WO1993007805A1 - Circuit d'attaque hf pour appareil a resonance magnetique - Google Patents

Circuit d'attaque hf pour appareil a resonance magnetique Download PDF

Info

Publication number
WO1993007805A1
WO1993007805A1 PCT/JP1992/001333 JP9201333W WO9307805A1 WO 1993007805 A1 WO1993007805 A1 WO 1993007805A1 JP 9201333 W JP9201333 W JP 9201333W WO 9307805 A1 WO9307805 A1 WO 9307805A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
coil
port
driving
envelope
Prior art date
Application number
PCT/JP1992/001333
Other languages
English (en)
French (fr)
Inventor
Kazuya Hoshino
Original Assignee
Yokogawa Medical Systems, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Medical Systems, Ltd. filed Critical Yokogawa Medical Systems, Ltd.
Priority to DE69223981T priority Critical patent/DE69223981T2/de
Priority to US08/211,596 priority patent/US5424646A/en
Priority to KR1019940700971A priority patent/KR100231254B1/ko
Priority to EP92921485A priority patent/EP0608426B1/en
Publication of WO1993007805A1 publication Critical patent/WO1993007805A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • G01R33/3614RF power amplifiers

Definitions

  • the present invention relates to an RF drive circuit in an MR device, and more specifically, an RF drive circuit capable of maintaining an amplitude of an RF rotating magnetic field for exciting spin in a MR device to a specified value regardless of a load impedance. Circuit.
  • Fig. 5 shows an example of the RF drive circuit in a conventional MR device.
  • an RF pulse having a predetermined envelope is applied to the input terminal IN.
  • the RF pulse passes through the divider 2 and is input to the variable gain amplifier 3.
  • the variable gain amplifier 3 and the power amplifier 4 amplify the RF pulse to a predetermined drive voltage, and input the amplified drive pulse to the quadrature hybrid 5.
  • the quadratic hybrid 5 generates a driving voltage of 0 ° and a driving voltage of a 90 ° component from the driving voltage, and outputs the driving voltage to the 0 ° port and the 90 ° port of the RF coil 6, respectively.
  • the RF coil 6 generates an RF rotating magnetic field in its internal space.
  • the voltage monitoring means 52 monitors the output voltage of the power amplifier 4 and applies it to the envelope output circuit 53.
  • the envelope extraction circuit 53 takes out the monitored drive voltage envelope.
  • the connected envelope extraction circuit 11 extracts the envelope of the RF pulse obtained from the distributor 2.
  • the comparator 12 compares the envelope of the RF pulse with the envelope of the output voltage of the power amplifier 4, and compares and compares the envelope.
  • the gain of the variable gain amplifier 3 is controlled based on the result, and the output voltage of the power amplifier 4 is controlled to a specified value regardless of the load (impedance of the patient arranged in the internal space of the RF coil 6).
  • the output voltage of the power amplifier 4 is controlled to a specified value, but the 0 ° port of the RF coil 6 and 90 °.
  • the balance of the voltage applied to the port is not controlled. For this reason, when the impedance of the 0 ° port and 90 ° port of the RF coil 6 is different and the balance is lost, quadrature unbalance, that is, the generation of the RF rotating magnetic field
  • quadrature unbalance that is, the generation of the RF rotating magnetic field
  • the problem is that the flip angle changes when the conditions are changed and the spin is excited.
  • an object of the present invention is to provide an RF drive circuit in an MR device capable of controlling a drive voltage of an RF coil including correction of quadrature impedance.
  • the R FIMIJ circuit in the MR device of the present invention is a RF drive circuit for quadratically driving the RF coil of the MR device.
  • the RF drive circuit monitors the 0 ° port and the 90 ° port of the RF coil by 3 ⁇ 4ff monitor means, A feedback magnetic field that generates a voltage corresponding to in the direction of rotation as a feedback voltage, which is a rotating magnetic field generated in the RF coil from the port voltage and the 90 ° port voltage.
  • a voltage control means for controlling a drive voltage supplied to the coil based on the feedback voltage.
  • the 0 ⁇ port and 90 of the RF coil In the RF drive circuit in the MR device of the present invention, the 0 ⁇ port and 90 of the RF coil.
  • the port voltage is monitored, and a feedback voltage corresponding to the component of the rotating magnetic field generated in the RF coil and the rotation direction component that couples with the spin system is ⁇ , and the drive voltage supplied to the RF coil is determined by this feed pack voltage. Control. Therefore, 0 ° port of RF coil, 90 °. Even if the impedance of the port becomes unbalanced, the RF magnetic field that captures the impedance and contributes to the excitation of the hespin is always kept at ⁇ .
  • FIG. 1 is a block diagram of an RF drive circuit according to one hit example of the present invention.
  • FIG. 2 is an explanatory diagram of a rotating magnetic field.
  • FIG. 3 is a block diagram of an RF drive circuit of another HIS example of the present invention.
  • FIG. 4 is an explanatory diagram of the operation of the quadruple hybrid in FIG.
  • FIG. 5 is a block diagram of an example of a drive circuit in a conventional MR device. (Best mode for carrying out the invention)
  • FIG. 1 is a block diagram of an RF drive circuit 1 in an MR device according to one embodiment of the present invention.
  • an RF pulse having a predetermined envelope is applied to the input terminal IN.
  • the RF pulse passes through the splitter 2 and is input to the variable gain amplifier 3.
  • the variable gain amplifier 3 and the power amplifier 4 amplify the RF pulse to a predetermined drive voltage, and input the amplified drive pulse to the quadrature hybrid 5.
  • the quadratic hybrid 5 has a drive voltage of 0 ° component from the output voltage of the power amplifier 4 and 90.
  • the drive voltage of the component is generated and applied to the 0 ° port and 90 ° port of RF coil 6, respectively.
  • the configuration so far is the same as that of Fig. 5.
  • the voltage monitor 7 A monitors the voltage of the 90 ° port of the RF coil 6 and supplies the voltage to the envelope extracting circuit 8.
  • Another voltage monitor 7 B monitors the voltage of the 0 ° port of the RF coil and applies the voltage to the Envellow output circuit 9.
  • the envelope extraction circuits 8 and 9 extract the envelope of the voltage of the 0 ° port and the voltage of the 90 ° port of the RF coil 6 and input them to the adder 10.
  • the adder 10 adds the envelope of the voltage of the 0 ° port and the envelope of the voltage of the 90 ° port of the RF coil 6 and inputs the result to the comparator 10.
  • the envelope output circuit 11 connected to the distributor 2 extracts the envelope of the RF pulse obtained from the distributor 2 and inputs the envelope to the comparator 10.
  • the comparator 12 compares the envelope of the RF pulse with the envelope of the output voltage of the power amplifier 4, controls the gain of the variable gain amplifier 3 based on the comparison result, and controls the RF regardless of the load (impedance of the patient). Control so that the sum of the envelope of the voltage of the 0 ° port and the voltage of the 90 ° port of coil 6 becomes the specified value.
  • FIG. 3 is a block diagram showing an RF drive circuit 21 according to another embodiment of the present invention.
  • This RF drive circuit 21 differs from the RF drive circuit 1 in FIG. 1 in that the quadrature hybrid 22 and the Envelope: output circuit 23 are used in place of the Envelope output circuits 8, 9 and the HI HI 0 in FIG. That is.
  • the quadrature hybrid 22 has a 90 ° boat voltage b ⁇ cos ( ⁇ t ⁇ 2) and 0 of the RF coil 6.
  • the RF coil 6 has a zero. Port voltage and 90. There is an advantage that it is possible to cope with a decrease in quadrature efficiency when the orthogonality of port voltages is shifted.
  • Still another embodiment is to use a phase shifter and a 0 ° hybrid instead of the quadrature hybrid 22 of FIG.
  • the amplitude of the RF rotating magnetic field for exciting the spin can be appropriately maintained, including the correction of the quadrature balance.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Description

明 細 書
MR装置における R F駆動回路
(技術分野)
この発明は、 MR装置における R F駆動回路に関し、 さらに詳しくは、 MR装置に おいてスピンを励起するための R F回転磁界の振幅を負荷インピーダンスの如何にか かわらず規定値に保つこと力出来る R F駆動回路に関する。
(背景技術)
図 5に、 従来の MR装置における R F駆動回路の一例を示す。
この R F駆動回路 5 1において、 入力端子 I Nには、 所定のエンベロープをもつ R Fパルスカ加えられる。 その R Fパルスは、 分配器 2を通り、 可変ゲインアンプ 3に 入力される。 可変ゲインアンプ 3およびパヮ一アンプ 4は、 前記 R Fパルスを所定の 駆動電圧に増幅し、 クアドラチヤハイブリッド 5に入力する。 クアドラチヤハイプリ ッド 5は、 前記駆動電圧から 0 ° ^の駆動電圧と 9 0° 成分の駆動電圧を生成し、 R Fコイル 6の 0 ° ポートと 9 0 ° ポートにそれぞれ ¾1える。 このような 2成分によ る駆動により、 R Fコイル 6はその内部空間に R F回転磁界を生じる。
電圧モニタ手段 5 2は、 パワーアンプ 4の出力電圧をモニタし、 ェンベロー " ¾出 回路 5 3に加える。 エンベロープ取出回路 5 3は、 モニタした駆動電圧のェンベロー プを取り出す。 一方、 分配器 2に接続されたエンベロープ取出回路 1 1は、 分配器 2 から得た R Fパルスのエンベロープを取り出す。 コンパレータ 1 2は、 R Fパルスの エンベロープと, パワーアンプ 4の出力電圧のエンベロープとを比較し、 その比較結 果に基づいて可変ゲインアンプ 3のゲインを制御し、 負荷 (R Fコイル 6の内部空間 に配置される患者のインピーダンス) にかかわらずパワーアンプ 4の出力電圧力規定 値になるように制御する。
上記従来の R F駆動回路 5 1では、 パワーアンプ 4の出力電圧は規定値に制御され るが、 R Fコイル 6の 0° ポート, 9 0。 ポートに加わる電圧のバランスは制御して いない。 このため、 R Fコイル 6の 0° ポート, 9 0° ポートのインピーダンスか'異 なりバランスが崩れたとき、 クヮドラチヤアンバランスすなわち R F回転磁界生成の 条件が変ィ匕し、 スピンを励起するときのフリップアングルが変化してしまう問題点が あ Oo 明の開示)
そこで、 この発明の目的は、 クヮドラチヤアンパランスの補正をも含めて RFコィ ルの駆動電圧を制御することが出来るようにした MR装置における R F駆動回路を提 供することにある。
この発明の MR装置における R FIMIJ回路は、 MR装置の R Fコイルをクァドラチ ャドライブする R F駆動回路において、 R Fコイルの 0 ° ポートおよび 9 0° ポート の ¾Εをモニタする ¾ffモニタ手段と、 モニタした 0 ° ポートの電圧および 9 0° ポ ートの電圧から R Fコイル中にできる回転磁界であつてスピン系と力ップリングする 回転方向の に対応した電圧をフィ一ドバック電圧として生成するフィードバック «ΕΕ生成手段と、前記フィードバック電圧に基づいて コイルへ供給する駆動電圧 を制御する |g¾電圧制御手段とを具備したことを構成上の特徵とするものである。 この発明の MR装置における RF駆動回路では、 R Fコイルの 0β ポートおよび 9 0。 ポートの電圧をモニタし、 RFコイル中にできる回転磁界であってスピン系と力 ップリングする回転方向の成分に対応するフィードバック電圧を^^し、 このフィー ドパック電圧により RFコイルへ供給する駆動電圧を制御する。 このため、 RFコィ ルの 0° ポート, 9 0。 ポートのインピーダンスがアンバランスになっても、 そのァ ンパランスが捕正されヘ スピンの励起に寄与する R F磁界は常に ΜϊΕに保たれること になる。
(図面の簡単な説明)
図 1はこの発明の一 Hit例の RF駆動回路のプロック図である。
図 2は回転磁界の説明図である。
図 3はこの発明の他の HIS例の RF駆動回路のブロック図である。
図 4は図 3におけるクヮドラチヤハイプリッドの動作の説明図である。
図 5は従来の MR装置における 駆動回路の一例のプロック図である。 (発明を実施するための最良の形態)
以下、 図に示す実施例によりこの発明をさらに詳細に説明する。 なお、 これにより この発明が限定されるものではない。
図 1はこの発明の一実施例の MR装置における R F駆動回路 1のブロック図であ る。 この RF駆動回路 1において、 入力端子 I Nには、 所定のエンベロープをもつ R Fパルスが加えられる。 その RFパルスは、 分配器 2を通り、 可変ゲインアンプ 3に 入力される。 可変ゲインアンプ 3およびパワーアンプ 4は、 前記 RFパルスを所定の 駆動電圧に増幅し、 クアドラチヤハイブリッド 5に入力する。 クアドラチヤハイプリ ッド 5は、 前記パワーアンプ 4の出力電圧から 0° 成分の駆動電圧と 90。 成分の駆 動電圧を生成し、 RFコイル 6の 0° ポートと 90° ポートにそれぞれ加える。 ここ までの構成は、 図 5のものと共通である。
電圧モニタ 7 Aは、 RFコイル 6の 90° ポートの電圧をモニタし、 エンベロープ 取出回路 8に供給する。 また、 もう 1つの電圧モニタ 7 Bは、 RFコイルの 0° ポー トの電圧をモニタし、 ェンベロー 出回路 9に加える。 エンベロープ取出回路 8, 9は、 RFコイル 6の 0° ポートの電圧および 90° のポートの電圧のエンベロープ を取り出し、加算器 10に入力する。 加^ 10は、 RFコイル 6の 0° ポートの電 圧および 90° ポートの電圧のエンベロープを加算し、 コンパレータ 1 0に入力す る。 一方、 分配器 2に接続されたエンベロー^ ¾出回路 11は、 分配器 2から得た R Fパルスのエンベロープを取り出しコンパレータ 10に入力する。
コンパレータ 12は、 RFパルスのエンベロープと, パワーアンプ 4の出力電圧の エンベロープとを比較し、 その比較結果に基づいて可変ゲインアンプ 3のゲインを制 御し、 負荷 (患者のインピーダンス) にかかわらず RFコイル 6の 0° ポートの電圧 および 90° ポートの電圧のエンベロープの和力規定値になるように制御する。
次に、 上記 MR装置における R F駆動回路 1の作動の原理を説明する。
図 2に示すように、 RFコイル 6の 0° ポートに a · cos (ω t) の電圧が加わ り、 90° ポートに b *cos (ω t - /2~) の電圧が加わるとき、 RFコイル 6の 内部空間に発生する R F回転磁界は、 単位電圧当り発生磁界振幅係数を 7?とすれば、 7 · a · cos (ω t ) + 77 · b, cos (ω t— π/2 )
= η C { (a-l-b) /2} exp [- j ω t] }
+ 7} C { (a— b) /2} exp [j 6) t] 〕 (1) となり、右辺の第 1項で示される i¾向回転磁界と, 第 2項で示される逆方向回転磁 界とを生ずる。 通常の MR装置では、正方向回転磁界がスピン系とカップリングする ようになっている。 また、 患者のインピーダンスが変ると、上式の a, bが変化す る。
クヮドラチヤパ、ランスカ常にとれておれば、 a = bとなって 向回転磁界を生じ ないため、 図 5に示す従来の制御でよい。 しかし、 患者インピーダンスの変化などに よりクヮドラチヤバランスが変化すると、 a≠bとなって »向回転磁界を生ずるた め、 図 5の制御ではクヮドラチヤ効率の低下によるフリップアングルの誤差を生じ る
これに対して、 図; Lの RF駆動回路 1では、 RFコイル 6の 90° ポートの電圧の エンベロープ bと, 0。 ポートの ¾Eのエンベロープ aとを取り出して、 その和 (a + b) をフィードバック «ΕΕとしてコンパレータ 12に送り、 入力された RFパルス のエンベロープに合致するように可変ゲインアンプ 3のゲインを制御している。 つま り、 クヮドラチヤバランスが崩れた場合でも、 (a +b)が規定値になるように制御 している。 このため、結局のところ、 スピンを励起するための RF回転磁界の振幅が ,直者によらず適正に保たれへ フリップアングルを規定値に維持できることとなる。 次に、 図 3は、 この発明の他の実施例の RF駆動回路 21を示すブロック図であ る。 この RF駆動回路 21力図 1の RF駆動回路 1と異なる点は、 図 1のェンベロー 出回路 8, 9および加^ HI 0に代えて、 クヮドラチヤハイブリッド 22および ェンベロー: ¾出回路 23を用いていることである。 図 4に示すように、 クヮドラチ ャハイブリッド 22は、 R Fコイル 6の 90 ° ボートの電圧 b · cos (ω t -πΧ 2) および 0。 ポートの ¾Ea - cos (ω t) を入力されたとき、
Figure imgf000006_0001
a一 b 3 π
C O S ( ω t - ―)
2 ( 3 ) をそれぞれ出力する。
そこで、 上記 2式で示す出力電圧のエンベロープを取り出せば、 (a + b) に比例 するフィードバック電圧力得られる。 従って、 この R F駆動回路 2 1によっても、 ス ピンを励起するための R F回転磁界の振幅を患者によらず ϋϊΕに維持することが出来 る。
なお、 クヮドラチヤハイブリッド 2 2を用いた上記 R F隱回路 2 1によれば、 R Fコイル 6の 0。 ポー卜の電圧と 9 0。 ポートの電圧の直交性がずれた場合のクヮド ラチヤ効率の低下にも対応できる利点がある。
さらに他の実施例としては、 図 3のクヮドラチヤハイブリッド 2 2の代りに、 フエ ーズシフタと 0 ° ハイブリツドを用いるもの力挙げられる。
この発明の MR装置における R F駆動回路によれば、 クヮドラチヤバランスの捕正 をも含めて、 スピンを励起するための R F回転磁界の振幅を適正に保つことが出来 る。

Claims

請求の範囲
1 MR装置の R Fコィゾレをクアドラチャドライブする R F駆動回路において、 R F コイルの 0 ° ポートおよび 9 0。 ポートの電圧をモニタする電圧モニタ手段と、 モニ 夕した 0° ポートの ¾Eおよび 9 0° ポートの電圧から R Fコイル中にできる回転磁 界であってスピン系とカツプリングする回転方向の成分に対応した電圧をフィ一ドバ ック電圧として生成するフィードバック電圧生成手段と、 前記フィ一ドバック電圧に 基づいて R Fコィルへ供給する駆動電圧を制御する駆動電圧制御手段とを具備したこ とを特徵とする MR装置における R F駆動回路
PCT/JP1992/001333 1991-10-14 1992-10-13 Circuit d'attaque hf pour appareil a resonance magnetique WO1993007805A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE69223981T DE69223981T2 (de) 1991-10-14 1992-10-13 Hochfrequenz-treiberschaltung für ein magnet-resonanz-gerät
US08/211,596 US5424646A (en) 1991-10-14 1992-10-13 RF drive circuit of MR apparatus
KR1019940700971A KR100231254B1 (ko) 1991-10-14 1992-10-13 Mr장치에 있어서의 rf구동회로
EP92921485A EP0608426B1 (en) 1991-10-14 1992-10-13 Rf driving circuit in mr apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3/264733 1991-10-14
JP03264733A JP3142613B2 (ja) 1991-10-14 1991-10-14 Mr装置におけるrf駆動回路

Publications (1)

Publication Number Publication Date
WO1993007805A1 true WO1993007805A1 (fr) 1993-04-29

Family

ID=17407420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/001333 WO1993007805A1 (fr) 1991-10-14 1992-10-13 Circuit d'attaque hf pour appareil a resonance magnetique

Country Status (6)

Country Link
US (1) US5424646A (ja)
EP (1) EP0608426B1 (ja)
JP (1) JP3142613B2 (ja)
KR (1) KR100231254B1 (ja)
DE (1) DE69223981T2 (ja)
WO (1) WO1993007805A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5510711A (en) * 1994-08-05 1996-04-23 Picker International, Inc. Digital combination and correction of quadrature magnetic resonance receiver coils
US6552538B2 (en) * 2001-04-11 2003-04-22 Koninklijke Philips Electronics, N.V. RF transmit calibration for open MRI systems
JP3701616B2 (ja) * 2002-03-06 2005-10-05 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 磁気共鳴撮影装置
JP3753668B2 (ja) * 2002-03-12 2006-03-08 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Rfパルスチューニング装置
EP1721184A4 (en) * 2004-02-26 2009-03-25 Ca Nat Research Council METHOD FOR PERFORMING NUCLEAR MAGNETIC RESONANCE EXPERIMENTS USING A CARTESIAN REACTION
JP4911964B2 (ja) * 2005-12-09 2012-04-04 株式会社アドバンテスト 収容型構造体、測定装置、方法およびプログラム
JP2010522009A (ja) * 2007-03-20 2010-07-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 磁気共鳴撮像システム及び方法
DE102011084072B4 (de) * 2011-10-06 2015-02-26 Siemens Aktiengesellschaft Zweikanal-Magnetresonanztomographie-System
JP6532657B2 (ja) * 2014-07-31 2019-06-19 キヤノンメディカルシステムズ株式会社 Mri装置
JP7199852B2 (ja) * 2018-07-02 2023-01-06 キヤノンメディカルシステムズ株式会社 高周波電源及び磁気共鳴イメージング装置
CN112285620A (zh) * 2019-07-24 2021-01-29 通用电气精准医疗有限责任公司 Rf发射***和方法、mri***及其预扫描方法以及存储介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63296737A (ja) * 1987-05-29 1988-12-02 Yokogawa Medical Syst Ltd 高周波電源装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3374813D1 (en) * 1982-12-28 1988-01-14 Toshiba Kk Nuclear magnetic resonance diagnostic apparatus
US4694254A (en) * 1985-06-10 1987-09-15 General Electric Company Radio-frequency spectrometer subsystem for a magnetic resonance imaging system
NL8603253A (nl) * 1986-12-22 1988-07-18 Philips Nv Kernspinresonantie-apparaat met draaiveldopwekking en detektie.
US4763074A (en) * 1987-04-01 1988-08-09 Kabushiki Kaisha Toshiba Automatic tuning circuit for magnetic resonance quadrature antenna system
US5051700A (en) * 1990-03-19 1991-09-24 Kabushiki Kaisha Toshiba Feedback circuit for noiseless damping of the Q of an MRI receiver coil antenna
US5166620A (en) * 1990-11-07 1992-11-24 Advanced Techtronics, Inc. Nmr frequency locking circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63296737A (ja) * 1987-05-29 1988-12-02 Yokogawa Medical Syst Ltd 高周波電源装置

Also Published As

Publication number Publication date
DE69223981D1 (de) 1998-02-12
EP0608426A4 (en) 1995-04-12
DE69223981T2 (de) 1998-06-10
JP3142613B2 (ja) 2001-03-07
EP0608426A1 (en) 1994-08-03
KR100231254B1 (ko) 1999-11-15
JPH0595929A (ja) 1993-04-20
US5424646A (en) 1995-06-13
EP0608426B1 (en) 1998-01-07

Similar Documents

Publication Publication Date Title
WO1993007805A1 (fr) Circuit d'attaque hf pour appareil a resonance magnetique
US5099186A (en) Integrated motor drive and recharge system
JP3312472B2 (ja) 電動機の磁極位置検出装置
Song et al. A novel sensorless rotor position detection method for high-speed surface PM motors in a wide speed range
CN101001068B (zh) 电动机驱动控制装置和电动机驱动***
CN100583620C (zh) 转子位置推定方法及装置、电动机控制方法及压缩机
JPH0572177B2 (ja)
EP1436889A1 (en) Power generating system including permanent magnet generator and shunt ac regulator
JP3716670B2 (ja) 誘導電動機の制御装置
CN111224583A (zh) 低速无传感器转子角度估计
JP2006230174A (ja) 同期リラクタンス電動機のベクトル制御方法及び同装置
JP2737420B2 (ja) 超音波モータの駆動方式
JPH10229687A (ja) 誘導電動機の可変速制御装置
JP4120775B2 (ja) 交流電動機のベクトル制御方法及び同装置
JP2967599B2 (ja) 振動モータの駆動装置
Li et al. High frequency response current self-demodulation method for sensorless control of interior permanent magnet synchronous motor
JPH0720389B2 (ja) 交流信号発生装置
JP4055952B2 (ja) 自励式変換器の制御方式
JPS61191290A (ja) 電動圧縮機用無整流子直流電動機の位置検出回路
JP3483794B2 (ja) 永久磁石モータの制御装置
WO2004013952A1 (ja) スイッチト・リラクタンス・モータ・センサレス駆動回路
Hinkkanen et al. Stabilization of the regenerating mode of full-order flux observers for sensorless induction motors
JPH11266595A (ja) 誘導機可変速駆動装置
JPH06133568A (ja) 超音波モータの駆動回路
JP3007989B2 (ja) ステッピングモータの駆動装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)

Free format text: EUROPEAN PATENT(AT,BE,DK,IE,IT,LU,MC,SE)

WWE Wipo information: entry into national phase

Ref document number: 1019940700971

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 08211596

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1992921485

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1992921485

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992921485

Country of ref document: EP