタ一デーシヨン値は 5 1 0 0 n m であった。  In the obtained uniaxially stretched polyethylene terephthalate film, the maximum distortion of the main orientation axis is 12 degrees, the minimum value of contrast is 22, the heat shrinkage at 120 ° C is 0.7%, and the haze is 0.1%. The total light transmittance was 90%, and the retardation value was 5100 nm.
この一軸延伸ポリエチレンテレフタレ一トフイルムを用いた以外は実施例 1と 同様にして、 片面に粘着剤層を積層した表面保護フィルムを得た。 この表面保護 フィルムのコントラストを評価したところ、 コントラストの差が大きく好ましく なかった。 比較例 2 ポリエチレンテレフタレートを水冷却した回転急冷ドラム上にフィルム形成ダ ィを通して溶融押出しし、 未延伸フィルムを作製した。 この未延伸フィルムを幅 方向に 90°Cで 3. 8倍延伸して、 厚み 20〃mの一軸延伸ポリエチレンテレフ タレ一トフィルムを得た。 A surface protection film having an adhesive layer laminated on one surface was obtained in the same manner as in Example 1 except that this uniaxially stretched polyethylene terephthalate film was used. When the contrast of this surface protective film was evaluated, the difference in contrast was large, which was not preferable. Comparative Example 2 Polyethylene terephthalate was melt-extruded through a film forming die onto a water-cooled rotary quenching drum to produce an unstretched film. The unstretched film was stretched 3.8 times in the width direction at 90 ° C. to obtain a uniaxially stretched polyethylene terephthalate film having a thickness of 20 μm.
得られた一軸延伸ポリエチレンテレフタレ一トフイルムの、 配向主軸の最大歪 みは 12度、コントラストの最低値は 20、 120°Cにおける熱収縮率は 0. 6%、 ヘイズは 0. 1 %、 全光線透過率は 90%、 リタ一デーシヨン値は 800 nmで めった o  In the obtained uniaxially stretched polyethylene terephthalate film, the maximum distortion of the main orientation axis is 12 degrees, the minimum value of contrast is 20, the heat shrinkage at 120 ° C is 0.6%, the haze is 0.1%, and the total The light transmittance was 90% and the retardation value was 800 nm.
この一軸延伸ポリエチレンテレフ夕レートフイルムを用いた以外は実施例 1と 同様に実施し、 片面に粘着剤層を積層した表面保護フィルムを得た。 この表面保 護フィルムのコントラストを評価したところ、 光の干渉が観察され好ましくなか つた。 実施例 6  The procedure was performed in the same manner as in Example 1 except that this uniaxially stretched polyethylene terephthalate film was used, to obtain a surface protective film having an adhesive layer laminated on one side. When the contrast of this surface protection film was evaluated, light interference was observed, which was not preferable. Example 6
ポリエチレンテレフタレートを水冷却した回転急冷ドラム上にフィルム形成ダ ィを通して溶融押出しし、 未延伸フィルムを作製した。 この未延伸フィルムを幅 方向に 90°Cで 3. 2倍延伸した後、 80°Cで 10秒間ァニール処理を行った。 テンタ一を出た後、 Ί 5°Cのロールを用いフィルムを予熱した後、直径 10mm、 表面温度 700°Cの赤外線ヒーターをフィルムとの距離 20 mmの位置に 3本設 置し更にフィルムを加熱し縦方向に 3. 0倍延伸した。 その後、 フィルムの両端 部をトリミングし、 熱収縮量がフィルム中央より 20%以上異なるところを切除 した。 続いて、 セラミックロールによりフィルムを 100°Cに加熱し、 更に上記 の表面温度が 700°Cの赤外線ヒータ一を 4本用い加熱しながら、 縦方向に 7% 弛緩処理を行った。 続いてセラミックロール間でフィルムを熱風により 160°C に加熱しながら、 2%弛緩処理を行った。 その後、 フィルムの両端部をクリップ で把持し、 235°Cで熱固定処理を施し、 更に 200°Cから 120eCに冷却しな がら、 幅方向に 3%弛緩処理を行った。 このようにして、 厚み 46 mのニ軸延 伸ポリエチレンテレフ夕レートフィルムを得た。 Polyethylene terephthalate was melt-extruded through a film forming die onto a water-cooled rotary quenching drum to produce an unstretched film. This unstretched film was stretched 3.2 times at 90 ° C in the width direction, and then annealed at 80 ° C for 10 seconds. After leaving the tenter, preheat the film using a Ί5 ° C roll, and then install three infrared heaters with a diameter of 10 mm and a surface temperature of 700 ° C at a distance of 20 mm from the film. It was heated and stretched 3.0 times in the machine direction. After that, both ends of the film were trimmed, and portions where the heat shrinkage differs by more than 20% from the center of the film were cut off. Subsequently, the film was heated to 100 ° C by a ceramic roll, and further subjected to a 7% relaxation treatment in the vertical direction while heating using four infrared heaters having a surface temperature of 700 ° C. Subsequently, a 2% relaxation treatment was performed while heating the film between the ceramic rolls to 160 ° C by hot air. Thereafter, both ends of the film are held with clips, subjected to a heat treatment at 235 ° C, reluctant such further cooled from 200 ° C to 120 e C, was 3% relaxation treatment in the transverse direction. Thus, a biaxially stretched polyethylene terephthalate film having a thickness of 46 m was obtained.
得られた二軸延伸ポリエチレンテレフタレ一トフィルムの、 配向主軸の最大歪 みは 7度、 コントラストの最低値は 50、 120°Cにおける熱収縮率は 0. 8%、 ヘイズは 0. 1 %、 全光線透過率は 90%、 リタ一デーシヨン値は 1 100 nm であった。 Maximum strain of the main orientation axis of the obtained biaxially stretched polyethylene terephthalate film 7 °, the lowest contrast is 50, the heat shrinkage at 120 ° C is 0.8%, the haze is 0.1%, the total light transmittance is 90%, and the retardation value is 1100 nm. Was.
