WO1999066300A1 - Procede et appareil permettant de tester l'etancheite a l'air d'un espace clos equipe d'un dispositif de commande du mouvement de la vapeur - Google Patents

Procede et appareil permettant de tester l'etancheite a l'air d'un espace clos equipe d'un dispositif de commande du mouvement de la vapeur Download PDF

Info

Publication number
WO1999066300A1
WO1999066300A1 PCT/JP1998/002683 JP9802683W WO9966300A1 WO 1999066300 A1 WO1999066300 A1 WO 1999066300A1 JP 9802683 W JP9802683 W JP 9802683W WO 9966300 A1 WO9966300 A1 WO 9966300A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
airtightness
water vapor
pressure
pressure value
Prior art date
Application number
PCT/JP1998/002683
Other languages
English (en)
French (fr)
Inventor
Kunitaka Mizobe
Original Assignee
Kunitaka Mizobe
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunitaka Mizobe filed Critical Kunitaka Mizobe
Priority to US09/720,043 priority Critical patent/US6494082B1/en
Priority to DE19883003T priority patent/DE19883003T1/de
Priority to PCT/JP1998/002683 priority patent/WO1999066300A1/ja
Priority to GB0029646A priority patent/GB2354591B/en
Priority to CA002335424A priority patent/CA2335424A1/en
Priority to JP2000555069A priority patent/JP3462854B2/ja
Publication of WO1999066300A1 publication Critical patent/WO1999066300A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/32Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators
    • G01M3/3236Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators by monitoring the interior space of the containers

Definitions

  • the present invention relates to an airtightness inspection method and an airtightness inspection device for an enclosed space provided with a water vapor transfer control device.
  • the present invention provides an airtightness inspection method for an enclosed space equipped with a water vapor transfer control device used as a humidifier, a dehumidifier, a humidity controller, or the like, by controlling the moving direction of water vapor by a special waterproof membrane and its arrangement. And airtightness inspection equipment.
  • the present inventor has already proposed a steam movement control device in Japanese Patent Application Laid-Open No. 5-322620.
  • this water vapor transfer control device one vent is communicated with the inside of a box (closed space), the other vent is open to the atmosphere, and a plurality of small chambers are provided between the two vents.
  • the partition is formed by a waterproof membrane having a property. Then, by using the air permeability and moisture permeability of each waterproof membrane, the movement of water vapor is controlled so as to dehumidify, humidify or regulate the inside of the box by the temperature fluctuation rate of the outside air and the box.
  • the air permeability and moisture permeability of each waterproof membrane the movement of water vapor is controlled so as to dehumidify, humidify or regulate the inside of the box by the temperature fluctuation rate of the outside air and the box.
  • this water vapor transfer control device is attached to a box (closed space), and functions as a water vapor transfer control device on the premise of maintaining the airtightness of this box (closed space). .
  • leaks below the humidity control capability of the steam transfer control device can be covered by the steam control device's own humidity control capability.
  • the present invention has been made in view of such a situation, and provides an airtightness inspection method and an airtightness inspection device for an enclosed space, which can confirm the airtightness of the enclosed space, which is a prerequisite for mounting the water vapor movement control device. It is intended to do so. Disclosure of the invention
  • one of the vents is communicated with the inside of the closed space, and the other vent is opened to the ventilated loca atmosphere, and a plurality of small chambers between the two vents have waterproof and breathable properties.
  • An airtightness inspection method for an enclosed space that is defined by a membrane and has a water vapor movement control device that controls the movement of water vapor between both vents, and is closed from the air supply passage to the enclosed space.
  • While injecting gas at a constant pressure into the space measure the pressure in the exhaust passage from the enclosed space, compare the measured pressure value with the injection pressure value, and if the measured pressure value and the injection pressure value are If the hermeticity of the enclosed space is maintained and the measured pressure value is lower than the injection pressure value, it is determined that the hermeticity of the enclosed space is leaking.
  • the airtightness inspection device corresponding to this airtightness inspection method includes an air supply passage and an exhaust passage communicating with the inside of the closed space, and a gas injection device that supplies gas at a constant pressure is connected to the air supply passage, and the exhaust passage is connected to the exhaust passage. Is a pressure measuring instrument;
  • the airtightness inspection method of the present invention measures the pressure in a test space while injecting a gas of a constant pressure into a test space connected to the inside of the enclosed space through a ventilation path, and measures the measured pressure value.
  • the pressure value is higher than the pressure value before gas injection, the airtightness of the closed space is maintained, and the measured pressure value is different from the pressure value before injection, in case the airtightness of the closed space is leaking Certify The configuration was adopted.
  • An airtightness inspection device corresponding to this airtightness inspection method includes a test space that communicates with the inside of the enclosed space via a ventilation path, a gas injection device that supplies gas at a constant pressure into this test space, and a pressure inside the test space. It was configured to have a pressure gauge to measure the pressure.
  • a closed space connecting member formed by a double pipe including an inner pipe forming an air supply passage and an outer pipe forming an exhaust passage is provided.
  • the inner tube is formed so as to be extendable and contractable, and the inner tube extends from the outer tube opening in the extended state.
  • the steam movement control device may It can perform its function and the leak is not immediately identified as defective.
  • FIG. 1 is an explanatory view showing a first embodiment of an airtightness inspection apparatus according to the present invention
  • FIG. 2 is an external view of the airtightness inspection apparatus
  • FIG. 3 is a box connecting member provided in the airtightness inspection apparatus.
  • 4 to 7 are cross-sectional views each showing an example of an inner tube opening provided in the probe
  • FIG. 8 is another example of a box connecting member. It is sectional drawing.
  • FIG. 9 is an explanatory view showing a second embodiment of the airtightness inspection apparatus according to the present invention
  • 10 is an explanatory view showing a third embodiment of the airtightness inspection apparatus according to the present invention.
  • FIG. 11 is an external view of the airtightness inspection apparatus.
  • FIG. 12 is a partially enlarged cross-sectional view of the hermetic inspection device, and Fig. 13 is provided in this hermetic inspection device.
  • FIG. 5 is a graph showing temperature changes caused by a sheet-shaped heater and a Peltier element.
  • FIG. 14 is an explanatory diagram showing another example of use of the airtightness inspection device, and
  • FIG. 15 is a graph showing the relationship between the water vapor pressure and the temperature.
  • FIG. 1 the airtightness inspection device shown in FIG. 1 will be described. Note that, in the following embodiment, an example in which a box is used as a closed space is shown. In the following embodiments, the same components are designated by the same reference numerals in the drawings.
  • This airtightness inspection device A is intended for inspection on a box 1 as a closed space provided with a water vapor movement control device S.
  • the closed space is assumed to be, besides the box 1, for example, a power cubicle installed on the rooftop of a building, a control box, a switch box, a power distribution box, and a space with a certain closed circuit. .
  • two small chambers 20, 20 are defined between the ventilation holes 21, 21 by three membranes 2, 2, 2, and the two ventilation holes 21, 2 are formed. It controls the movement of water vapor between one.
  • one of the vents 21 is opened to the outside air and the other vent 21 is connected to the inside of the case 1, and the air permeability and the moisture permeability of each of the membranes 2 are used.
  • the movement of water vapor is controlled so as to dehumidify or humidify (humidify) the inside of the housing 1 according to the outside air and the temperature fluctuation speed of the housing 1.
  • the water vapor transfer control device S includes an evening eve that uses only ambient temperature fluctuations as a driving source, and a device that operates with a small amount of power in addition to the ambient temperature fluctuations (for example, a Peltier element-added type, a built-in driving fan type). , A heater built-in type, and a vibration pressure applying type) are used alone or in combination as a drive source. Both types can be applied. In the latter type, water vapor diffuses from the inside of the device, and the anti-humidity phenomenon occurs in the enclosed space where humidity is to be controlled. It is effective to prevent the movement of water vapor in the opposite direction of its intended function, while taking advantage of temperature fluctuations. Further, the mounting position of the water vapor transfer control device S with respect to the case 1 may be any of the upper surface, the lower surface, and the side surface of the case 1, and is appropriately determined according to the situation.
  • the airtightness inspection device A includes an air supply passage 30 and an exhaust passage 31 communicating with the inside of the box 1, and a gas injection device 3 2 for supplying gas at a constant pressure to the air supply passage 30.
  • the exhaust passage 31 is provided with a pressure gauge 33 and a flow meter 42 force.
  • the gas injection device 32 includes an air dryer 35 in which an air suction ⁇ 34 is formed, an air storage tank 36 for storing dry air dried by the air dryer 35, and an air storage tank 36.
  • Pump 37 which sends dry air to the air passage 30 at a constant pressure, and pulsation from the pressure gauge 38, flow meter 39, and diaphragm pump 37 provided in the air passage 30.
  • Reference numeral 41 denotes a battery, which serves as a drive power supply for the air dryer 35 and the diaphragm pump 37.
  • a dehumidifier using a water vapor transfer control device proposed by the present inventors (Japanese Patent Laid-Open No.
  • a cylinder filled with a desiccant such as silica gel is used.
  • a dehumidifier that allows air to pass through can be used. By using both of these dehumidifiers, dry air with extremely low humidity can be obtained.
  • the air supply passage 30 and the exhaust passage 31 are connected to the case 1, and then the air dryer 35 and the diaphragm pump 37 are operated to supply dry air from the air storage tank 36 to the air supply passage 3. Inject into container 1 via 0 at constant pressure. Do not inject dry air in this manner: measure the pressure with the pressure gauge 33 in the exhaust passage 31 and measure the measured pressure value with the injection pressure value indicated by the pressure gauge 38 in the air supply passage 30 Compare with And the measured pressure value is almost equal to the injection pressure value In this case, it can be determined that the airtightness of the housing 1 is maintained, while if the measured pressure value is lower than the injection pressure value, it can be determined that the airtightness of the housing 1 is leaking. it can.
  • the steam transfer control device S may fulfill its function. Yes, the leak is not immediately identified as defective.
  • the pressure of the dry air to be injected into the box 1 should be as small as possible so as not to apply stress to the closed structure of the box 1 and various devices installed inside the box 1.
  • a pressure close to atmospheric pressure for example,
  • the pressure to be used for the inspection of the membrane by JIS-P-811 (19800) is preferably set to a low application pressure of about 0.084 atm.
  • the ventilation ⁇ 21 of the water vapor transfer control device S is covered with a lid, and the vent hole 21 is closed.
  • the membrane 2 of the water vapor movement control device S acts as a resistance and restricts the passage of air. It is not necessary to keep it.
  • the water vapor transfer control device S is originally attached to the case 1 to be inspected, and it is checked whether or not the water vapor transfer control device S has airtightness in a functioning state. Therefore, the inspection is preferably performed without closing the water vapor transfer control device S, as it is.
  • the temperature, humidity, and concentration of the dry air passing through the air supply passage 30 and the air passing through the exhaust passage 31 are measured with a thermometer, a hygrometer, etc. (not shown), respectively.
  • the temperature of the internal space of the container 1 when the temperature is higher than the temperature of the internal space in 2, the injected gas is heated and stretched 11 times, so that the gas is discharged exceeding the pressure at the time of injection.
  • the temperature of the internal space of the container 1 is lower than the temperature of the internal space of the gas injection device 32, the injected gas is cooled and contracts, so that the gas is discharged below the pressure at the time of injection. become.
  • dry air is used as the gas to be injected, it is possible to avoid such a variable factor due to the steam pressure due to such temperature fluctuation.
  • the injected dry air expands by heating, and when the dew point is higher, the container is The water vapor component originally existing in the internal space Less affected by minute or water.
  • the temperature of the internal space of the housing 1 is lower than the temperature of the internal space of the gas injection device 32, the injected dry air is cooled and shrunk, and the steam originally present in the internal space of the housing 1 If the component or water is at a low dew point and the pressure relationship is such as to affect this dew point force test, then if the injected air is not completely dry air, then the However, the pressure component of water vapor condensed as water will be further reduced.
  • Equation for estimating water vapor pressure e Ue sZl 00
  • An effective method for performing these tests using a pressure approximately similar to the atmospheric pressure is to use a critical compression factor. By using this method, error correction due to water vapor components can be added to the pressure result obtained on the discharge side.
  • the actual internal volume of the container 1 is measured, and based on the measurement result, the size of the water vapor transfer control device is selected or the correction conditions described above are used. In this case, the actual internal volume is measured by measuring the time lag until the pressure gauge 38 and the pressure gauge 33 become the same or the time lag until the flow meter 39 and the flow meter 42 become the same force. can do.
  • the airtightness inspection device A is provided with a casing 43 for accommodating each of the components such as the gas injection device 32 and the pressure gauge 33 described above.
  • Probe 4 4 box connecting member formed by a double pipe consisting of inner pipe 30 a forming air passage 30 and outer pipe 31 a forming exhaust passage 31. .
  • a start switch 45 and its pilot lamp 46 On the casing 43, a start switch 45 and its pilot lamp 46, a pressurizing indicator lamp 47, a normal indicator lamp 48, a leak indicator lamp 49, and an injection amount adjusting switch 50 are mounted on the surface of the force input switch 50.
  • the comparison between the measured pressure value and the injection pressure value is performed by arithmetic control by a built-in microcomputer.
  • the probe 44 is made of an insulating material and is flexible, and its base end is detachably connected to a connection port 44a protruding from the casing 43, and a connector 51 is attached to the tip end. Have been.
  • the probe 44 is described with reference to FIG. 3.
  • a taper tube portion 52 which is detachably fitted to the connection hole 10 formed by a tapered hole formed at an appropriate position of the housing 1 by one-stop, is a connector 5
  • the outer tube opening 31 b is formed at the distal end surface of the connector 51.
  • the distal end of the inner tube 30a is formed with a distal inner tube portion 30b extending from the outer tube opening 31b, and the inner tube opening 30c of the distal inner tube portion 30b is formed. Is formed so as to open at the back of the housing 1 away from the outer tube opening 31b.
  • the inner pipe mouth 30 c is separated from the outer pipe mouth 31 b because the inner pipe mouth 30 c and the outer pipe mouth 3 1 1> Since the dry air injected from 0 a is exhausted by the outer tube 3 1 a before filling the casing 1, the internal air before inspection is efficiently exhausted while preventing this, and This is to allow replacement.
  • the connector 51 and the inner tube 30b are also made of an insulating material.
  • distal end inner tube portion 3 Ob is formed so as to be expandable and contractable by slidably connecting a pipe material having a gradually decreasing diameter toward the distal end, and the distal end inner tube portion 3 Ob in the extended state.
  • the outer tube opening 31 b extends, and when in a contracted state, retreats into the connector 51.
  • reference numeral 80 denotes a ground wire, a tip of which is provided with a penile clip 81, the base end of which is detachably connected to a terminal 82 projecting from the casing 43.
  • FIGS. 4 to 7 each show an example of the inner tube opening 30c.
  • Fig. 4 shows an example in which the distal end of the inner tube portion 3 Ob is bent obliquely and the inner tube opening 30c is opened obliquely.
  • two inner tube openings 30c, 30c are opened sideways.
  • one lower inner pipe opening is provided around the outer circumference of the distal end of the inner pipe section 30b.
  • 30 c-1 is opened sideways, and the two upper inner ports 3 Oc-2 and 30 c-2 are in the opposite direction from the lower inner port 3 O c-1.
  • a stopper 54 for opening and closing the upper inner tube opening portion 30c-2 is attached to the end of a lifting screw 53 screwed to the end of the inner tube portion 30b. ing. Therefore, when the lifting screw 5 3 is lowered, the two upper inner ports 30 c — 2 are closed, and only one lower inner port 30 c — 1 is opened. When the screw 53 is raised, two upper inner ports 30c-2 and one lower inner port 3Oc-1 are released. As a result, dry air can be injected according to the size and shape of the box 1.
  • the inner tube opening 30c is opened obliquely or sideways, it is preferable to display a mark on the side surface of the connector 51 so that the opening direction can be recognized when the connector 51 is connected.
  • FIG. 8 is a sectional view showing another example of the probe 44.
  • the outer tube member 55 is pre-attached to the connection hole 10 formed at the il3 ⁇ 4 position of the box 1, while the tip of the probe 44 is inserted into the outer tube member 55.
  • An inner pipe member 56 protrudes.
  • the outer pipe member 55 is provided with an opening / closing valve 59 in the middle thereof, and the opening / closing valve 59 is formed with a pipe hole 57 for communicating the inner pipe member 56. Therefore, if the butterfly piece 60 is picked and the opening / closing valve 59 is rotated 90 degrees, the opening / closing valve 59 is closed by turning the pipe hole 57 sideways.
  • reference numeral 58 denotes a connector formed at the tip of the probe 44 and detachably fitted to the lower end of the outer tube member 55.
  • FIG. 9 is an explanatory view showing a second embodiment of the airtightness inspection device.
  • This airtightness inspection device ⁇ ⁇ communicates with the inside of the box 1 through the air passage 70.
  • a test space 71, a gas injection device 72 for supplying gas into the test space 71 at a constant pressure, and a pressure gauge 73 for measuring the pressure in the test space 71 are also provided.
  • the air rest injection device 7 2 is connected to the test space 7 1 by an air cylinder 7 4 power in which the dry air is compressed and sealed ⁇ an air supply passage 7 5, and this air supply passage 7 5 Is equipped with a pressure regulating valve 76 and a pressure gauge 77.
  • the measurement of the actual internal volume of the container 1 is performed by measuring a time lag until the pressure gauge 73 and the pressure gauge 77 become the same.
  • FIG. 10 is an explanatory view showing a third embodiment of the airtightness inspection device.
  • the airtightness inspection device C is characterized in that the container 1 and the test space 71 are communicated with each other through a large-diameter air passage 70a and a small-diameter air passage 70b. In this way, a certain amount of air in the housing 1 flows into the test space 71 due to the difference in the pipe resistance between the large-diameter ventilation passage 70a and the small-diameter ventilation passage 70b along with the injection of air. Atmosphere can be taken into the test space 71. Then, by measuring the atmosphere (temperature, humidity, dew point, etc.) of the case 1, the error condition at the time of the airtightness inspection can be obtained, and the actual internal volume of the case 1 can be calculated.
  • the atmosphere temperature, humidity, dew point, etc.
  • the airtightness inspection device C (or airtightness inspection device B) includes an air cylinder storage section 90, a battery storage section 91, and others.
  • a gas injection device, a pressure gauge, and a casing 92 for accommodating various components such as a test space 71 are provided, and the air supply passages 30a, 30b (or The probe forming the air supply passage 30) is extended by 4 4 s.
  • the casing 92 includes a starting switch 45 and its pilot lamp 46, a pressurizing indicator lamp 47, a normal indicator lamp 48, a leak indicator lamp 49, and a pouring amount adjusting switch 50. Attached, and the comparison between the measured pressure value and the injection pressure value is performed by arithmetic control by a built-in microcomputer.
  • the actual internal volume of the box 1 estimated from the outer shape is set as preparation before inspection.
  • temperature adjustment of the test space 71 is performed by measuring the temperature and humidity of the test space 71.
  • the ventilation passage 70 or the probe 44 constituting the ventilation passages 70a and 70b is inserted and fixed, and the valve of the air cylinder 74 is opened to dry from the air supply passage end 5. Inject air.
  • the inspection start button may be set separately on the main unit.
  • the pressure gauge 77, 73 confirms that the pressure has risen. If the rise is confirmed, it is judged that the airtightness is good.
  • the timing at which the output of the contact information of the pressure gauges 77 and 73 can be obtained depends on the volume of the box 1 to be inspected. To correspond to. When airtightness is secured, the pressure rises by driving the time corresponding to the volume. If the airtightness is not secured, the pressure will not rise even if the time corresponding to the volume is driven.
  • this inspection method is compatible with the water vapor transfer control device S, and uses a sensor that can detect low pressure fluctuations that does not place an excessive burden on the mechanism of the device S.
  • the pressure is converted into a change in pressure using the time calculated from the minimum air permeability of the membrane and the permeation acceleration obtained from the moisture permeability and air permeability, and the airtightness test is performed using the minimum time required.
  • pressurization drive and pressure rise detection are ON, start the timer drive or drive the self-holding circuit or latching relay to drive the timer Start. Then, after the fixed time of the timer elapses, the pressurization drive is stopped by resetting the self-holding circuit or moving the latching relay to the reverse contact side.
  • a set of probes 44 is detected at the contacts to drive the relay, and this contact information is used to display the pressure rise detection display for a certain period of time until the next inspection starts.
  • test is not started within a certain period of time after the entire start switch 45 is turned on, an alarm is sounded or the display is turned on, and measurement errors are reduced by restarting from preparation.
  • the battery uses a rechargeable battery (such as a power Doni battery), has a small built-in meter for power supply inspection, and displays an indication to avoid measurement malfunction due to insufficient battery power.
  • a rechargeable battery such as a power Doni battery
  • the air supply passage 75 and the probe 44 are made of a material having a low heat conduction rate;
  • the probe 44 uses a substance whose temperature is easily reflected from the test space 71 and a substance having low water absorption such as PVC, vinyl chloride, and polyethylene.
  • PVC polyvinyl chloride
  • polyethylene polyethylene
  • the test space 71 is made of copper, brass, stainless steel, aluminum material, etc., and the surrounding area is kept warm with a heat insulating material.
  • a material with such a conduction velocity> 'high speed' as shown in Figs. 11 and 12, and adjust the temperature as shown in Figs. 11 and 12.
  • 9 S is a heat insulating material, for which a porous ceramic or the like is used.
  • the cooling of the test space 71 is performed by the Peltier element 94 which makes the cooling surface close to the test space 71 and makes the heat sink 94 exposed on the outer surface of the casing 92 close to the heat release surface. .
  • the operation involved in the inspection is usually performed by holding the main body with the left hand or resting it in the direction in which the measurement results are displayed. Convection and prevent measurement errors. Further, a brushless fan or the like may be set inside the test space 71, and the inside of the test space 71 may be agitated to reduce the internal temperature distribution.
  • the temperature Tq or the temperature Tn from the starting point T is reached by superimposing the heater 93 and the Peltier element 94 on each other.
  • the heater is driven when the temperature reaches the temperature Tq, and then the Peltier element 94 is cooled to avoid an excessive rise in temperature, thereby suppressing independent individual temperature conduction.
  • the reverse temperature movement the reverse temperature fluctuation movement is also performed temporarily to obtain the target temperature. Also, these abilities are the Set in consideration of the area and capacity, and the capacity of the Peltier element 94.
  • Such superposition of the sheet heater 93 and the Peltier element 94 is performed, for example, when heating the inside of the test space 71, the heating of the heater 93 causes the test space container 71a ⁇ Heat energy is transferred to the Peltier element 94 and the heat sink 94a that are heated and are in close contact with the test space container 71a.
  • a major premise is that the target temperature must not be reached and fluctuated beyond that target. This is necessary to complete the measurement operation in a short time, and is also a necessary measure to improve the measurement accuracy.
  • the Peltier element 94 By the way, in the test space 71, the Peltier element 94, and other attached parts, all the materials with thermal conductivity depend on the ambient temperature before measurement, and this temperature is quickly changed to the target temperature from the start of measurement. Must be reached.
  • the energy consumed for heating or cooling to achieve the target temperature is relatively reduced to such an extent that it is affected by the ambient temperature where the measuring device is placed. Shorter time required Can be reduced.
  • the temperature rises while being affected by the ambient temperature, while being affected by the surrounding environment in which the measuring device is placed.
  • This process means that various characteristics appear depending on the environmental temperature. For example, it is easy to overheat when it is warm, and it tends to take too much time when it is cold.
  • the temperature fluctuation is finally used in combination with the heater 93 and the Peltier element 94 to drive the test space 71 with the desired optimum temperature, for example, 20 degrees Celsius and a relative humidity of 65%.
  • the desired optimum temperature for example, 20 degrees Celsius and a relative humidity of 65%.
  • the most important problem is the temperature fluctuation of the heat fluctuation element itself.
  • the overlapping section 9 If 5 is provided, the temperature can be set efficiently.
  • the overlapping portion 95 need not be set.
  • FIG. 14 shows an example in which the inspection device (airtightness inspection device A, B, or C) of the present invention is used for airtightness inspection of the water vapor movement control device S.
  • the inspection device airtightness inspection device A, B, or C
  • a lightning strike or a failure in electrical equipment may cause burnout inside the housing 1, and when this is abrupt, the membrane 2 of the steam movement control device S may break without being able to withstand a sudden increase in internal pressure. is there.
  • it can be detected as an airtight leak of the case 1 by the inspection device, but it can also be inspected whether the membrane 2 of the water vapor transfer control device is broken.
  • connection adapter 96 is attached to one vent ⁇ 21 of the water vapor transfer control device S, and a probe 44 of the inspection device A or B or C is attached to the connection ⁇ 97 of the connection adapter 96. Inspection is performed as described above, and if it is determined that the airtightness is maintained, the membrane is not broken. If it is determined that the airtightness is leaked, the membrane is broken. Judge that And In this inspection, the box 1 may be in a closed state or an open state.
  • the inspection method and the inspection apparatus of the present invention are used for a closed space provided with a water vapor movement control device
  • the inspection method and the inspection device may be optionally used in a closed space before the water vapor movement control device is provided. It is. Industrial applicability
  • the airtightness inspection method and the airtightness inspection device of the present invention can check the airtightness of the case, which is a prerequisite for mounting the water vapor movement control device. Therefore, it can be used effectively as a technique to obtain the backing to guarantee the quality and performance of the steam transfer control device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)

Description

明細書 水蒸気移動制御装置を備えた閉鎖空間の気密検査方法及び気密検査装置 技術分野
本発明は、 特殊な防水膜とその配列で水蒸気の移動方向を制御するこ とによって、 加湿装置、 除湿装置、 調湿装置等として利用される水蒸気 移動制御装置を備えた閉鎖空間の気密検査方法及び気密検査装置に関す る。 技術背景
本発明者において、 既に特開平 5— 3 2 2 0 6 0号により水蒸気移動 制御装置を提案している。 この水蒸気移動制御装置は、 一方の通気口が 函体 (閉鎖空間) の内部に連通され、 他方の通気口が大気に開放され、 この二つの通気口間に複数の小室力 '通気性及び透 性を有する防水膜に よって区画形成されている。 そして、 各防水膜の通気度及び透湿度を使 用して、 外気と函体の温度変動速度により、 函体の内部を除湿又は加湿 又は調湿するように水蒸気の移動を制御するものであった。
そして、 この水蒸気移動制御装置は、 上記したように、 函体 (閉鎖空 間) に取り付けられるもので、 この函体 (閉鎖空間) の気密保持を前提 として水蒸気移動制御装置力機能することになる。 ただ、 水蒸気移動制 御装置の調湿能力を下回る漏洩については、 これを水蒸気移動制御装置 自体の調溘能力によってカバーすることができるため、 この程度の漏洩 は許容している。
しカゝしな力 s 'ら、 この函体 (閉鎖空間) の気密状態を確認する手段につ いては、 確立されておらず、 応急の防滴構造を採用したり、 気密構造を 採用して気密保持を図る程度であり、 函体 (閉鎖空間) に水蒸気移動制 御装置を取り付けた状態で、 函体の気密状態を確認する手段は見受けら れない。
本発明は、 このような実状に鑑みなされたもので、 水蒸気移動制御装 置を取り付けるための前提となる閉鎖空間の気密状態を確認することが できる閉鎖空間の気密検査方法及び気密検査装置を提供することを目的 としている。 発明の開示
本発明の気密検査方法は、 一方の通気口が閉鎖空間の内部に連通さ れ、 他方の通気ロカ大気に開放され、 この二つの通気口間に複数の小室 が通気性及び透湿性を有する防水膜によって区画形成されて、 両通気口 間での水蒸気の移動を制御する水蒸気移動制御装置を備えている閉鎖空 間を対象とした気密検査方法であって、 閉鎖空間への送気通路から閉鎖 空間内部に一定圧力の気体を注入しながら、 閉鎖空間からの排気通路で 圧力測定し、 その測定圧力値を注入圧力値と比較して、 その測定圧力値 と注入圧力値と力 ¾しい場合は閉鎖空間の気密が保持され、 測定圧力値 が注入圧力値よりも低い場合には閉鎖空間の気密が漏洩していると認定 する構成とした。
この気密検査方法に対応した気密検査装置は、 閉鎖空間の内部に連通 する送気通路及び排気通路を備え、 送気通路には気体を一定圧力で供給 する気体注入装置が接続され、 排気通路には圧力測定計; ^接続されてい る構成とした。
また、 本発明の気密検査方法は、 閉鎖空間の内部に通気路を介して連 通したテストスペースに一定圧力の気体を注入しながら、 このテストス ペース内で圧力測定し、 その測定圧力値力 '気体の注入前の圧力値よりも 上昇している場合は閉鎖空間の気密が保持され、 測定圧力値が注入前の 圧力値と変わりなレ、場合には閉鎖空間の気密力 '漏洩していると認定する 構成とした。
この気密検査方法に対応した気密検査装置は、 閉鎖空間の内部に通気 路を介して連通するテストスペースと、 このテストスペース内に気体を 一定圧力で供給する気体注入装置と、 テストスペース内の圧力を測定す る圧力測定計を備えている構成とした。
また、 前記気密検査装置において、 送気通路を形成する内管と、 排気 通路を形成する外管とによる 2重管で形成された閉鎖空間接続部材が設 けられ、 この閉鎖空間接続部材は、 閉鎖空間に形成された接続穴に着脱 可能に連結され、 かつ内管力 s '外管口部から延出して、 外管口部と内管口 部と力離反した位置で開口している態様がある。 この場合、 内管が伸縮 可能に形成され、 その伸長状態で内管が外管口部から延出する態様があ る。
尚、 前記気密検査方法において、 閉鎖空間の気密が漏洩していると認 定した場合でも、 その漏洩が水蒸気移動制御装置の調湿能力を下回る程 度であれば、 水蒸気移動制御装置は、 その機能を果たすことができ、 漏 洩が直ちに不良と認定されることはない。 図面の簡単な説明
第 1図はこの発明にかかる気密検査装置の実施の第 1形態を示す説明 図、 第 2図はこの気密検査装置の外観図、 第 3図はこの気密検査装置に 設けられた函体接続部材 (ブローブ) の先端部を示す断面図、 第 4図〜 第 7図はそれぞれこのプローブに設けられた内管口部の例を示す断面 図、 第 8図は函体接続部材の他例を示す断面図である。 また、 第 9図は この発明にかかる気密検査装置の実施の第 2形態を示す説明図、 第 1 0はこの発明にかかる気密検査装置の実施の第 3形態を示す説明図で ある。 第 1 1図はこの気密検査装置の外観図である。 第 1 2図はこの気 密検査装置の一部拡大断面図、 第 1 3図はこの気密検査装置に設けられ たシート状ヒー夕及びペルチェ素子による温度変化グラフ図である。 第 1 4図は気密検査装置の他の使用例を示す説明図、 第 1 5図は水蒸気圧 と温度との関係を示すグラフ図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態を図面により説明する。 まず、 第 1図に示 す気密検査装置を説明する。 尚、 以下の実施の形態では、 閉鎖空間とし て函体を対象とした例を示している。 以下の各実施の形態において、 同 —構成部分については図面の符号を同一にしている。
この気密検査装置 Aは、 水蒸気移動制御装置 Sを備えた閉鎖空間とし ての函体 1をその検査対象としている。 尚、 閉鎖空間としては、 函体 1のほか、 例えば、 ビルの屋上に設置されている電源キュービクル、 制 御ボックス, スィッチボックス、 このほか配電ボックスや一定の閉路を 有する空間等を想定している。
前記水蒸気移動制御装置 Sは、 3枚の膜 2, 2, 2によって 2個の小 室 2 0, 2 0が通気ロ2 1, 2 1間に区画形成され、 この両通気口 2 1 , 2 1間で水蒸気の移動を制御するものとなっている。 即ち、 一方 の通気口 2 1を外気に開放し、 他方の通気口 2 1を函体 1の内部に接続 する状態にして使用されるもので、 前記各膜 2の通気度及び透湿度を使 用して、 外気と函体 1の温度変動速度により、 函体 1の内部を除湿又は 加湿 (調湿) するように水蒸気の移動を制御する。
尚、 この水蒸気移動制御装置 Sとしては、 周囲の温度変動のみを駆動 源とする夕イブと、 周囲の温度変動に加えて微小電力で作動する機器 (例えば、 ペルチェ素子付与型、 駆動ファン内蔵型、 ヒータ内蔵型、 振 動圧付与型) を単独あるいは組み合わせて駆動源とするタイプとがあ り、 この両タイブを適用することができる。 後者のタイプでは、 水蒸気 が装置内部から拡散して調湿対象である閉鎖空間の反調湿現象が発生し ないように、 温度変動を利用しながら、 その目的とする機能の反対の方 向への水蒸気移動を阻止するのに有効である。 また、 この水蒸気移動制 御装置 Sの函体 1に対する取付位置は、 函体 1の上面、 下面、 側面のい ずれでもよく、 状況に応じて適宜に決定する。
そして、 気密検査装置 Aは、 函体 1の内部に連通する送気通路 3 0及 ぴ排気通路 3 1を備え、 送気通路 3 0には気体を一定圧力で供給する気 体注入装置 3 2が接続され、 排気通路 3 1は圧力測定計 3 3及び流量計 4 2力 s設けられている。
前記気体注入装置 3 2には、 空気吸入□ 3 4が形成されたエアドライ ャ 3 5と、 このエアドライヤ 3 5により乾燥された乾燥空気を貯留する エア貯留槽 3 6と、 このエア貯留槽 3 6から乾燥空気を一定圧力で送気 通路 3 0に送気するダイヤフラムポンプ 3 7と、 送気通路 3 0の途中に 設けられた圧力計 3 8及び流量計 3 9及びダイヤフラムポンプ 3 7から の脈動をフラットにする緩衝槽 4 0が備えられている。 尚、 4 1はバッ テリ一で, 前記エアドライヤ 3 5及びダイヤフラムポンプ 3 7の駆動電 源となる。 また、 前記エアドライャ 3 5の代わりに、 本発明者が提案し た水蒸気移動制御装置 〔特開平 5— 3 2 2 0 6 0号) を用いた除湿装置 やシリカゲル等の乾燥剤を充填した筒内を空気が通過するようにした除 湿装置を用いることができるもので、 この両除湿装置を併用することに より極めて低い湿度の乾燥空気を得ることができる。
次に、 この気密検査装置 Aを用いた気密検査方法を説明する。
まず、 送気通路 3 0及び排気通路 3 1を函体 1に接続してから、 エア ドライヤ 3 5及びダイヤフラムポンプ 3 7を作動し、 エア貯留槽 3 6力 らの乾燥空気を送気通路 3 0を経て函体 1に一定圧力で注入する。 この ようにして乾燥空気を注入しな:^ら、 排気通路 3 1の圧力測定計 3 3で 圧力測定し、 その測定圧力値を送気通路 3 0の圧力計 3 8が示す注入圧 力値と比較する。 そして、 その測定圧力値と注入圧力値とがほぼ等しい 場合は函体 1の気密が保持されていると認定することができ、 一方、 測 定圧力値が注入圧力値よりも低い場合には函体 1の気密が漏洩している と認定することができる。 即ち、 函体 1の気密力漏洩していると、 空気 の漏れが生じ、 測定圧力値が注入圧力値よりも低くなる。 ただ、 このよ うに気密が漏洩していると認定した場合でも、 その漏洩が水蒸気移動制 御装置 Sの調湿能力を下回る程度であれば、 水蒸気移動制御装置 Sは、 その機能を果たすことができ、 漏洩が直ちに不良と認定されることはな い。
尚、 この検査時において、 函体 1に注入する乾燥空気の圧力は、 函体 1の密閉構造ゃ函体 1の内部に設置された各種の装置にストレスを加え ることがないように、 できるだけ大気圧に近い圧力、 例えば、
J I S - P - 8 1 1 7 ( 1 9 8 0 ) による膜の検査に使用する圧力 0 . 0 8 4 a t m程度の低レヽ与圧に設定すること力 s好ましい。
また、 水蒸気移動制御装置 Sからの空気の漏れを防止するため、 水蒸 気移動制御装置 Sの通気□ 2 1に蓋を被せて、 通気口 2 1を塞いでおく ことになる。 ただ、 注入圧力を大気圧に近い圧力に設定しておくと、 水 蒸気移動制御装置 Sの膜 2が抵抗となつて空気の通過が規制されるた め、 必ずしも通気ロ2 1を蓋で塞いでおく必要はない。 この点に関し、 検査対象となる函体 1にはもともと水蒸気移動制御装置 Sが取り付けら れていて、 この水蒸気移動制御装置 Sが機能する状態での気密性を確保 しているか否かを検査するのが本来の目的であるため、 水蒸気移動制御 装置 Sを塞ぐことなく、 そのままにして検査することが好ましい。 この こと力ら、 注入圧力を大気圧に近い圧力に設定しておくのが望ましい。 また、 函体 1に注入する乾燥空気の量は、 検査時間の短縮を図る上か らも必要最小限にすること力 s好ましい。 このためには、 函体 1の実内容 積を測定する必要があり、 このため、 送気通路 3 0及び排気通路 3 1に 流量計 3 9, 4 2を配設している。 尚、 函体 1の実内容積は、 理想気体 と仮定すると次式により求めることができる。
P V 二 n R T
( P;圧力、 V;容積、 n;気体のモル数、 R ;気体定数、 T;温度) そして、 函体 1への乾燥空気の注入によって、 函体 1の内部が検査前 の雰囲気から次第に乾燥空気が充満した乾燥雰囲気に置き代わってい き、 完全に函体 1の内部カ 燥空気に置き代わった時点で、 検査を行う こと力 s '最も好ましい。 ただ、 函体 1の内部に水蒸気力 '充満していたり、 結露力 ^ '生じていると、 この置き代え状態になるまでには長時間を必要と し、 検査に時間力5'かかりすぎることになる。 これに対処するため、 送気 通路 3 0を通る乾燥空気及び排気通路 3 1を通る空気の温度、 湿度、 濃 度をそれぞれ温度計、 湿度計等 (図示せず) で測定し、 これに函体 1に 注入する乾燥空気の量及び函体 1の実内容積を加味しながら総合的に判 断して、 測定圧力値を補正し、 その補正した測定圧力値と注入圧力値と を比較判断することになる。 また、 乾燥空気を函体 1に注入するのは、 検査終了後の減圧に伴う結露を予防するためでもある。
尚、 この検査方法において、 函体 1の内部空間状態と、 気体注入装置 3 2の内部空間状態との格差をもとに、 例えば、 函体 1の内部空間の温 度が気休注入装置 3 2の内部空間の温度よりも高い場合には、 注入した ガスは加熱され、 11彭張するので、 注入時の圧力を越えて排出されること になる。 一方、 函体 1の内部空間の温度が気体注入装置 3 2の内部空間 の温度よりも低い場合には、 注入したガスは冷却され、 収縮するので、 注入時の圧力を下回って排出されることになる。 尚、 注入するガスとし て乾燥空気を使用すると、 このような温度変動に伴う水蒸気圧による変 動因子を避けることができる。
例えば、 函体 1の内部空間の温度が気体注入装置 3 2の内部空間の温 度よりも高い場合には、 注入した乾燥空気は加熱膨張し、 さらに露点が 高い位置にある場合には函体 1の内部空間にもともと存在した水蒸気成 分又は水によって影響を受けることは少ない。 逆に函体 1の内部空間の 温度が気体注入装置 32の内部空間の温度よりも低い場合には、 注入し た乾燥空気は冷却収縮し、 また、 函体 1の内部空間にもともと存在した 水蒸気成分又は水は露点が低い位置にあり、 さらに圧力関係でこの露点 力検査に影響する程度である場合には、 注入した空気が完全に乾燥した 空気でないすると、 注入した空気の圧力成分の中で、 水蒸気が水として 結露した圧力成分がさらに減少することになる。
K蒸気圧並びに露点を求める関係式は以下のように記載される。 水蒸気圧 e求める式: e=Ue sZl 00
U:相対湿度 e s :温度 Tに対する飽和水蒸気圧 Τ :絶対温度 e s = exp {-6096. 9385T -1 +21, 2409642- 271 1 193 * 10 -2T+ 1. 673952 * 10 "5Τ 2 + 2 - 4335021 η (Τ) }
蒸気圧 e sから露点 t dを与える式
y = 1 n (es /611 - 213 P a)
yが 0以上であるとき
t d= 13. 715 y + 8- 4262* 10_,y2 + 1. 9048* 10"2y3 +7. 8158* 10- 3y4
y力 0よりも小さいとき
t d = 1 3. 7204 y + 7. 3663 1 * 1 0 ^y2 + 3. 32136* 10'2y3 +7. 78591 * 10"4y4
尚、 上記式において、 6 5の5及び七€1の は、 本来は下添字であ る。
例えば、 第 1 5図に示すように、 温度 T 3における飽和水蒸気圧 P 3から温度が降下した場合を仮定すると、 温度 T 3から温度 T 2への 下降では、 水蒸気圧 P 3— P 2が水になった場合減少し、 また混度 T 3から温度 T 1への下降では、 水蒸気圧 P 3— P〗力 ^水になった場合 減少する圧となる。
逆に上昇の場合には、 これらとは逆に、 該当する水蒸気圧が理想気体 として考慮した場合には上昇することになる。
また、 大気圧にほぼ近似した圧力を使用してこれらの検査を行う場合 に有効な方法として、 臨界圧縮因子を用いる方法がある。 この方法を使 用することにより、 排出側に得られた圧力結果に対して、 水蒸気成分に よる誤.差補正を加えることができる。
そして、 これらの関係をマイコンにて算出し、 自動的に背圧成分を求 めることができるように設定すれば、 ハンディな気密検査装置として有 効に使用できる。 また、 本検査装置では、 函体 1の実内容積を測定し、 その測定結果を基にして水蒸気移動制御装置のサイズを選定したり、 前 記した補正条件とすることになる。 この場合、 圧力計 3 8と圧力計 3 3 とが同一になるまでのタイムラグあるいは流量計 3 9と流量計 4 2と力 同一になるまでのタイムラグを測定することによつて実内容積を測定す ることができる。
次に、 第 2図に示すように、 気密検査装置 Aは、 前記した気体注入装 置 3 2や圧力測定計 3 3等の各部品を収容するケーシング 4 3を備え、 このケーシング 4 3から送気通路 3 0を形成する内管 3 0 aと、 排気通 路 3 1を形成する外管 3 1 aとによる 2重管で形成されたプローブ 4 4 (函体接続部材) 力延出している。
前記ケーシング 4 3には、 起動スィツチ 4 5及びそのパイロットラン ブ 4 6、 加圧表示ランプ 4 7、 正常表示ランプ 4 8、 漏洩表示ランプ 4 9、 それに注入量調整スィッチ 5 0力表面に取り付けられ、 また、 測定 圧力値と注入圧力値との比較判断は、 内蔵したマイクロコンピュータに よる演算制御によって行われる。 前記プローブ 4 4は、 絶縁材料によ りフレキシブルに形成され、 その基端はケーシング 4 3から突出した接 続口 4 4 aに着脱可能に接続され、 先端にはコネクタ 5 1力取り付けら れている。 このプローブ 4 4を第 3図により説明すると、 函体 1の適宜 位置に形成されたテーパ穴による接続穴 1 0にワン夕 チで着脱可能に 嵌合するテ一パ筒部 5 2がコネクタ 5 1の先端部に形成され、 このコネ クタ 5 1の先端面に外管口部 3 1 bが開口している。 一方、 内管 3 0 a の先端部には外管口部 3 1 bから延出した先端内管部 3 0 bが形成され 、 その先端内管部 3 0 bの内管口部 3 0 cが外管口部 3 1 bから離反し た函体 1の奥部で開口するように形成されている。 このように内管口部 3 0 cを外管口部 3 1 bから離反させたのは、 内管口部 3 0 cと外管口 部 3 1 1>カ 接していると、 内管 3 0 aから注入された乾燥空気が函体 1に充満する前に外管 3 1 aによって排気されてしまうからで、 これを 防止しながら検査前の内部空気を効率よく排気して乾燥空気への置き換 えができるようにするためである。 尚、 前記コネクタ 5 1及び先端内管 部 3 0 bについても絶縁材料により形成されている。
また、 前記先端内管部 3 O bは、 先端に向けて次第に小径になった管 材を摺動可能に連結することにより伸縮可能に形成され、 その伸長状態 で先端内管部 3 O bが外管口部 3 1 b力ら延出し、 短縮状態ではコネク タ 5 1内に退入するようになっている。
尚、 第 2図において、 8 0はアース線で、 先端にはヮニロクリップ 8 1が設けられ、 その基端がケーシング 4 3から突出したターミナル 8 2に着脱可能に接続されている。
次に、 第 4図〜第 7図はそれぞれ内管口部 3 0 cの例を示している。 第 4図は先端内管部 3 O bの先端を斜めに屈折して、 内管口部 3 0 cを 斜め方向に向けて開口させた例、 第 5図は先端内管部 3 O bの先端面を 閉鎖して、 その先端部外周に 1個の内管口部 3 0 cを横向きに開口させ た例、 第 6図は先端内管部 3 O bの先端部外周に反対方向に向けて 2個 の内管口部 3 0 c , 3 0 cを横向きに開口させた例である。 また、 第 7図の例では、 先端内管部 3 0 bの先端部外周に 1個の下側内管口部 3 0 c— 1を横向きに開口させると共に、 その下側内管口部 3 O c— 1 より先端側に 2個の上側内管口部 3 O c— 2, 3 0 c— 2を反対方向に 向けて横向きに開口させ、 先端内管部 3 0 bの先端に螺合した昇降ネジ 5 3の先端に前記上側内管口部 3 0 c— 2を開閉する栓体 5 4を取り付 けている。 従って、 昇降ネジ 5 3を降下させておくと、 2個の上側内管 口部 3 0 c — 2が閉鎖して 1個の下側内管口部 3 0 c — 1のみが開放 し、 昇降ネジ 5 3を上昇させておくと、 2個の上側内管口部 3 0 c— 2 及び 1個の下側内管口部 3 O c - 1力 s開放する。 これにより函体 1の大 きさや形状に応じた乾燥空気の注入ができるようになる。 尚、 内管口部 3 0 cを斜めや横向きに開口した場合、 コネクタ 5 1の接続時において その開口方向を認識できるように、 コネクタ 5 1の側面に目印を表示し ておくの力好ましい。
また、 第 8図はプローブ 4 4の他例を示す断面図である。 この例で は、 函体 1の il¾位置に形成した接続穴 1 0に予め外管部材 5 5力取り 付けられ、 一方、 プローブ 4 4の先端には、 前記外管部材 5 5内に挿通 する内管部材 5 6が突設されている。 そして、 外管部材 5 5には、 その 途中に開閉バルブ 5 9力お取り付けられ、 この開閉バルブ 5 9には内管部 材 5 6を連通させる管穴 5 7力 > '形成されている。 従って、 蝶片 6 0を摘 んで開閉バルブ 5 9を 9 0度回転させれば、 管穴 5 7力横向きになって 開閉バルブ 5 9が閉鎖する。 そして、 この位置から開閉バルブ 5 9を 9 0度回転させれば開閉バルブ 5 9の管穴 5 7が開放し、 この状態で内 管部材 5 6を外管部材 5 5に挿入すれば、 内管部材 5 6力 ^管 5 7を挿 通して函体 1の内部に差し込まれる。 尚、 図中 5 8はコネクタ部で、 ブ ローブ 4 4の先端に形成され、 外管部材 5 5の下端に着脱可能に嵌合す る。
次に、 第 9図は気密検査装置の実施の第 2形態を示す説明図である。 この気密検査装置 Βは、 函体 1の内部に通気路 7 0を介して連通する テストスペース 7 1と、 このテストスペース 7 1内に気体を一定圧力で 供給する気体注入装置 7 2と、 テストスペース 7 1内の圧力を測定する 圧力測定計 7 3も備えている。 この場 、 気休注入装置 7 2は. 乾燥 気が圧縮封入されたエアボンべ 7 4力 ^送気通路 7 5によってテストス ペース 7 1に接続されたものとなっており、 この送気通路 7 5には圧力 調整弁 7 6及び圧力計 7 7力設けられている。
この気密検査装置 Bを使用した気密検査では、 通気路 7 0を函体 1に 連結したのち、 エアボンべ 7 4からの乾燥空気を圧力調整弁 7 6でテス トスペース 7 1に一定圧力で注入しながら、 このテス卜スペース 7 1内 の圧力を圧力測定計 7 3で測定する。 そして、 その測定圧力値が気体の 注入前の圧力値よりも上昇している場合は函体 1の気密が保持され、 測 定圧力値が注入前の圧力値とほぼ変わりない場合には函体 1の気密が漏 洩していると認定することになる。
また、 この場合、 函体 1の実内容積の測定は、 圧力測定計 7 3と圧力 計 7 7とが同一になるまでのタイムラグを測定することによつて行われ る。
次に、 第 1 0図は気密検査装置の実施の第 3形態を示す説明図であ る。 この気密検査装置 Cでは、 函体 1とテストスペース 7 1と力大径通 気路 7 0 a及び小径通気路 7 0 bを介して連通されている点に特徴があ る。 このようにすると、 空気の注入に伴い大径通気路 7 0 aと小径通気 路 7 0 bとの管内抵抗の差によって函休 1の空気がテストスペース 7 1へ一定量流入し、 函体 1の雰囲気をテス卜スペース 7 1内に取り込 むことができる。 そして、 この函体 1の雰囲気 (温度、 湿度、 露点等) を測定することによつて気密検査時の誤差条件とし, 併せて函体 1の実 内容積の算出することができる。
尚、 前記した気密検査装置 C (又は気密検査装置 B ) は、 第 1 1図に 示すように、 エアボンベの収納部 9 0 , バッテリー収納部 9 1、 その他 図示してないが気体注入装置や圧力測定計、 それにテストスペース 7 1等の各部品を収容するケーシング 9 2を備え、 このケ一シング 9 2から送気通路 3 0 a, 3 0 b (又は送気通路 3 0 ) を形成するブ ローブ 4 4力 s延出されている。
前記ケ一シング 9 2には、 起動スィツチ 4 5及びそのパイロットラン ブ 4 6、 加圧表示ランプ 4 7、 正常表示ランプ 4 8、 漏洩表示ランプ 4 9、 それに注入量調整スイッチ 5 0力表面に取り付けられ、 また、 測 定圧力値と注入圧力値との比較判断は、 内蔵したマイクロコンピュータ による演算制御によつて行われる。
尚、 前記気密検査装置 B及び気密検査装置 Cについては、 検査前準備 として、 外形から概算した函体 1の実内容積の設定を行う。 この場合、 函体 1の容器外形と実装物外形の容積により概略の実内容積を設定する 方法と、 一定圧力の送気による圧力上昇時間から実内容積を算出する方 法がある。
次に、 テストスペース 7 1の温度調整を行うもので、 これはテストス ペース 7 1の温度ならびに湿度の測定により行う。
そして、 検査開始に際しては、 通気路 7 0又は通気路 7 0 a, 7 0 bを構成するブローブ 4 4を揷入固定し、 エアボンべ 7 4のバルブ を開放して送気通路了 5から乾燥空気を注入する。 尚、 検査開始ボタン は別途本体に設定してもよい。
検査中は圧力計 7 7, 7 3による圧力の上昇確認し、 上昇が確認され ると、 気密性が良好であると判断する。 この場合、 圧力計 7 7, 7 3の 接点情報の出力が得られる夕イミングは検査する函体 1の容積により異 なるので、 容量の設定はタイマ一によりエアボンべ 7 4のバルブ開放を 行う時間に対応させる。 気密性が確保されている場合には、 容積に対応 した時間を駆動することにより圧力は上昇する。 気密性が確保されてい ない場合には、 容積に対応した時間を駆動しても圧力はヒ昇しない。 検査予圧については、 本検査方法は水蒸気移動制御装置 Sに対応し、 該装置 Sの機構に過剰な負担をかけない低圧の変動を検出することがで きるセンサーを使用し、 主として、 各装置の膜の最小透気度から逆算し た時間ならびに透湿度および透気度から得られる透過加速度を用いて圧 力の変動に換算し、 また、 必要最小限の時間により気密検査を行う。 圧力測定時間と、 検査のための与圧時間の関係については、 与圧駆動 と圧力上昇検知が O Nのとき、 タイマー駆動開始し、 あるいは自己保持 回路またラッチングリレーの駆動を行い、 タイマ一を駆動開始する。 そ して、 タイマーの一定時間経過後は自己保持回路のリセットまたはラッ チングリレーを逆接点側に移動することにより与圧駆動を停止する。 また、 プローブ 4 4のセットを接点にて検出してリレーを駆動し、 こ の接点情報を活用して次回検査開始まで圧力上昇の検出の表示を一定時 間表示する。
また、 全体の起動スィッチ 4 5を人れたときに、 リレー又は多回路ス イッチによる接点情報を検出し、 この時点から最大検査容積の時間を若 干上回る時間経過後までの時間タイマーを駆動し、 検査しない場合の バッテリ一の電源消費節減を行う。
また、 全体の起動スィツチ 4 5を入れたときから一定時間以内に検査 が開始されない時にはアラーム鳴動を行うか表示点灯を行しヽ、 準備から 再始動することにより測定誤差の低減を図る。
バッテリーは充電式電池 (力ドニ力電池等) を用い, 電源の検査用の 小さなメータを内蔵し、 電池電源の不備による測定誤動作を避ける表示 を行う。
送気通路 7 5やプローブ 4 4は熱伝導速度; ^遅い物質にて構成する。 特に、 プローブ 4 4は、 温度が容易にテストスペース 7 1より反映を受 ける物質、 P V Cや塩化ビニル、 ポリエチレンなど吸水性の低い物質を 使 fflする。 このことにより、 テストスペース 7 1の温度並びに湿度璟境 がプローブ 4 4に容易に反映されやすいと共に、 プローブ 4 4や送気通 路 7 5などの管路内部における を防止するこヒができ、 測定誤差を 低減し、 機器の障害発生を防止することができる。
テス卜スペース 7 1は銅、 真鍮、 ステンレス、 アルミ铸物などで作成 し、 周囲を保温材にて保温する。 テストスペース 7 1の温度調整を精密 に行うために、 このような 伝導速度力 > '速い物質で構成し、 温度調整 を第 1 1図及び第 1 2図で示すように、 シート状ヒータ 9 3やペルチェ 素子 9 4などを使用して微調整を行い、 テストスペース 7 1の空間内部 の結露の排水はドレンから行う。 尚、 第 1 2図において、 9 Sは保温材 で、 多孔質セラミック等が用いられる。
テストスペース 7 1の冷却は、 テストスペース 7 1に冷却面を密接さ せると共に、 ケ一シング 9 2の外面に露出したヒー卜シンク 9 4 aを放 熱面に密接させるペルチェ素子 9 4により行う。 検査に伴う操作は、 通 常左手で本体を把持し、 又は測定結果が表示される方向に静置するの で、 装置の下方にシート状ヒータ 9 3を配置し、 テス卜スペース 7 1の 内部の対流を促し、 測定誤差の発生を予防する。 また、 テストスペース 7 1内部にブラシレスファンなどを設定し、 テストスペース 7 1の内部 を撹拌して内部の温度分布を小さくしても良い。
又、 十分なテストスペース内の熱伝導がテス卜スペース容 7 1 aに より確保される場合、 第 1 1図の平行斜線部で示すように、 重合部 9 5力生じるように、 シ一卜状ヒータ 9 3とペルチェ素子 9 4を重ね合 わせることにより、 第 1 3図の温度変化グラフ図で示すように、 起点 Tから冃的とする温度 T q又は温度 T nに到達させる塌合、 例えば温度 T qに到達させる時にヒータ駆動を行い、 次いで過剰な温度上昇を避け るためにベルチェ素子 9 4の冷却を行って、 独立した個別の温度伝導を 抑制する。 逆方向の温度移動でも同様に逆方向の温度変動移動を一時的 に行い、 目的温度とする。 又、 これらの能力は、 シート状ヒータ 9 3の 面積と能力、 ペルチェ素子 9 4の能力を考慮して設定する。
このようなシ一卜状ヒータ 9 3とペルチヱ素子 9 4との重ね合わせ は、 例えば、 テストスペース 7 1内部の加熱を行う場合には、 ヒータ 9 3の加熱によりテス卜スペース容器 7 1 a力 ^加熱され、 かつ該テスト スペース容器 7 1 aに密接するペルチェ素子 9 4及びヒ一トシンク 9 4 aに熱エネルギーが伝達される。
ところ力 目的とする温度に到達させ、 その目標を越えて変動させて はならないという大前提が、 本測定装置では必要である。 これは短時間 で測定操作を完結するために必要であり、 測定精度を向上させるために も必要な手段である。
ところで、 テストスペース 7 1及びペルチェ素子 9 4その他付属する 部品において、 熱伝導性を有する物質は全て測定前の環境温度に依存し た状況にあり、 この温度を目的とする温度に測定開始から早急に到達さ せなければならない。
し力も、 これらの付属する全ての部品は、 ある質量を有し、 このため に、 例えば、 加熱過程で適度な加熱を一定時間行い、 目的温度に到達さ せた場合には、 熱のたまりとなっている付属する全ての周囲部品からの テス卜スペース 7 1への移動により過剰な温度上昇となってしまうの で、 この温度をペルチヱ素子 9 4により余剰な熱を放散して過剰な温度 上昇を防止する。
この過程を考慮して、 付属する全ての部品の中で温度伝導速度の早い 物質にて構成されるテストスペース 7 1の温度管理において最も相反す る熱運動が発生するもの同士の熱伝達が良好に行われれば、 これらの過 剰な温度変動は良好に抑制されることになる。
ひいては、 目的とする温度を達成するために加熱又は冷却に要する消 費エネルギーが測定装置が置かれる周囲環境温度により影響を受ける程 度力 s相対的に減少することになり、 結果として、 測定に要する時間を短 縮することができる。
たとえば、 加熱後に放置する場合、 温度は周囲温度により影響されつ つ、 測定装置の置かれる周囲環境に影響されつつ温度上昇する。 この過 程は環境温度によりさまざまな特性が出現してしまうことを意味し、 例 えば、 温かいときには余剰に加熱してしまい易いし、 寒いときには時間 がかかりすぎるという結果となりやすい。
この結果, 最終的に温度変動をヒー夕 9 3とペルチェ素子 9 4により 併用し、 目的とする至適温度、 例えば、 摂氏 2 0度、 相対湿度 6 5 %を テストスペース 7 1に確保する駆動を行った場合、 最も問題にすべき対 象は、 熱変動素子自体の温度変動であることになる。 つまり、 テストス ペース 7 1の加熱後のテストスペース容器 7 1 aの冷却と、 冷たい状況 に置かれたヒ一卜シンク 9 4 aの加熱という相反する問題を解決するた めに、 前記重合部 9 5を設けると、 効率よく温度設定することができ る。 尚、 テストスペース容器 7 1 a力 分な熱伝導速度を有する場合、 重合部 9 5を設定しなくてもよい。
次に、 第 1 4図は、 本発明の検査装置 (気密検査装置 A又は B又は C ) を水蒸気移動制御装置 Sの気密検査用として用いた例を示してい る。 例えば、 落雷や電気機器の障害により、 函体 1の内部に焼損が発生 し、 これが急激であったとき、 内圧の急激な上昇に耐えられずに水蒸気 移動制御装置 Sの膜 2が破れることがある。 このようなとき、 検査装置 により函体 1の気密漏洩として検出できるが、 水蒸気移動制御装置 の 膜 2の破れの有無についても検査することができる。
即ち、 水蒸気移動制御装置 Sの一方の通気□ 2 1に接続用アダプタ 9 6を取り付け、 この接続用アダプタ 9 6の接続□ 9 7に検査装置 A又 は B又は Cのプローブ 4 4を取り付け、 前述した要領で検査を行い、 気 密が保持されていると認定された場合には、 膜の破れはなく、 気密が漏 洩していると認 された場合には、 膜の破れが生じていると判断するこ とになる。 尚、 この検査に際し、 函体 1は密閉状態でも開放状態でもよ い。
尚、 本発明の検査方法及び検査装置は、 水蒸気移動制御装置を備えて いる閉鎖空間を対象として使用されるものであるが、 水蒸気移動制御装 置を備える以前の閉鎖空間に使用することは任意である。 産業上の利用可能性
以上説明してきたように、 本発明の気密検査方法及び気密検査装置 は、 水蒸気移動制御装置を取り付けるための前提となる函体の気密状態 を確認することができる。 従って、 水蒸気移動制御装置の品質及び性能 を保証するための裏付けを得る技術として有用に使用することができ る。

Claims

請求の範囲
1 . 一方の通気口が閉鎖空間の内部に連通され、 他方の通気口が大気 に開放され、 この二つの通気口間に複数の小室力 気性及び透湿性を有 する防水膜によって区両形成されて、 両通気口間での水蒸気の移動を制 御する水蒸気移動制御装置を備えている閉鎖空間を対象とした気密検査 方法であって、
閉鎖空間への送気通路から閉鎖空間内部に一定圧力の気体を注入しな がら、 閉鎖空間からの排気通路で圧力測定し、
その測定圧力値を注入圧力値と比較して、 その測定圧力値と注入圧力 値とがほぼ等しい場合は閉鎖空間の気密が保持され、 測定圧力値が注入 圧力値よりも低い場合には閉鎖空間の気密が漏洩していると認定するこ とを特徴とした水蒸気移動制御装置を備えた閉鎖空間の気密検査方法。
2 . 一方の通気口が閉鎖空間の内部に連通され、 他方の通気ロカ s大気 に開放され、 この二つの通気口間に複数の小室が通気性及び透湿性を有 する防水膜によって区画形成されて、 両通気口間での水蒸気の移動を制 御する水蒸気移動制御装置を備えている閉鎖空間を対象とした気密検査 装置であって、
閉鎖空間の内部に連通する送気通路及び排気通路を備え、 送気通路には気体を一定圧力で供給する気体注入装置が接続され、 排 気通路には圧力測定計力5接続されていることを特徴とした水蒸気移動制 御装置を備えた閉鎖空間の気密検査装置。
3 . 一方の通気口が閉鎖空間の内部に連通され、 他方の通気口が大気 に開放され、 この二つの通気口間に複数の小室力 ^通気性及び透湿性を有 する防水膜によって区画形成されて、 両通気□間での水蒸気の移動を制 御する水蒸気移動制御装置を備えている閉鎖空間を対象とした気密検査 方法であって、 閉鎖空間の内部に通気路を介して連通したテストスペースに一定圧力 の気体を注入しながら、 このテストスペース内で圧力測定し、
その測定圧力値が気体の注入前の圧力値よりも上昇している場合は閉 鎖空間の気密が保持され、 測定圧力値が注入前の圧力値とほぼ変わりな い場合には閉鎖空間の気密が漏洩していると認定することを特徴とした 水蒸気移動制御装置を備えた閉鎖空間の気密検査方法。
4 . 一方の通気口が閉鎖空間の内部に連通され、 他方の通気口が大気 に開放され、 この二つの通気口間に複数の小室力5'通気性及び透温性を有 する防水膜によって区画形成されて、 両通気口間での水蒸気の移動を制 御する水蒸気移動制御装置を備えている閉鎖空間を対象とした気密検査 方法であって、
閉鎖空間の内部に通気路を介して連通するテス卜スペースと、 このテストスペース内に気体を一定圧力で供給する気体注入装置と、 テス卜スペース内の圧力を測定する圧力測定^"を備えていることを特 徴とした水蒸気移動制御装置を備えた閉鎖空間の気密検査装置。
5 . 請求項 2又は請求項 4記載の気密検査装置において、 送気通路を 形成する内管と、 排気通路を形成する外管とによる 2重管で形成された 閉鎖空間接続部材が設けられ、
この閉鎖空間接続部材は、 閉鎖空間に形成された接続穴に着脱可能に 連結され、 かつ内管力 s外管口部から延出して、 外管口部と内管口部とが 離反した位置で開口している気密検査装置。
6 . 請求項 5記載の気密検査装置において、 内管が伸縮可能に形成さ れ、 その伸長状態で内管力外管口部から延出する気密検査装置。
PCT/JP1998/002683 1998-06-17 1998-06-17 Procede et appareil permettant de tester l'etancheite a l'air d'un espace clos equipe d'un dispositif de commande du mouvement de la vapeur WO1999066300A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US09/720,043 US6494082B1 (en) 1998-06-17 1998-06-17 Method of and apparatus for testing airtightness of closed space provided with steam movement control device
DE19883003T DE19883003T1 (de) 1998-06-17 1998-06-17 Verfahren und Vorrichtung zum Prüfen der Luftdichtheit eines geschlossenen Raums, der mit einer Dampfbewegungs-Steuervorrichtung ausgestattet ist
PCT/JP1998/002683 WO1999066300A1 (fr) 1998-06-17 1998-06-17 Procede et appareil permettant de tester l'etancheite a l'air d'un espace clos equipe d'un dispositif de commande du mouvement de la vapeur
GB0029646A GB2354591B (en) 1998-06-17 1998-06-17 Apparatus for testing airtightness of closed space provided with steam movement control device
CA002335424A CA2335424A1 (en) 1998-06-17 1998-06-17 Method of and apparatus for testing airtightness of closed space provided with steam movement control device
JP2000555069A JP3462854B2 (ja) 1998-06-17 1998-06-17 水蒸気移動制御装置を備えた閉鎖空間の気密検査方法及び気密検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/002683 WO1999066300A1 (fr) 1998-06-17 1998-06-17 Procede et appareil permettant de tester l'etancheite a l'air d'un espace clos equipe d'un dispositif de commande du mouvement de la vapeur

Publications (1)

Publication Number Publication Date
WO1999066300A1 true WO1999066300A1 (fr) 1999-12-23

Family

ID=14208418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/002683 WO1999066300A1 (fr) 1998-06-17 1998-06-17 Procede et appareil permettant de tester l'etancheite a l'air d'un espace clos equipe d'un dispositif de commande du mouvement de la vapeur

Country Status (6)

Country Link
US (1) US6494082B1 (ja)
JP (1) JP3462854B2 (ja)
CA (1) CA2335424A1 (ja)
DE (1) DE19883003T1 (ja)
GB (1) GB2354591B (ja)
WO (1) WO1999066300A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127434A (ja) * 2005-11-01 2007-05-24 Kyushu Sankosha:Kk 水蒸気移動制御装置を取り付けるための箱体を検査対象とした気密検査装置
US8178117B2 (en) 2006-11-22 2012-05-15 Basf Se Liquid water based agrochemical formulations
US8333982B2 (en) 2007-08-08 2012-12-18 Basf Se Aqueous microemulsions containing organic insecticide compounds
US8716182B2 (en) 2008-10-10 2014-05-06 Basf Se Liquid aqueous crop protection formulations
US8741809B2 (en) 2008-10-10 2014-06-03 Basf Se Liquid pyraclostrobin-containing crop protection formulations
JP2018087713A (ja) * 2016-11-28 2018-06-07 アズビル株式会社 ヘリウムリークディテクタ用ノズルおよびヘリウムリークディテクタシステム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10047916C2 (de) * 2000-09-27 2003-01-09 Siemens Ag Vorrichtung zur Erfassung ionisierender Strahlung
JP2005091042A (ja) * 2003-09-12 2005-04-07 Olympus Corp リークテスタ
DE102004040355B3 (de) * 2004-08-20 2005-12-22 Bayer Gmbh Maschinenfabrik Verfahren und Prüfanordnung zur Dichtigkeitsmessung
DE102005055746A1 (de) * 2005-11-23 2007-05-24 Robert Bosch Gmbh Verfahren und Vorrichtung zur Ermittlung der hydraulischen Leckrate von flüssigkeitsführenden Teilen, insbesondere Einspritzventilen für Brennkraftmaschinen
WO2010010005A2 (de) * 2008-07-24 2010-01-28 Basf Se Öl-in-wasser emulsion umfassend lösungsmittel, wasser, tensid und pestizid
CN111999013B (zh) * 2020-09-07 2022-08-19 湖南钒谷新能源技术有限公司 一种隔膜气密性检测装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291830A (ja) * 1985-10-18 1987-04-27 Ohbayashigumi Ltd 気密保持室内における気密性能の評価方法
JPH04157335A (ja) * 1990-10-19 1992-05-29 Shimizu Corp 気密度測定装置及びその測定方法
JPH05322060A (ja) * 1992-05-22 1993-12-07 Kunitaka Mizobe 除湿装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6478370A (en) * 1987-09-19 1989-03-23 Hitachi Software Eng Syntax analysis system for translating machine
US5096586A (en) * 1990-08-28 1992-03-17 Regents Of The University Of California Membranes having selective permeability
US5131929A (en) * 1991-05-06 1992-07-21 Permea, Inc. Pressure control for improved gas dehydration in systems which employ membrane dryers in intermittent service
US5762690A (en) * 1992-11-25 1998-06-09 Andrew Corporation Dehumidifier for supplying air using variable flow rate and variable pressure in a membrane dryer
US5681368A (en) * 1995-07-05 1997-10-28 Andrew Corporation Dehumidifier system using membrane cartridge
GB2321206B (en) * 1997-01-10 2001-05-09 Honda Motor Co Ltd Method and apparatus for testing functions of painting apparatus
GB2325525B (en) * 1997-03-20 2001-08-22 Carl Denby Testing storage tanks
US5928409A (en) * 1997-11-12 1999-07-27 New Jersey Institute Of Technology Method and apparatus for gas removal by cyclic flow swing membrane permeation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291830A (ja) * 1985-10-18 1987-04-27 Ohbayashigumi Ltd 気密保持室内における気密性能の評価方法
JPH04157335A (ja) * 1990-10-19 1992-05-29 Shimizu Corp 気密度測定装置及びその測定方法
JPH05322060A (ja) * 1992-05-22 1993-12-07 Kunitaka Mizobe 除湿装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127434A (ja) * 2005-11-01 2007-05-24 Kyushu Sankosha:Kk 水蒸気移動制御装置を取り付けるための箱体を検査対象とした気密検査装置
JP4511447B2 (ja) * 2005-11-01 2010-07-28 株式会社九州山光社 水蒸気移動制御装置を取り付けるための箱体を検査対象とした気密検査装置
US8178117B2 (en) 2006-11-22 2012-05-15 Basf Se Liquid water based agrochemical formulations
US8333982B2 (en) 2007-08-08 2012-12-18 Basf Se Aqueous microemulsions containing organic insecticide compounds
US8716182B2 (en) 2008-10-10 2014-05-06 Basf Se Liquid aqueous crop protection formulations
US8741809B2 (en) 2008-10-10 2014-06-03 Basf Se Liquid pyraclostrobin-containing crop protection formulations
JP2018087713A (ja) * 2016-11-28 2018-06-07 アズビル株式会社 ヘリウムリークディテクタ用ノズルおよびヘリウムリークディテクタシステム

Also Published As

Publication number Publication date
US6494082B1 (en) 2002-12-17
DE19883003T1 (de) 2001-05-10
GB0029646D0 (en) 2001-01-17
CA2335424A1 (en) 1999-12-23
GB2354591A (en) 2001-03-28
JP3462854B2 (ja) 2003-11-05
GB2354591B (en) 2002-04-24

Similar Documents

Publication Publication Date Title
WO1999066300A1 (fr) Procede et appareil permettant de tester l'etancheite a l'air d'un espace clos equipe d'un dispositif de commande du mouvement de la vapeur
JP6225110B2 (ja) 気体圧力に基づく漏れ検査モジュール
US6857307B2 (en) Method and device for the determination of the gas permeability of a container
WO2011132391A1 (ja) 透湿度測定装置及び透湿度測定方法
US11428655B2 (en) Gas sensor
JP2006078397A (ja) 低高温強度試験機
JP2009506326A (ja) ガスセンサー
JP2004157068A (ja) ガス透過率測定装置
JP2007218918A (ja) 特に自動車分野の好ましくは摺動リングシールにおける、少なくとも1つの漏れ箇所の蒸気放出を検出するための検査装置
JP4662372B2 (ja) 流量測定方法および流量測定装置
JP2016176866A (ja) リーク検査方法リーク検査装置
US20110094292A1 (en) Apparatus for air property measurement
US20140352413A1 (en) Moisture transmission testing instrument
JPH1164207A (ja) 水蒸気移動制御装置の検査方法
JP5164916B2 (ja) 試験方法及び試験装置
US8720255B2 (en) Water uptake measurement system
US9810564B2 (en) Method of determining an internal volume of a filter or bag device, computer program product and a testing apparatus for performing the method
JP2016176871A (ja) リーク検査装置リーク検査方法
JP2016176867A (ja) リーク検査装置リーク検査方法
JP4097441B2 (ja) 透湿膜の透湿特性の算出法
JP5164917B2 (ja) 試験方法、有機ガス供給装置及び試験装置
JP6913646B2 (ja) 風速測定機及び環境試験装置
JP2007192686A (ja) 露点計の精度検証方法及び燃料電池評価装置
KR101753998B1 (ko) 저온 열화 시험용 장치
JP4171664B2 (ja) 液量測定装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA DE GB JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 200029646

Country of ref document: GB

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2335424

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 09720043

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 19883003

Country of ref document: DE

Date of ref document: 20010510

WWE Wipo information: entry into national phase

Ref document number: 19883003

Country of ref document: DE

122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8607