WO1997041336A1 - Appareil et procede de regeneration de catalyseur de nox pour moteurs diesel - Google Patents

Appareil et procede de regeneration de catalyseur de nox pour moteurs diesel Download PDF

Info

Publication number
WO1997041336A1
WO1997041336A1 PCT/JP1997/001418 JP9701418W WO9741336A1 WO 1997041336 A1 WO1997041336 A1 WO 1997041336A1 JP 9701418 W JP9701418 W JP 9701418W WO 9741336 A1 WO9741336 A1 WO 9741336A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
catalyst
fuel
nox catalyst
diesel engine
Prior art date
Application number
PCT/JP1997/001418
Other languages
English (en)
French (fr)
Inventor
Koutaro Wakamoto
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Priority to DE19781739T priority Critical patent/DE19781739T1/de
Priority to GB9822856A priority patent/GB2328626B/en
Priority to US09/171,858 priority patent/US6199372B1/en
Priority to JP9538736A priority patent/JP3066607B2/ja
Publication of WO1997041336A1 publication Critical patent/WO1997041336A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • F01N3/0885Regeneration of deteriorated absorbents or adsorbents, e.g. desulfurization of NOx traps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/12Combinations of different methods of purification absorption or adsorption, and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/04Exhaust treating devices having provisions not otherwise provided for for regeneration or reactivation, e.g. of catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/04Sulfur or sulfur oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1612SOx amount trapped in catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to an apparatus and a method for regenerating a diesel engine N 0 X catalyst, and more particularly to an apparatus and a method for regenerating a diesel engine N ⁇ X catalyst having reduced performance.
  • Japanese Patent Application Laid-Open No. 4-330314 is known as a conventional catalytic exhaust gas purification apparatus for a diesel engine that reduces and decomposes NOx contained in exhaust gas of a diesel engine.
  • a copper zeolite-based NOX catalyst provided in the exhaust path of a diesel engine and a carbon dioxide provided in the exhaust path upstream of the NOx catalyst to detect the hydrocarbon concentration in the exhaust gas are disclosed.
  • a hydrogen sensor and a fuel spray provided in an exhaust passage upstream of the hydrocarbon sensor for spraying fuel to the exhaust passage so as to keep the concentration of hydrocarbons in the exhaust gas within a predetermined range based on a value detected by the hydrocarbon sensor. And means.
  • the fuel is sprayed from the fuel spraying means into the exhaust path as appropriate, and the hydrocarbon concentration in the exhaust gas is maintained in a predetermined range.
  • the fuel sprayed from the fuel spray means acts as a hydrocarbon-based reducing agent, and activates a copper zeolite-based NO x catalyst in cooperation with oxygen contained in the exhaust gas of the diesel engine. It has been proposed that this promotes the reduction of NOx in exhaust gas.
  • this copper zeolite-based N 0 X catalyst has a low N 0 X purification performance. Therefore, in order to obtain a high NOx purification performance, a large amount of hydrocarbons for the reducing agent is required, which is a problem in the running cost of the catalyst.
  • NOx catalysts containing alkaline earth or rare earth oxides and noble metals require a smaller amount of reducing agent carbon than copper zeolite catalysts. It shows a high N 0 x purification rate with the amount of hydrogen hydride.
  • the present invention has been made in view of the above-mentioned problems, and regenerates a NOx catalyst whose performance has deteriorated due to the accumulation of S0X in the N0X catalyst due to sulfur in the fuel supplied to the diesel engine. It is an object of the present invention to provide a reproducing apparatus and a reproducing method.
  • the NOx catalyst to which the present invention is applied is limited to the NOx catalyst containing an alkaline earth or rare earth oxide and a noble metal as described above, and the NOx catalyst containing silver as an active component. In general, any type of NOX catalyst that can be degraded in a short time by S0X in exhaust gas can be used.
  • a first invention of an apparatus for regenerating a NOx catalyst for a diesel engine according to the present invention is as follows.
  • the NOx catalyst is placed in the exhaust pipe and adsorbs S0X, and easily deteriorates in performance. As a result, the NOx catalyst device for diesel engines that reduces and purifies exhaust NOX
  • a NOx catalyst inlet temperature sensor disposed upstream of the NOx catalyst
  • the signal from the N0X catalyst inlet temperature sensor indicates that the inlet temperature of the N0X catalyst is below the specified value and the command to the flow control valve is zero, the amount of diesel fuel supplied to the diesel engine during the period of zero supply.
  • the amount of S 0 X taken into the N 0 X catalyst during the zero period is calculated, and when the population temperature becomes larger than a predetermined value and the reductant fuel starts to be added, A regeneration control unit that outputs to the flow control valve a command to supply a larger amount of reducing agent fuel than a predetermined amount suitable for the operation state of the diesel engine,
  • the feature is to regenerate the N 0 X catalyst, whose performance has been degraded by S 0 X, by adding more reducing agent fuel than the amount suitable for the operating conditions.
  • the second invention mainly based on the first invention of the regenerator, includes one of a selection switch for selecting the type of diesel fuel and a component sensor for detecting the sulfur content in the diesel fuel.
  • the regeneration control unit calculates the amount of S0X discharged from the diesel engine from the signal from one of the selection switch and the component sensor and the amount of diesel fuel supplied to the diesel engine.
  • a command to supply a larger amount of reducing agent fuel than the specified amount suitable for the operating condition of the diesel engine is given to the flow control valve.
  • the feature is to output.
  • the third invention of the playback device is:
  • a reducing agent fuel addition nozzle for adding reducing agent fuel into the exhaust pipe on the upstream side of the N 0 X catalyst, a flow control valve for controlling the amount of reducing agent fuel supplied to the reducing agent fuel addition nozzle, An N 0 X catalyst inlet temperature sensor disposed upstream;
  • a hydrocarbon concentration sensor disposed downstream of the 0X catalyst
  • a playback control unit
  • the regeneration control unit determines that the inlet temperature of the NOx catalyst is higher than a predetermined value based on the signal from the NOx catalyst inlet temperature sensor, and that the hydrocarbon concentration downstream of the NOx catalyst is based on the signal from the hydrocarbon concentration sensor. If is larger than a predetermined value, a command to add a larger amount of reducing agent fuel than the predetermined amount that is compatible with the operating condition of the diesel engine is output to the flow control valve, and the performance deteriorated due to S 0 X N 0 It is characterized by regeneration of X catalyst. You.
  • the first invention of the method for regenerating a diesel engine N 0 X catalyst relates to a method in which a certain amount of diesel fuel such as kerosene is added to an exhaust pipe as a reducing agent fuel as a reducing hydrocarbon, and exhaust gas is discharged.
  • a purification method using NOx catalyst of a diesel engine which is disposed in a pipe and reduces and purifies exhaust N0X with an N0X catalyst that easily adsorbs S0X and deteriorates performance,
  • the predetermined reducing agent fuel amount that is larger than the reducing agent fuel amount suitable for the operating condition is calculated as S It is characterized by being added to regenerate the degradation due to 0X.
  • a predetermined amount of the reducing agent fuel larger than the amount of the reducing agent fuel suitable for the operating condition is suitable for the operating condition regardless of the operating condition of the engine. It is characterized by the amount obtained by adding a fixed amount of reducing agent fuel to the amount of reducing agent fuel to be reduced.
  • the third invention which is mainly based on the first invention of the regeneration method, is characterized in that the predetermined amount of the reductant fuel larger than the amount of the reductant fuel suitable for the operating condition is based on the amount of the reductant fuel suitable for the operating condition. It is characterized in that the amount of reducing agent fuel is increased by a certain ratio.
  • the fourth invention which is mainly based on the first invention of the regeneration method, is characterized in that the predetermined amount of the reducing agent fuel larger than the amount of the reducing agent fuel suitable for the operating condition is determined by the N 0 X filtration rate in the exhaust gas determined from the operating condition.
  • the exhaust gas flow rate and the exhaust gas temperature, and the amount of S 0 X taken into the N 0 X catalyst, are variable amounts obtained by calculation.
  • the fifth invention which is based on the first invention of the regeneration method, is characterized in that the calculation of the amount of S0X taken in the NOX catalyst is determined from the amount of diesel fuel supplied to the diesel engine. It is characterized by turning.
  • the sixth invention which is based on the first invention of the regeneration method, is characterized in that, before the regeneration of the NOX catalyst is completed, the operating conditions of the diesel engine fluctuate, and when the inlet temperature falls below a predetermined value, the reducing agent fuel When the addition is stopped, the accumulated S0X weight of the NOX catalyst at the time of the addition stop
  • the cumulative amount of S 0 X of the N 0 x catalyst during the stop period of the reductant fuel addition is N 0 X in accordance with the operating conditions of the diesel engine during the stop period, sequentially with respect to the stored accumulated edge S 0 X amount. It is characterized in that it is obtained by adding the amount of S 0 X taken into the catalyst.
  • a seventh invention which is based on the first invention of the regeneration method, is characterized in that when the diesel engine is stopped before the regeneration of the N 0 X catalyst is completed, the cumulative SO x of the N 0 X catalyst at the time of the stop is stopped. After the diesel engine is stopped, the accumulated SOx amount is retained, and the next time the diesel engine is operated, S0X is newly taken into the NOX catalyst sequentially with the stored accumulated S0X amount. It is characterized in that the amounts are added.
  • An eighth invention mainly based on the first invention of the regeneration method, requires that the amount of S 0 X taken into the NOX catalyst be determined from the sulfur content in the diesel fuel supplied to the diesel engine.
  • a ninth invention which is based on the first invention of the regeneration method, is characterized in that when the regeneration of the NOX catalyst is completed, a predetermined amount of the reductant fuel that is larger than the amount of the reductant fuel suitable for the operating condition is completed.
  • the feature is to change the volume to a level that is compatible with the current operating conditions of the country.
  • the amount of S0X removed from the NOX catalyst during the regeneration is sequentially calculated.
  • the amount of residual SOx during regeneration is calculated by subtracting the amount of removed S0X from the amount of S0X remaining on the N0X catalyst, and the calculated amount of residual SOx during regeneration becomes less than a predetermined value. It is a special feature that
  • the amount of S 0 X removed from the NO x catalyst during regeneration is determined from the operation of diesel engines during regeneration. Must be calculated from at least one of the following: the total concentration of NOx in exhaust gas, exhaust gas flow rate, exhaust gas temperature, the amount of SOx incorporated in the NOx catalyst, and the amount of reducing agent added. It is characterized by.
  • the first and second inventions of the reproduction method are:
  • a reducing agent fuel which is a reducing hydrocarbon
  • the inlet temperature on the upstream side of the N 0 X catalyst is higher than a predetermined value, and the hydrocarbon concentration on the downstream side of the N 0 X catalyst is higher than a predetermined value.
  • a characteristic feature is that a larger amount of reducing agent fuel is added than a predetermined amount suitable for the operating conditions of diesel engine.
  • NOx catalysts containing alkaline earth or rare earth oxides and precious metals have the following disadvantages: when the reducing agent hydrocarbon is not added, or when the catalyst temperature is lower than the specified temperature, It was found that even if added, it did not act as an N 0 X purification reaction, but was rapidly deteriorated by S 0 X in the exhaust gas. Further, when the temperature of the catalyst degraded by taking in S0X becomes higher than a predetermined level and the reducing agent hydrocarbon starts to react, the taken-in S0X is released from the catalyst surface, and the performance is restored.
  • the recovery rate depends on the temperature of the exhaust gas, the degree of NO x ripple in the exhaust gas, the amount of reducing hydrocarbons added to the exhaust gas, and the amount of SOX incorporated in the NO x catalyst.
  • the present invention has been made based on the above findings. For this reason, first, when the upstream temperature of the NOx catalyst and the engine load are equal to or lower than the predetermined values, the SOx amount in the exhaust gas is determined from the amount of fuel supplied to the diesel engine, and is taken into the NOx catalyst. Calculate the S 0 X amount. This calculation process is continued while the engine is operating at a catalyst upstream temperature equal to or lower than a predetermined value, and the S0X amount taken into the N0X catalyst is integrated.
  • the engine operating conditions If the temperature at the NOx catalyst inlet fluctuates above a predetermined value due to fluctuations, a predetermined amount of reducing agent fuel is supplied to the exhaust gas that is larger than the amount of reducing agent fuel suitable for the operating conditions, and the Regenerate NOx catalyst. If the amount of the reductant fuel supplied at this time is adjusted to the amount appropriate for the engine operation, the purification performance of NOx will be insufficient and the regeneration of the NOx catalyst degraded by SOx will be slow. Become. Therefore, in order to recover the performance of the NOx catalyst within a short period of time after the start of the supply of the reducing agent fuel, it is necessary to supply a larger amount of the reducing agent fuel than the appropriate amount.
  • the production rate of this acidic ammonium sulfate depends on the concentration of N 0 X in the gas, hydrocarbon concentration, and temperature, and the rate of volatilization of ammonium acid sulfate depends on the temperature of the gas. Therefore, the time to regenerate the N0X catalyst by supplying more reducing agent fuel than the amount suitable for the operating condition is determined based on the operating condition of the diesel engine and the gas temperature at the N0X catalyst inlet. It turns out to be something.
  • the S 0 X degradation and regeneration mechanism of the N 0 X catalyst described above is for NO x catalysts containing alkaline earth or rare earth oxides and precious metals. It is thought that SOX degradation can be regenerated by the same regeneration mechanism in other N0X catalysts that rapidly deteriorate in performance due to S0X.
  • FIG. 1 is an explanatory diagram of a configuration of a regenerating apparatus for a NOX catalyst of diesel engine according to a first embodiment of the present invention.
  • FIG. 2 is a flowchart of the method for regenerating the NOx catalyst according to the first embodiment of the present invention.
  • FIG. 3 shows the temperature of the NOx catalyst and the removal of SOx in the NOx catalyst according to the first embodiment of the present invention. It is a figure which shows the relationship with leaving efficiency.
  • FIG. 4 is a graph showing the relationship between the cumulative amount of SOx in the NOx catalyst and the SOx removal efficiency in the NOx catalyst according to the first embodiment of the present invention.
  • FIG. 5 is an explanatory view of a configuration of a regenerating apparatus for a NOx catalyst of a diesel engine according to a second embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating a method of regenerating an NOx catalyst according to a second embodiment of the present invention.
  • FIG. 7 is a flowchart of a method for regenerating a NOx catalyst according to a third embodiment of the present invention.
  • FIG. 8 is a diagram showing the relationship between the amount of reducing agent fuel added and the S 0 X removal efficiency in the N 0 X catalyst according to the third embodiment of the present invention.
  • FIG. 9 is an explanatory diagram of a configuration of a regenerating apparatus for a NOx catalyst of a diesel engine according to a fourth embodiment of the present invention.
  • FIG. 10 is a flowchart of a method for regenerating an N 0 X catalyst according to a fourth embodiment of the present invention.
  • FIG. 11 is an addition amount map of the reducing agent fuel according to the fourth embodiment of the present invention.
  • FIG. 12 is a diagram showing the relationship between the NOx purification rate, the hydrocarbon degree, and the predetermined hydrocarbon concentration value according to the fourth embodiment of the present invention.
  • FIGS. 13A to 13D are diagrams for explaining the steps of the mechanism from the S0x deterioration to the reactivation of the N0X catalyst according to the present invention, and FIG. 13A is the first step.
  • FIG. 4 is an explanatory diagram of an S 0 X deterioration process.
  • FIG. 13B is an explanatory diagram of the S 0 X deterioration state as the second step.
  • FIG. 13C is an explanatory diagram of the reactivation process as the third step.
  • FIG. 13D is an explanatory diagram of the reactivated state as the fourth step.
  • FIG. A NOx catalyst 3 for purifying NOX in exhaust gas is disposed in an exhaust pipe 2 from a diesel engine 1 (hereinafter, referred to as an engine 1).
  • the NOx catalyst 3 is a NOX catalyst containing an alkaline earth or rare earth oxide and a noble metal and easily adsorbing S ⁇ X (for example, a NOX catalyst containing barium oxide and palladium).
  • a NOX catalyst containing barium oxide and palladium for example, a NOX catalyst containing barium oxide and palladium.
  • it is composed of a NOx catalyst in which silver is used as an active component and is supported on alumina.
  • the engine 1 is provided with a rotation speed sensor 4 for detecting the engine rotation speed, and the lever (not shown) of the engine 1 linked to the accelerator petal (not shown) is provided with a diesel fuel injection amount ( That is, an injection amount detection sensor 5 for measuring the amount of diesel fuel supplied to the engine 1) is provided.
  • a reducing agent fuel addition nozzle 7 for adding a reducing agent fuel (reducing hydrocarbon) to the exhaust gas is disposed.
  • Fuel supplied from a fuel tank 8 via a pump 9 is supplied to the reducing agent fuel addition nozzle 7 at a controlled flow rate by a flow rate control valve 10.
  • the flow control valve 10 is controlled in accordance with an operating condition of the engine 1 by a command from a controller described later, and supplies a sufficient amount of reducing agent fuel to purify N 0 X discharged from the engine 1. It is supplied to the reducing agent fuel addition nozzle 7. Fuel for operating the engine 1 is supplied from a fuel tank 8 to an injection nozzle (not shown) by an injection pump 11 and injected into the cylinder of the engine 1.
  • an NOx catalyst 3 inlet temperature sensor 14 (hereinafter referred to as a temperature sensor 14) and a NOx concentration sensor 15 are disposed.
  • a component detection sensor 16 for detecting the component of the sulfur content in the fuel for operating the engine 1 is provided.
  • the component detection sensor 16 may be installed on the flow path of the reducing agent fuel or in the fuel tank 8.
  • Each of the sensors 4, 5, 14, 15, 16 is connected to a reproduction control unit 17.
  • the regeneration controller 17 is composed of a controller, and receives signals from the rotation speed sensor 4, the injection amount detection sensor 5, the temperature sensor 14, the NOx density sensor 15 and the component detection sensor 16.
  • step 1 the component detection sensor 16 detects the amount Sc of sulfur contained in the fuel for operating the engine 1.
  • step 2 based on the signals from the rotation speed sensor 4 and the injection amount detection sensor 5, the regeneration control unit calculates the operating conditions such as the engine rotation speed Na of the engine 1 and the load Pa acting on the engine 1. Determined by 17
  • step 3 the temperature sensor 14 reads the inlet temperature of the NOx catalyst 3 T c a t 3 ⁇ 4 read o
  • step 4 it is determined whether or not the inlet temperature Tcat of the NOx catalyst 3 is larger than the threshold value TA.
  • the threshold value TA For example, in a truck or a generator, when the exhaust temperature is low and the load is low, the NOx catalyst 3 does not work, so it is necessary to stop adding the reducing agent. Under the condition where the addition of the reducing agent is stopped, the NO X catalyst 3 suffers S 0 X deterioration.
  • step 5 the amount of SOx discharged from the engine 1 (ExSox) is calculated. This is determined by the type of fuel used and the amount burned by the engine 1. In the present embodiment, this is based on the operating conditions of the engine 1 read in step 2, that is, the engine speed Na and the load Pa. It is determined from the amount of fuel supplied into the cylinder of Engine 1.
  • step 6 the amount of SOx ( ⁇ ⁇ E x SO x) taken into the NO x catalyst 3 is determined from the amount of SO x (E x SO x) discharged, and the accumulated amount of SO x ( C at SO x).
  • step 7 it is determined whether or not the accumulated SOx amount (CatS0x) is greater than the threshold value SA. If the cumulative S 0 X amount (Cat S 0 x) in step 7 is smaller than the strong threshold value S A, go to step 8.
  • step 8 the regeneration control unit 17 is controlled in accordance with the operating conditions of the engine 1, and adds an appropriate amount of reducing agent fuel W for purifying NOX exhausted from the engine 1 into the exhaust pipe 2. Thus, the command is output to the flow control valve 10.
  • the flow rate of the exhaust gas is obtained from the data read in step 2 as the operating conditions of the engine 1, that is, the engine rotation speed Na and the load Pa of the engine 1.
  • the required reducing agent fuel is obtained from the amount of exhausted NOX obtained by multiplying the NOX concentration value in the exhaust gas obtained from the NOx concentration sensor 15 and the performance of the NOX catalyst 3. Is required.
  • NOX concentration sensors that can be used on-board have not been developed for applications such as trucks, the amount of reductant added must be determined in advance using the engine speed Na and load Pa as map data. Is also good.
  • step 8 the process returns to step 1, but may return to step 2 as in step 6. If the cumulative amount of S O x (CatS O x) is larger than the threshold value S A in step 7, go to step 9.
  • step 9 the reductant fuel, which is further increased by a predetermined amount R with respect to the addition amount W calculated and commanded in step 8, ie, the addition amount (W + R), is added to the exhaust pipe 2.
  • the command is output to the flow control valve 10.
  • the addition amount W + R is larger than the addition amount W that is compatible with the operating conditions of the engine 1. This is to increase the regeneration speed of the N 0 X catalyst 3 degraded by 0 X.
  • the amount of increase R of the reducing agent fuel is always constant regardless of the operating conditions of the engine 1.
  • the amount R is increased by a certain ratio r with respect to the addition amount W determined by the operating conditions of the engine 1. It is good to control No. In this case, the same work performed in step 8 will be performed in step 9 as well.
  • Step 9 the process proceeds to Step 10, where the operating conditions of the engine 1, the inlet temperature Tcat of the NOx catalyst 3, the accumulated SOx amount (CatS0x), and the added amount of the reducing agent fuel R are set.
  • the amount of SO x removed from the NO x catalyst 3 under these conditions U s 3 ⁇ 4 is determined based on
  • the NOx concentration in the exhaust gas obtained by the NOx concentration sensor 15 is measured.
  • the efficiency Ka at which S 0 X in the N 0 X catalyst 3 is removed is determined by the concentration of the nitrogen-containing hydrocarbon compound generated on the catalyst surface, that is, the N 0 X concentration in the exhaust gas and the added reduction. And the exhaust gas temperature. At this temperature, the removal efficiency Ka has an optimum temperature as shown in FIG. In FIG. 3, the horizontal axis represents the temperature, and the vertical axis represents the efficiency Ka at which S0X in the NOx catalyst 3 is removed. In addition, when the integrated amount of SOx (CatSOx) is large, the removal efficiency Ka decreases as shown in FIG. In FIG.
  • the horizontal axis represents the amount of S0X accumulated in the NOx catalyst 3
  • the vertical axis represents the removal efficiency Ka of S0X in the NOx catalyst 3.
  • the SO x amount (C at SO x) accumulated in the NO x catalyst 3 decreases, and it is determined that the NOx catalyst 3 has been completely regenerated in the determination operation in step 7. Will be determined.
  • step 13 If it is determined in step 1 and 2 that engine 1 has stopped, control is terminated. I do. Normally, when the engine 1 is stopped, the NOx catalyst 3 remains in a state of deterioration by S0X. For this reason, in the present embodiment, in step 13, the amount of SO x (C at SO x) accumulated in the NOX catalyst 3 at this time can be maintained even in the state where the engine 1 is stopped.
  • Non-volatile memory It is stored in the first place. At the next engine 1 operation, the stored data is used to calculate the S 0 X deterioration state of the N 0 X catalyst 3.
  • FIG. 5 is an explanatory diagram of a configuration of an apparatus for regenerating the NO X catalyst 3 of the diesel engine 1 according to the second embodiment of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the component detection sensor 16 for detecting the component of the fuel for operating the engine 1 is used.
  • the selection switch 21 for selecting the type of the diesel fuel is used.
  • the selection switch 21 is connected to the reproduction control unit 17.
  • the selection switch 21 is provided with a selection position for kerosene or light oil, etc., which can be switched by an operator according to the type of diesel fuel used.
  • step 21 the controller of the regeneration control unit 17 determines the amount of sulfur Sc contained in the selected diesel fuel from the position of the selection switch 21 set by the operator. I do.
  • step 21 since the force going to step 2 and the steps after step 2 are the same as those in the first embodiment, the description is omitted.
  • Step 9 and Step 10 in the first embodiment are different.
  • step 7 the accumulated S 0 X amount (C at S 0 x) of N 0 X catalyst 3 is If not, go to step 39.
  • step 39 the most efficient and immediately optimum amount of reductant fuel Re added at that time was calculated to remove SO x (C at SO x) accumulated in NO X. I do.
  • the added amount Re will be described.
  • the removal efficiency Ka of S 0 X in the N 0 X catalyst 3 increases as the amount of the reductant fuel added increases, but eventually reaches a plateau.
  • the horizontal axis represents the amount of reductant fuel added for removing accumulated S0X
  • the vertical axis represents the maximum removal efficiency of S0X in NOx catalyst 3 and the ratio of removal efficiency Ka to Kmax. Taking. As can be seen from FIG. 8, the amount of addition that starts to plateau decreases as the exhaust gas temperature decreases. Further, as described in the description of the regeneration method of the first embodiment, the ratio / 3 is used to determine the operating conditions of the engine 1, the inlet temperature Tcat of the NOx catalyst 3, and the accumulated SOx amount (C at SO x).
  • the regeneration control unit 17 determines the optimal addition amount Re of the reducing agent fuel that can remove the SOx accumulated from the NOx catalyst 3 most efficiently at that time, the reducing agent consumption amount, that is, the engine
  • the optimum addition amount Re is added to the addition amount W that is compatible with the operating conditions of the engine 1, and the reduction agent fuel addition amount Re + W is added to the exhaust pipe 2.
  • a command is output to the flow control valve 10 so that it is added.
  • step 39 the process proceeds to step 40 to determine the regeneration amount Us of S0X of the N0X catalyst 3 based on the added amount Re, and then proceeds to step 11 of the first embodiment.
  • the descending operation is performed, but the description is omitted.
  • the fourth embodiment is different from FIG. 1 of the first embodiment in that the arrangement of the component detection sensor 16 and the NOx concentration sensor 15 is omitted, and the NOx catalyst 3 is omitted.
  • a hydrocarbon gas sensor 12 is provided in the exhaust pipe 2 on the downstream side. The hydrocarbon concentration sensor 12 detects the hydrocarbon concentration HC in the exhaust gas discharged from the NO X catalyst 3.
  • Steps 2 to 4 are the same as in the first embodiment, but Step 1 is omitted and steps after step 4 are changed.
  • the NOx catalyst 3 is not necessarily in a deteriorated state, that is, before the state determination. However, even if the inlet temperature T eat is low, S 0 X may accumulate in the N 0 X catalyst 3 and deteriorate, so the “small” case in step 4 is set as the deterioration state. ing.
  • step 58 the regeneration control unit 17 converts the data of the engine rotation speed Na and the engine load Pa (for example, torque) read in step 2 from the pre-stored addition amount map (see FIG. 11).
  • the addition amount Wm of the corresponding reducing agent fuel is determined, and the flow control valve 10 is instructed to add the addition amount Wm into the exhaust pipe 2.
  • the addition amount Wm is an amount suitable for purifying NOx discharged from the engine 1 at the read rotation speed Na and load Pa.
  • FIG. 11 only the addition level line Wm1 to Wm4 (addition amount: Wm1> Wm4) is shown as the addition amount Wm level, but the high load side of the addition level line Wm1 is shown.
  • step 58 return to step 2.
  • step 59 the regeneration control unit 17 determines the amount of addition calculated and commanded in step 58.
  • the flow rate control valve 10 is instructed so that the reductant fuel, which is further increased by a predetermined amount R with respect to Wm, that is, the added amount (Wm + R) is added to the exhaust pipe 2.
  • the purpose of adding in a predetermined amount R and increasing (Wm + R) is the same as in the first embodiment. Further, instead of increasing the predetermined amount R, as in the first embodiment, the amount may be increased by a constant ratio r with respect to the added amount Wm.
  • step 58 of the fourth embodiment the addition amount Wm of the reducing agent fuel is obtained from the addition amount map of FIG. 11, but the N 0 x ′ concentration sensor 15 is provided as shown in FIG. Alternatively, the addition amount W may be determined as in step 8 of the first embodiment.
  • the NO x catalyst 3 when the inlet temperature T eat of the NO x catalyst 3 is equal to or less than the predetermined value TA, the NO x catalyst 3 is rapidly degraded by S 0 X. Find the fuel supply. The amount of SO x taken into the NO x catalyst 3 during the period below this predetermined value TA is calculated, and if the operating conditions of the engine 1 fluctuate and the inlet temperature T cat becomes higher than the predetermined value TA, reduction is performed. When starting to supply the reducing agent fuel, supply a predetermined amount of reducing agent fuel into the exhaust gas that is larger than the amount of reducing agent fuel suitable for the operating conditions. Then, the NOx catalyst 3 in the exhaust pipe 2 is regenerated. As a result, sufficient NOx purification performance can be obtained even with the NOx catalyst 3 that has been degraded by SOx, and SOX degradation can be recovered in a short time. Industrial applicability
  • the present invention relates to a diesel engine NOx catalyst regenerating apparatus and a regenerating method capable of regenerating a degraded catalyst in which SOx is accumulated in a NOx catalyst by sulfur in fuel supplied to a diesel engine, and the performance of the catalyst is lowered. And useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

明 細 書 ディーゼルエンジンの N 0 x触媒の再生装置及び再生方法 技 術 分 野
本発明は、 ディ一ゼルェンジンの N 0 X触媒の再生装置及び再生方法に係り、 特に、 性能が低下したディ一ゼルェンジンの N〇 X触媒を再生する装置及び方法 に関する。 背 景 技 術
従来、 ディーゼル機関の排気ガス中に含まれる N O Xを還元分解するディ—ゼ ル機関の触媒式排気浄化装置としては、 日本特開 4 一 3 3 0 3 1 4号公報が知ら れている。 同公報によれば、 ディーゼル機関の排気経路に設けられた銅ゼォライ ト系の N O X触媒と、 N 0 X触媒の上流側の排気経路に設けられて、 排気ガス中 の炭化水素濃度を検出する炭化水素センサと、 炭化水素センサの上流側の排気経 路に設けられて、 炭化水素センサの検出値に基づいて排気ガス中の炭化水素濃度 を所定範囲にすべく排気経路に燃料を噴霧する燃料噴霧手段と、 から構成されて いる。 この構成によれば、 炭化水素濃度の検出値に基づいて、 燃料噴霧手段から 排気経路内に適宜燃料が噴霧され、 排気ガス中の炭化水素濃度が所定範囲に保た れる。 燃料噴霧手段から噴霧された燃料は炭化水素系の還元剤として作用し、 デ ィ一ゼル機関の排気ガス中に含まれる酸素と共同して銅ゼォライ ト系の N O x触 媒を活性化させる。 これにより、 排気ガス中の N 0 Xの還元が促進されることが 提唱されている。 しかしながら、 この銅ゼオライ ト系の N 0 X触媒は N 0 Xの浄 化性能が小さい。 従って、 高率の N 0 X浄化性能を得るためには、 多量の還元剤 用の炭化水素を必要とし、 触媒のラ ンニングコス ト上、 問題となる。
これに対してアルカリ土類又は稀土類の酸化物と貴金属とを含む N 0 X触媒や 、 銀を活性成分とする N O X触媒は、 銅ゼォライ ト触媒に比べて少量の還元剤炭 化水素量で高い N 0 x浄化率を示すものである。
しかしながら、 このアルカリ土類又は稀土類の酸化物と貴金属とを含む高性能 の N O x触媒や、 銀を活性成分とする N O X触媒は、 少量の還元剤炭化水素でも 高率の N 0 X浄化が可能であるが、 唯一 S 0 Xに対する耐久性が悪く、 実用性が 困難であるという問題がある。 発 明 の 開 示
本発明は上記の問題点に着目してなされたもので、 ディ 一ゼルェンジンに供給 される燃料中の硫黄により N 0 X触媒に S 0 Xが蓄積されて、 性能が低下した N O x触媒を再生する再生装置及び再生方法を提供することを目的と している。 ま た、 本発明の適用対象となる N 0 X触媒は、 上記したようなアルカリ土類又は稀 土類の酸化物と貴金属を含む N O X触媒や銀を活性成分とする N O X触媒に限定 されるものではなく、 一般に排気ガス中の S 0 Xによつて短期間に劣化する N O X触媒であればどの様なものであっても適用可能である。
上記目的を達成するため、 本発明に係るディーゼルエンジンの N 0 X触媒の再 生装置の第 1の発明は、
灯油等のディーゼル燃料を還元用炭化水素である還元剤燃料として排気管中に所 定量添加し、 排気管中に配設されると共に S 0 Xを吸着して性能劣化を起こし易 い N O x触媒により、 排気 N O Xを還元浄化するディーゼルエンジンの N O x触 媒装置において、
還元剤燃料を排気管中に添加する還元剤燃料添加ノズルと、
還元剤燃料添加ノズルへの還元剤燃料の供袷量を制御する流量制御弁と、
N O X触媒の上流側に配設される N 0 X触媒入口温度センサと、
N 0 X触媒入口温度センサからの信号により N 0 X触媒の入口温度が所定値以下 で、 流量制御弁への指令が供給量ゼロの期間に、 ディーゼルエンジンへ供給した ディ一ゼル燃料の量から前記ゼロの期間に N 0 X触媒に取り込まれる S 0 X量を 演算し、 人口温度が所定値より大きくなって還元剤燃料を添加し始める場合にお いて、 ディーゼルエンジンの運転状況に適合する所定量よりも多い還元剤燃料量 を供給する指令を流量制御弁に出力する再生制御部とを備え、
運転状況に適合する量よりも多い還元剤燃料の添加により、 S 0 Xによつて性能 劣化を起こした N 0 X触媒を再生することを特徴と している。
再生装置の第 1の発明を主体とする第 2の発明は、 ディ ーゼル燃料の種類を選 択する選択スィツチと、 ディ ーゼル燃料中の硫黄含有量を検出する成分センサと のいずれか一つを備え、 再生制御部は、 選択スィ ッチ及び成分センサのいずれか —つからの信号とディーゼルェンジンへのディ一ゼル燃料供給量とから、 ディ一 ゼルエンジンより排出される S 0 X量を演算し、 入口温度が所定値以上になり還 元剤燃料を添加し始める場合において、 ディ一ゼルェンジンの運転状況に適合し た所定量よりも多い還元剤燃料量を供給する指令を流量制御弁に出力することを 特徴とする。
再生装置の第 3の発明は、
灯油等のディ一ゼル燃料を還元用炭化水素である還元剤燃料と して排気管中に所 定量添加し、 排気管中に配設されると共に S O xを吸着して性能劣化を起こし易 N O X触媒により、 排気 N 0 を還元浄化するディ一ゼルェンジンの N O x触 媒装置において、
還元剤燃料を N 0 X触媒上流側の排気管中に添加する還元剤燃料添加ノズルと、 還元剤燃料添加ノズルへの還元剤燃料の供給量を制御する流量制御弁と、 N 0 X触媒の上流側に配設される N 0 X触媒入口温度センサと、
0 X触媒の下流側に配設される炭化水素濃度センサと、
再生制御部とを備え、
再生制御部は、 N 0 X触媒入口温度センサからの信号により N 0 X触媒の入口温 度が所定値より大きく、 かつ炭化水素濃度センサからの信号により N 0 X触媒下 流側の炭化水素濃度が所定値より大きい場合、 ディ一ゼルェンジンの運転状況に 適合する所定量よりも多い還元剤燃料量を添加する指令を流量制御弁に出力して 、 S 0 Xによつて性能劣化を起こした N 0 X触媒を再生することを特徴としてい る。
本発明に係るディ ーゼルェンジンの N 0 X触媒の再生方法の第 1 の発明は、 灯油等のディ ーゼル燃料を還元用炭化水素である還元剤燃料と して排気管中に所 定量添加し、 排気管中に配設されると共に S 0 Xを吸着して性能劣化を起こ し易 い N 0 X触媒により、 排気 N 0 Xを還元浄化するディ 一ゼルエンジンの N O x触 媒による浄化方法において、
S 0 Xにより劣化した N O X触媒を再生する際、
ディ一ゼルェンジンが運転されて、 かつ N◦ X触媒の入口温度が所定温度以下で あることにより還元剤燃料の添加を中止している期間に、 N 0 X触媒に取り込ま れる S 0 Xの量を算出し、
ディ ーゼルェンジンの運転条件が変動して入口温度が所定値より大き く なつて還 元剤燃料を添加するときに、 運転状況に適合する還元剤燃料量より も多い所定の 還元剤燃料量を、 S 0 Xによる劣化を再生するために添加することを特徴と して いる。
再生方法の第 1 の発明を主体とする第 2の発明は、 運転状況に適合する還元剤 燃料量より も多い所定の還元剤燃料量は、 エンジンの運転状況によらず、 運転状 況に適合する還元剤燃料量に、 一定の還元剤燃料量を加えた量であることを特徴 とする。
再生方法の第 1 の発明を主体とする第 3の発明は、 運転状況に適合する還元剤 燃料量より も多い所定の還元剤燃料量は、 運転状況に適合する還元剤燃料量に対 して、 一定の割合だけ増加させた還元剤燃料量であることを特徴とする。
再生方法の第 1 の発明を主体とする第 4の発明は、 運転状況に適合する還元剤 燃料量より も多い所定の還元剤燃料量は、 運転状況から決まる排気ガス中の N 0 X漉度、 排ガス流量及び排ガス温度と、 N 0 X触媒に取り込まれている S 0 Xの 量とから演算して求められる可変量であることを特徴とする。
再生方法の第 1 の発明を主体とする第 5の発明は、 N O X触媒に取り込まれて いる S 0 X量の算出は、 ディ ーゼルエンジンへのディ ーゼル燃料の供給量より求 めることを特徴とする。
再生方法の第 1の発明を主体とする第 6の発明は、 N O X触媒の再生が完了す る前に、 ディーゼルエンジンの運転条件が変動し、 入口温度が所定値以下になつ て還元剤燃料の添加を停止する時には、 添加停止時点での N O X触媒の累積 S 0 X重 ¾ tlし、
還元剤燃料添加の停止期間での N 0 x触媒の S 0 X累積量は、 記憶された累稜 S 0 X量に対して逐次、 停止期間でのディ一ゼルェンジン運転条件に応じて N 0 X 触媒に取り込まれる S 0 X量を加算して求めることを特徵とする。
再生方法の第 1の発明を主体とする第 7の発明は、 N 0 X触媒の再生が完了す る前に、 ディーゼルエンジンが停止するときには、 停止時点での N 0 X触媒の累 積 S O x量を記憶し、 ディーゼルエンジンの停止後、 累積 S O x量の記憶を保持 し、 次回のディーゼルエンジンの運転時、 記憶された累積 S 0 X量に逐次、 N O X触媒に新たに取り込まれる S 0 X量を加算することを特徴とする。
再生方法の第 1の発明を主体とする第 8の発明は、 N O X触媒への S 0 Xの取 り込み量は、 ディ 一ゼルェンジンに供給されるディーゼル燃料中の硫黄含有量に より求めることを特徴とする。
再生方法の第 1の発明を主体とする第 9の発明は、 N O X触媒の再生が完了し たとき、 運転状況に適合する還元剤燃料量よりも多い所定の還元剤燃料量を、 再 生完了時点でのディ一ゼルェンジンの運転状況に適合した量に変更することを特 徴とする。
再生方法の第 9の発明を主体とする第 1 0の発明は、 N O x触媒の再生が完了 したと判定される時点は、 再生中において N O X触媒から除去される S 0 X量を 逐次演算し、 同時に N 0 X触媒に残留している S 0 X量から除去 S 0 X量を減じ て再生中の残留 S O x量を算出し、 この算出した再生中の残留 S O X量が所定値 以下になつた時であることを特徵とする。
再生方法の第 1 0の発明を主体とする第 1 1の発明は、 再生中において N O x 触媒から除去される S 0 X量は、 再生時のディ一ゼルェンジンの運転状況から決 まる排気ガス中の N 0 x濃度、 排ガス流量、 排ガス温度、 N O x触媒に取り込ま れている S 0 X量、 及び還元剤^料の添加量の少なく とも 1 つ以上により演算し て求められることを特徴とする。
再生方法の第 1 2の発明は、
灯油等のディ 一ゼル燃料を還元用炭化水素である還元剤燃料と して排気管中に所 定量添加し、 排気管中に配設されると共に S 0 Xを吸着して性能劣化を起こ し易 い N O X触媒により、 排気 N 0 Xを還元浄化するディ 一ゼルエンジンの N O X触 媒による浄化方法において、
S 0 Xにより劣化した N 0 X触媒を再生する際、 N 0 X触媒の上流側の入口温度 が所定値より大き く 、 かつ N 0 X触媒の下流側の炭化水素濃度が所定値より大き い場合、 ディ ーゼルェンジンの運転状況に適合する所定量より も多い還元剤燃料 量を添加することを特徴と している。
以上の本発明に関する作用原理について、 アル力 リ土類又は稀土類の酸化物と 貴金属とを含む N O X触媒を例にして説明する。 アル力 リ土類又は稀土類の酸化 物と貴金属とを含む N O x 触媒は、 還元剤炭化水素が添加されていない場合、 或 いは触媒の温度が所定の温度以下であり遝元剤炭化水素が添加されていても N 0 X浄化反応と して作用しない場合には、 排気ガス中の S 0 Xによって急速に劣化 することが判った。 さ らに、 S 0 Xを取り込むことによって劣化した触媒は、 温 度が所定以上になり還元剤炭化水素が反応し始めると、 取り込んだ S 0 Xを触媒 表面より放出し、 性能を回復する。 その回復速度は、 排ガスの温度、 排ガス中の N O x漣度 (量) 、 排ガスに添加される還元剤炭化水素の量、 及び N O x触媒に 取り込まれている S O Xの量に依存することが判った。 本発明は以上の知見を基 になされたものである。 このため、 まず、 N 0 X触媒上流側温度及びエンジン負 荷が所定値以下の時における、 ディ ーゼルェンジンへの燃料の供給量から排ガス 中の S O x量を求めて、 N 0 X触媒に取り込まれる S 0 X量を算出する。 この演 算処理を触媒上流側温度が所定値以下でエンジンが運転されている期間継続し、 N 0 X触媒に取り込まれる S 0 X量を積算する。 その後、 エンジンの運転条件が '変動して N O x触媒入口の温度が所定値以上になつた場合に、 排気ガス中に運転 状況に適合した還元剤燃料量より も多い所定の還元剤燃料量を供給し、 排気管中 の N 0 X触媒を再生する。 この時に供給する還元剤燃料をェンジン運転状況に適 合した量と した場合、 N O Xの浄化性能は不十分であると同時に、 S O xによつ て劣化した N O x触媒の再生も緩慢なものとなる。 従って、 還元剤燃料の供給を 開始してからなるベく短時間のうちに N 0 X触媒の性能を回復させるために、 適 合量より も多い還元剤燃料を供給する必要が有る。
図 1 3 A〜図 1 3 Dに示すように、 排気ガス中の酸素と二酸化硫黄が N 0 X触 媒に入ると、 N 0 X触媒の活性金属の担体は硫酸塩化担体となり S 0 X劣化状態 に変質する。 この S 0 X劣化状態に変質した担体は炭化水素と酸化窒素が入ると 、 酸性硫安が生成し、 これが担体細孔内より揮発することによって、 担体は再活 性化状態に戻るものと推定している。 この酸性硫安の生成速度はガス中の N 0 X 濃度、 炭化水素濃度、 温度に依存し、 さ らに酸性硫安の揮発速度はガスの温度に 依存する。 従って、 運転状況に適合した量より も過多な還元剤燃料を供袷して N 0 X触媒を再生する時間は、 ディ ーゼルエンジンの運転状況及び N 0 X触媒入口 のガス温度を基にして決められるものであることが判る。
上記 N 0 X触媒の S 0 X劣化及び再生メ 力ニズムは、 N O x触媒と してアル力 リ土類又は稀土類の酸化物と貴金属を含むものにおいてであるが、 A g /アルミ ナ触媒の様に S 0 Xによつて急速に性能劣化を示す他の N 0 X触媒においても同 様の再生メカニズムで S O X劣化を再生することができると考えられる。 図面の簡単な説明
図 1 は本発明の第 1実施例に係るディ一ゼルェンジンの N 0 X触媒の再生装置 の構成説明図である。
図 2 は本発明の第 1 実施例に係る N 0 X触媒の再生方法のフローチヤー トであ る。
図 3 は本発明の第 1実施例に係る N O x触媒の温度と N O x触媒中の S O x除 去効率との関係を示す図である。
図 4は本発明の第 1実施例に係る N O X触媒の累積 S O x量と N O X触媒中の S 0 X除去効率との関係を示す図である。
図 5は本発明の第 2実施例に係るディーゼルエンジ ンの N 0 X触媒の再生装置 の構成説明図である。
図 6は本発明の第 2実施例に係る N 0 X触媒の再生方法のフ 口一チヤ一 卜であ る。
図 7は本発明の第 3実施例に係る N O X触媒の再生方法のフローチヤ一卜であ る。
図 8は本発明の第 3実施例に係る還元剤燃料の添加量と N 0 X触媒中の S 0 X 除去効率の関係を示す図である。
図 9は本発明の第 4実施例に係るディ ーゼルエンジ ンの N 0 X触媒の再生装置 の構成説明図である。
図 1 0は本発明の第 4実施例に係る N 0 X触媒の再生方法のフローチヤ一卜で ある。
図 1 1 は本発明の第 4実施例に係る還元剤燃料の添加量マップである。
図 1 2は本発明の第 4実施例に係る N 0 X浄化率、 炭化水素濂度及び炭化水素 濃度所定値の関係を示す図である。
図 1 3 A〜図 1 3 Dは本発明に係る N 0 X触媒の S 0 x劣化から再活性化まで のメカニズムのステップを説明する図であって、 図 1 3 Aは第 1 ステップとなる
S 0 X劣化過程の説明図である。
図 1 3 Bは第 2ステップとなる S 0 X劣化状態の説明図である。
図 1 3 Cは第 3ステツプとなる再活性化過程の説明図である。
図 1 3 Dは第 4ステップとなる再活性化状態の説明図である。 発明を実施するための最良の形態
以下に、 本発明の実施例について、 図面を参照して説明する。 図 1 は、 本発明 の第 1実施例に係る N O x触媒 3の再生装置であって、 ディ ーゼルエンジン 1 ( 以下、 エンジン 1 という) からの排気管 2には、 排気ガス中の N O Xを浄化する N O X触媒 3が配設されている。 N O x触媒 3 は、 アルカ リ土類又は稀土類の酸 化物と貴金属とを含み、 かつ S〇 Xを吸着し易い N O X用触媒 (例えば、 酸化バ リ ウムとパラディ ウムとを含む N O X用触媒) 、 或いは銀を活性成分と してこれ をアルミ ナに担持されてなる N 0 X用触媒から構成されている。
エンジン 1 には、 エンジン回転速度を検出する回転速度セ ンサ 4が配設され、 アクセルペタル (図示せず) に連動するエンジン 1 のレバー (図示せず) には、 ディ ーゼル燃料の噴射量 (即ち、 エンジン 1 へのディ ーゼル燃料の供袷量) を測 定する噴射量検出センサ 5が配設されている。 エンジン 1 と N 0 X触媒 3 との間 には、 還元剤燃料 (還元用炭化水素) を排気ガスに添加する還元剤燃料添加ノズ ル 7が配設されている。 還元剤燃料添加ノズル 7 には、 燃料タ ンク 8 よりポンプ 9を経た燃料が、 流量制御弁 1 0 により流量を制御されて供給されている。 流量 制御弁 1 0 は、 後述するコン トローラからの指令によりエンジン 1 の運転条件に 合わせて制御され、 エンジン 1 から排出される N 0 Xを浄化するために必要十分 な量の還元剤燃料を、 還元剤燃料添加ノズル 7 に供給している。 エンジン 1 を運 転するための燃料は、 燃料タ ンク 8から噴射ポンプ 1 1 により噴射ノズル (図示 せず) に供袷され、 エンジン 1 のシリ ンダ内に噴射される。
N 0 X触媒 3の上流側の排気管 2中には、 N 0 X触媒 3入口温度セ ンサ 1 4 ( 以下、 温度センサ 1 4 という) と、 N O x濃度センサ 1 5が配設されている。 ま た、 燃料夕 ンク 8 と噴射ポンプ 1 1 の間には、 エンジン 1 を運転するための燃料 中の硫黄含有量の成分を検出する成分検出センサ 1 6が配設されている。 尚、 成 分検出センサ 1 6の設置場所は、 還元剤燃料の流路上或いは燃料夕 ンク 8の中で あってもよい。 各センサ 4、 5、 1 4、 1 5、 1 6 は再生制御部 1 7 に接続され ている。 再生制御部 1 7 はコ ン ト ローラにより構成され、 回転速度センサ 4、 噴 射量検出センサ 5、 温度セ ンサ 1 4、 N 0 X濃度センサ 1 5及び成分検出センサ 1 6からの信号を受けて、 N◦ X触媒 3の再生の指令を出力している。 本実施例 では、 NO x触媒 3の温度は、 N 0 X触媒 3の上流側に装着した温度センサ 1 4 により測定したが、 N 0 X触媒 3の下流側に温度セ ンサ 1 4を装着して測定して も良いことはいうまでもない。
上記構成よる N 0 X触媒 3の再生方法について、 図 2に示すフローにしたがつ て説明する。
ステップ 1では、 成分検出センサ 1 6によりエンジン 1を運転するための燃料 に含有される硫黄の量 S cを検出する。 ステップ 2では、 回転速度センサ 4及び 噴射量検出センサ 5からの信号に基づき、 エンジ ン 1のェンジン回転速度 N a、 及びエンジン 1 に作用 している負荷 P a等、 運転伏況を再生制御部 1 7により求 める。 ステップ 3では、 温度センサ 1 4により NO X触媒 3の入口温度 T c a t ¾ 読み む o
ステップ 4では、 NO X触媒 3の入口温度 T c a tがしきい値 T A より大きい か、 否かを判定する。 例えば トラ ッ クや発電機等において、 低負荷で排気温度が 低い場合には、 N 0 X触媒 3が働かないため、 還元剤の添加を止める必要がある 。 この還元剤添加を中止している条件下では、 NO X触媒 3が S 0 X劣化を被る ことになる。
ステップ 4で NO X触媒 3の入口温度 T c a t力《しきい値 T A より小さいとき には、 ステップ 5に行く。 ステップ 5では、 エンジ ン 1 より排出される S O x量 (E x S O x ) を演算し求める。 これは、 使用燃料の種類とエンジン 1 にて燃焼 される量により決ま り、 本実施例では、 ステップ 2で読み取ったエンジン 1の運 転条件、 即ちェンジン回転速度 N a及び負荷 P aに基づいて、 エンジン 1のシ リ ンダ内への燃料の供給量より求める。
ステップ 6では、 排出される S O x量 (E x S O x) から、 NO x触媒 3に取 り込まれる S O X量 (α · E x S O x) を求めるとと もに、 累積の S O x量 (C a t S O x) を求める。 本実施例では、 NO x触媒 3に取り込まれる累積の S O X量 (C a t S O x) を 〔C a t S O x = C a t S O x + a ' E x S O x〕 で演 算する。 ステップ 6の後、 ステップ 1 に戻るが、 燃料の変更は一般に頻繁にはな されないため、 ステップ 2 に戻ってもよい。
ステップ 4で、 入口温度 T c a tがしきい値 T A より大きい場合には、 ステツ プ 7 に行く。 ステップ 7では、 累積の S O x量 (C a t S 0 x ) がしきい値 S A より大きいか、 否かを判定している。 ステップ 7で累積の S 0 X量 (C a t S 0 x ) 力くしきい値 S A より小さい場合には、 ステップ 8に行く。 ステップ 8では、 再生制御部 1 7 はエンジン 1 の運転条件に合わせて制御され、 エンジン 1 から排 出される N O Xを浄化するために適合する還元剤燃料の添加量 Wを排気管 2中に 添加するように、 流量制御弁 1 0 に指令を出力する。
本実施例では、 エンジン 1 の運転条件と してステップ 2 にて読み取ったデータ 、 即ちェンジン回転速度 N a とエンジン 1 の負荷 P a とにより、 排気ガスの流量 を求めている。 更に、 本実施例では、 N 0 X濃度センサ 1 5から得られた排気ガ ス中の N O X濃度値と掛けあわせて求められる排出 N O X量と、 N O X触媒 3の 性能とから、 必要な還元剤燃料の添加量を求めている。 しかし、 トラ ッ クなどの 用途ではォンボ一 ドで使える N O X濃度センサが開発されていないため、 予めマ ップデータと して、 ェンジン回転速度 N a及び負荷 P aにより還元剤燃料の添加 量を求めてもよい。
ステップ 8が行われると、 ステップ 1 に戻るが、 これはステップ 6 と同様にス テツプ 2 に戻ってもよい。 ステップ 7で累積の S O x量 (C a t S O x ) がしき い値 S A より大きい場合には、 ステップ 9に行く。
ステップ 9では、 ステップ 8にて算出して指令される添加量 Wに対して、 更に 所定量 Rを増加した還元剤燃料、 即ち添加量 (W + R ) を、 排気管 2中に添加す るように、 流量制御弁 1 0 に指令を出力する。 この目的は、 一つには、 エンジン 1 の運転条件に適合する添加量 Wより も多量の添加量 W + Rと しなければ、 必要 な N O X浄化性能が達成できないこと、 二つには、 S 0 Xによって劣化した N 0 X触媒 3の再生速度を早めるためである。 本実施例では、 還元剤燃料の増量分 R をエンジン 1 の運転条件に関わらず常に一定量と しているが、 エンジン 1 の運転 条件から決まる添加量 Wに対して一定の割合 rだけ増量させると言う制御でも良 い。 この場合には、 ステップ 8にて実行すると同様の作業をステップ 9において も実施することになる。
ステップ 9が行われると、 ステップ 1 0に移り、 エンジン 1の運転条件、 NO X触媒 3の入口温度 T c a t、 累積の S O x量 (C a t S 0 x ) 、 及び還元剤燃 料添加量 Rに基づいて、 この条件下で NO X触媒 3から除去される S O x量 U s ¾·求める。
本実施例では、 NO x濃度センサ 1 5により得られた排気中の N 0 X濃度を測 定する。 また、 N 0 X触媒 3中の S 0 Xが除去される効率 K aは、 触媒表面にて 生成する含窒素炭化水素化合物 '濃度、 即ち、 排気中の N 0 X濃度と添加されてい る還元剤燃料の量と排ガス温度とに依存する。 この温度に対して除去効率 K aは 、 図 3に示すように最適温度がある。 図 3は、 横軸に温度を、 縦軸に NO x触媒 3中の S 0 Xが除去される効率 K aをと つている。 また、 積算されている S O x 量 (C a t S O x) が大きい場合には、 除去効率 K aは、 図 4に示すように小さ く なる。 図 4は、 横軸に NO X触媒 3に蓄積されている S 0 X量を、 縦軸に N O X触媒 3中の S 0 Xの除去効率 K aをと つている。 これらの全ての条件を含めて 、 再生制御部 1 7は、 NO x触媒 3から除去される S O x量 U s、 即ち NO x触 媒 3の S 0 X劣化の再生量 U sを求める。
ステップ 1 1では、 N 0 X触媒 3から除去される S 0 X量 U sに応じて、 N O X触媒 3の累積 S O x量 (C a t S 0 X ) の数値データが、 〔C a t S O x = C a t S 0 x— U s〕 の式に従って更新される。 ステップ 1 1が終了すると、 ス テツプ 1 2に移りエンジン 1が運転されているか否かを判断する。 エンジン 1が 引続き運転されていると判断された場合には、 ステップ 1 に戻るが、 これはステ ップ 6と同様にステップ 2に戻つてもよい。
この一連のサイ クルを繰り返すことによって、 NO x触媒 3に蓄積されている S O x量 (C a t S O x) は低下し、 やがてステップ 7での判定動作において N 0 X触媒 3が再生し終わったと判定されることになる。
ステップ 1 2でエンジン 1が停止していると判断された場合には、 制御を終了 する。 エンジン 1 が停止した時点においては、 通常、 N 0 X触媒 3 は S 0 Xによ る劣化状態を維持したままになっている。 このため本実施例では、 ステップ 1 3 で、 この時点での N O X触媒 3 に蓄積されている S O x量 (C a t S O x ) のデ 一夕を、 エンジン 1 が停止した伏態においても保持できる不揮発性メモリ 一に記 憶させている。 次回のエンジン 1運転時に、 この記憶データを用いて N 0 X触媒 3の S 0 X劣化状態を演算することにしている。
図 5 は、 本発明の第 2実施例に係るディ ーゼルェンジン 1 の N O X触媒 3の再 生装置の構成説明図である。 なお、 第 1 実施例と同一部品には同一符号を付して 説明は省略する。 第 1 実施例では、 エンジン 1 を運転するための燃料の成分を検 出する成分検出セ ンサ 1 6を用いたが、 第 2実施例では、 ディ ーゼル燃料の種類 を選択する選択スィ ツチ 2 1 を配設し、 選択スィ ツチ 2 1 は再生制御部 1 7 に接 続されている。 例えば、 選択スィ ッチ 2 1 には、 灯油、 或いは軽油等の選択位置 が付設され、 使用するディ 一ゼル燃料の種類によりオペレータにより切り換えら れる。
図 6 に示すフローにしたがって、 第 2実施例での制御方法について説明する。 なお、 第 1 実施例と同一のステップには同一のステップ番号を付して説明は省略 する。 ステップ 2 1 では、 オペレータによって設定された選択スィ ッチ 2 1 のポ ジシ ョ ンから、 再生制御部 1 7のコン トローラは選択されたディ 一ゼル燃料に含 まれている硫黄量 S cを決定する。 次に、 ステップ 2に行く力 、 ステップ 2以降 は第 1 実施例と同一のため、 説明を省略する。
次に、 図 7 に示すフローにしたがって、 ディ ーゼルエンジン 1 の N 0 X触媒 3 の第 3実施例に係わる制御方法について説明する。 第 3実施例の機械構成要件は 第 1 又は第 2実施例と同であり、 説明を省略する。 なお、 第 1 実施例と同一のス テツプには同一のステップ番号を付して説明は省略する。 ステップ 1 〜 7、 ステ ップ 8、 及びステップ 1 1 以降の動作は第 1 実施例と同一である。 第 3実施例は 、 第 1 実施例でのステップ 9 とステップ 1 0が異なる。
ステップ 7で N 0 X触媒 3の累積 S 0 X量 ( C a t S 0 x ) がしきい値 S A よ り大きい場合には、 ステップ 3 9に行く。 ステップ 3 9では、 N O X.触媒 3に蓄 積された S O x (C a t S O x) を除去するため、 その時点で最も効率的な、 即 ち最適な還元剤燃料の添加量 R eを算出する。
添加量 R eについて、 説明する。 N 0 X触媒 3中の S 0 Xの除去効率 K aは、 還元剤燃料の添加量を增やすに従って高くなるが、 やがては頭打ちになる。 図 8 は、 横軸に蓄積 S 0 Xの除去のための還元剤燃料の添加量を、 縦軸に NO X触媒 3中の S 0 Xの最高除去効率 Km a xに対する除去効率 K aの比 をとっている 。 図 8から分かるように、 頭打ちになりはじめる添加量は、 排気ガス温度が低い ほど小さ くなる。 さらに、 比 /3は第 1実施例の再生方法の説明で述べたように、 エンジン 1の運転条件、 N 0 X触媒 3の入口温度 T c a t、 及び積算されている S O x量 (C a t S O x) により異なってく る。 そこで再生制御部 1 7は、 その 時点で最も効率的に NO x触媒 3から蓄積された S O xを取り除けることの出来 る還元剤燃料の最適添加量 R eを、 還元剤の消費量、 即ちエンジン 1の燃費を考 慮にいれて決定し、 この最適添加量 R eとエンジン 1の運転条件に適合する添加 量 Wとを加算し、 還元剤燃料添加量 R e +Wを排気管 2中に添加するように、 流 量制御弁 1 0に指令を出力する。
ステップ 3 9が行われると、 ステップ 4 0に移り、 この添加量 R eによる N 0 X触媒 3の S 0 Xの再生量 U sを求めて、 第 1実施例のステップ 1 1 に移り、 以 降の動作を実施するが、 その説明は省略する。
次に、 本発明の第 4実施例に係る N 0 X触媒 3の再生について説明する。 第 4 実施例は、 図 9に示すように、 第 1実施例の図 1 に対し、 成分検出センサ 1 6及 び NO x濃度センサ 1 5の配設を省略すると共に、 N 0 X触媒 3の下流側の排気 管 2中には、 炭化水素澳度センサ 1 2を配設している。 炭化水素濃度センサ 1 2 により、 NO X触媒 3から排出される排気ガス中の炭化水素濃度 H Cを検出して いる。
かかる構成よる N 0 X触媒 3の再生方法について、 図 1 0に示すフローにした がって説明する。 第 1実施例と比較して、 ステップ 2〜 4は同一であるが、 ステ ップ 1を省略し、 更にステップ 4より後のステップを変更している。
ステップ 4で入口温度 T c a tがしきい値 T A 以下の場合、 ステップ 5 5に行 く。 ステップ 5 5で再生制御部 1 7は、 NO X触媒 3の状態変数 n = 1 を不揮発 性メモリ (図示せず) に記憶させ、 次にステップ 2に戻る。 この状態変数 nは、 S 0 X蓄積による N 0 X触媒 3の状態を示す変数であり、 「n = 0」 が NO x触 媒 3の未劣化状態、 一方 「 n = 1」 が N 0 X触媒 3の劣化状態と して設定してい る。 尚、 ステップ 4での 「小さい」 場合、 NO X触媒 3は必ずしも劣化状態では ない、 即ち状態判定前である。 しかし、 入口温度 T e a tが低温であっても、 N 0 X触媒 3に S 0 Xが蓄積して劣化している可能性があるので、 ステップ 4での 「小さい」 場合を劣化状態と設定している。
ステップ 4で入口温度 T c a tがしきい値 TA より大きい場合、 ステップ 5 7 に行き、 不揮発性メモリ に記憶されている N 0 X触媒 3の状態変数 nが 「 1」 ( 劣化状態) であるか、 「 0」 (未劣化状態) であるかを調べる。 n = 0の場合、 ステップ 5 8に、 n = 1の場合、 ステップ 5 9に行く。
ステップ 5 8で再生制御部 1 7は、 予め記憶されている添加量マップ (図 1 1 参照) から、 ステップ 2で読み込んだエンジン回転速度 N a及びエンジン負荷 P a (例えば、 トルク) のデータに対応する還元剤燃料の添加量 Wmを求め、 添加 量 Wmを排気管 2中に添加するように、 流量制御弁 1 0に指令する。 添加量 Wm は、 読み込んだ回転速度 N a及び負荷 P aでのェンジン 1から排出される NO x を、 浄化するために適合する量である。 図 1 1では、 添加量 Wmレベルと して、 添加量レベル線 Wm 1〜Wm 4 (添加量 : Wm 1 〉 Wm 4 ) だけを図示している が、 添加量レベル線 Wm 1の高負荷側及び各添加量レベル線 Wm 1〜Wm 4間は 更に細かいメ ッ シュに区分され、 各メ ッ シュ毎に添加量 Wmll、 Wml2、 · · が 入力されている。 尚、 回転速度 N a又は負荷 P aが小さい領域では、 入口温度 T c a tが低温のため NO x触媒 3が有効に作動しないので、 本実施例では、 還元 剤燃料の添加なしと している。 ステップ 5 8の後、 ステップ 2に戻る。
ステップ 5 9で再生制御部 1 7は、 ステップ 5 8にて算出し指令される添加量 Wmに対して、 更に所定量 Rを増加した還元剤燃料、 即ち添加量 (Wm+ R) を 、 排気管 2中に添加するように、 流量制御弁 1 0に指令する。 所定の添加量 R、 及び増量 (Wm + R) して添加する目的は、 第 1実施例と同じである。 又、 所定 量 Rの増加の代わりに、 第 1実施例と同様に、 添加量 Wmに対して一定割合 rだ け増量させても良い。
ステッ プ 6 0で再生制御部 1 7は、 炭化水素濃度センサ 1 2が検出した N 0 X 触媒 3下流側の炭化水素濃度 H Cが所定値 H C o以下か否かを判定し、 所定値 H C o以下の場合、 ステップ 6 1 に行く。 所定値 H C 0以下の場合は、 図 1 2に示 すように、 NO X浄化率が高い状態、 即ち NO X触媒 3が良好な状態である。 従 つて、 ステップ 6 1では、 N 0 X触媒 3の伏態変数 n = 0を不揮発性メモリ に記 憶させ、 ステップ 2に戻る。
炭化水素濃度 H Cが所定値 H C oより大きい場合はステッ プ 6 2に行き、 ェン ジン 1が運転されているか否かを判断する。 エンジ ン 1が引続き運転されている と判断された場合には、 ステップ 2に戻る。 一方、 エンジン 1が停止している場 合には、 ステ ップ 6 3に行き、 N 0 X触媒 3の伏態変数 n = 1、 即ち劣化状態を 不揮発性メモリ に記憶させて、 終了する。 以上の本実施例のサイ クルを繰り返す ことによつても、 N O x触媒 3の S O x量 (C a t S 0 x ) が低下して、 N 0 x 触媒 3が再生される。
第 4実施例のステップ 5 8では、 図 1 1の添加量マップから、 還元剤燃料の添 加量 Wmを求めているが、 図 1のように N 0 x'濃度センサ 1 5を配設し、 第 1実 施例のステップ 8のようにして、 添加量 Wを求めてもよい。
以上説明したよう に本発明によれば、 S 0 Xによつて急速に劣化する NO X触 媒 3に対し、 NO x触媒 3の入口温度 T e a tが所定値 TA以下の時のエンジン 1への燃料の供給量を求める。 この所定値 T A以下の期間に NO x触媒 3に取り 込まれた S O x量を算出し、 またエンジ ン 1の運転条件が変動して入口温度 T c a tが所定値 T Aより大き く なつて、 還元剤燃料を供給し始める場合は、 運転状 況に適合した還元剤燃料量より も多い所定の還元剤燃料量を排気ガス中に供給し て、 排気管 2中の N 0 x触媒 3を再生する。 これにより、 S O xで劣化した NO X触媒 3でも十分な N 0 X浄化佺能を得られると共に、 短時間に S 0 X劣化を回 復させることができる。 産業上の利用可能性
本発明は、 ディーゼルエンジンに供給される燃料中の硫黄により NO X触媒に S O xが蓄積されて、 性能が低下した触媒を再生できるディ一ゼルェンジンの N 0 X触媒の再生装置及び再生方法と して有用である。

Claims

請 求 の 範 囲
1 . 灯油等のディ一ゼル燃料を還元用炭化水素である還元剤燃料と して排気管(2 ) 中に所定量添加し、 前記排気管(2) 中に配設されると共に S 0 Xを吸着して性 能劣化を起こし易い N O X触媒(3) により、 排気 N O Xを還元浄化するディーゼ ルエンジンの N 0 X触媒装置において、
還元剤燃料を前記排気管(2) 中に添加する還元剤燃料添加ノズル(7) と、 前記還元剤燃料添加ノズル(7) への還元剤燃料の供給量を制御する流量制御弁 ( 10)と、
前記 N O X触媒(3) の上流側に配設される N O X触媒入口温度センサ(14)と、 前記 N O X触媒入口温度センサ(14)からの信号により前記 N O X触媒(3) の入 口温度が所定値以下で、 前記流量制御弁(10)への指令が供給量ゼロの期間に、 デ ィーゼルェンジン(1 ) へ供給したディ 一ゼル燃料の量から前記ゼロの期間に前記 N O x触媒(3) に取り込まれる S◦ X量を演算し、 前記入口温度が所定値より大 きくなつて還元剤燃料を添加し始める場合において、 前記ディ一ゼルェンジン(1 ) の運転状況に適合する所定量よりも多い還元剤燃料量を供給する指令を前記流 量制御弁(10)に出力する再生制御部(17)とを備え、
前記運転状況に適合する量よりも多い還元剤燃料の添加により、 S 0 Xによつ て性能劣化を起こした前記 N 0 X触媒(3) を再生することを特徴とするディーゼ ルェンジンの N 0 X触媒の再生装置。
2 . ディ ーゼル燃料の種類を選択する選択スィ ッチ(21 )と、 ディーゼル燃料中の 硫黄含有量を検出する成分センサ(16)とのいずれか一つを備え、
前記再生制御部(17)は、 前記選択スィツチ(21 )及び前記成分センサ(16)のいず れか一つからの信号と前記ディ一ゼルエンジン(1 ) へのディーゼル燃料供給量と から、 前記ディ ーゼルエンジン(1) より排出される S◦ X量を演算し、 前記入口 温度が所定値以上になり還元剤燃料を添加し始める場合において、 前記ディ ーゼ ルェンジン(1 ) の運転状況に適合した所定量よりも多い還元剤燃料量を供袷する 指令を前記流量制御弁(10)に出 することを特徴とする請求の範囲 1記載のディ ーゼルェンジ ンの N 0 X触媒の再生装置。
3 . 灯油等のディ一ゼル燃料を還元用炭化水素である還元剤燃料と して排気管(2 ) 中に所定量添加し、 前記排気管(2) 中に配設されると共に S O xを吸着して性 能劣化を起こし易い N 0 X触媒(3) により、 排気 N O Xを還元浄化するディーゼ ルエンジンの N 0 X触媒装置において、
還元剤燃料を前記 N 0 X触媒(3) 上流側の前記排気管(2) 中に添加する還元剤 燃料添加ノズル(7) と、
前記還元剤燃料添加ノズル(7) への還元剤燃料の供給置を制御する流量制御弁 (10)と、
前記 N 0 X触媒(3) の上流側に配設される N 0 X触媒入口温度センサ(14)と、 前記 N O X触媒(3) の下流側に配設される炭化水素濃度センサ(12)と、 再生制御部(17)とを備え、
前記再生制御部(17)は、 前記 N 0 X触媒入口温度センサ(14)からの信号により 前記 N O X触媒(3) の入口温度が所定値より大きく、 かつ前記炭化水素濃度セン サ(12)からの信号により前記 N 0 X触媒(3) 下流側の炭化水素濃度が所定値より 大きい場合、 前記ディ 一ゼルェンジン(1 ) の運転状況に適合する所定量よりも多 い還元剤燃料量を添加する指令を前記流量制御弁(10)に出力して、 S O xによつ て性能劣化を起こした前記 N O X触媒(3) を再生することを特徴とするディ一ゼ ルェンジンの N 0 X触媒の再生装置。
4 . 灯油等のディ ーゼル燃料を還元用炭化水素である還元剤燃料として排気管(2 ) 中に所定量添加し、 前記排気管(2) 中に配設されると共に S 0 Xを吸着して性 能劣化を起こし易い N 0 X触媒(3) により、 排気 N 0 Xを還元浄化するディーゼ ルエンジンの N 0 X触媒による浄化方法において、 ' S O xにより劣化した前記 N O x触媒(3) を再生する際、
ディーゼルエンジン(1) が運転されて、 かつ前記 N O x触媒(3) の入口温度が 所定温度以下であることにより還元剤燃料の添加を中止している期間に、 前記 N O x触媒(3) に取り込まれる S 0 Xの量を算出し、
前記ディーゼルェンジ ン(1) の運転条件が変動して前記入口温度が所定値より 大きく なつて還元剤燃料を添加するときに、 運転状況に適合する還元剤燃料量よ りも多い所定の還元剤燃料量を、 S O xによる劣化を再生するために添加するこ とを特徴とするディ 一ゼルエンジンの N O X触媒の再生方法。
5 . 請求の範囲 4記載のディーゼルエンジ ンの N 0 X触媒の再生方法において、 前記運転状況に適合する還元剤燃料量よりも多い所定の還元剤燃料量は、 ェン ジンの運転伏況によらず、 運転状況に適合する還元剤燃料量に、 一定の還元剤燃 料量を加えた量であることを特徴とするディーゼルエンジンの N 0 X触媒の再生 方法。
6 . 請求の範囲 4記載のディ 一ゼルェンジンの N O X触媒の再生方法において、 前記運転状況に適合する還元剤燃料量より も多い所定の還元剤燃料量は、 運転 状況に適合する還元剤燃料量に対して、 一定の割合だけ増加させた還元剤燃料量 であることを特徴とするディ一ゼルェンジンの N 0 X触媒の再生方法。
7 . 請求の範囲 4記載のディーゼルエンジンの N 0 X触媒の再生方法において、 前記運転状況に適合する還元剤燃料量よりも多い所定の還元剤燃料量は、 運転 状況から決まる排気ガス中の N O X濃度、 排ガス流量及び排ガス温度と、 前記 N 0 X触媒(3) に取り込まれている S O xの量とから演算して求められる可変量で あることを特徴とするディ一ゼルェンジンの N 0 X触媒の再生方法。
8 . 請求の範囲 4記載のデイ ーゼルエンジ ンの N O x触媒の再生方法において、 ' 前記 N O x触媒(3) に取り込まれている S 0 x量の算出は、 前記ディ ーゼルェ ンジン(1) へのディーゼル燃料の供給量より求めることを特徴とするディーゼル エンジンの N 0 X触媒の再生方法。
9 . 請求の範囲 4記載のディ一ゼルェンジンの N 0 X触媒の再生方法において、 前記 N O x触媒(3) の再生が完了する前に、 前記ディ ーゼルエンジン(1) の運 転条件が変動し、 前記入口温度が所定値以下になって還元剤燃料の添加を停止す る時には、 前記添加停止時点での N 0 X触媒(3) の累積 S O X量を記憶し、 還元剤燃料添加の停止期間での前記 N 0 X触媒(3) の S O X累積量は、 前記記 憶された累積 S 0 X量に対して逐次、 前記停止期間でのディ ーゼルエンジン(1) 運転条件に応じて前記 N 0 X触媒(3) に取り込まれる S 0 X量を加算して求める ことを特徵とするディ一ゼルェンジンの N 0 X触媒の再生方法。
1 0 . 請求の範囲 4記載のディーゼルエンジンの N 0 X触媒の再生方法において 前記 N O x触媒(3) の再生が完了する前に、 前記ディーゼルエンジン(1) が停 止するときには、 前記停止時点での N 0 X触媒(3) の累積 S O X量を記憶し、 前記ディーゼルエンジン(1) の停止後、 前記累積 S O x量の記憶を保持し、 次回の前記ディ ーゼルエンジン(1) の運転時、 前記記憶された累積 S 0 X量に 逐次、 前記 N O x触媒(3) に新たに取り込まれる S 0 X量を加算することを特徴 とするディーゼルエンジンの N O X触媒の再生方法。
1 1 . 請求の範囲 4記載のディ ーゼルエンジンの N 0 X触媒の再生方法において 前記 N O x触媒(3) への S 0 Xの取り込み量は、 前記ディーゼルエンジン(1) に供給されるディーゼル燃料中の硫黄含有量により求めることを特徴とするディ —ゼルェンジンの N 0 X触媒の再生方法。
1 2 . 請求の範囲 4記載のディ ーゼルエンジンの N 0 x触媒の再生方法において 前記 N O X触媒(3) の再生が完了したとき、 前記運転状況に適合する還元剤燃 料量よりも多い所定の還元剤燃料量を、 前記再生完了時点でのディーゼルェンジ ン(1 ) の運転状況に適合した量に変更することを特徴とするディ 一ゼルェンジン の Ν 0 X触媒の再生方法。
1 3 . 請求の範囲 1 2記載のディーゼルエンジンの Ν 0 X触媒の再生方法におい て、
前記 N O X触媒(3) の再生が完了したと判定される時点は、 再生中において前 記 N O X触媒(3) から除去される S 0 X量を逐次演算し、 同時に前記 N O X触媒 (3) に残留している S 0 X量から前記除去 S O x量を減じて再生中の残留 S O X 量を算出し、 前記算出した再生中の残留 S 0 X量が所定値以下になつた時である ことを特徴とするディ 一ゼルエンジンの N 0 X触媒の再生方法。
1 · 請求の範囲 1 3記載のディ一ゼルェンジンの N 0 X触媒の再生方法におい て、
前記再生中において N 0 X触媒(3) から除去される S 0 X量は、 再生時のディ ーゼルエンジン(1) の運転伏況から決まる排気ガス中の N O χ ·鏖度、 排ガス流量 、 排ガス温度、 前記 N O X触媒(3) に取り込まれている S 0 X量、 及び還元剤燃 料の添加量の少なく とも 1つ以上により演算して求められることを特徴とするデ ィ一ゼルェンジンの N 0 X触媒の再生方法。
1 5 . 灯油等のディ ーゼル燃料を還元用炭化水素である還元剤燃料と して排気管 (2) 中に所定量添加し、 前記排気管(2) 中に配設されると共に S 0 Xを吸着して 性能劣化を起こし易い N 0 X触媒(3) により、 排気 N 0 Xを還元净化するディ ー ゼルェンジンの N 0 x触媒による浄化方法において、
S 0 Xにより劣化した前記 N 0 X触媒(3) を再生する際、 前記 N O X触媒(3) の上流側の入口温度が所定値より大き く 、 かつ前記 N O X触媒(3) の下流側の炭 化水素濃度が所定値より大きい場合、 前記ディ ーゼルエンジン(1) の運転状況に 適合する所定量より も多い還元剤燃料量を添加することを特徴とするディ ーゼル エンジンの N O x触媒の再生方法。
PCT/JP1997/001418 1996-04-26 1997-04-24 Appareil et procede de regeneration de catalyseur de nox pour moteurs diesel WO1997041336A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE19781739T DE19781739T1 (de) 1996-04-26 1997-04-24 Vorrichtung und Verfahren zum Regenerieren eines NOx-Katalysators für Dieselmotoren
GB9822856A GB2328626B (en) 1996-04-26 1997-04-24 Apparatus and method for regenerating NOx catalyst for diesel engine
US09/171,858 US6199372B1 (en) 1996-04-26 1997-04-24 Apparatus and method for regenerating NOx catalyst for diesel engine
JP9538736A JP3066607B2 (ja) 1996-04-26 1997-04-24 ディーゼルエンジンのNOx触媒の再生装置及び再生方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP13088596 1996-04-26
JP8/130885 1996-04-26

Publications (1)

Publication Number Publication Date
WO1997041336A1 true WO1997041336A1 (fr) 1997-11-06

Family

ID=15044981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/001418 WO1997041336A1 (fr) 1996-04-26 1997-04-24 Appareil et procede de regeneration de catalyseur de nox pour moteurs diesel

Country Status (5)

Country Link
US (1) US6199372B1 (ja)
JP (1) JP3066607B2 (ja)
DE (1) DE19781739T1 (ja)
GB (1) GB2328626B (ja)
WO (1) WO1997041336A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2333048A (en) * 1998-01-13 1999-07-14 Hugh F Collins A composition for regenerating a catalytic converter
JP2000073742A (ja) * 1998-08-26 2000-03-07 Man Nutzfahrzeuge Ag 内燃機関の窒素含有排ガス中への還元剤の供給方法
US6843813B1 (en) 2000-06-07 2005-01-18 Hugh Frederick Collins Rejuvenation and/or cleaning of catalysts
WO2011080845A1 (ja) * 2009-12-28 2011-07-07 トヨタ自動車株式会社 内燃機関の排気浄化装置

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19827195A1 (de) * 1998-06-18 1999-12-23 Volkswagen Ag Verfahren zur De-Sulfatierung eines NOx-Speicherkatalysators
DE19852240A1 (de) * 1998-11-12 2000-05-18 Volkswagen Ag Überwachungsverfahren für NOx-Speicherkatalysatoren und Abgasreinigungsvorrichtung zur Durchführung dieses Verfahrens
US6718756B1 (en) * 1999-01-21 2004-04-13 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust gas purifier for use in internal combustion engine
DE60014816T2 (de) * 1999-04-06 2006-03-09 Mitsubishi Jidosha Kogyo K.K. Abgasenissions-steuervorrichtung für einen verbrennungsmotor
JP2000337129A (ja) * 1999-05-21 2000-12-05 Honda Motor Co Ltd 内燃機関の排気浄化装置
EP1065351B1 (en) 1999-07-02 2004-03-03 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust gas purifying apparatus of internal combustion engine
IT1310465B1 (it) * 1999-09-07 2002-02-18 Magneti Marelli Spa Metodo autoadattativo di controllo di un sistema di scarico per motori a combustione interna ad accensione comandata.
US6539704B1 (en) * 2000-03-17 2003-04-01 Ford Global Technologies, Inc. Method for improved vehicle performance
US6477832B1 (en) 2000-03-17 2002-11-12 Ford Global Technologies, Inc. Method for improved performance of a vehicle having an internal combustion engine
US6490855B1 (en) * 2000-04-06 2002-12-10 Ford Global Technologies, Inc. Fueling control during emission control device purging
DE10054005A1 (de) * 2000-11-01 2002-05-08 Daimler Chrysler Ag Verfahren zum Betrieb einer Abgasreinigungsanlage mit Stickoxidspeicher
JP2002195071A (ja) * 2000-12-25 2002-07-10 Mitsubishi Electric Corp 内燃機関制御装置
JP2002364415A (ja) * 2001-06-07 2002-12-18 Mazda Motor Corp エンジンの排気浄化装置
US6490860B1 (en) * 2001-06-19 2002-12-10 Ford Global Technologies, Inc. Open-loop method and system for controlling the storage and release cycles of an emission control device
DE10158568A1 (de) * 2001-11-29 2003-06-26 Bosch Gmbh Robert Verfahren und Anlage zur Regenerierung insbesondere Desulfatisierung eines Speicherkatalysators bei der Abgasreinigung
JP3861733B2 (ja) * 2002-04-04 2006-12-20 トヨタ自動車株式会社 内燃機関の排気浄化装置
MY140444A (en) * 2002-04-25 2009-12-31 Shell Int Research Diesel fuel compositions
JP3945335B2 (ja) * 2002-07-31 2007-07-18 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP3925357B2 (ja) * 2002-08-30 2007-06-06 いすゞ自動車株式会社 排気ガス浄化システムの制御方法
US6758035B2 (en) * 2002-09-18 2004-07-06 Arvin Technologies, Inc. Method and apparatus for purging SOX from a NOX trap
JP3935417B2 (ja) * 2002-11-01 2007-06-20 中国電力株式会社 脱硝触媒管理方法および脱硝触媒管理装置
JP4345344B2 (ja) * 2003-04-25 2009-10-14 トヨタ自動車株式会社 内燃機関の排気浄化システム
GB0318776D0 (en) * 2003-08-09 2003-09-10 Johnson Matthey Plc Lean NOx catalyst
CN1856562B (zh) * 2003-09-03 2010-06-23 国际壳牌研究有限公司 燃料组合物及其制备方法和用途
WO2005021688A1 (en) * 2003-09-03 2005-03-10 Shell Internationale Research Maatschappij B.V. Fuel compositions comprising fischer-tropsch derived fuel
US7281341B2 (en) * 2003-12-10 2007-10-16 The Burton Corporation Lace system for footwear
JP4049113B2 (ja) * 2004-03-11 2008-02-20 トヨタ自動車株式会社 内燃機関排気浄化装置の粒子状物質再生制御装置
JP4314135B2 (ja) * 2004-03-11 2009-08-12 トヨタ自動車株式会社 車載内燃機関の排気浄化装置
US7487029B2 (en) * 2004-05-21 2009-02-03 Pratt & Whitney Canada Method of monitoring gas turbine engine operation
US7530220B2 (en) * 2005-03-10 2009-05-12 International Engine Intellectual Property Company, Llc Control strategy for reducing fuel consumption penalty due to NOx adsorber regeneration
US7776280B2 (en) * 2005-05-10 2010-08-17 Emcon Technologies Llc Method and apparatus for selective catalytic reduction of NOx
US20060266018A1 (en) * 2005-05-31 2006-11-30 Caterpillar Inc. Exhaust control system implementing sulfur detection
JP2007016655A (ja) * 2005-07-06 2007-01-25 Toyota Industries Corp 内燃機関の排気浄化装置
US20070033929A1 (en) * 2005-08-11 2007-02-15 Arvinmeritor Emissions Technologies Gmbh Apparatus with in situ fuel reformer and associated method
US7063642B1 (en) * 2005-10-07 2006-06-20 Eaton Corporation Narrow speed range diesel-powered engine system w/ aftertreatment devices
GB0523135D0 (en) * 2005-11-14 2005-12-21 Johnson Matthey Plc Reducing coking over Ag/A1203 HC-SCR catalyst
JP5087836B2 (ja) * 2005-12-14 2012-12-05 いすゞ自動車株式会社 排気ガス浄化システムの制御方法及び排気ガス浄化システム
US8156732B2 (en) * 2006-03-24 2012-04-17 Fleetguard, Inc. Apparatus, system, and method for regenerating an exhaust gas treatment device
US7587890B2 (en) 2006-08-21 2009-09-15 Cummins Inc. Reductant injection rate shaping method for regeneration of aftertreatment systems
US8006481B2 (en) * 2006-09-20 2011-08-30 GM Global Technology Operations LLC Method and apparatus to selectively reduce NOx in an exhaust gas feedstream
US7654076B2 (en) * 2006-11-07 2010-02-02 Cummins, Inc. System for controlling absorber regeneration
US7707826B2 (en) 2006-11-07 2010-05-04 Cummins, Inc. System for controlling triggering of adsorber regeneration
US7533523B2 (en) * 2006-11-07 2009-05-19 Cummins, Inc. Optimized desulfation trigger control for an adsorber
US7594392B2 (en) * 2006-11-07 2009-09-29 Cummins, Inc. System for controlling adsorber regeneration
US7654079B2 (en) 2006-11-07 2010-02-02 Cummins, Inc. Diesel oxidation catalyst filter heating system
JP4355003B2 (ja) * 2007-03-08 2009-10-28 本田技研工業株式会社 内燃機関の制御装置
WO2009055060A2 (en) * 2007-10-26 2009-04-30 Cummins, Inc. Increasing exhaust temperature for aftertreatment operation
US7624628B2 (en) * 2007-12-20 2009-12-01 Southwest Research Institute Monitoring of exhaust gas oxidation catalysts
WO2010128562A1 (ja) * 2009-05-07 2010-11-11 トヨタ自動車株式会社 内燃機関の排気浄化装置
US8186151B2 (en) * 2009-06-09 2012-05-29 GM Global Technology Operations LLC Method to monitor HC-SCR catalyst NOx reduction performance for lean exhaust applications
DE112011106150B4 (de) 2010-09-24 2023-09-28 Cummins Intellectual Property, Inc. Motorsteuersystem und Verfahren auf der Basis der Kraftstoffqualität
GB2540832B (en) * 2015-02-20 2019-04-17 Johnson Matthey Plc Bi-metal molecular sieve catalysts

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033974B2 (ja) * 1980-04-18 1985-08-06 マツダ株式会社 自動車用触媒の悪臭防止方法
JPH0666129A (ja) * 1992-08-13 1994-03-08 Toyota Motor Corp 内燃機関の排気浄化装置
JPH07217474A (ja) * 1994-01-28 1995-08-15 Toyota Motor Corp 内燃機関の排気浄化装置
JPH0861052A (ja) * 1994-06-17 1996-03-05 Mitsubishi Motors Corp 内燃エンジンの排気浄化触媒装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033974A (ja) 1983-08-05 1985-02-21 株式会社ブリヂストン 床下地工法
US5174111A (en) * 1991-01-31 1992-12-29 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for an internal combustion engine
US5201802A (en) * 1991-02-04 1993-04-13 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for an internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033974B2 (ja) * 1980-04-18 1985-08-06 マツダ株式会社 自動車用触媒の悪臭防止方法
JPH0666129A (ja) * 1992-08-13 1994-03-08 Toyota Motor Corp 内燃機関の排気浄化装置
JPH07217474A (ja) * 1994-01-28 1995-08-15 Toyota Motor Corp 内燃機関の排気浄化装置
JPH0861052A (ja) * 1994-06-17 1996-03-05 Mitsubishi Motors Corp 内燃エンジンの排気浄化触媒装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2333048A (en) * 1998-01-13 1999-07-14 Hugh F Collins A composition for regenerating a catalytic converter
GB2333048B (en) * 1998-01-13 2002-03-20 Hugh F Collins A rejuvenating and/or cleaning agent
JP2000073742A (ja) * 1998-08-26 2000-03-07 Man Nutzfahrzeuge Ag 内燃機関の窒素含有排ガス中への還元剤の供給方法
US6843813B1 (en) 2000-06-07 2005-01-18 Hugh Frederick Collins Rejuvenation and/or cleaning of catalysts
WO2011080845A1 (ja) * 2009-12-28 2011-07-07 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP5267682B2 (ja) * 2009-12-28 2013-08-21 トヨタ自動車株式会社 内燃機関の排気浄化装置
US8677735B2 (en) 2009-12-28 2014-03-25 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine

Also Published As

Publication number Publication date
GB9822856D0 (en) 1998-12-16
DE19781739T1 (de) 1999-04-01
GB2328626B (en) 1999-08-11
US6199372B1 (en) 2001-03-13
JP3066607B2 (ja) 2000-07-17
GB2328626A (en) 1999-03-03

Similar Documents

Publication Publication Date Title
WO1997041336A1 (fr) Appareil et procede de regeneration de catalyseur de nox pour moteurs diesel
JP4415648B2 (ja) サルファパージ制御方法及び排気ガス浄化システム
EP1793099B1 (en) Method of exhaust gas purification and exhaust gas purification system
JP4215808B2 (ja) 排気浄化装置の制御装置及び制御方法並びに内燃機関の排気浄化装置
JP4686547B2 (ja) 排気ガス浄化を伴う機関駆動車両
KR101921885B1 (ko) 저압 EGR을 갖는 디젤 엔진의 NOx 저장 촉매 컨버터를 재생하는 방법
JP5296291B2 (ja) 排気ガス浄化システム
JP5087836B2 (ja) 排気ガス浄化システムの制御方法及び排気ガス浄化システム
JP2002371831A (ja) 自動車の排ガス浄化装置
US20100242864A1 (en) Exhaust gas purification system and exhaust gas purification method
JP4635860B2 (ja) 内燃機関の排気浄化装置
WO2006059470A1 (ja) 排気ガス浄化システムの脱硫制御方法及び排気ガス浄化システム
WO2003083272A1 (fr) Systeme de decontamination de gaz d'echappement et procede de commande associe
JP4462107B2 (ja) 内燃機関の排気浄化装置
WO2007123011A1 (ja) 排気ガス浄化方法及び排気ガス浄化システム
JP2010180792A (ja) 内燃機関の排気浄化装置
EP2112340B1 (en) Exhaust gas purification device for internal combustion engine
WO2003083273A1 (fr) Systeme d'epuration de nox et procede de reactivation de catalyseur deteriore
JP5338973B2 (ja) 内燃機関の排気浄化装置
JP2006090334A (ja) エンジンの排ガス浄化装置
JP2005194927A (ja) 排気ガス浄化方法及び排気ガス浄化システム
JP4075641B2 (ja) 内燃機関の排気ガス浄化システム
JP2009264284A (ja) 内燃機関の排気ガス浄化装置
JP2007113497A (ja) 内燃機関の排気浄化装置
JP3943044B2 (ja) エンジンの排気浄化装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE GB JP KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WR Later publication of a revised version of an international search report
ENP Entry into the national phase

Ref document number: 9822856

Country of ref document: GB

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09171858

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 19781739

Country of ref document: DE

Date of ref document: 19990401

WWE Wipo information: entry into national phase

Ref document number: 19781739

Country of ref document: DE