この厚み 46 mの二軸延伸ポリエチレンテレフタレ一トフィルムに、 ェチレ ン—酢酸ビニル系接着剤 100重量部に対して溶剤としてトルエン 400重量部 を加えた塗布液を、 乾燥膜厚 10 mになるように塗布して乾燥固化させ、 片面 に粘着剤層を積層した表面保護フィルムを得た。 この表面保護フィルムのコント ラストを評価したところ、 サンプルを挿入した場合と挿入しない場合における光 の透過光量の変化は若干見られたが、 実用上使用可能であった。 実施例 7  A coating liquid obtained by adding 400 parts by weight of toluene as a solvent to 100 parts by weight of an ethylene-vinyl acetate adhesive to a biaxially oriented polyethylene terephthalate film having a thickness of 46 m to a dry film thickness of 10 m. And dried and solidified to obtain a surface protective film having an adhesive layer laminated on one side. When the contrast of the surface protective film was evaluated, a slight change in the amount of transmitted light was observed when the sample was inserted and when the sample was not inserted, but the sample was practically usable. Example 7
実施例 1において、 熱固定温度を 235°Cから 220°Cに変更する以外は実施 例 1と同様にして、 厚み 46 mの一軸延伸ポリエチレンテレフタレ一トフィル ムを得た。 得られた一軸延伸ポリエチレンテレフタレートフィルムの、 配向主軸 の最大歪みは 4度、 コントラス トの最低値は 153、 120°Cにおける熱収縮率 は 0. 8%、 ヘイズは 0. 1 %、 全光線透過率は 90%、 リタ一デーシヨン値は 5100 nmであった。  A uniaxially stretched polyethylene terephthalate film having a thickness of 46 m was obtained in the same manner as in Example 1 except that the heat setting temperature was changed from 235 ° C to 220 ° C. In the obtained uniaxially stretched polyethylene terephthalate film, the maximum distortion of the main orientation axis is 4 degrees, the minimum value of the contrast is 153, the heat shrinkage at 120 ° C is 0.8%, the haze is 0.1%, and the total light transmission. The rate was 90% and the retardation value was 5100 nm.
さらに、 実施例 1と同様にして片面に粘着剤層を積層した表面保護フィルムを 得た。 この表面保護フィルムを用いた偏光板の検査性は良好であった。 実施例 8  Further, a surface protective film having a pressure-sensitive adhesive layer laminated on one surface was obtained in the same manner as in Example 1. The testability of the polarizing plate using this surface protective film was good. Example 8
ポリエチレンテレフタレートを水冷却した回転急冷ドラム上にフィルム形成ダ ィを通して溶融押出しし、 未延伸フィルムを作製した。 この未延伸フィルムを幅 方向に 90°Cで 4. 0倍延伸した。 さらに、 180°Cで幅方向に熱固定し、 続い て 170°Cで 4%緩和処理して、 厚み 46 の一軸延伸ポリエチレンテレフタ レ一トフィルムを得た。 得られた一軸延伸ポリエチレンテレフ夕 レートフィルム の、 配向主軸の最大歪みは 5度、 コントラストの最低値は 94、 12 CTCにおけ る熱収縮率は 1. 0%、 ヘイズは 0. 1 %、 全光線透過率は 90%、 リターデー ション値は 5100 nmであった。 さらに、 実施例 1と同様にして、 片面に粘着剤層を積層した表面保護フィルム を得た。 この表面保護フィルムを用いた偏光板の検査性は良好であった。 実施例 9 Polyethylene terephthalate was melt-extruded through a film forming die onto a water-cooled rotary quenching drum to produce an unstretched film. The unstretched film was stretched 4.0 times at 90 ° C in the width direction. Further, the film was heat-set in the width direction at 180 ° C, and subsequently subjected to a 4% relaxation treatment at 170 ° C to obtain a uniaxially stretched polyethylene terephthalate film having a thickness of 46. In the obtained uniaxially stretched polyethylene terephthalate film, the maximum distortion of the orientation main axis was 5 degrees, the minimum value of contrast was 94, the heat shrinkage at 12 CTC was 1.0%, the haze was 0.1%, and the total The light transmittance was 90% and the retardation value was 5100 nm. Further, in the same manner as in Example 1, a surface protective film having an adhesive layer laminated on one side was obtained. The testability of the polarizing plate using this surface protective film was good. Example 9
実施例 1において、 フィルムの厚みを 46〃mから 1 10〃mに、 かつ熱固定 温度を 235°Cから 220°Cに変更する以外は実施例 1と同様にして、 厚み 1 1 0〃mの一軸延伸ポリエチレンテレフタレ一トフィルムを得た。 得られたー軸延 伸ポリエチレンテレフタレートフィルムの、 配向主軸の最大歪みは 4度、 コント ラス トの最低値は 145、 120°Cにおける熱収縮率は 1. 0%、 ヘイズは 0. 2%、 全光線透過率は 90%、 リタ一デ一シヨン値は 1 1000 nmであった。 さらに、 実施例 1と同様にして片面に粘着剤層を積層した表面保護フィルムを 得た。 この表面保護フィルムを用いた偏光板の検査性は良好であった。 実施例 10  In Example 1, except that the film thickness was changed from 46〃m to 110 1m and the heat setting temperature was changed from 235 ° C to 220 ° C, the thickness was 110〃m Of a uniaxially stretched polyethylene terephthalate film was obtained. The maximum strain of the main axis of orientation of the obtained axially stretched polyethylene terephthalate film was 4 degrees, the minimum value of the contrast was 145, the heat shrinkage at 120 ° C was 1.0%, the haze was 0.2%, The total light transmittance was 90% and the retardation value was 11000 nm. Further, a surface protective film having a pressure-sensitive adhesive layer laminated on one surface was obtained in the same manner as in Example 1. The testability of the polarizing plate using this surface protective film was good. Example 10
実施例 1において、ポリエチレンテレフ夕レー卜の代わりにポリエチレン一 2, 6—ナフタレートを用い、 かつ熱固定温度を 235°Cから 220°Cに変更する以 外は実施例 1と同様にして、 厚み 46 の一軸延伸ポリエチレンテレフタレー トフイルムを得た。 得られた一軸延伸ボリエチレンテレフタレートフィルムの、 配向主軸の最大歪みは 4度、 コントラス トの最低値は 160、 120°Cにおける 熱収縮率は 0. 9%、 ヘイズは 0. 1%、 全光線透過率は 89%、 リタ一デ一シ ョン値は 5200 nmであった。  In the same manner as in Example 1, except that polyethylene 1,2-naphthalate was used instead of polyethylene terephthalate and the heat setting temperature was changed from 235 ° C to 220 ° C, 46 uniaxially stretched polyethylene terephthalate films were obtained. The obtained uniaxially stretched polyethylene terephthalate film has a maximum orientation principal axis of 4 degrees, a minimum contrast of 160, a heat shrinkage of 0.9% at 120 ° C, a haze of 0.1%, and all rays. The transmittance was 89% and the retardation value was 5200 nm.
