WO2023027119A1 - Optical laminate - Google Patents

Optical laminate Download PDF

Info

Publication number
WO2023027119A1
WO2023027119A1 PCT/JP2022/031909 JP2022031909W WO2023027119A1 WO 2023027119 A1 WO2023027119 A1 WO 2023027119A1 JP 2022031909 W JP2022031909 W JP 2022031909W WO 2023027119 A1 WO2023027119 A1 WO 2023027119A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
polarizing plate
adhesive layer
antistatic
Prior art date
Application number
PCT/JP2022/031909
Other languages
French (fr)
Japanese (ja)
Inventor
智之 山口
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN202280057072.2A priority Critical patent/CN117836680A/en
Priority to KR1020247009591A priority patent/KR20240044530A/en
Publication of WO2023027119A1 publication Critical patent/WO2023027119A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/26Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer which influences the bonding during the lamination process, e.g. release layers or pressure equalising layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/16Optical coatings produced by application to, or surface treatment of, optical elements having an anti-static effect, e.g. electrically conducting coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements

Definitions

  • the present invention relates to an optical laminate.
  • a polarizing plate including a linear polarizing layer is used as one of the optical components that constitute display devices such as liquid crystal display devices and organic EL display devices.
  • the polarizing plate When incorporating a polarizing plate into a display device, the polarizing plate is usually bonded to an image display element such as a display panel via an adhesive layer.
  • an adhesive layer In order to facilitate the work of incorporating the polarizing plate into the display device, it is known to preliminarily laminate an adhesive layer and a release film that can be peeled off the adhesive layer on the polarizing plate.
  • the polarizing plate can be incorporated into a display device by peeling off the release film from the polarizing plate laminated with the pressure-sensitive adhesive layer and the release film, and adhering the exposed pressure-sensitive adhesive layer to an image display element.
  • Patent Document 1 discloses the use of a surface protection film to prevent scratches on the surface of a reinforcing film for imparting rigidity and impact resistance to optical members, electronic members, and the like.
  • a surface protective film that can be peeled off from the polarizing plate may be attached to the surface of the polarizing plate.
  • a stretched film obtained by stretching a resin film is sometimes used as the release film and the surface protection film.
  • a stretched film has an in-plane retardation. Therefore, by laminating the stretched film and the polarizing plate so that the slow axis of the stretched film and the absorption axis of the linear polarizing layer are parallel or orthogonal, light transmission observation with crossed Nicols using this laminate A polarizer can be inspected.
  • a laminate of polarizing plates and stretched films is stored in the form of a stack of multiple sheets, so when inspecting polarizing plates, the laminate is taken out one by one from the stack of laminates.
  • the effect of static electricity sometimes causes so-called multiple picking, in which two or more laminates are taken out at the same time.
  • static electricity can be suppressed by using a resin film having an antistatic layer formed on the surface.
  • a stretched film with an antistatic layer may cause in-plane retardation unevenness.
  • light transmission observation with crossed Nicols using a laminate obtained by laminating such a stretched film on a polarizing plate it is difficult to inspect the polarizing plate.
  • the present invention provides an optical laminate in which at least one of a release film having an antistatic layer and a surface protective film having an antistatic layer is laminated on a polarizing plate, and which has excellent inspection properties. aim.
  • the present invention provides the following optical layered body.
  • An optical laminate in which a polarizing plate including a linear polarizing layer, a first pressure-sensitive adhesive layer, and a release film that can be peeled from the first pressure-sensitive adhesive layer are laminated in this order,
  • the release film has, in order from the first adhesive layer side, a release treatment layer, a first base film, and a first antistatic layer containing an antistatic agent,
  • the average in-plane retardation value of the release film at a wavelength of 550 nm is 1000 nm or more
  • the optical laminate, wherein the difference between the maximum and minimum in-plane retardation values of the release film at a wavelength of 550 nm is 150 nm or less.
  • [2] further comprising a surface protective film that is peelable from the polarizing plate on the opposite side of the polarizing plate to the first pressure-sensitive adhesive layer;
  • the surface protective film has an average in-plane retardation value of 1000 nm or more at a wavelength of 550 nm
  • the optical laminate according to [2], wherein the difference between the maximum value and the minimum value of the in-plane retardation value at a wavelength of 550 nm of the surface protective film is 150 nm or less.
  • An optical laminate in which a first adhesive layer, a polarizing plate including a linear polarizing layer, and a surface protective film that can be peeled from the polarizing plate are laminated in this order,
  • the surface protective film has a second base film and a second antistatic layer containing an antistatic agent in order from the polarizing plate side,
  • the average in-plane retardation value of the surface protective film at a wavelength of 550 nm is 1000 nm or more
  • the optical laminate, wherein the difference between the maximum and minimum in-plane retardation values of the surface protection film at a wavelength of 550 nm is 150 nm or less.
  • optical laminate according to any one of [2] to [4], wherein the surface protection film further has a second adhesive layer on the polarizing plate side of the second base film.
  • a release film is provided on the side opposite to the polarizing plate side of the first pressure-sensitive adhesive layer, the release film being peelable from the first pressure-sensitive adhesive layer, [4] or [5], wherein the release film has, in order from the first adhesive layer side, a release treatment layer, a first base film, and a first antistatic layer containing an antistatic agent. optical laminate.
  • the release film has, in order from the first adhesive layer side, a release treatment layer, a first base film, and a first antistatic layer containing an antistatic agent, According to [1] to [6], the release film has a surface resistance value of 1.0 ⁇ 10 8 ⁇ / ⁇ or more and 5.0 ⁇ 10 14 ⁇ / ⁇ or less at a temperature of 23° C. and a relative humidity of 55% RH.
  • the surface protective film has a second base film and a second antistatic layer containing an antistatic agent in order from the polarizing plate side,
  • the surface resistance value of the surface protective film at a temperature of 23° C. and a relative humidity of 55% RH is 1.0 ⁇ 10 8 ⁇ / ⁇ or more and 1.0 ⁇ 10 11 ⁇ / ⁇ or less, [1] to [7].
  • the optical layered body according to any one of . [9] The optical laminate according to any one of [1] to [8], wherein the polarizing plate has a protective layer on one or both sides of the linear polarizing layer.
  • the release film includes, in order from the first pressure-sensitive adhesive layer side, a release treatment layer, a first base film, And, having a first antistatic layer containing an antistatic agent,
  • the average in-plane retardation value of the release film at a wavelength of 550 nm is 1000 nm or more
  • the surface protective film has a second base film and a second antistatic layer containing an antistatic agent in order from the polarizing plate side,
  • the average in-plane retardation value of the surface protective film at a wavelength of 550 nm is 1000 nm or more
  • an optical laminate in which at least one of a release film having an antistatic layer and a surface protective film having an antistatic layer is laminated on a polarizing plate has excellent inspection properties. can.
  • FIG. 1 is a cross-sectional view schematically showing an optical layered body according to one embodiment of the present invention
  • FIG. 1 It is sectional drawing which shows typically an example of the inspection method by cross Nicols of the optical laminated body shown in FIG.
  • FIG. 4 is a cross-sectional view schematically showing an optical layered body according to another embodiment of the present invention
  • FIG. 4 is a cross-sectional view schematically showing an example of a method for inspecting the optical layered body shown in FIG. 3 with crossed Nicols;
  • FIG. 1 is a cross-sectional view schematically showing an optical layered body according to one embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing an example of a method for inspecting the optical layered body shown in FIG. 1 with crossed Nicols.
  • the optical laminate 1 includes a polarizing plate 10 including a linear polarizing layer, a first pressure-sensitive adhesive layer 11, and a release film 20 that can be peeled from the first pressure-sensitive adhesive layer 11 in this order. Laminated.
  • the polarizing plate 10 and the first pressure-sensitive adhesive layer 11 are in direct contact, and the first pressure-sensitive adhesive layer 11 and the release film 20 are in direct contact.
  • the optical laminate 1 may further have a surface protection film 30 that can be peeled off from the polarizing plate 10 on the opposite side of the polarizing plate 10 to the first adhesive layer 11 side.
  • the polarizing plate 10 of the optical laminate 1 can be incorporated into a display device and used.
  • the release film 20 is peeled off from the optical laminate 1, the exposed first pressure-sensitive adhesive layer 11 is adhered to the image display element of the display device, and then the surface protection film 30 is attached. Just peel it off.
  • Examples of display devices include liquid crystal display devices and organic EL display devices, and examples of image display devices include liquid crystal display devices and organic EL display devices.
  • the optical laminate 1 has a polarizing plate 10 .
  • the polarizing plate 10 may include at least a linear polarizing layer, and may include layers other than the linear polarizing layer.
  • the polarizing plate 10 may have, for example, a protective layer on one side or both sides of the linear polarizing layer, and may have a surface functional layer on the surface of the protective layer.
  • the protective layer may be laminated so as to be in direct contact with the linear polarizing layer, or the linear polarizing layer and the protective layer may be laminated via a bonding layer.
  • the lamination layer is a pressure-sensitive adhesive layer or an adhesive layer. Details of each layer will be described later.
  • the optical laminate 1 has a first adhesive layer 11 .
  • the first adhesive layer 11 can be used as an adhesive layer for bonding the polarizing plate 10 to an image display element or the like.
  • the first adhesive layer 11 is preferably laminated so as to be in direct contact with the polarizing plate 10 . Details of the first adhesive layer 11 will be described later.
  • the optical laminate 1 has a release film 20 .
  • the release film 20 is for covering and protecting the first pressure-sensitive adhesive layer 11 , and in the optical layered product 1 , it is laminated on the first pressure-sensitive adhesive layer 11 so as to be peelable.
  • the release film 20 has an in-plane retardation value of the magnitude described later, and in the optical laminate 1, the slow axis of the release film 20 and the absorption axis of the linear polarizing layer are substantially parallel or substantially orthogonal to
  • substantially parallel means that the angle formed by the slow axis of the release film 20 and the absorption axis of the linearly polarizing layer is within 0 ° ⁇ 10 °, and the angle is preferably 0 ° ⁇ 5°, more preferably 0°.
  • Substantially orthogonal means that the angle formed by the slow axis of the release film 20 and the absorption axis of the linearly polarizing layer is within 90° ⁇ 10°, and the angle is preferably within 90° ⁇ 5°. and more preferably 90°.
  • the release film 20 includes, in order from the first pressure-sensitive adhesive layer 11 side of the optical laminate 1, a release treatment layer 22, a first base film 21, and a first antistatic agent containing a antistatic agent. It has a blocking layer 23 . It is preferable that the release treatment layer 22 and the first base film 21 are in direct contact with each other. It is preferable that the first base film 21 and the first antistatic layer 23 are in direct contact with each other. Details of each layer will be described later.
  • the average in-plane retardation value Re A1 of the release film 20 at a wavelength of 550 nm is 1000 nm or more.
  • the average in-plane retardation value Re A1 may be 1500 nm or more, 1800 nm or more, or 2000 nm or more.
  • the average in-plane retardation value Re A1 is usually 5000 nm or less, may be 4000 nm or less, or may be 3000 nm or less.
  • the average in-plane retardation value Re A1 of the release film 20 can be adjusted by the in-plane retardation value of the first base film 21, for example.
  • the in-plane retardation value of the first base film 21 can be adjusted by, for example, the type of resin forming the first base film 21, the draw ratio, and the like.
  • the average in-plane retardation value Re A1 can be determined by the method described in Examples below.
  • Re ma1 is the maximum in-plane retardation value of the release film 20 at a wavelength of 550 nm
  • Re mi1 is the minimum in - plane retardation value of the release film 20 at a wavelength of 550 nm.
  • ⁇ Re mi1 is 150 nm or less.
  • the difference ⁇ Re1 may be 130 nm or less, 110 nm or less, 100 nm or less, 80 nm or less, or 60 nm or less.
  • the difference ⁇ Re1 is usually 5 nm or more, may be 10 nm or more, or may be 20 nm or more.
  • the difference ⁇ Re1 of the release film 20 can be adjusted by the method of forming the first antistatic layer 23 on the first base film 21, or the like. For example, as will be described later, it can be adjusted by the temperature for drying a coating layer formed by coating a coating liquid containing an antistatic agent on the first base film 21 .
  • the difference ⁇ Re1 can be determined by the method described in Examples below.
  • the release film 20 included in the optical layered body 1 is used for multiple removal, in which two or more optical layered bodies 1 are taken out at the same time when the optical layered bodies 1 are taken out one by one from a stack in which a plurality of optical layered bodies 1 are superimposed. It has the first antistatic layer 23 in order to suppress such as.
  • the in-plane retardation value of the release film may not be uniform within the plane and may vary.
  • the polarizing plate 10 may be inspected by transmission observation of light with crossed Nicols using the optical layered body 1 .
  • the delamination of the optical layered body 1 occurs between the linearly polarized layer of the polarizing plate 60 for inspection and the linearly polarized layer of the optical layered body 1 arranged so as to form crossed Nicols. It tends to be noticeable when the film 20 is placed. Arrows in FIG. 2 indicate directions in which light from the light source 61 is observed when the polarizing plate 10 is inspected.
  • the optical laminate 1 even if it has the first antistatic layer 23, since the difference ⁇ Re1 of the release film 20 is within the above range, the variation of the in-plane retardation value is small. In cross Nicol light transmission observation using the optical layered body 1, the unevenness of the retardation is hardly visible. Therefore, since the polarizing plate 10 can be inspected by crossed Nicol light transmission observation using the optical layered body 1, the optical layered body 1 is excellent in inspectability.
  • the surface resistance value of the release film 20 at a temperature of 23° C. and a relative humidity of 55% RH is preferably 1.0 ⁇ 10 8 ⁇ / ⁇ or more and 5.0 ⁇ 10 14 ⁇ / ⁇ or less.
  • the surface resistance value of the release film 20 may be 1.0 ⁇ 10 9 ⁇ / ⁇ or more, 1.0 ⁇ 10 10 ⁇ / ⁇ or more, or 1.0 ⁇ 10 14 It may be ⁇ / ⁇ or less, 5.0 ⁇ 10 13 ⁇ / ⁇ or less, or 1.0 ⁇ 10 13 ⁇ / ⁇ or less.
  • the surface resistance value of the release film 20 can be adjusted, for example, by the type and amount of the antistatic agent contained in the first antistatic layer 23 .
  • the surface resistance value of the release film 20 is the surface resistance value of the release film 20 on the side of the first antistatic layer 23, and can be measured by the method described in Examples below.
  • the surface resistance value of the release film 20 is within the above range, even when the optical laminate 1 is taken out one by one from a stack in which a plurality of optical laminates 1 are stacked, two or more optical laminates It is possible to suppress multiple taking out of the body 1 at the same time.
  • the optical laminate 1 may have a surface protection film 30 .
  • the surface protective film 30 is used to cover and protect the surface of the polarizing plate 10 .
  • the optical layered body 1 is detachably attached to the surface of the polarizing plate 10 .
  • the surface protection film 30 may have an in-plane retardation value as described later.
  • the slow axis of the surface protective film 30 and the absorption axis of the linearly polarizing layer can be substantially parallel or substantially orthogonal. preferable.
  • substantially parallel means that the angle formed by the slow axis of the surface protective film 30 and the absorption axis of the linearly polarizing layer is within 0° ⁇ 10°, and the angle is preferably It is within 0° ⁇ 5°, more preferably 0°.
  • Substantially orthogonal means that the angle formed by the slow axis of the surface protective film 30 and the absorption axis of the linearly polarizing layer is within 90° ⁇ 10°, and the angle is preferably 90° ⁇ 5°. within, more preferably 90°.
  • the surface protective film 30 has a second base film 31 and a second antistatic layer 33 containing an antistatic agent in order from the polarizing plate 10 side of the optical laminate 1 .
  • the surface protection film 30 further has a second adhesive layer 32 on the polarizing plate 10 side of the optical laminate 1 as shown in FIG. It may be. It is preferable that the second adhesive layer 32 and the second base film 31 are in direct contact with each other.
  • FIG. 1 shows the case where the surface protection film 30 has the second adhesive layer 32.
  • the surface protection film 30 has the second adhesive layer 32 may not have
  • the second base film 31 and the polarizing plate 10 are in direct contact with each other in the optical laminate 1 .
  • the surface protection film 30 may further have a second antistatic layer 33 containing an antistatic agent on the side of the second base film 31 opposite to the second adhesive layer 32 side. It is preferable that the second base film 31 and the second antistatic layer 33 are in direct contact with each other. Details of each layer will be described later.
  • the average in-plane retardation value Re A2 of the surface protection film 30 at a wavelength of 550 nm may be 1000 nm or more.
  • the average in-plane retardation value Re A2 may be 1500 nm or more, 1800 nm or more, or 2000 nm or more.
  • the average in-plane retardation value Re A2 is usually 5000 nm or less, may be 4000 nm or less, or may be 3000 nm or less.
  • the average in-plane retardation value Re A2 of the surface protective film 30 can be adjusted by the in-plane retardation value of the second base film 31, for example.
  • the in-plane retardation value of the second base film 31 can be adjusted by, for example, the type of resin forming the second base film 31, the draw ratio, and the like.
  • the average in-plane retardation value Re A2 can be determined in accordance with the method for determining the average in-plane retardation value Re A1 of a release film described in Examples described later.
  • the difference ⁇ Re2 may be 130 nm or less, 110 nm or less, 100 nm or less, 80 nm or less, or 60 nm or less.
  • the difference ⁇ Re2 is typically 5 nm or more, and may be 10 nm or more. Said difference ⁇ Re2 may exceed 150 nm.
  • the difference ⁇ Re2 of the surface protection film 30 can be adjusted by the method of forming the second antistatic layer 33 on the second base film 31, or the like. For example, as will be described later, it can be adjusted by drying conditions of a coating layer formed by coating on the second base film 31 to form the second antistatic layer 33 .
  • the difference ⁇ Re2 can be determined according to the method for determining the difference ⁇ Re1 for the release film described in Examples described later.
  • the surface protection film 30 included in the optical layered body 1 has a second antistatic layer 33 in order to suppress multiple picking when the optical layered body 1 is taken out from a stack in which a plurality of optical layered bodies 1 are stacked. have.
  • the in-plane retardation value of the surface protective film may not be uniform in the plane and may vary. In the inspection of the polarizing plate 10, if the variation in the in-plane retardation value within the surface of the surface protective film becomes large, unevenness in the retardation is visually recognized in light transmission observation with crossed Nicols using the optical laminate, resulting in defects, etc.
  • the optical laminate 1 has the second antistatic layer 33, if the difference ⁇ Re2 of the surface protective film 30 is 150 nm or less, the amount of variation in the in-plane retardation value is small and the optical In light transmission observation with crossed Nicols using the laminate 1, the unevenness of the retardation is difficult to be visually recognized.
  • any of the release film 20 and the surface protective film 30 of the optical layered body 1 is arranged between the linearly polarizing layer of the polarizing plate for inspection and the linearly polarizing layer of the optical layered body 1, Since the polarizing plate 10 can be inspected by crossed Nicol light transmission observation using the optical layered body 1, the optical layered body 1 with even better inspection properties can be provided.
  • the surface resistance value of the surface protective film 30 at a temperature of 23° C. and a relative humidity of 55% RH is preferably 1.0 ⁇ 10 8 ⁇ / ⁇ or more and 1.0 ⁇ 10 11 ⁇ / ⁇ or less.
  • the surface resistance value of the surface protective film 30 may be 5.0 ⁇ 10 8 ⁇ / ⁇ or more, 1.0 ⁇ 10 9 ⁇ / ⁇ or more, or 5.0 ⁇ 10 ⁇ / ⁇ or more. It may be 10 ⁇ / ⁇ or less, 1.0 ⁇ 10 10 ⁇ / ⁇ or less, or 5.0 ⁇ 10 9 ⁇ / ⁇ or less.
  • the surface resistance value of the surface protective film 30 can be adjusted by, for example, the type and amount of the antistatic agent contained in the second antistatic layer 33 . Generally, as the amount of the antistatic agent contained in the second antistatic layer 33 increases, the conductivity of the second antistatic layer 33 improves, so the surface resistance value of the surface protection film 30 tends to decrease.
  • the surface resistance value of the surface protection film 30 is the surface resistance value of the surface protection film 30 on the side of the second antistatic layer 33, and can be measured by the method described in Examples below.
  • the surface resistance value of the surface protective film 30 is within the above range, even when the optical layered bodies 1 are taken out one by one from a stack in which a plurality of optical layered bodies 1 are stacked, two or more optical layered bodies 1 can be removed. It becomes even easier to suppress multiple picking in which the laminate 1 is taken out at the same time.
  • the peel force of the surface protective film 30 from the polarizing plate 10 at a temperature of 23° C. and a relative humidity of 55% is preferably 0.01 N/25 mm or more, may be 0.03 N/25 mm or more, and may be 0.08 N/ It may be 25 mm or more, preferably 0.5 N/25 mm or less, may be 0.4 N/25 mm or less, or may be 0.3 N/25 mm or less.
  • the peel force can be measured by the following procedure.
  • the release film 20 is peeled off from the optical laminate 1 including the surface protective film cut into a rectangle of 150 mm ⁇ 25 mm, and the first adhesive layer 11 is attached to the alkali-free glass substrate (thickness 0.7 mm, "Eagle XG”) to obtain a test piece.
  • the alkali-free glass substrate thinness 0.7 mm, "Eagle XG”
  • a sample for evaluation is prepared by storing it for 24 hours in an atmosphere of 23° C. and 55% RH.
  • the optical layered body 1 can be manufactured by laminating each layer so as to have the layer structure of the optical layered body 1 described above.
  • the optical laminate 1 can be produced by laminating the polarizing plate 10, the first pressure-sensitive adhesive layer 11, the release film 20, and, if necessary, the surface protection film 30.
  • the optical layered body 1 is, for example, a layered body in which the first adhesive layer 11 is layered on the release treatment layer 22 side of the release film 20, and the polarizing plate 10, or the surface protective film 30 and the polarizing plate 10 are layered. It may be obtained by laminating a laminate.
  • the optical layered body 1 is obtained by laminating the layered body of the first base film 21 and the release treatment layer 22 and the polarizing plate 10 with the first pressure-sensitive adhesive layer 11 interposed therebetween. It may be obtained by forming the first antistatic layer 23 on the side opposite to the release treated layer 22 side.
  • the first base film 21 is coated with a coating liquid containing an antistatic agent to form a first coating layer, the first coating layer is dried, forming the first antistatic layer 23 of the release film 20.
  • the coating liquid preferably contains an antistatic agent, which will be described later, and a solvent such as water or an organic solvent.
  • a release treatment layer 22 may be formed on the first base film 21 forming the first coating layer.
  • the release treatment layer 22 may be formed on the first base film 21 on which the first antistatic layer 23 is formed.
  • the release treatment layer 22, the first adhesive layer 11, and the polarizing plate 10 may be laminated on the first base film 21 forming the first coating layer.
  • the temperature when drying the first coating layer formed by applying the coating liquid is 60 ° C. or less. It may be 50° C. or lower, or 40° C. or lower, usually 5° C. or higher, preferably 10° C. or higher, and more preferably 15° C. or higher.
  • the drying time of the first coating layer may be set according to the drying temperature, the amount and type of solvent contained in the coating layer, and the like. It may be 10 minutes or more, usually 100 minutes or less, 60 minutes or less, or 30 minutes or less.
  • the release film 20 has an average in-plane retardation value Re A1 of 1000 nm or more at a wavelength of 550 nm.
  • Re A1 average in-plane retardation value
  • the first base film 21 is usually a highly stretched stretched film
  • the retardation is uneven due to stretching relaxation of the first base film 21 .
  • the drying temperature of the first coating layer is set to 60° C. or less. can be suppressed, and the difference ⁇ Re1 of the release film 20 can be reduced to, for example, 150 nm or less.
  • the second base film 31 is coated with a coating liquid containing an antistatic agent to form a second coating layer, and the second coating layer is dried to and forming the second antistatic layer 33 of the surface protection film 30 .
  • the coating liquid can contain an antistatic agent, which will be described later, and a solvent such as water or an organic solvent.
  • a second adhesive layer 32 may be formed on the second base film 31 forming the second coating layer.
  • the second adhesive layer 32 may be formed on the second base film 31 on which the second antistatic layer 33 is formed.
  • the second base film 31 forming the second coating layer may be laminated with the polarizing plate 10, and the second adhesive layer and the polarizing plate 10 are laminated in order from the second base film 31 side. good too.
  • the temperature when applying and drying the coating liquid is preferably 60 ° C. or less. , 50° C. or lower, or 40° C. or lower, usually 5° C. or higher, preferably 10° C. or higher, more preferably 15° C. or higher.
  • the drying time of the second coating layer may be set according to the drying temperature, the amount and type of solvent contained in the coating layer, and the like. It may be 10 minutes or more, usually 100 minutes or less, 60 minutes or less, or 30 minutes or less.
  • the second base film 31 is usually a highly stretched stretched film. Therefore, when the second coating layer is heated and dried in order to form the second antistatic layer 33, it is considered that the stretch relaxation of the second base film 31 causes unevenness in retardation.
  • the drying temperature of the second coating layer is set to 60° C. or less. can be suppressed, and the above-described difference ⁇ Re2 of the surface protection film 30 can be reduced to, for example, 150 nm or less.
  • FIG. 3 is a cross-sectional view schematically showing an optical layered body according to one embodiment of the present invention.
  • FIG. 4 is a cross-sectional view schematically showing an example of a method for inspecting the optical layered body shown in FIG. 3 with crossed Nicols.
  • the optical laminate 2 includes a first adhesive layer 11, a polarizing plate 10 including a linear polarizing layer, and a surface protective film 50 that can be peeled off from the polarizing plate 10, which are laminated in this order. ing.
  • the first pressure-sensitive adhesive layer 11 and the polarizing plate 10 are in direct contact, and the polarizing plate 10 and the surface protection film 50 are in direct contact.
  • the polarizing plate 10 and the first pressure-sensitive adhesive layer 11 included in the optical laminate 2 those described above can be used.
  • the optical laminate 2 may further have a release film 40 that can be peeled off from the first adhesive layer 11 on the opposite side of the first adhesive layer 11 from the polarizing plate 10 side.
  • the polarizing plate 10 of the optical layered body 2 can be used by incorporating it into a display device as described in the previous embodiments.
  • the optical layered body 2 has a surface protection film 50 .
  • the surface protective film 50 is used to cover and protect the surface of the polarizing plate 10 .
  • the optical layered body 2 is detachably attached to the surface of the polarizing plate 10 .
  • the surface protective film 50 has an in-plane retardation value as described later, and in the optical laminate 2, the slow axis of the surface protective film 50 and the absorption axis of the linear polarizing layer are substantially parallel or substantially orthogonal. The angles formed by the slow axis and the absorption axis when they are substantially parallel and when they are substantially orthogonal are as described in the previous embodiment.
  • the surface protection film 50 has a second base film 51 and a second antistatic layer 53 containing an antistatic agent in order from the polarizing plate 10 side of the optical laminate 2 .
  • the surface protective film 50 further has a second adhesive layer 52 on the polarizing plate 10 side of the optical laminate 1 as shown in FIG. It may be. It is preferable that the second adhesive layer 52 and the second base film 51 are in direct contact. It is preferable that the second base film 51 and the second antistatic layer 53 are in direct contact with each other.
  • FIG. 3 shows the case where the surface protection film 50 has the second adhesive layer 52.
  • the surface protection film 50 has the second adhesive layer 52 may not have
  • the second base film 51 and the polarizing plate 10 are in direct contact with each other in the optical laminate 2 .
  • the average in-plane retardation value Re A2 of the surface protective film 50 at a wavelength of 550 nm is 1000 nm or more.
  • the average in-plane retardation value Re A2 may be 1500 nm or more, 1800 nm or more, or 2000 nm or more.
  • the average in-plane retardation value Re A2 is usually 5000 nm or less, may be 4000 nm or less, or may be 3000 nm or less.
  • the average in-plane retardation value Re A2 of the surface protection film 50 can be adjusted by the method described in the previous embodiment, and can be determined by the method described in the previous embodiment.
  • the difference ⁇ Re2 may be 130 nm or less, 110 nm or less, 100 nm or less, 80 nm or less, or 60 nm or less.
  • the difference ⁇ Re2 is usually 5 nm or more, may be 10 nm or more, or may be 20 nm or more.
  • the difference ⁇ Re2 of the surface protective film 50 can be adjusted by the method described in the previous embodiment, and can be determined by the method described in the previous embodiment.
  • the surface protective film 50 included in the optical layered body 2 has a second antistatic layer 53 in order to suppress multiple pick-ups.
  • the in-plane retardation value of the surface protective film may not be uniform in the plane and may vary.
  • the polarizing plate 10 may be inspected by transmission observation of light with crossed Nicols using the optical layered body 2 . In this case, when the variation in the in-plane retardation value in the surface of the surface protective film increases, the retardation becomes uneven in cross Nicol light transmission observation using the optical laminate including the polarizing plate and the surface protective film. This makes it difficult to properly inspect the polarizing plate for defects. In particular, as shown in FIG.
  • the optical layered body 2 even if it has the second antistatic layer 53, the difference ⁇ Re2 of the surface protection film 50 is within the above range, so the amount of variation in the in-plane retardation value is small. , the unevenness of the retardation is difficult to be visually recognized in transmission observation of light with crossed Nicols using the optical layered body 2 . Therefore, since the polarizing plate 10 can be inspected by transmission observation of light in crossed Nicols using the optical layered body 2, the optical layered body 2 is excellent in inspectability.
  • the surface resistance value of the surface protection film 50 at a temperature of 23°C and a relative humidity of 55% RH can be within the range of the surface resistance value of the surface protection film described in the previous embodiment.
  • the peel strength of the surface protective film 50 from the polarizing plate 10 at a temperature of 23°C and a relative humidity of 55% can be within the range of the surface protective film described in the previous embodiment.
  • the optical laminate 2 may have a release film 40 .
  • the release film 40 is used to cover and protect the first adhesive layer 11 .
  • the optical layered body 2 is laminated so as to be peelable from the first pressure-sensitive adhesive layer 11 .
  • the release film 40 may have an in-plane retardation as described later.
  • the release film 40 has an in-plane retardation, in the optical laminate 2, the slow axis of the release film 40 and the absorption axis of the linearly polarizing layer are substantially parallel or substantially orthogonal. preferable.
  • the angles formed by the slow axis and the absorption axis when they are substantially parallel and substantially orthogonal are as described in the previous embodiments.
  • the release film 40 has a release treatment layer 42 and a first base film 41 in order from the first adhesive layer 11 side of the optical layered body 2 . It is preferable that the release treatment layer 42 and the first base film 41 are in direct contact with each other.
  • the release film 40 may further have a first antistatic layer 43 containing an antistatic agent on the side of the first base film 41 opposite to the release treated layer 42 side. It is preferable that the first base film 41 and the first antistatic layer 43 are in direct contact with each other.
  • the average in-plane retardation value Re A1 of the release film 40 at a wavelength of 550 nm is 1000 nm or more.
  • the average in-plane retardation value Re A1 may be 1500 nm or more, 1800 nm or more, or 2000 nm or more.
  • the average in-plane retardation value Re A1 is usually 5000 nm or less, may be 4000 nm or less, or may be 3000 nm or less.
  • the average in-plane retardation value Re A1 of the release film 40 can be adjusted by the method described in the previous embodiment, and can be determined by the method described in the previous embodiment.
  • Re ma1 is the maximum in-plane retardation value of the release film 40 at a wavelength of 550 nm
  • Re mi1 is the minimum in-plane retardation value of the release film 40 at a wavelength of 550 nm.
  • ⁇ Re mi1 is 150 nm or less.
  • the difference ⁇ Re1 may be 130 nm or less, 110 nm or less, 100 nm or less, 80 nm or less, or 60 nm or less.
  • the difference ⁇ Re1 is usually 5 nm or more, may be 10 nm or more, or may be 20 nm or more. Said difference ⁇ Re1 may exceed 150 nm.
  • the difference ⁇ Re1 of the release film 40 can be adjusted by the method described in the previous embodiment, and can be determined by the method described in the previous embodiment.
  • the release film 40 included in the optical layered body 2 has a first antistatic layer 43 in order to suppress multiple removal and the like.
  • the in-plane retardation value of the release film may not be uniform within the plane and may vary.
  • the release film 40 of the optical layered body 2 is placed in the crossed Nicols formed between the linearly polarizing layer of the polarizing plate for inspection and the linearly polarizing layer of the optical layered body 2.
  • the variation in the in-plane retardation value in the plane of the release film becomes large, the unevenness of the retardation is visually recognized in the transmission observation of light with crossed Nicols using the optical laminate, and the polarizing plate is inspected for defects.
  • the optical laminate 2 has the first antistatic layer 43, if the difference ⁇ Re1 of the release film 40 is 150 nm or less, the amount of change in the in-plane retardation value is small, and the optical laminate In light transmission observation with crossed nicols using the body 2, the unevenness of the retardation is difficult to be visually recognized.
  • any of the surface protective film 50 and the release film 40 of the optical layered body 2 is arranged between the linearly polarizing layer of the polarizing plate for inspection and the linearly polarizing layer of the optical layered body 1, Since the polarizing plate 10 can be inspected by crossed Nicol light transmission observation using the optical layered body 2, the optical layered body 2 with even better inspection properties can be provided.
  • the surface resistance value of the release film 40 at a temperature of 23°C and a relative humidity of 55% RH can be within the range of the surface resistance value of the release film described in the previous embodiment. By setting the surface resistance value of the release film 40 within the above-described range, it becomes easier to suppress multiple layers of the optical layered body.
  • the optical layered body 2 can be manufactured by laminating each layer so as to have the layer structure of the optical layered body 2 described above.
  • the optical layered body 2 can be produced by laminating the first adhesive layer 11, the polarizing plate 10, the surface protection film 50, and, if necessary, the release film 40 described above.
  • the optical laminate 2 is a laminate obtained by laminating the surface protective film 50 and the polarizing plate 10, and the first adhesive layer 11 or the first adhesive layer 11 is laminated on the release treatment layer 42 side of the release film 40. You may obtain by laminating
  • the optical laminate 2 may be obtained after obtaining a laminate in which the second base film 51 and the polarizing plate 10 are laminated, or after the second base film 51, the second pressure-sensitive adhesive layer 52, and the polarizing plate 10 are laminated.
  • the second antistatic layer 53 may be formed on the opposite side of the second base film 51 from the polarizing plate 10 side after obtaining a laminated body laminated in order.
  • the method for producing the optical laminate 2 a method of forming the second antistatic layer 53 on the second base film 51 to form the surface protection film 50, and a method of forming the first antistatic layer 43 on the first base film 41. is formed to form the release film 40, the method described in the previous embodiment can be mentioned.
  • the temperature for drying the coating liquid is also preferably within the range described in the previous embodiment from the viewpoint of reducing the variation in the in-plane retardation.
  • thermoplastic resins forming the first base film include polyester resins such as polyethylene terephthalate and polyethylene naphthalate; polyolefin resins such as polyethylene, polypropylene and ethylene/propylene copolymer; cyclic polyolefin resins having cyclo- and norbornene structures.
  • the first base film is preferably a polyester resin film, and more preferably a stretched polyester resin film that has been stretched.
  • (Meth)acryl means at least one selected from acryl and methacryl.
  • the average in-plane retardation value of the first base film at a wavelength of 550 nm is usually 1000 nm or more, may be 1500 nm or more, may be 1800 nm or more, or may be 2000 nm or more, and It is usually 5000 nm or less, may be 4000 nm or less, or may be 3000 nm or less.
  • the average in-plane retardation value can be determined according to the method for determining the average in-plane retardation value ReA1 of a release film described later in Examples.
  • the thickness of the first base film is, for example, 5 ⁇ m or more, may be 10 ⁇ m or more, may be 50 ⁇ m or more, or may be 70 ⁇ m or more, and may be, for example, 300 ⁇ m or less, or 200 ⁇ m or less. 150 ⁇ m or less, 120 ⁇ m or less, or 100 ⁇ m or less.
  • the release-treated layer included in the release film is a layer formed by subjecting one surface of the first base film to a release treatment.
  • the surface of the first base film is coated with a release agent composition containing a known release agent such as a fluorine compound, a silicone compound, a long-chain alkyl compound, a fatty acid amide compound, and the like. It is a coating layer formed by
  • the thickness of the release treatment layer can be 10 nm or more and 2000 nm or less, preferably 10 nm or more and 1000 nm or less, and more preferably 10 nm or more and 500 nm or less.
  • the first antistatic layer that the release film may contain contains an antistatic agent.
  • known antistatic agents can be used, for example, conductive polymers; conductive fine particles such as metal fine particles, metal oxide fine particles, or metal-coated fine particles; electrolyte salts and organopolysiloxanes; ionic compounds; surfactants (cationic, anionic and amphoteric surfactants); at least one of hydrolyzable organosilicon compounds and polycondensates thereof, etc. .
  • the first antistatic layer can contain one or more of the antistatic agents described above. When the antistatic layer contains an antistatic agent, the electrical resistance of the antistatic layer is lowered, so that antistatic performance can be imparted to the release film and, in turn, to the optical laminate.
  • Examples of conductive fine particles include silver powder, copper powder, nickel powder, zinc oxide (ZnO), tin oxide (SnO 2 ), antimony-doped tin oxide (ATO), and tin-doped indium oxide (ITO). .
  • Examples of the ion-conductive composition include an electrolyte salt and an organopolysiloxane represented by the following formula.
  • R 11 represents a monovalent organic group
  • R 12 to R 14 represent an alkylene group
  • R 15 represents hydrogen or a monovalent organic group.
  • m is an integer of 0-100
  • n is an integer of 1-100.
  • the arrangement order of the -(-Si(R 11 R 11 )O-)- unit and the -(-Si(R 11 R 12 )O-)- unit is arbitrary.
  • a and b are each an integer of 0 to 100 and not 0 at the same time.
  • the arrangement order of -(-R 13 O-)- and -(-R 14 O-)- is arbitrary.
  • Electrolyte salts include electrolyte salts whose cations are cations of metals belonging to Group I or Group II of the periodic table. Examples of cations include cations such as lithium, sodium, potassium, magnesium, calcium, and barium.
  • An ionic compound is, for example, a compound having an inorganic or organic cation and an inorganic or organic anion.
  • inorganic cations include alkali metal ions such as lithium cation [Li + ], sodium cation [Na + ], potassium cation [K + ], beryllium cation [Be 2+ ], magnesium cation [Mg 2+ ], calcium Examples thereof include alkaline earth metal ions such as cations [Ca 2+ ].
  • organic cations examples include imidazolium cations, pyridinium cations, pyrrolidinium cations, ammonium cations, sulfonium cations, phosphonium cations, and piperidinium cations.
  • inorganic anions include chloride anion [Cl ⁇ ], bromide anion [Br ⁇ ], iodide anion [I ⁇ ], tetrachloroaluminate anion [AlCl 4 ⁇ ], heptachlorodialuminate anion [Al 2 Cl 7 ⁇ ], tetrafluoroborate anion [BF 4 ⁇ ], hexafluorophosphate anion [PF 6 ⁇ ], perchlorate anion [ClO 4 ⁇ ], nitrate anion [NO 3 ⁇ ], hexafluoroarsenate anion [AsF 6 - ], hexafluoroantimonate anion [SbF 6 - ], hexafluoroniobate anion [NbF 6 - ], hexafluorotantalate anion [TaF 6 - ] , dicyanamide anion [(CN) 2 N - ], and the like
  • organic anions examples include acetate anion [CH 3 COO ⁇ ], trifluoroacetate anion [CF 3 COO ⁇ ], methanesulfonate anion [CH 3 SO 3 ⁇ ], trifluoromethanesulfonate anion [CF 3 SO 3 ⁇ ], p-toluenesulfonate anion [p-CH 3 C 6 H 4 SO 3 ⁇ ], bis(fluorosulfonyl)imide anion [(FSO 2 ) 2 N ⁇ ], bis(trifluoromethanesulfonyl)imide anion [(CF 3 SO 2 ) 2 N ⁇ ], tris(trifluoromethanesulfonyl)methanide anion [(CF 3 SO 2 ) 3 C ⁇ ], dimethylphosphinate anion [(CH 3 ) 2 POO ⁇ ], (poly)hydrofluorofluoride anion [ F(HF)n ⁇ ] (n is about 1 to
  • ionic compound can be appropriately selected from combinations of the above cationic components and anionic components.
  • examples of ionic compounds having an organic cation are listed below by classifying them according to the structure of the organic cation.
  • Pyridinium salt N-hexylpyridinium hexafluorophosphate, N-octylpyridinium hexafluorophosphate, N-octyl-4-methylpyridinium hexafluorophosphate, N-butyl-4-methyllupyridinium hexafluorophosphate, N-decylpyridinium bis(fluorosulfonyl)imide, N-dodecylpyridinium bis(fluorosulfonyl)imide, N-tetradecylpyridinium bis(fluorosulfonyl)imide, N-hexadecylpyridinium bis(fluorosulfonyl)imide, N-dodecyl-4-methylpyridinium bis(fluorosulfonyl)imide, N-tetradecyl-4-methylpyridinium bis(fluorosulfonyl)imide
  • Imidazolium salt 1-ethyl-3-methylimidazolium hexafluorophosphate, 1-ethyl-3-methylimidazolium p-toluenesulfonate, 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, 1-butyl-3-methylimidazolium methanesulfonate, 1-Butyl-3-methylimidazolium bis(fluorosulfonyl)imide.
  • Pyrrolidinium salt N-butyl-N-methylpyrrolidinium hexafluorophosphate, N-butyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide, N-Butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide.
  • Quaternary ammonium salt tetrabutylammonium hexafluorophosphate, tetrabutylammonium p-toluenesulfonate, (2-hydroxyethyl)trimethylammonium bis(trifluoromethanesulfonyl)imide, (2-hydroxyethyl)trimethylammonium dimethylphosphinate.
  • Examples of ionic compounds having inorganic cations include the following. lithium bromide, lithium iodide, lithium tetrafluoroborate, lithium hexafluorophosphate, lithium thiocyanate, lithium perchlorate, lithium trifluoromethanesulfonate, lithium bis(fluorosulfonyl)imide, lithium bis(trifluoromethanesulfonyl)imide, lithium bis(pentafluoroethanesulfonyl)imide, lithium tris(trifluoromethanesulfonyl)methanide, lithium p-toluenesulfonate, sodium hexafluorophosphate, sodium bis(fluorosulfonyl)imide, sodium bis(trifluoromethanesulfonyl)imide, sodium p-toluenesulfonate, potassium hexafluorophosphate, potassium bis(fluorosulfonyl)imide,
  • ionic compounds may be used alone or in combination of two or more.
  • surfactants examples include hydrocarbon-based surfactants, fluorine-based surfactants, and silicone-based surfactants.
  • a hydrolyzable organosilicon compound is a compound in which a non-hydrolyzable organic group and a hydrolyzable organic or inorganic group are bonded to a silicon atom, or a compound in which a hydrolyzable organic group is bonded to a silicon atom.
  • the organic group may have a carbon atom at the bonding position, or may have another atom at the bonding position.
  • the hydrolyzable organosilicon compound can be represented by the following formula. Si(T 1 ) q (T 2 ) 4-q [In the formula, T 1 represents a hydrogen atom or a non-hydrolyzable organic group, T 2 represents a hydrolyzable group, and q represents an integer of 0-3. ]
  • the non-hydrolyzable organic group represented by T 1 typically includes an alkyl group having about 1 to 4 carbon atoms, an alkenyl group having about 2 to 4 carbon atoms, and an aryl group such as a phenyl group.
  • Hydrolyzable groups represented by T2 include, for example, alkoxy groups having about 1 to 5 carbon atoms such as methoxy group and ethoxy group, acyloxy groups such as acetoxy group and propionyloxy group, chlorine atom and bromine atom. and substituted silylamino groups such as a trimethylsilylamino group.
  • the hydrolyzable organosilicon compound may be an alkoxysilane compound, a halogenated silane compound, an acyloxysilane compound, a silazane compound, or the like.
  • These hydrolyzable organosilicon compounds are aryl groups , vinyl groups, allyl groups, (meth)acryloyloxy groups, epoxy groups, amino groups, mercapto groups, fluoroalkyl It may have a substituent such as a group.
  • “(Meth)acryloyl” means at least one selected from acryloyl and methacryloyl.
  • hydrolyzable organosilicon compounds examples include halogenated silane compounds such as methyltrichlorosilane; tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, dimethyldimethoxysilane.
  • hydrolyzable organosilicon compound a hydrolysis product obtained by partially hydrolyzing the hydrolyzable organosilicon compound as described above may be used.
  • hydrolyzable organosilicon compound a multimer obtained by condensing the above hydrolysis product to form an oligomer or polymer may be used.
  • These hydrolysis products and polymers can be produced by adding acids such as hydrochloric acid, phosphoric acid, acetic acid and sulfuric acid, or bases such as sodium hydroxide and sodium acetate, to the hydrolyzable organosilicon compound. can.
  • a condensation polymer obtained by hydrolyzing and polycondensing the hydrolyzable organosilicon compound as described above may be used.
  • a known method can be used to hydrolyze the above hydrolyzable organosilicon compound. Specifically, a hydrolyzable organosilicon compound is dissolved in a predetermined amount of an organic solvent in an amount required for a predetermined solid content concentration to form a uniform solution, which is then hydrolyzed in the presence of a catalyst. When no organic solvent is used, a hydrolyzable organosilicon compound may be hydrolyzed by adding to a uniform solution of water and a catalyst an amount required to achieve a predetermined solid content concentration.
  • hydrolysis may be carried out by adding an amount of water required for the desired hydrolysis rate in the presence of an acid or alkali catalyst.
  • the hydrolysis catalyst include acids such as hydrochloric acid, phosphoric acid, sulfuric acid, and acetic acid, and basic hydroxide catalysts such as LiOH, NaOH, and KOH. .01 to 10% by weight is used.
  • a reaction temperature of room temperature to 50° C. is sufficient for the hydrolysis reaction, and the reaction time varies depending on the reaction temperature and amount of catalyst, but is generally 1 to 24 hours.
  • a condensation polymer of the hydrolyzable organosilicon compound is prepared by the above hydrolysis reaction.
  • the polycondensate of the hydrolyzable organosilicon compound gels on the surface to be coated, it has many silanol groups (Si—OH) containing hydroxyl groups on the surface, which is effective in developing antistatic performance. become something. Since the polycondensate of the hydrolyzable organosilicon compound is prepared by hydrolysis, the end groups of the polycondensate contain OH groups, which are also effective in exhibiting antistatic properties.
  • the hydrolyzable organosilicon compound and its condensation polymer may be used alone, or may be used in the form of a mixture of the hydrolyzable organosilicon compound and its condensate.
  • the first antistatic layer can be formed, for example, by applying a coating liquid containing an antistatic agent to the surface of the first base film.
  • the coating liquid usually contains an antistatic agent, a solvent (including water), and, if necessary, a curable resin such as a (meth)acrylic compound that is cured by heat or active energy ray irradiation.
  • the surface of the first base film may be subjected to surface activation treatment such as corona treatment, plasma treatment, primer treatment, anchor coating treatment, and the like. This improves the adhesion between the first antistatic layer and the first base film, and the wettability of the coating liquid to the first base film.
  • the solvent is used to adjust the concentration and viscosity of the coating liquid, the thickness of the coating layer, etc.
  • the solvent to be used may be appropriately selected, for example, water; alcohols such as methanol, ethanol, propanol, isopropanol, n-butanol, 2-butanol, isobutanol, tert-butanol; Alkoxy alcohols such as butoxyethanol, 3-methoxypropanol, 1-methoxy-2-propanol and 1-ethoxy-2-propanol; ketols such as diacetone alcohol; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; toluene , xylene and the like; esters such as ethyl acetate and butyl acetate; and ethers such as dioxane and tetrahydrofuran.
  • the amount of the solvent used is appropriately selected according to the material, shape, coating
  • Examples of methods for applying a coating liquid to the surface of the first base film include micro gravure coating, roll coating, dipping coating, flow coating, spin coating, die coating, cast transfer, and spray coating. law, etc.
  • the first antistatic layer is preferably formed by drying a coating layer formed by applying a coating liquid to the surface of the first base film.
  • the drying temperature is preferably 60° C. or lower as described above.
  • the thickness of the first antistatic layer can be 10 nm or more and 1000 nm or less. It may be 100 nm or more. If the thickness of the first antistatic layer is less than 10 nm, the adhesion, antistatic properties, and strength may not be sufficient. There is also the possibility of doing so.
  • a 1st adhesive layer is an adhesive layer formed using the adhesive composition.
  • the pressure-sensitive adhesive composition or the reaction product of the pressure-sensitive adhesive composition develops adhesiveness by attaching itself to an adherend such as a metal layer, and is referred to as a so-called pressure-sensitive adhesive. be.
  • the adhesive layer formed using the active-energy-ray-curable adhesive composition mentioned later can adjust a crosslinking degree and adhesive strength by irradiating an active-energy-ray.
  • the adhesive composition conventionally known adhesives having excellent optical transparency can be used without particular limitation.
  • adhesives containing base polymers such as acrylic polymers, urethane polymers, silicone polymers, and polyvinyl ethers.
  • Compositions can be used.
  • the adhesive composition may also be an active energy ray-curable adhesive composition, a heat-curable adhesive composition, or the like.
  • a pressure-sensitive adhesive composition using an acrylic resin as a base polymer which is excellent in transparency, adhesive strength, removability (reworkability), weather resistance, heat resistance, etc.
  • the pressure-sensitive adhesive layer preferably comprises a reaction product of a pressure-sensitive adhesive composition containing a (meth)acrylic resin, a cross-linking agent and a silane compound, and may contain other components.
  • the adhesive composition for forming the first adhesive layer can contain, for example, base polymers such as acrylic polymer, urethane polymer, silicone polymer and polyvinyl ether.
  • the adhesive composition may be an active energy ray-curable adhesive, a heat-curable adhesive, or the like.
  • a pressure-sensitive adhesive containing a (meth)acrylic resin as a base polymer which is excellent in transparency, adhesive strength, removability (reworkability), weather resistance, heat resistance, etc., is preferable.
  • the pressure-sensitive adhesive layer is preferably composed of a reaction product of a pressure-sensitive adhesive containing a (meth)acrylic resin, a cross-linking agent, and a silane compound, and may contain other components.
  • the first adhesive layer may be formed using an active energy ray-curable adhesive.
  • the active energy ray-curable pressure-sensitive adhesive is obtained by blending an ultraviolet-curable compound such as a polyfunctional acrylate into the above-described pressure-sensitive adhesive composition, forming a layer using this, and then irradiating it with ultraviolet rays to cure it. A harder adhesive layer can be formed.
  • Active energy ray-curable pressure-sensitive adhesives have the property of being cured by being irradiated with energy rays such as ultraviolet rays and electron beams. Since the active energy ray-curable adhesive has adhesiveness even before energy ray irradiation, it adheres to the adherend and has the property that it can be cured by energy ray irradiation to adjust the adhesive strength. .
  • the thickness of the first pressure-sensitive adhesive layer is not particularly limited, but is preferably 5 ⁇ m or more, may be 10 ⁇ m or more, may be 15 ⁇ m or more, may be 20 ⁇ m or more, or may be 25 ⁇ m or more. Well, it is usually 300 ⁇ m or less, may be 250 ⁇ m or less, may be 100 ⁇ m or less, or may be 50 ⁇ m or less.
  • the linear polarizing layer included in the polarizing plate has the property of transmitting linearly polarized light having a vibration plane perpendicular to the absorption axis when unpolarized light is incident.
  • the linear polarizing layer may be a polyvinyl alcohol-based resin film (hereinafter sometimes referred to as "PVA-based film”) in which iodine is adsorbed and oriented, and has a composition containing a compound having absorption anisotropy and liquid crystallinity. It may be a film containing a liquid crystalline polarizing layer formed by applying a substance to a substrate film.
  • the compound having absorption anisotropy and liquid crystallinity may be a mixture of a dye having absorption anisotropy and a compound having liquid crystallinity, or may be a dye having absorption anisotropy and liquid crystallinity.
  • the linear polarizing layer is preferably a PVA-based film in which iodine is adsorbed and oriented.
  • the linear polarizing layer which is a PVA-based film, is obtained by subjecting a PVA-based film such as a polyvinyl alcohol film, a partially formalized polyvinyl alcohol film, an ethylene-vinyl acetate copolymer-based partially saponified film, to a dyeing treatment with iodine and a stretching treatment. and the like.
  • the PVA-based film having iodine adsorbed and oriented by the dyeing treatment may be treated with an aqueous boric acid solution, followed by a washing step of washing off the aqueous boric acid solution.
  • a known method can be adopted for each step.
  • Polyvinyl alcohol-based resin (hereinafter sometimes referred to as "PVA-based resin”) can be produced by saponifying polyvinyl acetate-based resin.
  • the polyvinyl acetate-based resin may be polyvinyl acetate, which is a homopolymer of vinyl acetate, or may be a copolymer of vinyl acetate and another monomer that can be copolymerized with vinyl acetate.
  • Other monomers copolymerizable with vinyl acetate include, for example, unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
  • the saponification degree of the PVA-based resin is usually about 85 to 100 mol%, preferably 98 mol% or more.
  • the PVA-based resin may be modified, and for example, polyvinyl formal or polyvinyl acetal modified with aldehydes may be used.
  • the average degree of polymerization of the PVA-based resin is usually about 1,000 to 10,000, preferably about 1,500 to 5,000.
  • the degree of saponification and average degree of polymerization of the PVA-based resin can be obtained according to JIS K 6726 (1994). If the average degree of polymerization is less than 1,000, it is difficult to obtain desirable polarizing performance, and if it exceeds 10,000, film workability may be poor.
  • a method for producing a linear polarizing layer involves preparing a base film, applying a solution of a resin such as a PVA-based resin on the base film, and performing drying or the like to remove the solvent. may include a step of forming a resin layer on the substrate.
  • a primer layer can be formed in advance on the surface of the substrate film on which the resin layer is formed.
  • the base film a film using a resin material described as a thermoplastic resin used for forming the first protective film, which will be described later, can be used. Examples of the material for the primer layer include a resin obtained by cross-linking the hydrophilic resin used for the linear polarizing layer.
  • the amount of solvent such as moisture in the resin layer is adjusted as necessary, then the base film and the resin layer are uniaxially stretched, and then the resin layer is dyed with iodine to adsorb and align iodine on the resin layer. .
  • the resin layer in which iodine is adsorbed and oriented is treated with an aqueous boric acid solution, followed by a washing step of washing off the aqueous boric acid solution.
  • a resin layer in which iodine is adsorbed and oriented that is, a PVA-based film to be a linear polarizing layer is produced.
  • a known method can be adopted for each step.
  • the amount of boric acid in the boric acid-containing aqueous solution for treating the PVA-based film or resin layer in which iodine is adsorbed and oriented is usually about 2 to 15 parts by mass, preferably 5 to 12 parts by mass, per 100 parts by mass of water.
  • This boric acid-containing aqueous solution preferably contains potassium iodide.
  • the amount of potassium iodide in the boric acid-containing aqueous solution is usually about 0.1 to 15 parts by mass, preferably about 5 to 12 parts by mass, per 100 parts by mass of water.
  • the immersion time in the boric acid-containing aqueous solution is usually about 60 to 1,200 seconds, preferably about 150 to 600 seconds, more preferably about 200 to 400 seconds.
  • the temperature of the boric acid-containing aqueous solution is usually 50°C or higher, preferably 50 to 85°C, more preferably 60 to 80°C.
  • Uniaxial stretching of the PVA-based film, the substrate film and the resin layer may be performed before dyeing, during dyeing, or during boric acid treatment after dyeing. Uniaxial stretching may be performed in each of a plurality of stages.
  • the PVA-based film, the base film and the resin layer may be uniaxially stretched in the MD direction (film transport direction). You may stretch
  • the PVA-based film, the base film and the resin layer may be uniaxially stretched in the TD direction (the direction perpendicular to the film transport direction), in which case a so-called tenter method can be used.
  • the stretching may be dry stretching in which the film is stretched in the atmosphere, or may be wet stretching in which the PVA-based film or resin layer is swollen with a solvent and then stretched.
  • the draw ratio is 4 times or more, preferably 5 times or more, and particularly preferably 5.5 times or more. Although there is no particular upper limit for the draw ratio, it is preferably 8 times or less from the viewpoint of suppressing breakage and the like.
  • a linear polarizing layer produced by a manufacturing method using a base film can be obtained by peeling off the base film after laminating a protective layer.
  • the thickness of the linear polarizing layer which is a PVA-based film, is preferably 1 ⁇ m or more, may be 2 ⁇ m or more, or may be 5 ⁇ m or more, and is preferably 30 ⁇ m or less, and 15 ⁇ m or less. is more preferable, and may be 10 ⁇ m or less, or may be 8 ⁇ m or less.
  • a film containing a liquid crystalline polarizing layer is obtained by coating a base film with a composition containing a dye having liquid crystallinity and absorption anisotropy, or a composition containing a dye having absorption anisotropy and a polymerizable liquid crystal.
  • a linear polarizing layer obtained by As the base film for example, a film using a resin material described as a thermoplastic resin used for forming a protective layer to be described later can be used.
  • the film containing a liquid crystalline polarizing layer include the polarizing layer described in JP-A-2013-33249.
  • the total thickness of the substrate film and the linearly polarizing layer formed as described above is preferably as small as possible. It is 30 ⁇ m or less, more preferably 0.5 ⁇ m or more and 25 ⁇ m or less.
  • the protective layer that may be included in the polarizing plate may be laminated so as to be in direct contact with the linearly polarizing layer, but is preferably laminated via a bonding layer.
  • the protective layer is preferably a resin layer, more preferably a resin film.
  • resin films include films formed from thermoplastic resins that are excellent in transparency, mechanical strength, thermal stability, water barrier properties, isotropy, stretchability, and the like.
  • thermoplastic resins include cellulose resins such as triacetyl cellulose; polyester resins such as polyethylene terephthalate and polyethylene naphthalate; polyethersulfone resins; polysulfone resins; polycarbonate resins; polyamide resins such as nylon and aromatic polyamides; Resin; polyolefin resin such as polyethylene, polypropylene, ethylene/propylene copolymer; cyclic polyolefin resin having cyclo-type and norbornene structure (also referred to as norbornene-based resin); (meth)acrylic resin; polyarylate resin; polystyrene resin; polyvinyl alcohol Resins, as well as mixtures thereof, may be mentioned.
  • cellulose resins such as triacetyl cellulose
  • polyester resins such as polyethylene terephthalate and polyethylene naphthalate
  • polyethersulfone resins polysulfone resins
  • polycarbonate resins polyamide resins such as nylon and aromatic polyamide
  • the protective layer may have antireflection properties, antiglare properties, hard coat properties, etc. (Hereinafter, a protective film having such properties may be referred to as a "functional protective film”.).
  • a surface functional layer such as an antireflection layer, an antiglare layer, or a hard coat layer may be laminated on the linearly polarizing layer or the protective layer.
  • the surface functional layer is preferably provided so as to be in direct contact with the protective layer.
  • the surface functional layer is preferably provided on the side of the protective layer opposite to the linearly polarizing layer side, and is preferably provided on the side of the polarizing plate opposite to the first pressure-sensitive adhesive layer side.
  • the thickness of the protective layer is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less.
  • Examples of the bonding layer that the polarizing plate may have include a pressure-sensitive adhesive layer and an adhesive layer.
  • the adhesive layer include an adhesive layer formed using the adhesive composition described for the first adhesive layer.
  • the thickness of the adhesive layer is not particularly limited, but is preferably 5 ⁇ m or more, may be 10 ⁇ m or more, may be 15 ⁇ m or more, may be 20 ⁇ m or more, or may be 25 ⁇ m or more, It is usually 300 ⁇ m or less, may be 250 ⁇ m or less, may be 100 ⁇ m or less, or may be 50 ⁇ m or less.
  • the adhesive layer can be formed by curing the curable component in the adhesive composition.
  • the adhesive composition for forming the adhesive layer include adhesives other than pressure-sensitive adhesives (adhesives), such as water-based adhesives and active energy ray-curable adhesives.
  • water-based adhesives include adhesives in which polyvinyl alcohol resin is dissolved or dispersed in water.
  • the method of drying when a water-based adhesive is used is not particularly limited. For example, a method of drying using a hot air dryer or an infrared ray dryer can be employed.
  • Active energy ray-curable adhesives include, for example, solvent-free active energy ray-curable adhesives containing curable compounds that are cured by irradiation with active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays. mentioned. Adhesion between layers can be improved by using a non-solvent active energy ray-curable adhesive.
  • the active energy ray-curable adhesive preferably contains either one or both of a cationic polymerizable curable compound and a radically polymerizable curable compound because it exhibits good adhesiveness.
  • the active energy ray-curable adhesive can further contain a cationic polymerization initiator such as a photocationic polymerization initiator or a radical polymerization initiator for initiating the curing reaction of the curable compound.
  • Examples of cationic polymerizable curable compounds include alicyclic epoxy compounds having an epoxy group bonded to an alicyclic ring, and polyfunctional aliphatic epoxy compounds having two or more epoxy groups and no aromatic ring. , monofunctional epoxy groups having one epoxy group (excluding those contained in alicyclic epoxy compounds), polyfunctional aromatic epoxy compounds having two or more epoxy groups and aromatic rings, etc. compounds; oxetane compounds having one or more oxetane rings in the molecule; and combinations thereof.
  • radically polymerizable curable compounds include (meth)acrylic compounds (compounds having one or more (meth)acryloyloxy groups in the molecule), other radically polymerizable double bonds. vinyl-based compounds, or combinations thereof.
  • the active energy ray-curable adhesive can contain a sensitizer such as a photosensitizer as needed.
  • a sensitizer By using a sensitizer, the reactivity is improved, and the mechanical strength and adhesive strength of the adhesive layer can be further improved.
  • a known sensitizer can be appropriately applied.
  • the blending amount is preferably in the range of 0.1 to 20 parts by mass with respect to 100 parts by mass as the total amount of the active energy ray-curable adhesive.
  • Active energy ray-curable adhesives may optionally contain ion trapping agents, antioxidants, chain transfer agents, tackifiers, thermoplastic resins, fillers, flow control agents, plasticizers, antifoaming agents, and antistatic agents. Additives such as agents, leveling agents, solvents and the like can be included.
  • an adhesive layer can be formed by irradiating an active energy ray such as ultraviolet rays, visible light, electron beams, and X-rays to cure the adhesive coating layer.
  • an active energy ray such as ultraviolet rays, visible light, electron beams, and X-rays
  • ultraviolet rays are preferable, and as a light source in this case, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a chemical lamp, a black light lamp, a microwave-excited mercury lamp, a metal halide lamp, etc. can be used. can.
  • the thickness of the adhesive layer is preferably 0.1 ⁇ m or more, and may be 0.5 ⁇ m or more, and preferably 10 ⁇ m or less, and may be 5 ⁇ m or less.
  • thermoplastic resin forming the first base film A film formed from a thermoplastic resin can be used as the second base film contained in the surface protection film, and is usually a stretched film that has undergone a stretching treatment.
  • thermoplastic resin forming the first base film examples include those described as the thermoplastic resin forming the first base film.
  • the second base film may be formed of a self-adhesive film.
  • a self-adhesive film is a film that adheres by itself without providing a means for adhesion such as a second adhesive layer and that can maintain the adhered state.
  • a self-adhesive film can be formed using, for example, a polypropylene-based resin, a polyethylene-based resin, or the like.
  • the thickness of the second base film is, for example, 5 ⁇ m or more, may be 10 ⁇ m or more, may be 50 ⁇ m or more, or may be 70 ⁇ m or more, and may be, for example, 300 ⁇ m or less, or 200 ⁇ m or less. 150 ⁇ m or less, 120 ⁇ m or less, or 100 ⁇ m or less.
  • the average in-plane retardation value of the second base film at a wavelength of 550 nm is usually 1000 nm or more, may be 1500 nm or more, may be 1800 nm or more, or may be 2000 nm or more, and It is usually 5000 nm or less, may be 4000 nm or less, or may be 3000 nm or less.
  • the average in-plane retardation value can be determined according to the method for determining the average in-plane retardation value Re A1 of a release film described later in Examples.
  • the 2nd adhesive layer contained in a surface protection film is an adhesive layer formed using the adhesive composition.
  • the adhesive composition include those described as the adhesive composition for forming the first adhesive layer.
  • the thickness of the second pressure-sensitive adhesive layer is not particularly limited, but is preferably 5 ⁇ m or more, may be 10 ⁇ m or more, may be 15 ⁇ m or more, may be 20 ⁇ m or more, or may be 25 ⁇ m or more. Well, it is usually 300 ⁇ m or less, may be 250 ⁇ m or less, may be 100 ⁇ m or less, or may be 50 ⁇ m or less.
  • the second antistatic layer that the surface protection film may contain contains an antistatic agent.
  • the antistatic agent includes the antistatic agent used for forming the first antistatic layer.
  • the second antistatic layer can contain one or more of the antistatic agents described above. When the antistatic layer contains an antistatic agent, the electrical resistance of the antistatic layer is lowered, so that the surface protection film and, in turn, the optical laminate can be provided with antistatic performance.
  • the second antistatic layer can be formed, for example, in the same manner as the first antistatic layer, except that the second base film is used instead of the first base film.
  • the second antistatic layer is preferably formed by drying a coating layer formed by coating a coating liquid on the surface of the second base film. From the viewpoint of reducing variations in in-plane retardation of the surface protective film, the drying temperature is preferably 60° C. or lower as described above.
  • the thickness of the second antistatic layer can be 10 nm or more and 1000 nm or less. It may be 100 nm or more. If the thickness of the second antistatic layer is less than 10 nm, the adhesion, antistatic properties, and strength may not be sufficient. There is also the possibility of doing so.
  • the in-plane retardation value at a wavelength of 550 nm was measured by the following procedure using a retardation measuring device (KOBRA-WPR manufactured by Oji Scientific Instruments Co., Ltd.).
  • Table 1 shows the results.
  • Example 1 (Preparation of release film (1)) A polyethylene terephthalate (PET) film (manufactured by Lintec Corporation: trade name “PLR-382190”) having a release treatment layer formed on one side thereof was prepared. A coating solution containing an antistatic agent (manufactured by Colcoat Co., Ltd.: trade name “Colcoat WAS-15SF”) was applied to the surface of the PET film opposite to the release treatment layer side, and the coating was applied at a temperature of 23°C for 10 minutes. A release film (1) was obtained by drying for minutes to form a first antistatic layer. The layer structure of the release film (1) was release layer/PET film (first base film)/first antistatic layer.
  • PTR-382190 polyethylene terephthalate
  • a coating solution containing an antistatic agent manufactured by Colcoat Co., Ltd.: trade name “Colcoat WAS-15SF”
  • (Formation of first adhesive layer) 81.8 parts of ethyl acetate, 96 parts of butyl acrylate, 3 parts of 2-hydroxyethyl acrylate, and 1 part of acrylic acid were added as solvents to a reaction vessel equipped with a condenser, a nitrogen inlet, a thermometer, and a stirrer. The mixed solution was charged, and the internal temperature was raised to 55° C. while replacing the air in the reaction vessel with nitrogen gas to make it oxygen-free. Thereafter, a solution obtained by dissolving 0.14 parts of azobisisobutyronitrile (polymerization initiator) in 10 parts of ethyl acetate was added to the whole amount.
  • azobisisobutyronitrile polymerization initiator
  • This temperature was maintained for 1 hour after the addition of the polymerization initiator, and then ethyl acetate was continuously added into the reaction vessel at an addition rate of 17.3 parts/hr while maintaining the internal temperature at 54 to 56°C to obtain a concentration of the acrylic resin.
  • concentration reached 35%
  • the addition of ethyl acetate was stopped, and the mixture was maintained at this temperature until 12 hours had passed since the addition of ethyl acetate.
  • ethyl acetate was added to adjust the concentration of the acrylic resin to 20% to prepare an ethyl acetate solution of the acrylic resin.
  • the obtained acrylic resin had a polystyrene-equivalent weight average molecular weight Mw of 1,470,000 and an Mw/Mn of 5.5 by GPC.
  • Weight-average molecular weight and number-average molecular weight were measured by adding 4 columns of "TSK gel XL (manufactured by Tosoh Corporation)" and 1 column of "Shodex GPC KF-802 (manufactured by Showa Denko K.K.)" to the GPC apparatus.
  • a total of 5 tubes are connected in series, and tetrahydrofuran is used as the eluent, the sample concentration is 5 mg/mL, the sample introduction amount is 100 ⁇ L, the temperature is 40° C., and the flow rate is 1 mL/min. bottom.
  • a cross-linking agent manufactured by Tosoh Corporation: trade name "Coronate L", an ethyl acetate solution of an isocyanate compound, 0.3 parts of active ingredient 75%) and 0.5 parts of a silane compound (manufactured by Shin-Etsu Chemical Co., Ltd.: product name "KBM403") were mixed, and ethyl acetate was added so that the solid content concentration was 14%. to obtain an adhesive composition.
  • the compounding amount of the said crosslinking agent is the number of mass parts as an active ingredient.
  • the pressure-sensitive adhesive composition obtained above was applied to the surface of the release film (1) on the release layer side using an applicator so that the thickness after drying was 25 ⁇ m, and dried at a temperature of 50° C. for 60 minutes.
  • a release film (1) with a pressure-sensitive adhesive layer was obtained in which the first pressure-sensitive adhesive layer was formed on the release treatment layer side of the release film (1).
  • polarizing plate Preparation of polarizing plate
  • a 20 ⁇ m-thick triacetyl cellulose (TAC) film and a 29 ⁇ m-thick norbornene-based resin film having a hard coat layer formed on one side thereof were prepared.
  • TAC triacetyl cellulose
  • a linear polarizing layer a PVA-based resin film in which iodine, which is a dichroic dye, was adsorbed and oriented was prepared. The thickness of the linear polarizing layer was 8 ⁇ m.
  • the TAC film prepared above was saponified.
  • the side of the norbornene-based resin film prepared above opposite to the hard coat layer side and both surfaces of the linearly polarizing layer prepared above were subjected to corona treatment.
  • a saponified TAC film is laminated via the water-based adhesive obtained above, and on the other surface of the linear polarizing layer, via the water-based adhesive obtained above.
  • the corona-treated surface (the side opposite to the hard coat layer side) of the norbornene-based resin film was adhered, followed by drying treatment to form an adhesive layer, thereby obtaining a polarizing plate.
  • the layer structure of the polarizing plate was TAC film (protective layer)/adhesive layer/linear polarizing layer/adhesive layer/norbornene-based resin film (protective layer)/hard coat layer.
  • a surface protective film in which an acrylic pressure-sensitive adhesive layer (thickness 15 ⁇ m) is formed on the side opposite to the second antistatic layer side of a polyester resin film (second base film, thickness 38 ⁇ m) having a second antistatic layer on the surface (thickness 53 ⁇ m) was prepared.
  • the layer structure of the surface protective film was second antistatic layer/second base film/acrylic pressure-sensitive adhesive layer (second pressure-sensitive adhesive layer).
  • the acrylic pressure-sensitive adhesive layer of this surface protective film was adhered to the hard coat layer side of the norbornene resin film of the polarizing plate obtained above to obtain a polarizing plate with a surface protective film.
  • the layer structure of the optical laminate (1) is: surface protective film (second antistatic layer/second base film/second adhesive layer)/polarizing plate (hard coat layer/protective layer/adhesive layer/linearly polarized light layer/adhesive layer/protective layer)/first pressure-sensitive adhesive layer/release film (releasing layer/first base film/first antistatic layer).
  • the slow axis of the surface protective film and the absorption axis of the linear polarizing layer were orthogonal, and the slow axis of the release film and the absorption axis of the linear polarizing layer were orthogonal.
  • the optical layered body (1) the following evaluation of inspection property and evaluation of multiple picking were performed. Table 1 shows the results.
  • Release films (2) to (4) were prepared in the same manner as the release film (1) of Example 1, except that the coating amount of the coating liquid containing the antistatic agent was changed to form the first antistatic layer. ).
  • the optical laminate (2) was prepared in the same manner as the optical laminate (1) of Example 1, except that the release films (2) to (4) obtained above were used instead of the release film (1). ) to (4) were obtained.
  • the following evaluation of inspection property and evaluation of multiple picking were performed. Table 1 shows the results.
  • a polyethylene terephthalate (PET) film (manufactured by Lintec Co., Ltd.: trade name “PLR-382190”) having one side subjected to mold release treatment was prepared.
  • a coating solution containing an antistatic agent (manufactured by Takamatsu Yushi Co., Ltd.: product name “ASA-2050”) was applied to the surface opposite to the release-treated surface of the PET film, and the temperature was 130°C. and dried by heating for 10 minutes to form a first antistatic layer to obtain a release film (5).
  • An optical laminate (5) was obtained in the same manner as the optical laminate (1) of Example 1, except that the release film (5) obtained above was used instead of the release film (1). .
  • the following inspection evaluation and multiple picking evaluation were performed. Table 1 shows the results.
  • a laminate in which a surface protective film having an antistatic layer, a polarizing plate, an adhesive layer, and a release film were laminated in this order was prepared as a laminate (40 mm ⁇ 40 mm) for evaluation.
  • the antistatic layer is formed on the opposite side of the surface protection film to the polarizing plate.
  • a laminate for evaluation is placed on a rubber base so that the release film side faces the base, and the surface protection film and the examples and comparisons are placed on the surface protection film side of the laminate for evaluation.
  • the optical layered body was laminated so that the release film side of the optical layered body obtained in the example faced each other.
  • the layered body for evaluation and the optical layered body were rubbed back and forth three times.
  • the load was applied using a rubber-made part in contact with the optical layered body.
  • the surfaces of the laminate for evaluation and the optical laminate are tilted so that they are perpendicular to the horizontal plane, and the optical laminate falls off. I checked the presence or absence of This test was performed 3 times, and multiple picking was evaluated according to the following criteria. a: The optical layered body fell off in all three tests. b: The optical layered body fell off twice in 3 tests. c: The optical layered body fell off once in 3 tests. d: The optical laminate did not come off even once in the three tests.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

[Problem] To provide an optical laminate in which a peelable film having an antistatic layer is stacked on a polarizing plate and which has excellent inspectability. [Solution] This optical laminate is configured by stacking a polarizing plate including a linear polarization layer, a first adhesive layer, and a peelable film that is peelable from the first adhesive layer in this order. The peelable film has a release processing layer, a first base material film, and a first antistatic layer containing an antistatic agent in order from the first adhesive layer side. The average in-plane retardation value at a wavelength of 550 nm of the peelable film is 1000 nm or more. The difference between the maximum value and the minimum value of the in-plane retardation value at a wavelength of 550 nm of the peelable film is 150 nm or less. [Selected drawing] FIG. 1

Description

光学積層体optical laminate
 本発明は、光学積層体に関する。 The present invention relates to an optical laminate.
 直線偏光層を含む偏光板は、液晶表示装置や有機EL表示装置等の表示装置を構成する光学部品の一つとして用いられている。偏光板を表示装置に組み入れる場合、通常、偏光板は粘着剤層を介して表示パネル等の画像表示素子に貼合される。表示装置に偏光板を組み入れる作業を行いやすくするために、あらかじめ偏光板に粘着剤層及びこの粘着剤層に対して剥離可能な剥離フィルムを積層しておくことが知られている。粘着剤層及び剥離フィルムが積層された偏光板から剥離フィルムを剥離し、露出した粘着剤層を画像表示素子に貼合すれば、表示装置に偏光板を組み入れることができる。 A polarizing plate including a linear polarizing layer is used as one of the optical components that constitute display devices such as liquid crystal display devices and organic EL display devices. When incorporating a polarizing plate into a display device, the polarizing plate is usually bonded to an image display element such as a display panel via an adhesive layer. In order to facilitate the work of incorporating the polarizing plate into the display device, it is known to preliminarily laminate an adhesive layer and a release film that can be peeled off the adhesive layer on the polarizing plate. The polarizing plate can be incorporated into a display device by peeling off the release film from the polarizing plate laminated with the pressure-sensitive adhesive layer and the release film, and adhering the exposed pressure-sensitive adhesive layer to an image display element.
 特許文献1には、光学部材や電子部材等に剛性や耐衝撃性を付与するための補強用フィルムの表面の傷付き防止のために、表面保護フィルムを用いることが開示されている。偏光板においても、加工、組立、検査、輸送等によって表面に傷等が生じることを抑制するために、偏光板の表面に、偏光板に対して剥離可能な表面保護フィルムを貼合することが知られている。 Patent Document 1 discloses the use of a surface protection film to prevent scratches on the surface of a reinforcing film for imparting rigidity and impact resistance to optical members, electronic members, and the like. In the case of polarizing plates as well, in order to prevent the surface from being damaged due to processing, assembly, inspection, transportation, etc., a surface protective film that can be peeled off from the polarizing plate may be attached to the surface of the polarizing plate. Are known.
 剥離フィルム及び表面保護フィルムとして、樹脂フィルムを延伸した延伸フィルムを用いることがある。延伸フィルムは面内位相差を有する。そのため、延伸フィルムの遅相軸と直線偏光層の吸収軸とが平行又は直交するように延伸フィルムと偏光板とを積層することにより、この積層物を用いたクロスニコルでの光の透過観察によって偏光板を検品することができる。 A stretched film obtained by stretching a resin film is sometimes used as the release film and the surface protection film. A stretched film has an in-plane retardation. Therefore, by laminating the stretched film and the polarizing plate so that the slow axis of the stretched film and the absorption axis of the linear polarizing layer are parallel or orthogonal, light transmission observation with crossed Nicols using this laminate A polarizer can be inspected.
 偏光板と延伸フィルムとの積層物は、これを複数枚重ね合わせた重畳体の状態で保管等がなされるため、偏光板の検品にあたっては積層物の重畳体から1枚ずつ積層物を取り出す。このとき、静電気の影響により2枚以上の積層物が同時に取り出されてしまう、いわゆる多重取りが発生することがあった。このような多重取りを抑制するために、表面に帯電防止層が形成された樹脂フィルムを用いることにより、静電気を抑制することが考えられる。 A laminate of polarizing plates and stretched films is stored in the form of a stack of multiple sheets, so when inspecting polarizing plates, the laminate is taken out one by one from the stack of laminates. At this time, the effect of static electricity sometimes causes so-called multiple picking, in which two or more laminates are taken out at the same time. In order to suppress such multiple picking, static electricity can be suppressed by using a resin film having an antistatic layer formed on the surface.
特開2020-116762号公報Japanese Patent Application Laid-Open No. 2020-116762
 しかしながら、帯電防止層を備えた延伸フィルムは面内位相差にムラが生じることがある。このような延伸フィルムを偏光板に積層した積層物を用いたクロスニコルでの光の透過観察では、偏光板の検品が行いにくくなる。 However, a stretched film with an antistatic layer may cause in-plane retardation unevenness. In light transmission observation with crossed Nicols using a laminate obtained by laminating such a stretched film on a polarizing plate, it is difficult to inspect the polarizing plate.
 本発明は、帯電防止層を有する剥離フィルム及び帯電防止層を有する表面保護フィルムのうちの少なくとも一方が偏光板に積層された光学積層体であって、検品性に優れた光学積層体の提供を目的とする。 The present invention provides an optical laminate in which at least one of a release film having an antistatic layer and a surface protective film having an antistatic layer is laminated on a polarizing plate, and which has excellent inspection properties. aim.
 本発明は、以下の光学積層体を提供する。
 〔1〕 直線偏光層を含む偏光板、第1粘着剤層、及び、前記第1粘着剤層に対して剥離可能である剥離フィルムがこの順に積層された光学積層体であって、
 前記剥離フィルムは、前記第1粘着剤層側から順に、離型処理層、第1基材フィルム、及び、帯電防止剤を含む第1帯電防止層を有し、
 前記剥離フィルムの波長550nmにおける平均の面内位相差値は、1000nm以上であり、
 前記剥離フィルムの波長550nmにおける面内位相差値の最大値と最小値との差は、150nm以下である、光学積層体。
 〔2〕 さらに、前記偏光板の前記第1粘着剤層側とは反対側に、前記偏光板に対して剥離可能である表面保護フィルムを有し、
 前記表面保護フィルムは、前記偏光板側から順に、第2基材フィルム、及び、帯電防止剤を含む第2帯電防止層を有する、〔1〕に記載の光学積層体。
 〔3〕 前記表面保護フィルムの波長550nmにおける平均の面内位相差値は、1000nm以上であり、
 前記表面保護フィルムの波長550nmにおける面内位相差値の最大値と最小値との差は、150nm以下である、〔2〕に記載の光学積層体。
 〔4〕 第1粘着剤層、直線偏光層を含む偏光板、及び、前記偏光板に対して剥離可能である表面保護フィルムがこの順に積層された光学積層体であって、
 前記表面保護フィルムは、前記偏光板側から順に、第2基材フィルム、及び、帯電防止剤を含む第2帯電防止層を有し、
 前記表面保護フィルムの波長550nmにおける平均の面内位相差値は、1000nm以上であり、
 前記表面保護フィルムの波長550nmにおける面内位相差値の最大値と最小値との差は、150nm以下である、光学積層体。
 〔5〕 前記表面保護フィルムは、さらに、前記第2基材フィルムの前記偏光板側に第2粘着剤層を有する、〔2〕~〔4〕のいずれかに記載の光学積層体。
 〔6〕 さらに、前記第1粘着剤層の前記偏光板側とは反対側に、前記第1粘着剤層に対して剥離可能である剥離フィルムを有し、
 前記剥離フィルムは、前記第1粘着剤層側から順に、離型処理層、第1基材フィルム、及び、帯電防止剤を含む第1帯電防止層を有する、〔4〕又は〔5〕に記載の光学積層体。
 〔7〕 さらに、前記第1粘着剤層の前記偏光板側とは反対側に、前記第1粘着剤層に対して剥離可能である剥離フィルムを有し、
 前記剥離フィルムは、前記第1粘着剤層側から順に、離型処理層、第1基材フィルム、及び、帯電防止剤を含む第1帯電防止層を有し、
 前記剥離フィルムの温度23℃、相対湿度55%RHにおける表面抵抗値は、1.0×10Ω/□以上5.0×1014Ω/□以下である、〔1〕~〔6〕に記載の光学積層体。
 〔8〕 さらに、前記偏光板の前記第1粘着剤層側とは反対側に、前記偏光板に対して剥離可能である表面保護フィルムを有し、
 前記表面保護フィルムは、前記偏光板側から順に、第2基材フィルム、及び、帯電防止剤を含む第2帯電防止層を有し、
 前記表面保護フィルムの温度23℃、相対湿度55%RHにおける表面抵抗値は、1.0×10Ω/□以上1.0×1011Ω/□以下である、〔1〕~〔7〕のいずれかに記載の光学積層体。
 〔9〕 前記偏光板は、前記直線偏光層の片面又は両面に保護層を有する、〔1〕~〔8〕のいずれかに記載の光学積層体。
 〔10〕 直線偏光層を含む偏光板、第1粘着剤層、及び、前記第1粘着剤層に対して剥離可能である剥離フィルムをこの順に有する光学積層体の製造方法であって、
 前記剥離フィルムは、前記第1粘着剤層側から順に、離型処理層、第1基材フィルム、
及び、帯電防止剤を含む第1帯電防止層を有し、
 前記剥離フィルムの波長550nmにおける平均の面内位相差値は、1000nm以上であり、
 前記第1基材フィルムに、前記帯電防止剤を含む塗工液を塗布して第1塗工層を形成する工程と、
 前記第1塗工層を温度60℃以下で乾燥して前記第1帯電防止層を形成する工程と、を含む、光学積層体の製造方法。
 〔11〕 第1粘着剤層、直線偏光層を含む偏光板、及び、前記偏光板に対して剥離可能である表面保護フィルムがこの順に積層された光学積層体の製造方法であって、
 前記表面保護フィルムは、前記偏光板側から順に、第2基材フィルム、及び、帯電防止剤を含む第2帯電防止層を有し、
 前記表面保護フィルムの波長550nmにおける平均の面内位相差値は、1000nm以上であり、
 前記第2基材フィルムに、前記帯電防止剤を含む塗工液を塗布して第2塗工層を形成する工程と、
 前記第2塗工層を温度60℃以下で乾燥して前記第2帯電防止層を形成する工程と、を含む、光学積層体の製造方法。
The present invention provides the following optical layered body.
[1] An optical laminate in which a polarizing plate including a linear polarizing layer, a first pressure-sensitive adhesive layer, and a release film that can be peeled from the first pressure-sensitive adhesive layer are laminated in this order,
The release film has, in order from the first adhesive layer side, a release treatment layer, a first base film, and a first antistatic layer containing an antistatic agent,
The average in-plane retardation value of the release film at a wavelength of 550 nm is 1000 nm or more,
The optical laminate, wherein the difference between the maximum and minimum in-plane retardation values of the release film at a wavelength of 550 nm is 150 nm or less.
[2] further comprising a surface protective film that is peelable from the polarizing plate on the opposite side of the polarizing plate to the first pressure-sensitive adhesive layer;
The optical laminate according to [1], wherein the surface protective film has, in order from the polarizing plate side, a second base film and a second antistatic layer containing an antistatic agent.
[3] The surface protective film has an average in-plane retardation value of 1000 nm or more at a wavelength of 550 nm,
The optical laminate according to [2], wherein the difference between the maximum value and the minimum value of the in-plane retardation value at a wavelength of 550 nm of the surface protective film is 150 nm or less.
[4] An optical laminate in which a first adhesive layer, a polarizing plate including a linear polarizing layer, and a surface protective film that can be peeled from the polarizing plate are laminated in this order,
The surface protective film has a second base film and a second antistatic layer containing an antistatic agent in order from the polarizing plate side,
The average in-plane retardation value of the surface protective film at a wavelength of 550 nm is 1000 nm or more,
The optical laminate, wherein the difference between the maximum and minimum in-plane retardation values of the surface protection film at a wavelength of 550 nm is 150 nm or less.
[5] The optical laminate according to any one of [2] to [4], wherein the surface protection film further has a second adhesive layer on the polarizing plate side of the second base film.
[6] Further, a release film is provided on the side opposite to the polarizing plate side of the first pressure-sensitive adhesive layer, the release film being peelable from the first pressure-sensitive adhesive layer,
[4] or [5], wherein the release film has, in order from the first adhesive layer side, a release treatment layer, a first base film, and a first antistatic layer containing an antistatic agent. optical laminate.
[7] further comprising a release film that can be peeled off from the first adhesive layer on the side opposite to the polarizing plate side of the first adhesive layer;
The release film has, in order from the first adhesive layer side, a release treatment layer, a first base film, and a first antistatic layer containing an antistatic agent,
According to [1] to [6], the release film has a surface resistance value of 1.0×10 8 Ω/□ or more and 5.0×10 14 Ω/□ or less at a temperature of 23° C. and a relative humidity of 55% RH. An optical laminate as described.
[8] further comprising a surface protective film that is peelable from the polarizing plate on the opposite side of the polarizing plate from the first pressure-sensitive adhesive layer;
The surface protective film has a second base film and a second antistatic layer containing an antistatic agent in order from the polarizing plate side,
The surface resistance value of the surface protective film at a temperature of 23° C. and a relative humidity of 55% RH is 1.0×10 8 Ω/□ or more and 1.0×10 11 Ω/□ or less, [1] to [7]. The optical layered body according to any one of .
[9] The optical laminate according to any one of [1] to [8], wherein the polarizing plate has a protective layer on one or both sides of the linear polarizing layer.
[10] A method for producing an optical laminate having, in this order, a polarizing plate including a linear polarizing layer, a first pressure-sensitive adhesive layer, and a release film that can be peeled off from the first pressure-sensitive adhesive layer,
The release film includes, in order from the first pressure-sensitive adhesive layer side, a release treatment layer, a first base film,
And, having a first antistatic layer containing an antistatic agent,
The average in-plane retardation value of the release film at a wavelength of 550 nm is 1000 nm or more,
A step of applying a coating liquid containing the antistatic agent to the first base film to form a first coating layer;
and drying the first coating layer at a temperature of 60° C. or less to form the first antistatic layer.
[11] A method for producing an optical laminate in which a first pressure-sensitive adhesive layer, a polarizing plate including a linear polarizing layer, and a surface protective film peelable from the polarizing plate are laminated in this order,
The surface protective film has a second base film and a second antistatic layer containing an antistatic agent in order from the polarizing plate side,
The average in-plane retardation value of the surface protective film at a wavelength of 550 nm is 1000 nm or more,
A step of applying a coating liquid containing the antistatic agent to the second base film to form a second coating layer;
and drying the second coating layer at a temperature of 60° C. or less to form the second antistatic layer.
 本発明によれば、帯電防止層を有する剥離フィルム及び帯電防止層を有する表面保護フィルムのうちの少なくとも一方が偏光板に積層された光学積層体であっても、優れた検品性を有することができる。 According to the present invention, even an optical laminate in which at least one of a release film having an antistatic layer and a surface protective film having an antistatic layer is laminated on a polarizing plate has excellent inspection properties. can.
本発明の一実施形態に係る光学積層体を模式的に示す断面図である。1 is a cross-sectional view schematically showing an optical layered body according to one embodiment of the present invention; FIG. 図1に示す光学積層体のクロスニコルでの検品方法の一例を模式的に示す断面図である。1. It is sectional drawing which shows typically an example of the inspection method by cross Nicols of the optical laminated body shown in FIG. 本発明の他の一実施形態に係る光学積層体を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing an optical layered body according to another embodiment of the present invention; 図3に示す光学積層体のクロスニコルでの検品方法の一例を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing an example of a method for inspecting the optical layered body shown in FIG. 3 with crossed Nicols;
 以下、図面を参照して本発明の光学積層体の実施形態について説明する。以下に示す各実施形態は任意に組み合わせてもよい。各実施形態及び各図面において、先に説明した部材と同一の又は相当する部材には、同一の又は対応する参照符号を付し、その説明を繰り返さない場合がある。 Hereinafter, embodiments of the optical layered body of the present invention will be described with reference to the drawings. You may combine each embodiment shown below arbitrarily. In each embodiment and each drawing, members that are the same as or correspond to those previously described are given the same or corresponding reference numerals, and their description may not be repeated.
 〔実施形態1〕
 (光学積層体1)
 図1は、本発明の一実施形態に係る光学積層体を模式的に示す断面図である。図2は、図1に示す光学積層体のクロスニコルでの検品方法の一例を模式的に示す断面図である。
[Embodiment 1]
(Optical laminate 1)
FIG. 1 is a cross-sectional view schematically showing an optical layered body according to one embodiment of the present invention. FIG. 2 is a cross-sectional view schematically showing an example of a method for inspecting the optical layered body shown in FIG. 1 with crossed Nicols.
 図1に示すように、光学積層体1は、直線偏光層を含む偏光板10、第1粘着剤層11、及び、第1粘着剤層11に対して剥離可能である剥離フィルム20がこの順に積層されている。図1に示す光学積層体1では、偏光板10と第1粘着剤層11とが直接接し、第1粘着剤層11と剥離フィルム20とが直接接している。 As shown in FIG. 1, the optical laminate 1 includes a polarizing plate 10 including a linear polarizing layer, a first pressure-sensitive adhesive layer 11, and a release film 20 that can be peeled from the first pressure-sensitive adhesive layer 11 in this order. Laminated. In the optical laminate 1 shown in FIG. 1, the polarizing plate 10 and the first pressure-sensitive adhesive layer 11 are in direct contact, and the first pressure-sensitive adhesive layer 11 and the release film 20 are in direct contact.
 光学積層体1は、さらに、偏光板10の第1粘着剤層11側とは反対側に、偏光板10に対して剥離可能である表面保護フィルム30を有していてもよい。 The optical laminate 1 may further have a surface protection film 30 that can be peeled off from the polarizing plate 10 on the opposite side of the polarizing plate 10 to the first adhesive layer 11 side.
 光学積層体1の偏光板10は、表示装置に組み入れて用いることができる。表示装置に偏光板10を組み込む際には、光学積層体1から剥離フィルム20を剥離し、露出した第1粘着剤層11を表示装置の画像表示素子に貼合した後、表面保護フィルム30を剥離すればよい。表示装置としては、例えば液晶表示装置及び有機EL表示装置等が挙げられ、画像表示素子としては、例えば液晶表示素子及び有機EL表示素子等が挙げられる。 The polarizing plate 10 of the optical laminate 1 can be incorporated into a display device and used. When the polarizing plate 10 is incorporated into the display device, the release film 20 is peeled off from the optical laminate 1, the exposed first pressure-sensitive adhesive layer 11 is adhered to the image display element of the display device, and then the surface protection film 30 is attached. Just peel it off. Examples of display devices include liquid crystal display devices and organic EL display devices, and examples of image display devices include liquid crystal display devices and organic EL display devices.
 (偏光板)
 光学積層体1は、偏光板10を有する。偏光板10は、少なくとも直線偏光層を含んでいればよく、直線偏光層以外の層を含んでいてもよい。偏光板10は、例えば、直線偏光層の片面又は両面に保護層を有していてもよく、保護層の表面に表面機能層を有していてもよい。偏光板10が保護層を有する場合、直線偏光層に保護層が直接接するように積層されていてもよく、直線偏光層と保護層とが貼合層を介して積層されていてもよい。貼合層は、粘着剤層又は接着剤層である。各層の詳細は後述する。
(Polarizer)
The optical laminate 1 has a polarizing plate 10 . The polarizing plate 10 may include at least a linear polarizing layer, and may include layers other than the linear polarizing layer. The polarizing plate 10 may have, for example, a protective layer on one side or both sides of the linear polarizing layer, and may have a surface functional layer on the surface of the protective layer. When the polarizing plate 10 has a protective layer, the protective layer may be laminated so as to be in direct contact with the linear polarizing layer, or the linear polarizing layer and the protective layer may be laminated via a bonding layer. The lamination layer is a pressure-sensitive adhesive layer or an adhesive layer. Details of each layer will be described later.
 (第1粘着剤層)
 光学積層体1は、第1粘着剤層11を有する。第1粘着剤層11は、偏光板10を画像表示素子等に貼合するための粘着剤層として用いることができる。第1粘着剤層11は、偏光板10に直接接するように積層されることが好ましい。第1粘着剤層11の詳細は後述する。
(First adhesive layer)
The optical laminate 1 has a first adhesive layer 11 . The first adhesive layer 11 can be used as an adhesive layer for bonding the polarizing plate 10 to an image display element or the like. The first adhesive layer 11 is preferably laminated so as to be in direct contact with the polarizing plate 10 . Details of the first adhesive layer 11 will be described later.
 (剥離フィルム20)
 光学積層体1は、剥離フィルム20を有する。剥離フィルム20は、第1粘着剤層11を被覆保護するためのものであり、光学積層体1では、第1粘着剤層11に対して剥離可能に積層されている。剥離フィルム20は、後述する大きさの面内位相差値を有し、光学積層体1において、剥離フィルム20の遅相軸と直線偏光層の吸収軸とは実質的に平行である又は実質的に直交する。ここで、実質的に平行であるとは、剥離フィルム20の遅相軸と直線偏光層の吸収軸とのなす角度が0°±10°以内であることをいい、当該角度は、好ましくは0°±5°以内であり、より好ましくは0°である。実質的に直交するとは、剥離フィルム20の遅相軸と直線偏光層の吸収軸とのなす角度が90°±10°以内であることをいい、当該角度は、好ましくは90°±5°以内であり、より好ましくは90°である。
(Release film 20)
The optical laminate 1 has a release film 20 . The release film 20 is for covering and protecting the first pressure-sensitive adhesive layer 11 , and in the optical layered product 1 , it is laminated on the first pressure-sensitive adhesive layer 11 so as to be peelable. The release film 20 has an in-plane retardation value of the magnitude described later, and in the optical laminate 1, the slow axis of the release film 20 and the absorption axis of the linear polarizing layer are substantially parallel or substantially orthogonal to Here, substantially parallel means that the angle formed by the slow axis of the release film 20 and the absorption axis of the linearly polarizing layer is within 0 ° ± 10 °, and the angle is preferably 0 °±5°, more preferably 0°. Substantially orthogonal means that the angle formed by the slow axis of the release film 20 and the absorption axis of the linearly polarizing layer is within 90°±10°, and the angle is preferably within 90°±5°. and more preferably 90°.
 剥離フィルム20は、図1に示すように、光学積層体1の第1粘着剤層11側から順に、離型処理層22、第1基材フィルム21、及び、帯電防止剤を含む第1帯電防止層23を有する。離型処理層22と第1基材フィルム21とは直接接していることが好ましい。第1基材フィルム21と第1帯電防止層23とは直接接していることが好ましい。各層の詳細は後述する。 As shown in FIG. 1, the release film 20 includes, in order from the first pressure-sensitive adhesive layer 11 side of the optical laminate 1, a release treatment layer 22, a first base film 21, and a first antistatic agent containing a antistatic agent. It has a blocking layer 23 . It is preferable that the release treatment layer 22 and the first base film 21 are in direct contact with each other. It is preferable that the first base film 21 and the first antistatic layer 23 are in direct contact with each other. Details of each layer will be described later.
 剥離フィルム20の波長550nmにおける平均の面内位相差値ReA1は1000nm以上である。上記平均の面内位相差値ReA1は、1500nm以上であってもよく、1800nm以上であってもよく、2000nm以上であってもよい。上記平均の面内位相差値ReA1は、通常5000nm以下であり、4000nm以下であってもよく、3000nm以下であってもよい。 The average in-plane retardation value Re A1 of the release film 20 at a wavelength of 550 nm is 1000 nm or more. The average in-plane retardation value Re A1 may be 1500 nm or more, 1800 nm or more, or 2000 nm or more. The average in-plane retardation value Re A1 is usually 5000 nm or less, may be 4000 nm or less, or may be 3000 nm or less.
 剥離フィルム20の上記平均の面内位相差値ReA1は、例えば、第1基材フィルム21の面内位相差値によって調整することができる。第1基材フィルム21の面内位相差値は、例えば、第1基材フィルム21を構成する樹脂の種類、延伸倍率等によって調整することができる。上記平均の面内位相差値ReA1は、後述する実施例に記載の方法によって決定することができる。 The average in-plane retardation value Re A1 of the release film 20 can be adjusted by the in-plane retardation value of the first base film 21, for example. The in-plane retardation value of the first base film 21 can be adjusted by, for example, the type of resin forming the first base film 21, the draw ratio, and the like. The average in-plane retardation value Re A1 can be determined by the method described in Examples below.
 剥離フィルム20の波長550nmにおける面内位相差値の最大値をRema1とし、剥離フィルム20の波長550nmにおける面内位相差値の最小値をRemi1とするとき、両者の差ΔRe1(=Rema1-Remi1)は、150nm以下である。差ΔRe1は、130nm以下であってもよく、110nm以下であってもよく、100nm以下であってもよく、80nm以下であってもよく、60nm以下であってもよい。差ΔRe1は、通常5nm以上であり、10nm以上であってもよく、20nm以上であってもよい。 Re ma1 is the maximum in-plane retardation value of the release film 20 at a wavelength of 550 nm, and Re mi1 is the minimum in - plane retardation value of the release film 20 at a wavelength of 550 nm. −Re mi1 ) is 150 nm or less. The difference ΔRe1 may be 130 nm or less, 110 nm or less, 100 nm or less, 80 nm or less, or 60 nm or less. The difference ΔRe1 is usually 5 nm or more, may be 10 nm or more, or may be 20 nm or more.
 剥離フィルム20の上記差ΔRe1は、第1基材フィルム21上での第1帯電防止層23の形成方法等によって調整することができる。例えば後述するように、第1基材フィルム21上に帯電防止剤を含む塗工液を塗布して形成した塗布層を乾燥する温度等によって調整することができる。上記差ΔRe1は、後述する実施例に記載の方法によって決定することができる。 The difference ΔRe1 of the release film 20 can be adjusted by the method of forming the first antistatic layer 23 on the first base film 21, or the like. For example, as will be described later, it can be adjusted by the temperature for drying a coating layer formed by coating a coating liquid containing an antistatic agent on the first base film 21 . The difference ΔRe1 can be determined by the method described in Examples below.
 光学積層体1に含まれる剥離フィルム20は、複数枚の光学積層体1を重畳した重畳体から1枚ずつ光学積層体1を取り出す場合に2枚以上の光学積層体1が同時に取り出される多重取り等を抑制するために、第1帯電防止層23を有する。帯電防止層を有する剥離フィルムでは、剥離フィルムの面内位相差値が面内において均一にならず、ばらつくことがある。偏光板10の検品は、光学積層体1を用いたクロスニコルでの光の透過観察によって行われることがある。この場合、剥離フィルムの面内において面内位相差値のばらつきが大きくなると、偏光板と剥離フィルムとを含む光学積層体を用いたクロスニコルでの光の透過観察において位相差のムラが視認され、欠陥等に対する偏光板の検品を適切に行いにくくなる。この現象は特に、図2に示すように、クロスニコルとなるように配置した検査用の偏光板60の直線偏光層と光学積層体1の直線偏光層との間に、光学積層体1の剥離フィルム20が配置される場合に顕著となりやすい。図2中の矢印は、偏光板10の検品にあたり、光源61からの光を観察する方向を示す。 The release film 20 included in the optical layered body 1 is used for multiple removal, in which two or more optical layered bodies 1 are taken out at the same time when the optical layered bodies 1 are taken out one by one from a stack in which a plurality of optical layered bodies 1 are superimposed. It has the first antistatic layer 23 in order to suppress such as. In a release film having an antistatic layer, the in-plane retardation value of the release film may not be uniform within the plane and may vary. The polarizing plate 10 may be inspected by transmission observation of light with crossed Nicols using the optical layered body 1 . In this case, when the variation in the in-plane retardation value in the plane of the release film increases, the unevenness of the retardation is visually recognized in cross Nicol light transmission observation using the optical laminate including the polarizing plate and the release film. , it becomes difficult to appropriately inspect the polarizing plate for defects and the like. In particular, as shown in FIG. 2, the delamination of the optical layered body 1 occurs between the linearly polarized layer of the polarizing plate 60 for inspection and the linearly polarized layer of the optical layered body 1 arranged so as to form crossed Nicols. It tends to be noticeable when the film 20 is placed. Arrows in FIG. 2 indicate directions in which light from the light source 61 is observed when the polarizing plate 10 is inspected.
 これに対し、光学積層体1では、第1帯電防止層23を有していても、剥離フィルム20の上記差ΔRe1が上記の範囲内にあるため、面内位相差値の変動量が小さく、光学積層体1を用いたクロスニコルでの光の透過観察において位相差のムラが視認されにくい。それゆえ、光学積層体1を用いたクロスニコルでの光の透過観察によって偏光板10の検品を行うことができるため、光学積層体1は検品性に優れる。 On the other hand, in the optical laminate 1, even if it has the first antistatic layer 23, since the difference ΔRe1 of the release film 20 is within the above range, the variation of the in-plane retardation value is small. In cross Nicol light transmission observation using the optical layered body 1, the unevenness of the retardation is hardly visible. Therefore, since the polarizing plate 10 can be inspected by crossed Nicol light transmission observation using the optical layered body 1, the optical layered body 1 is excellent in inspectability.
 剥離フィルム20の温度23℃、相対湿度55%RHにおける表面抵抗値は、1.0×10Ω/□以上5.0×1014Ω/□以下であることが好ましい。剥離フィルム20の上記表面抵抗値は、1.0×10Ω/□以上であってもよく、1.0×1010Ω/□以上であってもよく、また、1.0×1014Ω/□以下であってもよく、5.0×1013Ω/□以下であってもよく、1.0×1013Ω/□以下であってもよい。 The surface resistance value of the release film 20 at a temperature of 23° C. and a relative humidity of 55% RH is preferably 1.0×10 8 Ω/□ or more and 5.0×10 14 Ω/□ or less. The surface resistance value of the release film 20 may be 1.0×10 9 Ω/□ or more, 1.0×10 10 Ω/□ or more, or 1.0×10 14 It may be Ω/□ or less, 5.0×10 13 Ω/□ or less, or 1.0×10 13 Ω/□ or less.
 剥離フィルム20の上記表面抵抗値は、例えば、第1帯電防止層23に含まれる帯電防止剤の種類、量等によって調整することができる。一般に、第1帯電防止層23に含まれる帯電防止剤の量が多いほど、第1帯電防止層23の導電性が向上するため、剥離フィルム20の表面抵抗値が小さくなる傾向にある。剥離フィルム20の上記表面抵抗値は、剥離フィルム20の第1帯電防止層23側の表面抵抗値であり、後述する実施例に記載の方法によって測定することができる。 The surface resistance value of the release film 20 can be adjusted, for example, by the type and amount of the antistatic agent contained in the first antistatic layer 23 . In general, the greater the amount of the antistatic agent contained in the first antistatic layer 23, the more the conductivity of the first antistatic layer 23 is improved, so the surface resistance value of the release film 20 tends to decrease. The surface resistance value of the release film 20 is the surface resistance value of the release film 20 on the side of the first antistatic layer 23, and can be measured by the method described in Examples below.
 剥離フィルム20の上記表面抵抗値が上記の範囲内であることにより、複数枚の光学積層体1を重畳した重畳体から1枚ずつ光学積層体1を取り出す場合にも、2枚以上の光学積層体1が同時に取り出される多重取りを抑制することができる。 Since the surface resistance value of the release film 20 is within the above range, even when the optical laminate 1 is taken out one by one from a stack in which a plurality of optical laminates 1 are stacked, two or more optical laminates It is possible to suppress multiple taking out of the body 1 at the same time.
 (表面保護フィルム30)
 光学積層体1は、表面保護フィルム30を有していてもよい。表面保護フィルム30は、偏光板10の表面を被覆保護するために用いられる。光学積層体1では、偏光板10の表面に対して剥離可能に貼合される。
(Surface protection film 30)
The optical laminate 1 may have a surface protection film 30 . The surface protective film 30 is used to cover and protect the surface of the polarizing plate 10 . The optical layered body 1 is detachably attached to the surface of the polarizing plate 10 .
 表面保護フィルム30は、後述する大きさの面内位相差値を有していてもよい。表面保護フィルム30が面内位相差を有する場合、光学積層体1において、表面保護フィルム30の遅相軸と直線偏光層の吸収軸とが実質的に平行である又は実質的に直交することが好ましい。ここで、実質的に平行であるとは、表面保護フィルム30の遅相軸と直線偏光層の吸収軸とのなす角度が0°±10°以内であることをいい、当該角度は、好ましくは0°±5°以内であり、より好ましくは0°である。実質的に直交するとは、表面保護フィルム30の遅相軸と直線偏光層の吸収軸とのなす角度が90°±10°以内であることをいい、当該角度は、好ましくは90°±5°以内であり、より好ましくは90°である。 The surface protection film 30 may have an in-plane retardation value as described later. When the surface protective film 30 has an in-plane retardation, in the optical laminate 1, the slow axis of the surface protective film 30 and the absorption axis of the linearly polarizing layer can be substantially parallel or substantially orthogonal. preferable. Here, “substantially parallel” means that the angle formed by the slow axis of the surface protective film 30 and the absorption axis of the linearly polarizing layer is within 0°±10°, and the angle is preferably It is within 0°±5°, more preferably 0°. “Substantially orthogonal” means that the angle formed by the slow axis of the surface protective film 30 and the absorption axis of the linearly polarizing layer is within 90°±10°, and the angle is preferably 90°±5°. within, more preferably 90°.
 表面保護フィルム30は、光学積層体1の偏光板10側から順に、第2基材フィルム31、及び、帯電防止剤を含む第2帯電防止層33を有する。表面保護フィルム30は、図1に示すようにさらに、光学積層体1の偏光板10側に第2粘着剤層32を有し、第2粘着剤層32が偏光板10に対して剥離可能になっていてもよい。第2粘着剤層32と第2基材フィルム31とは直接接していることが好ましい。図1では、表面保護フィルム30が第2粘着剤層32を有する場合について示しているが、第2基材フィルム31が自己粘着性を有する場合は、表面保護フィルム30は第2粘着剤層32を有していなくてもよい。第2基材フィルム31が自己粘着性を有する場合、光学積層体1において、第2基材フィルム31と偏光板10とは直接接していることが好ましい。 The surface protective film 30 has a second base film 31 and a second antistatic layer 33 containing an antistatic agent in order from the polarizing plate 10 side of the optical laminate 1 . The surface protection film 30 further has a second adhesive layer 32 on the polarizing plate 10 side of the optical laminate 1 as shown in FIG. It may be. It is preferable that the second adhesive layer 32 and the second base film 31 are in direct contact with each other. FIG. 1 shows the case where the surface protection film 30 has the second adhesive layer 32. However, when the second base film 31 has self-adhesiveness, the surface protection film 30 has the second adhesive layer 32 may not have When the second base film 31 has self-adhesiveness, it is preferable that the second base film 31 and the polarizing plate 10 are in direct contact with each other in the optical laminate 1 .
 表面保護フィルム30は、さらに、第2基材フィルム31の第2粘着剤層32側とは反対側に、帯電防止剤を含む第2帯電防止層33を有していてもよい。第2基材フィルム31と第2帯電防止層33とは直接接していることが好ましい。各層の詳細は後述する。 The surface protection film 30 may further have a second antistatic layer 33 containing an antistatic agent on the side of the second base film 31 opposite to the second adhesive layer 32 side. It is preferable that the second base film 31 and the second antistatic layer 33 are in direct contact with each other. Details of each layer will be described later.
 表面保護フィルム30の波長550nmにおける平均の面内位相差値ReA2は1000nm以上であってもよい。上記平均の面内位相差値ReA2は、1500nm以上であってもよく、1800nm以上であってもよく、2000nm以上であってもよい。上記平均の面内位相差値ReA2は、通常5000nm以下であり、4000nm以下であってもよく、3000nm以下であってもよい。 The average in-plane retardation value Re A2 of the surface protection film 30 at a wavelength of 550 nm may be 1000 nm or more. The average in-plane retardation value Re A2 may be 1500 nm or more, 1800 nm or more, or 2000 nm or more. The average in-plane retardation value Re A2 is usually 5000 nm or less, may be 4000 nm or less, or may be 3000 nm or less.
 表面保護フィルム30の上記平均の面内位相差値ReA2は、例えば、第2基材フィルム31の面内位相差値によって調整することができる。第2基材フィルム31の面内位相差値は、例えば、第2基材フィルム31を構成する樹脂の種類、延伸倍率等によって調整することができる。上記平均の面内位相差値ReA2は、後述する実施例に記載の剥離フィルムの平均の面内位相差値ReA1を決定する方法に準じて決定することができる。 The average in-plane retardation value Re A2 of the surface protective film 30 can be adjusted by the in-plane retardation value of the second base film 31, for example. The in-plane retardation value of the second base film 31 can be adjusted by, for example, the type of resin forming the second base film 31, the draw ratio, and the like. The average in-plane retardation value Re A2 can be determined in accordance with the method for determining the average in-plane retardation value Re A1 of a release film described in Examples described later.
 表面保護フィルム30の波長550nmにおける面内位相差値の最大値をRema2とし、表面保護フィルム30の波長550nmにおける面内位相差値の最小値をRemi2とするとき、両者の差ΔRe2(=Rema2-Remi2)は、150nm以下であってもよい。差ΔRe2は、130nm以下であってもよく、110nm以下であってもよく、100nm以下であってもよく、80nm以下であってもよく、60nm以下であってもよい。差ΔRe2は、通常5nm以上であり、10nm以上であってもよい。上記差ΔRe2は、150nmを超えていてもよい。 When the maximum value of the in-plane retardation value of the surface protection film 30 at a wavelength of 550 nm is Re ma2 and the minimum value of the in-plane retardation value of the surface protection film 30 at a wavelength of 550 nm is Re mi2 , the difference between the two is ΔRe2 (= Re ma2 −Re mi2 ) may be 150 nm or less. The difference ΔRe2 may be 130 nm or less, 110 nm or less, 100 nm or less, 80 nm or less, or 60 nm or less. The difference ΔRe2 is typically 5 nm or more, and may be 10 nm or more. Said difference ΔRe2 may exceed 150 nm.
 表面保護フィルム30の上記差ΔRe2は、第2基材フィルム31上での第2帯電防止層33の形成方法等によって調整することができる。例えば後述するように、第2帯電防止層33を形成するために第2基材フィルム31上に塗布形成した塗布層の乾燥条件等によって調整することができる。上記差ΔRe2は、後述する実施例に記載の剥離フィルムについての差ΔRe1を決定する方法に準じて決定することができる。 The difference ΔRe2 of the surface protection film 30 can be adjusted by the method of forming the second antistatic layer 33 on the second base film 31, or the like. For example, as will be described later, it can be adjusted by drying conditions of a coating layer formed by coating on the second base film 31 to form the second antistatic layer 33 . The difference ΔRe2 can be determined according to the method for determining the difference ΔRe1 for the release film described in Examples described later.
 光学積層体1に含まれる表面保護フィルム30は、複数枚の光学積層体1を重畳した重畳体から光学積層体1を取り出す際の多重取り等を抑制するために、第2帯電防止層33を有する。帯電防止層を有する表面保護フィルムでは、表面保護フィルムの面内位相差値が面内において均一にならず、ばらつくことがある。偏光板10の検品にあたり、表面保護フィルムの面内において面内位相差値のばらつきが大きくなると、光学積層体を用いたクロスニコルでの光の透過観察において位相差のムラが視認され、欠陥等に対する偏光板の検品を適切に行いにくくなることがある。この現象は特に、クロスニコルとなるように配置した検査用の偏光板の直線偏光層と光学積層体1の直線偏光層との間に、光学積層体1の表面保護フィルム30が配置された場合に顕著になりやすい。 The surface protection film 30 included in the optical layered body 1 has a second antistatic layer 33 in order to suppress multiple picking when the optical layered body 1 is taken out from a stack in which a plurality of optical layered bodies 1 are stacked. have. In a surface protective film having an antistatic layer, the in-plane retardation value of the surface protective film may not be uniform in the plane and may vary. In the inspection of the polarizing plate 10, if the variation in the in-plane retardation value within the surface of the surface protective film becomes large, unevenness in the retardation is visually recognized in light transmission observation with crossed Nicols using the optical laminate, resulting in defects, etc. It may be difficult to properly inspect the polarizing plate for This phenomenon occurs particularly when the surface protective film 30 of the optical laminate 1 is arranged between the linear polarizing layer of the polarizing plate for inspection and the linear polarizing layer of the optical laminate 1, which are arranged so as to form crossed Nicols. tend to be noticeable in
 これに対し、光学積層体1は、第2帯電防止層33を有していても、表面保護フィルム30の上記差ΔRe2が150nm以下であれば、面内位相差値の変動量が小さく、光学積層体1を用いたクロスニコルでの光の透過観察において位相差のムラが視認されにくい。これにより、光学積層体1の剥離フィルム20及び表面保護フィルム30のいずれを、検査用の偏光板の直線偏光層と光学積層体1の直線偏光層との間に配置した場合であっても、光学積層体1を用いたクロスニコルでの光の透過観察によって、偏光板10の検品を行うことができるため、より一層検品性に優れた光学積層体1を提供することができる。 On the other hand, even if the optical laminate 1 has the second antistatic layer 33, if the difference ΔRe2 of the surface protective film 30 is 150 nm or less, the amount of variation in the in-plane retardation value is small and the optical In light transmission observation with crossed Nicols using the laminate 1, the unevenness of the retardation is difficult to be visually recognized. As a result, even when any of the release film 20 and the surface protective film 30 of the optical layered body 1 is arranged between the linearly polarizing layer of the polarizing plate for inspection and the linearly polarizing layer of the optical layered body 1, Since the polarizing plate 10 can be inspected by crossed Nicol light transmission observation using the optical layered body 1, the optical layered body 1 with even better inspection properties can be provided.
 表面保護フィルム30の温度23℃、相対湿度55%RHにおける表面抵抗値は、1.0×10Ω/□以上1.0×1011Ω/□以下であることが好ましい。表面保護フィルム30の上記表面抵抗値は、5.0×10Ω/□以上であってもよく、1.0×10Ω/□以上であってもよく、また、5.0×1010Ω/□以下であってもよく、1.0×1010Ω/□以下であってもよく、5.0×10Ω/□以下であってもよい。 The surface resistance value of the surface protective film 30 at a temperature of 23° C. and a relative humidity of 55% RH is preferably 1.0×10 8 Ω/□ or more and 1.0×10 11 Ω/□ or less. The surface resistance value of the surface protective film 30 may be 5.0×10 8 Ω/□ or more, 1.0×10 9 Ω/□ or more, or 5.0×10 Ω/□ or more. It may be 10 Ω/□ or less, 1.0×10 10 Ω/□ or less, or 5.0×10 9 Ω/□ or less.
 表面保護フィルム30の上記表面抵抗値は、例えば、第2帯電防止層33に含まれる帯電防止剤の種類、量等によって調整することができる。一般に、第2帯電防止層33に含まれる帯電防止剤の量が多いほど、第2帯電防止層33の導電性が向上するため、表面保護フィルム30の表面抵抗値が小さくなる傾向にある。表面保護フィルム30の上記表面抵抗値は、表面保護フィルム30の第2帯電防止層33側の表面抵抗値であり、後述する実施例に記載の方法によって測定することができる。 The surface resistance value of the surface protective film 30 can be adjusted by, for example, the type and amount of the antistatic agent contained in the second antistatic layer 33 . Generally, as the amount of the antistatic agent contained in the second antistatic layer 33 increases, the conductivity of the second antistatic layer 33 improves, so the surface resistance value of the surface protection film 30 tends to decrease. The surface resistance value of the surface protection film 30 is the surface resistance value of the surface protection film 30 on the side of the second antistatic layer 33, and can be measured by the method described in Examples below.
 表面保護フィルム30の上記表面抵抗値が上記の範囲内であることにより、複数枚の光学積層体1を重畳した重畳体から1枚ずつ光学積層体1を取り出す場合にも、2枚以上の光学積層体1が同時に取り出される多重取りをより一層抑制しやすくなる。 Since the surface resistance value of the surface protective film 30 is within the above range, even when the optical layered bodies 1 are taken out one by one from a stack in which a plurality of optical layered bodies 1 are stacked, two or more optical layered bodies 1 can be removed. It becomes even easier to suppress multiple picking in which the laminate 1 is taken out at the same time.
 表面保護フィルム30の温度23℃、相対湿度55%における偏光板10に対する剥離力は、0.01N/25mm以上であることが好ましく、0.03N/25mm以上であってもよく、0.08N/25mm以上であってもよく、また、0.5N/25mm以下であることが好ましく、0.4N/25mm以下であってもよく、0.3N/25mm以下であってもよい。 The peel force of the surface protective film 30 from the polarizing plate 10 at a temperature of 23° C. and a relative humidity of 55% is preferably 0.01 N/25 mm or more, may be 0.03 N/25 mm or more, and may be 0.08 N/ It may be 25 mm or more, preferably 0.5 N/25 mm or less, may be 0.4 N/25 mm or less, or may be 0.3 N/25 mm or less.
 上記剥離力は、次の手順で測定することができる。表面保護フィルムを含む光学積層体1を150mm×25mmの矩形に裁断したものから剥離フィルム20を剥離し、第1粘着剤層11により無アルカリガラス基板(厚さ0.7mm、コーニング社製「Eagle
 XG」)に貼合して試験片とする。この試験片を内部温度50℃、内部圧力490.3kPa(ゲージ圧)のオートクレーブ中に20分間投入して加熱加圧環境下に曝した後、
温度23℃、相対湿度55%RHの雰囲気下に24時間保管して評価用サンプルとする。この評価用サンプルについて、JIS K6854-2:1999「接着剤-剥離接着強さ試験方法-第2部:180°剥離」に準拠して、剥離装置(島津製作所社製「オートグラフAGS-50NX」)を用い、表面保護フィルムを移動速度300mm/分にて180°剥離する剥離試験を行って剥離力を測定する。
The peel force can be measured by the following procedure. The release film 20 is peeled off from the optical laminate 1 including the surface protective film cut into a rectangle of 150 mm × 25 mm, and the first adhesive layer 11 is attached to the alkali-free glass substrate (thickness 0.7 mm, "Eagle
XG”) to obtain a test piece. After putting this test piece into an autoclave with an internal temperature of 50° C. and an internal pressure of 490.3 kPa (gauge pressure) for 20 minutes and exposing it to a hot and pressurized environment,
A sample for evaluation is prepared by storing it for 24 hours in an atmosphere of 23° C. and 55% RH. For this evaluation sample, in accordance with JIS K6854-2: 1999 "Adhesive-Peel adhesion strength test method-Part 2: 180 ° peeling", a peeling device (manufactured by Shimadzu Corporation "Autograph AGS-50NX" ), a peeling test is performed by peeling the surface protective film 180° at a moving speed of 300 mm/min to measure the peel strength.
 (光学積層体1の製造方法)
 光学積層体1は、上記した光学積層体1の層構造となるように、各層を積層することによって製造することができる。例えば、光学積層体1は、偏光板10、第1粘着剤層11、剥離フィルム20、及び、必要に応じて表面保護フィルム30を積層することによって製造することができる。光学積層体1は、例えば、剥離フィルム20の離型処理層22側に第1粘着剤層11を積層した積層体に、偏光板10、又は、表面保護フィルム30と偏光板10とを積層した積層体を積層することによって得てもよい。あるいは、光学積層体1は、第1基材フィルム21及び離型処理層22の積層体と偏光板10とを、第1粘着剤層11を介して積層した後に、第1基材フィルム21の離型処理層22側とは反対側に第1帯電防止層23を形成することによって得てもよい。
(Manufacturing method of optical laminate 1)
The optical layered body 1 can be manufactured by laminating each layer so as to have the layer structure of the optical layered body 1 described above. For example, the optical laminate 1 can be produced by laminating the polarizing plate 10, the first pressure-sensitive adhesive layer 11, the release film 20, and, if necessary, the surface protection film 30. The optical layered body 1 is, for example, a layered body in which the first adhesive layer 11 is layered on the release treatment layer 22 side of the release film 20, and the polarizing plate 10, or the surface protective film 30 and the polarizing plate 10 are layered. It may be obtained by laminating a laminate. Alternatively, the optical layered body 1 is obtained by laminating the layered body of the first base film 21 and the release treatment layer 22 and the polarizing plate 10 with the first pressure-sensitive adhesive layer 11 interposed therebetween. It may be obtained by forming the first antistatic layer 23 on the side opposite to the release treated layer 22 side.
 光学積層体1の製造方法では、第1基材フィルム21に、帯電防止剤を含む塗工液を塗布して第1塗工層を形成する工程と、第1塗工層を乾燥して、剥離フィルム20の第1帯電防止層23を形成する工程とを含むことが好ましい。第1基材フィルム21に塗工液を塗布することにより、第1基材フィルム21上に帯電防止剤を均一に配置しやすくなる。塗工液は、後述する帯電防止剤と、水又は有機溶剤等の溶剤とを含むことが好ましい。 In the method for producing the optical layered body 1, the first base film 21 is coated with a coating liquid containing an antistatic agent to form a first coating layer, the first coating layer is dried, forming the first antistatic layer 23 of the release film 20. By applying the coating liquid to the first substrate film 21 , it becomes easier to uniformly dispose the antistatic agent on the first substrate film 21 . The coating liquid preferably contains an antistatic agent, which will be described later, and a solvent such as water or an organic solvent.
 第1塗工層を形成する第1基材フィルム21には、離型処理層22が形成されていてもよい。あるいは、第1帯電防止層23が形成された第1基材フィルム21に、離型処理層22を形成してもよい。上記したように、第1塗工層を形成する第1基材フィルム21には、離型処理層22、第1粘着剤層11、及び偏光板10が積層されていてもよい。 A release treatment layer 22 may be formed on the first base film 21 forming the first coating layer. Alternatively, the release treatment layer 22 may be formed on the first base film 21 on which the first antistatic layer 23 is formed. As described above, the release treatment layer 22, the first adhesive layer 11, and the polarizing plate 10 may be laminated on the first base film 21 forming the first coating layer.
 剥離フィルムの面内位相差のばらつきを低減し、上記した差ΔRe1の範囲内とする観点から、塗工液を塗布して形成した第1塗工層を乾燥する際の温度は、60℃以下であることが好ましく、50℃以下であってもよく、40℃以下であってもよく、通常5℃以上であり、10℃以上であることが好ましく、15℃以上であることがより好ましい。第1塗工層の乾燥時間は、乾燥温度、塗工層に含まれる溶剤の量及び種類等に応じて設定すればよく、例えば1分以上とすることができ、5分以上であってもよく、10分以上であってもよく、通常100分以下であり、60分以下であってもよく、30分以下であってもよい。 From the viewpoint of reducing the variation in the in-plane retardation of the release film and making it within the range of the difference ΔRe1 described above, the temperature when drying the first coating layer formed by applying the coating liquid is 60 ° C. or less. It may be 50° C. or lower, or 40° C. or lower, usually 5° C. or higher, preferably 10° C. or higher, and more preferably 15° C. or higher. The drying time of the first coating layer may be set according to the drying temperature, the amount and type of solvent contained in the coating layer, and the like. It may be 10 minutes or more, usually 100 minutes or less, 60 minutes or less, or 30 minutes or less.
 上記したように、剥離フィルム20は、波長550nmにおける平均の面内位相差値ReA1が1000nm以上である。このような剥離フィルム20では、通常、第1基材フィルム21は高度に延伸された延伸フィルムであるため、第1帯電防止層23を形成するために、第1塗工層を加熱乾燥すると、第1基材フィルム21の延伸緩和により位相差にムラが生じると考えられる。本実施形態の光学積層体1の製造方法では、第1帯電防止層23を形成する際に、第1塗工層の乾燥温度を60℃以下に設定しているため、第1基材フィルム21の延伸緩和を抑制することができ、剥離フィルム20の上記した差ΔRe1を例えば上記した150nm以下のように小さくすることができると推測される。 As described above, the release film 20 has an average in-plane retardation value Re A1 of 1000 nm or more at a wavelength of 550 nm. In such a release film 20, since the first base film 21 is usually a highly stretched stretched film, when the first coating layer is dried by heating to form the first antistatic layer 23, It is considered that the retardation is uneven due to stretching relaxation of the first base film 21 . In the method for manufacturing the optical layered body 1 of the present embodiment, when forming the first antistatic layer 23, the drying temperature of the first coating layer is set to 60° C. or less. can be suppressed, and the difference ΔRe1 of the release film 20 can be reduced to, for example, 150 nm or less.
 光学積層体1の製造方法では、第2基材フィルム31に、帯電防止剤を含む塗工液を塗布して第2塗工層を形成する工程と、第2塗工層を乾燥して、表面保護フィルム30の第2帯電防止層33を形成する工程とを含んでいてもよい。第2基材フィルム31に塗工液を塗布することにより、第2基材フィルム31上に帯電防止剤を均一に配置しやすくなる。塗工液は、後述する帯電防止剤と、水又は有機溶剤等の溶剤とを含むことができる。 In the method for manufacturing the optical layered body 1, the second base film 31 is coated with a coating liquid containing an antistatic agent to form a second coating layer, and the second coating layer is dried to and forming the second antistatic layer 33 of the surface protection film 30 . By applying the coating liquid to the second base film 31 , it becomes easier to uniformly dispose the antistatic agent on the second base film 31 . The coating liquid can contain an antistatic agent, which will be described later, and a solvent such as water or an organic solvent.
 第2塗工層を形成する第2基材フィルム31には、第2粘着剤層32が形成されていてもよい。あるいは、第2帯電防止層33が形成された第2基材フィルム31に、第2粘着剤層32を形成してもよい。第2塗工層を形成する第2基材フィルム31は、偏光板10が積層されていてもよく、第2基材フィルム31側から順に第2粘着剤層及び偏光板10が積層されていてもよい。 A second adhesive layer 32 may be formed on the second base film 31 forming the second coating layer. Alternatively, the second adhesive layer 32 may be formed on the second base film 31 on which the second antistatic layer 33 is formed. The second base film 31 forming the second coating layer may be laminated with the polarizing plate 10, and the second adhesive layer and the polarizing plate 10 are laminated in order from the second base film 31 side. good too.
 特に、表面保護フィルム30の面内位相差のばらつきを低減し、上記したΔRe2を150nm以下とする観点から、塗工液を塗布して乾燥する際の温度は、60℃以下であることが好ましく、50℃以下であってもよく、40℃以下であってもよく、通常5℃以上であり、10℃以上であることが好ましく、15℃以上であることがより好ましい。第2塗工層の乾燥時間は、乾燥温度、塗工層に含まれる溶剤の量及び種類等に応じて設定すればよく、例えば1分以上とすることができ、5分以上であってもよく、10分以上であってもよく、通常100分以下であり、60分以下であってもよく、30分以下であってもよい。 In particular, from the viewpoint of reducing the variation in the in-plane retardation of the surface protective film 30 and making the above-mentioned ΔRe2 150 nm or less, the temperature when applying and drying the coating liquid is preferably 60 ° C. or less. , 50° C. or lower, or 40° C. or lower, usually 5° C. or higher, preferably 10° C. or higher, more preferably 15° C. or higher. The drying time of the second coating layer may be set according to the drying temperature, the amount and type of solvent contained in the coating layer, and the like. It may be 10 minutes or more, usually 100 minutes or less, 60 minutes or less, or 30 minutes or less.
 表面保護フィルム30の波長550nmにおける平均の面内位相差値ReA2が1000nm以上である場合、通常、第2基材フィルム31は高度に延伸された延伸フィルムである。そのため、第2帯電防止層33を形成するために、第2塗工層を加熱乾燥すると、第2基材フィルム31の延伸緩和により位相差にムラが生じると考えられる。本実施形態の光学積層体1の製造方法では、第2帯電防止層33を形成する際に、第2塗工層の乾燥温度を60℃以下に設定しているため、第2基材フィルム31の延伸緩和を抑制することができ、表面保護フィルム30の上記した差ΔRe2を例えば150nm以下のように小さくすることができると推測される。 When the average in-plane retardation value Re A2 of the surface protective film 30 at a wavelength of 550 nm is 1000 nm or more, the second base film 31 is usually a highly stretched stretched film. Therefore, when the second coating layer is heated and dried in order to form the second antistatic layer 33, it is considered that the stretch relaxation of the second base film 31 causes unevenness in retardation. In the method for manufacturing the optical layered body 1 of the present embodiment, when the second antistatic layer 33 is formed, the drying temperature of the second coating layer is set to 60° C. or less. can be suppressed, and the above-described difference ΔRe2 of the surface protection film 30 can be reduced to, for example, 150 nm or less.
 〔実施形態2〕
 (光学積層体2)
 図3は、本発明の一実施形態に係る光学積層体を模式的に示す断面図である。図4は、図3に示す光学積層体のクロスニコルでの検品方法の一例を模式的に示す断面図である。
[Embodiment 2]
(Optical laminate 2)
FIG. 3 is a cross-sectional view schematically showing an optical layered body according to one embodiment of the present invention. FIG. 4 is a cross-sectional view schematically showing an example of a method for inspecting the optical layered body shown in FIG. 3 with crossed Nicols.
 図3に示すように、光学積層体2は、第1粘着剤層11、直線偏光層を含む偏光板10、及び、偏光板10に対して剥離可能である表面保護フィルム50がこの順に積層されている。図3に示す光学積層体2では、第1粘着剤層11と偏光板10とが直接接し、偏光板10と表面保護フィルム50とが直接接している。光学積層体2に含まれる偏光板10及び第1粘着剤層11については、上記で説明したものを用いることができる。 As shown in FIG. 3, the optical laminate 2 includes a first adhesive layer 11, a polarizing plate 10 including a linear polarizing layer, and a surface protective film 50 that can be peeled off from the polarizing plate 10, which are laminated in this order. ing. In the optical laminate 2 shown in FIG. 3, the first pressure-sensitive adhesive layer 11 and the polarizing plate 10 are in direct contact, and the polarizing plate 10 and the surface protection film 50 are in direct contact. As the polarizing plate 10 and the first pressure-sensitive adhesive layer 11 included in the optical laminate 2, those described above can be used.
 光学積層体2は、さらに、第1粘着剤層11の偏光板10側とは反対側に、第1粘着剤層11に対して剥離可能である剥離フィルム40を有していてもよい。光学積層体2の偏光板10は、先の実施形態で説明したように表示装置に組み入れて用いることができる。 The optical laminate 2 may further have a release film 40 that can be peeled off from the first adhesive layer 11 on the opposite side of the first adhesive layer 11 from the polarizing plate 10 side. The polarizing plate 10 of the optical layered body 2 can be used by incorporating it into a display device as described in the previous embodiments.
 (表面保護フィルム50)
 光学積層体2は、表面保護フィルム50を有する。表面保護フィルム50は、偏光板10の表面を被覆保護するために用いられる。光学積層体2では、偏光板10の表面に対して剥離可能に貼合される。表面保護フィルム50は、後述する大きさの面内位相差値を有し、光学積層体2において、表面保護フィルム50の遅相軸と直線偏光層の吸収軸とは実質的に平行である又は実質的に直交する。実質的に平行である場合及び実質的に直交する場合の、上記遅相軸と上記吸収軸とのなす角度については、先の実施形態で説明したとおりである。
(Surface protection film 50)
The optical layered body 2 has a surface protection film 50 . The surface protective film 50 is used to cover and protect the surface of the polarizing plate 10 . The optical layered body 2 is detachably attached to the surface of the polarizing plate 10 . The surface protective film 50 has an in-plane retardation value as described later, and in the optical laminate 2, the slow axis of the surface protective film 50 and the absorption axis of the linear polarizing layer are substantially parallel or substantially orthogonal. The angles formed by the slow axis and the absorption axis when they are substantially parallel and when they are substantially orthogonal are as described in the previous embodiment.
 表面保護フィルム50は、光学積層体2の偏光板10側から順に、第2基材フィルム51、及び、帯電防止剤を含む第2帯電防止層53を有する。表面保護フィルム50は、図3に示すようにさらに、光学積層体1の偏光板10側に第2粘着剤層52を有し、第2粘着剤層52が偏光板10に対して剥離可能になっていてもよい。第2粘着剤層52と第2基材フィルム51とは直接接していることが好ましい。第2基材フィルム51と第2帯電防止層53とは直接接していることが好ましい。図3では、表面保護フィルム50が第2粘着剤層52を有する場合について示しているが、第2基材フィルム51が自己粘着性を有する場合は、表面保護フィルム50は第2粘着剤層52を有していなくてもよい。第2基材フィルム51が自己粘着性を有する場合、光学積層体2において、第2基材フィルム51と偏光板10とは直接接していることが好ましい。 The surface protection film 50 has a second base film 51 and a second antistatic layer 53 containing an antistatic agent in order from the polarizing plate 10 side of the optical laminate 2 . The surface protective film 50 further has a second adhesive layer 52 on the polarizing plate 10 side of the optical laminate 1 as shown in FIG. It may be. It is preferable that the second adhesive layer 52 and the second base film 51 are in direct contact. It is preferable that the second base film 51 and the second antistatic layer 53 are in direct contact with each other. FIG. 3 shows the case where the surface protection film 50 has the second adhesive layer 52. However, when the second base film 51 has self-adhesiveness, the surface protection film 50 has the second adhesive layer 52 may not have When the second base film 51 has self-adhesiveness, it is preferable that the second base film 51 and the polarizing plate 10 are in direct contact with each other in the optical laminate 2 .
 表面保護フィルム50の波長550nmにおける平均の面内位相差値ReA2は1000nm以上である。上記平均の面内位相差値ReA2は、1500nm以上であってもよく、1800nm以上であってもよく、2000nm以上であってもよい。上記平均の面内位相差値ReA2は、通常5000nm以下であり、4000nm以下であってもよく、3000nm以下であってもよい。表面保護フィルム50の上記平均の面内位相差値ReA2は、先の実施形態で説明した方法によって調整することができ、先の実施形態で説明した方法によって決定することができる。 The average in-plane retardation value Re A2 of the surface protective film 50 at a wavelength of 550 nm is 1000 nm or more. The average in-plane retardation value Re A2 may be 1500 nm or more, 1800 nm or more, or 2000 nm or more. The average in-plane retardation value Re A2 is usually 5000 nm or less, may be 4000 nm or less, or may be 3000 nm or less. The average in-plane retardation value Re A2 of the surface protection film 50 can be adjusted by the method described in the previous embodiment, and can be determined by the method described in the previous embodiment.
 表面保護フィルム50の波長550nmにおける面内位相差値の最大値をRema2とし、表面保護フィルム50の波長550nmにおける面内位相差値の最小値をRemi2とするとき、両者の差ΔRe2(=Rema2-Remi2)は、150nm以下である。差ΔRe2は、130nm以下であってもよく、110nm以下であってもよく、100nm以下であってもよく、80nm以下であってもよく、60nm以下であってもよい。差ΔRe2は、通常5nm以上であり、10nm以上であってもよく、20nm以上であってもよい。表面保護フィルム50の上記差ΔRe2は、先の実施形態で説明した方法によって調整することができ、先の実施形態で説明した方法によって決定することができる。 When the maximum value of the in-plane retardation value of the surface protection film 50 at a wavelength of 550 nm is Re ma2 and the minimum value of the in-plane retardation value of the surface protection film 50 at a wavelength of 550 nm is Re mi2 , the difference between the two is ΔRe2 (= Re ma2 −Re mi2 ) is 150 nm or less. The difference ΔRe2 may be 130 nm or less, 110 nm or less, 100 nm or less, 80 nm or less, or 60 nm or less. The difference ΔRe2 is usually 5 nm or more, may be 10 nm or more, or may be 20 nm or more. The difference ΔRe2 of the surface protective film 50 can be adjusted by the method described in the previous embodiment, and can be determined by the method described in the previous embodiment.
 光学積層体2に含まれる表面保護フィルム50は、多重取り等を抑制するために第2帯電防止層53を有する。帯電防止層を有する表面保護フィルムでは、表面保護フィルムの面内位相差値が面内において均一にならず、ばらつくことがある。偏光板10の検品は、光学積層体2を用いたクロスニコルでの光の透過観察によって行われることがある。この場合、表面保護フィルムの面内において面内位相差値のばらつきが大きくなると、偏光板と表面保護フィルムとを含む光学積層体を用いたクロスニコルでの光の透過観察において位相差のムラが視認され、欠陥等に対する偏光板の検品を適切に行いにくくなる。この現象は特に、図4に示すように、クロスニコルとなるように配置した検査用の偏光板60の直線偏光層と光学積層体2の直線偏光層との間に、光学積層体2の表面保護フィルム50が配置される場合に顕著となりやすい。図4中の矢印は、偏光板10の検品にあたり、光源61からの光を観察する方向を示す。 The surface protective film 50 included in the optical layered body 2 has a second antistatic layer 53 in order to suppress multiple pick-ups. In a surface protective film having an antistatic layer, the in-plane retardation value of the surface protective film may not be uniform in the plane and may vary. The polarizing plate 10 may be inspected by transmission observation of light with crossed Nicols using the optical layered body 2 . In this case, when the variation in the in-plane retardation value in the surface of the surface protective film increases, the retardation becomes uneven in cross Nicol light transmission observation using the optical laminate including the polarizing plate and the surface protective film. This makes it difficult to properly inspect the polarizing plate for defects. In particular, as shown in FIG. 4, between the linear polarizing layer of the polarizing plate 60 for inspection and the linear polarizing layer of the optical layered body 2 arranged so as to form crossed Nicols, the surface of the optical layered body 2 It tends to become conspicuous when the protective film 50 is arranged. Arrows in FIG. 4 indicate directions in which light from the light source 61 is observed when the polarizing plate 10 is inspected.
 これに対し、光学積層体2では、第2帯電防止層53を有していても、表面保護フィルム50の上記差ΔRe2が上記の範囲内にあるため、面内位相差値の変動量が小さく、光学積層体2を用いたクロスニコルでの光の透過観察において位相差のムラが視認されにくい。それゆえ、光学積層体2を用いたクロスニコルでの光の透過観察によって偏光板10の検品を行うことができるため、光学積層体2は検品性に優れる。 On the other hand, in the optical layered body 2, even if it has the second antistatic layer 53, the difference ΔRe2 of the surface protection film 50 is within the above range, so the amount of variation in the in-plane retardation value is small. , the unevenness of the retardation is difficult to be visually recognized in transmission observation of light with crossed Nicols using the optical layered body 2 . Therefore, since the polarizing plate 10 can be inspected by transmission observation of light in crossed Nicols using the optical layered body 2, the optical layered body 2 is excellent in inspectability.
 表面保護フィルム50の温度23℃、相対湿度55%RHにおける表面抵抗値は、先の実施形態で説明した表面保護フィルムの表面抵抗値の範囲とすることができる。表面保護フィルム50の表面抵抗値を上記した範囲とすることにより、光学積層体の多重取りを抑制しやすくなる。 The surface resistance value of the surface protection film 50 at a temperature of 23°C and a relative humidity of 55% RH can be within the range of the surface resistance value of the surface protection film described in the previous embodiment. By setting the surface resistance value of the surface protective film 50 within the range described above, it becomes easier to suppress multiple layers of the optical layered body.
 表面保護フィルム50の温度23℃、相対湿度55%における偏光板10に対する剥離力は、先の実施形態で説明した表面保護フィルムの範囲とすることができる。 The peel strength of the surface protective film 50 from the polarizing plate 10 at a temperature of 23°C and a relative humidity of 55% can be within the range of the surface protective film described in the previous embodiment.
 (剥離フィルム40)
 光学積層体2は、剥離フィルム40を有していてもよい。剥離フィルム40は、第1粘着剤層11を被覆保護するために用いられる。光学積層体2では、第1粘着剤層11に対して剥離可能に積層される。剥離フィルム40は、後述するように面内位相差を有していてもよい。剥離フィルム40は面内位相差を有する場合、光学積層体2において、剥離フィルム40の遅相軸と直線偏光層の吸収軸とが実質的に平行である又は実質的に直交していることが好ましい。実質的に平行する及び実質的に直交している場合の、上記遅相軸と上記吸収軸とのなす角度については、先の実施形態で説明したとおりである。
(Release film 40)
The optical laminate 2 may have a release film 40 . The release film 40 is used to cover and protect the first adhesive layer 11 . The optical layered body 2 is laminated so as to be peelable from the first pressure-sensitive adhesive layer 11 . The release film 40 may have an in-plane retardation as described later. When the release film 40 has an in-plane retardation, in the optical laminate 2, the slow axis of the release film 40 and the absorption axis of the linearly polarizing layer are substantially parallel or substantially orthogonal. preferable. The angles formed by the slow axis and the absorption axis when they are substantially parallel and substantially orthogonal are as described in the previous embodiments.
 剥離フィルム40は、図3に示すように、光学積層体2の第1粘着剤層11側から順に、離型処理層42及び第1基材フィルム41を有する。離型処理層42と第1基材フィルム41とは直接接していることが好ましい。 As shown in FIG. 3, the release film 40 has a release treatment layer 42 and a first base film 41 in order from the first adhesive layer 11 side of the optical layered body 2 . It is preferable that the release treatment layer 42 and the first base film 41 are in direct contact with each other.
 剥離フィルム40は、さらに、第1基材フィルム41の離型処理層42側とは反対側に、帯電防止剤を含む第1帯電防止層43を有していてもよい。第1基材フィルム41と第1帯電防止層43とは直接接していることが好ましい。 The release film 40 may further have a first antistatic layer 43 containing an antistatic agent on the side of the first base film 41 opposite to the release treated layer 42 side. It is preferable that the first base film 41 and the first antistatic layer 43 are in direct contact with each other.
 剥離フィルム40の波長550nmにおける平均の面内位相差値ReA1は1000nm以上である。上記平均の面内位相差値ReA1は、1500nm以上であってもよく、1800nm以上であってもよく、2000nm以上であってもよい。上記平均の面内位相差値ReA1は、通常5000nm以下であり、4000nm以下であってもよく、3000nm以下であってもよい。剥離フィルム40の上記平均の面内位相差値ReA1は、先の実施形態で説明した方法によって調整することができ、先の実施形態で説明した方法によって決定することができる。 The average in-plane retardation value Re A1 of the release film 40 at a wavelength of 550 nm is 1000 nm or more. The average in-plane retardation value Re A1 may be 1500 nm or more, 1800 nm or more, or 2000 nm or more. The average in-plane retardation value Re A1 is usually 5000 nm or less, may be 4000 nm or less, or may be 3000 nm or less. The average in-plane retardation value Re A1 of the release film 40 can be adjusted by the method described in the previous embodiment, and can be determined by the method described in the previous embodiment.
 剥離フィルム40の波長550nmにおける面内位相差値の最大値をRema1とし、剥離フィルム40の波長550nmにおける面内位相差値の最小値をRemi1とするとき、両者の差ΔRe1(=Rema1-Remi1)は、150nm以下である。差ΔRe1は、130nm以下であってもよく、110nm以下であってもよく、100nm以下であってもよく、80nm以下であってもよく、60nm以下であってもよい。差ΔRe1は、通常5nm以上であり、10nm以上であってもよく、20nm以上であってもよい。上記差ΔRe1は、150nmを超えていてもよい。剥離フィルム40の上記差ΔRe1は、先の実施形態で説明した方法によって調整することができ、先の実施形態で説明した方法によって決定することができる。 Re ma1 is the maximum in-plane retardation value of the release film 40 at a wavelength of 550 nm, and Re mi1 is the minimum in-plane retardation value of the release film 40 at a wavelength of 550 nm. −Re mi1 ) is 150 nm or less. The difference ΔRe1 may be 130 nm or less, 110 nm or less, 100 nm or less, 80 nm or less, or 60 nm or less. The difference ΔRe1 is usually 5 nm or more, may be 10 nm or more, or may be 20 nm or more. Said difference ΔRe1 may exceed 150 nm. The difference ΔRe1 of the release film 40 can be adjusted by the method described in the previous embodiment, and can be determined by the method described in the previous embodiment.
 光学積層体2に含まれる剥離フィルム40は、多重取り等を抑制するために第1帯電防止層43を有する。帯電防止層を有する剥離フィルムでは、剥離フィルムの面内位相差値が面内において均一にならず、ばらつくことがある。偏光板10の検品にあたり、検査用の偏光板の直線偏光層と光学積層体2の直線偏光層との間に形成されるクロスニコルの中に、光学積層体2の剥離フィルム40を配置することがある。この場合、剥離フィルムの面内において面内位相差値のばらつきが大きくなると、光学積層体を用いたクロスニコルでの光の透過観察において位相差のムラが視認され、欠陥等に対する偏光板の検品が適切に行いにくくなる。この現象は特に、クロスニコルとなるように配置した検査用の偏光板の直線偏光層と光学積層体2の直線偏光層との間に、光学積層体2の剥離フィルム40が配置された場合に顕著になりやすい。 The release film 40 included in the optical layered body 2 has a first antistatic layer 43 in order to suppress multiple removal and the like. In a release film having an antistatic layer, the in-plane retardation value of the release film may not be uniform within the plane and may vary. When inspecting the polarizing plate 10, the release film 40 of the optical layered body 2 is placed in the crossed Nicols formed between the linearly polarizing layer of the polarizing plate for inspection and the linearly polarizing layer of the optical layered body 2. There is In this case, when the variation in the in-plane retardation value in the plane of the release film becomes large, the unevenness of the retardation is visually recognized in the transmission observation of light with crossed Nicols using the optical laminate, and the polarizing plate is inspected for defects. is difficult to perform properly. This phenomenon occurs particularly when the release film 40 of the optical layered body 2 is arranged between the linearly polarizing layer of the polarizing plate for inspection and the linearly polarizing layer of the optical layered body 2 which are arranged so as to form crossed Nicols. tend to be noticeable.
 これに対し、光学積層体2は、第1帯電防止層43を有していても、剥離フィルム40の上記差ΔRe1が150nm以下であれば、面内位相差値の変動量が小さく、光学積層体2を用いたクロスニコルでの光の透過観察において位相差のムラが視認されにくい。これにより、光学積層体2の表面保護フィルム50及び剥離フィルム40のいずれを、検査用の偏光板の直線偏光層と光学積層体1の直線偏光層との間に配置した場合であっても、光学積層体2を用いたクロスニコルでの光の透過観察によって偏光板10の検品を行うことができるため、より一層検品性に優れた光学積層体2を提供することができる。 On the other hand, even if the optical laminate 2 has the first antistatic layer 43, if the difference ΔRe1 of the release film 40 is 150 nm or less, the amount of change in the in-plane retardation value is small, and the optical laminate In light transmission observation with crossed nicols using the body 2, the unevenness of the retardation is difficult to be visually recognized. As a result, even when any of the surface protective film 50 and the release film 40 of the optical layered body 2 is arranged between the linearly polarizing layer of the polarizing plate for inspection and the linearly polarizing layer of the optical layered body 1, Since the polarizing plate 10 can be inspected by crossed Nicol light transmission observation using the optical layered body 2, the optical layered body 2 with even better inspection properties can be provided.
 剥離フィルム40の温度23℃、相対湿度55%RHにおける表面抵抗値は、先の実施形態で説明した剥離フィルムの表面抵抗値の範囲とすることができる。剥離フィルム40の表面抵抗値を上記した範囲とすることにより、光学積層体の多重取りをより一層抑制しやすくなる。 The surface resistance value of the release film 40 at a temperature of 23°C and a relative humidity of 55% RH can be within the range of the surface resistance value of the release film described in the previous embodiment. By setting the surface resistance value of the release film 40 within the above-described range, it becomes easier to suppress multiple layers of the optical layered body.
 (光学積層体2の製造方法)
 光学積層体2は、上記した光学積層体2の層構造となるように、各層を積層することによって製造することができる。例えば、光学積層体2は、上記した第1粘着剤層11、偏光板10、表面保護フィルム50、及び、必要に応じて剥離フィルム40を積層することによって製造することができる。光学積層体2は、表面保護フィルム50と偏光板10とを積層した積層体に、第1粘着剤層11、又は、剥離フィルム40の離型処理層42側に第1粘着剤層11を積層した積層体を積層することによって得てもよい。あるいは、光学積層体2は、第2基材フィルム51及び偏光板10を積層した積層体を得た後に、又は、第2基材フィルム51、第2粘着剤層52、及び偏光板10をこの順に積層した積層体を得た後に、第2基材フィルム51の偏光板10側とは反対側に第2帯電防止層53を形成して得てもよい。
(Manufacturing method of optical laminate 2)
The optical layered body 2 can be manufactured by laminating each layer so as to have the layer structure of the optical layered body 2 described above. For example, the optical layered body 2 can be produced by laminating the first adhesive layer 11, the polarizing plate 10, the surface protection film 50, and, if necessary, the release film 40 described above. The optical laminate 2 is a laminate obtained by laminating the surface protective film 50 and the polarizing plate 10, and the first adhesive layer 11 or the first adhesive layer 11 is laminated on the release treatment layer 42 side of the release film 40. You may obtain by laminating|stacking the laminated body which carried out. Alternatively, the optical laminate 2 may be obtained after obtaining a laminate in which the second base film 51 and the polarizing plate 10 are laminated, or after the second base film 51, the second pressure-sensitive adhesive layer 52, and the polarizing plate 10 are laminated. The second antistatic layer 53 may be formed on the opposite side of the second base film 51 from the polarizing plate 10 side after obtaining a laminated body laminated in order.
 光学積層体2の製造方法において、第2基材フィルム51に第2帯電防止層53を形成して表面保護フィルム50を形成する方法、及び、第1基材フィルム41に第1帯電防止層43を形成して剥離フィルム40を形成する方法としては、先の実施形態で説明した方法が挙げられる。各方法において、塗工液を乾燥する温度についても、面内位相差のばらつきを低減する観点から、先の実施形態で説明した範囲の温度で行うことが好ましい。 In the method for producing the optical laminate 2, a method of forming the second antistatic layer 53 on the second base film 51 to form the surface protection film 50, and a method of forming the first antistatic layer 43 on the first base film 41. is formed to form the release film 40, the method described in the previous embodiment can be mentioned. In each method, the temperature for drying the coating liquid is also preferably within the range described in the previous embodiment from the viewpoint of reducing the variation in the in-plane retardation.
 以下、上記で説明した光学積層体を構成する層等について、より詳細に説明する。 Hereinafter, the layers and the like that constitute the optical laminate described above will be described in more detail.
 (第1基材フィルム)
 剥離フィルムに含まれる第1基材フィルムは、熱可塑性樹脂から形成されたフィルムを用いることができ、通常、延伸処理が施された延伸フィルムである。第1基材フィルムを形成する熱可塑性樹脂としては、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル樹脂;ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体等のポリオレフィン樹脂;シクロ系及びノルボルネン構造を有する環状ポリオレフィン樹脂(ノルボルネン系樹脂ともいう);(メタ)アクリル樹脂;ポリアリレート樹脂;ポリスチレン樹脂;ポリビニルアルコール樹脂;トリアセチルセルロース等のセルロース樹脂;ポリエーテルスルホン樹脂;ポリスルホン樹脂;ポリカーボネート樹脂;ナイロンや芳香族ポリアミド等のポリアミド樹脂;ポリイミド樹脂等が挙げられる。第1基材フィルムは、ポリエステル樹脂フィルムであることが好ましく、延伸処理が施された延伸ポリエステル樹脂フィルムであることがより好ましい。「(メタ)アクリル」とは、アクリル及びメタクリルから選択される少なくとも一方を意味する。
(First base film)
A film formed from a thermoplastic resin can be used as the first base film contained in the release film, and is usually a stretched film that has undergone a stretching treatment. Thermoplastic resins forming the first base film include polyester resins such as polyethylene terephthalate and polyethylene naphthalate; polyolefin resins such as polyethylene, polypropylene and ethylene/propylene copolymer; cyclic polyolefin resins having cyclo- and norbornene structures. (also referred to as norbornene-based resin); (meth)acrylic resin; polyarylate resin; polystyrene resin; polyvinyl alcohol resin; cellulose resin such as triacetyl cellulose; polyethersulfone resin; Polyamide resin; polyimide resin and the like. The first base film is preferably a polyester resin film, and more preferably a stretched polyester resin film that has been stretched. "(Meth)acryl" means at least one selected from acryl and methacryl.
 第1基材フィルムの波長550nmにおける平均の面内位相差値は、通常1000nm以上であり、1500nm以上であってもよく、1800nm以上であってもよく、2000nm以上であってもよく、また、通常5000nm以下であり、4000nm以下であってもよく、3000nm以下であってもよい。上記平均の面内位相差値は、後述する実施例に記載の剥離フィルムの平均の面内位相差値ReA1を決定する方法に準じて決定することができる。 The average in-plane retardation value of the first base film at a wavelength of 550 nm is usually 1000 nm or more, may be 1500 nm or more, may be 1800 nm or more, or may be 2000 nm or more, and It is usually 5000 nm or less, may be 4000 nm or less, or may be 3000 nm or less. The average in-plane retardation value can be determined according to the method for determining the average in-plane retardation value ReA1 of a release film described later in Examples.
 第1基材フィルムの厚みは、例えば5μm以上であり、10μm以上であってもよく、50μm以上であってもよく、70μm以上であってもよく、また、例えば300μm以下であり、200μm以下であってもよく、150μm以下であってもよく、120μm以下であってもよく、100μm以下であってもよい。 The thickness of the first base film is, for example, 5 μm or more, may be 10 μm or more, may be 50 μm or more, or may be 70 μm or more, and may be, for example, 300 μm or less, or 200 μm or less. 150 μm or less, 120 μm or less, or 100 μm or less.
 (離型処理層)
 剥離フィルムに含まれる離型処理層は、第1基材フィルムの一方の表面に対して離型処理を施すことによって形成された層である。離型処理層は、例えば、第1基材フィルムの表面に、フッ素化合物、シリコーン化合物、長鎖アルキル系化合物、脂肪酸アミド系化合物等の公知の離型剤を含む離型剤組成物をコーティングして形成されたコーティング層である。
(Release treatment layer)
The release-treated layer included in the release film is a layer formed by subjecting one surface of the first base film to a release treatment. For the release treatment layer, for example, the surface of the first base film is coated with a release agent composition containing a known release agent such as a fluorine compound, a silicone compound, a long-chain alkyl compound, a fatty acid amide compound, and the like. It is a coating layer formed by
 離型処理層の厚みは、10nm以上2000nm以下であることができるが、好ましくは10nm以上1000nm以下であり、より好ましくは10nm以上500nm以下である。 The thickness of the release treatment layer can be 10 nm or more and 2000 nm or less, preferably 10 nm or more and 1000 nm or less, and more preferably 10 nm or more and 500 nm or less.
 (第1帯電防止層)
 剥離フィルムが含んでいてもよい第1帯電防止層は、帯電防止剤を含む。帯電防止剤としては、公知の帯電防止剤を用いることができ、例えば導電性ポリマー;金属微粒子、金属酸化物微粒子、又は金属等をコーティングした微粒子等の導電性の微粒子;電解質塩とオルガノポリシロキサンとからなるイオン導電性組成物;イオン性化合物;界面活性剤(カチオン性、アニオン性及び両性の界面活性剤);加水分解性有機珪素化合物及びその縮重合体のうちの少なくとも一方等が挙げられる。第1帯電防止層は、上記した帯電防止剤のうちの1種又は2種以上を含むことができる。帯電防止層が帯電防止剤を含むことにより、帯電防止層の電気抵抗が低下するので、剥離フィルム、ひいては光学積層体に帯電防止性能を付与することができる。
(First antistatic layer)
The first antistatic layer that the release film may contain contains an antistatic agent. As the antistatic agent, known antistatic agents can be used, for example, conductive polymers; conductive fine particles such as metal fine particles, metal oxide fine particles, or metal-coated fine particles; electrolyte salts and organopolysiloxanes; ionic compounds; surfactants (cationic, anionic and amphoteric surfactants); at least one of hydrolyzable organosilicon compounds and polycondensates thereof, etc. . The first antistatic layer can contain one or more of the antistatic agents described above. When the antistatic layer contains an antistatic agent, the electrical resistance of the antistatic layer is lowered, so that antistatic performance can be imparted to the release film and, in turn, to the optical laminate.
 導電性ポリマーとしては、ポリアセチレン、パラ位もしくはメタ位で結合したポリフェニレン、2価の基を介してフェニル基が繋がった高分子(例えば、-CH=CH-を介してフェニル基が繋がったポリフェニレンビニレン、-S-を介してフェニル基が繋がったポリフェニレンサルファイド、-O-を介してフェニル基が繋がったポリフェニレンオキサイドが挙げられる。)、五員環を構成する元素がCとH以外の元素を一つ含み2,5位で繋がった高分子(例えば、NHを含む五員環が2,5位で繋がったポリピロール、Sを含む五員環が2,5位で繋がったポリチオフェン、Oを含む五員環が2,5位で繋がった
ポリフラン、Seを含む五員環が2,5位で繋がったポリセレノフェン、Teを含む五員環が2,5位で繋がったポリテルロフェンが挙げられる。)、芳香族アミン類を重合して得られる高分子(例えば、ポリアニリン、ポリアミノピレンが挙げられる。)、ポリスチレンスルホン酸等が挙げられる。
Examples of conductive polymers include polyacetylene, polyphenylene bonded at the para- or meta-position, and polymers in which phenyl groups are linked via divalent groups (for example, polyphenylene vinylene in which phenyl groups are linked via -CH=CH- , polyphenylene sulfide in which a phenyl group is linked via -S-, and polyphenylene oxide in which a phenyl group is linked via -O-.), an element other than C and H that constitutes a five-membered ring 2,5-position-linked polymers (e.g., polypyrrole with NH-containing five-membered rings linked at 2,5-positions, polythiophene with S-containing five-membered rings linked at 2,5-positions, five-membered rings containing O polyfuran in which the membered rings are linked at the 2,5-positions, polyselenophene in which the five-membered rings containing Se are linked at the 2,5-positions, and polyterurophene in which the five-membered rings containing Te are linked at the 2,5-positions. ), polymers obtained by polymerizing aromatic amines (eg, polyaniline and polyaminopyrene), polystyrenesulfonic acid, and the like.
 導電性の微粒子としては、例えば、銀粉、銅粉、ニッケル粉、酸化亜鉛(ZnO)、酸化錫(SnO)、アンチモンドープした酸化錫(ATO)、スズドープした酸化インジウム(ITO)等が挙げられる。 Examples of conductive fine particles include silver powder, copper powder, nickel powder, zinc oxide (ZnO), tin oxide (SnO 2 ), antimony-doped tin oxide (ATO), and tin-doped indium oxide (ITO). .
 イオン導電性組成物としては、例えば、電解質塩と下記式で示されるオルガノポリシロキサンが挙げられる。
Figure JPOXMLDOC01-appb-C000001

[式中、
 R11は1価の有機基、R12~R14はアルキレン基、R15は水素又は1価の有機基を表す。
 mは0~100の整数、nは1~100の整数である。
 -(-Si(R1111)O-)-単位と-(-Si(R1112)O-)-単位の配列順序は任意である。
 a及びbはそれぞれ0~100の整数であり、同時に0であることはない。
 -(-R13O-)-と-(-R14O-)-の配列順序は任意である。]
Examples of the ion-conductive composition include an electrolyte salt and an organopolysiloxane represented by the following formula.
Figure JPOXMLDOC01-appb-C000001

[In the formula,
R 11 represents a monovalent organic group, R 12 to R 14 represent an alkylene group, and R 15 represents hydrogen or a monovalent organic group.
m is an integer of 0-100, n is an integer of 1-100.
The arrangement order of the -(-Si(R 11 R 11 )O-)- unit and the -(-Si(R 11 R 12 )O-)- unit is arbitrary.
a and b are each an integer of 0 to 100 and not 0 at the same time.
The arrangement order of -(-R 13 O-)- and -(-R 14 O-)- is arbitrary. ]
 電解質塩としては、その陽イオンが周期律表の第I族又は第II族に属する金属の陽イオンである電解質塩が挙げられる。陽イオンとしては、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、バリウム等の陽イオンが挙げられる。 Electrolyte salts include electrolyte salts whose cations are cations of metals belonging to Group I or Group II of the periodic table. Examples of cations include cations such as lithium, sodium, potassium, magnesium, calcium, and barium.
 イオン性化合物は、例えば、無機カチオン又は有機カチオンと、無機アニオン又は有機アニオンとを有する化合物である。 An ionic compound is, for example, a compound having an inorganic or organic cation and an inorganic or organic anion.
 無機カチオンとしては、例えば、リチウムカチオン〔Li〕、ナトリウムカチオン〔Na〕、カリウムカチオン〔K〕のようなアルカリ金属イオンや、ベリリウムカチオン〔Be2+〕、マグネシウムカチオン〔Mg2+〕、カルシウムカチオン〔Ca2+〕のようなアルカリ土類金属イオン等が挙げられる。 Examples of inorganic cations include alkali metal ions such as lithium cation [Li + ], sodium cation [Na + ], potassium cation [K + ], beryllium cation [Be 2+ ], magnesium cation [Mg 2+ ], calcium Examples thereof include alkaline earth metal ions such as cations [Ca 2+ ].
 有機カチオンとしては、例えば、イミダゾリウムカチオン、ピリジニウムカチオン、ピロリジニウムカチオン、アンモニウムカチオン、スルホニウムカチオン、ホスホニウムカチオン、ピペリジニウムカチオン等が挙げられる。 Examples of organic cations include imidazolium cations, pyridinium cations, pyrrolidinium cations, ammonium cations, sulfonium cations, phosphonium cations, and piperidinium cations.
 無機アニオンとしては、例えば、クロライドアニオン〔Cl〕、ブロマイドアニオン〔Br〕、ヨーダイドアニオン〔I〕、テトラクロロアルミネートアニオン〔AlCl 〕、ヘプタクロロジアルミネートアニオン〔AlCl 〕、テトラフルオロボレートアニオン〔BF 〕、ヘキサフルオロホスフェートアニオン〔PF 〕、パークロレートアニオン〔ClO 〕、ナイトレートアニオン〔NO 〕、ヘキサフルオロアーセネートアニオン〔AsF 〕、ヘキサフルオロアンチモネートアニオン〔SbF 〕、ヘキサフルオロニオベートアニオン〔NbF 〕、ヘキサフルオロタンタレートアニオン〔TaF 〕、ジシアナミドアニオン〔(CN)〕等が挙げられる。 Examples of inorganic anions include chloride anion [Cl ], bromide anion [Br ], iodide anion [I ], tetrachloroaluminate anion [AlCl 4 ], heptachlorodialuminate anion [Al 2 Cl 7 ], tetrafluoroborate anion [BF 4 ], hexafluorophosphate anion [PF 6 ], perchlorate anion [ClO 4 ], nitrate anion [NO 3 ], hexafluoroarsenate anion [AsF 6 - ], hexafluoroantimonate anion [SbF 6 - ], hexafluoroniobate anion [NbF 6 - ], hexafluorotantalate anion [TaF 6 - ] , dicyanamide anion [(CN) 2 N - ], and the like. be done.
 有機アニオンとしては、例えば、アセテートアニオン〔CHCOO〕、トリフルオロアセテートアニオン〔CFCOO〕、メタンスルホネートアニオン〔CHSO 〕、トリフルオロメタンスルホネートアニオン〔CFSO 〕、p-トルエンスルホネートアニオン〔p-CHSO 〕、ビス(フルオロスルホニル)イミドアニオン〔(FSO〕、ビス(トリフルオロメタンスルホニル)イミドアニオン〔(CFSO〕、トリス(トリフルオロメタンスルホニル)メタニドアニオン〔(CFSO〕、ジメチルホスフィネートアニオン〔(CHPOO〕、(ポリ)ハイドロフルオロフルオライドアニオン〔F(HF)n〕(nは1~3程度)、チオシアンアニオン〔SCN〕、パーフルオロブタンスルホネートアニオン〔CSO 〕、ビス(ペンタフルオロエタンスルホニル)イミドアニオン〔(CSO〕、パーフルオロブタノエートアニオン〔CCOO〕、(トリフルオロメタンスルホニル)(トリフルオロメタンカルボニル)イミドアニオン〔(CFSO)(CFCO)N〕、パーフルオロプロパン-1,3-ジスルホネートアニオン〔S(CFSO 〕、カーボネートアニオン〔CO 2-〕等が挙げられる。 Examples of organic anions include acetate anion [CH 3 COO ], trifluoroacetate anion [CF 3 COO ], methanesulfonate anion [CH 3 SO 3 ], trifluoromethanesulfonate anion [CF 3 SO 3 ], p-toluenesulfonate anion [p-CH 3 C 6 H 4 SO 3 ], bis(fluorosulfonyl)imide anion [(FSO 2 ) 2 N ], bis(trifluoromethanesulfonyl)imide anion [(CF 3 SO 2 ) 2 N ], tris(trifluoromethanesulfonyl)methanide anion [(CF 3 SO 2 ) 3 C ], dimethylphosphinate anion [(CH 3 ) 2 POO ], (poly)hydrofluorofluoride anion [ F(HF)n ] (n is about 1 to 3), thiocyananion [SCN ], perfluorobutanesulfonate anion [C 4 F 9 SO 3 ], bis(pentafluoroethanesulfonyl)imide anion [(C 2 F 5 SO 2 ) 2 N ], perfluorobutanoate anion [C 3 F 7 COO ], (trifluoromethanesulfonyl)(trifluoromethanecarbonyl)imide anion [(CF 3 SO 2 )(CF 3 CO) N ], perfluoropropane-1,3-disulfonate anion [ O 3 S(CF 2 ) 3 SO 3 ], carbonate anion [CO 3 2− ] and the like.
 イオン性化合物の具体例は、上記カチオン成分とアニオン成分の組み合わせから適宜選択することができる。有機カチオンを有するイオン性化合物の例を有機カチオンの構造ごとに分類して掲げると、次のものが挙げられる。 Specific examples of the ionic compound can be appropriately selected from combinations of the above cationic components and anionic components. Examples of ionic compounds having an organic cation are listed below by classifying them according to the structure of the organic cation.
 ピリジニウム塩:
 N-ヘキシルピリジニウム ヘキサフルオロホスフェート、
 N-オクチルピリジニウム ヘキサフルオロホスフェート、
 N-オクチル-4-メチルピリジニウム ヘキサフルオロホスフェート、
 N-ブチル-4-メチルルピリジニウム ヘキサフルオロホスフェート、
 N-デシルピリジニウム ビス(フルオロスルホニル)イミド、
 N-ドデシルピリジニウム ビス(フルオロスルホニル)イミド、
 N-テトラデシルピリジニウム ビス(フルオロスルホニル)イミド、
 N-ヘキサデシルピリジニウム ビス(フルオロスルホニル)イミド、
 N-ドデシル-4-メチルピリジニウム ビス(フルオロスルホニル)イミド、
 N-テトラデシル-4-メチルピリジニウム ビス(フルオロスルホニル)イミド、
 N-ヘキサデシル-4-メチルピリジニウム ビス(フルオロスルホニル)イミド、
 N-ベンジル-2-メチルピリジニウム ビス(フルオロスルホニル)イミド、
 N-ベンジル-4-メチルピリジニウム ビス(フルオロスルホニル)イミド、
 N-ヘキシルピリジニウム ビス(トリフルオロメタンスルホニル)イミド、
 N-オクチルピリジニウム ビス(トリフルオロメタンスルホニル)イミド、
 N-オクチル-4-メチルピリジニウム ビス(トリフルオロメタンスルホニル)イミド、
 N-ブチル-4-メチルルピリジニウム ビス(トリフルオロメタンスルホニル)イミド。
Pyridinium salt:
N-hexylpyridinium hexafluorophosphate,
N-octylpyridinium hexafluorophosphate,
N-octyl-4-methylpyridinium hexafluorophosphate,
N-butyl-4-methyllupyridinium hexafluorophosphate,
N-decylpyridinium bis(fluorosulfonyl)imide,
N-dodecylpyridinium bis(fluorosulfonyl)imide,
N-tetradecylpyridinium bis(fluorosulfonyl)imide,
N-hexadecylpyridinium bis(fluorosulfonyl)imide,
N-dodecyl-4-methylpyridinium bis(fluorosulfonyl)imide,
N-tetradecyl-4-methylpyridinium bis(fluorosulfonyl)imide,
N-hexadecyl-4-methylpyridinium bis(fluorosulfonyl)imide,
N-benzyl-2-methylpyridinium bis(fluorosulfonyl)imide,
N-benzyl-4-methylpyridinium bis(fluorosulfonyl)imide,
N-hexylpyridinium bis(trifluoromethanesulfonyl)imide,
N-octylpyridinium bis(trifluoromethanesulfonyl)imide,
N-octyl-4-methylpyridinium bis(trifluoromethanesulfonyl)imide,
N-Butyl-4-methyllpyridinium bis(trifluoromethanesulfonyl)imide.
 イミダゾリウム塩:
 1-エチル-3-メチルイミダゾリウム ヘキサフルオロホスフェート、
 1-エチル-3-メチルイミダゾリウム p-トルエンスルホネート、
 1-エチル-3-メチルイミダゾリウム ビス(フルオロスルホニル)イミド、
 1-エチル-3-メチルイミダゾリウム ビス(トリフルオロメタンスルホニル)イミド、
 1-ブチル-3-メチルイミダゾリウム メタンスルホネート、
 1-ブチル-3-メチルイミダゾリウム ビス(フルオロスルホニル)イミド。
Imidazolium salt:
1-ethyl-3-methylimidazolium hexafluorophosphate,
1-ethyl-3-methylimidazolium p-toluenesulfonate,
1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide,
1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide,
1-butyl-3-methylimidazolium methanesulfonate,
1-Butyl-3-methylimidazolium bis(fluorosulfonyl)imide.
 ピロリジニウム塩:
 N-ブチル-N-メチルピロリジニウム ヘキサフルオロホスフェート、
 N-ブチル-N-メチルピロリジニウム ビス(フルオロスルホニル)イミド、
 N-ブチル-N-メチルピロリジニウム ビス(トリフルオロメタンスルホニル)イミド。
Pyrrolidinium salt:
N-butyl-N-methylpyrrolidinium hexafluorophosphate,
N-butyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide,
N-Butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide.
 4級アンモニウム塩:
 テトラブチルアンモニウム ヘキサフルオロホスフェート、
 テトラブチルアンモニウム p-トルエンスルホネート、
 (2-ヒドロキシエチル)トリメチルアンモニウム ビス(トリフルオロメタンスルホニル)イミド、
 (2-ヒドロキシエチル)トリメチルアンモニウム ジメチルホスフィネート。
Quaternary ammonium salt:
tetrabutylammonium hexafluorophosphate,
tetrabutylammonium p-toluenesulfonate,
(2-hydroxyethyl)trimethylammonium bis(trifluoromethanesulfonyl)imide,
(2-hydroxyethyl)trimethylammonium dimethylphosphinate.
 また、無機カチオンを有するイオン性化合物の例を挙げると、次のものが挙げられる。
 リチウム ブロマイド、
 リチウム ヨーダイド、
 リチウム テトラフルオロボレート、
 リチウム ヘキサフルオロホスフェート、
 リチウム チオシアネート、
 リチウム パークロレート、
 リチウム トリフルオロメタンスルホネート、
 リチウム ビス(フルオロスルホニル)イミド、
 リチウム ビス(トリフルオロメタンスルホニル)イミド、
 リチウム ビス(ペンタフルオロエタンスルホニル)イミド、
 リチウム トリス(トリフルオロメタンスルホニル)メタニド、
 リチウム p-トルエンスルホネート、
 ナトリウム ヘキサフルオロホスフェート、
 ナトリウム ビス(フルオロスルホニル)イミド、
 ナトリウム ビス(トリフルオロメタンスルホニル)イミド、
 ナトリウム p-トルエンスルホネート、
 カリウム ヘキサフルオロホスフェート、
 カリウム ビス(フルオロスルホニル)イミド、
 カリウム ビス(トリフルオロメタンスルホニル)イミド、
 カリウム p-トルエンスルホネート。
Examples of ionic compounds having inorganic cations include the following.
lithium bromide,
lithium iodide,
lithium tetrafluoroborate,
lithium hexafluorophosphate,
lithium thiocyanate,
lithium perchlorate,
lithium trifluoromethanesulfonate,
lithium bis(fluorosulfonyl)imide,
lithium bis(trifluoromethanesulfonyl)imide,
lithium bis(pentafluoroethanesulfonyl)imide,
lithium tris(trifluoromethanesulfonyl)methanide,
lithium p-toluenesulfonate,
sodium hexafluorophosphate,
sodium bis(fluorosulfonyl)imide,
sodium bis(trifluoromethanesulfonyl)imide,
sodium p-toluenesulfonate,
potassium hexafluorophosphate,
potassium bis(fluorosulfonyl)imide,
potassium bis(trifluoromethanesulfonyl)imide,
Potassium p-toluenesulfonate.
 これらのイオン性化合物は、1種のみを単独で用いてもよいし、2種以上を併用してもよい。 These ionic compounds may be used alone or in combination of two or more.
 界面活性剤としては、炭化水素系界面活性剤、フッ素系界面活性剤、シリコーン系界面活性剤等が挙げられる。 Examples of surfactants include hydrocarbon-based surfactants, fluorine-based surfactants, and silicone-based surfactants.
 加水分解性有機珪素化合物は、非加水分解性の有機基と加水分解性の有機又は無機の基がケイ素原子に結合した化合物であるか、加水分解性の有機基がケイ素原子に結合した化合物である。ここで、有機基は、炭素原子が結合位置にあるものであってもよいし、他の原子が結合位置にあるものであってもよい。加水分解性有機珪素化合物は、具体的には、下式で表すことができる。
  Si(T(T4-q
[式中、Tは水素原子又は非加水分解性の有機基を表し、Tは加水分解性の基を表し、qは0~3の整数を表す。]
A hydrolyzable organosilicon compound is a compound in which a non-hydrolyzable organic group and a hydrolyzable organic or inorganic group are bonded to a silicon atom, or a compound in which a hydrolyzable organic group is bonded to a silicon atom. be. Here, the organic group may have a carbon atom at the bonding position, or may have another atom at the bonding position. Specifically, the hydrolyzable organosilicon compound can be represented by the following formula.
Si(T 1 ) q (T 2 ) 4-q
[In the formula, T 1 represents a hydrogen atom or a non-hydrolyzable organic group, T 2 represents a hydrolyzable group, and q represents an integer of 0-3. ]
 上記式において、Tで表される非加水分解性の有機基として、典型的には、炭素数1~4程度のアルキル基、炭素数2~4程度のアルケニル基、フェニル基等のアリール基等が挙げられる。Tで表される加水分解性の基としては、例えば、メトキシ基やエトキシ基等の炭素数1~5程度のアルコキシ基、アセトキシ基やプロピオニルオキシ基等のアシロキシ基、塩素原子や臭素原子等のハロゲン原子、トリメチルシリルアミノ基等の置換シリルアミノ基等が挙げられる。加水分解性有機珪素化合物は、アルコキシシラン化合物、ハロゲン化シラン化合物、アシロキシシラン化合物、シラザン化合物等であってもよい。これらの加水分解性有機珪素化合物は、上記式におけるT又はTの一部として、アリール基、ビニル基、アリル基、(メタ)アクリロイルオキシ基、エポキシ基、アミノ基、メルカプト基、フルオロアルキル基等の置換基を有していてもよい。「(メタ)アクリロイル」とは、アクリロイル及びメタクリロイルから選択される少なくとも一方を意味する。 In the above formula, the non-hydrolyzable organic group represented by T 1 typically includes an alkyl group having about 1 to 4 carbon atoms, an alkenyl group having about 2 to 4 carbon atoms, and an aryl group such as a phenyl group. etc. Hydrolyzable groups represented by T2 include, for example, alkoxy groups having about 1 to 5 carbon atoms such as methoxy group and ethoxy group, acyloxy groups such as acetoxy group and propionyloxy group, chlorine atom and bromine atom. and substituted silylamino groups such as a trimethylsilylamino group. The hydrolyzable organosilicon compound may be an alkoxysilane compound, a halogenated silane compound, an acyloxysilane compound, a silazane compound, or the like. These hydrolyzable organosilicon compounds are aryl groups , vinyl groups, allyl groups, (meth)acryloyloxy groups, epoxy groups, amino groups, mercapto groups, fluoroalkyl It may have a substituent such as a group. "(Meth)acryloyl" means at least one selected from acryloyl and methacryloyl.
 具体的な加水分解性有機珪素化合物としては、例えば、メチルトリクロロシラン等のハロゲン化シラン化合物;テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-アミノプロピルトリエトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メタクリロイルオキシプロピルトリメトキシシラン、γ-メタクリロイルオキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン等のアルコキシシラン化合物;ヘキサメチルジシラザン等のシラザン化合物等が挙げられる。これらは、それぞれ単独で、又は2種以上混合して用いることができる。 Examples of specific hydrolyzable organosilicon compounds include halogenated silane compounds such as methyltrichlorosilane; tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, dimethyldimethoxysilane. , dimethyldiethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, γ-aminopropyltriethoxysilane, N-(β-aminoethyl)-γ-aminopropyltrimethoxysilane, N-(β-aminoethyl)- γ-Aminopropylmethyldimethoxysilane, γ-Mercaptopropyltrimethoxysilane, γ-Mercaptopropylmethyldimethoxysilane, γ-Methacryloyloxypropyltrimethoxysilane, γ-Methacryloyloxypropylmethyldimethoxysilane, γ-Glycidoxypropyltrimethoxysilane Alkoxysilane compounds such as silane and γ-glycidoxypropylmethyldimethoxysilane; silazane compounds such as hexamethyldisilazane; These may be used alone or in combination of two or more.
 加水分解性有機珪素化合物として、上記のような加水分解性有機珪素化合物が部分的に加水分解された加水分解生成物を用いてもよい。また、加水分解性有機珪素化合物として、上記加水分解生成物を縮合して、オリゴマー又はポリマーとなった多量体を用いてもよい。これらの加水分解生成物や多量体は、加水分解性有機珪素化合物に、塩酸、リン酸、酢酸、硫酸等の酸、又は水酸化ナトリウム、酢酸ナトリウム等の塩基を加えることにより、生成させることができる。 As the hydrolyzable organosilicon compound, a hydrolysis product obtained by partially hydrolyzing the hydrolyzable organosilicon compound as described above may be used. As the hydrolyzable organosilicon compound, a multimer obtained by condensing the above hydrolysis product to form an oligomer or polymer may be used. These hydrolysis products and polymers can be produced by adding acids such as hydrochloric acid, phosphoric acid, acetic acid and sulfuric acid, or bases such as sodium hydroxide and sodium acetate, to the hydrolyzable organosilicon compound. can.
 帯電防止剤として、上記のような加水分解性有機珪素化合物を加水分解、重縮合反応させて得られる縮重合体を用いてもよい。上記加水分解性有機珪素化合物を加水分解する方法は、公知の方法によって行うことができる。具体的には、所定量の有機溶媒中に加水分解性有機珪素化合物を、所定の固形分濃度が要求される量を溶解して均一な溶液とし、触媒の存在下に加水分解すればよい。有機溶媒を使用しない場合は、水と触媒の均一溶液に、加水分解性有機珪素化合物を所定の固形分濃度が要求される量を添加して加水分解すればよい。一般的には、酸又はアルカリ触媒の存在下に、所望の加水分解率に要求される量の水を添加して加水分解すればよい。前記した加水分解用の触媒としては、塩酸、リン酸、硫酸、酢酸等の酸、例えばLiOH、NaOH、KOH等の塩基性の水酸化物触媒があり、加水分解性有機珪素化合物に対して0.01~10重量%が使用される。加水分解の反応温度は、室温から50℃の温度で十分であり、反応時間は反応温度、触媒量により異なるが、一般には1~24時間である。以上の加水分解反応により加水分解性有機珪素化合物の縮重合体が調製される。なお、加水分解性有機珪素化合物の縮重合体は塗布面でゲル化するとき、表面に水酸基を含有するシラノール基(Si-OH)を多く有するようになり、これが静電防止性能の発現に有効なものとなる。加水分解性有機珪素化合物の縮重合体は加水分解により調製されるため、該縮重合体の末端基にはOH基が含まれ、これも静電防止性能の発現に有効なものとなる。 As the antistatic agent, a condensation polymer obtained by hydrolyzing and polycondensing the hydrolyzable organosilicon compound as described above may be used. A known method can be used to hydrolyze the above hydrolyzable organosilicon compound. Specifically, a hydrolyzable organosilicon compound is dissolved in a predetermined amount of an organic solvent in an amount required for a predetermined solid content concentration to form a uniform solution, which is then hydrolyzed in the presence of a catalyst. When no organic solvent is used, a hydrolyzable organosilicon compound may be hydrolyzed by adding to a uniform solution of water and a catalyst an amount required to achieve a predetermined solid content concentration. In general, hydrolysis may be carried out by adding an amount of water required for the desired hydrolysis rate in the presence of an acid or alkali catalyst. Examples of the hydrolysis catalyst include acids such as hydrochloric acid, phosphoric acid, sulfuric acid, and acetic acid, and basic hydroxide catalysts such as LiOH, NaOH, and KOH. .01 to 10% by weight is used. A reaction temperature of room temperature to 50° C. is sufficient for the hydrolysis reaction, and the reaction time varies depending on the reaction temperature and amount of catalyst, but is generally 1 to 24 hours. A condensation polymer of the hydrolyzable organosilicon compound is prepared by the above hydrolysis reaction. When the polycondensate of the hydrolyzable organosilicon compound gels on the surface to be coated, it has many silanol groups (Si—OH) containing hydroxyl groups on the surface, which is effective in developing antistatic performance. become something. Since the polycondensate of the hydrolyzable organosilicon compound is prepared by hydrolysis, the end groups of the polycondensate contain OH groups, which are also effective in exhibiting antistatic properties.
 加水分解性有機珪素化合物及びその縮重合体は、それぞれ単独で用いてもよいし、加水分解性有機珪素化合物とその縮合体との混合物の状態で用いてもよい。 The hydrolyzable organosilicon compound and its condensation polymer may be used alone, or may be used in the form of a mixture of the hydrolyzable organosilicon compound and its condensate.
 第1帯電防止層は、例えば、帯電防止剤を含む塗工液を第1基材フィルムの表面に塗布することによって形成できる。塗工液には通常、帯電防止剤や溶剤(水も含む)、必要に応じて(メタ)アクリル化合物等の熱又は活性エネルギー線の照射により硬化する硬化性樹脂が含まれる。第1基材フィルムの表面には、必要に応じて、コロナ処理、プラズマ処理、プライマー処理、アンカーコーティング処理等の表面活性化処理を行ってもよい。これにより、第1帯電防止層と第1基材フィルムとの密着性の向上や、塗工液の第1基材フィルムへの濡れ性が良好となる。 The first antistatic layer can be formed, for example, by applying a coating liquid containing an antistatic agent to the surface of the first base film. The coating liquid usually contains an antistatic agent, a solvent (including water), and, if necessary, a curable resin such as a (meth)acrylic compound that is cured by heat or active energy ray irradiation. If necessary, the surface of the first base film may be subjected to surface activation treatment such as corona treatment, plasma treatment, primer treatment, anchor coating treatment, and the like. This improves the adhesion between the first antistatic layer and the first base film, and the wettability of the coating liquid to the first base film.
 溶剤は、塗工液の濃度や粘度、塗工層の膜厚等を調整するために使用される。用いる溶剤は、適宜選択すればよいが、例えば、水;メタノール、エタノール、プロパノール、イソプロパノール、n-ブタノール、2-ブタノール、イソブタノール、tert-ブタノールのようなアルコール類;2-エトキシエタノール、2-ブトキシエタノール、3-メトキシプロパノール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール等のアルコキシアルコール類;ジアセトンアルコール等のケトール類;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類;トルエン、キシレン等の芳香族炭化水素類;酢酸エチル、酢酸ブチル等のエステル類;ジオキサン、テトラヒドロフラン等のエーテル類等が挙げられる。溶剤の使用量は、第1基材フィルムの材質、形状、塗布方法、目的とする第1帯電防止層の厚み等に応じて適宜選択されるが、通常は、帯電防止剤の合計量100重量部に対し、20~100000重量部程度である。 The solvent is used to adjust the concentration and viscosity of the coating liquid, the thickness of the coating layer, etc. The solvent to be used may be appropriately selected, for example, water; alcohols such as methanol, ethanol, propanol, isopropanol, n-butanol, 2-butanol, isobutanol, tert-butanol; Alkoxy alcohols such as butoxyethanol, 3-methoxypropanol, 1-methoxy-2-propanol and 1-ethoxy-2-propanol; ketols such as diacetone alcohol; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; toluene , xylene and the like; esters such as ethyl acetate and butyl acetate; and ethers such as dioxane and tetrahydrofuran. The amount of the solvent used is appropriately selected according to the material, shape, coating method, thickness of the first antistatic layer, etc. of the first base film, but usually the total amount of the antistatic agent is 100 weight. 20 to 100,000 parts by weight.
 第1基材フィルムの表面に塗工液を塗布する方法としては、例えば、マイクログラビアコート法、ロールコート法、ディッピングコート法、フローコート法、スピンコート法、ダイコート法、キャスト転写法、スプレーコート法等が挙げられる。 Examples of methods for applying a coating liquid to the surface of the first base film include micro gravure coating, roll coating, dipping coating, flow coating, spin coating, die coating, cast transfer, and spray coating. law, etc.
 第1帯電防止層は、第1基材フィルムの表面に塗工液を塗布して形成された塗工層を乾燥することによって形成することが好ましい。乾燥温度は、剥離フィルムの面内位相差のばらつきを低減する観点から、上記したように60℃以下とすることが好ましい。 The first antistatic layer is preferably formed by drying a coating layer formed by applying a coating liquid to the surface of the first base film. From the viewpoint of reducing variations in in-plane retardation of the release film, the drying temperature is preferably 60° C. or lower as described above.
 第1帯電防止層の厚みは、10nm以上1000nm以下であることができるが、光学積層体の薄膜化の観点から、好ましくは800nm以下であり、700nm以下であってもよく、また、50nm以上であってもよく、100nm以上であってもよい。第1帯電防止層の厚みが10nm未満であると、密着性、帯電防止性、強度が十分でないことがあり、1000nmを超えると、密着性や透明性が十分でなく、ひび割れ等の不良が発生する可能性もある。 The thickness of the first antistatic layer can be 10 nm or more and 1000 nm or less. It may be 100 nm or more. If the thickness of the first antistatic layer is less than 10 nm, the adhesion, antistatic properties, and strength may not be sufficient. There is also the possibility of doing so.
 (第1粘着剤層)
 第1粘着剤層は、粘着剤組成物を用いて形成された粘着剤層である。粘着剤組成物又は粘着剤組成物の反応生成物は、それ自体を金属層等の被着体に張り付けることで接着性を発現するものであり、いわゆる感圧型接着剤と称されるものである。また、後述する活性エネルギー線硬化型粘着剤組成物を用いて形成された粘着剤層は、活性エネルギー線を照射することにより、架橋度や接着力を調整することができる。
(First adhesive layer)
A 1st adhesive layer is an adhesive layer formed using the adhesive composition. The pressure-sensitive adhesive composition or the reaction product of the pressure-sensitive adhesive composition develops adhesiveness by attaching itself to an adherend such as a metal layer, and is referred to as a so-called pressure-sensitive adhesive. be. Moreover, the adhesive layer formed using the active-energy-ray-curable adhesive composition mentioned later can adjust a crosslinking degree and adhesive strength by irradiating an active-energy-ray.
 粘着剤組成物としては、従来公知の光学的な透明性に優れる粘着剤を特に制限なく用いることができ、例えば、アクリルポリマー、ウレタンポリマー、シリコーンポリマー、ポリビニルエーテル等のベースポリマーを含有する粘着剤組成物を用いることができる。また、粘着剤組成物は、活性エネルギー線硬化型粘着剤組成物、又は、熱硬化型粘着剤組成物等であってもよい。これらの中でも、透明性、粘着力、再剥離性(リワーク性)、耐候性、耐熱性等に優れるアクリル樹脂をベースポリマーとした粘着剤組成物が好適である。粘着剤層は、(メタ)アクリル樹脂、架橋剤、シラン化合物を含む粘着剤組成物の反応生成物から構成されることが好ましく、その他の成分を含んでいてもよい。 As the adhesive composition, conventionally known adhesives having excellent optical transparency can be used without particular limitation. For example, adhesives containing base polymers such as acrylic polymers, urethane polymers, silicone polymers, and polyvinyl ethers. Compositions can be used. The adhesive composition may also be an active energy ray-curable adhesive composition, a heat-curable adhesive composition, or the like. Among these, a pressure-sensitive adhesive composition using an acrylic resin as a base polymer, which is excellent in transparency, adhesive strength, removability (reworkability), weather resistance, heat resistance, etc., is preferable. The pressure-sensitive adhesive layer preferably comprises a reaction product of a pressure-sensitive adhesive composition containing a (meth)acrylic resin, a cross-linking agent and a silane compound, and may contain other components.
 第1粘着剤層を形成するための粘着剤組成物は、例えば、アクリルポリマー、ウレタンポリマー、シリコーンポリマー、ポリビニルエーテル等のベースポリマーを含むことができる。粘着剤組成物は、活性エネルギー線硬化型粘着剤、熱硬化型粘着剤等であってもよい。これらの中でも、透明性、粘着力、再剥離性(リワーク性)、耐候性、耐熱性等に優れる(メタ)アクリル樹脂をベースポリマーとした粘着剤が好適である。粘着剤層は、(メタ)アクリル樹脂、架橋剤、シラン化合物を含む粘着剤の反応生成物から構成されることが好ましく、その他の成分を含んでいてもよい。 The adhesive composition for forming the first adhesive layer can contain, for example, base polymers such as acrylic polymer, urethane polymer, silicone polymer and polyvinyl ether. The adhesive composition may be an active energy ray-curable adhesive, a heat-curable adhesive, or the like. Among these, a pressure-sensitive adhesive containing a (meth)acrylic resin as a base polymer, which is excellent in transparency, adhesive strength, removability (reworkability), weather resistance, heat resistance, etc., is preferable. The pressure-sensitive adhesive layer is preferably composed of a reaction product of a pressure-sensitive adhesive containing a (meth)acrylic resin, a cross-linking agent, and a silane compound, and may contain other components.
 第1粘着剤層は、活性エネルギー線硬化型粘着剤を用いて形成してもよい。活性エネルギー線硬化型粘着剤は、上記した粘着剤組成物に、多官能性アクリレート等の紫外線硬化性化合物を配合し、これを用いて層を形成した後に紫外線を照射して硬化させることにより、より硬い粘着剤層を形成することができる。活性エネルギー線硬化型粘着剤は、紫外線や電子線等のエネルギー線の照射を受けて硬化する性質を有している。活性エネルギー線硬化型粘着剤は、エネルギー線照射前においても粘着性を有しているため、被着体に密着し、エネルギー線の照射により硬化して密着力を調整することができる性質を有する。 The first adhesive layer may be formed using an active energy ray-curable adhesive. The active energy ray-curable pressure-sensitive adhesive is obtained by blending an ultraviolet-curable compound such as a polyfunctional acrylate into the above-described pressure-sensitive adhesive composition, forming a layer using this, and then irradiating it with ultraviolet rays to cure it. A harder adhesive layer can be formed. Active energy ray-curable pressure-sensitive adhesives have the property of being cured by being irradiated with energy rays such as ultraviolet rays and electron beams. Since the active energy ray-curable adhesive has adhesiveness even before energy ray irradiation, it adheres to the adherend and has the property that it can be cured by energy ray irradiation to adjust the adhesive strength. .
 第1粘着剤層の厚みは特に限定されないが、好ましくは5μm以上であり、10μm以上であってもよく、15μm以上であってもよく、20μm以上であってもよく、25μm以上であってもよく、通常300μm以下であり、250μm以下であってもよく、100μm以下であってもよく、50μm以下であってもよい。 The thickness of the first pressure-sensitive adhesive layer is not particularly limited, but is preferably 5 µm or more, may be 10 µm or more, may be 15 µm or more, may be 20 µm or more, or may be 25 µm or more. Well, it is usually 300 μm or less, may be 250 μm or less, may be 100 μm or less, or may be 50 μm or less.
 (直線偏光層)
 偏光板に含まれる直線偏光層は、無偏光の光を入射させたとき、吸収軸に直交する振動面をもつ直線偏光を透過させる性質を有する。直線偏光層は、ヨウ素が吸着配向しているポリビニルアルコール系樹脂フィルム(以下、「PVA系フィルム」ということがある。)であってもよく、吸収異方性及び液晶性を有する化合物を含む組成物を基材フィルムに塗布して形成した液晶性の偏光層を含むフィルムであってもよい。吸収異方性及び液晶性を有する化合物は、吸収異方性を有する色素と液晶性を有する化合物との混合物であってもよく、吸収異方性及び液晶性を有する色素であってもよい。
(linear polarizing layer)
The linear polarizing layer included in the polarizing plate has the property of transmitting linearly polarized light having a vibration plane perpendicular to the absorption axis when unpolarized light is incident. The linear polarizing layer may be a polyvinyl alcohol-based resin film (hereinafter sometimes referred to as "PVA-based film") in which iodine is adsorbed and oriented, and has a composition containing a compound having absorption anisotropy and liquid crystallinity. It may be a film containing a liquid crystalline polarizing layer formed by applying a substance to a substrate film. The compound having absorption anisotropy and liquid crystallinity may be a mixture of a dye having absorption anisotropy and a compound having liquid crystallinity, or may be a dye having absorption anisotropy and liquid crystallinity.
 直線偏光層は、ヨウ素が吸着配向しているPVA系フィルムであることが好ましい。PVA系フィルムである直線偏光層は、例えば、ポリビニルアルコールフィルム、部分ホルマール化ポリビニルアルコールフィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等のPVA系フィルムに、ヨウ素による染色処理、及び延伸処理が施されたもの等が挙げられる。必要に応じて、染色処理によりヨウ素が吸着配向したPVA系フィルムをホウ酸水溶液で処理し、その後に、ホウ酸水溶液を洗い落とす洗浄工程を行ってもよい。各工程には公知の方法を採用できる。 The linear polarizing layer is preferably a PVA-based film in which iodine is adsorbed and oriented. The linear polarizing layer, which is a PVA-based film, is obtained by subjecting a PVA-based film such as a polyvinyl alcohol film, a partially formalized polyvinyl alcohol film, an ethylene-vinyl acetate copolymer-based partially saponified film, to a dyeing treatment with iodine and a stretching treatment. and the like. If necessary, the PVA-based film having iodine adsorbed and oriented by the dyeing treatment may be treated with an aqueous boric acid solution, followed by a washing step of washing off the aqueous boric acid solution. A known method can be adopted for each step.
 ポリビニルアルコール系樹脂(以下、「PVA系樹脂」ということがある。)は、ポリ酢酸ビニル系樹脂をケン化することにより製造できる。ポリ酢酸ビニル系樹脂は、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニルと酢酸ビニルに共重合可能な他の単量体との共重合体であることもできる。酢酸ビニルに共重合可能な他の単量体としては、例えば、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、アンモニウム基を有するアクリルアミド類等が挙げられる。 Polyvinyl alcohol-based resin (hereinafter sometimes referred to as "PVA-based resin") can be produced by saponifying polyvinyl acetate-based resin. The polyvinyl acetate-based resin may be polyvinyl acetate, which is a homopolymer of vinyl acetate, or may be a copolymer of vinyl acetate and another monomer that can be copolymerized with vinyl acetate. Other monomers copolymerizable with vinyl acetate include, for example, unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
 PVA系樹脂のケン化度は、通常85~100モル%程度であり、好ましくは98モル%以上である。PVA系樹脂は変性されていてもよく、例えば、アルデヒド類で変性されたポリビニルホルマールやポリビニルアセタール等も使用可能である。PVA系樹脂の平均重合度は、通常1,000~10,000程度であり、好ましくは1,500~5,000程度である。PVA系樹脂のケン化度及び平均重合度は、JIS K 6726(1994)に準拠して求めることができる。平均重合度が1000未満では好ましい偏光性能を得ることが困難であり、10000超ではフィルム加工性に劣ることがある。 The saponification degree of the PVA-based resin is usually about 85 to 100 mol%, preferably 98 mol% or more. The PVA-based resin may be modified, and for example, polyvinyl formal or polyvinyl acetal modified with aldehydes may be used. The average degree of polymerization of the PVA-based resin is usually about 1,000 to 10,000, preferably about 1,500 to 5,000. The degree of saponification and average degree of polymerization of the PVA-based resin can be obtained according to JIS K 6726 (1994). If the average degree of polymerization is less than 1,000, it is difficult to obtain desirable polarizing performance, and if it exceeds 10,000, film workability may be poor.
 PVA系フィルムである直線偏光層の製造方法は、基材フィルムを用意し、基材フィルム上にPVA系樹脂等の樹脂の溶液を塗布し、溶媒を除去する乾燥等を行って基材フィルム上に樹脂層を形成する工程を含むものであってもよい。なお、基材フィルムの樹脂層が形成される面には、予めプライマー層を形成することができる。基材フィルムとしては、後述する第1保護フィルムを形成するために用いる熱可塑性樹脂として説明する樹脂材料を用いたフィルムを使用できる。プライマー層の材料としては、直線偏光層に用いられる親水性樹脂を架橋した樹脂等を挙げることができる。 A method for producing a linear polarizing layer, which is a PVA-based film, involves preparing a base film, applying a solution of a resin such as a PVA-based resin on the base film, and performing drying or the like to remove the solvent. may include a step of forming a resin layer on the substrate. A primer layer can be formed in advance on the surface of the substrate film on which the resin layer is formed. As the base film, a film using a resin material described as a thermoplastic resin used for forming the first protective film, which will be described later, can be used. Examples of the material for the primer layer include a resin obtained by cross-linking the hydrophilic resin used for the linear polarizing layer.
 次いで、必要に応じて樹脂層の水分等の溶媒量を調整し、その後、基材フィルム及び樹脂層を一軸延伸し、続いて、樹脂層をヨウ素で染色してヨウ素を樹脂層に吸着配向させる。次に、必要に応じてヨウ素が吸着配向した樹脂層をホウ酸水溶液で処理し、その後に、ホウ酸水溶液を洗い落とす洗浄工程を行う。これにより、ヨウ素が吸着配向された樹脂層、すなわち、直線偏光層となるPVA系フィルムが製造される。各工程には公知の方法を採用できる。 Next, the amount of solvent such as moisture in the resin layer is adjusted as necessary, then the base film and the resin layer are uniaxially stretched, and then the resin layer is dyed with iodine to adsorb and align iodine on the resin layer. . Next, if necessary, the resin layer in which iodine is adsorbed and oriented is treated with an aqueous boric acid solution, followed by a washing step of washing off the aqueous boric acid solution. As a result, a resin layer in which iodine is adsorbed and oriented, that is, a PVA-based film to be a linear polarizing layer is produced. A known method can be adopted for each step.
 ヨウ素が吸着配向したPVA系フィルム又は樹脂層を処理するホウ酸含有水溶液におけるホウ酸の量は、通常、水100質量部あたり、2~15質量部程度であり、5~12質量部が好ましい。このホウ酸含有水溶液はヨウ化カリウムを含有することが好ましい。ホウ酸含有水溶液におけるヨウ化カリウムの量は、通常、水100質量部あたり、0.1~15質量部程度であり、5~12質量部程度が好ましい。ホウ酸含有水溶液への浸漬時間は、通常、60~1,200秒程度であり、150~600秒程度が好ましく、200~400秒程度がより好ましい。ホウ酸含有水溶液の温度は、通常、50℃以上であり、50~85℃が好ましく、60~80℃がより好ましい。 The amount of boric acid in the boric acid-containing aqueous solution for treating the PVA-based film or resin layer in which iodine is adsorbed and oriented is usually about 2 to 15 parts by mass, preferably 5 to 12 parts by mass, per 100 parts by mass of water. This boric acid-containing aqueous solution preferably contains potassium iodide. The amount of potassium iodide in the boric acid-containing aqueous solution is usually about 0.1 to 15 parts by mass, preferably about 5 to 12 parts by mass, per 100 parts by mass of water. The immersion time in the boric acid-containing aqueous solution is usually about 60 to 1,200 seconds, preferably about 150 to 600 seconds, more preferably about 200 to 400 seconds. The temperature of the boric acid-containing aqueous solution is usually 50°C or higher, preferably 50 to 85°C, more preferably 60 to 80°C.
 PVA系フィルム、並びに、基材フィルム及び樹脂層の一軸延伸は、染色の前に行ってもよいし、染色中に行ってもよいし、染色後のホウ酸処理中に行ってもよく、これら複数の段階においてそれぞれ一軸延伸を行ってもよい。PVA系フィルム、並びに、基材フィルム及び樹脂層は、MD方向(フィルム搬送方向)に一軸延伸してもよく、この場合、周速の異なるロール間で一軸に延伸してもよいし、熱ロールを用いて一軸に延伸してもよい。また、PVA系フィルム、並びに、基材フィルム及び樹脂層は、TD方向(フィルム搬送方向に垂直な方向)に一軸延伸してもよく、この場合、いわゆるテンター法を使用することができる。また、上記延伸は、大気中で延伸を行う乾式延伸であってもよいし、溶剤にてPVA系フィルム又は樹脂層を膨潤させた状態で延伸を行う湿式延伸であってもよい。直線偏光層の性能を発現するためには延伸倍率は4倍以上であり、5倍以上であることが好ましく、特に5.5倍以上が好ましい。延伸倍率の上限は特にないが、破断等を抑制する観点から8倍以下が好ましい。 Uniaxial stretching of the PVA-based film, the substrate film and the resin layer may be performed before dyeing, during dyeing, or during boric acid treatment after dyeing. Uniaxial stretching may be performed in each of a plurality of stages. The PVA-based film, the base film and the resin layer may be uniaxially stretched in the MD direction (film transport direction). You may stretch|stretch uniaxially using. Moreover, the PVA-based film, the base film and the resin layer may be uniaxially stretched in the TD direction (the direction perpendicular to the film transport direction), in which case a so-called tenter method can be used. The stretching may be dry stretching in which the film is stretched in the atmosphere, or may be wet stretching in which the PVA-based film or resin layer is swollen with a solvent and then stretched. In order to exhibit the performance of the linear polarizing layer, the draw ratio is 4 times or more, preferably 5 times or more, and particularly preferably 5.5 times or more. Although there is no particular upper limit for the draw ratio, it is preferably 8 times or less from the viewpoint of suppressing breakage and the like.
 基材フィルムを用いる製造方法で作製した直線偏光層は、保護層を積層した後に基材フィルムを剥離することによって得ることができる。 A linear polarizing layer produced by a manufacturing method using a base film can be obtained by peeling off the base film after laminating a protective layer.
 PVA系フィルムである直線偏光層の厚みは、1μm以上であることが好ましく、2μm以上であってもよく、5μm以上であってもよく、また、30μm以下であることが好ましく、15μm以下であることがより好ましく、10μm以下であってもよく、8μm以下であってもよい。 The thickness of the linear polarizing layer, which is a PVA-based film, is preferably 1 μm or more, may be 2 μm or more, or may be 5 μm or more, and is preferably 30 μm or less, and 15 μm or less. is more preferable, and may be 10 μm or less, or may be 8 μm or less.
 液晶性の偏光層を含むフィルムは、液晶性及び吸収異方性を有する色素を含む組成物、又は、吸収異方性を有する色素と重合性液晶とを含む組成物を基材フィルムに塗布して得られる直線偏光層が挙げられる。基材フィルムとしては、例えば後述する保護層を形成するために用いる熱可塑性樹脂として説明する樹脂材料を用いたフィルムが挙げられる。液晶性の偏光層を含むフィルムとしては、例えば特開2013-33249号公報等に記載の偏光層が挙げられる。 A film containing a liquid crystalline polarizing layer is obtained by coating a base film with a composition containing a dye having liquid crystallinity and absorption anisotropy, or a composition containing a dye having absorption anisotropy and a polymerizable liquid crystal. A linear polarizing layer obtained by As the base film, for example, a film using a resin material described as a thermoplastic resin used for forming a protective layer to be described later can be used. Examples of the film containing a liquid crystalline polarizing layer include the polarizing layer described in JP-A-2013-33249.
 上記のようにして形成した基材フィルムと直線偏光層との合計厚みは小さい方が好ましいが、小さすぎると強度が低下し、加工性に劣る傾向があるため、通常50μm以下であり、好ましくは30μm以下であり、より好ましくは0.5μm以上25μm以下である。 The total thickness of the substrate film and the linearly polarizing layer formed as described above is preferably as small as possible. It is 30 μm or less, more preferably 0.5 μm or more and 25 μm or less.
 (保護層)
 偏光板が含んでいてもよい保護層は、保護層は、直線偏光層に直接接するように積層されていてもよいが、貼合層を介して積層されることが好ましい。保護層は、樹脂層であることが好ましく、樹脂フィルムであることがより好ましい。樹脂フィルムとしては、例えば、透明性、機械的強度、熱安定性、水分遮断性、等方性、延伸性等に優れる熱可塑性樹脂から形成されたフィルムが挙げられる。熱可塑性樹脂の具体例としては、トリアセチルセルロース等のセルロース樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル樹脂;ポリエーテルスルホン樹脂;ポリスルホン樹脂;ポリカーボネート樹脂;ナイロンや芳香族ポリアミド等のポリアミド樹脂;ポリイミド樹脂;ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体等のポリオレフィン樹脂;シクロ系及びノルボルネン構造を有する環状ポリオレフィン樹脂(ノルボルネン系樹脂ともいう);(メタ)アクリル樹脂;ポリアリレート樹脂;ポリスチレン樹脂;ポリビニルアルコール樹脂、並びにこれらの混合物を挙げることができる。
(protective layer)
The protective layer that may be included in the polarizing plate may be laminated so as to be in direct contact with the linearly polarizing layer, but is preferably laminated via a bonding layer. The protective layer is preferably a resin layer, more preferably a resin film. Examples of resin films include films formed from thermoplastic resins that are excellent in transparency, mechanical strength, thermal stability, water barrier properties, isotropy, stretchability, and the like. Specific examples of thermoplastic resins include cellulose resins such as triacetyl cellulose; polyester resins such as polyethylene terephthalate and polyethylene naphthalate; polyethersulfone resins; polysulfone resins; polycarbonate resins; polyamide resins such as nylon and aromatic polyamides; Resin; polyolefin resin such as polyethylene, polypropylene, ethylene/propylene copolymer; cyclic polyolefin resin having cyclo-type and norbornene structure (also referred to as norbornene-based resin); (meth)acrylic resin; polyarylate resin; polystyrene resin; polyvinyl alcohol Resins, as well as mixtures thereof, may be mentioned.
 保護層は、反射防止特性、防眩特性、ハードコート特性等を有するものであってもよい(以下、当該特性を有する保護フィルムを「機能性保護フィルム」ということがある。)。保護層が機能性保護フィルムではない場合、直線偏光層又は保護層に、反射防止層、防眩層、ハードコート層等の表面機能層を積層してもよい。表面機能層は、保護層に直接接するように設けられることが好ましい。表面機能層は、保護層の直線偏光層側とは反対側に設けられることが好ましく、偏光板の第1粘着剤層側とは反対側に設けられることが好ましい。 The protective layer may have antireflection properties, antiglare properties, hard coat properties, etc. (Hereinafter, a protective film having such properties may be referred to as a "functional protective film".). When the protective layer is not a functional protective film, a surface functional layer such as an antireflection layer, an antiglare layer, or a hard coat layer may be laminated on the linearly polarizing layer or the protective layer. The surface functional layer is preferably provided so as to be in direct contact with the protective layer. The surface functional layer is preferably provided on the side of the protective layer opposite to the linearly polarizing layer side, and is preferably provided on the side of the polarizing plate opposite to the first pressure-sensitive adhesive layer side.
 保護層は、3μm以上であることが好ましく、5μm以上であることがより好ましく、また、50μm以下であることが好ましく、30μm以下であることがより好ましい。 The thickness of the protective layer is preferably 3 μm or more, more preferably 5 μm or more, and is preferably 50 μm or less, more preferably 30 μm or less.
 (貼合層)
 偏光板が有していてもよい貼合層としては、粘着剤層又は接着剤層が挙げられる。粘着剤層としては、上記した第1粘着剤層で説明する粘着剤組成物を用いて形成された粘着剤層が挙げられる。粘着剤層の厚みは特に限定されないが、好ましくは5μm以上であり、10μm以上であってもよく、15μm以上であってもよく、20μm以上であってもよく、25μm以上であってもよく、通常300μm以下であり、250μm以下であってもよく、100μm以下であってもよく、50μm以下であってもよい。
(Lamination layer)
Examples of the bonding layer that the polarizing plate may have include a pressure-sensitive adhesive layer and an adhesive layer. Examples of the adhesive layer include an adhesive layer formed using the adhesive composition described for the first adhesive layer. The thickness of the adhesive layer is not particularly limited, but is preferably 5 μm or more, may be 10 μm or more, may be 15 μm or more, may be 20 μm or more, or may be 25 μm or more, It is usually 300 μm or less, may be 250 μm or less, may be 100 μm or less, or may be 50 μm or less.
 接着剤層は、接着剤組成物中の硬化性成分を硬化させることによって形成することができる。接着剤層を形成するための接着剤組成物としては、感圧型接着剤(粘着剤)以外の接着剤であって、例えば、水系接着剤、活性エネルギー線硬化型接着剤が挙げられる。 The adhesive layer can be formed by curing the curable component in the adhesive composition. Examples of the adhesive composition for forming the adhesive layer include adhesives other than pressure-sensitive adhesives (adhesives), such as water-based adhesives and active energy ray-curable adhesives.
 水系接着剤としては、例えば、ポリビニルアルコール樹脂を水に溶解、又は分散させた接着剤が挙げられる。水系接着剤を用いた場合の乾燥方法については特に限定されるものではないが、例えば、熱風乾燥機や赤外線乾燥機を用いて乾燥する方法が採用できる。 Examples of water-based adhesives include adhesives in which polyvinyl alcohol resin is dissolved or dispersed in water. The method of drying when a water-based adhesive is used is not particularly limited. For example, a method of drying using a hot air dryer or an infrared ray dryer can be employed.
 活性エネルギー線硬化型接着剤としては、例えば、紫外線、可視光、電子線、X線のような活性エネルギー線の照射によって硬化する硬化性化合物を含む無溶剤型の活性エネルギー線硬化型接着剤が挙げられる。無溶剤型の活性エネルギー線硬化型接着剤を用いることにより、層間の密着性を向上させることができる。 Active energy ray-curable adhesives include, for example, solvent-free active energy ray-curable adhesives containing curable compounds that are cured by irradiation with active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays. mentioned. Adhesion between layers can be improved by using a non-solvent active energy ray-curable adhesive.
 活性エネルギー線硬化型接着剤としては、良好な接着性を示すことから、カチオン重合性の硬化性化合物、ラジカル重合性の硬化性化合物のいずれか一方又は両方を含むことが好ましい。活性エネルギー線硬化型接着剤は、上記硬化性化合物の硬化反応を開始させるための光カチオン重合開始剤等のカチオン重合開始剤、又はラジカル重合開始剤をさらに含むことができる。 The active energy ray-curable adhesive preferably contains either one or both of a cationic polymerizable curable compound and a radically polymerizable curable compound because it exhibits good adhesiveness. The active energy ray-curable adhesive can further contain a cationic polymerization initiator such as a photocationic polymerization initiator or a radical polymerization initiator for initiating the curing reaction of the curable compound.
 カチオン重合性の硬化性化合物としては、例えば、脂環式環に結合したエポキシ基を有する脂環式エポキシ化合物、2個以上のエポキシ基を有し芳香環を有さない多官能脂肪族エポキシ化合物、エポキシ基を1つ有する単官能エポキシ基(但し、脂環式エポキシ化合物に含まれるものを除く)、2個以上のエポキシ基を有し芳香環を有する多官能芳香族エポキシ化合物等のエポキシ系化合物;分子内に1個又は2個以上のオキセタン環を有するオキセタン化合物;これらの組み合わせを挙げることができる。 Examples of cationic polymerizable curable compounds include alicyclic epoxy compounds having an epoxy group bonded to an alicyclic ring, and polyfunctional aliphatic epoxy compounds having two or more epoxy groups and no aromatic ring. , monofunctional epoxy groups having one epoxy group (excluding those contained in alicyclic epoxy compounds), polyfunctional aromatic epoxy compounds having two or more epoxy groups and aromatic rings, etc. compounds; oxetane compounds having one or more oxetane rings in the molecule; and combinations thereof.
 ラジカル重合性の硬化性化合物としては、例えば、(メタ)アクリル化合物(分子内に1個又は2個以上の(メタ)アクリロイルオキシ基を有する化合物)、ラジカル重合性の二重結合を有するその他のビニル系化合物、又はこれらの組み合わせを挙げることができる。 Examples of radically polymerizable curable compounds include (meth)acrylic compounds (compounds having one or more (meth)acryloyloxy groups in the molecule), other radically polymerizable double bonds. vinyl-based compounds, or combinations thereof.
 活性エネルギー線硬化型接着剤は、必要に応じて、光増感助剤等の増感剤を含有することができる。増感剤を使用することにより、反応性が向上し、接着剤層の機械強度や接着強度をさらに向上させることができる。増感剤としては、公知のものを適宜適用することができる。増感剤を配合する場合、その配合量は、活性エネルギー線硬化型接着剤の総量100質量部に対し、0.1~20質量部の範囲とすることが好ましい。 The active energy ray-curable adhesive can contain a sensitizer such as a photosensitizer as needed. By using a sensitizer, the reactivity is improved, and the mechanical strength and adhesive strength of the adhesive layer can be further improved. A known sensitizer can be appropriately applied. When a sensitizer is blended, the blending amount is preferably in the range of 0.1 to 20 parts by mass with respect to 100 parts by mass as the total amount of the active energy ray-curable adhesive.
 活性エネルギー線硬化型接着剤は、必要に応じて、イオントラップ剤、酸化防止剤、連鎖移動剤、粘着付与剤、熱可塑性樹脂、充填剤、流動調整剤、可塑剤、消泡剤、帯電防止剤、レベリング剤、溶媒等の添加剤を含有することができる。 Active energy ray-curable adhesives may optionally contain ion trapping agents, antioxidants, chain transfer agents, tackifiers, thermoplastic resins, fillers, flow control agents, plasticizers, antifoaming agents, and antistatic agents. Additives such as agents, leveling agents, solvents and the like can be included.
 活性エネルギー線硬化型接着剤を用いた場合は、紫外線、可視光、電子線、X線等の活性エネルギー線を照射し、接着剤の塗布層を硬化させて接着剤層を形成することができる。活性エネルギー線としては、紫外線が好ましく、この場合の光源としては、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプ等を用いることができる。 When an active energy ray-curable adhesive is used, an adhesive layer can be formed by irradiating an active energy ray such as ultraviolet rays, visible light, electron beams, and X-rays to cure the adhesive coating layer. . As the active energy ray, ultraviolet rays are preferable, and as a light source in this case, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a chemical lamp, a black light lamp, a microwave-excited mercury lamp, a metal halide lamp, etc. can be used. can.
 接着剤層の厚みは、0.1μm以上であることが好ましく、0.5μm以上であってもよく、また10μm以下であることが好ましく、5μm以下であってもよい。 The thickness of the adhesive layer is preferably 0.1 μm or more, and may be 0.5 μm or more, and preferably 10 μm or less, and may be 5 μm or less.
 (第2基材フィルム)
 表面保護フィルムに含まれる第2基材フィルムは、熱可塑性樹脂から形成されたフィルムを用いることができ、通常、延伸処理が施された延伸フィルムである。第1基材フィルムを形成する熱可塑性樹脂としては、第1基材フィルムを形成する熱可塑性樹脂として説明したものが挙げられる。
(Second base film)
A film formed from a thermoplastic resin can be used as the second base film contained in the surface protection film, and is usually a stretched film that has undergone a stretching treatment. Examples of the thermoplastic resin forming the first base film include those described as the thermoplastic resin forming the first base film.
 第2基材フィルムが自己粘着性を有する場合、第2基材フィルムは、自己粘着性フィルムで形成されていてもよい。自己粘着性フィルムは、第2粘着剤層等の付着のための手段を設けることなくそれ自身で付着し、かつ、その付着状態を維持することが可能なフィルムである。自己粘着性フィルムは、例えばポリプロピレン系樹脂及びポリエチレン系樹脂等を用いて形成することができる。 When the second base film has self-adhesiveness, the second base film may be formed of a self-adhesive film. A self-adhesive film is a film that adheres by itself without providing a means for adhesion such as a second adhesive layer and that can maintain the adhered state. A self-adhesive film can be formed using, for example, a polypropylene-based resin, a polyethylene-based resin, or the like.
 第2基材フィルムの厚みは、例えば5μm以上であり、10μm以上であってもよく、50μm以上であってもよく、70μm以上であってもよく、また、例えば300μm以下であり、200μm以下であってもよく、150μm以下であってもよく、120μm以下であってもよく、100μm以下であってもよい。 The thickness of the second base film is, for example, 5 μm or more, may be 10 μm or more, may be 50 μm or more, or may be 70 μm or more, and may be, for example, 300 μm or less, or 200 μm or less. 150 μm or less, 120 μm or less, or 100 μm or less.
 第2基材フィルムの波長550nmにおける平均の面内位相差値は、通常1000nm以上であり、1500nm以上であってもよく、1800nm以上であってもよく、2000nm以上であってもよく、また、通常5000nm以下であり、4000nm以下であってもよく、3000nm以下であってもよい。上記平均の面内位相差値は、後述する実施例に記載の剥離フィルムの平均の面内位相差値ReA1を決定する方法に準じて決定することができる。 The average in-plane retardation value of the second base film at a wavelength of 550 nm is usually 1000 nm or more, may be 1500 nm or more, may be 1800 nm or more, or may be 2000 nm or more, and It is usually 5000 nm or less, may be 4000 nm or less, or may be 3000 nm or less. The average in-plane retardation value can be determined according to the method for determining the average in-plane retardation value Re A1 of a release film described later in Examples.
 (第2粘着剤層)
 表面保護フィルムに含まれる第2粘着剤層は、粘着剤組成物を用いて形成された粘着剤層である。粘着剤組成物としては、第1粘着剤層を形成するための粘着剤組成物として説明したものが挙げられる。
(Second adhesive layer)
The 2nd adhesive layer contained in a surface protection film is an adhesive layer formed using the adhesive composition. Examples of the adhesive composition include those described as the adhesive composition for forming the first adhesive layer.
 第2粘着剤層の厚みは特に限定されないが、好ましくは5μm以上であり、10μm以上であってもよく、15μm以上であってもよく、20μm以上であってもよく、25μm以上であってもよく、通常300μm以下であり、250μm以下であってもよく、100μm以下であってもよく、50μm以下であってもよい。 The thickness of the second pressure-sensitive adhesive layer is not particularly limited, but is preferably 5 µm or more, may be 10 µm or more, may be 15 µm or more, may be 20 µm or more, or may be 25 µm or more. Well, it is usually 300 μm or less, may be 250 μm or less, may be 100 μm or less, or may be 50 μm or less.
 (第2帯電防止層)
 表面保護フィルムが含んでいてもよい第2帯電防止層は、帯電防止剤を含む。帯電防止剤としては、第1帯電防止層を形成するために用いた帯電防止剤が挙げられる。第2帯電防止層は、上記した帯電防止剤のうちの1種又は2種以上を含むことができる。帯電防止層が帯電防止剤を含むことにより、帯電防止層の電気抵抗が低下するので、表面保護フィルム、ひいては光学積層体に帯電防止性能を付与することができる。
(Second antistatic layer)
The second antistatic layer that the surface protection film may contain contains an antistatic agent. The antistatic agent includes the antistatic agent used for forming the first antistatic layer. The second antistatic layer can contain one or more of the antistatic agents described above. When the antistatic layer contains an antistatic agent, the electrical resistance of the antistatic layer is lowered, so that the surface protection film and, in turn, the optical laminate can be provided with antistatic performance.
 第2帯電防止層は、例えば、第1基材フィルムに代えて第2基材フィルムを用いること以外は、第1帯電防止層と同様の方法で形成することができる。第2帯電防止層は、第2基材フィルムの表面に塗工液を塗布して形成された塗工層を乾燥することによって形成することが好ましい。乾燥温度は、表面保護フィルムの面内位相差のばらつきを低減する観点から、上記したように60℃以下とすることが好ましい。 The second antistatic layer can be formed, for example, in the same manner as the first antistatic layer, except that the second base film is used instead of the first base film. The second antistatic layer is preferably formed by drying a coating layer formed by coating a coating liquid on the surface of the second base film. From the viewpoint of reducing variations in in-plane retardation of the surface protective film, the drying temperature is preferably 60° C. or lower as described above.
 第2帯電防止層の厚みは、10nm以上1000nm以下であることができるが、光学積層体の薄膜化の観点から、好ましくは800nm以下であり、700nm以下であってもよく、また、50nm以上であってもよく、100nm以上であってもよい。第2帯電防止層の厚みが10nm未満であると、密着性、帯電防止性、強度が十分でないことがあり、1000nmを超えると、密着性や透明性が十分でなく、ひび割れ等の不良が発生する可能性もある。 The thickness of the second antistatic layer can be 10 nm or more and 1000 nm or less. It may be 100 nm or more. If the thickness of the second antistatic layer is less than 10 nm, the adhesion, antistatic properties, and strength may not be sufficient. There is also the possibility of doing so.
 以下、実施例及び比較例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。実施例、比較例中の「%」及び「部」は、特記しない限り、質量%及び質量部である。 The present invention will be described in more detail below with reference to examples and comparative examples, but the present invention is not limited to these examples. Unless otherwise specified, "%" and "parts" in Examples and Comparative Examples are % by mass and parts by mass.
 [位相差値の測定]
 実施例及び比較例で用いた剥離フィルムについて、位相差測定装置(王子計測機器(株)製、KOBRA-WPR)を用いて、波長550nmでの面内位相差値を次の手順で測定した。剥離フィルムの300mm四方の領域について面内位相差値の測定を行い、測定された面内位相差値を平均して平均の面内位相差値ReA1を算出し、測定された面内位相差値の最大値Rema1と最小値Remi1との差ΔRe1(=Rema1-Remi1)を算出した。結果を表1に示す。
[Measurement of phase difference value]
For the release films used in Examples and Comparative Examples, the in-plane retardation value at a wavelength of 550 nm was measured by the following procedure using a retardation measuring device (KOBRA-WPR manufactured by Oji Scientific Instruments Co., Ltd.). The in-plane retardation value is measured for a 300 mm square region of the release film, the measured in-plane retardation values are averaged to calculate the average in-plane retardation value Re A1 , and the measured in-plane retardation A difference ΔRe1 (=Re ma1 −Re mi1 ) between the maximum value Re ma1 and the minimum value Re mi1 was calculated. Table 1 shows the results.
 [表面抵抗値の測定]
 実施例及び比較例で用いた剥離フィルム、及び、実施例及び比較例で用いた表面保護フィルムの表面抵抗値を、(株)三菱化学アナリテック製「MCP-HT450」を用いて測定した。各表面抵抗値は、温度23℃、相対湿度55%RHの条件下で、剥離フィルムの第1帯電防止層側の表面、及び、表面保護フィルムの第2帯電防止層側の表面において測定した。結果を表1に示す。
[Measurement of surface resistance]
The release films used in Examples and Comparative Examples and the surface resistance values of the surface protective films used in Examples and Comparative Examples were measured using "MCP-HT450" manufactured by Mitsubishi Chemical Analytic Tech. Each surface resistance value was measured on the first antistatic layer side surface of the release film and the second antistatic layer side surface of the surface protective film under conditions of a temperature of 23° C. and a relative humidity of 55% RH. Table 1 shows the results.
 〔実施例1〕
 (剥離フィルム(1)の作製)
 片面に離型処理を施して離型処理層が形成されたポリエチレンテレフタレート(PET)フィルム(リンテック(株)製:商品名「PLR-382190」)を準備した。このPETフィルムの離型処理層側とは反対側の面に、帯電防止剤を含む塗工液(コルコート(株)製:商品名「コルコートWAS-15SF」)を塗布し、温度23℃で10分間乾燥して第1帯電防止層を形成することにより、剥離フィルム(1)を得た。剥離フィルム(1)の層構造は、離型処理層/PETフィルム(第1基材フィルム)/第1帯電防止層であった。
[Example 1]
(Preparation of release film (1))
A polyethylene terephthalate (PET) film (manufactured by Lintec Corporation: trade name “PLR-382190”) having a release treatment layer formed on one side thereof was prepared. A coating solution containing an antistatic agent (manufactured by Colcoat Co., Ltd.: trade name “Colcoat WAS-15SF”) was applied to the surface of the PET film opposite to the release treatment layer side, and the coating was applied at a temperature of 23°C for 10 minutes. A release film (1) was obtained by drying for minutes to form a first antistatic layer. The layer structure of the release film (1) was release layer/PET film (first base film)/first antistatic layer.
 (第1粘着剤層の形成)
 冷却管、窒素導入管、温度計、及び撹拌機を備えた反応容器に、溶媒として酢酸エチル81.8部、アクリル酸ブチル96部、アクリル酸2-ヒドロキシエチル3部、及びアクリル酸1部の混合溶液を仕込み、窒素ガスで反応容器内の空気を置換して酸素不含としながら内温を55℃に上げた。その後、アゾビスイソブチロニトリル(重合開始剤)0.14部を酢酸エチル10部に溶かした溶液を全量添加した。重合開始剤の添加後1時間この温度で保持し、次いで内温を54~56℃に保ちながら酢酸エチルを添加速度17.3部/hrで反応容器内へ連続的に加え、アクリル樹脂の濃度が35%となった時点で酢酸エチルの添加を止め、さらに酢酸エチルの添加開始から12時間経過するまでこの温度で保温した。最後に酢酸エチルを加えてアクリル樹脂の濃度が20%となるように調節し、アクリル系樹脂の酢酸エチル溶液を調製した。
(Formation of first adhesive layer)
81.8 parts of ethyl acetate, 96 parts of butyl acrylate, 3 parts of 2-hydroxyethyl acrylate, and 1 part of acrylic acid were added as solvents to a reaction vessel equipped with a condenser, a nitrogen inlet, a thermometer, and a stirrer. The mixed solution was charged, and the internal temperature was raised to 55° C. while replacing the air in the reaction vessel with nitrogen gas to make it oxygen-free. Thereafter, a solution obtained by dissolving 0.14 parts of azobisisobutyronitrile (polymerization initiator) in 10 parts of ethyl acetate was added to the whole amount. This temperature was maintained for 1 hour after the addition of the polymerization initiator, and then ethyl acetate was continuously added into the reaction vessel at an addition rate of 17.3 parts/hr while maintaining the internal temperature at 54 to 56°C to obtain a concentration of the acrylic resin. When the concentration reached 35%, the addition of ethyl acetate was stopped, and the mixture was maintained at this temperature until 12 hours had passed since the addition of ethyl acetate. Finally, ethyl acetate was added to adjust the concentration of the acrylic resin to 20% to prepare an ethyl acetate solution of the acrylic resin.
 得られたアクリル樹脂は、GPCによるポリスチレン換算の重量平均分子量Mwが147万、Mw/Mnが5.5であった。重量平均分子量及び数平均分子量の測定は、GPC装置にカラムとして「TSK gel XL(東ソー(株)製)」を4本、及び「Shodex GPC KF-802(昭和電工(株)製)」を1本、計5本を直列につないで配置し、溶出液としてテトラヒドロフランを用いて、試料濃度5mg/mL、試料導入量100μL、温度40℃、流速1mL/分の条件で行い、標準ポリスチレン換算により算出した。 The obtained acrylic resin had a polystyrene-equivalent weight average molecular weight Mw of 1,470,000 and an Mw/Mn of 5.5 by GPC. Weight-average molecular weight and number-average molecular weight were measured by adding 4 columns of "TSK gel XL (manufactured by Tosoh Corporation)" and 1 column of "Shodex GPC KF-802 (manufactured by Showa Denko K.K.)" to the GPC apparatus. A total of 5 tubes are connected in series, and tetrahydrofuran is used as the eluent, the sample concentration is 5 mg/mL, the sample introduction amount is 100 μL, the temperature is 40° C., and the flow rate is 1 mL/min. bottom.
 上記で調製したアクリル系樹脂の酢酸エチル溶液(樹脂濃度:20%)の固形分100部に対して、架橋剤(東ソー株式会社製:商品名「コロネートL」、イソシアネート系化合物の酢酸エチル溶液、有効成分75%)0.3部、シラン化合物(信越化学工業株式会社製:商品名「KBM403」)0.5部を混合し、さらに固形分濃度が14%となるように酢酸エチルを添加して粘着剤組成物を得た。なお、上記架橋剤の配合量は、有効成分としての質量部数である。 Per 100 parts of the solid content of the ethyl acetate solution of the acrylic resin prepared above (resin concentration: 20%), a cross-linking agent (manufactured by Tosoh Corporation: trade name "Coronate L", an ethyl acetate solution of an isocyanate compound, 0.3 parts of active ingredient 75%) and 0.5 parts of a silane compound (manufactured by Shin-Etsu Chemical Co., Ltd.: product name "KBM403") were mixed, and ethyl acetate was added so that the solid content concentration was 14%. to obtain an adhesive composition. In addition, the compounding amount of the said crosslinking agent is the number of mass parts as an active ingredient.
 上記で得た粘着剤組成物を、剥離フィルム(1)の離型処理層側の面に、アプリケーターを用いて乾燥後の厚みが25μmとなるように塗布し、温度50℃で60分間乾燥して、剥離フィルム(1)の離型処理層側に第1粘着剤層が形成された粘着剤層付き剥離フィルム(1)を得た。 The pressure-sensitive adhesive composition obtained above was applied to the surface of the release film (1) on the release layer side using an applicator so that the thickness after drying was 25 μm, and dried at a temperature of 50° C. for 60 minutes. Thus, a release film (1) with a pressure-sensitive adhesive layer was obtained in which the first pressure-sensitive adhesive layer was formed on the release treatment layer side of the release film (1).
 (偏光板の作製)
 保護層として、厚み20μmのトリアセチルセルロース(TAC)フィルム、及び、片面にハードコート層が形成された厚み29μmのノルボルネン系樹脂フィルムを準備した。直線偏光層として、PVA系樹脂フィルムに二色性色素であるヨウ素が吸着配向したものを準備した。直線偏光層の厚みは8μmであった。
(Preparation of polarizing plate)
As protective layers, a 20 μm-thick triacetyl cellulose (TAC) film and a 29 μm-thick norbornene-based resin film having a hard coat layer formed on one side thereof were prepared. As a linear polarizing layer, a PVA-based resin film in which iodine, which is a dichroic dye, was adsorbed and oriented was prepared. The thickness of the linear polarizing layer was 8 μm.
 水100重量部に対し、カルボキシル基変性ポリビニルアルコール((株)クラレ製:商品名「KL-318」)を3部溶解し、その水溶液に水溶性エポキシ樹脂であるポリアミドエポキシ系添加剤(田岡化学工業(株)製:商品名「スミレーズレジン(登録商標)
 650(30)」、固形分濃度30%の水溶液)を1.5部添加して、水系接着剤を調製した。
3 parts of carboxyl group-modified polyvinyl alcohol (manufactured by Kuraray Co., Ltd.: trade name "KL-318") is dissolved in 100 parts by weight of water, and a polyamide epoxy additive (Taoka Chemical Co., Ltd.), which is a water-soluble epoxy resin, is added to the aqueous solution. Kogyo Co., Ltd.: Trade name “Sumireze Resin (registered trademark)
650(30)", an aqueous solution having a solid concentration of 30%) was added to prepare a water-based adhesive.
 上記で準備したTACフィルムにケン化処理を施した。上記で準備したノルボルネン系樹脂フィルムのハードコート層側とは反対側、及び、上記で準備した直線偏光層の両面にコロナ処理を施した。直線偏光層の一方の面に、上記で得た水系接着剤を介してケン化処理を施したTACフィルムを貼合し、直線偏光層の他方の面に、上記で得た水系接着剤を介して、ノルボルネン系樹脂フィルムのコロナ処理面(ハードコート層側とは反対側)を貼合し、乾燥処理を行って接着剤層を形成することにより、偏光板を得た。偏光板の層構造は、TACフィルム(保護層)/接着剤層/直線偏光層/接着剤層/ノルボルネン系樹脂フィルム(保護層)/ハードコート層であった。 The TAC film prepared above was saponified. The side of the norbornene-based resin film prepared above opposite to the hard coat layer side and both surfaces of the linearly polarizing layer prepared above were subjected to corona treatment. On one surface of the linear polarizing layer, a saponified TAC film is laminated via the water-based adhesive obtained above, and on the other surface of the linear polarizing layer, via the water-based adhesive obtained above. Then, the corona-treated surface (the side opposite to the hard coat layer side) of the norbornene-based resin film was adhered, followed by drying treatment to form an adhesive layer, thereby obtaining a polarizing plate. The layer structure of the polarizing plate was TAC film (protective layer)/adhesive layer/linear polarizing layer/adhesive layer/norbornene-based resin film (protective layer)/hard coat layer.
 (光学積層体(1)の作製)
 第2帯電防止層を表面に有するポリエステル系樹脂フィルム(第2基材フィルム、厚み38μm)の第2帯電防止層側とは反対側にアクリル系粘着剤層(厚み15μm)を形成した表面保護フィルム(厚み53μm)を準備した。表面保護フィルムの層構造は、第2帯電防止層/第2基材フィルム/アクリル系粘着剤層(第2粘着剤層)であった。この表面保護フィルムのアクリル系粘着剤層を、上記で得られた偏光板のノルボルネン系樹脂フィルムのハードコート層側に貼合し、表面保護フィルム付き偏光板を得た。
(Preparation of Optical Laminate (1))
A surface protective film in which an acrylic pressure-sensitive adhesive layer (thickness 15 μm) is formed on the side opposite to the second antistatic layer side of a polyester resin film (second base film, thickness 38 μm) having a second antistatic layer on the surface (thickness 53 μm) was prepared. The layer structure of the surface protective film was second antistatic layer/second base film/acrylic pressure-sensitive adhesive layer (second pressure-sensitive adhesive layer). The acrylic pressure-sensitive adhesive layer of this surface protective film was adhered to the hard coat layer side of the norbornene resin film of the polarizing plate obtained above to obtain a polarizing plate with a surface protective film.
 上記で得た表面保護フィルム付き偏光板のTACフィルム側に、上記で得た粘着剤層付き剥離フィルム(1)の第1粘着剤層側を積層し、光学積層体(1)を得た。光学積層体(1)の層構造は、表面保護フィルム(第2帯電防止層/第2基材フィルム/第2粘着剤層)/偏光板(ハードコート層/保護層/接着剤層/直線偏光層/接着剤層/保護層)/第1粘着剤層/剥離フィルム(離型処理層/第1基材フィルム/第1帯電防止層)であった。表面保護フィルムの遅相軸と直線偏光層の吸収軸とは直交しており、剥離フィルムの遅相軸と直線偏光層の吸収軸とは直交していた。光学積層体(1)について、下記の検品性の評価及び多重取りの評価を行った。結果を表1に示す。 On the TAC film side of the surface protective film-attached polarizing plate obtained above, the first adhesive layer side of the adhesive layer-attached release film (1) obtained above was laminated to obtain an optical laminate (1). The layer structure of the optical laminate (1) is: surface protective film (second antistatic layer/second base film/second adhesive layer)/polarizing plate (hard coat layer/protective layer/adhesive layer/linearly polarized light layer/adhesive layer/protective layer)/first pressure-sensitive adhesive layer/release film (releasing layer/first base film/first antistatic layer). The slow axis of the surface protective film and the absorption axis of the linear polarizing layer were orthogonal, and the slow axis of the release film and the absorption axis of the linear polarizing layer were orthogonal. Regarding the optical layered body (1), the following evaluation of inspection property and evaluation of multiple picking were performed. Table 1 shows the results.
 〔実施例2~4〕
 帯電防止剤を含む塗布液の塗布量を変更して第1帯電防止層を形成したこと以外は、実施例1の剥離フィルム(1)の作製と同様にして、剥離フィルム(2)~(4)を得た。
[Examples 2 to 4]
Release films (2) to (4) were prepared in the same manner as the release film (1) of Example 1, except that the coating amount of the coating liquid containing the antistatic agent was changed to form the first antistatic layer. ).
 剥離フィルム(1)に代えて上記で得た剥離フィルム(2)~(4)を用いたこと以外は、実施例1の光学積層体(1)の作製と同様にして、光学積層体(2)~(4)を得た。光学積層体(2)~(4)について、下記の検品性の評価及び多重取りの評価を行った。結果を表1に示す。 The optical laminate (2) was prepared in the same manner as the optical laminate (1) of Example 1, except that the release films (2) to (4) obtained above were used instead of the release film (1). ) to (4) were obtained. For the optical laminates (2) to (4), the following evaluation of inspection property and evaluation of multiple picking were performed. Table 1 shows the results.
 〔比較例1〕
 片面に離型処理が施されたポリエチレンテレフタレート(PET)フィルム(リンテック(株)製:商品名「PLR-382190」)を準備した。このPETフィルムの離型処理が施された面とは反対側の面に、帯電防止剤を含む塗布液(高松油脂(株)製:商品名「ASA-2050」)を塗布し、温度130℃で10分間の加熱乾燥して第1帯電防止層を形成して、剥離フィルム(5)を得た。
[Comparative Example 1]
A polyethylene terephthalate (PET) film (manufactured by Lintec Co., Ltd.: trade name “PLR-382190”) having one side subjected to mold release treatment was prepared. A coating solution containing an antistatic agent (manufactured by Takamatsu Yushi Co., Ltd.: product name “ASA-2050”) was applied to the surface opposite to the release-treated surface of the PET film, and the temperature was 130°C. and dried by heating for 10 minutes to form a first antistatic layer to obtain a release film (5).
 剥離フィルム(1)に代えて上記で得た剥離フィルム(5)を用いたこと以外は、実施例1の光学積層体(1)の作製と同様にして、光学積層体(5)を得た。光学積層体(5)について、下記の検品性の評価及び多重取りの評価を行った。結果を表1に示す。 An optical laminate (5) was obtained in the same manner as the optical laminate (1) of Example 1, except that the release film (5) obtained above was used instead of the release film (1). . Regarding the optical layered body (5), the following inspection evaluation and multiple picking evaluation were performed. Table 1 shows the results.
 [検品性の評価]
 バックライト光源(蛍光灯ランプ、10000cd)に、検査用の偏光板(直線偏光板;ノルボルネン系樹脂フィルムにポリビニルアルコール(PVA)偏光子を貼合したもの)を、PVA偏光子側を視認側に向けた状態で設置し、実施例及び比較例で得た光学積層体の直線偏光層の吸収軸方向が、検査用の偏光板の直線偏光層の吸収軸方向に対してクロスニコルになるよう配置して、目視による光の透過観察によってムラの視認性を確認した。目視による光の透過観察により、ムラが強く視認されるものについては欠陥等に対する検品性に劣り、ムラが弱く視認されるものについては検品性に優れていたことから、以下の基準で検品性の評価を行った。
 A:視認されたムラが弱く、検品性に優れていた。
 B:ムラが視認されたが、検品性は良好であった。
 C:視認されたムラが強く、検品性に劣っていた。
[Evaluation of inspectability]
Back light source (fluorescent lamp, 10000 cd), polarizing plate for inspection (linear polarizing plate; Norbornene resin film bonded with polyvinyl alcohol (PVA) polarizer), with the PVA polarizer side on the viewing side. The linear polarizing layers of the optical laminates obtained in Examples and Comparative Examples are arranged so that the absorption axis direction of the linear polarizing layers is in cross Nicols with respect to the absorption axis direction of the linear polarizing layers of the polarizing plate for inspection. Then, the visibility of the unevenness was confirmed by visual transmission observation of light. By visual transmission observation of light, if the unevenness is strongly visible, the inspection performance for defects is inferior, and if the unevenness is weakly visible, the inspection performance is excellent. made an evaluation.
A: Visible unevenness was weak, and the inspection property was excellent.
B: Although unevenness was visually recognized, the inspection property was good.
C: Visible unevenness was strong, and the inspection property was poor.
 [多重取りの評価]
 評価用の積層体(40mm×40mm)として、帯電防止層を有する表面保護フィルム、偏光板、粘着剤層、及び剥離フィルムがこの順に積層された積層体を準備した。帯電防止層は、表面保護フィルムの偏光板とは反対側に形成されている。ゴム製の基台上に、剥離フィルム側が基台と対向するように評価用の積層体を載置し、この評価用の積層体の表面保護フィルム側に、当該表面保護フィルムと実施例及び比較例で得た光学積層体の剥離フィルム側とが対向するように、光学積層体を積層した。積層した光学積層体側に1000gの荷重を加えた状態で、評価用の積層体と光学積層体とを3往復摺り合わせた。荷重は、光学積層体と接する部分がゴム製のものを用いて加えた。摺り合わせ動作の後、評価用の積層体と光学積層体とが重なった状態で、評価用の積層体及び光学積層体の面が水平面に対して垂直となるように傾け、光学積層体の脱落の有無を確認した。この試験を3回行い、以下の基準で多重取りの評価を行った。
 a:3回の試験において、光学積層体が3回とも脱落した。
 b:3回の試験において、光学積層体が2回脱落した。
 c:3回の試験において、光学積層体が1回脱落した。
 d:3回の試験において、光学積層体は1回も脱落しなかった。
[Evaluation of multiple picking]
A laminate in which a surface protective film having an antistatic layer, a polarizing plate, an adhesive layer, and a release film were laminated in this order was prepared as a laminate (40 mm×40 mm) for evaluation. The antistatic layer is formed on the opposite side of the surface protection film to the polarizing plate. A laminate for evaluation is placed on a rubber base so that the release film side faces the base, and the surface protection film and the examples and comparisons are placed on the surface protection film side of the laminate for evaluation. The optical layered body was laminated so that the release film side of the optical layered body obtained in the example faced each other. With a load of 1000 g applied to the laminated optical layered body, the layered body for evaluation and the optical layered body were rubbed back and forth three times. The load was applied using a rubber-made part in contact with the optical layered body. After the lapping operation, in a state in which the laminate for evaluation and the optical laminate are overlapped, the surfaces of the laminate for evaluation and the optical laminate are tilted so that they are perpendicular to the horizontal plane, and the optical laminate falls off. I checked the presence or absence of This test was performed 3 times, and multiple picking was evaluated according to the following criteria.
a: The optical layered body fell off in all three tests.
b: The optical layered body fell off twice in 3 tests.
c: The optical layered body fell off once in 3 tests.
d: The optical laminate did not come off even once in the three tests.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 1,2 光学積層体、10 偏光板、11 第1粘着剤層、20,40 剥離フィルム、21,41 第1基材フィルム、22,42 離型処理層、23,43 第1帯電防止層、30,50 表面保護フィルム、31,51 第2基材フィルム、32,52 第2粘着剤層、33,53 第2帯電防止層、60 検査用の偏光板、61 光源。 1, 2 optical laminate, 10 polarizing plate, 11 first adhesive layer, 20, 40 release film, 21, 41 first base film, 22, 42 release treatment layer, 23, 43 first antistatic layer, 30, 50 surface protective film, 31, 51 second base film, 32, 52 second adhesive layer, 33, 53 second antistatic layer, 60 polarizing plate for inspection, 61 light source.

Claims (11)

  1.  直線偏光層を含む偏光板、第1粘着剤層、及び、前記第1粘着剤層に対して剥離可能である剥離フィルムがこの順に積層された光学積層体であって、
     前記剥離フィルムは、前記第1粘着剤層側から順に、離型処理層、第1基材フィルム、及び、帯電防止剤を含む第1帯電防止層を有し、
     前記剥離フィルムの波長550nmにおける平均の面内位相差値は、1000nm以上であり、
     前記剥離フィルムの波長550nmにおける面内位相差値の最大値と最小値との差は、150nm以下である、光学積層体。
    An optical laminate in which a polarizing plate including a linear polarizing layer, a first pressure-sensitive adhesive layer, and a release film that can be peeled from the first pressure-sensitive adhesive layer are laminated in this order,
    The release film has, in order from the first adhesive layer side, a release treatment layer, a first base film, and a first antistatic layer containing an antistatic agent,
    The average in-plane retardation value of the release film at a wavelength of 550 nm is 1000 nm or more,
    The optical laminate, wherein the difference between the maximum and minimum in-plane retardation values of the release film at a wavelength of 550 nm is 150 nm or less.
  2.  さらに、前記偏光板の前記第1粘着剤層側とは反対側に、前記偏光板に対して剥離可能である表面保護フィルムを有し、
     前記表面保護フィルムは、前記偏光板側から順に、第2基材フィルム、及び、帯電防止剤を含む第2帯電防止層を有する、請求項1に記載の光学積層体。
    Furthermore, on the side opposite to the first pressure-sensitive adhesive layer side of the polarizing plate, it has a surface protective film that can be peeled off from the polarizing plate,
    2. The optical laminate according to claim 1, wherein the surface protective film has, in order from the polarizing plate side, a second base film and a second antistatic layer containing an antistatic agent.
  3.  前記表面保護フィルムの波長550nmにおける平均の面内位相差値は、1000nm以上であり、
     前記表面保護フィルムの波長550nmにおける面内位相差値の最大値と最小値との差は、150nm以下である、請求項2に記載の光学積層体。
    The average in-plane retardation value of the surface protective film at a wavelength of 550 nm is 1000 nm or more,
    3. The optical laminate according to claim 2, wherein a difference between a maximum value and a minimum value of in-plane retardation values of the surface protective film at a wavelength of 550 nm is 150 nm or less.
  4.  第1粘着剤層、直線偏光層を含む偏光板、及び、前記偏光板に対して剥離可能である表面保護フィルムがこの順に積層された光学積層体であって、
     前記表面保護フィルムは、前記偏光板側から順に、第2基材フィルム、及び、帯電防止剤を含む第2帯電防止層を有し、
     前記表面保護フィルムの波長550nmにおける平均の面内位相差値は、1000nm以上であり、
     前記表面保護フィルムの波長550nmにおける面内位相差値の最大値と最小値との差は、150nm以下である、光学積層体。
    An optical laminate in which a first adhesive layer, a polarizing plate including a linear polarizing layer, and a surface protective film that can be peeled from the polarizing plate are laminated in this order,
    The surface protective film has a second base film and a second antistatic layer containing an antistatic agent in order from the polarizing plate side,
    The average in-plane retardation value of the surface protective film at a wavelength of 550 nm is 1000 nm or more,
    The optical laminate, wherein the difference between the maximum and minimum in-plane retardation values of the surface protection film at a wavelength of 550 nm is 150 nm or less.
  5.  前記表面保護フィルムは、さらに、前記第2基材フィルムの前記偏光板側に第2粘着剤層を有する、請求項2~4のいずれか1項に記載の光学積層体。 The optical laminate according to any one of claims 2 to 4, wherein the surface protection film further has a second adhesive layer on the polarizing plate side of the second base film.
  6.  さらに、前記第1粘着剤層の前記偏光板側とは反対側に、前記第1粘着剤層に対して剥離可能である剥離フィルムを有し、
     前記剥離フィルムは、前記第1粘着剤層側から順に、離型処理層、第1基材フィルム、及び、帯電防止剤を含む第1帯電防止層を有する、請求項4又は5に記載の光学積層体。
    Furthermore, on the side opposite to the polarizing plate side of the first pressure-sensitive adhesive layer, a release film that can be peeled off from the first pressure-sensitive adhesive layer is provided,
    The optical according to claim 4 or 5, wherein the release film has, in order from the first pressure-sensitive adhesive layer side, a release treatment layer, a first base film, and a first antistatic layer containing an antistatic agent. laminate.
  7.  さらに、前記第1粘着剤層の前記偏光板側とは反対側に、前記第1粘着剤層に対して剥離可能である剥離フィルムを有し、
     前記剥離フィルムは、前記第1粘着剤層側から順に、離型処理層、第1基材フィルム、及び、帯電防止剤を含む第1帯電防止層を有し、
     前記剥離フィルムの温度23℃、相対湿度55%RHにおける表面抵抗値は、1.0×10Ω/□以上5.0×1014Ω/□以下である、請求項1~6のいずれか1項に記載の光学積層体。
    Furthermore, on the side opposite to the polarizing plate side of the first pressure-sensitive adhesive layer, a release film that can be peeled off from the first pressure-sensitive adhesive layer is provided,
    The release film has, in order from the first adhesive layer side, a release treatment layer, a first base film, and a first antistatic layer containing an antistatic agent,
    7. The release film has a surface resistance value of 1.0×10 8 Ω/□ or more and 5.0×10 14 Ω/□ or less at a temperature of 23° C. and a relative humidity of 55% RH. 2. The optical laminate according to item 1.
  8.  さらに、前記偏光板の前記第1粘着剤層側とは反対側に、前記偏光板に対して剥離可能である表面保護フィルムを有し、
     前記表面保護フィルムは、前記偏光板側から順に、第2基材フィルム、及び、帯電防止剤を含む第2帯電防止層を有し、
     前記表面保護フィルムの温度23℃、相対湿度55%RHにおける表面抵抗値は、1.0×10Ω/□以上1.0×1011Ω/□以下である、請求項1~7のいずれか1項に記載の光学積層体。
    Furthermore, on the side opposite to the first pressure-sensitive adhesive layer side of the polarizing plate, it has a surface protective film that can be peeled off from the polarizing plate,
    The surface protective film has a second base film and a second antistatic layer containing an antistatic agent in order from the polarizing plate side,
    8. The surface protection film according to any one of claims 1 to 7, wherein the surface resistance value at a temperature of 23° C. and a relative humidity of 55% RH is 1.0×10 8 Ω/□ or more and 1.0×10 11 Ω/□ or less. 1. The optical layered body according to 1 or 2 above.
  9.  前記偏光板は、前記直線偏光層の片面又は両面に保護層を有する、請求項1~8のいずれか1項に記載の光学積層体。 The optical laminate according to any one of claims 1 to 8, wherein the polarizing plate has a protective layer on one or both sides of the linear polarizing layer.
  10.  直線偏光層を含む偏光板、第1粘着剤層、及び、前記第1粘着剤層に対して剥離可能である剥離フィルムをこの順に有する光学積層体の製造方法であって、
     前記剥離フィルムは、前記第1粘着剤層側から順に、離型処理層、第1基材フィルム、及び、帯電防止剤を含む第1帯電防止層を有し、
     前記剥離フィルムの波長550nmにおける平均の面内位相差値は、1000nm以上であり、
     前記第1基材フィルムに、前記帯電防止剤を含む塗工液を塗布して第1塗工層を形成する工程と、
     前記第1塗工層を温度60℃以下で乾燥して前記第1帯電防止層を形成する工程と、を含む、光学積層体の製造方法。
    A method for producing an optical laminate having, in this order, a polarizing plate including a linear polarizing layer, a first pressure-sensitive adhesive layer, and a release film that can be peeled off from the first pressure-sensitive adhesive layer,
    The release film has, in order from the first adhesive layer side, a release treatment layer, a first base film, and a first antistatic layer containing an antistatic agent,
    The average in-plane retardation value of the release film at a wavelength of 550 nm is 1000 nm or more,
    A step of applying a coating liquid containing the antistatic agent to the first base film to form a first coating layer;
    and drying the first coating layer at a temperature of 60° C. or less to form the first antistatic layer.
  11.  第1粘着剤層、直線偏光層を含む偏光板、及び、前記偏光板に対して剥離可能である表面保護フィルムがこの順に積層された光学積層体の製造方法であって、
     前記表面保護フィルムは、前記偏光板側から順に、第2基材フィルム、及び、帯電防止剤を含む第2帯電防止層を有し、
     前記表面保護フィルムの波長550nmにおける平均の面内位相差値は、1000nm以上であり、
     前記第2基材フィルムに、前記帯電防止剤を含む塗工液を塗布して第2塗工層を形成する工程と、
     前記第2塗工層を温度60℃以下で乾燥して前記第2帯電防止層を形成する工程と、を含む、光学積層体の製造方法。
    A method for producing an optical laminate in which a first adhesive layer, a polarizing plate including a linear polarizing layer, and a surface protective film that can be peeled from the polarizing plate are laminated in this order,
    The surface protective film has a second base film and a second antistatic layer containing an antistatic agent in order from the polarizing plate side,
    The average in-plane retardation value of the surface protective film at a wavelength of 550 nm is 1000 nm or more,
    A step of applying a coating liquid containing the antistatic agent to the second base film to form a second coating layer;
    and drying the second coating layer at a temperature of 60° C. or less to form the second antistatic layer.
PCT/JP2022/031909 2021-08-27 2022-08-24 Optical laminate WO2023027119A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280057072.2A CN117836680A (en) 2021-08-27 2022-08-24 Optical laminate
KR1020247009591A KR20240044530A (en) 2021-08-27 2022-08-24 optical laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-138588 2021-08-27
JP2021138588A JP2023032450A (en) 2021-08-27 2021-08-27 optical laminate

Publications (1)

Publication Number Publication Date
WO2023027119A1 true WO2023027119A1 (en) 2023-03-02

Family

ID=85322868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031909 WO2023027119A1 (en) 2021-08-27 2022-08-24 Optical laminate

Country Status (5)

Country Link
JP (1) JP2023032450A (en)
KR (1) KR20240044530A (en)
CN (1) CN117836680A (en)
TW (1) TW202316150A (en)
WO (1) WO2023027119A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000044841A1 (en) * 1999-01-27 2000-08-03 Toyo Boseki Kabushiki Kaisha Surface-protective film
JP2010113367A (en) * 2009-12-28 2010-05-20 Toyobo Co Ltd Optical member and surface protection film used for the same
JP2014168857A (en) * 2013-03-01 2014-09-18 Nitto Denko Corp Laminate
JP2015169848A (en) * 2014-03-07 2015-09-28 富士フイルム株式会社 Antireflection film, polarizer, image display device and method for manufacturing antireflection film
JP2016006508A (en) * 2010-09-21 2016-01-14 大日本印刷株式会社 Antistatic hard coat film, production method of the same, polarizing plate, and image display device
WO2018181070A1 (en) * 2017-03-30 2018-10-04 日本ゼオン株式会社 Antistatic film, polarizing plate, touch panel, and liquid crystal display device
JP2020160421A (en) * 2019-03-22 2020-10-01 住友化学株式会社 Inspection method and inspection apparatus
WO2020241589A1 (en) * 2019-05-31 2020-12-03 東洋紡株式会社 Base material film for surface protection film of image display device equipped with fingerprint authentication sensor, surface protection film, and image display device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7253391B2 (en) 2019-01-21 2023-04-06 日東電工株式会社 Laminated film for reinforcement

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000044841A1 (en) * 1999-01-27 2000-08-03 Toyo Boseki Kabushiki Kaisha Surface-protective film
JP2010113367A (en) * 2009-12-28 2010-05-20 Toyobo Co Ltd Optical member and surface protection film used for the same
JP2016006508A (en) * 2010-09-21 2016-01-14 大日本印刷株式会社 Antistatic hard coat film, production method of the same, polarizing plate, and image display device
JP2014168857A (en) * 2013-03-01 2014-09-18 Nitto Denko Corp Laminate
JP2015169848A (en) * 2014-03-07 2015-09-28 富士フイルム株式会社 Antireflection film, polarizer, image display device and method for manufacturing antireflection film
WO2018181070A1 (en) * 2017-03-30 2018-10-04 日本ゼオン株式会社 Antistatic film, polarizing plate, touch panel, and liquid crystal display device
JP2020160421A (en) * 2019-03-22 2020-10-01 住友化学株式会社 Inspection method and inspection apparatus
WO2020241589A1 (en) * 2019-05-31 2020-12-03 東洋紡株式会社 Base material film for surface protection film of image display device equipped with fingerprint authentication sensor, surface protection film, and image display device

Also Published As

Publication number Publication date
JP2023032450A (en) 2023-03-09
CN117836680A (en) 2024-04-05
TW202316150A (en) 2023-04-16
KR20240044530A (en) 2024-04-04

Similar Documents

Publication Publication Date Title
KR101819787B1 (en) Composite polarizing plate and liquid crystal display device
WO2017204162A1 (en) Polarizing film, polarizing film with adhesive layer, and image display device
US20140300965A1 (en) Image display device unit having adhesive layer and image display device that uses said unit
JP6723176B2 (en) Optical stack
KR101780542B1 (en) Adhesive film and flexibile display apparatus comprising the same
JP6043315B2 (en) Polarizer protective film, production method thereof, polarizing plate, optical film, and image display device
KR20190008158A (en) Polarizing Plate
CN117295989A (en) Polarizing plate and image display device using same
JP7033654B2 (en) Adhesive composition, polarizing plate and optical member
CN106990471B (en) Polarizing plate and liquid crystal panel
CN106873068B (en) Polarizing plate and image display device
WO2023027119A1 (en) Optical laminate
KR101781308B1 (en) Polarizing plate set and liquid crystal panel
KR20180105193A (en) Method for producing polarizer
KR101748531B1 (en) Polarizing plate set and liquid crystal panel
KR20080087972A (en) Antistatic pressure sensitive adhesive composition and polarized plate comprising the same
CN109298479B (en) Polarizing plate group and liquid crystal panel
KR20080047031A (en) Antistatic pressure sensitive adhesive composition comprising sulfone or sulfoxide, and polarized plate comprising the same
WO2023234100A1 (en) Polarizing plate with retardation layer and image display device
JP6209034B2 (en) Adhesive for optical film, laminated optical film and method for producing the same
WO2022113841A1 (en) Polarizing plate and image display device using same
WO2022239508A1 (en) Optical laminate
CN106873069B (en) Polarizing plate and liquid crystal panel
WO2023127471A1 (en) Polarizing plate and organic el display device
TW202313892A (en) Optical laminate and image display device using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22861407

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280057072.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE