WO2000014846A1 - Antriebsvorrichtung und verfahren zum verstellen eines fahrzeugteils - Google Patents

Antriebsvorrichtung und verfahren zum verstellen eines fahrzeugteils Download PDF

Info

Publication number
WO2000014846A1
WO2000014846A1 PCT/EP1999/006511 EP9906511W WO0014846A1 WO 2000014846 A1 WO2000014846 A1 WO 2000014846A1 EP 9906511 W EP9906511 W EP 9906511W WO 0014846 A1 WO0014846 A1 WO 0014846A1
Authority
WO
WIPO (PCT)
Prior art keywords
estimated
determined
motor
time
vehicle part
Prior art date
Application number
PCT/EP1999/006511
Other languages
English (en)
French (fr)
Inventor
Joachim Klesing
Original Assignee
Webasto Dachsysteme Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Webasto Dachsysteme Gmbh filed Critical Webasto Dachsysteme Gmbh
Priority to US09/786,391 priority Critical patent/US6605911B1/en
Priority to EP99944601A priority patent/EP1110289A1/de
Priority to JP2000569483A priority patent/JP4370609B2/ja
Publication of WO2000014846A1 publication Critical patent/WO2000014846A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/085Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against excessive load
    • H02H7/0851Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against excessive load for motors actuating a movable member between two end positions, e.g. detecting an end position or obstruction by overload signal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/093Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against increase beyond, or decrease below, a predetermined level of rotational speed

Definitions

  • the invention relates to a drive device for a vehicle part that can be adjusted between at least two positions, and a method for adjusting a vehicle part between at least two positions.
  • a similar drive device in which, however, the threshold value is selected as a function of the position, the speed change between two adjacent positions recorded in a previous run being stored in a memory for certain positions of the adjustment path in order to be dependent on this to calculate the cut-off threshold for the speed depending on the position from the last position and speed currently recorded.
  • DE-OS 29 26 938 it is known to detect the engine speed in a sliding roof drive at constant time intervals, to form the differences of successive values, to add up these differences if they are greater than a predetermined threshold value, and to switch off or reverse the Trigger motor as soon as the sum total exceeds a predetermined threshold.
  • a drive device for a motor vehicle window which detects the motor speed by means of two Hall detectors and reverses the motor when a threshold value for the relative change in speed is exceeded.
  • the threshold value is constantly recalculated as a function of the detected motor voltage and the ambient temperature determined by a temperature sensor on the motor. The standstill / operating times of the motor are also taken into account in order to be able to infer the ambient temperature from the motor temperature.
  • a disadvantage of such drive devices detecting the speed is that the pinch protection is not effective between two signals for detecting the period or the engine speed and, in this respect, pinching of an object is only detected with a delay, which leads to increased clamping force and thus damage the actuation mechanism of the adjustable vehicle part or injuries to trapped body parts.
  • a drive device for a motor vehicle window which detects the motor current and also detects the window position by means of Hall sensors in the motor and reverses the motor when a threshold value for the motor current is exceeded as a function of the window position.
  • a disadvantage of such drive devices that detect the motor current is that additional electronic components are required for motor current detection. It is an object of the present invention to provide a drive device for a vehicle part movable between at least two positions and a method for adjusting a movable vehicle part between at least two positions, by means of which a rapid detection of an object being jammed is made possible without additional components.
  • the extrapolation times preferably have a fixed time interval.
  • Spring stiffness, damping and friction of the drive device are preferably taken into account when determining the force.
  • the trigger threshold can be set lower.
  • a measurement of the current period of the engine rotation is determined from the difference to at least one previous pulse signal measured value, an estimated value of the current period being determined taking into account at least one previous measured period, at each extrapolation time, an estimated from the estimated period current speed change is determined and the estimated value of the current force is determined from the estimated speed changes.
  • the estimated speed change results from the difference between the period duration estimated for an extrapolation point in time and the period duration estimated for the previous extrapolation point in time, the period duration estimated for each extrapolation point in time being the sum of the last measured period duration and the weighted with parameters Sum of several before the last measured period duration, the latter sum being multiplied by the time elapsed since the last measurement.
  • the force effect on the vehicle part is preferably determined by multiplying each estimated speed change by a proportionality factor and adding up the values obtained in this way as soon as the estimated speed change exceeds a lower threshold value. This reduces the influence of small changes in speed, which increases the tripping accuracy.
  • the upper threshold value is preferably chosen to be variable depending on the last determined speed change value. This can further increase the triggering accuracy.
  • control unit is preferably designed such that the proportionality factor for the determination of the change in force is selected from the change in speed as a function of the engine characteristic curve, which is determined for at least one engine voltage before the vehicle is started without a driven vehicle part. This results in better modeling of the individual system, so that the trigger threshold can be set lower.
  • An advantageous further development consists in that, in parallel to the determination of the estimated value of the current force effect in at least one second independent calculation from the detected pulse signals at certain second times, a second value for the current force effect on the vehicle part is determined, the second value as a additional criterion is used when deciding whether the engine is switched off or reversed or not.
  • a spectral analysis of the speed changes determined or estimated within a certain time window up to the time of the analysis is preferably carried out at certain points in time, the engine being switched off or reversed only when the determined spectrum meets certain requirements. This protects against false triggering under vibrating conditions.
  • FlG. 1 shows a schematic illustration of a drive device according to the invention
  • FlG. 2 shows a graphical representation of an exemplary temporal course of the period of the motor rotation
  • FlG. 3 shows a schematic representation of an embodiment of the method according to the invention for determining a case of pinching
  • FlG. 4 schematically shows a vehicle roof to illustrate the method according to FIG. 3.
  • the movable covers 54 of vehicle sunroofs today predominantly designed as sliding / lifting roofs or spoiler roofs, are mostly driven by means of such drive cables 16.
  • the window lifters of a motor vehicle door often act on the movable part, ie the pane, via a cable drum and a smooth cable. For the following consideration, it does not matter how the force is applied to the moving vehicle part.
  • the cover 54 of a slide-lift is preferably Roof driven, which is, however, only shown in Fig. 4 for better clarity.
  • a magnetic wheel 18 with at least one south and one north pole is mounted on the shaft 12 in a rotationally fixed manner.
  • several, for example four, north and south poles can also be arranged on the magnetic wheel 18, as a result of which the period of the signals is shortened accordingly.
  • Two Hall sensors 20, 22 are arranged near the magnetic wheel 18 in the circumferential direction, each of which sends a pulse signal to a control unit 24 provided with a microprocessor 36 and a memory 38 each time the north or south pole of the magnetic wheel 18 passes emit, which thus receives a signal about every quarter turn of the shaft 12.
  • the period duration results in each case from the distance between two successive signals on the same sensor 20 or 22, which are received at a distance of one full rotation of the shaft 12.
  • the period is alternately calculated from the time difference between the two last signals at the sensors 20 and 22, so that a new value of the period is available every quarter of a turn.
  • the direction of rotation can also be determined on the basis of the phase shift of the signals of the two sensors 20, 22.
  • the current position of the cover 54 can also be determined from the signals of the Hall sensors 20, 22 by feeding these signals to a counter 40 assigned to the control unit 24.
  • the direction of rotation of the electric motor 10 can be controlled by the control unit 24 via two relays 26, 28 with changeover contacts 30, 32.
  • the speed of the motor 10 is controlled by pulse width modulation via a transistor 34 controlled by the control unit 24.
  • the microprocessor 36 determines the monthly period of the rotation of the shaft 12 and thus also of the electric motor 10.
  • a measurement value for the period is available approximately every quarter of a rotation of the shaft 12 .
  • estimates for the period are continuously extrapolated from previous measured values of the period in a fixed time grid, for example every 1 ms, for example according to the following formula:
  • T * [k] T [i] + k • (al • T [i-1] + a2 ⁇ T [i-2] + a3 ⁇ T [i-3]) (1)
  • al, a2, a3 are parameters, i is an index that every quarter, incremented, and k is the running index of the fixed time grid, which is reset to zero for each new measurement for the period.
  • i is an index that every quarter, incremented
  • k is the running index of the fixed time grid, which is reset to zero for each new measurement for the period.
  • the parameters al, a2, a3 model the overall system of the drive device, i.e. Motor 10, power transmission components and cover, and are determined by the spring stiffness, damping and friction of the overall system. This results in a bandpass effect with the property that spectral components of the period over time, which result from vibrations, are rated weaker than those which result from a pinching event.
  • FlG. 2 schematically shows an exemplary temporal course of the measured period durations T and the period durations T * estimated therefrom. The dashed curve represents the true course of the period.
  • the speed change at time [k], based on the previous time [k-1], is then estimated from the estimated values for the period, using a motor voltage filter and a travel profile filter to determine the influences of the motor voltage and the position at which the moving vehicle part, ie the cover, just located, to eliminate the engine speed using the following formula:
  • Um [k] is the motor voltage at the time [k]
  • Vu is a motor voltage filter which simulates the dependence of the speed on the motor voltage detected by the control unit 24
  • x [k] is the position of the cover at the time [k]
  • Vr is a displacement profile filter that simulates the dependence of the engine speed on the position of the cover.
  • the motor voltage filter Vu simulates the dynamic behavior of the motor when the voltage changes.
  • the motor voltage filter Vu is preferably designed as a low-pass filter, the time constant of which is equal to the motor time constant.
  • the time constant depends on the operating case, i.e. the opening or closing of the cover 54 in the sliding or lowering direction, and the magnitude of the change in voltage.
  • the Wegpro filfilter Vr is automatically determined by a learning run after installing the drive device in the vehicle. As mentioned above, the position of the cover 54 is determined from the pulse signals of the Hall sensors 20, 22 which are summed up by means of the counter 40.
  • the estimated speed changes ⁇ N * [k] are compared with a fixed lower limit that is constant over time. As soon as they exceed this lower limit, they are each multiplied by a proportionality factor Vf, which represents the steepness of the motor characteristic of the electric motor 10 (torque versus speed). The slope is approximately constant at constant motor voltage and motor temperature, but is different for each electric motor 10.
  • Vf proportionality factor
  • the ambient temperature is detected by a temperature sensor and the motor temperature is approximated by recording the operating time (instead of the ambient temperature, the motor temperature can also be detected directly by a temperature sensor on the electric motor 10).
  • the ⁇ F [k] values are added up as long as the ⁇ N * [k] values are above the specified lower limit. As soon as two consecutive ⁇ N * [k] values are below it again, the sum is set to zero. If a ⁇ N * [k] value exceeds a fixed upper limit, only the value of the upper limit is included in the sum instead of this ⁇ N * [k]. This serves to eliminate as far as possible the effects of vibrations, which lead to brief, periodic peaks in the speed change, on the detection of a glueing accident. In the simplest case, this upper limit can be chosen to be constant. In order to increase the accuracy of the triggering, however, the upper limit can also be selected in a time-dependent manner depending on the currently determined speed change, e.g. in the form that the upper limit is increased with increasing current speed change.
  • the control unit 24 triggers a reversal of the electric motor 10 by actuating the relays 26, 28 via the switches 30, 32 in order to immediately release a jammed object or a jammed body part to give.
  • the trapping protection is active by the described extrapolation of the period also between two measured values of the period at fixed times, which means that a trapping occurs earlier, i.e. even with lower cycles, force can be recognized, which better prevents injuries or damage and thereby increases the safety of the drive device.
  • a spectral analysis of the speed changes determined within a certain time window up to the time of analysis can be carried out.
  • Certain spectral characteristics in particular when a clearly pronounced peak occurs, which is not in the spectral range typical for pinching cases, prevents triggering, even if the threshold Fmax is exceeded.
  • a second embodiment of the invention is shown schematically in FIG.
  • the main difference from the first embodiment described above is that, in parallel and independently of an extrapolation according to the invention of the measured period durations at specific times and the determination of estimated values for the force acting on the adjustable vehicle part, a second calculation 52 with its own parameter set is carried out in a first calculation 50 and another sampling rate is carried out, which also provides a value for the current force.
  • a logic stage 54 in the form of an OR operation.
  • the rigidity of the overall system is made up of the rigidity of the sliding-lifting roof mechanism, the clamped body and the vehicle body.
  • the stiffness of the pinched body depends on the type of body.
  • the rigidity of the body is heavily dependent on the place where the body is pinched. This applies in particular to the lowering movement of a cover 54 from an opening position, see FIG. 4. If a body 56 is clamped in the area of the roof center (indicated in FIG. 4 by 58), the overall system is considerably softer due to the possible deflection of the rear edge of the cover than when pinching in the edge area (indicated in Fig. 4 with 60).
  • the sampling rate means the distance between the times at which a value for the momentary force is determined. If the system works with a single fixed sampling rate, the parameter set of the calculation, in particular the threshold or Limit values and the selected sampling rate can only be optimized for a single stiffness of the overall system, although in practice different stiffnesses of the overall system can be decisive depending on the type and location of the clamped body.
  • a second parallel calculation 52 it is possible, by appropriate selection of the calculation parameters and the sampling rate on which the calculation is based, that is to say the choice of the times at which a new value of the momentary force action is calculated, this second calculation 52 for a different stiffness to optimize.
  • the second calculation 52 is preferably for the detection of slow changes in force, i.e. small stiffnesses optimized, while the first calculation 50 for the detection of rapid changes in force, i.e. great stiffness is optimized.
  • the second calculation 52 does not require an extrapolation of measured values of the period duration, but, depending on the relevant stiffness range, a calculation 52 is made after the receipt of a new measured value or only after every nth input of a measured value a new value of the momentary force applied. In principle, however, if necessary, the second calculation 52 can also use an extrapolation algorithm, the extrapolation times being selected at a greater distance than in the first calculation 50.
  • the first sampling rate is selected so that it is used for the detection of pinching with the The highest detection system stiffness is optimal
  • the speed detection stage 62 is used jointly by the first calculation 50 and the second calculation 52.
  • the change in speed ⁇ N * is converted to the by means of the formula (3) in the manner described above using a first value for the fixed lower limit, a first value for the fixed upper limit and a first value for the threshold value Fmax the first sampling rate specified points in time, ie the extrapolation points in time [k], determined whether the momentary force effect exceeds this first threshold value Fmax.
  • the values of this first parameter set are optimized for the detection of pinching cases with the greatest expected system rigidity.
  • the sampling rate is selected so that it is optimal for the detection of pinching cases with the lowest expected system stiffness.
  • This second sampling rate can e.g. should be chosen so that only every fourth measured value of the period T should be taken into account.
  • the second calculation is only carried out by the Hall sensors 20, 22 every fourth signal input, i.e. only every fourth speed N [i] determined by the stage 62, which goes back to a measured period T, is taken into account in the sampling stage indicated by 66 in FIG. 4.
  • the speeds N * [k] determined from extrapolated period durations T * are of course not taken into account anyway.
  • the second calculation 52 is therefore only carried out every fourth point in time [i].
  • the speed change ⁇ N [i] compared to the last measured value is determined. Then it is determined in an analogous manner by means of the formula (3) using a second value for the fixed lower limit, a second value for the fixed upper limit and a second value for the threshold value Fmax whether the momentary force action exceeds this second threshold value Fmax.
  • the values of this second parameter set are optimized for the detection of pinching cases with the lowest expected system rigidity.
  • the results of the first and the second calculation are logically linked to one another in a logic stage 64 for the decision as to whether there is a jamming situation, ie the engine should be switched off or reversed. In the simplest case, this is an OR operation. In this case, the motor is switched off or reversed when one of the two calculations has detected a case of jamming.
  • the decision becomes everyone Time when the first calculation 50 delivers a new result. Since new results of the second calculation 52 are available much less frequently, the last result of the second calculation 52 is always supplied to the logic stage 64.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power-Operated Mechanisms For Wings (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Verstellen eines Fahrzeugteils zwischen mindestens zwei Stellungen sowie eine Antriebsvorrichtung zum Ausführen dieses Verfahrens. Das Fahrzeugteil wird von einem Elektromotor (10) angetrieben. Es wird ein Pulssignal entsprechend der Drehbewegung des Elektromotors (10) erzeugt und einer Steuereinheit (24) zum Steuern des Elektromotors (10) zugeführt. Der Zeitpunkt des Eingangs eines jeden Signals an der Steuereinheit (24) wird erfaßt und zwischen zwei solchen Eingangszeitpunkten wird zu bestimmten Extrapolationszeitpunkten aus mindestens einem Teil dieser gemessenen Zeitpunkte die aktuelle Krafteinwirkung auf das Fahrzeugteil abgeschätzt, wobei dieser Schätzwert als ein Kriterium bei der Entscheidung verwendet wird, ob der Elektromotor (10) abgeschaltet bzw. reversiert wird oder nicht.

Description

Antriebsvorrichtung und Verfahren zum Verstellen eines Fahrzeugteils
Die Erfindung betrifft eine Antriebsvorrichtung für ein zwischen mindestens zwei Stellungen verstellbares Fahrzeugteil sowie ein Verfahren zum Verstellen eines Fahrzeugteils zwischen mindestens zwei Stellungen.
Aus der DE 43 21 264 AI ist eine Antriebsvorrichtung bekannt, bei welcher ein Elektromotor eine Kfz-Fensterscheibe antreibt. Mittels zweier um 90 Grad versetzter Hall-Sensoren, die mit einem auf der Motorwelle angeordneten Magneten zusammenwirken, wird ein Signal erzeugt, aus welchem die momentane Periodendauer der Motordrehung und damit die monentane Drehzahl des Motors zu jedem Zeitpunkt, zu dem ein solches Signal an einer Steuereinheit zum Steuern des Motors eingeht, bestimmt wird. Sobald die momentane Drehzahländerung, die sich aus der Differenz zweier aufeinanderfolgender Drehzahl-Meßwerte ergibt, einen vorgegebenen Schwellwert übersteigt, wird der Motor reversiert, um einen eventuell eingeklemmten Gegenstand freizugeben.
Aus der DE 195 11 581 AI ist eine ähnliche Antriebsvorrichtung bekannt, bei welcher jedoch der Schwellwert positionsabhängig variabel gewählt ist, wobei in einem Speicher für bestimmte Positionen des Verstellwegs die in einem früheren Lauf erfaßte Geschwindigkeitsänderung zwischen zwei benachbarten Positionen gespeichert ist, um daraus in Abhängigkeit von der letzten aktuell erfaßten Position und Geschwindkeit den Abschaltschwellwert für die Geschwindigkeit jeweils positionsabhängig zu berechnen. Aus der DE-OS 29 26 938 ist bekannt, bei einem Schiebedachantrieb in gleichbleibenden zeitlichen Abständen die Motordrehzahl zu erfassen, die Differenzen aufeinander folgender Werte zu bilden, diese Differenzen aufzuaddieren, wenn sie größer als ein vorbestimmter Schwellwert sind, und ein Abschalten oder Reversieren des Motors auszulösen, sobald die aufaddierte Summe einen vorbestimmten Schwellwert übersteigt.
Aus der DE 43 12 865 AI ist eine Antriebsvorrichtung für ein Kfz-Fenster bekannt, welche die Motordrehzahl mittels zweier Hall-Detektoren erfaßt und bei Überschreiten eines Schwellwerts für die relative Änderung der Drehzahl den Motor reversiert. Dabei wird der Schwellwert in Abhängigkeit von der erfaßten Motorspannung und der durch einen Temperatursensor am Motor ermittelten Umgebungstemperatur ständig neu berechnet. Dabei werden auch die Stand/Betriebszeiten des Motors berücksichtigt, um von der Motortemperatur auf die Umgebungstemperatur schließen zu können.
Aus der DE 196 18 219 AI ist bekannt, bei einem Schiebedachantrieb die Drehzahlschwelle bzw. die Drehzahländerungsschwelle des Motors, ab welcher ein Reversieren des Motors erfolgt, aus den positionsabhängigen Drehzahldaten eines vorher erfolgten Referenzlaufs abhängig von der Postion des Deckels zu ermitteln.
Nachteilig bei solchen die Drehzahl erfassenden Antriebsvorrichtungen ist, daß zwischen zwei Signalen zur Erfassung der Periode bzw. der Motordrehzahl der Einklemmschutz nicht wirksam ist und insoweit unter Umständen ein Einklemmen eines Gegenstands nur mit Verzögerung erkannt wird, was zu einer erhöhten EinMemmkraft und damit zu Beschädigungen an der Betätigungsmechanik des verstellbaren Fahrzeugteils oder zu Verletzungen an eingeklemmten Körperteilen führen kann.
Aus der DE 195 14 954 AI ist eine Antriebsvorrichtung für ein Kfz-Fenster bekannt, welche den Motorstrom erfaßt und außerdem die Fensterstellung mittels Hall-Sensoren im Motor erfaßt und bei Überschreiten eines Schwellwerts für den Motorstrom in Abhängigkeit von der Fensterstellung den Motor reversiert.
Nachteilig bei solchen den Motorstrom erfassenden Antriebsvorrichtungen ist, daß zur Motorstromεrfassung zusätzliche elektronische Bauteile erforderlich sind. Es ist Aufgabe der vorliegenden Erfindung, eine Antriebsvorrichtung für ein zwischen mindestens zwei Stellungen bewegliches Fahrzeugteil sowie ein Verfahren zum Verstellen eines beweglichen Fahrzeugteils zwischen mindestens zwei Stellungen zu schaffen, durch welche(s) ohne zusätzliche Bauteile ein rasches Erfassen eines Einklemmens eines Gegenstands ermöglicht wird.
Diese Aufgabe wird erfindungsgemäß gelöst durch durch ein Verfahren gemäß Anspruch 1 sowie durch eine Antriebsvorrichtung gemäß Anspruch 30.
Bei dieser erfindungsgemäßen Lösung ist vorteilhaft, daß der Einklemmschutz auch zwischen zwei Signalen, d.h. zwischen zwei Meßwerten, ohne zusätzlichen Aufwand, wie er z.B. bei der Motorstromerfassung nötig ist, wirksam ist und so auch sehr schnell auf Einklemmfälle reagieren kann.
Bevorzugt weisen die Extrapolationszeitpunkte einen festen zeitlichen Abstand auf.
Vorzugsweise werden Federsteifigkeiten, Dämpfungen und Reibungen der Antriebsvorrichtung bei der Bestimmung der Krafteinwirkung berücksichtigt. Durch diese Modellierung des Systems kann die Auslöseschwelle niedriger gelegt werden.
Vorzugsweise wird jeweils bei Eingang eines neuen Pulssignals aus der Differenz zu mindestens einem früheren Pulssignalmeßwert ein Meßwert der aktuellen Periodendauer der Motordrehung bestimmt, wobei zu jedem Extrapolationszeitpunkt ein Schätzwert der aktuellen Periodendauer unter Berücksichtigung mindestens einer vorangegangenen gemessenen Periodendauer ermittelt wird, aus den abgeschätzten Periodendauern eine abgeschätzte aktuelle Drehzahländerung bestimmt wird und aus den abgeschätzten Drehzahländerungen der Schätzwert der aktuellen Krafteinwirkung bestimmt wird.
Ferner ist bevorzugt vorgesehen, daß sich die abgeschätzte Drehzahländerung aus der Differenz der für einen Extrapolationszeitpunkt abgeschätzten Periodendauer und der für den vorhergehenden Extrapolationszeitpunkt abgeschätzten Periodendauer ergibt, wobei sich die für jeden Extrapolationszeitpunkt abgeschätzte Periodendauer ergibt als Summe aus der letzten gemessenen Periodendauer und der mit Parametern gewichteten Summe aus mehreren vor der letzten gemessenen Periodendauer gemessenen Periodendauern, wobei letztere Summe mit der seit der letzten Messung vergangenen Zeit multipliziert ist.
Vorzugsweise werden in der Summe nur die letzten drei der der letzten Messung vor dem Extrapolationszeitpunkt vorangegangen Messwerte der Periodendauer berücksichtigt. Dies ist für eine zufriedenstellende Funktion ausreichend.
Bevorzugt wird die Krafteinwirkung auf das Fahrzeugteil dadurch ermittelt, daß jede abgeschätzte Drehzahländerung mit einem Proportionalitätsfaktor multipliziert wird und die so erhaltenen Werte aufsummiert werden, sobald die abgeschätzte Drehzahländerung einen unteren Schwellwert übersteigt. Dadurch wird der Einfluß kleiner Drehzahländerungen vermindert, was die Auslösegenauigkeit erhöht.
In bevorzugter Ausfuhrung der Erfindung ist ferner vorgesehen, daß, wenn die abgeschätzte Drehzahländerung einen oberen Schwellwert übersteigt, statt der abgeschätzten Drehzahländerung nur der obere Schwellwert in die Summation eingeht. Dadurch werden Fehlauslösungen des Einklemmschutzes durch Vibrationseinflüsse verhindert.
Der obere Schwellwert ist vorzugsweise variabel in Abhängigkeit von dem letzten ermittelten Drehzahländerungswert gewählt. Dadurch kann die Auslösegenauigkeit weiter erhöht werden.
Ferner ist die Steuereinheit vorzugsweise so ausgebildet, daß der Proportionalitätsfaktor für die Ermittlung der Kraftänderung aus der Drehzahländerung in Abhängigkeit von der Motorkennlinie gewählt ist, die vor Inbetriebnahme ohne angetriebenes Fahrzeugteil für mindestens eine Motorspannung ermittelt wird. Dadurch wird eine bessere Modellierung des individuellen Systems erzielt, so daß die Auslöseschwelle niedriger gelegt werden kann.
Eine vorteilhafte Weiterbildung besteht ferner darin, daß parallel zu der Ermittlung des Schätzwerts der aktuellen Krafteinwirkung in mindestens einer zweiten unabhängigen Berechnung aus den erfaßten Pulssignalen zu bestimmten zweiten Zeitpunkten ein zweiter Wert für die aktuelle Krafteinwirkung auf das Fahrzeugteil bestimmt wird, wobei der zweite Wert als ein zusätzliches Kriterium bei der Entscheidung verwendet wird, ob der Motor abgeschaltet bzw. reversiert wird oder nicht. Dies hat den Vorteil, daß die erste und die zweite Berechnung für unterschiedlich schnelle Einklemmvorgänge bzw. Kraftänderungen optimiert werden können, was die Auslösegenauigkeit weiter erhöht.
Vorzugsweise wird zu bestimmten Zeitpunkten eine spektrale Analyse der innerhalb eines bestimmten Zeitfensters bis zum Analysezeitpunkt ermittelten oder abgeschätzten Drehzahländerungen vorgenommen, wobei der Motor nur dann abgeschaltet oder reversiert wird, wenn das ermittelte Spektrum bestimmte Anforderungen erfüllt. Dies schützt für Fehlauslösungen unter Rüttelbedingungen.
Weitere bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.
Im folgenden sind zwei.- Ausführungsformen der Erfindung anhand der beiliegenden Zeichnungen näher erläutert. Es zeigen:
FlG. 1 eine schematische Darstellung einer erfindungsgemäßen Antriebsvorrichtung,
FlG. 2 eine graphische Darstellung eines beispielhaften zeitlichen Verlaufs der Periodendauer der Motordrehung,
FlG. 3 eine schematische Darstellung einer Ausfuhrungsform des erfindungsgemäßen Verfahrens zur Bestimmung eines Einklemmfalls, und
FlG. 4 schematisch ein Fahrzeugdach zur Veranschaulichung des Verfahrens gemäß Fig. 3.
Unter Bezugnahme auf FlG. 1 treibt ein als Gleichstrommotor ausgebildeter Elektromotor 10 über eine Welle 12 ein Zahnritzel 14 an, welches mit zwei zug- und drucksteif geführten Antriebskabeln 16 im Eingriff steht. Zwischen dem Elektromotor 10 und dem Ritzel 14 liegt optional noch ein nicht dargestelltes Schneckengetriebe. Die beweglichen Deckel 54 von Fahrzeug-Schiebedächern, heute überwiegend als Schiebe-Hebe-Dächer oder Spoilerdächer ausgeführt, werden meistens mittels solcher Antriebskabel 16 angetrieben. Die Fensterheber einer Kfz-Tür wirken oft über eine Seiltrommel und ein glattes Seil auf das bewegbare Teil, d.h. die Scheibe. Für die folgende Betrachtung ist es gleichgültig, wie die Krafteinleitung auf das bewegliche Fahrzeugteil erfolgt. Bevorzugt wird der Deckel 54 eines Schiebe-Hebe- Daches angetrieben, der jedoch wegen der besseren Übersichtlichkeit nur in Fig. 4 dargestellt ist.
Auf der Welle 12 ist ein Magnetrad 18 mit wenigstens einem Süd- und einem Nordpol drehfest angebracht. Selbstverständlich können auch mehrere beispielsweise je vier Nord- und Südpole am Magnetrad 18 angeordnet sein, wodurch die Periodendauer der Signale entsprechend verkürzt wird. In Umfangsrichtung um etwa 90 Grad versetzt sind nahe des Magnetrads 18 zwei Hall-Sensoren 20, 22 angeordnet, die jeweils bei jedem Durchgang des Nord- bzw. Südpols des Magnetrads 18 ein Impulssignal an eine mit einem Mikroprozessor 36 und einem Speicher 38 versehene Steuereinheit 24 abgeben, die somit etwa bei jeder Viertelumdrehung der Welle 12 ein Signal empfängt. Die Periodendauer ergibt sich jeweils aus dem Abstand zweier aufeinanderfolgender Signale an demselben Sensor 20 bzw. 22, die im Abstand einer vollen Umdrehung der Welle 12 eingehen. Wegen der 90 Grad- Anordnung der beiden Sensoren 20, 22 wird die Periodendauer abwechselnd aus der zeitlichen Differenz der beiden letzten Signale an dem Sensors 20 bzw. 22 berechnet, so daß jede Viertelumdrehung ein neuer Wert der Periodendauer zur Verfügung steht. Durch diese Art der Bestimmung der Periodendauer wirken sich Abweichungen von der exakten 90 Grad- Geometrie der Sensoranordnung nicht auf die Periodendauer aus, wie dies bei einer Bestimmung der Periodendauer aus der Zeitdifferenz zwischen dem letzten Signal des einen Sensors und des anderen Sensors der Fall wäre.
Aufgrund der Phasenverschiebung der Signale der beiden Sensoren 20, 22 kann auch die Drehrichtung bestimmt werden. Zusätzlich kann aus den Signalen der Hall-Sensoren 20, 22 auch die aktuelle Position des Deckels 54 ermittelt werden, indem diese Signale einem der Steuereinheit 24 zugeordneten Zähler 40 zugeführt werden.
Die Drehrichtung des des Elektromotors 10 kann von der Steuereinheit 24 über zwei Relais 26, 28 mit Umschaltkontakten 30, 32 gesteuert werden. Die Drehzahl des Motors 10 wird durch Pulsbreitenmodulation über einen von der Steuereinheit 24 angesteuerten Transistor 34 gesteuert. Aus dem Zeitpunkt des Signaleingangs von den Hall-Sensoren 20 bzw. 22 bestimmt der Mikroprozessor 36 die monentane Periodendauer der Umdrehung der Welle 12 und somit auch des Elektromotors 10. Somit steht etwa zu jeder Viertel umdrehung der Welle 12 ein Meßwert für die Periodendauer zur Verfügung. Um auch zwischen diesen Zeitpunkten einen Einklemmschutz zu gewährleisten, werden ständig in einem festen Zeitraster, z.B. nach jeweils 1 ms, Schätzwerte für die Periodendauer aus vorangegangenen Meßwerten der Periodendauer extrapoliert, beispielsweise nach folgender Formel:
T*[k] = T[i] + k (al T[i-1] + a2 T[i-2] + a3 T[i-3]) (1)
wobei al, a2, a3 Parameter sind, i ein Index ist, der bei jedem Signaleingang, d.h. bei jeder Viertelperiode, inkrementiert wird, und k der Laufindex des festen Zeitrasters ist, der bei jedem neuen Meßwert für die Periodendauer auf Null rückgesetzt wird. Statt der letzten vier Meßwerte können je nach Anforderung auch mehr oder weniger Meßwerte berücksichtigt werden, z.B. nur die letzten beiden.
Die Parameter al, a2, a3 modellieren das Gesamtsystem der Antriebsvorrichtung, d.h. Motor 10, Kraftübertragungskomponenten und Deckel, und sind durch die Federsteifigkeiten, Dämpfungen und Reibungen des Gesamtsystems bestimmt. Daraus ergibt sich eine Bandpaßwirkung mit der Eigenschaft, daß spektrale Anteile des Periodenzeitverlaufs, die von Vibrationen herrühren, schwächer bewertet werden als solche, die von einem Einklemmfall herrühren. FlG. 2 zeigt schematisch einen beispielhaften zeitlichen Verlauf der gemessenen Periodendauern T und der daraus abgeschätzten Periodendauern T*. Die gestrichelte Kurve stellt den wahren Verlauf der Periodendauer dar.
Aus den so bestimmten Schätzwerten für die Periodendauer wird dann die Drehzahländerung zum Zeitpunkt [k], bezogen auf den vorhergehenden Zeitpunkt [k-1], abgeschätzt, wobei ein Motorspannungsfilter und ein Wegprofilfilter verwendet werden, um Einflüsse der Motorspannung und der Position, an welcher sich das bewegliche Fahrzeugteil, d.h. der Deckel, gerade befindet, auf die Motordrehzahl zu eliminieren, wobei folgende Formel verwendet wird:
ΔN* [k] = (T* [k] - T* [k- 1 ]) / (T* [k])2 - Vu(Um[k]) - Vr(x[k]) (2) wobei Um[k] die Motorspannung zum Zeitpunkt [k] ist, Vu ein Motorspannungsfilter ist, welches die Abhängigkeit der Drehzahl von der von der Steuereinheit 24 erfaßten Motorspannung nachbildet, x[k] die Position des Deckels zum Zeitpunkt [k] ist und Vr ein Wegprofilfilter ist, das die Abhängigkeit der Motordrehzahl von der Position des Deckels nachbildet.
Das Motorspannungsfilter Vu bildet das dynamische Verhalten des Motors bei Spannungsänderungen nach. Vorzugsweise ist das Motorspannungsfilter Vu als Tiefpaß ausgebildet, dessen Zeitkonstante gleich der Motorzeitkonstante ist. Die Zeitkonstante ist abhängig von dem Betriebsfall, d.h. vom Öffnen oder Schließen des Deckels 54 in Schiebeoder Absenkrichtung, und von der Größe der Spannungsänderung.
Das Wegpro filfilter Vr wird durch einen Lernlauf nach Einbau der Antriebsvorrichtung in das Fahrzeug automatisch ermittelt. Die Position des Deckels 54 wird, wie oben erwähnt, aus den mittels des Zählers 40 aufsummierten Impulssignalen der Hall-Sensoren 20, 22 bestimmt.
Die Entscheidung, ob ein Einklemmfall vorliegt oder nicht, erfolgt anhand der folgenden Formel:
Σ (Vf ΔN*[k]) = Σ (ΔF[k]) > Fmax (3)
Die abgeschätzten Drehzahländerungen ΔN*[k] werden mit einer festgesetzten zeitlich konstanten Untergrenze verglichen. Sobald sie diese Untergrenze übersteigen, werden sie jeweils mit einem Proportionalitätsfaktor Vf multipliziert, der die Steilheit der Motorkennlinie des Elektromotors 10 (Drehmoment über Drehzahl) wiedergibt. Die Steilheit ist bei konstanter Motorspannung und Motortemperatur in etwa konstant, ist jedoch für jeden Elektromotor 10 individuell verschieden. Um diese Einflüsse zu eliminieren, wird einerseits durch einen Temperaturfühler die Umgebungstemperatur erfaßt und die Motortemperatur über die Erfassung der Betriebsdauer genähert (statt der Umgebungstemperatur kann auch die Motortemperatur durch einen Temperatursensor am Elektromotor 10 direkt erfaßt werden). Andererseits werden bei jedem Elektromotor 10 vor dem Anschließen an den Deckel 54 im Rahmen der Fertigungsendprüfung bei konstanter Motorspannung zwei Wertepaare für Drehzahl und Drehmoment ermittelt und in dem Speicher 38 abgespeichert. Aus diesen Meßwerten wird die Steigung der Motorkennlinie ermittelt, woraus der Proportionalitätsfaktor Vf berechnet wird.
Das Produkt aus ΔN*[k] und Vf entspricht der Änderung ΔF[k] der Krafteinwirkung auf die Verschiebebewegung des Deckels 54 zum Zeitpunkt [k], bezogen auf den Zeitpunkt [k-1].
Die ΔF[k]- Werte werden aufsummiert, solange die ΔN*[k]-Werte über der festgesetzten Untergrenze liegen. Sobald zwei aufeinanderfolgende ΔN*[k]-Werte wieder darunter liegen, wird die Summe auf Null gesetzt. Falls ein ΔN*[k]-Wert eine festgesetzte Obergrenze übersteigt, geht an Stelle dieses ΔN*[k] nur der Wert der Obergrenze in die Summe ein. Dies dient dazu, Einflüsse von Vibrationen, die zu kurzzeitigen periodischen Spitzen der Drehzahländerung fuhren, auf das Erkennen eines Einkleπrmfalles möglichst zu eliminieren. Diese Obergrenze kann im einfachsten Fall konstant gewählt werden. Um die Genauigkeit der Auslösung zu erhöhen, kann jedoch die Obergrenze auch in Abhängigkeit von der aktuell ermittelten Drehzahländerung zeitlich variabel gewählt werden, z.B. in der Form, daß die Obergrenze mit ansteigender aktueller Drehzahländerung angehoben wird.
Sobald die Summe der ΔF[k] eine maximal zulässige Klemmkraf Fmax übersteigt, löst die Steuereinheit 24 durch Ansteuerung der Relais 26, 28 über die Schalter 30, 32 ein Reversieren des Elektromotors 10 aus, um einen eingeklemmten Gegenstand oder ein eingeklemmtes Körperteil sofort wieder frei zu geben.
Somit ist der Einklemmschutz durch das beschriebene Extrapolieren der Periodendauern auch zwischen zwei Meßwerten der Periodendauer jeweils zu festen Zeitpunkten aktiv, wodurch ein Einklemmfall früher, d.h. noch bei geringerer Einklen mkraft, erkannt werden kann, was Verletzungen oder Beschädigungen besser vorbeugt und dadurch die Sicherheit der Antriebsvorrichtung erhöht.
Um die Fehlauslösungswahrscheinlichkeit beim Auftreten von Rüttelkräften weiter zu verringern, kann eine spektrale Analyse der innerhalb eines bestimmten Zeitfensters bis zum Analysezeitpunkt ermittelten Drehzahländerungen vorgenommen werden. Bei Auftreten bestimmter spektraler Charakteristika, insbesondere bei Auftreten eines deutlich ausgeprägten Peaks, der nicht in dem für Einklemmfälle typischen Spektralbereich liegt, wird ein Auslösen verhindert, auch wenn die Schwelle Fmax überschritten wird.
In Fig. 3 ist schematisch eine zweite Ausfuhrungsform der Erfindung dargestellt. Der wesentliche Unterschied zur oben beschrieben ersten Ausfiüirungsform besteht darin, daß parallel und unabhängig zu einer erfindungsgemäßen Extrapolation der gemessenen Periodendauern zu bestimmten Zeitpunkten und der Bestimmung von Schätzwerten für die Krafteinwirkung auf das verstellbare Fahrzeugteil in einer ersten Berechnung 50 eine zweite Berechnung 52 mit einem eigenen Parametersatz und einer anderen Abtastrate durchgeführt wird, die ebenfalls einen Wert für die momentane Krafteinwirkung liefert. Für die Entscheidung, ob der Motor abgeschaltet bzw. reversiert werden soll, werden die Ergebnisse beider Berechnungen in einer Logikstufe 54 in Form einer ODER-Verknüpfung berücksichtigt. Dies ergibt sich aus folgenden Überlegungen:
Die Steifigkeit des Gesamtsystems setzt sich aus den Steifigkeiten der Schiebe-Hebe- Dachmechanik, des eingeklemmten Körpers sowie der Fahrzeugkarosserie zusammen. Einerseits hängt die Steifigkeit des eingeklemmten Körpers von der Art des Körpers ab. Andererseits ist die Steifigkeit der Karosserie stark von dem Ort abhängig, an dem der Körper eingeklemmt wird. Dies gilt insbesondere bei der Absenkbewegung eines Deckels 54 aus einer Ausstellposition, siehe Fig. 4. Wird dabei ein Körper 56 im Bereich der Dachmitte eingeklemmt (in Fig. 4 mit 58 angedeutet), so ist das Gesamtsystem aufgrund der möglichen Durchbiegung der Deckelhinterkante wesentlich weicher als bei einem Einklemmen im Randbereich (in Fig. 4 mit 60 angedeutet).
Mit Abtastrate ist im folgenden der Abstand der Zeitpunkte gemeint, zu welchen ein Wert für die momentane Krafteinwirkung bestimmt wird. Wenn das System mit einer einzigen festen Abtastrate arbeitet, können der Parametersatz der Berechnung, insbesondere die Schwellbzw. Grenzwerte, und die gewählte Abtastrate nur für eine einzige Steifigkeit des Gesamtsystems optimiert werden, wobei jedoch in der Praxis je nach Art und Stelle des eingeklemmten Körpers unterschiedliche Steifigkeiten des Gesamtsystems maßgeblich sein können. Durch das Durchführen einer zweiten parallelen Berechnung 52 ist es möglich, durch entsprechende Wahl der Berechnungsparameter und der der Berechnung zugrunde liegenden Abtastrate, d.h. der Wahl der Zeitpunkte, zu welchen ein neuer Wert der monentanen Krafteinwirkung berechnet wird, diese zweite Berechnung 52 für eine andere Steifigkeit zu optimieren.
Die zweite Berechnung 52 ist vorzugsweise für die Erfassung langsamer Krafteinwirkungsänderungen, d.h. kleiner Steifigkeiten, optimiert, während die erste Berechnung 50 für die Erfassung schneller Krafteinwirkungsänderungen, d.h. großer Steifigkeiten, optimiert ist.
In der Regel ist es bei der zweiten Berechnung 52 nicht erforderlich, eine Extrapolation von Meßwerten der Periodendauer durchzuführen, sondern es wird, je nach relevanten Steifigkeitsbereich, allenfalls nach Eingang eines neuen Meßwerts bzw. nur nach jedem n-ten Eingang eines Meßwerts eine Berechnung 52 eines neuen Werts der momentanen Krafteinwirkung vorgenommen. Grundsätzlich kann jedoch, falls erforderlich, auch die zweite Berechnung 52 einen Extrapolationsalgorithmus verwenden, wobei die Extrapolationszeitpunkte im einem größeren Abstand als bei der ersten Berechnung 50 gewählt sind.
Gemäß Fig. 3 wird in einer Drehzahlerfassungsstufe 62 aus den Eingangsgrößen Periodendauer T, Motorspannung, Deckelposition x sowie Motortemperatur gemäß den obigen Formeln (1) und (2) mit der ersten (höheren) Abtastrate, d.h. zu den Meßzeitpunkten [i] und den Extrapolationszeitpunkten [k], die aktuelle Drehzahländerung ΔN* bzw. die aktuelle Drehzahl N* (diese ergibt sich aus N*[k] = 1/T*[k] - Vu(Um[k]) - Vr(x[k]; statt [k] kann auch [i] stehen) bestimmt. Ferner wird die Motortemperatur bei der Drehzahlbestimmung bei der Umrechnung von Drehzahländerung in Kraftänderung gemäß Formel (3) berücksichtigt. Die erste Abtastrate ist so gewählt, daß sie für die Erfassung von Einklemmfällen mit den höchsten zu erwartenden Systemsteifigkeiten optimal ist. Die Drehzahlerfassungsstufe 62 wird von der ersten Berechnung 50 und der zweiten Berechnung 52 gemeinsam verwendet. In der ersten Berechnung 50 wird aus der Drehzahländerung ΔN* mittels der Formel (3) in der oben beschriebenen Weise unter Verwendung eines ersten Werts für die festgesetzte Untergrenze, eines ersten Werts für die festgesetzte Obergrenze sowie eines ersten Werts für den Schwellwert Fmax zu den durch die erste Abtastrate festgelegten Zeitpunkten, d.h. den Extrapolationszeitpunkten [k], festgestellt, ob die momentane Krafteinwirkung diesen ersten Schwellwert Fmax überschreitet. Die Werte dieses ersten Parametersatzes sind für die Erfassung von Einklemmfällen mit der größten zu erwartenden Systemsteifigkeit optimiert.
In der zweiten Berechnung 52 wird die Abtastrate so gewählt, daß sie für die Erfassung von Einklemmfällen mit den niedrigsten zu erwartenden Systemsteifigkeiten optimal ist. Diese zweite Abtastrate kann z.B. so gewählt werden, daß nur jeder vierte Meßwert der Periodendauer T berücksichtigt werden soll. In diesem Fall wird die zweite Berechnung nur bei jedem vierten Signaleingang von den Hall-Sensoren 20, 22 durchgeführt, d.h. es wird nur jede vierte von der Stufe 62 ermittelte Drehzahl N[i], die auf eine gemessene Periodendauer T zurückgeht in der in Fig. 4 mit 66 angedeuteten Abtaststufe berücksichtigt. Die aus extrapolierten Periodendauern T* ermittelten Drehzahlen N*[k] werden natürlich ohnehin nicht berücksichtigt. Die zweite Berechnung 52 wird also nur zu jedem vierten Zeitpunkt [i] ausgeführt.
Zunächst wird dabei die Drehzahländerung ΔN[i] gegenüber dem letzten Meßwert bestimmt. Dann wird in analoger Weise mittels der Formel (3) unter Verwendung eines zweiten Werts für die festgesetzte Untergrenze, eines zweiten Werts für die festgesetzte Obergrenze sowie eines zweiten Werts für den Schwellwert Fmax festgestellt, ob die momentane Krafteinwirkung diesen zweiten Schwellwert Fmax überschreitet. Die Werte dieses zweiten Parametersatzes sind für die Erfassung von Einklemmfällen mit der kleinsten zu erwartenden Systemsteifigkeit optimiert.
Für die Entscheidung, ob ein Einklemmfall vorliegt, d.h. der Motor abgeschaltet bzw. reversiert werden soll, werden die Ergebnisse der ersten und der zweiten Berechnung in einer Logikstufe 64 miteinander logisch verküpft. Im einfachsten Fall ist das eine ODER- Verknüpfung. In diesem Fall wird also der Motor abgeschaltet bzw. reversiert, wenn eine der beiden Berechnungen einen Einklemmfall erfaßt hat. Die Entscheidung wird zu jedem Zeitpunkt, zu dem die erste Berechnung 50 ein neues Ergebnis liefert, vorgenommen. Da wesentlich seltener neue Ergebnisse der zweiten Berechnung 52 vorliegen, wird immer das letzte Ergebnis der zweiten Berechnung 52 der Logikstufe 64 zugeführt.
Durch die Verknüpfung der Ergebnisse der beiden Berechnungen 52, 54 können sowohl schnelle als auch langsame Krafteinwirkungsänderungen optimal erfaßt werden.
Bezugszeichenliste
Elektromotor 10
Welle 12
Ritzel 14
Antriebskabel 16
Magnetrad 18
Hall-Sensoren 20, 22
Steuereinheit 24
Relais 26, 28
Umschalter 30, 32
Transistor 34
Mikroprozessor 36
Speicher 38
Zähler 40 erste Berechnung 50 zweite Berechnung 52
Deckel 54
Einklemmkörper 56
Position in Dachmitte 58
Position im Dachrandbereich 60
Drehzahlerfassungsstufe 62
Logikstufe 64
Abtastungsstufe 66

Claims

Ansprüche
Verfahren zum Verstellen eines Fahrzeugteils (54) zwischen mindestens zwei Stellungen, wobei das Fahrzeugteil (54) von einem Elektromotor (10) angetrieben wird, wobei ferner ein Pulssignal proportional zur Drehbewegung des des Elektromotors (10) erzeugt und einer Steuereinheit (24) zum Steuern des Elektromotors (10) zugeführt wird, wobei der Zeitpunkt ([i]) des Eingangs eines jeden Signals an der Steuereinheit (24) erfaßt und zwischen zwei solchen Eingangszeitpunkten zu bestimmten Extrapolationszeitpunkten ([k]) aus mindestens einem Teil dieser gemessenen Zeitpunkte die aktuelle Krafteinwirkung auf das Fahrzeugteil (54) abgeschätzt wird und wobei schließlich dieser Schätzwert als ein Kriterium bei der Entscheidung verwendet wird, ob der Elektromotor (10) abgeschaltet bzw. reversiert wird oder nicht.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Extrapolationszeitpunkte ([k]) einen festen zeitlichen Abstand aufweisen.
Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß jeweils bei Eingang eines neuen Pulssignals aus der Differenz zu mindestens einem früheren Pulssignalmeßwert ein Meßwert der aktuellen Periodendauer (T[i]) der Motordrehung bestimmt wird, wobei zu jedem Extrapolationszeitpunkt ([k]) ein Schätzwert der aktuellen Periodendauer (T*[k]) unter Berücksichtigung mindestens einer vorangegangenen gemessenen Periodendauer (T[i-1], T[i-2], T[i-3]) ermittelt wird, wobei ferner aus den abgeschätzten Periodendauern eine abgeschätzte aktuelle Drehzahländerung (ΔN*[k]) bestimmt und aus den abgeschätzten Drehzahländerungen der Schätzwert der aktuellen Krafteinwirkung auf das Fahrzeugteil (54) bestimmt wird.
Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß sich die abgeschätzte Drehzahländerung (ΔN*[k]) aus der Differenz der für einen Extrapolationszeitpunkt abgeschätzten Periodendauer (T*[k]) und der für den vorhergehenden Extrapolationszeitpunkt abgeschätzten Periodendauer (T*[k-1]) ergibt, wobei sich die für jeden Extrapolationszeitpunkt abgeschätzte Periodendauer ergibt als Summe aus der letzten gemessenen Periodendauer (T[i]) und der mit Parametern (al, a2, a3) gewichteten Summe aus mehreren vor der letzten gemessenen Periodendauer gemessenen Periodendauern (T[i-1], T[i-2], T[i-3]), wobei letztere Summe mit der seit der letzten Messung vergangenen Zeit ([k]) multipliziert ist.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Parameter (al, a2, a3) entsprechend den Federsteifigkeiten, Dämpfungen und Reibungen des Verstellsystems gewählt sind.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Parameter (al, a2, a3) so gewählt sind, daß sich eine Bandpaß Wirkung der Art ergibt, daß eine Fehlerkennung eines Einklemmfalls aufgrund von Vibrationen vermieden wird.
7. Verfahren nach Anspruch 4 bis 6, dadurch gekennzeichnet, daß in der Summe nur die letzten drei der letzten Messung (T[i]) vor dem Extrapolationszeitpunkt ([k]) vorangegangen Messwerte der Periodendauer (T[i-1], T[i-2], T[i-3]) berücksichtigt werden.
8. Verfahren nach Anspruch 1 bis 7, dadurch gekennzeichnet, daß die Motorspannung erfaßt wird und bei der Abschätzung der Drehzahländerung (ΔN*[kj) ein Motorspannungsfilter (Vu) verwendet wird, welches das dynamische Verhalten des Elektromotors (10) bei Spannungsänderungen nachbildet.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß das Motorspannungsfilter (Vu) als Tiefpaß ausgebildet ist, dessen Zeitkonstante gleich der Motorzeitkonstante ist.
10. Verfahren nach Anspruch 1 bis 9, dadurch gekennzeichnet, daß die Stellung (x) des Fahrzeugteils (54) bestimmt wird und bei der Abschätzung der Drehzahländerung (ΔN*[k]) ein Wegprofilfilter (Vr) verwendet wird, welches die Reibungskräfte in dem Antrieb für das Fahrzeugteil in Abhängigkeit von der Stellung (x[k]) des Fahrzeugteils (54) nachbildet.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß das Wegpro filfilter (Vr) durch einen Lernlauf nach Einbau der Antriebsvorrichtung in ein Fahrzeug automatisch ermittelt wird.
12. Verfahren nach wenigstens einem der Ansprüche 3 bis 11, dadurch gekennzeichnet, daß die Krafteinwirkung auf das Fahrzeugteil (54) dadurch ermittelt wird, daß jede abgeschätzte Drehzahländerung (ΔN*[k]) mit einem Proportionalitätsfaktor (Vf) multipliziert wird und die so erhaltenen Werte aufsummiert werden, sobald die abgeschätzte Drehzahländerung einen unteren Schwellwert übersteigt.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß, wenn die abgeschätzte Drehzahländerung (ΔN*[k]) einen oberen Schwellwert übersteigt, statt der abgeschätzten Drehzahländerung nur der obere Schwellwert in die Summation eingeht.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß der obere Schwellwert variabel ist.
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß der obere Schwellwert in Abhängigkeit von mindestens einem Teil der ermittelten Drehzahländerungswerte (ΔN*[k]) gewählt ist.
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, daß der obere Schwellwert in Abhängigkeit von dem letzten ermittelten Drehzahländerungswert (ΔN*[kj) gewählt ist.
17. Verfahren nach Anspruch 12 bis 16, dadurch gekennzeichnet, daß der Proportionalitätsfaktor (Vf) in Abhängigkeit von der Motorkennlinie gewählt ist.
18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, daß die Motorkennlinie vor Inbetriebnahme ohne Koppelung zum angetriebenen Fahrzeugteil (54) für mindestens eine Motorspannung ermittelt wird.
19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß die Motorkennlinie dadurch ermittelt wird, daß bei fester Motorspannung zwei Wertepaare von Drehzahl und Drehmoment gemessen werden.
20. Verfahren nach Anspruch 12 bis 19, dadurch gekennzeichnet, daß der Proportionalitätsfaktor (Vf) in Abhängigkeit von der Motortemperatur gewählt ist.
21. Verfahren nach Anspruch 20, dadurch gekennzeichnet, daß die Motortemperatur dadurch abgeschätzt wird, daß die Umgebungstemperatur und die Betriebsdauer des Elektromotors (10) erfaßt wird.
22. Verfahren nach Anspruch 1 bis 21, dadurch gekennzeichnet, daß der Motor (10) von der Steuerungseinheit (24) abgeschaltet oder reversiert wird, sobald der Schätzwert der aktuellen Krafteinwirkung einen vorbestimmten Auslöseschwellwert (Fmax) übersteigt.
23. Verfahren nach Anspruch 1 bis 22, dadurch gekennzeichnet, daß parallel zu der Ermittlung des Schätzwerts der aktuellen Krafteinwirkung in mindestens einer zweiten unabhängigen Berechnung (52) aus den erfaßten Pulssignalen zu bestimmten zweiten Zeitpunkten ein zweiter Wert für die aktuelle Krafteinwirkung auf das Fahrzeugteil (54) bestimmt wird, wobei der zweite Wert als ein zusätzliches Kriterium bei der Entscheidung verwendet wird, ob der Elektromotor (10) abgeschaltet bzw. reversiert wird oder nicht.
24. Verfahren nach Anspruch 23, dadurch gekennzeichnet, daß ermittelt wird, ob der Schätzwert der aktuellen Krafteinwirkung einen vorgegebenen ersten Auslöseschwellwert (Fmax) übersteigt bzw. ob der aus der zweiten Berechnung (52) ermittelte zweite Wert für die Krafteinwirkung einen vorgegebenen zweiten Auslöseschwellwert übersteigt.
25. Verfahren nach Anspruch 24, dadurch gekennzeichnet, daß die Ergebnisse der beiden Vergleiche in einer ODER-Verknüpfung (64) verknüpft werden.
26. Verfahren nach Anspruch 23 bis 25, dadurch gekennzeichnet, daß die zweite Berechnung (52) für die Erkennung langsamer Krafteinwirkungsänderungen optimiert ist.
27. Verfahren nach Anspruch 26, dadurch gekennzeichnet, daß bei der zweiten Berechnung (52) kein Extrapolation stattfindet, sondern maximal nur nach Eingang eines neuen Pulssignals ein neuer Wert der Krafteinwirkung berechnet wird.
28. Verfahren nach Anspruch 27, dadurch gekennzeichnet, daß bei der zweiten Berechnung (52) nur nach jedem n-ten Eingang eines Pulssignals ein neuer Wert der Krafteinwirkung berechnet wird.
29. Verfahren nach Anspruch 1 bis 28, dadurch gekennzeichnet, daß das Fahrzeugteil der Deckel (54) oder ein Deckelteil eines öffnungsfähigen Fahrzeugdaches ist.
30. Antriebsvorrichtung für ein zwischen mindestens zwei Stellungen bewegliches Fahrzeugteil (54), mit einem Elektromotor (10) zum Antreiben des Fahrzeugteils (54) und einer Einrichtung (18, 20, 22) zum Erzeugen eines Pulssignal entsprechend der Drehbewegung des Motors, das einer Steuereinheit (24) zum Steuern des Elektromotors (10) zugeführt wird, wobei die Steuereinheit (24) so ausgebildet ist, daß der Zeitpunkt ([i]) des Eingangs eines jeden Signals an der Steuereinheit (24) erfaßt wird und zwischen zwei solchen Eingangszeitpunkten zu bestimmten Extrapolatioπ^zeitpunkten ([k]) aus mindestens einem Teil dieser gemessenen Zeitpunkte die aktuelle Krafteinwirkung auf das Fahrzeugteil (54) abgeschätzt wird, die als ein Kriterium bei der Entscheidung verwendet wird, ob der Elektromotor abgeschaltet bzw. reversiert wird oder nicht.
31. Antriebsvorrichtung nach Anspruch 30, dadurch gekennzeichnet, daß die Steuereinheit (24) zum Ausführen des Verfahrens nach einem der Ansprüche 2 bis 29 ausgebildet ist.
32. Antriebsvorrichtung nach Anspruch 30 oder 31, dadurch gekennzeichnet, daß die Pulssignalerzeugungseinrichtung (18, 20, 22) ein auf einer Welle (12) des Elektromotors (10) angebrachtes Magnetrad (18) mit einem radialen Nordpol und Südpol und zwei in Umfangsrichtung um etwa 90 Grad versetzte Hallsensoren (20, 22) umfaßt, die um das Magnetrad (18) herum angeordnet sind.
33. Antriebsvorrichtung nach Anspruch 32, dadurch gekennzeichnet, daß die Steuereinheit (24) so ausgebildet ist, daß die gemessenen Periodendauern jeweils aus der Zeitdifferenz der beiden letzten Signale des Sensors (20, 22) ermittelt werden, der das letzte Signal lieferte.
PCT/EP1999/006511 1998-09-03 1999-09-03 Antriebsvorrichtung und verfahren zum verstellen eines fahrzeugteils WO2000014846A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/786,391 US6605911B1 (en) 1998-09-03 1999-09-03 Drive device and method for moving a vehicle part
EP99944601A EP1110289A1 (de) 1998-09-03 1999-09-03 Antriebsvorrichtung und verfahren zum verstellen eines fahrzeugteils
JP2000569483A JP4370609B2 (ja) 1998-09-03 1999-09-03 車両部品を調節するための駆動装置と方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19840163A DE19840163A1 (de) 1998-09-03 1998-09-03 Antriebsvorrichtung und Verfahren zum Verstellen eines Fahrzeugteils
DE19840163.9 1998-09-03

Publications (1)

Publication Number Publication Date
WO2000014846A1 true WO2000014846A1 (de) 2000-03-16

Family

ID=7879679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/006511 WO2000014846A1 (de) 1998-09-03 1999-09-03 Antriebsvorrichtung und verfahren zum verstellen eines fahrzeugteils

Country Status (6)

Country Link
US (1) US6605911B1 (de)
EP (1) EP1110289A1 (de)
JP (1) JP4370609B2 (de)
KR (1) KR100723318B1 (de)
DE (1) DE19840163A1 (de)
WO (1) WO2000014846A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9030144B2 (en) 1992-04-22 2015-05-12 Uusi, Llc Monitoring system
CN111630743A (zh) * 2018-01-18 2020-09-04 韦巴斯托股份公司 用于配置卡夹检测***的装置和方法

Families Citing this family (413)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19840164A1 (de) * 1998-09-03 2000-03-16 Webasto Karosseriesysteme Antriebsvorrichtung und Verfahren zum Verstellen eines Fahrzeugteils
DE10034014B4 (de) * 2000-07-13 2006-12-28 Conti Temic Microelectronic Gmbh Verfahren zum Betrieb einer elektrischen Antriebseinheit
DE10064702C2 (de) 2000-12-22 2003-02-27 Webasto Vehicle Sys Int Gmbh Öffnungsfähiges Fahrzeugdach und Verfahren zum Betreiben desselben
DE10232413A1 (de) 2002-07-17 2004-02-19 Webasto Vehicle Systems International Gmbh Verfahren und Vorrichtung zum Verstellen eines bewegbaren Fahrzeugteils
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US7109676B2 (en) * 2003-11-24 2006-09-19 Valeo Electrical Systems, Inc. Control for electric motor in vehicles
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US11998198B2 (en) 2004-07-28 2024-06-04 Cilag Gmbh International Surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
JP4896471B2 (ja) * 2005-09-08 2012-03-14 アスモ株式会社 開閉部材制御装置および挟み込み検出方法
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US20110295295A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument having recording capabilities
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
DE202006013422U1 (de) * 2006-08-31 2008-01-03 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Coburg Steuervorrichtung zum Ansteuern eines mit Hilfe eines Elektromotors betätigbaren Verstellmechanismus in einem Kraftfahrzeug
US7794475B2 (en) 2006-09-29 2010-09-14 Ethicon Endo-Surgery, Inc. Surgical staples having compressible or crushable members for securing tissue therein and stapling instruments for deploying the same
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US11980366B2 (en) 2006-10-03 2024-05-14 Cilag Gmbh International Surgical instrument
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US8632535B2 (en) 2007-01-10 2014-01-21 Ethicon Endo-Surgery, Inc. Interlock and surgical instrument including same
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8701958B2 (en) 2007-01-11 2014-04-22 Ethicon Endo-Surgery, Inc. Curved end effector for a surgical stapling device
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US7735703B2 (en) 2007-03-15 2010-06-15 Ethicon Endo-Surgery, Inc. Re-loadable surgical stapling instrument
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US11672531B2 (en) 2007-06-04 2023-06-13 Cilag Gmbh International Rotary drive systems for surgical instruments
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
RU2493788C2 (ru) 2008-02-14 2013-09-27 Этикон Эндо-Серджери, Инк. Хирургический режущий и крепежный инструмент, имеющий радиочастотные электроды
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US11986183B2 (en) 2008-02-14 2024-05-21 Cilag Gmbh International Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US20130153641A1 (en) 2008-02-15 2013-06-20 Ethicon Endo-Surgery, Inc. Releasable layer of material and surgical end effector having the same
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
CA2751664A1 (en) 2009-02-06 2010-08-12 Ethicon Endo-Surgery, Inc. Driven surgical stapler improvements
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US8978954B2 (en) 2010-09-30 2015-03-17 Ethicon Endo-Surgery, Inc. Staple cartridge comprising an adjustable distal portion
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US9211120B2 (en) 2011-04-29 2015-12-15 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of medicaments
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9861361B2 (en) 2010-09-30 2018-01-09 Ethicon Llc Releasable tissue thickness compensator and fastener cartridge having the same
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
CA2834649C (en) 2011-04-29 2021-02-16 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
MX353040B (es) 2012-03-28 2017-12-18 Ethicon Endo Surgery Inc Unidad retenedora que incluye un compensador de grosor de tejido.
RU2014143258A (ru) 2012-03-28 2016-05-20 Этикон Эндо-Серджери, Инк. Компенсатор толщины ткани, содержащий множество слоев
RU2639857C2 (ru) 2012-03-28 2017-12-22 Этикон Эндо-Серджери, Инк. Компенсатор толщины ткани, содержащий капсулу для среды с низким давлением
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
BR112014032776B1 (pt) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc Sistema de instrumento cirúrgico e kit cirúrgico para uso com um sistema de instrumento cirúrgico
US20140005718A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Multi-functional powered surgical device with external dissection features
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
US11197671B2 (en) 2012-06-28 2021-12-14 Cilag Gmbh International Stapling assembly comprising a lockout
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
EP2866686A1 (de) 2012-06-28 2015-05-06 Ethicon Endo-Surgery, Inc. Sperrvorrichtung für leeres klammermagazin
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
KR101360049B1 (ko) 2012-07-02 2014-02-10 현대자동차주식회사 팁 인/아웃 토크 필터 학습장치 및 방법
RU2669463C2 (ru) 2013-03-01 2018-10-11 Этикон Эндо-Серджери, Инк. Хирургический инструмент с мягким упором
RU2672520C2 (ru) 2013-03-01 2018-11-15 Этикон Эндо-Серджери, Инк. Шарнирно поворачиваемые хирургические инструменты с проводящими путями для передачи сигналов
US9629623B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgery, Llc Drive system lockout arrangements for modular surgical instruments
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9867612B2 (en) 2013-04-16 2018-01-16 Ethicon Llc Powered surgical stapler
BR112015026109B1 (pt) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc Instrumento cirúrgico
MX369362B (es) 2013-08-23 2019-11-06 Ethicon Endo Surgery Llc Dispositivos de retraccion de miembros de disparo para instrumentos quirurgicos electricos.
US9808249B2 (en) 2013-08-23 2017-11-07 Ethicon Llc Attachment portions for surgical instrument assemblies
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
JP6462004B2 (ja) 2014-02-24 2019-01-30 エシコン エルエルシー 発射部材ロックアウトを備える締結システム
BR112016021943B1 (pt) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc Instrumento cirúrgico para uso por um operador em um procedimento cirúrgico
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US9804618B2 (en) 2014-03-26 2017-10-31 Ethicon Llc Systems and methods for controlling a segmented circuit
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
JP6636452B2 (ja) 2014-04-16 2020-01-29 エシコン エルエルシーEthicon LLC 異なる構成を有する延在部を含む締結具カートリッジ
JP6612256B2 (ja) 2014-04-16 2019-11-27 エシコン エルエルシー 不均一な締結具を備える締結具カートリッジ
CN106456159B (zh) 2014-04-16 2019-03-08 伊西康内外科有限责任公司 紧固件仓组件和钉保持器盖布置结构
US20150297223A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
US10542988B2 (en) 2014-04-16 2020-01-28 Ethicon Llc End effector comprising an anvil including projections extending therefrom
US10016199B2 (en) 2014-09-05 2018-07-10 Ethicon Llc Polarity of hall magnet to identify cartridge type
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
BR112017004361B1 (pt) 2014-09-05 2023-04-11 Ethicon Llc Sistema eletrônico para um instrumento cirúrgico
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
MX2017003960A (es) 2014-09-26 2017-12-04 Ethicon Llc Refuerzos de grapas quirúrgicas y materiales auxiliares.
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
RU2703684C2 (ru) 2014-12-18 2019-10-21 ЭТИКОН ЭНДО-СЕРДЖЕРИ, ЭлЭлСи Хирургический инструмент с упором, который выполнен с возможностью избирательного перемещения относительно кассеты со скобами вокруг дискретной неподвижной оси
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9968355B2 (en) 2014-12-18 2018-05-15 Ethicon Llc Surgical instruments with articulatable end effectors and improved firing beam support arrangements
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10245028B2 (en) 2015-02-27 2019-04-02 Ethicon Llc Power adapter for a surgical instrument
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
JP2020121162A (ja) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC 測定の安定性要素、クリープ要素、及び粘弾性要素を決定するためのセンサデータの時間依存性評価
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
JP6500566B2 (ja) * 2015-04-01 2019-04-17 アイシン精機株式会社 車両駆動用モータの制御システム
US10835249B2 (en) 2015-08-17 2020-11-17 Ethicon Llc Implantable layers for a surgical instrument
US10363036B2 (en) * 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10327769B2 (en) * 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10603039B2 (en) 2015-09-30 2020-03-31 Ethicon Llc Progressively releasable implantable adjunct for use with a surgical stapling instrument
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
KR101774666B1 (ko) 2015-12-03 2017-09-04 현대자동차주식회사 세이프티 파워 윈도우 시스템 및 그 동작 방법
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10413291B2 (en) 2016-02-09 2019-09-17 Ethicon Llc Surgical instrument articulation mechanism with slotted secondary constraint
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
BR112018016098B1 (pt) 2016-02-09 2023-02-23 Ethicon Llc Instrumento cirúrgico
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10376263B2 (en) 2016-04-01 2019-08-13 Ethicon Llc Anvil modification members for surgical staplers
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10363037B2 (en) 2016-04-18 2019-07-30 Ethicon Llc Surgical instrument system comprising a magnetic lockout
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US10835246B2 (en) 2016-12-21 2020-11-17 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10888322B2 (en) 2016-12-21 2021-01-12 Ethicon Llc Surgical instrument comprising a cutting member
CN110099619B (zh) 2016-12-21 2022-07-15 爱惜康有限责任公司 用于外科端部执行器和可替换工具组件的闭锁装置
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10758230B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument with primary and safety processors
US10542982B2 (en) 2016-12-21 2020-01-28 Ethicon Llc Shaft assembly comprising first and second articulation lockouts
US20180168598A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Staple forming pocket arrangements comprising zoned forming surface grooves
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
JP7010956B2 (ja) 2016-12-21 2022-01-26 エシコン エルエルシー 組織をステープル留めする方法
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
US20180168618A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling systems
US11090048B2 (en) 2016-12-21 2021-08-17 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US20180168609A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Firing assembly comprising a fuse
US10736629B2 (en) 2016-12-21 2020-08-11 Ethicon Llc Surgical tool assemblies with clutching arrangements for shifting between closure systems with closure stroke reduction features and articulation and firing systems
JP7086963B2 (ja) 2016-12-21 2022-06-20 エシコン エルエルシー エンドエフェクタロックアウト及び発射アセンブリロックアウトを備える外科用器具システム
CN110087565A (zh) 2016-12-21 2019-08-02 爱惜康有限责任公司 外科缝合***
US10568624B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US10631859B2 (en) 2017-06-27 2020-04-28 Ethicon Llc Articulation systems for surgical instruments
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
EP3420947B1 (de) 2017-06-28 2022-05-25 Cilag GmbH International Chirurgisches instrument mit selektiv betätigbaren drehbaren kupplern
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US11678880B2 (en) 2017-06-28 2023-06-20 Cilag Gmbh International Surgical instrument comprising a shaft including a housing arrangement
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US10786253B2 (en) 2017-06-28 2020-09-29 Ethicon Llc Surgical end effectors with improved jaw aperture arrangements
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11974742B2 (en) 2017-08-03 2024-05-07 Cilag Gmbh International Surgical system comprising an articulation bailout
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US11364027B2 (en) 2017-12-21 2022-06-21 Cilag Gmbh International Surgical instrument comprising speed control
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11350938B2 (en) 2019-06-28 2022-06-07 Cilag Gmbh International Surgical instrument comprising an aligned rfid sensor
US12004740B2 (en) 2019-06-28 2024-06-11 Cilag Gmbh International Surgical stapling system having an information decryption protocol
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
KR20210059348A (ko) 2019-11-15 2021-05-25 현대트랜시스 주식회사 안티 핀치 제어 시스템
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
US11660090B2 (en) 2020-07-28 2023-05-30 Cllag GmbH International Surgical instruments with segmented flexible drive arrangements
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11980362B2 (en) 2021-02-26 2024-05-14 Cilag Gmbh International Surgical instrument system comprising a power transfer coil
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11918217B2 (en) 2021-05-28 2024-03-05 Cilag Gmbh International Stapling instrument comprising a staple cartridge insertion stop
DE102021205534A1 (de) 2021-05-31 2022-12-01 Thyssenkrupp Ag Lenksäule mit Elektromotor und Sensoreinrichtung
US11957337B2 (en) 2021-10-18 2024-04-16 Cilag Gmbh International Surgical stapling assembly with offset ramped drive surfaces
US11980363B2 (en) 2021-10-18 2024-05-14 Cilag Gmbh International Row-to-row staple array variations
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments
DE102022209630A1 (de) 2022-09-14 2024-03-14 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren und Vorrichtung zum Bereitstellen eines Drehzahlsignals für bürstenkommutierte Elektromotoren

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2926938A1 (de) 1979-07-04 1981-01-22 Rau Swf Autozubehoer Schaltanordnung zum antrieb eines beweglichen elementes, insbesondere zum antrieb von scheiben o.dgl. in kraftfahrzeugen
WO1992020891A1 (en) * 1991-05-14 1992-11-26 Volex Group Plc A motor reverse system
DE4312865A1 (de) 1992-04-21 1993-11-18 Koito Mfg Co Ltd Energiebetriebenes Fenster mit einer verbesserten Sicherheitseinrichtung
DE4321264A1 (de) 1992-06-26 1994-01-05 Koito Mfg Co Ltd Motorfenstervorrichtung mit Sicherheitseinrichtung
DE19511581A1 (de) 1994-03-31 1995-10-05 Ohi Seisakusho Co Ltd Antriebssteuerungsvorrichtung für ein Öffnungs/Schließelement
DE19514954A1 (de) 1994-06-06 1995-12-07 Ford Motor Co Vorrichtung und Verfahren zum Steuern von vorzugsweise Fahrzeugfenstern
DE19618219A1 (de) 1996-05-07 1997-11-13 Bosch Gmbh Robert Vorrichtung zur elektronischen Überwachung eines Verstellantriebs
DE19637631A1 (de) * 1996-09-16 1998-04-02 Bosch Gmbh Robert Anordnung zur Erkennung von Einklemmsituationen bei elektrischen Antrieben

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4000730A1 (de) 1990-01-12 1991-08-01 Bosch Gmbh Robert Verfahren und vorrichtung zum betreiben von fremdkraftbetaetigten teilen mit einklemmgefahr
DE4109867C2 (de) 1991-03-26 1996-05-30 Bosch Gmbh Robert Schutzeinrichtung für Elektromotoren
DE4234501C2 (de) 1992-10-13 1995-12-07 Tuerautomation Fehraltorf Ag F Steuerungsverfahren zur Begrenzung der Antriebskraft eines Türantriebs oder dergleichen, insbesondere Drehflügelantriebs, sowie eine zugehörige Sicherheitsschaltung
US5610484A (en) * 1995-05-04 1997-03-11 Itt Automotive Electrical Systems, Inc. Auto reverse power closure system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2926938A1 (de) 1979-07-04 1981-01-22 Rau Swf Autozubehoer Schaltanordnung zum antrieb eines beweglichen elementes, insbesondere zum antrieb von scheiben o.dgl. in kraftfahrzeugen
WO1992020891A1 (en) * 1991-05-14 1992-11-26 Volex Group Plc A motor reverse system
DE4312865A1 (de) 1992-04-21 1993-11-18 Koito Mfg Co Ltd Energiebetriebenes Fenster mit einer verbesserten Sicherheitseinrichtung
DE4321264A1 (de) 1992-06-26 1994-01-05 Koito Mfg Co Ltd Motorfenstervorrichtung mit Sicherheitseinrichtung
DE19511581A1 (de) 1994-03-31 1995-10-05 Ohi Seisakusho Co Ltd Antriebssteuerungsvorrichtung für ein Öffnungs/Schließelement
DE19514954A1 (de) 1994-06-06 1995-12-07 Ford Motor Co Vorrichtung und Verfahren zum Steuern von vorzugsweise Fahrzeugfenstern
DE19618219A1 (de) 1996-05-07 1997-11-13 Bosch Gmbh Robert Vorrichtung zur elektronischen Überwachung eines Verstellantriebs
DE19637631A1 (de) * 1996-09-16 1998-04-02 Bosch Gmbh Robert Anordnung zur Erkennung von Einklemmsituationen bei elektrischen Antrieben

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9030144B2 (en) 1992-04-22 2015-05-12 Uusi, Llc Monitoring system
CN111630743A (zh) * 2018-01-18 2020-09-04 韦巴斯托股份公司 用于配置卡夹检测***的装置和方法
US11879284B2 (en) 2018-01-18 2024-01-23 Webasto SE Device and method for configuring a clamping detection system

Also Published As

Publication number Publication date
KR20010090721A (ko) 2001-10-19
KR100723318B1 (ko) 2007-05-31
EP1110289A1 (de) 2001-06-27
JP2002525017A (ja) 2002-08-06
JP4370609B2 (ja) 2009-11-25
DE19840163A1 (de) 2000-03-16
US6605911B1 (en) 2003-08-12

Similar Documents

Publication Publication Date Title
EP1110289A1 (de) Antriebsvorrichtung und verfahren zum verstellen eines fahrzeugteils
EP1110288B1 (de) Antriebsvorrichtung und verfahren zum verstellen eines fahrzeugteils
DE10051379B4 (de) Sicherheitseinrichtung für eine Fensterhebeanlage
EP0865137B1 (de) Verfahren zur Steuerung des Schliessvorgangs von Schliessvorrichtungen mit mindestens einem elektromotorisch bewegten Teil
WO2000014845A1 (de) Antriebsvorrichtung und verfahren zum verstellen eines fahrzeugteils
EP1552973B1 (de) Steuerungsvorrichtung einer Verstelleinrichtung eines Kraftfahrzeugs, insbesondere eines Kraftfahrzeugsfensterhebers
EP0899847B1 (de) Verfahren zur Erkennung der Position und der Bewegungsrichtung eines bewegbar gelagerten Teils an einem elektrischen Motor
EP1133612B1 (de) Verfahren zum begrenzen der schliesskraft von beweglichen teilen
EP1332538B1 (de) Verfahren zum steuern eines verstellvorgangs eines teils
DE19804175A1 (de) Vorrichtung und Verfahren zur Feststellung des Vorhandenseins oder der Abwesenheit eines Fremdkörpers oder dergleichen, der in einem motorbetriebenen Öffnungs/Schließmechanismus gefangen ist
EP0910883B1 (de) Verfahren zur steuerung des schliessvorgangs von schliessvorrichtungen mit mindestens einem elektromotorisch bewegten teil
WO1991010800A1 (de) Verfahren und vorrichtung zum betreiben von fremdkraftbetätigten teilen mit einklemmgefahr
EP0771923A2 (de) Überwachung der Bewegung eines antreibbaren, ein- oder mehrteiligen Tür- oder Torblattes
WO2000014844A1 (de) Antriebsvorrichtung und verfahren zum verstellen eines fahrzeugteils
DE102009035449B3 (de) Verfahren und Vorrichtung zur zeitgesteuerten Einklemmerkennung
WO2018019601A1 (de) VERFAHREN UND VORRICHTUNG ZUR ERKENNUNG EINER EINKLEMMUNG UND/ODER SCHLIEßKRAFTBEGRENZUNG EINES DURCH EINEN ELEKTRISCHEN MOTOR BEWEGBAREN TEILS
DE10082534B4 (de) Verfahren zur Regelung einer elektromotorisch angetriebenen Verstelleinrichtung für Fahrzeuge, zum Beispiel für Fensterheber sowie Vorrichtung zur Durchführung des Verfahrens
EP0927447B1 (de) Stellantrieb, insbesondere elektromotor-getriebe-antrieb, zur bewegung von fremdkraftbetätigten schliessteilen
EP1745337B1 (de) Verfahren und schaltungsanordnung zur elektrischen steuerung und/oder regelung der bewegung eines elektrisch betriebenen aggregats
EP1771929B1 (de) Verfahren und vorrichtung zur erkennung von einklemmsituationen bei verstellantrieben in kraftfahrzeugen
DE102010012058A1 (de) Verfahren zur Steuerung des Schließvorgangs von Schließvorrichtungen mit einem elektromotorisch angetriebenen, bewegten Element
DE102012016302A1 (de) Einklemmschutzverfahren
DE202011110184U1 (de) Einklemmschutz
DE102004004198A1 (de) Verfahren zur Auswertung von Drehzahl- und Drehlageinformation eines DC-Motors

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 569483

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020017002845

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1999944601

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09786391

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999944601

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017002845

Country of ref document: KR