さらに、 実施例 1と同様にして片面に粘着剤層を積層した表面保護フイルムを 得た。 この表面保護フィルムを用いた偏光板の検査性は良好であった。 実施例 1 1  Further, in the same manner as in Example 1, a surface protective film having an adhesive layer laminated on one side was obtained. The testability of the polarizing plate using this surface protective film was good. Example 1 1
実施例 7で得た厚さ 46 mの一軸延伸ポリエチレンテレフ夕レートフィルム 上に、 第 4級アンモニゥム塩型カチオン性高分子化合物 (日東紡績 (株) 製: P AS 10L) 35重量部、 共重合ポリエステル樹脂 50重量部、 メチロール化メ ラミン樹脂 (住友化学工業 (株) 製; SUMI MALM— 40W) 10重量部、 /画 6 エポキシ変性シリコーン (信越化学工業 (株) 製; P o 1 n M F— 1 8 ) 5重 量部を混合し、 2重量%の帯電防止曆用の塗工液を作成し、 この塗液を A g Zm 2 (塗液量べ一ス) の塗布量で塗布し、 1 2 0 °C、 1分間加熱乾燥および硬化反 応を行わせ帯電防止層を積層した。 次いで、 この一軸延伸ポリエチレンテレフタ レートフィルムの帯電防止層を積層していない面に、 実施例 1と同様にして粘着 剤層を積層し、 片面に粘着剤層、 他面に帯電防止層を積層した表面保護フィルム を得た。 35 parts by weight of a quaternary ammonium salt type cationic polymer compound (manufactured by Nitto Boseki Co., Ltd .: PAS 10L) on the 46 m-thick uniaxially stretched polyethylene terephthalate film obtained in Example 7 50 parts by weight of polyester resin, 10 parts by weight of methylolated melamine resin (SUMI MALM—40W, manufactured by Sumitomo Chemical Co., Ltd.) / Paint 6 Epoxy-modified silicone (Shin-Etsu Chemical Co., Ltd .; Po 1 n MF- 18) 5 parts by weight are mixed to prepare a 2% by weight coating solution for antistatic coating. The solution was applied at a coating amount of Ag Zm 2 (coating amount base), heated and dried at 120 ° C. for 1 minute, and cured to form an antistatic layer. Next, an adhesive layer was laminated on the surface of the uniaxially stretched polyethylene terephthalate film on which the antistatic layer was not laminated in the same manner as in Example 1, an adhesive layer was laminated on one surface, and an antistatic layer was laminated on the other surface. A surface protection film was obtained.
この表面保護フィルムのコントラストを評価したところ、 コントラストの差は 小さく良好であった。 また、 この表面保護フィルムは、 剥離する際に静電気の発 生がなく、 ゴミの付着がほとんどなく良好であった。 実施例 1 2  When the contrast of this surface protective film was evaluated, the difference in contrast was small and good. In addition, the surface protective film did not generate static electricity when it was peeled off, and was good with little adhesion of dust. Example 1 2
実施例 1 1において、 一軸延伸ポリエチレンテレフタレートフィルムの帯電防 止層を積層した面に、 実施例 1と同様にして粘着剤層を積層し、 帯電防止層、 粘 着剤の順に片面に積層した表面保護フィルムを得た。  In Example 11, a pressure-sensitive adhesive layer was laminated on the surface of the uniaxially stretched polyethylene terephthalate film on which the antistatic layer was laminated in the same manner as in Example 1, and the antistatic layer and the adhesive were laminated on one surface in this order. A protective film was obtained.
この表面保護フィルムのコントラストを評価したところ、 コントラス卜の差は 小さく良好であった。 また、 この表面保護フィルムは、 剥離する際に静電気の発 生がなく、 ゴミの付着がほとんどなく良好であつた。 実施例 1 3  When the contrast of this surface protective film was evaluated, the difference in contrast was small and good. In addition, the surface protective film did not generate static electricity when peeled off, and had good adhesion with little dust. Example 13
実施例 7において、 エチレン一酢酸ビニル系粘着剤含有塗布液の代わりに、 離 型剤として付加反応型シリコーン樹脂 (信越化学工業 (株) 製; 3— 7 7 8、 固形分 3 0 %トルエン溶解液) 1 0 0重量部と、 白金触媒 (信越化学工業 (株) 製; P L— 5 0 T) 1重量部とをトルエンに溶解して、 全体の固形分が 3重量% のトルエン溶液 (離型層用塗布液) を用い、 6 g /m2 (塗液量ベース) の塗布 量で塗布し、 1 2 0 °C、 1分間加熱乾燥および付加重合反応を行わせ、 片面に離 型層を積層した表面保護フィルムを作製した。 この表面保護フィルムを用いた偏 光板の検査性は良好であった。 0/00406 実施例 14 In Example 7, an addition reaction type silicone resin (manufactured by Shin-Etsu Chemical Co., Ltd .; 3-7778, solid content: 30% dissolved in toluene) was used as a release agent instead of the ethylene vinyl acetate acetate-based adhesive-containing coating solution. 100 parts by weight) and 1 part by weight of a platinum catalyst (manufactured by Shin-Etsu Chemical Co., Ltd .; PL-50T) are dissolved in toluene, and a 3% by weight total toluene solid solution (solvent) is dissolved. 6 g / m 2 (coating liquid base) using a coating liquid for mold layer), heat-dry at 120 ° C for 1 minute, and carry out addition polymerization reaction. To produce a surface protective film. The testability of the polarizing plate using this surface protective film was good. 0/00406 Example 14
実施例 6で得た一軸延伸ポリー L一乳酸フィルムに、 実施例 13と同様の付加 反応型シリコーン樹脂を主な構成成分とする離型層を積層し、 片面に離型層を積 層した表面保護フィルムを得た。 この表面保護フィルムを用いた偏光板の検査性 は良好であった。 また、 この表面保護フィルムは、 剥離する際に静電気の発生が なく、 ゴミの付着がほとんどなく良好であつた。  A surface obtained by laminating a release layer mainly composed of an addition-reaction type silicone resin similar to that of Example 13 on the uniaxially stretched poly L monolactic acid film obtained in Example 6, and laminating a release layer on one surface. A protective film was obtained. The testability of the polarizing plate using this surface protective film was good. The surface protective film did not generate static electricity when peeled off, and had good adhesion with little dust.
実施例 15 Example 15
離型剤として、 付加反応型シリコーン樹脂の代わりに、 UV硬化型シリコーン 樹脂 (信越化学工業 (株) 製; X— 62— 5048) を用いた以外は実施例 12 と同様に実施し、 片面に離型層を積層した表面保護フィルムを得た。 この表面保 護フィルムを用いた偏光板の検査性は良好であった。 実施例 1 6  The same procedure as in Example 12 was carried out except that a UV-curable silicone resin (X-62-5048, manufactured by Shin-Etsu Chemical Co., Ltd.) was used instead of the addition-reaction silicone resin as the release agent. A surface protective film having a release layer laminated thereon was obtained. The testability of the polarizing plate using this surface protection film was good. Example 16
実施例 13において、 離型剤として付加反応型シリコーン樹脂を含有する塗布 液の代わりに、 フッ素系溶剤 (3M社製: FC— 77 「フロリナート」 ) を希釈 溶媒として、 これにフッ素含有樹脂として含フッ素アクリル樹脂 (ネオス (株) 製: RBX— 725NF 「フリリース」 ) とフッ素系オイル (デュポン社製; 1 57FS— M 「クライ トツタス」 ) を重量固形分比 20 : 80の組成で均一分散 させた濃度 3. 0重量%の塗布液を固形分厚みで 0. 4 mとなるように塗布し、 120°C、 1分間加熱乾燥させ、 片面に離型層を積層した表面保護フィルムを得 た。 この表面保護フィルムを用いた偏光板の検査性は良好であった。 実施例 17  In Example 13, instead of a coating solution containing an addition-reaction-type silicone resin as a release agent, a fluorine-based solvent (FC-77 “Fluorinert” manufactured by 3M) was used as a diluting solvent, which was used as a fluorine-containing resin. A fluoroacrylic resin (manufactured by Neos Corp .: RBX-725NF "Frerelease") and a fluorine-based oil (manufactured by DuPont; 157FS-M "Crytotus") are uniformly dispersed in a composition with a weight-to-solids ratio of 20:80. A coating solution having a concentration of 3.0% by weight was applied to a solid thickness of 0.4 m and dried by heating at 120 ° C for 1 minute to obtain a surface protective film having a release layer laminated on one side. . The testability of the polarizing plate using this surface protective film was good. Example 17
実施例 1 1で得られた帯電防止層が積層されたー軸延伸ポリエチレンテレフタ レートの、 帯電防止層が積層されていない面に、 実施例 13と同様の付加反応型 シリコーン樹脂を主な構成成分とする離型層を積層し、 片面に帯電防止層、 他面 に離型層を積層した表面保護フィルムを得た。 この表面保護フィルムを用いた偏 光板の検査性は良好であった。 また、 この表面保護フィルムは、 剥離する際に静 電気の発生がなく、 ゴミの付着がほとんどなく良好であった。 «〜― Example 11 A main component of the addition-reaction-type silicone resin similar to that of Example 13 was formed on the surface of the -axis-stretched polyethylene terephthalate obtained by laminating the antistatic layer obtained in 1 where the antistatic layer was not laminated. A release layer as a component was laminated, and a surface protective film was obtained in which an antistatic layer was laminated on one side and a release layer was laminated on the other side. The testability of the polarizing plate using this surface protective film was good. In addition, the surface protective film did not generate static electricity when it was peeled off, and was good with little adhesion of dust. «~ ―
PCT/JP00/00406  PCT / JP00 / 00406
実施例 1 8 Example 18
実施例 1 7において、 一軸延伸ポリエチレンテレフタレートの、 帯電防止層を 積層した面に、 実施例 1 3と同様の付加反応型シリコーン樹脂を主な構成成分と する離型層を積層し、 片面に帯電防止層、 離型層の順で積層した表面保護フィル ムを得た。 この表面保護フィルムを用いた偏光板の検査性は良好であった。また、 この表面保護フィルムは、 剥離する際に静電気の発生がなく、 ゴミの付着がほと んどなく良好であった。 比較例 3  In Example 17, a release layer mainly composed of an addition reaction type silicone resin similar to that of Example 13 was laminated on the surface of the uniaxially stretched polyethylene terephthalate on which the antistatic layer was laminated, and charged on one side. A surface protection film laminated in the order of the prevention layer and the release layer was obtained. The testability of the polarizing plate using this surface protective film was good. The surface protective film did not generate static electricity when peeled off, and had good adhesion with little dust. Comparative Example 3
ポリエチレンテレフタレートを水冷却した回転急冷ドラム上にフィルム形成ダ ィを通して溶融押出しし、 未延伸フィルムを作製した。 この未延伸フィルムを幅 方向に 9 0 °Cで 4. 0倍延伸した。 さらに、 2 5 5 °Cで幅方向に熱固定し、 続い て 2 0 0 °Cで 4 %緩和処理して、 厚み 4 6〃mの一軸延伸ポリエチレンテレフタ レートフィルムを得た。 得られた一軸延伸ポリエチレンテレフタレートフィルム を用いた以外は実施例 1と同様にして、 片面に粘着剤層を積層した表面保護フィ ルムを得た。  Polyethylene terephthalate was melt-extruded through a film forming die onto a water-cooled rotary quenching drum to produce an unstretched film. This unstretched film was stretched 4.0 times at 90 ° C. in the width direction. Further, the film was thermally fixed in the width direction at 255 ° C., and subsequently subjected to a 4% relaxation treatment at 200 ° C. to obtain a uniaxially stretched polyethylene terephthalate film having a thickness of 46 μm. A surface protection film having a pressure-sensitive adhesive layer laminated on one side was obtained in the same manner as in Example 1 except that the obtained uniaxially stretched polyethylene terephthalate film was used.
この一軸延伸ポリエチレンテレフタレートフィルムの、 配向主軸の最大歪みは 1 1度、 コントラストの最低値は 2 5、 1 2 0 °Cにおける熱収縮率は 0. 5 %、 ヘイズは 0. 1 %、 全光線透過率は 9 0 %、 リタ一デーシヨン値は 5 1 0 0 n m であった。 この表面保護フィルムは、幅方向でのコントラストの差が大きかった。 そのため、 前記表面保護フィルムを用いた偏光板の検査性は不良であった。 比較例 4  In this uniaxially stretched polyethylene terephthalate film, the maximum distortion of the main orientation axis is 11 degrees, the minimum value of contrast is 25, the thermal shrinkage at 120 ° C is 0.5%, the haze is 0.1%, and all rays The transmittance was 90% and the retardation value was 5100 nm. This surface protective film had a large difference in contrast in the width direction. Therefore, the testability of the polarizing plate using the surface protective film was poor. Comparative Example 4
ポリエチレンテレフタレートを水冷却水冷却した回転急冷ドラム上にフィルム 形成ダイを通して溶融押出し、 未延伸フィルムを作製した。 この未延伸フィルム を長手方向に 9 0 °Cで 3. 2倍延伸した後、 幅方向に 9 0 °Cで 3. 5倍延伸し、 2 2 0 °Cで熱固定した、 厚み 5 0 mの二軸延伸ポリエチレンテレフタレートフ イルムを得た。 一軸延伸ポリエチレンテレフタレ一トフイルムの代わりに、 上記 0/00406 で得た二軸延伸ポリエチレンテレフタ レートフィルムを用いる以外は実施例 1 と 同様にして、 片面に粘着剤層を積層した表面保護フィルムを得た。 Polyethylene terephthalate was melt-extruded through a film forming die onto a rotating quenching drum cooled with water cooling water to produce an unstretched film. This unstretched film was stretched 3.2 times at 90 ° C in the longitudinal direction, then stretched 3.5 times at 90 ° C in the width direction, and heat-fixed at 220 ° C, thickness of 50 m. To obtain a biaxially stretched polyethylene terephthalate film. Instead of the uniaxially stretched polyethylene terephthalate film, A surface protection film having a pressure-sensitive adhesive layer laminated on one surface was obtained in the same manner as in Example 1 except that the biaxially stretched polyethylene terephthalate film obtained in Example No. 0/00406 was used.
得られた二軸延伸ポリエチレンテレフタレ一トフィルムの、 配向主軸の最大歪 みは 2 7度、 コントラストの最低値は 2、 1 2 0 °Cにおける熱収縮率は 0. 6 %、 ヘイズは 0. 1 %、 全光線透過率は 9 0 %、 リタ一デ一シヨン値は 9 0 0 n mで あった。 この表面保護フィルムは、 幅方向でのコントラストの差が大きく、 更に 光の干渉が観察された。 そのため、 前記表面保護フィルムを用いた偏光板の検査 性は不良であった。 発明の効果  In the obtained biaxially stretched polyethylene terephthalate film, the maximum distortion of the main orientation axis is 27 degrees, the minimum value of contrast is 2, the heat shrinkage at 120 ° C is 0.6%, and the haze is 0. The light transmittance was 1%, the total light transmittance was 90%, and the retardation value was 900 nm. This surface protective film had a large contrast difference in the width direction, and light interference was observed. Therefore, the testability of the polarizing plate using the surface protective film was poor. The invention's effect
本発明の表面保護フィルムは、 基材フィルムに特定の配向主軸の最大歪み値を 有する高分子フィルムを用いることで、 光学的評価 (例えば、 偏光板や位相差板 などの液晶表示装置の構成部材のコントラス ト、 表示能力、 色相、 光学欠点等) の検査時に保護フィルムの剥離をすることなしに、 不具合を更に見易くすること が可能である。 また、 ポリエチレンテレフ夕レートのような安価で総合性能の優 れた樹脂を用いることで、 コストダウンが可能となる。 図面の簡単な説明  The surface protective film of the present invention is characterized in that, by using a polymer film having a maximum distortion value of a specific orientation main axis as a base film, optical evaluation (for example, components of a liquid crystal display device such as a polarizing plate and a retardation plate) is performed. Inspection of the contrast, display ability, hue, optical defects, etc.) of the protective film can be performed without peeling off the protective film, and the defect can be seen more easily. The cost can be reduced by using an inexpensive resin with excellent overall performance, such as polyethylene terephthalate. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の表面保護フィルムの一例を模式的に示した断面図である。 図 2は、 本発明の表面保護フィルムの一例を模式的に示した断面図である。 図 3は、 本発明の表面保護フィルムの一例を模式的に示した断面図である。 図 4は、 本発明の表面保護フィルムの一例を模式的に示した断面図である。 図 5は、 本発明の表面保護フィルムの一例を模式的に示した断面図である。 図 6は、 本発明の表面保護フィルムの一例を模式的に示した断面図である。 図 7は、 図 1及び図 4の表面保護フィルムを、 光学用部材の一例として偏光板 に貼り合わせた例を模式的に示した断面図である。  FIG. 1 is a cross-sectional view schematically showing one example of the surface protective film of the present invention. FIG. 2 is a cross-sectional view schematically showing one example of the surface protective film of the present invention. FIG. 3 is a cross-sectional view schematically showing one example of the surface protective film of the present invention. FIG. 4 is a cross-sectional view schematically showing one example of the surface protective film of the present invention. FIG. 5 is a cross-sectional view schematically showing one example of the surface protective film of the present invention. FIG. 6 is a cross-sectional view schematically showing one example of the surface protective film of the present invention. FIG. 7 is a cross-sectional view schematically showing an example in which the surface protective film of FIGS. 1 and 4 is bonded to a polarizing plate as an example of an optical member.
図 8は、 く高分子フィルムのコントラストの最低値〉の評価における、 サンプ リング方法の概略図である。  FIG. 8 is a schematic diagram of a sampling method for evaluating the lowest contrast of a polymer film>.
(符号の説明) 表面保護フィルム (Explanation of code) Surface protection film
光学用部材 Optical components
高分子フィルム Polymer film
粘着剤層 Adhesive layer
帯電防止層 Antistatic layer
離型層 Release layer
ト リァセチルセルロース (TAC) 偏光膜  Triacetyl cellulose (TAC) polarizing film
偏光板の粘着剤層 Adhesive layer of polarizing plate
長手方向 Longitudinal direction
幅方向 Width direction
端辺 Edge
頂点 Vertex
頂点の中心 Vertex center

Claims

請 求 の 範 囲 The scope of the claims
1 . 高分子フィルムの片面に粘着剤層が積層された表面保護フィルムであって、 前記高分子フィルムの配向主軸の最大歪みが 1 0度以下であることを特徴とする 表面保護フィル厶。 1. A surface protection film in which an adhesive layer is laminated on one surface of a polymer film, wherein the maximum distortion of the main orientation axis of the polymer film is 10 degrees or less.
2. 高分子フィルムの片面に離型層が積層された表面保護フィルムであって、 前 記高分子フィルムの配向主軸の最大歪みが 1 0度以下であることを特徴とする表 面保護フィルム。 2. A surface protection film in which a release layer is laminated on one surface of a polymer film, wherein the maximum distortion of the main axis of orientation of the polymer film is 10 degrees or less.
3. 前記高分子フィルムのリタ一デ一ション値が 1 0 0 0 n m以上であることを 特徴とする請求項 1または 2記載の表面保護フィルム。 3. The surface protective film according to claim 1, wherein the polymer film has a retardation value of 100 nm or more.
4. 前記高分子フィルムの下記一般式 (I ) で表されるコントラス ト (C ) の最 低値が少なくとも 7 0以上であることを特徴とする請求項 3記載の表面保護フィ ルム。 4. The surface protective film according to claim 3, wherein a minimum value of contrast (C) represented by the following general formula (I) of the polymer film is at least 70 or more.
C = Y 1 /Y 2 · · · ( I )  C = Y 1 / Y 2 (I)
[ここで、 Cはコントラスト、 Y 1は 2つの偏光子の光軸を平行状態にし、 高分 子フィルムをその 2つの偏光子の間に挿入したときの透過光量、 Y 2は 2つの偏 光子の光軸を直行状態にし、 高分子フィルムをその 2つの偏光子の間に挿入した ときの透過光量を示す。 ]  [Where C is the contrast, Y 1 is the amount of transmitted light when the optical axes of the two polarizers are parallel, and a polymer film is inserted between the two polarizers, and Y 2 is the two polarizers The figure shows the amount of transmitted light when the optical axis of the polarizer is in a perpendicular state and a polymer film is inserted between the two polarizers. ]
5. 前記高分子フイルムの 1 2 0 °Cにおける熱収縮率が 4 %以下であることを特 徴とする請求項 1または 2記載の表面保護フィルム。 5. The surface protective film according to claim 1, wherein the heat shrinkage at 120 ° C. of the polymer film is 4% or less.
6. 前記高分子フィルムのヘイズが 1 0 %以下であることを特徴とする請求項 1 または 2記載の表面保護フイルム。 6. The surface protective film according to claim 1, wherein the polymer film has a haze of 10% or less.
7 . 前記高分子フィルムがポリエステルフィルムであることを特徴とする請求項 1または 2記載の表面保護フィルム。 7. The polymer film is a polyester film. The surface protective film according to 1 or 2.
8. 請求項 7記載のポリエステルフィルムが、 ポリエチレンテレフタレ一ト又は これを主体とするポリエステルで構成されていることを特徴とする表面保護フィ ノレム。 8. A surface protective finolem, wherein the polyester film according to claim 7 is made of polyethylene terephthalate or polyester mainly composed of polyethylene terephthalate.
9. 請求項 7記載のポリエステルフィルムが、 ポリ乳酸を主たる構成成分とする ことを特徴とする表面保護フィルム。 9. A surface protective film, wherein the polyester film according to claim 7 is mainly composed of polylactic acid.
1 0. 前記表面保護フィルムの粘着剤層の反対面に帯電防止層が積層されている ことを特徴とする請求項 1記載の表面保護フィルム。 10. The surface protective film according to claim 1, wherein an antistatic layer is laminated on the surface of the surface protective film opposite to the pressure-sensitive adhesive layer.
1 1 . 前記表面保護フィルムの粘着剤層と高分子フィルムの間に帯電防止層が積 層されていることを特徴とする請求項 1記載の表面保護フィルム。 11. The surface protective film according to claim 1, wherein an antistatic layer is laminated between the pressure-sensitive adhesive layer and the polymer film of the surface protective film.
1 2. 前記表面保護フィルムの離型層の反対面に帯電防止層が積層されているこ とを特徴とする請求項 2記載の表面保護フィルム。 1 2. The surface protective film according to claim 2, wherein an antistatic layer is laminated on the surface of the surface protective film opposite to the release layer.
1 3. 前記表面保護フィルムの離型層と高分子フィルムの間に帯電防止層が積層 されていることを特徴とする請求項 2記載の表面保護フィルム。 1 3. The surface protective film according to claim 2, wherein an antistatic layer is laminated between the release layer and the polymer film of the surface protective film.
1 4. 請求項 2記載の離型層が、 シリコーン樹脂、 フッ素樹脂の少なくとも 1種 以上を主たる構成成分とすることを特徴とする表面保護フィルム。 1 4. A surface protective film, wherein the release layer according to claim 2 comprises at least one of silicone resin and fluorine resin as a main component.
1 5. 請求項 1 4記載のシリコーン樹脂が、 熱硬化型シリコーン樹脂または放射 線硬化型シリコーン樹脂であることを特徴とする表面保護フィルム。 15. A surface protective film, wherein the silicone resin according to claim 14 is a thermosetting silicone resin or a radiation-curable silicone resin.
1 6. 前記高分子フィルムがー軸延伸高分子フィルムであることを特徴とする請 求項 1または 2記載の表面保護フィルム。 1 6. The surface protective film according to claim 1, wherein the polymer film is a uniaxially stretched polymer film.
PCT/JP2000/000406 1999-01-27 2000-01-27 Surface-protective film WO2000044841A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000596089A JP3518677B2 (en) 1999-01-27 2000-01-27 Surface protection film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11/18433 1999-01-27
JP1843399 1999-01-27
JP11868599 1999-04-26
JP11/118685 1999-04-26

Publications (1)

Publication Number Publication Date
WO2000044841A1 true WO2000044841A1 (en) 2000-08-03

Family

ID=26355113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/000406 WO2000044841A1 (en) 1999-01-27 2000-01-27 Surface-protective film

Country Status (2)

Country Link
JP (1) JP3518677B2 (en)
WO (1) WO2000044841A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027019A (en) * 2001-07-23 2003-01-29 Hitachi Chem Co Ltd Self-adhesive film for protecting optical sheet
WO2003107049A1 (en) * 2002-06-18 2003-12-24 日東電工株式会社 Polarization plate with optical compensation layer and image display device
WO2004049021A1 (en) * 2002-11-25 2004-06-10 Mitsubishi Polyester Film Corporation Film for protecting surfece of optical member
WO2005109050A1 (en) * 2004-05-11 2005-11-17 Nitto Denko Corporation Polarizer protecting film, polarizing plate and image display
WO2005109051A1 (en) * 2004-05-11 2005-11-17 Nitto Denko Corporation Polarizer protecting film, polarizing plate and image display
JP2007017640A (en) * 2005-07-06 2007-01-25 Dainichiseika Color & Chem Mfg Co Ltd Optical protective film
JP2008096677A (en) * 2006-10-11 2008-04-24 Asahi Kasei Corp Wire grid polarizing plate
JP2012021167A (en) * 2011-10-19 2012-02-02 Nitto Denko Corp Surface-protective film of polarizing plate, polarizing plate protected by the surface-protective film and method for protecting surface of polarizing plate using the surface-protective film
WO2012014878A1 (en) * 2010-07-28 2012-02-02 リンテック株式会社 Removable pressure-sensitive adhesive sheet for protecting coating film
JP2012111208A (en) * 2010-11-26 2012-06-14 Nitto Denko Corp Protective film
JP2012111206A (en) * 2010-11-26 2012-06-14 Nitto Denko Corp Protective film
JP2012111207A (en) * 2010-11-26 2012-06-14 Nitto Denko Corp Protective film
JP2012116889A (en) * 2010-11-29 2012-06-21 Nitto Denko Corp Protective film
JP2013218118A (en) * 2012-04-09 2013-10-24 Kyodo Giken Kagaku Kk Both-sided pressure-sensitive adhesive sheet for information display surface, protective sheet for information display surface, and methods of manufacturing both-sided pressure-sensitive adhesive sheet and protective sheet
JP2014013367A (en) * 2012-06-04 2014-01-23 Dainippon Printing Co Ltd Optical laminate and picture display unit
JP2018002918A (en) * 2016-07-05 2018-01-11 日東電工株式会社 Surface protective film
CN107629711A (en) * 2016-07-05 2018-01-26 日东电工株式会社 Optics double-faced adhesive tape
JP2020101667A (en) * 2018-12-21 2020-07-02 富士ゼロックス株式会社 Image display device surface member
JP2020101666A (en) * 2018-12-21 2020-07-02 富士ゼロックス株式会社 Optical article
EP3680693A1 (en) * 2019-01-11 2020-07-15 Samsung Display Co., Ltd. Protective film, manufacturing method thereof, and method of manufacturing display device using the same
CN111433025A (en) * 2018-07-25 2020-07-17 日东电工株式会社 Polarizing plate, method for producing same, and image display device
JP2021011582A (en) * 2020-10-16 2021-02-04 日東電工株式会社 Surface protective film
US11286405B2 (en) 2016-12-05 2022-03-29 3M Innovative Properties Company Adhesive articles comprising polylactic acid polymer film and method of making
WO2023027119A1 (en) * 2021-08-27 2023-03-02 住友化学株式会社 Optical laminate
CN115746735A (en) * 2022-11-25 2023-03-07 宁波申山新材料科技有限公司 Acid and alkali resistant antistatic adhesive tape and processing method and pasting method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102060541B1 (en) * 2012-07-13 2019-12-31 삼성디스플레이 주식회사 Method of manufacturing display panel
WO2016010134A1 (en) * 2014-07-18 2016-01-21 富士フイルム株式会社 Uniaxially oriented polyester film, hard coat film, touch panel sensor film, anti-shattering film, anti-reflective film, touch panel, and method for manufacturing uniaxially oriented polyester film
CN109439224B (en) * 2018-10-25 2021-08-13 惠州市浩明科技股份有限公司 Scratch-resistant protective film
KR20230164587A (en) 2022-05-25 2023-12-04 닛토덴코 가부시키가이샤 Optical laminate
KR20230164589A (en) 2022-05-25 2023-12-04 닛토덴코 가부시키가이샤 Surface protection film and optical laminate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726223A (en) * 1993-07-08 1995-01-27 Dainippon Printing Co Ltd Highly transparent and slightly sticky antistatic protective film
JPH09146085A (en) * 1995-11-22 1997-06-06 Sekisui Chem Co Ltd Elliptic polarizing plate and liquid crystal display element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726223A (en) * 1993-07-08 1995-01-27 Dainippon Printing Co Ltd Highly transparent and slightly sticky antistatic protective film
JPH09146085A (en) * 1995-11-22 1997-06-06 Sekisui Chem Co Ltd Elliptic polarizing plate and liquid crystal display element

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027019A (en) * 2001-07-23 2003-01-29 Hitachi Chem Co Ltd Self-adhesive film for protecting optical sheet
WO2003107049A1 (en) * 2002-06-18 2003-12-24 日東電工株式会社 Polarization plate with optical compensation layer and image display device
US7126754B2 (en) 2002-06-18 2006-10-24 Nitto Denko Corporation Polarization plate with optical compensation layer and image display device
WO2004049021A1 (en) * 2002-11-25 2004-06-10 Mitsubishi Polyester Film Corporation Film for protecting surfece of optical member
WO2005109050A1 (en) * 2004-05-11 2005-11-17 Nitto Denko Corporation Polarizer protecting film, polarizing plate and image display
WO2005109051A1 (en) * 2004-05-11 2005-11-17 Nitto Denko Corporation Polarizer protecting film, polarizing plate and image display
JP4642572B2 (en) * 2005-07-06 2011-03-02 大日精化工業株式会社 Protective film for optics
JP2007017640A (en) * 2005-07-06 2007-01-25 Dainichiseika Color & Chem Mfg Co Ltd Optical protective film
JP4520445B2 (en) * 2006-10-11 2010-08-04 旭化成イーマテリアルズ株式会社 Wire grid polarizer
JP2008096677A (en) * 2006-10-11 2008-04-24 Asahi Kasei Corp Wire grid polarizing plate
GB2495064B (en) * 2010-07-28 2017-12-27 Lintec Corp Paint coat-protecting removable pressure-sensitive adhesive sheet
WO2012014878A1 (en) * 2010-07-28 2012-02-02 リンテック株式会社 Removable pressure-sensitive adhesive sheet for protecting coating film
GB2495064A (en) * 2010-07-28 2013-03-27 Lintec Corp Removable pressure-sensitive adhesive sheet for protecting coating film
JP2012111208A (en) * 2010-11-26 2012-06-14 Nitto Denko Corp Protective film
JP2012111206A (en) * 2010-11-26 2012-06-14 Nitto Denko Corp Protective film
JP2012111207A (en) * 2010-11-26 2012-06-14 Nitto Denko Corp Protective film
JP2012116889A (en) * 2010-11-29 2012-06-21 Nitto Denko Corp Protective film
JP2012021167A (en) * 2011-10-19 2012-02-02 Nitto Denko Corp Surface-protective film of polarizing plate, polarizing plate protected by the surface-protective film and method for protecting surface of polarizing plate using the surface-protective film
JP2013218118A (en) * 2012-04-09 2013-10-24 Kyodo Giken Kagaku Kk Both-sided pressure-sensitive adhesive sheet for information display surface, protective sheet for information display surface, and methods of manufacturing both-sided pressure-sensitive adhesive sheet and protective sheet
JP2014013367A (en) * 2012-06-04 2014-01-23 Dainippon Printing Co Ltd Optical laminate and picture display unit
CN107629711A (en) * 2016-07-05 2018-01-26 日东电工株式会社 Optics double-faced adhesive tape
CN107629710A (en) * 2016-07-05 2018-01-26 日东电工株式会社 Surface protection film
TWI806831B (en) * 2016-07-05 2023-07-01 日商日東電工股份有限公司 surface protection film
JP2018002918A (en) * 2016-07-05 2018-01-11 日東電工株式会社 Surface protective film
US11286405B2 (en) 2016-12-05 2022-03-29 3M Innovative Properties Company Adhesive articles comprising polylactic acid polymer film and method of making
CN111433025A (en) * 2018-07-25 2020-07-17 日东电工株式会社 Polarizing plate, method for producing same, and image display device
JP2020101666A (en) * 2018-12-21 2020-07-02 富士ゼロックス株式会社 Optical article
JP2020101667A (en) * 2018-12-21 2020-07-02 富士ゼロックス株式会社 Image display device surface member
JP7322397B2 (en) 2018-12-21 2023-08-08 富士フイルムビジネスイノベーション株式会社 optical article
EP3680693A1 (en) * 2019-01-11 2020-07-15 Samsung Display Co., Ltd. Protective film, manufacturing method thereof, and method of manufacturing display device using the same
US11800737B2 (en) 2019-01-11 2023-10-24 Samsung Display Co., Ltd. Protective film, manufacturing method thereof, and method of manufacturing display device using the same
JP2021011582A (en) * 2020-10-16 2021-02-04 日東電工株式会社 Surface protective film
JP7121785B2 (en) 2020-10-16 2022-08-18 日東電工株式会社 surface protection film
JP2022140545A (en) * 2020-10-16 2022-09-26 日東電工株式会社 Surface protective film
WO2023027119A1 (en) * 2021-08-27 2023-03-02 住友化学株式会社 Optical laminate
CN115746735A (en) * 2022-11-25 2023-03-07 宁波申山新材料科技有限公司 Acid and alkali resistant antistatic adhesive tape and processing method and pasting method thereof
CN115746735B (en) * 2022-11-25 2023-05-09 宁波申山新材料科技有限公司 Acid and alkali resistant antistatic adhesive tape and processing method and pasting method thereof

Also Published As

Publication number Publication date
JP3518677B2 (en) 2004-04-12

Similar Documents

Publication Publication Date Title
WO2000044841A1 (en) Surface-protective film
JP3840937B2 (en) Uniaxially oriented polyester film, and surface protective film and release film using the same
JP5130494B2 (en) Optical member
JP4765138B2 (en) Biaxially stretched polymer film for protecting polarizing plate or retardation plate, and polarizing plate or retardation plate surface protective film using the same
JP3570546B2 (en) Polymer film and surface protective film using the same
US6582789B1 (en) Surface protective film and laminate formed therefrom
US20160209548A1 (en) Method for manufacturing polarizing plate
KR102516908B1 (en) Method for producing phase-difference film and method for producing laminated polarizing plate
JP5012354B2 (en) Release film for protecting polarizing plate or protecting retardation plate, release film, and method for producing the same
JP2005002220A (en) Uniaxially oriented polyester film, and surface protection film and release film using the same
KR20020070365A (en) Polarizing plate and liquid-crystal display containing the same
KR100743421B1 (en) Polarizing plate
KR100688256B1 (en) Pressure sensitive adhesive film for protection of surface and manufacturing method thereof
CN114846371A (en) Method for manufacturing optical laminate
KR100689974B1 (en) Release film
JP2005066920A (en) Release film for polarizing sheet
EP3660557A1 (en) Polarizing plate and display device
WO2015152157A1 (en) Polarizing plate, image display and liquid crystal display
CN110959126B (en) Polarizing plate
JP3570545B2 (en) Polymer film and surface protective film using the same
TW202001308A (en) Polarizing film, polarizing film with adhesive layer, and image display device
JP5445610B2 (en) Release film for protecting polarizing plate or protecting retardation plate, release film, and method for producing the same
JP2004177718A (en) Mold releasing film
WO2021029190A1 (en) Transferring film laminate, and method for producing same
JP2007062239A (en) Protective film for adhesive layer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 596089

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase