WO1992013902A1 - Film-forming chelating resin, production thereof, use thereof, and formation of electrodeposition coating - Google Patents

Film-forming chelating resin, production thereof, use thereof, and formation of electrodeposition coating Download PDF

Info

Publication number
WO1992013902A1
WO1992013902A1 PCT/JP1992/000113 JP9200113W WO9213902A1 WO 1992013902 A1 WO1992013902 A1 WO 1992013902A1 JP 9200113 W JP9200113 W JP 9200113W WO 9213902 A1 WO9213902 A1 WO 9213902A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
resin
group
chelate
forming
Prior art date
Application number
PCT/JP1992/000113
Other languages
English (en)
French (fr)
Inventor
Hideo Kogure
Heihachi Murase
Masafumi Kume
Original Assignee
Kansai Paint Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP3102182A external-priority patent/JPH05271330A/ja
Priority claimed from JP4247591A external-priority patent/JPH04258603A/ja
Priority claimed from JP3593591A external-priority patent/JPH04276098A/ja
Application filed by Kansai Paint Company, Limited filed Critical Kansai Paint Company, Limited
Priority to US07/930,524 priority Critical patent/US5342901A/en
Priority to DE4290288A priority patent/DE4290288C2/de
Publication of WO1992013902A1 publication Critical patent/WO1992013902A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4407Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications with polymers obtained by polymerisation reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4419Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications with polymers obtained otherwise than by polymerisation reactions only involving carbon-to-carbon unsaturated bonds

Definitions

  • Chelate-forming resin capable of forming a film, its production method, its use, and method of forming an electrodeposition coating film
  • the present invention relates to a chelate-forming resin capable of forming a novel film, a method for producing the same, a use thereof, and a method for forming an electrodeposition film.
  • the electrodeposition paint is a low-pollution paint, but regarding the phosphate treatment, phosphorus in the wastewater from the phosphate treatment process leads to eutrophication of the water quality and water pollution. It is urgently necessary to develop a new paint pretreatment method to replace the phosphate treatment, because of the cause of such problems and the shortage of phosphorus supply in the future.
  • An object of the present invention is to provide a novel chelate-forming resin capable of forming a strong metal chelate complex on a metal surface to prevent corrosion of a metal and capable of forming a film, and a method for producing the same. It is an object of the present invention to provide a novel metal surface treatment agent and a new anticorrosion paint using a chelating resin capable of forming a film that is non-polluting and has excellent anticorrosion properties.
  • Still another object of the present invention is to provide a novel method for forming an electrodeposition coating film, which has been subjected to a pre-coating treatment instead of the conventional phosphate treatment.
  • the present invention can form a film having about 0.2 to 3.5 mol of a chelate-forming group represented by the following general formula [1], [2], [3] or [4] per 1,000 g of a resin. It is intended to provide a chelating resin.
  • R 2 are the same or different, and are a hydrogen atom, a halogen atom, a nitro group, a nitroso group, a cyano group, a hydrocarbon group having 18 or less carbon atoms, and an alkoxyalkyl group having 12 or less carbon atoms. Is shown.
  • an object of the present invention is to provide a method for producing the above chelate-forming resin, wherein an addition reaction is carried out with a polymerizable double bond in a resin or compound having a heavy bond.
  • R 1 and R 2 have the same meaning as described above.
  • the present invention also provides a metal surface treatment agent and a corrosion preventive paint containing the above chelate-forming resin, and a chelate-forming resin composition obtained by blending the resin with a crosslinking agent.
  • the present invention relates to forming an electrodeposition coating film on a metal surface, and performing electrodeposition coating on a metal surface which has been subjected to a pre-coating treatment by bringing the metal surface treatment agent into contact with the metal surface.
  • An object of the present invention is to provide a method for forming an electrodeposition coating film.
  • the present inventor has proposed that a non-polluting surface treatment agent can be used instead of an inorganic surface treatment agent such as phosphate or chromic hydrochloric acid, and that the anticorrosion is superior to an epoxy resin or a fuanol resin.
  • the resin capable of forming a film has a specific amount of the above-mentioned specific chelate-forming group in which a nitrogen atom is bonded to an ortho position with respect to a phenolic hydroxyl group, so that a metal formed by chelation can be formed.
  • the binding energy of the steel exceeds the corrosion reaction energy.
  • the charge of the metal ion can be neutralized.
  • the coating of this resin shows excellent corrosion resistance.
  • the present invention has been completed based on these new findings.
  • the hydrocarbon group in 2 has 18 or less carbon atoms, preferably 5 or less carbon atoms, and includes an alkyl group, a cycloalkyl group, an aralkyl group, an aryl group and the like. Further, the alkoxyalkyl group in R 1 and R 2 is
  • alkyl group alkoxyalkyl group, cycloalkyl group, aralkyl group and aryl group in R 1 and R 2 of the chelate-forming group are shown below.
  • the alkyl group may be a straight-chain or branched-chain, for example, methyl, ethyl, ⁇ -propyl, isopropyl, ⁇ -butyl, n-hexyl, n-octyl, 2 —Ethylhexyl group, n— Dodecyl group and n—
  • unoctadecyl group and the like alkoxyalkyl groups such as 2-methoxethyl and 3-methoxypropyl groups; cycloalkyl groups such as cyclopentyl, cyclohexyl and 3-methylcyclyl 5-hexyl group; aralkyl group, for example, benzyl group, 4-methylbenzyl group, 4-isopropylbenzyl group, phenethyl group, etc .; For example, a phenyl group, a diphenyl group, a naphthyl group, a 4-methylphenyl group and the like can be mentioned.
  • Representative examples of the chelate-forming group represented by the above [1], [2], [3] or [4] include:
  • the chelate-forming group is a portion forming a stable 5-membered ring-type chelate complex of +2 or +3 metal ion with a nonionic intramolecular complex. is there.
  • the chelate complex to be formed is abbreviated as H 0 N H and modeled as follows.
  • three sets of chelate-forming groups are bonded to + trivalent metal ions, and two sets of chelate-forming groups are bonded to + divalent metal ions.
  • the charge of the metal ion forms a 5-membered chelate complex neutralized by the phenoxide ion.
  • the formed chelate complex is neutralized in charge and non-ionic, so that corrosion current does not easily flow against metal corrosion, and it is structurally stable because it has a 5-membered ring It is.
  • the chelate-forming resin of the present invention needs to have about 0.2 to 3.5 moles of the above chelate-forming group in 100 g of the resin, and may have 0.3 to 3.0 moles in 100 g of the resin. I like it.
  • the resin coating becomes three-dimensional when chelating is formed, and a strong chelating bond is formed, and the cross-linking density of the resin coating is increased. It will show anticorrosion properties.
  • the resin having a polymerizable double bond at a terminal or a side chain is not particularly limited, and various resins obtained by a known method can be used.
  • epoxy group-containing polymerizable unsaturated monomers such as glycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, and aryl glycidyl ether and other monomers.
  • the epoxy group of a resin having an epoxy group at the terminal or side chain such as a copolymer with a polymerizable monomer or various epoxy resins such as a bisphenol type, has a polymerizable group containing a carboxylic acid group such as (meth) acrylic acid.
  • hydroxyl groups in resins such as acrylic resins, polyester resins, alkyd resins, and epoxy resins that have hydroxyl groups are used for isocyanatoethyl (meta) acrylate
  • Introduction of polymerizable unsaturated groups by reacting polymerizable unsaturated group-containing isocynate compounds such as robininolefeninoleate and m-isopropinolenate-a, ⁇ -dimethylbenzyl isocyanate Can also be obtained.
  • This reaction can be carried out, for example, by reacting both in the presence of a tin-based catalyst such as dibutyltin octylate at 20 to 100 hours for about 1 to 10 hours.
  • the resin having a polymerizable double bond at the terminal or side chain obtained as described above can be reacted with the above ⁇ -aminophenols to form a resin represented by the general formula [1], [2], C33 Or, a chelating group represented by [4] is introduced.
  • Typical examples of 0-aminophenols represented by the general formulas [5], [6], [7] or [8] are ⁇ -aminophenol and 4-chloro-2-amino.
  • the addition reaction of o-aminophosphinols to the polymerizable double bond in the resin is carried out by reacting both at about 20 to 100 hours for about 1 to 24 hours, for example, in the presence of an acid catalyst. Can do it.
  • the reaction order in the method (a) is changed, and the chelating group represented by the general formula [1], [2], [3] or [4] and a hydroxyl group are used.
  • This is a method in which a reaction product having a first functional group such as carboxyl group or carboxyl group is first prepared, and the first functional group is reacted with a second functional group in a polymer to increase the molecular weight.
  • the compound having a chelate-forming group represented by the general formula [1], [2], [3] or [4] and a polymerizable double bond may be, for example, o-aminophenols.
  • the hydroxyl group in the addition product with a hydroxyl group-containing unsaturated compound such as 2-hydroxyhydryl (meth) acrylate is converted to isocyanatoethyl (meta) acrylate, m-isopropionyl olefenyl isocyanate.
  • the compound can be obtained by a method of reacting with a polymerizable double bond-containing mono-isocyanate compound such as m-isopropenyl-, a-dimethylbenzyl isocyanate.
  • a polymerizable double bond-containing mono-isocyanate compound such as m-isopropenyl-, a-dimethylbenzyl isocyanate.
  • the reaction between aminophenols and hydroxyl-containing unsaturated compounds can be carried out, for example, in the presence of an acid catalyst in an equimolar amount of about 20 to 100 for about 1 to 24 hours. This can be done by reacting.
  • the addition product thus obtained has a hydroxyl group, and the urethanation reaction of this with a polymerizable double bond-containing monoiso- nate compound is carried out, for example, in the presence of a tin-based catalyst so that both are equimolar.
  • the reaction can be carried out at about 20 to 100 for about 1 to 10
  • the compound having a chelate-forming group of the general formula [1], [2], [3] or [4] and a polymerizable double bond may be obtained by a method other than the above.
  • the method (c) another compound used for copolymerizing with a compound having a chelate-forming group of the general formula [1], [2], [3] or [4] and a polymerizable double bond is used.
  • the polymerizable unsaturated monomer include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) acrylate.
  • Acrylic acid Hydroxyl-containing unsaturated monomers such as hydroxyalkyl esters and aryl alcohols; styrene, ⁇ -methyl Aromatic vinyl compounds such as styrene and vinyltoluene; dimethylaminoethyl (meth) acrylamide, dimethylaminopropyl (meth) acrylamide, dimethylaminoethyl (meth) acrylate, and getylua Polymerizable unsaturated monomers having a secondary or tertiary amino group such as minopropionate (meta) acrylate; acrylic acid, methacrylic acid, crotonic acid, itaconic acid Acid-containing unsaturated monomers such as acid, maleic acid, and fumaric acid; vinyl acetate, (meth) acrylamide, (meth) acrylonitrile, N-methylol (meta) Monomers such as acrylamide butyl ether can be exemplified, and these can be used alone or in
  • the copolymerization of the above compound having a chelate-forming group and a polymerizable double bond with the other polymerizable unsaturated monomer can be carried out by a known copolymerization method. And preferably, by heating and reacting in the presence of an organic solvent.
  • a silane compound having a polymerizable double bond and an etherified silanol group is preferably a silane compound represented by the following general formula [9].
  • A represents an unsaturated hydrocarbon group or an unsaturated carbonylquinalkyl group
  • X represents a hydrogen atom, a hydrocarbon group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, It represents an aryloxy group having from 8 to 8 carbon atoms or an alicyclic hydrocarbonoxy group having from 5 to 8 carbon atoms.
  • Y and Z are the same or different and each represents an alkoxyl group having 1 to 18 carbon atoms, an aryloxy group having 8 to 8 carbon atoms or an alicyclic hydrocarbon oxy group having 5 to 8 carbon atoms, and is the same as X It may be.
  • Preferred examples of the above A include vinyl group, aryl group, methacryloyloxyethyl group, acryloyloxyethyl group, methacryloyloxypropyl, and acrylyloxypropyl group. And the like.
  • an alkoxyl group having 1 to 18 carbon atoms an aryloxy group having 6 to 8 carbon atoms, a carbon atom Among the 5 to 8 alicyclic hydrocarbon groups, preferred are, for example, carbon atoms such as methoxy, ethoxy, propoxybutoxy, hexoxy, octoxy and methoxyxoxy groups. Examples thereof include 1 to 8 alkoxyl groups, phenoxy groups, and cyclohexyloxy groups.
  • hydrocarbon groups having 1 to 18 carbon atoms preferred are hydrocarbon groups having 1 to 18 carbon atoms such as methyl, ethyl, n-propyl, isopropyl, n-butyl and n-hexyl. 6 to 6 alkyl groups; phenyl, methylphenyl, ethylphenyl, etc., 6 to 8 carbon atoms aryl groups; cyclopentyl, cyclohexyl, 5 to 8 carbon atoms alicyclic hydrocarbon groups .
  • silane compound represented by the above general formula [9] include vinyl trimethoxy silane, vinyl triethoxy silane, vinyl tris ( ⁇ -propoxy) silane, allyl lime methoxy silane, ⁇ -acryloyloxysh Toxixylane, r-acryloyloxyprobilt limetoxysilane, armethacryloyloxy lip mouth, built-in rimethoxysilane, ⁇ -methacryloyloxypropyl (methyljetoxy) silane, armethacryloyloxypropyl ethoxylate, 5-metacryl Royloxyprovirt squirrel (n-butoxy) silane, Derivatives Cryloyloxyprobitris (isopropoxy) silane.
  • silane compounds having an etherified silanol group that can be partially co-condensed with the silane compound represented by the general formula [9] include two or more etherified silanol groups.
  • Silane compounds can be used, e.g., tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, isobutyltrimethoxysilane, ethyltrimethoxirane, dimethyl dimethoxysilane.
  • silane compounds such as diphenyldimethoxysilane, and partial cocondensates of these silane compounds.
  • reaction can be carried out in accordance with a method for condensing an etherified silane compound, and is generally carried out in the presence of an acid such as an organic acid such as acetic acid, an inorganic acid such as hydrochloric acid, and water, at a temperature from room temperature to a boiling point or lower, preferably 50 ° C or lower. It can be carried out by heating to ⁇ 90.
  • an acid such as an organic acid such as acetic acid, an inorganic acid such as hydrochloric acid, and water
  • the amount of water may be increased or decreased appropriately depending on the degree of condensation ⁇ 2
  • a silane compound or a resin having a polymerizable double bond and an etherified silanol group to an o-aminophenol
  • the compound represented by the general formula (1), (2), (3) or A silane compound or resin having a chelate-forming group [4] and an etherified silanol group is obtained.
  • the above addition reaction is usually carried out in the presence of an acid catalyst, for example, usually at about 2 C!
  • the reaction can be carried out at about 100 to 100 hours for about 1 to 24 hours.
  • the resin obtained by this method is included in the chelate-forming resin of the present invention.
  • the chelate-forming resin of the present invention can also be obtained by partially condensing the silane compound or resin obtained by the above addition reaction or partially cocondensing with the other silane compound having an etherified silanol group.
  • the partial condensation and the partial cocondensation can be performed in the same manner as in the partial (co) condensation method described above.
  • the chelate-forming resin of the present invention obtained by the method (d) has an etherified silanol group, and this group reacts with moisture in the air and is hydrolyzed to form a silanol group.
  • a so-called moisture hardening type can be formed by a crosslinking reaction.
  • the resin obtained by the method (a), (b) or (c) above also has a silanol etherified in the resin.
  • a group By introducing a group, it can be made to be a moisture-curing type.
  • etherified silanol groups into the resin for example, an alcoholic hydroxyl group is present in the resin, and a monoiso- nate compound having a silanol group etherified into the hydroxyl group is converted to, for example, a tin catalyst.
  • a method of reacting both at about 20 to 100 for about 1 to 10 hours in the presence of is available.
  • Representative examples of the above-mentioned monoisosilicate compound having an etherified silanol group include, for example, isocyanatoprovir trimethoxysilane, 7-iso cyanatoprovir triethoxysilane, and the like. Can be
  • the chelate-forming resin of the present invention may be a resin obtained by a method other than the above-mentioned methods (a) to (d) or these modification methods.
  • the chelate-forming resin of the present invention needs to have a film-forming ability, and preferably has a number average molecular weight of about 500 to 500,000, more preferably about 700 to 200,000. It is appropriate to be within. Further, the chelate-forming resin of the present invention needs to have about 0.2 to 3.5 mol of the above-mentioned chelate-forming group in 1,000 g of the resin, and more preferably 0.3 to 3.0 mol. It is preferred to have moles. In addition, the chelate-forming group is reduced in one resin molecule. It is preferable to have at least one, and more preferably 3 to 700.
  • the base resin of the chelate-forming resin of the present invention various resins can be used as described above. However, acrylic resin, epoxy resin, polyester resin, alkyd resin, Gay-containing resins are preferred o
  • the resin of the present invention may be used after being diluted with an organic solvent, or may be used after being made aqueous.
  • a resin may be dispersed or dissolved in water by introducing a basic group such as an amino group or an acid group such as a carboxyl group into the resin and neutralizing these groups. .
  • the amount of the basic group in the resin is adjusted, for example, so that the amine value becomes 30 to: L3O mg KOH g resin
  • the basic group may be neutralized with an acid, for example, an organic acid such as formic acid, dicarboxylic acid, propionic acid, or lactic acid, or an inorganic acid such as hydrochloric acid, sulfuric acid, or phosphoric acid.
  • an acid group such as a carboxyl group
  • the amount of the acid group is adjusted so that the acid value becomes, for example, 30 to 130 mg K0HZg resin, and the acid group is converted to an organic amine. It may be neutralized with a base such as ammonia.
  • the amino group introduced into the resin becomes a chelate-forming group. It may be based on minophenols, or may be based on both O-aminophenols and other amino group-containing compounds.
  • amino group-containing compounds other than aminofunol include aliphatic, alicyclic or aromatic monoaliphatic primary or secondary amines (these are epoxy Tertiary amino monoisosocyanate obtained by the reaction of tertiary amino alcohol with diisocyanate (which can react with hydroxyl groups in the resin) Reacts to introduce an amino group into the resin) and a polymerizable unsaturated monomer having a secondary or tertiary amino group (for example, the resin is obtained by copolymerization in the method (c)). An amino group may be introduced into the compound).
  • Examples of the above primary or secondary amines include, for example:
  • Primary monoamines such as methylamine, ethylamine, n- or iso-propylamine, monoethanolamine, ⁇ - or is0-propanolamine ;
  • the first type such as ethylenediamine, diethylenetriamine, hydroxyethylaminoethylamine, ethylaminoethylamine, methylaminopropylamine, dimethylaminoethylethylamine, dimethylaminopropylamine, etc.
  • a second-class polyamine such as ethylenediamine, diethylenetriamine, hydroxyethylaminoethylamine, ethylaminoethylamine, methylaminopropylamine, dimethylaminoethylethylamine, dimethylaminopropylamine, etc.
  • a second-class polyamine such as ethylenediamine, diethylenetriamine, hydroxyethylaminoethylamine, ethylaminoethylamine, methylaminopropylamine, dimethylaminoethylethylamine, dimethylaminopropylamine, etc.
  • These primary or secondary amines may be reacted directly with the epoxy group when the resin has an epoxy group, but in general, the primary or secondary amines described above are the primary amines.
  • amine N-hydroxyalkyl secondary amide it is preliminarily combined with ketone, aldehyde or carboxylic acid, for example, in a range of 100 to 230. It is preferable to use a heat-reacted substance to denature to aldimin, ketimine, oxazoline or imidazoline, and use this.
  • the reaction of these primary, secondary and modified amines with epoxy groups in the resin can be carried out, for example, at a temperature of about 80 to about 200 at a temperature of about 2 to about 200. This can be done by heating for about 5 hours.
  • an amino group can also be introduced by adding a primary amine to the polymerizable unsaturated group.
  • the addition reaction is carried out in both cases, for example in the presence of an acid catalyst in about 20 to 100 to about 1 to 1
  • the reaction can be carried out for 24 hours.
  • a tertiary amino monoisocyanate is used as the amino group-containing compound, for example, it is reacted with an alcoholic hydroxyl group in a resin at a temperature of about 30 to 120 to infrared rays.
  • the reaction may be carried out until the absorption of the isocyanate group is completely eliminated by the absorption spectrum measurement.
  • a secondary or tertiary amine as part or all of another polymerizable unsaturated monomer copolymerized with a compound having a chelate-forming group and a polymerizable double bond represented by A polymerizable unsaturated monomer having a amino group may be used.
  • examples of the acid group introduced into the resin include a carboxyl group, a sulfonic acid group, and a phosphoric acid group.
  • an epoxy group is provided in the resin, and an excess molar amount of a polybasic acid having the above acid group is reacted with the epoxy group.
  • polybasic acids include (anhydrous) phthalic acid, isophthalic acid, terephthalic acid, hexahydrophthalic acid, succinic acid, glutaric acid, and adivine Acid, (anhydrous) maleic acid, fumaric acid, (anhydrous) trimellitic acid, vilomeritic acid and the like.
  • another polymerizable unsaturated compound is copolymerized with a compound having a chelate-forming group and a polymerizable double bond.
  • a method of adding a thiocarboxylic acid having a thiol group is added to thiosalicylic acid, thioglycolic acid, or the like.
  • the resin of the present invention can be used in combination with a crosslinking agent that reacts with the reactive group by causing a reactive group such as a hydroxyl group other than the chelate-forming group in the resin.
  • a reactive group such as a hydroxyl group other than the chelate-forming group in the resin.
  • the crosslinking agent may be a known polyisocynate compound, a blocked polyisocynate compound, or an aminoblast resin, that is, urea, melamine, benzoguanamine, or the like.
  • Cross-linking can be carried out at room temperature or by heating using a formaldehyde condensate of the nitrogen-containing compound described above or a lower alkyl etherified product of this condensate (the alkyl group has 1 to 4 carbon atoms).
  • a formaldehyde condensate of the nitrogen-containing compound described above or a lower alkyl etherified product of this condensate the alkyl group has 1 to 4 carbon atoms.
  • an aminoblast resin ⁇ -toluenesulfonic acid, dodecylbenzenesulfonic acid,
  • a curing catalyst such as dinapthalphthalenesulfonic acid or an amine-neutralized product of these acids may be used in combination.
  • metal compounds such as tin octylate, dibutyltin dilaurate, dibutyltin oxide, dioctyl peroxide, and lead 2-ethylhexanoate are used. May be used in combination as a curing catalyst.
  • a hydroxyl group is present in the resin, and a compound in which one of the diisocyanate compounds is blocked is reacted with a part of the hydroxyl group, so that the blocked isocyanate is added to the resin.
  • a thio group a resin having a self-crosslinking property can be obtained.
  • a polymerizable unsaturated group is present in the resin of the present invention, and this resin is used in combination with a polymerizable unsaturated vinyl monomer, and a photopolymerization initiator is added as necessary.
  • a composition that can be cured by irradiation with an actinic ray such as an electron beam or an ultraviolet ray can be obtained.
  • the polymerizable unsaturated vinyl monomer conventionally known vinyl monomers can be used.
  • those exemplified as the other polymerizable unsaturated monomers in the method (c) described above, and ethylene glycol Examples include polyfunctional monomers such as coal di (meth) acrylate and trimethylolpropane tri (meth) acrylate.
  • the introduction of polymerizable unsaturated groups into the resin involves adding epoxy groups to the resin.
  • a method may be used in which a carboxyl group-containing polymerizable unsaturated compound is added thereto and added thereto.
  • the resin of the present invention can be either an organic solvent type or an aqueous type.
  • the resin alone or in combination with a crosslinking agent, a vinyl monomer, etc., and further, if necessary, a pigment, a surface conditioner, an oxidizing agent, or the like. It can be used as a metal surface treatment agent or anti-corrosion paint, etc., by incorporating an agent or the like.
  • This surface treatment agent contributes to corrosion prevention of the metal by forming a thin treatment agent layer on the metal surface.
  • These surface treatment agents and anti-corrosion paints are applied to the substrate by spray coating, brush coating, roll coating, dip coating, kaolin electrodeposition coating, anion electrodeposition coating, immersion automatic deposition, silk screen printing, etc.
  • the dry film thickness is preferably about 0.1 to 5 m, and when used as an anticorrosive paint, the dry film thickness is preferably about 1 to 50 // m.
  • the substrate to be applied include metals such as iron, zinc, copper, and aluminum, and those obtained by subjecting these metal surfaces to a surface treatment such as a phosphate treatment or a chromate treatment.
  • the resin of the present invention is a metal which generates +2 or +3 metal ions by corrosion of iron, zinc, copper, aluminum, etc. It can provide excellent anticorrosion properties and is pollution-free. For this reason, the resin of the present invention is extremely useful as a metal surface treating agent or an anticorrosion paint.
  • the method for forming an electrodeposition coating film of the present invention is a method for performing electrodeposition coating on a metal surface that has been subjected to pre-coating treatment by bringing a metal surface treatment agent containing the chelate-forming resin of the present invention into contact with the metal surface. is there.
  • the metal surface treatment agent which is a pretreatment agent for coating in the method for forming an electrodeposition coating film of the present invention, may be either the organic solvent type or the aqueous type containing the chelate-forming resin, Containing various optional ingredients, such as an agent.
  • the coating pretreatment agent used in the present invention may further contain, if necessary, an oxidizing agent such as sodium chlorate and nitrous acid; and an etching aid such as ethylenediamine tracetate. Good.
  • concentration of the chelate-forming resin in the pretreatment agent for coating is preferably in the range of 0.1 to 10% by weight, more preferably in the range of 0.5 to 5% by weight.
  • the coating pretreatment agent is brought into contact with the metal material surface by dipping, spraying, roll coating, brush coating, spin coating, squeezing, etc. to form a film.
  • pre-treatment for electrodeposition coating is performed on the metal surface.
  • the metal surfaces to be pre-treated include surfaces of metals such as iron, zinc, mesh, and aluminum, and these metal surfaces are subjected to a chemical conversion treatment such as a phosphate treatment, a chromate treatment, a boehmite treatment, and an anodizing treatment. Surface and the like.
  • the metal surface subjected to the above-mentioned pre-coating treatment is subjected to electrodeposition coating.
  • the electrodeposition paint used for this electrodeposition coating may be either a Kachion type or an anion type, and is an electrodeposition coating used in the field of electrodeposition coating.
  • cationic electrodeposition coatings include, for example, polyamine resins represented by amine-added epoxy resins, for example,
  • the polyepoxide compound used for the production of the above polyamine resin is a compound having two or more epoxy groups in one molecule, and is generally at least 200, preferably 400 to 400. Suitable are those having a number average molecular weight in the range of 800 to 200, more preferably those obtained by the reaction of a polyphenol compound with epichlorohydrin. .
  • polyphenol compound examples include bis (4-hydroxyphenyl) -1,2,2-propane, 4,4′-dihydroxybenzophenone, and bis (4-hydroxybenzene).
  • the polyepoxide compounds include polyols, polyether polyols, polyester polyols, and polyamide amides. • It may be partially reacted with carboxylic acid, polycarboxylic acid, polyisocyanate compound, etc., and it is also obtained by graft polymerization of e-force prolactone, acryl monomer, etc. It may be.
  • an amino group-containing acrylic resin or a nonionic acrylic resin having excellent weather resistance is used as a resin component. It is convenient to use the resin alone or in combination with the above-mentioned amine-added epoxy resin.
  • the aforementioned amine-added epoxy resin can be cured using a polyisocyanate compound blocked with an alcohol or the like, if necessary.
  • an amine-added epoxy resin that can be cured without using a blocked isocyanate compound.
  • a hydroxyalkyl carbamate group is introduced into a polyepoxide material.
  • Resins for example, see JP-A-59-155470
  • resins of a type that can be cured by transesterification for example, see JP-A-55-80436
  • Preparation of the above-mentioned cation-based aqueous solution or aqueous dispersion of the cation electrodeposition coating resin is usually carried out by formic acid, acetic acid, It can be carried out by neutralizing with a water-soluble organic acid such as lactic acid and solubilizing and dispersing in water.
  • anionic electrodeposition paints include, for example, a polycarboxylic acid resin, for example, a saturated or unsaturated alkyd resin having a carboxyl group, an oil-modified product thereof, and an acrylic resin having a carboxyl group. And those containing maleated polybutadiene-based resin as a resin component.
  • This polycarboxylic acid resin can be cured by using a blocked polyisocyanate compound or an amino resin such as a melamine resin or a urea resin, if necessary.
  • the preparation of the anionic aqueous solution or aqueous dispersion of the resin for anionic electrodeposition coating is usually carried out by neutralizing the resin with a basic substance, that is, an organic amine or ammonia, and not dissolving the resin in water. It can be carried out by dispersing in water.
  • an aqueous coating solution or dispersion of the above resin and, if necessary, ordinary coating additives such as coloring pigments such as titanium white, carbon black, red iron oxide, etc. , Chromium pigments such as strontium chromate, zinc chromate, basic gay acid, etc .; anti-pigment pigments such as strontium chromate, zinc chromate, etc .; Lead pigments such as lead; other additives can be added You.
  • additives include, for example, dispersing aids (nonionic surfactants, etc.); anti-cissing agents for coated surfaces (acrylic resins, fluororesins, silicon resins, etc.); curing accelerators (eg, lead, bismuth, etc.) , Tin and other metal salts); organic polymer fine particles (acrylic resin, etc.) with a particle size of about 0.01 to 0.5; / m for the purpose of improving the coating properties on the end face of the material, etc. Are listed.
  • the coating surface of the coating pretreatment agent is brought into contact with the metal surface by dipping or the like to form a coating of the coating pretreatment agent on the metal surface in a dry film thickness of about 0.01 to 5 ⁇ . m, preferably 0.1 to 3 jKin, and, if necessary, curing by heating or the like, and then applying the pre-coating metal surface to the cationic or anion-based metal surface.
  • the electrodeposition paint is applied by electrodeposition.
  • the coating pretreatment agent is cured, it may be cured before the electrodeposition coating, or may be cured simultaneously with the electrodeposition coating after the electrodeposition coating.
  • cation electrodeposition coating on a metal surface which has been subjected to the above-mentioned coating pretreatment is diluted with deionized water or the like so that the solid content concentration of the cationic electrodeposition coating is about 5 to 40% by weight.
  • Cathode electrodeposition coating conditions are not particularly limited, but generally, bath temperature: 15 to 35 (preferably 20 to 30), voltage: 100 to 400 V (preferably Or 200 to 300 V), current density: 0.01 to 3 AZdo ⁇ , energization time: 30 seconds to 10 minutes, pole area ratio (A / C): 61 to: L / 6, gap Distance: 10 to 100 cm, preferably electrodeposited with stirring.
  • the thickness (dry state) of the electrodeposited coating film formed is in the range of 5 to 70 / zm, preferably 10 to 50 wm.
  • the formed electrodeposition coating film may be omitted from the water washing treatment, or may be washed with deionized water or reverse osmosis membrane filtrate or the like, and then at a temperature equal to or higher than the curing start temperature of the electrodeposition coating material, preferably from 100 to At 250, more preferably by heating to 150-200 C, it can be cured.
  • the anion electrodeposition coating on a metal surface which has been subjected to the above-mentioned coating pretreatment is diluted with dewatering water or the like so that the solid content concentration of the anion electrodeposition coating is 5 to 40% by weight. It can be carried out using an electrodeposition bath in which H is adjusted in the range of 7 to 9.
  • Methods and apparatuses for performing anion electrodeposition coating include the conventional methods and apparatuses used in anion electrodeposition coating. Six known methods and devices can be used.
  • the conditions of the anion electrodeposition coating are not particularly limited, but generally, a direct current is applied at a voltage of 15 to 300 for 30 to 300 seconds.
  • the thickness (dry state) of the electrodeposited coating film formed is in the range of 3 to 70 m, preferably 5 to 50 m.
  • the electrodeposition coating film is subjected to a water washing treatment or the water washing treatment is omitted, and the temperature is equal to or higher than the curing start temperature of the electrodeposition paint, preferably 100 to 250, and more preferably 150 It can be cured by heating to about 200 ° C.
  • the chelating group of the chelating resin in the coating pretreatment agent has an amino group, and the coating pretreatment agent is used from the viewpoint of safety and health. It is preferable to use an aqueous type obtained by neutralizing the hydroxyl group, and it is more preferable to perform cationic electrodeposition from the viewpoint of the corrosion prevention of the electrodeposition coating film itself.
  • the electrodeposition coating material obtained by the coating film forming method of the present invention can be used as it is, or a paint may be applied thereon.
  • the coating system is not particularly limited, and examples thereof include an electrodeposition coating material and a top coat, and a primer coated with a middle coat, a chipping primer, a stone guard primer and the like during this time.
  • a novel coating pretreatment agent containing a chelating resin having a specific chelating group derived from o-aminophenols is used.
  • the chelate-forming group of the resin in the pre-treated film can form a stable nonionic intramolecular complex type 5-membered ring chelate complex with a +2 or +3 metal ion, Or, excellent corrosion resistance can be imparted to metal surfaces such as iron, zinc, copper, and aluminum which generate + trivalent metal ions.
  • the pre-coating treatment performed in the present invention has an electrodeposition characteristic that is equal to or more than that of the conventional zinc phosphate treatment, and can prevent the pre-coating treatment layer from being deteriorated during the electrodeposition coating. It can be made pollution-free without problems of water contamination due to phosphorus in the phosphate treatment, and can be used in combination with electrodeposition coating to achieve surface treatment-low paint pollution and high corrosion protection.
  • Example 1 8 In a flask, mix 109 parts of o-aminophenol, 58 parts of N, N-dimethylformamide and 0.1 part of hydroquinone, and heat to 70 with stirring to remove 0-aminophenol. Dissolved and kept at 70. A mixture of 72 parts of acrylic acid and 2.3 parts of copper acetate as an addition reaction catalyst was added dropwise over 2 hours, and after completion of the dropwise addition, the temperature was raised to 90 and reacted at 90 to 3 hours. Thus, an adduct solution was obtained.
  • a chelate-forming resin solution having a solid content of 50%.
  • the chelating group concentration of this resin was 1.38 mol Zlk (resin solids).
  • the number average molecular weight of this resin was about 12,000.
  • Denacol EX 521 (Nagase Kasei Co., Ltd., polyol polyglycidyl ether, number average molecular weight about 1200, epoxy equivalent about 200), methyl isoptyl ketone 118 parts, acrylic Mix 76 parts of acid, 2.5 parts of tetraethylammonium bromide and 0.3 part of hydroquinone, and heat at 110 for 3 hours to react epoxy group with carboxy group.
  • a resin solution having a polymerizable unsaturated group and a hydroxyl group was obtained.
  • ⁇ 249 parts of the above-obtained partially-blocked polyisocyanate solution were blended, and the resin was reacted at 70 for 3 hours.
  • a block isocyanate group was introduced therein. To this were further added 91 parts of o-aminophenol, 37.5 parts of oxalic acid, 17.5 parts of diethanolamine and 43 parts of isopropanol, and reacted at 70 for 3 hours. A 50% chelate-forming resin solution was obtained. The chelating group concentration of this resin is 1.54 mol 1 kg
  • Example 2 35 parts of the chelate-forming resin solution having a solid content of 50% obtained in Example 1 was mixed with 1 part of Symmar M 551, 24 parts of methyl isobutyl ketone, 28 parts of isopropanol and 2 parts of water to obtain a coating composition B.
  • Symmar M 551, 24 parts of methyl isobutyl ketone, 28 parts of isopropanol and 2 parts of water 35 parts of the chelate-forming resin solution having a solid content of 50% obtained in Example 1 was mixed with 1 part of Symmar M 551, 24 parts of methyl isobutyl ketone, 28 parts of isopropanol and 2 parts of water to obtain a coating composition B.
  • Symmar M 551 24 parts of methyl isobutyl ketone, 28 parts of isopropanol and 2 parts of water
  • Example 10 In 4 parts of the chelate-forming resin solution having a solid content of 50% obtained in Example 2, 0.7 parts of Sumimal M55, 60 parts of methyl isobutyl ketone, 25 parts of ethanol, 9.8 parts of water, and 0.5 part of citric acid Were mixed to obtain a surface treatment composition C.
  • Example 10 In 4 parts of the chelate-forming resin solution having a solid content of 50% obtained in Example 2, 0.7 parts of Sumimal M55, 60 parts of methyl isobutyl ketone, 25 parts of ethanol, 9.8 parts of water, and 0.5 part of citric acid Were mixed to obtain a surface treatment composition C.
  • Example 10 In 4 parts of the chelate-forming resin solution having a solid content of 50% obtained in Example 2, 0.7 parts of Sumimal M55, 60 parts of methyl isobutyl ketone, 25 parts of ethanol, 9.8 parts of water, and 0.5 part of citric acid Were mixed to obtain a surface treatment composition C.
  • Example 10 In 4 parts
  • Example 2 35 parts of the chelate-forming resin solution having a solid content of 50% obtained in Example 2 was mixed with 11 parts of Sumimar M55, 24 parts of methyl isobutyl ketone, 28 parts of isopropanol, and 2 parts of water to obtain a coating composition D. .
  • Example 3 To 10 parts of the chelate-forming resin solution having a solid content of 50% obtained in Example 3, 60 parts of methyl isobutyl ketone, 20 parts of toluene, 8 parts of ethanol and 2 parts of a 1% formic acid aqueous solution are mixed. Thus, a surface treatment composition E was obtained.
  • Example 3 To 50 parts of the chelating resin solution having a solid content of 50% obtained in Example 3, 20 parts of methyl isobutyl ketone, 20 parts of isobutanol, 9 parts of ethanol, and a 0.5% aqueous solution of citric acid One part was blended to obtain a coating composition F.
  • Example 6 The solid obtained in Example 6 was stirred under stirring in a mixture of 79.5 parts of a 7% aqueous solution of formic acid and 0.5 part of sodium chlorate. 20 parts of a chelate-forming resin solution of 50% by weight were gradually added and mixed uniformly to obtain an automatic deposition type surface treatment composition K, Example 18.
  • Example 6 40 parts of the chelate-forming resin solution having a solid content of 50% obtained in Example 6 was gradually added to 60 parts of a 0.2% formic acid aqueous solution with stirring, and the mixture was uniformly mixed. I got Test examples 1 to 6
  • Each of the surface treatment compositions A, C, E, G, I, and K obtained in Examples 7, 9, 11, 13, 15, and 17 was dried on various materials as shown in Table 1. It was applied to a thickness of 0 and air-dried.
  • Test Example 6 using the surface treatment composition K, the material was immersed in the composition K, and was subjected to automatic deposition to form a surface treatment film.
  • each surface treatment composition was applied by Barco overnight.
  • a top coat was applied on the obtained surface-treated film and dried to form a top coat.
  • an epoxy-melamine paint (abbreviated as “EPZMEJ” in Table 1) was applied to a dry film thickness of about 40 m, and was applied at 140 for 30 minutes.
  • the urethane-based white enamel paint (abbreviated as "urethane” in Table 1) had a dry film thickness. It was applied to a thickness of 20 zm and dried at room temperature for 5 days.
  • an epoxy / polyamine-based white enamel paint (abbreviated as ⁇ ⁇ ⁇ in Table 1) was applied to a dry film thickness of 50 m and dried at room temperature for one day. Thereafter, a white enamel paint of a polyol / polyisocyanate type (abbreviated as “POZP IJ” in Table 1) was applied thereon so as to have a dry film thickness of 25, and dried at room temperature for 4 days.
  • POZP IJ a white enamel paint of a polyol / poly
  • Each of the chelate-forming coating compositions B, D, F, H, J, and L obtained in Examples 8, 10, 12, 14, 16, and 18 was prepared using various materials under the conditions shown in Table 2. Coated on top and dried. In Test Examples 7, 8, and 10, a top coat was applied on the obtained coating No. 1 and dried to form a top coat. In Test Examples 7 and 8, an acrylic-melamin-based white enamel paint (abbreviated as “acryl J” in Table 1) was used as the top coat, and the dry film thickness was 20 ⁇ m. It was baked for 30 minutes at 140. In Test Example 10, the same paint as the urethane-based white enamel paint used in Test Example 4 was used as the top coat, and the dry film thickness was 20%. m and dried at room temperature for 5 days. Comparative test examples 1 to 3
  • the acrylic-melamine white enamel paint used in Test Example 7 was applied to various materials so that the dry film thickness became 20 zm, and baked at 140 ° C for 30 minutes.
  • the epoxy-polyamine white enamel paint used in Test Example 5 was applied to various materials to a dry film thickness of 30 m, dried at room temperature for one day, and then placed on Test Example 7
  • the acrylic-melanic white enamel paint used in (1) was applied to a dry film thickness of 20 / m and baked at 14 CTC for 30 minutes.
  • Salt spray test (S ST): A cross-cut was made on the coated plate: The test was carried out according to TIS Z 2371. The salt water spraying time was 1000 hours.
  • FCT Fatigue cracking resistance test
  • Example 2 55 parts of 2-amino-1-naphthol was used instead of 43 parts of 5-methyl-2-aminophenol, and the amount of methylisobutyl ketone was changed from 88.9 parts to 110 parts. In the same manner as in Example 2 except that the amount was changed to 9 parts, a chelate-forming resin solution having a solid content of 50% was obtained. The concentration of the chelating groups in this resin was 1.92 moles 1 kg (resin solids). The number average molecular weight of this resin was about 45,000.
  • Another flask was mixed with 50 parts of methyl isobutyl ketone, and heated and maintained at 85.
  • 50 parts of ethyl methacrylate isocyanate, 30 parts of isobutyl acrylate, 20 parts of styrene and 2,2'-azobisisobutyl ester The mixture of lonitrile (2 parts) was added dropwise over 2 hours under nitrogen gas flow. After the addition, the mixture was kept at the same temperature for 2 hours to obtain an isocyanate group-containing acrylic resin solution.
  • 108 parts of the hydroxyl-containing chelate compound solution obtained above was added thereto, and the mixture was reacted at 70 at room temperature for 2 hours.
  • a chelate-forming resin solution having a solid content of 50%.
  • the concentration of the chelating groups in this resin is 1. It was 61 mol Z lkg (resin solids).
  • the number average molecular weight of this resin was about 10,000.
  • Example 19 35 parts of the chelate-forming resin solution having a solid content of 50% obtained in Example 19 were mixed with 1 part of Sumimal M 55 11, 24 parts of methyl isobutyl ketone, 28 parts of isopropanol and 2 parts of water to obtain a coating composition B ′. Obtained.
  • Example 27 In 4 parts of the chelating resin solution having a solid content of 50% obtained in Example 20, 0.7 parts of Sumimal M 55, 60 parts of methyl isobutyl ketone, 25 parts of ethanol, 9.8 parts of water, and 0.5 part of citric acid And a surface treatment composition C ′ was obtained by blending the following parts ⁇ Example 28>
  • Example 20 35 parts of the chelating resin solution having a solid content of 50% obtained in Example 20 were mixed with 5 parts of Sumimar M 55 1 1 part, methyl isobutyl ketone 24 parts, isopropanol 28 parts and water 2 parts to obtain a coating composition D ′. I got
  • Example 21 52.5 parts of methyl isobutyl ketone, 20 parts of toluene, 8 parts of ethanol and 2 parts of a 1% aqueous solution of anaerobic acid were mixed with 12.5 parts of the chelate-forming resin solution having a solid content of 40% obtained in 1 Thus, a surface treatment composition E 'was obtained.
  • Example 21 50 parts of the chelating resin solution having a solid content of 50% obtained in Example 21 were mixed with 20 parts of methyl isobutyl ketone, 20 parts of isobutanol, 9 parts of ethanol and 1 part of a 0.5% aqueous solution of citric acid to prepare a coating composition.
  • the thing F ' was obtained.
  • Example 32 8.5 parts of the chelate-forming resin solution having a solid content of 60% obtained in Example 22 was mixed with 1.2 parts of isophorone diisocyanate, A surface treatment composition G ′ was obtained by mixing 40 parts of methylisobutyl ketone, 10 parts of toluene and 40 parts of butyl acetate.
  • Example 32 8.5 parts of the chelate-forming resin solution having a solid content of 60% obtained in Example 22 was mixed with 1.2 parts of isophorone diisocyanate, A surface treatment composition G ′ was obtained by mixing 40 parts of methylisobutyl ketone, 10 parts of toluene and 40 parts of butyl acetate.
  • Example 22 To 34 parts of the chelating resin solution having a solid content of 60% obtained in Example 22, 5 parts of isophorone diisocynate, 30 parts of methyl isobutyl ketone, 20 parts of toluene, and 10 parts of butyric acid were mixed. A coating composition H ′ was obtained.
  • Example 23 10 parts of the chelating resin solution having a solid content of 50% obtained in Example 23 were mixed with 70 parts of isobutyl alcohol, 5 parts of ethanol and 15 parts of toluene to obtain a surface treatment composition I ′.
  • Example 3 5 105 parts of the white pigment paste obtained above, 100 parts of the chelate-forming resin solution having a solid content of 50% obtained in Example 23, and 100 parts of the moisture-curable acrylic resin solution obtained above 94 parts, ethanol 50 parts, methyl isobutyl ketone 100 parts and toluene 51 parts were uniformly mixed to obtain a coating composition J ′.
  • Example 3 5 105 parts of the white pigment paste obtained above, 100 parts of the chelate-forming resin solution having a solid content of 50% obtained in Example 23, and 100 parts of the moisture-curable acrylic resin solution obtained above 94 parts, ethanol 50 parts, methyl isobutyl ketone 100 parts and toluene 51 parts were uniformly mixed to obtain a coating composition J ′.
  • Example 3 5 105 parts of the white pigment paste obtained above, 100 parts of the chelate-forming resin solution having a solid content of 50% obtained in Example 23, and 100 parts of the moisture-curable acrylic resin solution obtained above 94 parts, ethanol 50 parts, methyl isobut
  • Example 24 Under stirring, 40 parts of a chelating resin solution having a solid content of 50% obtained in Example 24 was gradually added to 60 parts of a 0.2% formic acid aqueous solution with stirring, and mixed uniformly. Thus, a coating composition L ′ was obtained.
  • Test Example 13 L 8
  • Each of the surface treatment compositions A ′,, E ′, G ′, I ′ and ⁇ ′ obtained in Examples 25, 27, 29, 31, 33 and 35 was placed on various cord materials as shown in Table 3. The coating was applied to a dry film thickness of 0.5 m and air-dried.
  • Test Example 18 using the surface treatment composition the cord material was immersed in the composition K ′, and the surface treatment film was formed by automatic precipitation.
  • each surface treatment composition was applied using a bar coater.
  • a top coat was applied on the obtained surface-treated film and dried to form a top coat.
  • an epoxy-melamine paint (abbreviated as “EPZMEJ” in Table 3) was applied so that the dry film thickness was about 4 O ⁇ m.
  • a urethane-based white enamel paint (abbreviated as “urethane” in Table 3) was applied so that the dry film thickness became 20 m, and the room temperature was changed to room temperature. For 5 days.
  • an epoxy ⁇ polyamine-based white enamel paint (abbreviated as “EPZPA” in Table 3) was applied to a dry film thickness of 50 m and dried at room temperature for one day.
  • a polori polyisocyanate-based white enamel paint (“P0” in Table 3) Abbreviated as ZP IJ. ) was applied to a dry thickness of 25 and dried at room temperature for 4 days.
  • Each of the chelating coating compositions B ′, D ′, F ′, H ′, J ′ and L ′ obtained in Examples 26, 28, 30, 32, 34 and 36 is shown in Table 4. It was applied and dried on various materials under the conditions shown below. In Test Examples 19, 20, and 22, a topcoat was applied on the obtained coating and dried to form a topcoat. In Test Examples 19 and 20, an acrylic-melanin-based white enamel paint (abbreviated as “acryl” in Table 4) was used as the top coat, and the dry thickness was 2%. It was painted so as to be 0 im and baked at 140 for 30 minutes.
  • acryl acrylic-melanin-based white enamel paint
  • Test Example 22 the same paint as the urethane-based white enamel paint used in Test Example 16 was used as the top coat, and the paint was applied to a dry film thickness of 20 and dried at room temperature for 5 days. .
  • Example of the method for forming an electrodeposition coating film of the present invention Example of production of pretreatment liquid
  • Example 2 20 parts of a chelating resin solution having a solid content of 50% obtained in Example 2 was mixed with 600 parts of ethylene glycol monoethyl ether and 380 parts of deionized water to prepare a treatment liquid (1).
  • the flask was mixed with 32 parts of ⁇ -butyl alcohol, 1 part of tetraethylammonium bromide, and 18 parts of acrylic acid, and heated to 110 under air blowing, and maintained at the same temperature.
  • 125 parts of the resin solution (A) obtained in Example 2 was added dropwise over 1 hour, and after completion of the addition, the temperature was maintained for another 2 hours, and 14 parts of phthalic anhydride was added thereto. And kept at 110 for 2 hours to obtain an adduct solution having a polymerizable unsaturated group and a carboxy group.
  • the adduct solution was cooled to 50, and 39.8 parts of 2-amino-1-naphthol and 24.4 parts of dimethylformamide were mixed therein and reacted at 50 for 12 hours. 89.4 parts of methyl isobutyl ketone was added to obtain a chelating resin solution having a solid content of 50%.
  • the chelate-forming group concentration of this resin was 1.46 mol Zlkg (resin solids).
  • the number average molecular weight of this spore was about 430000.
  • the mixture was added dropwise over a period of time, and after completion of the addition, the mixture was maintained at the same temperature for 3 hours to obtain an adduct solution having a polymerizable unsaturated group having a solid content of 80%.
  • the resin acid value of this solution was 0.1 or less.
  • Benzine was added to 25 parts of the obtained chelating resin solution. Add 0.6 parts of alcohol and 40 parts of deionized water and uniformly mix the mixture. 890.2 parts of deionized water, 11.4 parts of a 10% aqueous formic acid solution and 34 parts of a 0.2% aqueous nitrous acid solution 33. The solution was dropped into 4 parts of the mixed solution and mixed uniformly to prepare a treatment solution (4).
  • a flask was mixed with 72 parts of acrylic acid, 2 parts of tetraethylammonium bromide, 0.3 parts of hydroquinone and 31.7 parts of methylisobutyl ketone, and heated and maintained at 110.
  • treatment film layers were formed on the following various materials by various methods.
  • Example 37 is a bar coater painting, air-drying and water-washing, In Example 38, Bako overnight coating was performed at 140 for X20 minutes and baked.
  • Example 39 is a dip coating, air drying and water washing
  • Example 40 is an automatic precipitation method by immersion, washing with water and air-drying
  • Example 41 is a coating method for removing excess processing liquid by centrifugal force after applying the processing liquid, and coating with air-drying and washing with air.
  • Example 42 was carried out by baking for 20 minutes in an automatic precipitation method by immersion, washing with water at 170 ° C, and washing for 170 minutes.
  • electrodeposition coating was performed on various materials on which the treated film layers were formed.
  • the electrodeposition coating conditions were as follows.
  • Electron No. 9410 gray manufactured by Kansai Paint Co., Ltd., cationic electrodeposition paint, epoxy polyamine resin
  • a block polyisocyanate-based gray paint, “Cation-1J” is used in Tables 5 and 6, and the applied film has a film thickness of 20 in at an applied voltage of 250 V. After the electrodeposition coating, the electrodeposition coating was washed with water, and then baked at 170 for 30 minutes to obtain an electrodeposition coating.
  • Electron N 0.70100 gray (manufactured by Kansai Paint Co., Ltd., anion-type electrodeposition paint, maleated polybutadiene resin-based gray paint, and Table 5) Abbreviated as "One Anion 2". ) was applied at an applied voltage of 200 V so as to have a thickness of 20 #m. After the electrodeposition coating, it was washed with water, and baked at 160 at 30 minutes to obtain an electrodeposition coated plate.
  • a zinc phosphate-treated plate treated with Palbond 300 was used, and electrodeposition coating was applied on it using the same method as in Example 37. .
  • the material was not subjected to the chelate-forming surface treatment, and was subjected to Kachion electrodeposition coating in the same manner as in Example 37 without any treatment.
  • Example 3 Regarding the electrodeposited coated plates obtained in 7 to 4 2 and Comparative Examples 1 to 3, the finished appearance, salt water spray resistance, and shot water immersion performance We tried welding on the street resistance. Table 5 shows the test results.
  • Finish appearance Visually observe the surface of the electrodeposited plate, and evaluate for bumps, dents, and smoothness. A is good, A is practically acceptable, B is slightly defective skin, and C is defective.
  • Saltwater spray resistance A crosscut was placed on an electrodeposition coated plate, and a test was performed in accordance with JIS Z2371. The salt spray time was 240 hours. Adhere the cellophane adhesive tape to the cross-cut part of the coated plate after the test welding, and rapidly peel off the adhesive. Obtain the maximum width of the cut and spout width on one side of the cross-cut part.
  • Warm salt water immersion resistance Put a cross cut on the electrodeposited coated plate, immerse in a 5% saline solution at 50 for 240 hours, pull up the coated plate, air-dry, and apply cellophane adhesive tape to the cross cut part. Closely contact and peel off sharply. Obtain the maximum width of the chip width and emission width on one side of the cross cut part.
  • Quenching resistance DuPont type under ambient atmosphere at 20 in accordance with JISK5400.0.3.2 (1900) Conduct a street test.
  • the weight is 500 g and the diameter of the tip of the heart is 1 to 2 inches. It shows the maximum falling weight height that does not damage the coating film. The maximum value is 50 cm.
  • Phosphorous acid Salt spray resistance (>> ») 0 0 0 0 0 0 0 0 0 0
  • Electrodeposition coating type * Thin-1 -1 Thion-1 -1 Thion-1 Cation-1 1 Thion-1 cation-1 Electrode 200V 21 20 20 21 20 21 Deposition Maximum electrodeposition film Thickness (m) 250V 25 25 26 25 25 24 26 Special 300V 28 29 29 29 28 30 Coulomb yield (mgZC) 32 32 32 32 32 33

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Paints Or Removers (AREA)

Description

明 細 害
被膜形成可能なキレー ト形成性榭脂、 その製造方法、 そ の用途及び電着塗膜形成方法
技術分野
本発明は、 新規な被膜形成可能なキレー ト形成性樹脂 その製造方法、 その用途及び電着塗膜形成方法に関する
背景技術
従来、 金属の腐食を防止するために、 リ ン酸塩やクロ ム酸塩等の無機質被膜を金属素材表面に形成する金属表 面処理、 エポキシ樹脂やフユノール樹脂等の有機質被膜 を金属表面に形成する塗膜防食の技術、 等が利用されて きた。
しかしながら、 金属表面処理の場合、 重金属廃液によ る環境汚染公害の発生、 酸 · アルカリ · シァン等の劇毒 物の使用、 複雑な工程を要する、 といった欠点がある。
また、 塗膜防食の場合、 金属との結合力が腐食反応を 完全に抑える程強固ではないといつた問題がある。
従って、 現在、 無公害で実用性があり、 優れた防食性 を示す防食技術が確立されておらず、 その開発が待たれ ている。
一方、 自動車車体や電気機器などの塗装においては、 金属表面の防食性、 金属表面と塗装塗膜との密着性、 塗 膜の仕上り外観や耐久性、 生産性などの観点から、 金属 の塗装前処理として上記リ ン酸塩で表面処理し、 プライ マーとして電着塗料を塗装することが幅広く採用されて いる。
しかし、 この場合において、 電着塗料は低公害塗料で あるが、 リ ン酸塩処理についてみると、 リ ン酸塩処理工 程からの廃水中のリ ンが水質の富栄養化をもたらし水質 汚染の原因になっていることや、 将来、 リ ンの供給不足 が予想されていることなどから、 リ ン酸塩処理に代わる 新しい塗装前処理方法の開発が急務となっている。
発明の開示
本発明の目的は、 金属表面に強固な金属キレー ト錯体 を形成して金属の腐食を防止できる、 新規な被膜形成可 能なキレー ト形成性樹脂及びその製造方法を提供すると 本発明の他の目的は、 無公害でしかも優れた防食性を 示す被膜形成可能なキレー ト形成性樹脂を用いた、 新規 な金属の表面処理剤及び防食用塗料を提供するところに る。
本発明の更に他の目的は、 従来のリ ン酸塩処理に代わ る塗装前処理を行なった、 新規な電着塗膜形成方法を提 供するところにある。 本発明のこれら及び更に他の目的は、 以下の記載より 明らかにされるであろう。
本発明は、 下記一般式 [1] 、 [2] 、 [3] 又は [4] で表わされるキレー ト形成基を樹脂 1 000 g中 に約 0. 2〜3. 5モル有する被膜形成可能なキレー ト 形成性樹脂を提供するものである。
〔2〕
Figure imgf000005_0001
〔4〕
Figure imgf000005_0002
(各式中、 : 1 および R2 は同一または異なって、 水素 原子、 ハロゲン原子、 ニトロ基、 ニ トロソ基、 シァノ基 炭素原子数 18以下の炭化水素基、 炭素原子数 12以下 のアルコキシアルキル基を示す。 )
また、 本発明は、 下記一般式 〔5〕 、 〔6〕 、 〔7〕 又は 〔8〕 で表わされる化合物のァミ ノ基と、 重合性二 重結合を有する樹脂または化合物中の重合性二重結合と を付加反応させることを特徴とする上記キレー ト形成性 榭脂の製造方法を提供するものである。
〔6〕
Figure imgf000006_0001
〔8〕
Figure imgf000006_0002
(各式中、 R 1 および R 2 は、 前記と同じ意味を有する
)
また、 本発明は、 上記キレー ト形成性樹脂を含有する 金属の表面処理剤及び防食用塗料、 並びに該樹脂に架橋 剤を配合してなるキレー ト形成性樹脂組成物を提供する ものである。
更に、 本発明は、 金属表面に電着塗膜を形成するにあ たり、 上記金属表面処理剤を金属表面に接触させて塗装 前処理を施してなる金属表面に、 電着塗装を行なうこと を特徴とする電着塗膜形成方法を提供するものである。 本発明者は、 前記従来技術の現状に鑑み、 リ ン酸塩や クロム塩酸等の無機質表面処理剤に代えて無公害の表面 処理剤として使用でき、 かつエポキシ樹脂やフユノール 樹脂等より優れた防食性を示す新規で無公害な樹脂を得 るために界面化学 ·熱力学 ·電気化学 ·錯体化学等の観 点から研究を行なってきた。 特に、 キレー ト錯体を形成 し得る高分子化合物がエポキシ樹脂やフエノール樹脂等 の樹脂より遥かに強固に金属と結合することに着目し、 キレー ト錯体を形成し得る高分子化合物について検討を 進めた。 その結果、 次のような事実を見出した。
( 1 ) 被膜形成可能な榭脂に、 フユノ ール性水酸基に対 して窒素原子がオルト位に結合した上記特定のキレー 卜 形成基を特定量持たせることによって、 キレー ト形成に よる金属との結合エネルギーが腐食反応エネルギーを上 回ること。
( 2 ) かかるキレー ト形成性樹脂によれば、 金属イオン の電荷を中和できること。
( 3 ) キレー ト形成によって 3次元架橋がなされること
( 4 ) 上記 ( 1 ) 〜 (3 ) 等から、 この樹脂による被膜 が優れた防食性を示すこと。
( 5 ) かかるキレー ト形成性樹脂の使用によれば、 無公 害でしかも優れた防食性を示す、 金属の表面処理剤及び - o n 6 防食用塗料が得られること。
( 6 ) 上記金属の表面処理剤によって金属表面の塗装前 処理を行ない、 このものに電着塗装を行なうことによつ て、 リ ン酸塩処理で前処理した場合と同等以上に素地と 電着塗膜との密着性が良好で、 かつ優れた防食性を有す る電着塗膜を形成できること。
前記本発明は、 かかる新たな諸知見に基づいて完成さ れたものである。
本発明キレー ト形成性樹脂において、 前記一般式 〔 1〕
1 0 〜 〔4〕 で表わされる各キレー ト形成基の R 1 および R
2 における炭化水素基は、 炭素数 1 8以下であり、 好ま しく は炭素数 5以下であって、 アルキル基、 シクロアル キル基、 ァラルキル基、 ァリール基などが包含される。 また、 R 1 および R 2 におけるアルコキシアルキル基は、
15 炭素数 1 2以下であり、 好ま しくは炭索数 5以下である。
上記キレー ト形成基の R 1 および R 2 における、 アル キル基、 アルコキシアルキル基、 シクロアルキル基、 ァ ラルキル基、 ァリール基の具体例を以下に示す。
アルキル基としては、 直鎖でも枝分れ鎖でもよく、 例 えば、 メチル基、 ェチル基、 π —プロビル基、 イソプロ ビル基、 η —プチル基、 n—へキシル基、 n—ォクチル 基、 2—ェチルへキシル基、 n— ドデシル基および n—
"つ
u n ォクタデシル基など ; アルコキシアルキル基と しては、 例えば、 2—メ トキシェチル基および 3—メ トキシプロ ビル基など ; シクロアルキル基と しては、 例えば、 シク 口ペンチル基、 シク ロへキシル基および 3—メチルシク 5 口へキシル基など ; ァラルキル基と しては、 例えば、 ベ ンジル基、 4一メチルベンジル基、 4一イ ソプロ ピルべ ンジル基、 フエネチル基など ; ァリール基と しては、 例 えば、 フヱニル基、 ジフヱニル基、 ナフチル基、 4 ーメ チルフヱニル基などが挙げられる。
10 上記 〔 1〕 、 〔 2〕 、 〔3〕 又は 〔4〕 式で表わされ るキレー ト形成基の代表例と しては、
1 5
N
Figure imgf000010_0001
Ή0
Figure imgf000010_0002
Figure imgf000010_0003
Figure imgf000010_0004
Figure imgf000010_0005
8
∑06£l/Z6 OAV 6df/JOd などが挙げられる。
本発明キレー ト形成性榭脂において、 上記キレー ト形 成基は + 2価又は + 3価の金属イオンと非イオン性分子 内錯塩型の安定な 5員環のキレー ト錯体を形成する部分 である。
上記キレー ト形成基を
Figure imgf000011_0001
H 0 N H と略記して、 形成されるキレー ト錯体をモデル的に示す と下記の通りである。
Figure imgf000011_0002
C + 3価の金属イオンの場合〕 〔+ 2価の金属イオンの場合〕 0 上記のように + 3価の金属ィォンに対しては 3組のキ レー ト形成基が結合し、 また + 2価の金属イオンに対し ては 2組のキレー ト形成基が結合して、 金属イオンの電 荷がフヱノキシドイオンによつて中和された 5員環のキ レー ト錯体を形成する。 形成されたキレー ト錯体は電荷 が中和されており、 非イオン性であるため金属の腐食に 対して腐食電流が流れにく くなり、 また 5員環を形成し ているため構造的に安定である。
本発明キレート形成性樹脂は、 上記キレー ト形成基を 樹脂 1 0 0 0 g中に約 0 . 2〜3 . 5モル有することが 必要であり、 又 0 . 3〜 3 . 0モル有することが好ま し い。 キレー ト形成基をかかる割合で有することによって、 キレー ト形成した際に樹脂被膜の 3次元化が進行し、 強 固なキレー ト結合が形成されるとともに樹脂被膜の架橋 密度が増大するため優れた防食性を示すことになる。
榭脂中にキレー ト形成基を導入して本発明キレー ト形 成性樹脂を得る方法としては、 例えば下記の ( a ) 〜
( d ) の方法等を挙げることができる。 これらの製造方 法は、 いずれも前記一般式 〔5〕 、 〔6〕 、 〔7〕 又は 〔8〕 で表わされる化合物 (以下、 「o —ア ミ ノ フエノ ール類」 という) のァミノ基と、 重合性二重結合を有す る樹脂または化合物中の重合性二重結合との付加反応を 特徴とするものである。
( a ) 基体部分を形成する樹脂の末端又は側鎖に重合性 二重結合を有せしめ、 この二重結合に 0—アミ ノフエノ ール類のァ ミ ノ基を付加反応させる方法。
( b ) 水酸基やカルボキシル基等の第 1の官能基及び重 合性二重結合を有する化合物の重合性二重結合と 0 -ァ ミ ノフヱノール類のア ミ ノ基との付加反応生成物と、 該 反応生成物中の第 1の官能基と反応性を有するィソシァ ネー ト基ゃエポキシ基等の第 2の官能基を有するポリマ 一とを反応させる方法。
( c ) 上記 (b ) の方法における付加反応生成物と、 該 反応生成物中の第 1の官能基と反応性を有する第 2の官 能基及び重合性二重結合を有する化合物とを官能基同志 反応させて得られる前記一般式 〔1〕 、 〔2〕 、 〔 3〕 又は 〔4〕 のキレー ト形成基と重合性二重結合とを有す る化合物を、 該化合物と共重合可能な他の重合性不飽和 モノマーと共重合させる方法。
( d ) 0—ァミ ノフエノール類のアミ ノ基と、 エーテル 化されたシラノール基及び重合性二重結合を有するシラ ン化合物又は樹脂の重合性二重結合とを付加させる方法。 またこの方法によって得られる前記一般式 〔 1〕 、 〔2〕 、 〔 3〕 又は 〔4〕 の構造部分とエーテル化されたシラ ノール基とを有する化合物又は樹脂を部分縮合させる力、、 又はエーテル化されたシラノール基を有する他のシラ ン 化合物と部分共縮合させる方法。
( a ) の方法において、 末端又は側鎖に重合性二重結 合を有する樹脂としては、 特に限定されるものではなく 公知の方法によつて得られる多種の樹脂が使用できる。 例えばグリ シジル (メ タ) ァク リ レー ト、 3 , 4—ェポ キシシクロへキシルメチル (メ タ) ァク リ レー ト、 ァリ ルグリ シジルエーテル等のエポキシ基含有重合性不飽和 モノマーと他の重合性モノマーとの共重合体やビスフエ ノ一ル型等各種エポキシ樹脂等の末端又は側鎖にェポキ シ基を有する樹脂のエポキシ基に、 (メタ) アク リル酸 等の力ルボキシル基含有重合性不飽和化合物の力ルボキ シル基を反応させてエポキシ基を開環し、 樹脂中に重合 性不飽和基を導入することによって得られる。 この反応 は、 両者を例えば第 4級アンモニゥム塩などの反応触媒 やハイ ドロキノ ンなどの重合禁止剤の存在下に例えば約 5 0〜 1 1 5でで 3 0分〜 8時間程度加熱することによ つて行なう ことができる。
また、 水酸基を有するアク リル樹脂、 ポリエステル樹 脂、 アルキ ド樹脂、 エポキシ樹脂等の樹脂中の水酸基に イソシアナ トェチル (メ タ) ァク リ レー ト、 m—イソプ ロぺニノレフエニノレイ ソ シァネー ト 、 m—イ ソ プロぺニノレ - a , α —ジメチルベンジルイソシァネー ト等の重合性 不飽和基含有ィソシァネー ト化合物を反応させて重合性 不飽和基を導入することによつても得られる。 こ の反応 は例えば両者をジブチル錫ォクチレー ト等の錫系触媒の 存在下で 2 0〜 1 0 0てで約 1〜 1 0時間反応させるこ とによつて行なう ことができる。
上記のようにして得られる末端又は側鎖に重合性二重 結合を有する樹脂は、 上記 ο —ア ミ ノフヱノール類との 反応によって、 樹脂中に一般式 〔 1〕 、 〔 2〕 、 C 3 3 又は 〔4〕 で表わされるキレー ト形成基が導入される。 一般式 〔 5〕 、 〔 6〕 、 〔 7〕 又は 〔8〕 で表わされる 0 —ァ ミ ノフエノール類の代表例と しては、 ο —ァ ミ ノ フエノール、 4一ク ロロー 2 -ア ミ ノ フヱノール、 4 - プロモー 2—ァ ミ ノ フエノール、 5 —二 ト ロー 2—ア ミ ノ フエノール、 4 ーメ チルー 2—ァ ミ ノ フエノ ール、 5 —メ チルー 2—ァ ミ ノフエノール、 4 一ェチル一 2 —ァ ミ ノ フエノール、 2—ア ミ ノ ー 3—ナフ トール、 1 ーァ ミ ノ ー 2 —ナフ トール、 2 —ア ミ ノ ー 1 一ナフ トールな どが挙げられ、 これらのうち、 特に 0 —ア ミ ノ フヱノー ルが好ま しい。 これらの化合物は単独で、 も しく は 2種 以上混合して使用できる。 4 樹脂中の重合性二重結合への o —アミ ノフニノール類 の付加反応は、 両者を例えば酸触媒の存在下に通常約 2 0〜 1 0 0でで約 1〜 2 4時間反応させることによって 行なうことができる。
前記 (b ) の方法は、 ( a ) の方法における反応順序 を変えたものであって、 一般式 〔 1〕 、 〔2〕 、 〔3〕 又は 〔4〕 で表わされるキレー ト形成基と水酸基やカル ボキシル基等の第 1の官能基とを有する反応生成物を先 ず作製し、 この第 1の官能基をポリマー中の第 2の官能 基と反応させて高分子量化する方法である。
前記 ( c ) の方法において、 一般式 〔1〕 、 〔2〕 、 〔3〕 又は 〔4〕 のキレー ト形成基と重合性二重結合と を有する化合物は、 例えば、 o —アミ ノフヱノール類と 2—ヒ ドロキシェチル (メタ) ァク リ レー ト等の水酸基 含有不飽和化合物との付加生成物中の水酸基を、 イソシ アナ トェチル (メ タ) アタ リ レー ト、 m —イソプロぺニ ノレフエ二ルイソシァネー ト、 m —イソプロぺニルーな, aージメチルベンジルイソシァネー ト等の重合性二重結 合含有モノィソシァネー ト化合物に反応させる方法によ つて得ることができる。 o —アミ ノフヱノール類と水酸 基含有不飽和化合物との反応は、 例えば酸触媒の存在下 に両者を等モルにて約 2 0〜 1 0 0でで約 1〜 2 4時間 反応させる こ とによって行なう こ とができる。 これによ つて得られる付加生成物は水酸基を有し、 このものと重 合性二重結合含有モノイ ソシァネー ト化合物とのゥレタ ン化反応は、 例えば錫系触媒の存在下に両者を等モルに て約 2 0〜 1 0 0でで約 1〜 1 0時間反応させることに よつて行な う こ とができる。
一般式 〔 1〕 、 〔2〕 、 〔 3〕 又は 〔4〕 のキレー ト 形成基と重合性二重結合とを有する化合物は、 上記以外 の方法によって得たものであってもよい。
( c ) の方法において、 一般式 〔 1〕 、 〔 2〕 、 〔 3〕 又は 〔4〕 のキレー ト形成基と重合性二重結合とを有す る化合物と共重合させるために用いる他の重合性不飽和 モノマーと しては、 例えばメ チル (メ タ) ァク リ レー ト、 ェチル (メ タ) ァク リ レー ト、 n —ブチル (メ タ) ァク リ レー ト、 イ ソブチル (メ タ) ァク リ レー ト、 へキシル (メ タ) ァク リ レー ト、 2 —ェチルへキシル (メ タ) ァ ク リ レー ト、 ラウ リ ノレ (メ タ) ァク リ レー ト等の (メ タ) アク リ ル酸の 〜 C 1 0アルキルエステル ; 2 — ヒ ドロ キンェチル (メ タ) ァク リ レー ト、 ヒ ドロキンプロ ビル (メ タ) ァク リ レー トの如き (メ タ) アタ リル酸の C 2 〜 C。 ヒ ドロキシアルキルエステル及びァ リ ルアルコー ル等の水酸基含有不飽和単量体 ; スチレン、 α —メチル スチレン、 ビニルトルエン等の芳香族ビニル化合物 ; ジ メチルァ ミ ノェチル (メ タ) ァク リルァ ミ ド、 ジメチル ァミ ノプロビル (メタ) アク リルアミ ド、 ジメチルア ミ ノエチル (メ タ) ァク リ レー ト、 ジェチルァ ミ ノプロピ ノレ (メ タ) ァク リ レー トなどの第 2級も しく は第 3鈒ァ ミ ノ基を有する重合性不飽和モノマー ; アク リル酸、 メ タク リル酸、 クロ ト ン酸、 ィタコン酸、 マレイ ン酸、 フ マル酸などの酸基含有不飽和単量体 ; 酢酸ビニル、 (メ タ) ァク リルァミ ド、 (メ タ) アク リ ロニ ト リル、 N— メチロール (メ タ) ァク リルァ ミ ドブチルエーテル等の モノマーを挙げることができ、 これらはそれぞれ単独で 又は 2種以上併用することができる。
上記キレー ト形成基と重合性二重結合とを有する化合 物と上記他の重合性不飽和モノ マーとの共重合は、 公知 の共重合方法によって行なうことができ、 例えば上記の 成分を重合触媒及び好ま しく は有機溶剤の存在下で加熱 反応させることによつて行なうことができる。
前記 ( d ) の方法において、 重合性二重結合とエーテ ル化されたシラノール基とを有するシラン化合物又は樹 脂の望ま しいものと して、 下記一般式 [ 9 ] で表わされ るシラ ン化合物、 これらのシラ ン化合物の一種又は二種 以上を部分縮合した樹脂、 及びこれらのシラ ン化合物と • エーテル化されたシラノール基を有する他のシラ ンとの 部分共縮合物が挙げられる。
X A - S i - Z 〔 9〕
I
Y
〔式中、 Aは不飽和炭化水素基又は不飽和カルボニルォ キンアルキル基を示し、 Xは水素原子、 炭索数 1 〜 1 8 個の炭化水素基、 炭素数 1 〜 1 8個のアルコキシル基、 炭素数ら〜 8個のァリールォキシ基又は炭素数 5〜 8個 の脂環式炭化水素ォキシ基を示す。 Y及び Zはそれぞれ 同一又は異なって炭素数 1 〜 1 8個のアルコキシル基、 炭素数ら〜 8個のァリールォキシ基又は炭素数 5〜 8個 の脂環式炭化水素ォキシ基を示し、 Xと同一であっても よい。 〕
上記 Aの好ま しい例と しては、 ビニル基、 ァ リル基、 メ タク リ ロイルォキシェチル基、 ァク リ ロイルォキシェ チル基、 メ タク リ ロイルォキシプロビル 、 ァク リ ロイ ルォキシプロピル基等が挙げられる。
上記 X、 Y及び Zにおいて、 炭素数 1 〜 1 8個のアル コキシル基、 炭素数 6〜 8個のァリールォキシ基、 炭素 数 5〜8個の脂環式炭化水索ォキシ基のうち、 好ま しい ものと して、 例えば、 メ トキシ、 エ トキシ、 プロポキシ ブトキシ、 へキソキシ、 ォク トキシ、 メ トキシェ トキシ 基等の炭素数 1〜8個のアルコキシル基、 フヱノキシ基 シクロへキシルォキシ基等が挙げられる。
上記 Xにおいて、 炭素数 1〜 1 8個の炭化水素基のう ち、 好ま しいものとしては、 メチル、 ェチル、 n—プロ ビル、 イソプロビル、 n—プチル、 n—へキシル等の炭 素数 1〜 6個のアルキル基 ; フエニル、 メチルフエニル、 ェチルフヱニル等の炭素数 6〜 8個のァリール基 ; シク 口ペンチル、 シクロへキシル基の炭素原子数 5〜8個の 脂環式炭化水素基が挙げられる。
上記一般式 〔9〕 で表わされるシラン化合物の代表例 と しては、 ビニルト リメ トキシシラン、 ビニルト リエ ト キシシラン、 ビニルト リス (π—プロボキシ) シラン、 ァリルト リ メ トキシシラン、 ^一ァク リ ロイルォキシェ チルト リメ トキシシラン、 rーァク リ ロイルォキシプロ ビルト リメ トキシシラン、 ァ ーメタク リ ロイルォキシプ 口 ビルト リメ トキシシラン、 τ—メタク リ ロイルォキシ プロビル (メチルジェ トキシ) シラン、 ァーメ タク リ ロ ィルォキシプロビルト リエトキシシラン、 ;5—メ タク リ ロイルォキシプロビルト リス (n—ブトキシ) シラン、 ァ ーメ タ ク リ ロイルォキシプロ ビル ト リ ス (イ ソプロボ キシ) シラ ン等が挙げられる。
一般式 〔 9〕 で表わされるシラン化合物と部分共縮合 させることができるエーテル化されたシラノール基を有 する他のシラン化合物と しては、 2個以上のエーテル化 されたシラノ一ル基を有するシラン化合物が使用でき、 例えばテ トラエ トキシシラ ン、 メチルト リ メ トキシシラ ン、 メチル ト リエ トキシシラン、 フエニル ト リ メ トキシ シラ ン、 フエニルト リエ トキシシラン、 イソブチルト リ メ トキシシラ ン、 ェチルト リメ トキシンラン、 ジメチル ジメ トキシシラ ン、 ジフエ二ルジメ トキシシラ ン等のシ ラ ン化合物、 及びこれらのシラン化合物の部分共縮合物 等が挙げられる。
一般式 〔 9〕 で表わされるシラ ン化合物の部分縮合及 び一般式 〔 9〕 で表わされるシラン化合物とエーテル化 されたシラノール基を有する他のシラ ン化合物との部分 共縮合は、 従来公知のエーテル化シラ ン化合物の縮合方 法に従って行なう ことができ、 一般に、 酢酸等の有機酸、 塩酸等の無機酸等の酸、 及び水の存在下に常温乃至沸点 以下の温度、 好ま しく は 5 0〜 9 0でに加熱するこ とに よって行う ことができる。 水の量は縮合させる程度に応 じて適宜増減させればよい Λ 2 上記重合性二重結合とエーテル化されたシラノ ール基 とを有するシラン化合物又は樹脂を o—ァミ ノフニノー ル類と付加させることによって一般式 〔 1〕 、 〔2〕 、 〔3〕 又は 〔4〕 のキレー ト形成基とエーテル化された シラノール基とを有するシラ ン化合物又は榭脂が得られ る。 上記付加反応は、 両者を、 例えば酸触媒の存在下に 通常約 2 C!〜 1 0 0でで約 1〜 2 4時間反応させること によって行うことができる。 この方法によって得られた 樹脂は本発明キレー ト形成性樹脂に包含される。
上記付加反応によって得られたシラン化合物又は樹脂 を部分縮合させるか又はエーテル化されたシラノール基 を有する前記他のシラン化合物と部分共縮合させること によっても本発明キレー ト形成性樹脂が得られる。 部分 縮合及び部分共縮合は、 前記、 部分 (共) 縮合方法と同 様に行うことができる。
これら (d ) の方法によって得られる本発明キレー ト 形成性樹脂は、 エーテル化されたシラノール基を有して おり、 この基が空気中の水分と反応し、 加水分解してシ ラノール基を形成し架橋反応していく、 いわゆる湿気硬 化型となり得る。
また、 上記 ( a ) 、 ( b ) 又は ( c ) の方法で得られ た樹脂についても樹脂中にエーテル化されたシラノール . 基を導入することによって湿気硬化型とすることができ る。 榭脂中にエーテル化されたシラノール基を導入する には、 例えば樹脂中にアルコール性水酸基を存在させて おき、 この水酸基にエーテル化されたシラノール基を有 するモノイ ソシァネー ト化合物を例えば錫系触媒の存在 下に両者を約 20〜 1 00 で約 1〜 1 0時間反応させ るなどの方法が利用できる。 上記エーテル化されたシラ ノール基を有するモノ イ ソ シァネー ト化合物の代表例と しては、 例えばァ ーイソシアナ トプロ ビルト リ メ トキシ シラ ン、 7 —イ ソ シアナ トプロ ビル ト リ エ トキシシラ ン 等が挙げられる。
本発明キレー ト形成性樹脂は、 上記 ( a ) 〜 ( d ) の 方法、 これらの変性方法以外の方法によって得られたも のであってもよい。
本発明キレー ト形成性榭脂は、 被膜形成能を有してい ることが必要であり、 数平均分子量が約 500〜 500 000の範囲が好ま しく 、 更に好ま しく は約 700〜 2 00000の範囲内にあることが適当である。 また、 本 発明キレー ト形成性樹脂は、 この樹脂 1 000 g中に前 記キレー ト形成基を約 0. 2〜3. 5モル有することが 必要であり、 更には 0. 3〜3. 0モル有することが好 ま しい。 また、 樹脂 1分子中に該キレー ト形成基を少な く とも 1個有することが好ま しく、 更に 3〜 7 0 0個有 することがより好ま しい。
本発明キレー ト形成性樹脂の基体樹脂としては、 上記 した様に各種のものを用いることができるが、 被膜形成 性の点からアクリル系樹脂、 エポキシ系樹脂、 ポリエス テル系樹脂、 アルキド系樹脂、 ゲイ素含有樹脂が好ま し い o
本発明樹脂は、 有機溶剤で希釈して用いてもよいし、 水性化して用いてもよい。 水性化する場合には樹脂中に ァミ ノ基などの塩基性基やカルボキシル基などの酸基を 導入し、 これらの基を中和することによって樹脂を水中 に分散乃至は溶解させればよい。 アミ ノ基等の塩基性基 を中和する場合には、 樹脂中の塩基性基の量を、 例えば ァミ ン価が 3 0〜: L 3 O m g K O H g樹脂となるよう に調節し、 塩基性基を酸、 例えばギ酸、 齚酸、 プロピオ ン酸、 乳酸等の有機酸や、 例えば塩酸、 硫酸、 リ ン酸等 の無機酸で中和すればよい。 またカルボキシル基などの 酸基を中和する場合には、 酸基の量を例えば酸価が 3 0 〜 1 3 0 m g K 0 H Z g樹脂となるように調節し、 酸基 を有機ア ミ ン、 アンモニア等の塩基で中和すればよい。
上記、 樹脂中にアミノ基を導入して中和する場合、 樹 脂中へ導入するァミノ基はキレー ト形成基となる o—ァ ミ ノ フエノ ール類による ものであってもよい し、 O —ァ ミ ノ フヱノ ール類とこのもの以外のァ ミ ノ基含有化合物 との両者によるものであってもよい。
0 —ァ ミ ノ フユノール以外のァミ ノ基含有化合物と し ては、 脂肪族、 脂環族もしく は芳香一脂肪族系の第 1級 も しく は第 2級ァ ミ ン (これらはエポキシ基と反応して ァ ミ ノ基を形成しうる) 、 第 3級ァ ミ ノアルコールと ジ イ ソシァネー トとの反応によって得られる第 3級ァ ミ ノ モノイ ソシァネー ト (これは樹脂中の水酸基と反応して 該榭脂にァ ミ ノ基を導入しうる) および第 2級も しく は 第 3級ア ミ ノ基を有する重合性不飽和モノマー (例えば 前記 ( c ) の方法において共重合により樹脂中にア ミ ノ 基を導入しうる) 等が挙げられる。
上記の第 1級も しく は第 2級ア ミ ンの例と しては例え ば次のものを挙げる ことができる :
( 1 ) メチルァ ミ ン、 ェチルァ ミ ン、 n—も しく は i s o—プロ ピルァ ミ ン、 モノエタノ ールァ ミ ン、 π — も し く は i s 0 —プロパノ ールア ミ ンなどの第 1級モノ ア ミ ン ;
( 2 ) ジェチルァ ミ ン、 ジエタノ ールァ ミ ン、 ジー n
—またはジー i s o—プロパノ ールァ ミ ン、 N—メ チル エタノールァ ミ ン、 N—ェチルエタノールァ ミ ンなどの 第 2級モノァミ ン ;
( 3 ) エチレンジァ ミ ン、 ジエチレン ト リ ァ ミ ン、 ヒ ドロキシェチルアミ ノエチルァ ミ ン、 ェチルア ミ ノエチ ルァミ ン、 メチルァ ミ ノプロビルァ ミ ン、 ジメチルア ミ ノエチルァ ミ ン、 ジメチルァミ ノプロビルァミ ンなどの 第 1鈒もしく は第 2級のポリア ミ ン等が挙げられる。
これらの第 1鈒もしく は第 2級アミ ンは、 樹脂中にェ ポキシ基がある場合、 このエポキシ基とそのまま反応さ せてもよいが、 一般には上記のァ ミ ンのうち第 1級ア ミ ンゃ N—ヒ ドロキシアルキル第 2級ァミ ンを使用する場 合には、 このものを予めケ トン、 アルデヒ ドもしく は力 ルボン酸と例えば、 1 0 0〜 2 3 0で程度で加熱反応さ せてアルジミ ン、 ケチミ ン、 ォキサゾリ ンも しく はイ ミ ダゾリ ンに変性し、 このものを使用することが好ま しい。 これらの第 1級ァミ ン、 第 2級ァミ ン、 変性したァ ミ ン と樹脂中のエポキシ基との反応は、 例えば、 約 8 0〜約 2 0 0での温度で、 約 2〜約 5時間加熱することによつ て行なう ことができる。
また樹脂中に重合性不飽和基がある場合には、 第 1級 ァ ミ ンを該重合性不飽和基に付加させることによつても アミ ノ基を導入することができる。 この付加反応は、 両 者を例えば酸触媒の存在下に約 2 0〜 1 0 0でで約 1〜 2 4時間反応させることによって行なう ことができる。 また、 ア ミ ノ基含有化合物と して第 3級ァ ミ ノモノィ ソ シァネー トを用いる場合、 例えば、 3 0〜 1 2 0 程 度の温度において榭脂中のアルコール性水酸基と反応さ せ赤外吸収スぺク トル測定によりイ ソシァネー ト基の吸 収が完全になく なるまで反応を行なえばよい。
また、 第 2級もしく は第 3級ア ミ ノ基を有する重合性 不飽和モノマーを用いてァ ミ ノ基を導入するには、 例え ば前記 ( c ) の方法において、 一般式 〔 1〕 で表わされ るキレー ト形成基と重合性二重結合とを有する化合物と 共重合させる、 他の重合性不飽和モノマーの一部又は全 部と して第 2极もしく は第 3級ア ミ ノ基を有する重合性 不飽和モノマーを使用すればよい。
上記、 樹脂中に酸基を導入して中和する場合、 樹脂中 へ導入する酸基と しては、 カルボキシル基、 スルホン酸 基、 リ ン酸基などが挙げられる。
これらの酸基を榭脂中に導入するには、 例えば、 樹脂 中にエポキシ基を有せしめ、 このエポキシ基に対して過 剰モル量の上記酸基を有する多塩基酸を反応させること によって行なう ことができる。 多塩基酸と しては、 例え ば (無水) フタル酸、 イ ソフタル酸、 テレフタル酸、 へ キサヒ ドロフタル酸、 コハク酸、 グルタル酸、 ァジビン 酸、 (無水) マレイ ン酸、 フマル酸、 (無水) ト リ メ リ ッ ト酸、 ビロメ リ ッ ト酸などが挙げられる。
樹脂中に酸基を導入する他の方法としては、 例えば前 記 ( C ) の方法において、 キレー ト形成基と重合性二重 結合とを有する化合物と共重合させる、 他の重合性不飽 和モノマーの一部又は全部として上記酸基を有する酸基 含有不飽和単量体を使用する方法や、 樹脂中に重合性二 重結合をもたせておき、 このものに、 チォサリチル酸や チォグリ コール酸などのチオール基を有するチォカルボ ン酸を付加させる方法などが挙げられる。
また、 本発明樹脂は、 該樹脂中に前記キレー ト形成基 以外に水酸基等の反応性基を存在させて、 この反応性基 と反応する架橋剤と併用することができる。 例えば上記 反応性基が水酸基である場合には、 架橋剤として、 公知 のポリイ ソ シァネー ト化合物、 ブロック化したポリイ ソ シァネー ト化合物や、 アミ ノブラス ト樹脂、 即ち尿素、 メラ ミ ン、 ベンゾグァナミ ン等の含窒素化合物のホルム アルデヒ ド縮合物や、 この縮合物の低級アルキルエーテ ル化物 (アルキル基の炭素数は 1乃至 4 ) 等を使用して、 常温で又は加熱によって架橋させることができる。 架橋 剤と してアミノブラス ト樹脂を用いる場合には、 ρ— ト ルエンスルホン酸、 ドデシルベンゼンスルホン酸、 ジノ 二ルナフタ レンスルホン酸やこれらの酸のア ミ ン中和物 などの硬化触媒を併用してもよい。 また架橋剤と してポ リ イ ソ シァネー ト化合物類を用いる場合には、 ォクチル 酸錫、 ジブチル錫ジラウレー ト、 ジブチル錫ォキサイ ド, ジォクチル錕オキサイ ド、 2—ェチルへキサン酸鉛など の金属化合物を硬化触媒と して併用してもよい。 また該 樹脂中に水酸基を存在させて、 この水酸基の一部に、 ジ イ ソシァネー ト化合物のうちの一方のィソシァネー ト基 をブロック化した化合物を反応させて榭脂中にプロッ ク 化イ ソ シァネー ト基を導入することによって、 自己架橋 性を有する樹脂とすることができる。
また、 本発明樹脂中に重合性不飽和基を存在させてお き、 この樹脂と重合性不飽和ビニル単量体とを併用し、 必要に応じて、 光重合開始剤を配合するこ とによって、 電子線や紫外線などの活性光線の照射によって硬化する 組成物を得ることもできる。 重合性不飽和ビニル単量体 と しては、 従来公知のビニル単量体が使用でき、 例えば、 前記 ( c ) の方法における、 他の重合性不飽和モノマー と して例示したものや、 ェチレングリ コールジ (メ タ) ァク リ レー ト、 ト リ メ チロールプロパン ト リ (メ タ) ァ ク リ レー トなどの多官能性モノマーが挙げられる。 樹脂 中への重合性不飽和基の導入は、 樹脂中にエポキシ基を 存在させておき、 このものにカルボキシル基含有重合性 不飽和化合物を付加させる方法等が使用できる。
本発明樹脂は有機溶剤系、 水系のいずれにもすること ができ、 これらの系において、 単独で、 又は架橋剤、 ビ ニルモノマー等と併用し、 さらに必要に応じて顔料、 表 面調整剤、 酸化剤等を配合することによって金属の表面 処理剤や防食用塗料等として使用できる。 この表面処理 剤は、 金属表面に薄い処理剤層が形成されることによつ て金属の防食に寄与するものである。 これらの表面処理 剤や防食用塗料等は基材上にスプレー塗装、 ハケ塗り、 ロール塗装、 浸漬塗装、 カオチン電着塗装、 ァニオン電 着塗装、 浸漬自動析出、 シルクスク リーン印刷等の方法 に従い乾燥膜厚で通常 0 . l〜 5 0 ^ mとなるように塗 布され、 ついで乾燥、 硬化される。 表面処理剤として用 いる場合、 乾燥膜厚 0 . 1〜 5 m程度が好ま しく、 防 食用塗料として使用する場合、 乾燥膜厚 l〜 5 0 // m程 度が好ましい。 塗布される基材としては、 鉄、 亜鉛、 鋦、 アルミニウム等の金属、 これらの金属表面にリ ン酸塩処 理ゃクロメ一 ト処理などの表面処理を施したものなどが 挙げられる。
本発明樹脂は、 鉄、 亜鉛、 銅、 アルミニウム等の腐食 によって + 2価又は + 3価の金属イオンを発生する金属 に対して優れた防食性を付与することができ、 しかも無 公害である。 このため、 本発明樹脂は、 金属の表面処理 剤又は防食用塗料用として極めて有用である。
次に、 本発明電着塗膜形成方法について説明する。 本 発明電着塗膜形成方法は、 本発明キレー ト形成性樹脂を 含有する金属の表面処理剤を金属表面に接触させて塗装 前処理を施してなる金属表面に、 電着塗装を行なう もの である。
本発明電着塗膜形成方法における塗装前処理剤たる上 記金属の表面処理剤は、 該キレー ト形成性樹脂を含有す る前記有機溶剤タイプ又は水性タイプのいずれであって も良く、 前記架橋剤等の種々の任意成分を含有するもの でめつ "! も良い。
本発明において使用する塗装前処理剤は、 さらに必要 に応じて、 塩素酸ナ ト リウム、 亜硝酸等の酸化剤 ; ェチ レ ンジア ミ ンテ トラァセテ一 トなどのェッチング助剤を 含有していてもよい。 また塗装前処理剤中のキレー ト形 成性樹脂の濃度は 0 . 1〜 1 0重量%の範囲内にあるこ とが好ま しく、 0 . 5〜 5重量%の範囲内にあることが より好ま しい。 該塗装前処理剤は、 浸漬法、 スプレー法 ロール塗装、 ハケ塗り、 ス ピンコー ト法、 スクイーズ法 などによって金属素材表面と接触され、 被膜形成するこ
- 1 とによって、 金属表面に電着塗装のための塗装前処理が なされる。 前処理を行なう金属表面としては、 鉄、 亜鉛、 網、 アルミニウム等の金属の表面、 これらの金属表面に リ ン酸塩処理、 クロメー ト処理、 ベーマイ ト処理、 陽極 酸化処理などの化成処理を施した表面などが挙げられる。
本発明塗膜形成方法においては、 上記塗装前処理を施 してなる金属表面に電着塗装を行なう。 この電着塗装に 用いられる電着塗料はカチォン系であってもァニオン系 であってもよく、 電着塗装分野で使用される電着塗料で
1 0 あればいずれも使用できる。
カチオン電着塗料の代表例としては、 例えばアミ ン付 加エポキシ撐脂に代表されるボリァミ ン樹脂、 例えば
( i ) ポリエポキシド化合物と 1級モノ及びボリアミ ン、 2級モノ及びポリアミ ン又は 1、 2級混合ポリアミ ンと の付加物 (例えば米国特許第 3 9 8 4 2 9 9号明細書参 照) ; ( i i ) ボリエポキシド化合物とケチミ ン化され た 1級アミ ノ基を有する 2級モノ及びポリアミ ンとの付 加物 (例えば米国特許第 4 0 1 7 4 3 8号明細書参照) ; ( i i i ) ポリエポキシド化合物とケチミ ン化された 1 Γ. 級アミ ノ基を有するヒ ドロキシ化合物とのエーテル化に より得られる反応物 (例えば特開昭 5 9— 4 3 0 1 3号 公報) 等を樹脂成分とするものが挙げられる。 上記ポ リア ミ ン樹脂の製造に使用されるポ リエポキシ ド化合物は、 エポキシ基を 1分子中に 2個以上有する化 合物であり、 一般に少なく とも 200、 好ま しく は 4 0 0〜4 0 00、 更に好ま しく は 800〜 20 0 0の範囲 内の数平均分子量を有するものが適しており、 特にポ リ フエノ ール化合物とェピク ロルヒ ドリ ンとの反応によつ て得られるものが好ま しい。
該ポ リエポキシ ド化合物の形成のために用いうるポ リ フエノール化合物と しては、 例えばビス (4ー ヒ ドロキ シフエ二ル) 一 2, 2—プロパン、 4, 4 ' - ジヒ ドロ キシベンゾフヱノ ン、 ビス ( 4ーヒ ドロキシフ ヱニル) — 1 , 1 ーェタ ン、 ビス (4ー ヒ ドロキシフエニル) - 1 , 1一イ ソブタ ン、 ビス (4ー ヒ ドロキシー t e r t 一プチルーフエニル) 一 2, 2—プロノ、0ン、 ビス (2— ヒ ドロキシナフチル) メ タ ン、 1 , 5— ジ ヒ ドロキンナ フタ レン、 ビス ( 2, 4—ジ ヒ ドロキシフエニル) メ タ ン、 テ ト ラ (4—ヒ ドロキシフエニル) 一 1 , 1 , 2 , 2—ェタ ン、 4 , 4 ' ージ ヒ ドロキシジフエニルスルホ ン、 フエノ ールノ ボラ ッ ク、 ク レゾ一ルノ ボラ ッ ク等が 挙げられる。
該ポリエポキシ ド化合物はポリオール、 ポ リエーテル ポ リオール、 ポ リエステルポ リオール、 ポ リ ア ミ ドア ミ • ン、 ポ リ カルボン酸、 ポ リ イ ソ シァネー ト化合物などと —部反応させたものであってもよく 、 更にまた、 e —力 プロラク ト ン、 アク リルモノマーなどをグラフ ト重合さ せたものであってもよい。
また、 電着塗膜に対して良好な耐候性が要求される場 合には、 樹脂成分と して耐候性の優れたァ ミ ノ基含有ァ ク リル系樹脂又は非イオン性のァク リル系樹脂を単独で 用いるか、 或は前記ア ミ ン付加エポキシ榭脂と併用する のが好都合である。
前記したァミ ン付加エポキシ樹脂は、 必要に応じて、 アルコール類などでブロッ ク したポリイソシァネー ト化 合物を用いて硬化させることができる。
また、 ブロック したイ ソシァネー ト化合物を使用しな いで硬化させることが可能なァ ミ ン付加エポキシ樹脂も 使用することができ、 例えばポリエポキシ ド物質に — ヒ ドロキシアルキルカルバメ一 ト基を導入した樹脂 (例 えば特開昭 5 9— 1 5 5 4 7 0号公報参照) ; エステル 交換反応によって硬化しうるタイプの樹脂 (例えば特開 昭 5 5— 8 0 4 3 6号公報参照) などを用いることもで きる o
前記したカチォン電着塗料用樹脂のカチ才ン系水性溶 液ないし水分散液の調製は、 通常該樹脂を蟻酸、 酢酸、 乳酸等の水溶性有機酸で中和し、 水溶化 ·水分散化する ことによつて行なう ことができる。
また、 ァニオ ン電着塗料の代表例と しては、 例えばポ リ カルボン酸樹脂、 例えばカルボキシル基を有する飽和 又は不飽和のアルキ ド樹脂並びにその油変性物、 カルボ キシル基を有するァク リル樹脂、 マレイ ン化ポリ ブタジ ェン系撐脂などを樹脂成分とするものが挙げられる。 こ のポリ カルボン酸樹脂は必要に応じて、 ブロ ッ ク したポ リイ ソシァネー ト化合物や、 メ ラ ミ ン樹脂、 尿素樹脂な どのア ミ ノ樹脂を用いて硬化させることができる。
上記ァニォン電着塗料用樹脂のァニォン系水性溶液な いし水分散液の調製は、 通常、 該樹脂を塩基性物質、 す なわち有機ァ ミ ン又はア ンモニアで中和し、 水溶化ない しは水分散化することによって行なう ことができる。
カチオン系、 ァニオン系いずれの電着塗料においても, 上記樹脂の水溶液ないしは水分散液に、 さらに必要に応 じて通常の塗料添加物、 例えば、 着色顔料、 例えばチタ ン白、 カーボンブラッ ク、 ベンガラ、 黄鉛など ; 体質顔 料例えばタルク、 炭酸カルシウム、 マイ力、 ク レー、 シ リ 力など ; 防鐯顔料例えばス トロンチュウムクロメ一 ト、 ジ ンククロメ一 トなどのクロム顔料、 塩基性ゲイ酸鉛な どの鉛顔料等; さ らに他の添加剤を配合することができ る。 他の添加剤としては例えば、 分散助剤 (非イオン系 界面活性剤等) ;塗面のハジキ防止剤 (アク リル樹脂、 フッ素樹脂、 シリ コ ン樹脂など) ;硬化促進剤 (例えば 鉛、 ビスマス、 スズなどの金属の塩) ;素材の端面への 被覆性向上の目的などのための粒径 0. 0 1〜0. 5 ;/ m程度の有機重合体微粒子 (アク リル樹脂系等) 等が挙 げられる。
本発明塗膜形成方法においては、 前記金属表面に前記 塗装前処理剤を浸漬法などによつて接触させて金属表面 に塗装前処理剤の被膜を乾燥膜厚で約 0. 0 1〜 5 ^ m、 好ま しく は 0. 1〜3 jK inとなるように形成し、 必要に 応じて加熱などによって硬化させた後、 該塗装前処理を 施してなる金属表面に、 前記カチオン系又はァニオン系 の電着塗料を電着塗装するものである。 塗装前処理剤を 硬化させる場合、 電着塗装前に硬化させておいてもよい し、 電着塗装後に電着塗膜と同時に硬化させてもよい。 上記塗装前処理を施してなる金属表面へのカチォン電 着塗装は一般には、 前記カチオン電着塗料の固形分濃度 が約 5〜40重量 となるように脱ィォン水などで希釈 し、 さらに p Hを 5. 5〜8. 0の範囲内に調製した電 着浴を用いて行なうことができる。
カチオン電着塗装を行なう方法及び装置としては、 従 来からカチォン電着塗装において使用されているそれ自 体既知の方法及び装置を使用することができる。 カチォ ン電着塗装条件は、 特に制限されるものではないが、 一 般的には、 浴温 : 1 5〜 3 5で (好ま しく は 20〜 30 ) 、 電圧 : 1 00〜400 V (好ま しく は 200〜 3 00 V) 、 電流密度 : 0. 0 1〜 3 AZdo^ 、 通電時間 : 30秒〜 1 0分、 極面積比 (A/C) : 6 1〜: L / 6、 極間距離 : 1 0〜 1 00 cm、 撹拌状態で電着することが 望ま しい。 また形成される電着塗膜の膜厚 (乾燥状態) は 5〜 70 /z m、 好ま しく は 1 0〜 50 w mの範囲であ るのが好都合である。 形成された電着塗膜は、 水洗処理 を省略するか、 又は脱イオン水もしく は逆浸透膜濾液な どで水洗した後、 電着塗料の硬化開始温度以上で、 好ま しく は 1 00〜 2 50で、 さらに好ま しく は 1 50〜 2 00 Cに加熱して硬化させることができる。
上記塗装前処理を施してなる金属表面へのァニォン電 着塗装は一般には、 前記ァニオン電着塗料の固形分濃度 5〜40重量%となるように脱ィ才ン水などで希釈し、 さらに p Hを 7〜 9の範囲内に調製した電着浴を用いて 行なう ことができる。
ァニオン電着塗装を行なう方法及び装置と しては、 従 来からァニォン電着塗装において使用されているそれ自 6 体既知の方法及び装置を使用することができる。
ァニオン電着塗装条件は、 特に制限されるものではな いが、 一般的には電圧 1 5〜30 0 で3 0〜 300秒 直流通電を行なう。 また形成される電着塗膜の膜厚 (乾 燥状態) は 3〜 70 m、 好ま しく は 5〜 50 ^ mの範 囲であるのが好都合である。 電着塗装後、 電着塗膜を水 洗処理するか、 あるいは水洗処理を省略して、 電着塗料 の硬化開始温度以上で、 好ま しく は 1 00〜 2 50で、 更に好ま しく は 1 50〜 20 0てに加熱して硬化させる ことができる。
本発明塗膜形成方法においては、 塗装前処理剤中のキ レー ト形成樹脂のキレー ト形成基がァミノ基を有してい るため、 また安全衛生上の観点から塗装前処理剤は該ァ ミ ノ基を中和して得た水性タイプであることが好ま しく、 更に電着塗膜それ自体の防食性の観点から、 カチオン電 着塗装を行なうことがより好ましい。
本発明塗膜形成方法によって得られる電着塗装材は、 このまま使用することもできるし、 またこの上に塗料を 塗装してもよい。 この塗装系は、 特に限定されるもので はなく、 例えば、 電着塗装材ー上塗、 またこの間に中塗、 チッ ビングプライマー、 ス トーンガー ドプライマーなど のプライマーを塗装したものなどが挙げられる。 本発明塗膜形成方法においては、 o—アミ ノフヱノー ル類から誘導される特定のキレー ト形成基を有するキレ 一 ト形成性榭脂を含有した新規な塗装前処理剤を使用し ており、 形成される前処理膜中の樹脂のキレー ト形成基 が + 2価又は + 3価の金属イオンと非イオン性分子内錯 塩型の安定な 5員環キレー ト錯体を形成できるため、 + 2価又は + 3価の金属イオンを発生する鉄、 亜鉛、 鋦、 アルミニゥム等の金属表面に対して優れた防食性を付与 することができる。
また本発明で行なう塗装前処理は従来のリ ン酸亜鉛処 理と比べて、 電着特性は同等以上を示すものであり、 電 着塗装時における塗装前処理層の劣化を受けないように できるものであり、 リ ン酸塩処理でのリ ンによる水質汚 染の問題もなく無公害とでき、 電着塗装との組み合せで 表面処理 -塗装の低公害化、 高度の防食性を達成できる。
発明を実施するための最良の形態
以下、 実施例によって本発明を具体的に説明する。 な お、 以下、 「部」 および 「%」 は特に断らない限り、 重 量基準によるものとする。 '
—般式 〔 1〕 のキレー ト形成基を有する本発明樹脂につ いての実施例
実施例 1 8 フラスコ中に、 o—ァ ミ ノフエノール 1 09部、 N, N—ジメチルホルムアミ ド 58部およびハイ ドロキノ ン 0. 1部を配合し、 撹拌下で 70てに加熱して 0—アミ ノフニノールを溶解させ 70でに保持した。 この中にァ ク リル酸 72部と付加反応触媒である酢酸銅 2. 3部と の混合物を 2時間かけて滴下し、 滴下終了後、 90でに 昇温し、 90でで 3時間反応させて付加物溶液を得た。
次いで、 このものに、 予め混合溶解させておいたェピ コー ト 828 (シヱル化学社製、 エポキシ樹脂、 ェポキ シ当量約 1 90) 190部とメチルイソプチルケ トン 3 0部との混合物 220部、 臭化テ トラェチルアンモニゥ ム 1. 0部、 イソプチルアルコール 1 50部およびメチ ルイソブチルケ トン 129. 4部を配合した後、 1 1 0 でに昇温し、 同温度で 4時間反応させて、 固形分 50% のキレー 卜形成性樹脂溶液を得た。 得られた樹脂の樹脂 酸価は 1. 0以下であった。 また、 この樹脂のキレー ト 形成基の濃度は、 2. 70モル 1 2 (樹脂固形分) であった。 また、 この樹脂の数平均分子量は、 約 700 であった。
実施例 2
フラスコ中に、 イソプロビルアルコール 20部および 酢酸ブチル 25部を配合し、 85。Cに加熱し、 同温度に ク"
U C 保持した。 この中に下記のモノマー混合物を 2時間かけ て滴下した。
グリ シジルメ タク リ レー ト 50部、 ヒ ドロキシェチル メタク リ レー ト 30部、 スチレン 20部およびァゾビス バレロ二 ト リ ル 2部の混合物。
滴下終了後、 85でで更に 2時間保持した後、 ハイ ド ロキノ ン 0. 1部を加え脱溶剤を行ない 20部の溶剤を 留去し、 固形分 80%の樹脂溶液 (A) を得た。
別のフラスコに n—ブチルアルコール 28. 6部、 臭
10 化テ トラェチルアンモニゥム 1部およびァク リ ル酸 25 部を配合し、 空気吹込み下にて 1 10でに加熱保持し、 この中に上記で得た固形分 80%の樹脂溶液 1 25部を 2時間かけて滴下した。 滴下終了後、 同温度にて 3時間 保持し、 重合性不飽和基を有する付加物溶液 (B) を ί i守
15 た。 この付加物溶液を 60でに冷却し、 この中に 5—メ
チルー 2—ァ ミ ノ フエノール 43部、 ジメ チルホルムァ ミ ド 22部、 ォクチル酸鋦 0. 5部およびト リ ク ロ口酢 酸 2部を配合し、 5—メ チルー 2—ァ ミ ノ フエノ ールの ァミ ノ基を付加物中の重合性不飽和基に付加させるため 60てで 8時間反応させた後、 メチルイ ソプチルケ ト ン 88. 9部を加え固形分 50 %のキレー ト形成性樹脂溶 液を得た。 この樹脂のキレー ト形成基の濃度は、 2. 0 8モル Zl k g (樹脂固形分) であった。 また、 この樹 脂の数平均分子量は、 約 40000であった。
実施例: 3
フラスコ中に、 4ーメチルー 2 -ァミ ノフエノール 4 4部、 メチルイソプチルケ トン 20部、 2—ヒ ドロキシ ェチルァク リ レー ト 37部およびギ酸 1. 6部を配合し、 90でに昇温し同温度で 5時間反応させた。 次いで昇温 し、 メチルイソプチルケ トンの還流下にギ酸を留去して 系外に除去した後、 冷却し、 更にメチルイソプチルケ ト ン 109部を配合して水酸基含有キレー ト化合物溶液を た。
別のフラスコにメチルイソプチルケトン 50部を配合 し、 85。Cに加熱、 保持した。 この中にメタク リル酸ェ チルイソシァネー ト 50部、 アク リル酸イソブチル 30 部、 スチレン 20部および 2, 2' —ァゾビスイ ソプチ ロニ ト リル 2部の混合物を窒素ガス流入下、 2時間かけ て滴下し、 滴下終了後、 さらに 2時間同温度に保持し、 イソシァネー ト基含有アク リル榭脂溶液を得た。 次いで この中に上記で得た水酸基含有キレー ト化合物溶液 21 0部を加え、 70でで 2時間反応させて固形分 50 %の キレー ト形成性樹脂溶液を得た。 この樹脂のキレー ト形 成基の濃度は、 1. 98モルノ1 k g (樹脂固形分) で あった。 また、 この榭脂の数平均分子量は、 約 30 0 0 0であった。
実施例 4
フラスコ中に 5—二 ト ロー 2—ァ ミ ノ フエノ ール 1 5 4部、 アク リル酸 7 2部、 メチルイソプチルケ トン 9 7 部およびハイ ドロキノ ン 1. 5部を配合し、 90でで 4 時間反応を行ないカルボキシル基含有付加物溶液を得た 次いでこの中に空気吹込み下でグリ シジルメ タク リ レー ト 14 2部、 臭化テトラェチルア ンモニゥム 3. 7部お よび N—二 ト ロソジフヱニルァ ミ ン 0. 1部を配合し、 1 1 0でで 3時間反応を行ないキレー ト形成基含有重合 性不飽和モノマー溶液を得た。
別のフラスコに酢酸ブチル 14 9 , 4部およびメチル イソプチルケ トン 230部を配合し、 85でに加熱、 保 持した。 この中に上記で得たキレー ト形成基含有重合性 不飽和モノマー溶液 47 0. 3部、 ヒ ドロキシェチルメ タク リ レー ト 1 30部、 メ チルァク リ レー ト 1 58. 6 部、 アク リ ロニ ト リル 7 9. 5部およびァゾビスバレロ 二 ト リル 9部の混合物を窒素ガス流入下、 2時間かけて 滴下し、 滴下終了後、 更に 2時間同温度に保持し、 固形 分 6 0 %のキレー ト形成性樹脂溶液を得た。 この樹脂の キレー ト形成基の濃度は、 1. 36モル Z l k g (樹脂 固形分) であった。 また、 この樹脂の数平均分子量は、 約 14000であつた。
実施例 5
フラスコ中に 4 -ク ロロー 2—ア ミ ノ フエノール 14 3. 5部、 ギ酸 72部、 テ トラ ヒ ドロピラン 92. 4部 ハイ ドロキノ ン 0. 2部およびァ一メ タク リ ロイルォキ シプロビルト リ メ トキシシラン 150部を配合し、 80 でで 4時間反応させキレー ト形成基含有シラン溶液を得 た。 次いで、 このものに トルエン 951. 6部、 メチル ト リメ トキシシラン 680部および脱ィォン水 324部 を加え、 80でで 2時間加水分解縮合反応させた後、 1 18でで 2時間加熱しながら脱溶剤を行ない、 965. 5部の溶剤などを留去し、 固形分 50 %のキレー ト形成 性樹脂溶液を得た。 この樹脂のキレー ト形成基の濃度は、 1. 38モル Zl k g (樹脂固形分) であった。 また、 この樹脂の数平均分子量は、 約 12000であった。
実施例 6
フラスコ中に、 メチルイソプチルケ トン 67部および イ ソホロ ンジイ ソ シァネー ト 1 11部を.配合し、 反応温 度を 30〜35でに保ちながら、 メチルェチルケ トォキ シム 46部とメチルイソプチルケ トン 25部との混合物 を徐々に滴下し、 部分ブロックボリイ ソシァネー ト溶液 を得た。
別のフラスコ中に、 デナコール E X 521 (長瀬化成 (株) 、 ポリオールポリ グリ シジルエーテル、 数平均分 子量約 1200、 エポキシ当量約 200) 200部、 メ チルイ ソプチルケ ト ン 1 18部、 ァク リル酸 76部、 テ トラェチルアンモニゥムブロマイ ド 2. 5部およびハイ ドロキノ ン 0. 3部を配合し、 エポキシ基とカルボキシ ル基とを反応させるため、 1 1 0でで 3時間加熱を行な い重合性不飽和基および水酸基を有する樹脂溶液を得た < 次いで、 この中に上記で得た部分ブロックポリイ ソシァ ネー ト溶液 249部を配合し、 70でで 3時間反応を行 ない樹脂中にブロックイソシァネー ト基を導入した。 こ のものに更に、 o—ァ ミ ノフエノーノレ 91部、 蓚酸 37. 5部、 ジエタノールァ ミ ン 1 7. 5部およびイ ソプロパ ノール 43部を配合し、 70でで 3時間反応を行ない、 固形分 50%のキレー ト形成性樹脂溶液を得た。 この樹 脂のキレー ト形成基の濃度は、 1. 54モル 1 k g
(樹脂固形分) であった。 また、 この樹脂の数平均分子 量は、 約 3000であった。
実施例 7
実施例 1で得た固形分 50%のキレー ト形成性樹脂溶 液 4部にス ミ マール M 55 (メ ラ ミ ン樹脂、 住友化学 (株) 製) 0. 7部、 メチルイ ソプチルケ ト ン 60部、 エタノール 25部、 水 9. 8部およびクェン酸 0. 5部 を配合し表面処理組成物 Aを得た。
実施例 8
実施例 1で得た固形分 50 %のキレー ト形成性樹脂溶 液 35部にス ミマール M 55 1 1部、 メチルイソプチ ルケトン 24部、 イソプロパノール 28部および水 2部 を配合し塗料組成物 Bを得た。
実施例 9
実施例 2で得た固形分 50%のキレー ト形成性樹脂溶 液 4部にスミマール M55 0. 7部、 メチルイソプチ ルケ ト ン 60部、 エタノール 25部、 水 9. 8部および クェン酸 0. 5部を配合し表面処理組成物 Cを得た。 実施例 1 0
実施例 2で得た固形分 50%のキレー ト形成性樹脂溶 液 35部にスミマール M55 1 1部、 メチルイソプチ ルケ トン 24部、 イソプロパノール 28部および水 2部 を配合し塗料組成物 Dを得た。
実施例 1 1
実施例 3で得た固形分 50%のキレー ト形成性樹脂溶 液 10部にメチルイソプチルケト ン 60部、 トルエン 2 0部、 エタノール 8部および 1 %蟻酸水溶液 2部を配合 し表面処理組成物 Eを得た。
実施例 1 2
実施例 3で得た固形分 50 %のキレー ト形成性樹脂溶 液 50部にメチルイソプチルケ ト ン 20部、 イ ソブタノ ール 2 0部、 エタノール 9部および 0. 5%クェン酸水 溶液 1部を配合し塗料組成物 Fを得た。
実施例 1 3
実施例 4で得た固形分 60 %のキレー ト形成性樹脂溶 液 8. 5部にイソホロンジイソシァネー ト 1. 2部、 メ チルイ ソプチルケ ト ン 4 0部、 トルエン 1 0部および酢 酸プチル 40部を配合し表面処理組成物 Gを得た。
実施例 14
実施例 4で得た固形分 60 %のキレー ト形成性樹脂溶 液 34部にイ ソホロンジイソシァネー ト 5部、 メチルイ ソブチルケ ト ン 30部、 トルエン 20部および酢酸プチ ル 1 0部を配合し塗料組成物 Hを得た。
実施例 1 5
実施例 5で得た固形分 50 %のキレー ト形成性樹脂溶 液 1 0部にイソプチルアルコール 70部、 エタノール 5 部およびトルエン 1 5部を配合し表面処理組成物 I を得 た。
実施例 1 6 一
46 フラスコ中に トルエン 30部、 メチルイ ソブチルケ ト ン 40部および酢酸ブチル 30部を配合し、 100でに 加熱保持した。 この中にァーメタク リ ロイルォキンプロ ビル ト リ メ トキシシラ ン 20部、 メ チルメ タク リ レー ト 5 60部、 イ ソブチルメタク リ レー ト 20部および 2, 2 ' ーァゾビスイ ソプチロニト リル 2部の混合物を 2時間 かけて滴下した。 滴下終了後、 同温度に 2時間保持した 後、 2, 2' —ァゾビスイソプチロニト リル 1部を添加 し、 さらに 1時間 100てに保持して固形分 50 %の湿 10 気硬化型ァクリル樹脂溶液を得た。
得られた湿気硬化型ァク リル樹脂溶液 10部にチタン 白 100部、 エタノール 30部、 メチルイ ソプチルケ ト ン 20部およびトルエン 15部を配合し、 分散して、 固 形分 60%の白顔料ベース トを得た。
15 上記で得た白顔料ペース ト 105部、 実施例 5で得た 固形分 50%のキレー ト形成性樹脂溶液 100部、 上記 で得た湿気硬化型アク リル樹脂溶液 94部、 エタノール 50部、 メチルイソプチルケトン 100部およびトルェ ン 51部を均一に混合して塗料組成物: Γを得た。
20 実施例 17
漠度 7%のギ酸水溶液 79. 5部と塩素酸ナ ト リ ウム 0. 5部との混合物中に、 撹拌下で実施例 6で得た固形 分 50%のキレー ト形成性樹脂溶液 20部を徐々に添加 し、 均一に混合して自動析出型表面処理組成物 Kを得た, 実施例 18
実施例 6で得た固形分 50%のキレー ト形成性樹脂溶 液 40部を撹拌下で濃度 0. 2%のギ酸水溶液 60部中 に徐々に添加し、 均一に混合して塗料組成物 Lを得た。 試験例 1〜6
実施例 7、 9、 1 1、 13、 1 5および 1 7で得た表 面処理組成物 A、 C、 E、 G、 Iおよび Kのそれぞれを 表 1に示すように各種素材上に乾燥膜厚が 0. と なるように塗布し、 風乾させた。
なお、 表面処理組成物 Kを使用する試験例 6において は、 素材を組成物 K中に浸漬し、 自動析出させることに より表面処理膜を形成した。 試験例 1〜 5においては、 バーコ一夕によつて各表面処理組成物を塗布した。
ついで得られた表面処理膜上に、 上塗塗料を塗布、 乾 燥させて上塗塗膜を形成した。 試験例 1、 2、 3および 6においてはエポキシ · メラ ミ ン系塗料 (表 1では 「E PZMEJ と略記する。 ) を乾燥膜厚が約 40 mとな るよう塗布し、 140でで 30分間焼付け硬化させた。 また試験例 4においては、 ウレタン系白エナメル塗料 (表 1中では 「ウレタン」 と略記する。 ) を乾燥膜厚が 20 z mとなるように塗布し、 室温で 5日間乾燥させた。 さらに試験例 5においては、 エポキシ · ポリアミ ン系白 エナメ ル塗料 (表 1中では ΓΕ ΡΖΡ Α と略記する。 ) を乾燥膜厚が 50 mとなるように塗布し、 室温で 1 日 乾燥させた後、 この上にポリオール · ポリイソシァネー ト系白エナメル塗料 (表 1中では 「P OZP I J と略記 する。 ) を乾燥膜厚が 2 5 となるよう塗布し、 室温 で 4日間乾燥させた。
試験例 7〜 1 2
実施例 8、 1 0、 1 2、 14、 1 6および 1 8で得た キレー ト形成性塗料組成物 B、 D、 F、 H、 Jおよび L のそれぞれを表 2に示す条件にて各種素材上に塗布、 乾 燥させた。 試験例 7、 8および 1 0においては得られた 塗装扳上に上塗塗料を塗布、 乾燥させて上塗塗膜を形成 した。 試験例 7および 8においては、 上塗塗料として、 アク リル · メ ラ ミ ン系白ェナメル塗料 (表 1中では 「ァ ク リル J と略記する。 ) を使用し、 乾燥膜厚が 20 ^ m となるように塗装し、 140でで 30分間焼付けた。 ま た試験例 1 0においては、 上塗塗料として試験例 4で使 用したウレタン系白ェナメル塗料と同じ塗料を使用し、 乾燥膜厚が 20 mとなるよう塗装し、 室温で 5日間乾 燥させた。 比較試験例 1 〜 3
素材にキレー ト形成性表面処理を行なうかわりに リ ン 酸亜鉛処理板、 クロム酸処理板又は無処理板を使用し、 この上に上塗塗料と してエポキシ · メ ラ ミ ン系塗料を乾 燥膜厚が 4 0 mとなるよう塗装し、 1 4 0てで 3 0分 間焼付けた。
比較試験例 4
各種素材に試験例 7で使用したアク リル · メ ラ ミ ン系 白ェナメル塗料を乾燥膜厚が 2 0 z mとなるように塗装 し、 1 4 0 °Cで: 3 0分間焼付けた。
比較試験例 5
各種素材に試験例 5で使用したエポキシ · ポ リア ミ ン 系白エナメル塗料を乾燥膜厚が 3 0 mとなるように塗 布し、 室温で 1 日乾燥させた後、 この上に試験例 7で使 用したアク リル · メ ラ ミ ン系白ェナメル塗料を乾燥膜厚 が 2 0 / mとなるように塗装し、 1 4 CTCで 3 0分間焼 付けた。
試験例 1 〜 1 2および比较試験例 1 〜 5で得た塗板に クロスカ ツ トを入れ、 これらの塗板について耐塩水噴霧 試験、 耐糸鲭び発生試験及び屋外バク ロ試験を行なった。 試験結果を表 1および表 2に示す。
耐塩水噴霧試験 (S S T) : 塗板にク ロスカッ トを入 れ: T I S Z 2371に準じて試験を行なった。 塩水 噴霧時間は 1000時間とした。
耐糸鐯び発生試験 (F C T) : 12 N塩酸を入れたビ 一力一の上部にクロスカツ トを入れた塗板の塗面を下に 向け塩酸蒸気が塗面に当たるようにして密封して 1時間 蒸気にさらした後、 50 ± 2で、 98± 2%RHの条件 で湿潤試験を 1000時間行った。
屋外バク口試験 (E P T) : クロスカッ トを入れた塗0 板について: Γ I S K 5400 9. 9に準じて、 南 面 30。 の条件で千葉県千倉の海岸べりで 1年間試験を ίτつた。
それぞれの試験後の塗板についてクロスカツ 卜部の片 側のハクリ幅、 発銪巾の最大長さを求め、 これを表 1及 び 2に示す。
後記表 1及び 2から明らかなように、 本発明樹脂、 及 び本発明樹脂と架橋剤とを組合せた組成物は、 様々な素 材に対して、 従来の表面処理組成物や塗料に比較して良 好な耐腐食能を付与することができる。 表 1 例 N o , 試 験 例 比 較 試 験 例
1 2 3 4 5 6 1 2 3 表 面 処 理 組 成 物 A C E G I Κ リン ½« クロム康 無処理 種 類 EP/ME EP/ME EP/ME ウレ夕ン EP/PAf EP/ME EP/ME EP/ME EP/ E 上 PO/PI
乾燥膜厚 n) 40 40 40 20 50 + 25 40 40 40 40
S S T (DID) 0, 2 0. 5 1. 2 0. 7 0.1未満 0.1朱滴 4. 0 10 冷延鋼板 F C T (mm) 0. 5 0. 3 2. 1 0. 7 0.1来《 0. 2 3. 8 7. 5
E PT (nra) 0. 5 1. 2 2. 0 1. 0 0. 2 0. 2 2. 7 6. 0 材 亜鉛メ ツキ S S T (ran) 0. 1 0. ί 0. 3 0. 4 0. 6 0. 1 4. 0 6. 5
• 鋼板 F C T (mn) 0. 3 0. 6 0. 7 0. 4 0. 4 0. 2 3. 2 一 4. 0 試 E P T ( ) 0. 2 0. 2 1. 5 0. 7 1. 0 0. 2 2. 5 5. 3 験 アル ミ ニウム S S T (ran) o. m 0.1未 SI 0. 1 0. 1 0. 1 0.1未満 0. 5 0. 1 結 扳 F C T (no) 0. 満 0. 3 0. 5 0. 4 0. 4 0. 満 1. 0 15 果 E P T (otn) 1. 0 1. 0 1. 5 0. 8 0. 8 0. 7 5. 0 12 リ ン酸亜鉛 S S T (mm) 0. 1 0. 1 0. 4 0. 3 0. 蠢 0.1未滴
処理冷延 F C T (aim) 0. 2 0. 2 0. 6 0. 4 ϋ. 2 0. 2
鋼板 E P T (mm) 0. 4 0. 6 1. 2 0. 4 0. 4 0. 2
表 2
Figure imgf000054_0001
一般式 〔2〕 、 〔3〕 又は 〔4〕 のキレー ト形成基を有 する本発明榭脂についての実施例
実施例 1 9
フラスコ中に、 1一アミ ノー 2—ナフ トール 1 59部、 N, N—ジメチルホルムアミ ド 58部およびハイ ドロキ ノ ン 0. 1部を配合し、 拨拌下で 70でに加熱して溶解 させ 70でに保持した。 この中にアク リル酸 72部と付 加反応触媒である酢酸鋇 2. 3部との混合物を 2時間か けて滴下し、 滴下終了後、 90でに昇温し、 90でで 3 時間反応させて付加物溶液を得た。
次いで、 このものに、 予め混合溶解させておいたェビ コー ト 1 001 (シヱル化学社製、 エポキシ榭脂、 ェボ キシ当量 約 500) 500部とメチルイソプチルケ ト ン 1 14部との混合物 614部、 臭化テトラェチルアン モニゥム 3. 7部、 イソブチルアルコール 272. 3部 およびメチルイソプチルケ トン 272. 3部を配合した 後、 1 1 0でに昇温し、 同温度で 4時間反応させて、 固 形分 50 %のキレー ト形成性樹脂溶液を得た。 得られた 樹脂の榭脂酸価は 1. 0以下であった。 .この樹脂のキレ ー ト形成基の港度は、 1. 37モル 1 k g (樹脂固形 分) であった。 また、 この樹脂の数平均分子量は、 約 1 500であつた。 実施例 20
実施例 2において、 5—メチルー 2—ァミ ノフエノー ル 43部のかわりに 2—アミ ノー 1—ナフ トール 5 5部 を用い、 かつメチルイソプチルケトンの配合量を 88. 9部から 1 1 0, 9部に変更する以外は実施例 2と同様 に行なって固形分 50%のキレー ト形成性樹脂溶液を得 た。 この樹脂のキレー ト形成基の濃度は、 1. 92モル 1 k g (樹脂固形分) であった。 また、 この樹脂の数 平均分子量は、 約 4500 0であった。
実施例 2 1
フラスコ中に、 3—ァミ ノ一 2—ナフ トール 1 59部、 メチルイソプチルケトン 60部、 2—ヒ ドロキシェチル ァクリ レー ト 1 1 6部およびギ酸 5部を配合し、 90で に昇温し同温度で 5時間反応させた。 次いで昇温し、 メ チルイソプチルケトンの還流下にギ酸とメチルイソプチ ルケ トンとの混合物 1 0部を留去して系外に除去した後、 冷却し、 更にメチルイソプチルケ トン 7. 5部を配合し て水酸基含有キレー ト化合物溶液を得た。
別のフラスコにメチルイソプチルケトン 50部を配合 し、 85でに加熱、 保持した。 この中にメタク リル酸ェ チルイソシァネー ト 50部、 アク リル酸イソブチル 30 部、 スチレン 20部および 2, 2' ーァゾビスイソプチ ロニト リル 2部の混合物を窒素ガス流入下、 2時間かけ て滴下し、 滴下終了後、 さらに 2時間同温度に保持し、 イ ソシァネー ト基含有ァク リル樹脂溶液を得た。 次いで この中に上記で得た水酸基含有キレー ト化合物溶液 1 0 8部を加え、 7 0でで 2時間反応させた後、 エチレング リ コールモノメチルエーテル 2 1 2部を加えて固形分 4 0 %のキレー ト形成性樹脂溶液を得た。 この樹脂のキレ ー ト形成基の濃度は、 1 . 7 0モル 1 1^ 2 (樹脂固形 分) であった。 また、 この樹脂の数平均分子量は、 約 3 2 0 0 0であった。
実施例 2 2
フラスコ中に 5—二 トロー 1一ア ミ ノ ー 2—ナフ トー ル 2 0 4部、 アク リル酸 7 2部、 メチルイソプチルケ ト ン 9 7部およびハイ ドロキノ ン 1 . 5部を配合し、 9 0 でで 4時間反応を行なった。 次いでこの中に空気吹込み 下でグリ シジルメタク リ レー ト 1 4 2部、 臭化テトラエ チルアンモニゥム 3 . 7部および N—二 トロソジフエ二 ルァミ ン 0 . 1部を配合し、 1 1 0でで 3時間反応を行 ないキレー ト形成基含有重合性不飽和モノマー溶液を得 た。
別のフラスコに齚酸プチル 1 8 2 . 8部およびメチル イ ソプチルケ ト ン 2 3 0部を配合し、 8 5でに加熱、 保 持した。 この中に上記で得たキレート形成基含有重合性 不飽和モノマー溶液 520. 3部、 ヒ ドロキシェチルメ タク リ レー ト 130部、 メチルァクリ レー ト 158. 6 部、 アク リロニト リル 79. 5部およびァゾビスバレロ 二トリル 9部の混合物を窒索ガス流入下、 2時間かけて 滴下し、 滴下終了後、 更に 2時間同温度に保持し、 固形 分 60%のキレー ト形成性樹脂溶液を得た。 この樹脂の キレー ト形成基の濃度は、 1. 27モルノ1 k g (捃脂 固形分) であった。 また、 この撐脂の数平均分子量は、 約 15000であった。
実施例 23
フラスコ中に 1 -アミノー 2—ナフ トール 159部、 ギ酸 46部、 テトラヒ ドロピラン 88. 6部、 ハイ ド口 キノ ン 0. 2部およびァーメタク リロイルォキシプロビ ル卜リメ トキシシラン 150部を配合し、 80でで 4時 間反応させキレー ト形成基含有シラン溶液を得た。 次い で、 このものに トルエン 951. 6部、 メチルトリメ ト キシシラン 680部および脱ィオン水 324部を加え、 80でで 2時間加水分解縮合反応させた後、 118でで 2時間加熱しながら脱溶剤を行ない、 1157. 3部の 溶剤などを留去し、 固形分 50%のキレー ト形成性樹脂 溶液を得た。 この樹脂のキレー ト形成基の濃度は、 1. 61モル Z l k g (樹脂固形分) であった。 また、 この 樹脂の数平均分子量は、 約 1 0000であった。
実施例 24
実施例 6において、 o—アミ ノフヱノール 9 1部のか わりに 1一アミ ノー 2—ナフ トール 133部を用い、 か っィソプロバノールの配合量を 43部から 85部に変更 する以外は実施例 6と同様に行なって固形分 50%のキ レー ト形成性樹脂溶液を得た。 この樹脂のキレー ト形成 基の港度は、 1. 43モル 1 k g (樹脂固形分) であ つた。 また、 この樹脂の数平均分子量は、 約 3300で あつた。
実施例 25
実施例 1 9で得た固形分 50%のキレー ト形成性樹脂 溶液 4部にスミマール M 55 0. 7部、 メチルイソブ チルケ トン 60部、 エタノール 25部、 水 9. 8部およ びクェン酸 0. 5部を配合し表面処理組成物 A' を得た c 実施例 26
実施例 1 9で得た固形分 50%のキレー ト形成性樹脂 溶液 35部にスミマール M 55 1 1部、 メチルイソブ チルケ トン 24部、 イソプロパノール 28部および水 2 部を配合し塗料組成物 B' を得た。
実施例 27 実施例 20で得た固形分 50%のキレー ト形成性樹脂 溶液 4部にスミマール M 55 0. 7部、 メチルイソブ チルケトン 60部、 エタノール 25部、 水 9. 8部およ びクェン酸 0. 5部を配合し表面処理組成物 C' を得た < 実施例 28
実施例 20で得た固形分 50%のキレー ト形成性樹脂 溶液 3 5部にスミマール M 55 1 1部、 メチルイソブ チルケ トン 24部、 イソプロパノール 28部および水 2 部を E合し塗料組成物 D' を得た。
実施例 29
実施例 2 1で得た固形分 40 %のキレー ト形成性樹脂 溶液 1 2. 5部にメチルイソプチルケトン 57. 5部、 トルエン 20部、 エタノール 8部および 1 %嫌酸水溶液 2部を配合し表面処理組成物 E' を得た。
実施例 30
実施例 21で得た固形分 50%のキレー ト形成性樹脂 溶液 50部にメチルイソプチルケトン 20部、 イソブタ ノール 20部、 エタノール 9部および 0. 5 %クェン酸 水溶液 1部を配合し塗料組成物 F' を得た。
実施例 31
実施例 22で得た固形分 60%のキレー ト形成性樹脂 溶液 8. 5部にイソホロンジイソシァネー ト 1. 2部、 メ チルイ ソプチルケ ト ン 40部、 トルエン 1 0部および 酢酸ブチル 40部を配合し表面処理組成物 G' を得た。 実施例 32
実施例 22で得た固形分 60%のキレー ト形成性榭脂 溶液 34部にイ ソホロンジイ ソ シァネー ト 5部、 メ チル イソプチルケ ト ン 30部、 トルエン 20部および齚酸ブ チル 10部を配合し塗料組成物 H' を得た。
実施例 33
実施例 23で得た固形分 50%のキレー ト形成性樹脂 溶液 10部にイソプチルアルコール 70部、 エタノ ール 5部およびトルエン 1 5部を配合し表面処理組成物 I ' を得た。
実施例 34
フラスコ中に トルエン 30部、 メチルイソプチルケ ト ン 40部および酢酸ブチル 30部を配合し、 1 00でに 加熱保持した。 この中にァーメタク リ ロイルォキシプロ ビル ト リ メ トキシシラ ン 20部、 メ チルメ タク リ レー ト 60部、 イソブチルメタク リ レー ト 20部およびァゾビ スイソプチロニト リル 2部の混合物を 2時間かけて滴下 した。 滴下終了後、 同温度に 2時間保持した後、 ァゾビ スイソプチロニ ト リル 1部を添加し、 さらに 1時間 1 0 0でに保持して固形分 50%の湿気硬化型ァク リル樹脂 溶液を得た。
得られた湿気硬化型ァクリル樹脂溶液 1 0部にチタン 白 1 0 0部、 エタノール 3 0部、 メチルイソプチルケ ト ン 2 0部およびトルエン 1 5部を配合し、 分散して、 固 形分 6 0 %の白顔料ペース トを得た。
上記で得た白顔料ペース ト 1 0 5部、 実施例 2 3で得 た固形分 5 0 %のキレー ト形成性樹脂溶液 1 0 0部、 上 記で得た湿気硬化型アク リル榭脂溶液 9 4部、 エタノー ル 5 0部、 メチルイソプチルケ トン 1 0 0部およびトル ェン 5 1部を均一に混合して塗料組成物 J ' を得た。 実施例 3 5
港度 7 %のギ酸水溶液 7 9 . 5部と塩索酸ナ ト リ ウム 0 , 5部との混合物中に、 撹拌下で実施例 2 4で得た固 形分 5 0 %のキレート形成性樹脂溶液 2 0部を徐々に添 加し、 均一に混合して自動析出型表面処理組成物 K ' を 得た。
実施例 3 6
実施例 2 4で得た固形分 5 0 %のキレー ト形成性樹脂 溶液 4 0部を撹拌下で濃度 0 . 2 %のギ.酸水溶液 6 0部 中に徐々に添加し、 均一に混合して塗料組成物 L ' を得 た。
試験例 1 3〜: L 8 実施例 25、 27、 29、 3 1、 33および 35で得 た表面処理組成物 A' 、 、 E' 、 G' 、 I ' および Κ' のそれぞれを表 3に示すように各種索材上に乾燥膜 厚が 0. 5 mとなるように塗布し、 風乾させた。
なお、 表面処理組成物 を使用する試験例 18にお いては、 索材を組成物 K' 中に浸濱し、 自動析出させる ことにより表面処理膜を形成した。 試験例 1 3〜 1 7に おいては、 バーコータによって各表面処理組成物を塗布 した。
ついで得られた表面処理膜上に、 上塗塗料を塗布、 乾 燥させて上塗塗膜を形成した。 試験例 1 3、 14、 1 5 および 18においてはエポキシ · メラミ ン系塗料 (表 3 中では 「E PZMEJ と略記する。 ) を乾燥膜厚が約 4 O ^ mとなるよう塗布し、 140でで 30分間焼付け硬 化させた。 また試験例 16においては、 ウレタン系白ェ ナメル塗料 (表 3中では 「ウレタン」 と略記する。 ) を 乾燥膜厚が 20 mとなるように塗布し、 室温で 5日間 乾燥させた。 さらに試験例 17においては、 エポキシ ♦ ポリアミ ン系白ェナメル塗料 (表 3中では 「E PZP A」 と略記する。 ) を乾燥膜厚が 50 mとなるように塗布 し、 室温で 1日乾燥させた後、 この上にボリオール · ポ リ イ ソ シァネー ト系白ェナメル塗料 (表 3中では 「P 0 ZP I J と略記する。 ) を乾燥腠厚が 2 5 となるよ う塗布し、 室温で 4日間乾燥させた。
試験例 1 9〜24
実施例 2 6、 2 8、 3 0、 3 2、 34および 3 6で得 たキレー ト形成性塗料組成物 B ' 、 D ' 、 F ' 、 H' 、 J ' および L ' のそれぞれを表 4に示す条件にて各種素 材上に塗布、 乾燥させた。 試験例 1 9、 2 0および 2 2 においては得られた塗装扳上に上塗塗料を塗布、 乾燥さ せて上塗塗腠を形成した。 試験例 1 9および 2 0におい ては、 上塗塗料として、 アク リル · メ ラ ミ ン系白ェナメ ル塗料 (表 4中では 「アク リル」 と略記する。 ) を使用 し、 乾燥腠厚が 2 0 i mとなるように塗装し、 1 4 0で で 3 0分間焼付けた。 また試驗例 2 2においては、 上塗 塗料として試驗例 1 6で使用したウレタン系白エナメル 塗料と同じ塗料を使用し、 乾燥膜厚が 2 0 となるよ う塗装し、 室温で 5日間乾燥させた。 なお、 キレー ト形 成性塗料組成物 B ' 、 D' 、 F ' 、 H' および J ' の塗 装はスプレー塗装にて行ない、 キレート形成性塗料組成 物 L ' の塗装はカチオン電着塗装によって行なった。 比絞試験例 6
各種素材に試験例 1 9で使用したァク リル · メ ラ ミ ン 系白ェナメル塗料を乾燥膜厚が 2 0 mとなるように塗 装し、 1 4 0でで 3 0分間焼付けた。
比較試験例 7
各種素材に試験例 1 7で使用したエポキシ · ポリアミ ン系白エナメル塗料を乾燥膜厚が 3 0 mとなるように 塗布し、 室温で 1 日乾燥させた後、 この上に試験例 7で 使用したアク リル · メラ ミ ン系白エナメル塗料を乾燥膜 厚が 2 0 mとなるように塗装し、 1 4 0でで 3 0分間 焼付けた。
試験例 1 3〜 2 4および比铰試驗例 1〜 3、 6、 7で 得た塗板にクロスカッ トを入れ、 これらの塗板について 耐塩水噴耪試験、 耐糸銪び発生試験及び屋外バクロ試験 を、 前記と同様にして行なった。 試験結果を表 3および 表 4に示す。
それぞれの試驗後の塗板についてクロスカツ ト部の片 側のハク リ幅、 発銪巾の最大長さを求め、 これを表 3お よび表 4に示す。
後記表 3および表 4から明らかなように、 本発明樹脂、 及び本発明樹脂と架楊剤とを組合せた組成物は、 様々な 素材に対して、 従来の表面処理組成物や塗料に比較して 良好な耐腐食能を付与することができる。 例 N o . 試 例 比 較 試 験 例
13 14 15 16 17 18 1 2 3 表 面 処 理 組 成 物 A' E7 G' I ' K' クロ聰 無処理 種 類 EP/ME EP/ME EP/ME ウレ夕ン EP/PA+ EP/ME EP/ME EP/UE EP/ME 上 塗 塗 料 PO/PI
乾燠膜厚 ( ) 40 40 40 20 50 + 25 40 40 40 40
S S T (nn) 0. 1 0. 3 1. 0 0. 6 0.1未滴 o. 4. 0 一 10 冷延辆板 F C T (no) 0. 3 0. 3 1, 3 0. 7 o. m 0. 2 3. 8 7. 5 索 E P T (mm) 0. 4 0. 7 1. 3 0. 9 0. 1 0. 2 2. 7 一 6. 0 材 亜鉛メ ツキ S ST (nn) 0. 1 0. 1 0. 2 0. 3 0. 5 0. 1 4. 0 一 6, 5
• 鋼板 F CT (B議) 0. 3 0. 7 0. 7 0. 5 0. 5 0. 2 3. 2 一 4. 0 轼 E PT (nn) 0. 3 0. 2 1. 0 0. 5 1. 0 0, 2 2. 5 5. 3 驗 アルミニウム S ST (nB) o. m o. m 0. 1 0.1賴 0. 0.1弒 0. 5 0, 1 桔 板 F CT (BB) o. 0. 1 0. 2 0. 3 0. 2 0.1絲 1. 0 15 果 E PT (on) 0. 8 0. 7 1. 0 0. 5 0. 6 0. 7 5. 0 12 リ ン酸亜鉛 S S T (DID) 0.1未撮 0.ほ蠢 0. 1 0. 2 0. o. m
処理冷延 F C T (inn) 0. 1 0. 1 0, 3 0. 2 0. 1 0. 2
钢扳 E P T (on) 0. 2 0. 3 0. 5 0, 2 0. 2 0. 2
表 4
Figure imgf000067_0001
本発明電着塗膜形成方法についての実施例 塗装前処理液の製造例
製造例 1
実施例 2で得られた固形分 50%のキレー ト形成性樹 脂溶液 20部にエチレングリ コールモノェチルエーテル 600部および脱イオン水 380部を配合し、 処理液 (1) を作成した。
製造例 2
フラスコ中に実施例 2で得た付加物溶液 (B) 180 部、 2—アミノー 3—ナフ トール 55. 3部、 ジメチル ホルムアミ ド 22部およびギ酸 16部を配合し 50でで 8時間反応させた後、 メチルイソプチルケト ン 1 19, 3部を加え固形分 50%のキレー ト形成性樹脂溶液を得 た。 この樹脂のキレー ト形成基の港度は、 1. 18モル /l k g (樹脂固形分) であった。 また、 この樹脂の数 平均分子量は、 約 45000であった。
得られた上記キレー ト形成性樹脂溶液 16部にサイメ ル 303 (三井サイアナミ ド (株) 製、 メチル化メラ ミ ン樹脂) 2部、 ネィキュア 5225 (米国、 キング社製、 ドデシルベンゼンスルホン酸のアミ ン中和物) 0. 4部、 エチレンダリ コールモノェチルエーテル 600部および 脱イオン水 381. 6部を配合し、 処理液 (2) を作成 した。
製造例 3
フラスコ中に π—プチルアルコール 32部、 臭化テ ト ラエチルアンモニゥム 1部、 アク リル酸 18部を配合し、 空気吹込み下で 1 1 0でに加熱し、 同温度に保持した。 この中に実施例 2で得た樹脂溶液 (A) 1 2 5部を 1時 間かけて滴下し、 滴下終了後、 さらに 2時間同温度に保 持した後、 この中に無水フタル酸 14部を配合し、 1 1 0でに 2時間保持して重合性不飽和基およびカルボキシ ル基を有する付加物溶液を得た。
この付加物溶液を 50でに冷却し、 この中に 2—ア ミ ノー 1 一ナフ トール 39. 8部、 ジメチルホルムア ミ ド 24. 4部を配合し 50でで 1 2時間反応させた後、 メ チルイソプチルケトン 89. 4部を加えて固形分 50 % のキレー ト形成性榭脂溶液を得た。 この樹脂のキレー ト 形成基の濃度は、 1. 46モル Z l k g (樹脂固形分) であった。 また、 この樹胞の数平均分子量は、 約 430 00であつた。
得られた上記キレー 卜形成性樹脂溶液 20部に ト リェ チルァミ ン 1部および脱イオン水 97 9部を配合し、 処 理液 (3) を作成した。
製造例 4 フラスコ中に、 メチルイ ソブチルケ ト ン 439. 7部、 ァク リル酸 512部、 臭化テトラェチルアンモニゥム 1 9. 8部および N—二トロソジフヱニルァミ ン 2. 0部 を配合し 108でに加熱保持した。 この中に、 メチルイ ソプチルケ トン 55. 5部とデナコール E X 521 (長 瀬化成 (株) 製、 ポリオ一ルポリダリ シジルエーテル、 平均分子量約 1200、 エポキシ当量約 200) 146 9部との均一混合溶液を 2時間かけて滴下し、 滴下終了 後、 同温度でさらに 3時間保持して、 固形分 80%の重 合性不飽和基を有する付加物溶液を得た。 この溶液の樹 脂酸価は 0. 1以下であった。
得られた付加物溶液 66. 1部に、 4一クロロー 2 - アミノフヱノール 17. 2部、 ギ酸 8. 7部、 N—ジメ チルホルムアミ ド 19. 1部、 ジエタノールァミ ン 7. 2部、 ハイ ドロキノン 0. 1部およびエチレングリコー ルモノプロビルエーテル 4. 4部を加え、 70でで 2時 間反応させた後、 エチレングリコールモノプロビルエー テル 92. 1部を加えて固形分 40 %のキレー ト形成性 樹脂溶液を得た。 この樹脂のキレー ト形成基の濃度は、 1. 55モル l k g (榭脂固形分) であった。 また、 この樹脂の数平均分子量は、 約 2400であった。
得られた上記キレー ト形成性樹脂溶液 25部にベンジ ルアルコール 0. 6部および脱ィォン水 40部を加え均 —に混合したものを、 脱イオン水 890. 2部、 1 0% ギ酸水溶液 1 1. 4部および 0. 2%亜硝酸水溶液 33. 4部の混合液中に滴下し、 均一に混合して処理液 (4) を作成した。
製造例 5
フラスコにアク リル酸 72部、 臭化テトラェチルアン モニゥム 2部、 ハイ ドロキノン 0. 3部およびメチルイ ソプチルケ トン 31. 7部を配合し、 1 10でに加熱、 保持した。 この中にェビコー ト 180 S 90 (油化シェ ルエポキシ (株) 製、 ノポラック型エポキシ樹脂) 22 0部とメチルェチルケ トン 314, 3部との均一溶液を 1時間かけて滴下し、 滴下終了後さらに 2時間同温度に 保持した
次いで、 このものを 70でに冷却した後、 この中に実 施例 6で得た部分プロックポリイソシァネー ト溶液 1 9 9部を配合し 70でで 3時間反応を行ない樹脂中にプロ ックイソシァネー ト基を導入した。 このものに更に、 1 一アミ ノー 2—ナフ トール 127部、 ジブチルァミ ン 5 0部および酢酸 60部を配合し、 70でで 3時間反応を 行なった後、 エチレングリ コールモノェチルエーテル 2 32. 6部を配合して固形分 50%のキレー ト形成性樹 7 脂溶液を得た。 この樹脂のキレー ト形成基の港度は、 1 53モルノ l k g (樹脂固形分) であった。 また、 この 澍脂の数平均分子量は、 約 270 0であった。
得られた上記キレー ト形成性樹脂溶液 1 00部を 2 % ギ酸水溶液 9 00部と混合して処理液 (5) を得た。
製造例 6
実施例 6で得られた固形分 5 0 %のキレー ト形成性樹 脂溶液 1 0部を撹拌下で、 濃度 3. 5%のギ酸水溶液 8 9. 7部と塩索酸ナト リウム 0. 3部との混合物中に徐 々に添加し、 均一に混合して処理液 (6) を得た。
実施例 37〜42
製造例 1〜6で得た処理液 (1 ) 〜 (6) を用い、 下 記の各種素材上に各種方法によって処理膜層を形成した。
素材種
· 00.. SSmm//mm 冷延ダル網板
0. 8 m/m 鉄一亜鉛合金化メ ッキ銅板
0. Bm/m アルミ ニウム扳
0. Sm/m リ ン酸亜鉛処理冷延銷扳 [パルボン ド 30 20 (日本パー力ライジング (株) 製、 リ ン酸亜鉛 処理剤) による処理]
処理膜層の形成方法
実施例 37は、 バーコータ塗装一風乾一水洗、 実施例 3 8は、 バーコ一夕塗装一 1 4 0で X 2 0分焼付 一水洗、
実施例 3 9は、 浸瀵塗装一風乾一水洗、
実施例 4 0は、 浸潦による自動析出法一水洗一風乾、 実施例 4 1は、 処理液塗付後、 余分の処理液を遠心力に よって除去するスビンコ一 ト塗装一風乾一水洗、
実施例 4 2は、 浸濱による自動析出法一水洗一 1 7 0で X 2 0分焼付によって行なった。
ついで処理膜層を形成した各種素材上に電着塗装を行 なった。
電着塗装条件は下記のとおりとした。
実施例 3 7、 3 8、 4 0、 4 1、 4 2においては、 ェ レクロン N o . 9 4 1 0グレー (関西ペイン ト (株) 製、 カチオン型電着塗料、 エポキシポリアミ ン榭脂一プロッ クポリイソシァネー ト系グレー塗料、 表 5および表 6に おいては 「カチオン一 1 J と略称する。 ) を使用し、 印 加電圧 2 5 0 Vで、 膜厚 2 0 inとなるようにカチオン 電着塗装を行なった。 電着塗装後、 水洗を行ない、 つい で 1 7 0でで 3 0分間焼付けて電着塗装.扳を得た。
実施例 3 9においては、 エレクロン N 0 . 7 1 0 0グ レー (関西ペイ ン ト (株) 製、 ァニオン型電着塗料、 マ レイ ン化ポリブタジエン樹脂系グレー塗料、 表 5におい ては 「ァニオン一 2」 と略称する。 ) を使用し、 印加電 圧 2 0 0 Vで、 腠厚 2 0 # mとなるようにァニオン電着 塗装を行なった。 電着塗装後、 水洗を行ない、 ついで 1 6 0でで 3 0分間焼付けて電着塗装板を得た。
比铰例 1
素材にキレー ト形成性表面処理を行なうかわりにパル ボンド 3 0 2 0処理によるリ ン酸亜鉛処理板を使用して, この上に実 ¾例 3 7と同様にカチォン電着塗装を行なつ た。
比較例 2
素材にキレート形成性表面処理を行なうかわりにク口 ム酸処理扳を使用して、 この上に実施例 3 7と同様に力 チオン電着塗装を行なった。
比铰例 3
素材にキレート形成性表面処理を行なわず、 無処理の ままその上に実施例 3 7と同様にカチォン電着塗装を行 なった。
比较例 1〜 3においては、 電着塗装後いずれも水洗を 行なった後、 1 7 0でで 3 0分間焼付けて電着塗装板を 得た。
実施例 3 7〜4 2および比較例 1〜 3で得た電着塗装 板について、 仕上り外観、 耐塩水噴镙性、 射温水浸演性 および耐街鼕性について試接を行なった。 その試験結果 を表 5に示す。
なお、 表 5における試驗は下記試験方法に従って行な つた。
試験方法
仕上り外観:電着塗装板の表面を目視観察し、 ブッ、 へコミ、 平滑性について評価する。 良好なものを A、 実 用上問題ないが、 ュズ肌がわずかに発生したものを B、 不良なものを Cとする。
耐塩水噴耪性: 電着塗装板にクロスカッ トを入れ、 J I S Z 2 3 7 1に準じて試験を行なった。 塩水噴霧 時間は 2 4 0時間とした。 試接後の塗板のクロスカツ ト 部にセロハン粘着テープを密着させ急激に剥離し、 クロ スカツ ト部の片側のハク リ幅、 発銪幅の最大長さを求め る。
耐温塩水浸漬性: 電着塗装板にクロス力ッ トを入れ、 5 0での 5 %食塩水中に 2 4 0時間浸演した後、 塗板を 引上げ風乾後、 クロスカッ ト部にセロハン粘着テープを 密着させ急激に剥離し、 クロスカツ ト部の片側のハク リ 幅、 発銪幅の最大長さを求める。
耐衢搫性 : J I S K 5 4 0 0 8 . 3 . 2 ( 1 9 9 0 ) に準じて、 2 0での棼囲気下においてデュポン式 耐街孳性試験を行なう。 重さ 5 0 0 g、 擎心の尖端直径 1ノ2インチの条件で行ない、 塗膜に損傷を生じない最 大の落錘高さを示す。 なお、 5 0 c mを最大値とする。
また、 冷延銷板を素材として、 カチオン電着塗料を塗 装する実施例 3 7、 3 8、 4 0、 4 1、 4 2および比铰 例 1、 3の工程においてカチオン電着塗装時の電着特性 (浴温 3 0でにおける印加電圧と得られる最大膜厚の関 係、 クーロン収量) を諝ベた。 その結果を表 6に示す。
表 5 実 》 g 例 比 較 例
37 38 39 40 41 42 1 2 3 種類 (1) (2) (3) (4) (5) (6)
処理液 処理膜形成法 バ-コ -タ バ-コ -タ 浸濱 隱 スピンコー 自糠 IK リ ン¾ クロム
処理膜厚 (//m) 0. 3 0. 3 0. 5 1. 0 0. 5 1. 5 mu 酸処理 種類 *チオン- 1 *チ才ン -1 ァニオン- 2 カチオン- 1 チオン- 1 カチオン- 1 力チ才ン -1 力チ才ン -1 カチオン- 1 仕上り外観 A A A A A A A 一 A 冷延鋼扳 耐塩水噴霧性 (》麵) 0. 5 0. 5 1. 5 0. 5 0. 5 0. 5 0. 5 一 3. 0 耐温塩水浸濱性 (n») 0. 5 0. 5 1. 5 0. 2 0. 5 0. 1 0. 1 一 3. 0 耐銜擎性 (en) 50 50 50 50 50 50 50 一 50 仕上り外観 A A B B B B A 一 B 鉄一亜鉛 耐塩水噴霧性 (M) 0. 5 0. 5 1. 0 0. 5 0. 5 0. 5 0. 5 一 2. 0 合金化メ 耐温塩水 澳性 (》) 0. 5 0. 5 1. 5 0. 5 0. 5 0. 5 0. 5 一 3. 0 ッキ钢板 耐街撃性 (CB) 50 50 50 50 50 50 50 一 50 仕上り外親 A A A A A A A A アルミ二 耐塩水噴霧性 (mo) 0. 1 0. 1 0, 5 0. 1 0. 1 0. 1 0. 1 0, 5 ゥム板 耐温塩水浸澳性 (■»>) 0. 1 0. 1 0, 5 0. 1 0. 1 0. 1 0. 1 0. 5 耐銜擎性 (CD) 20 20 20 20 20 20 20 20 仕上り外観 A A A A A A
リン酸亜 耐塩水噴霧性 (》») 0 0 0 0 0 0
鉛処理冷 耐温塩水浸演性 (BID) 0. 1 0. 1 0, 5 0. 1 0. 1 0. 1
延綱板 耐街擎性(CD) 50 50 50 50 50 50
表 6 実 施 例 比 較 例
-Q O
3 i D 0 4 U 11 1 3 処 索材 種類 冷延銅板 冷延鋼板 冷延鋼板 冷延綱板 冷延銅板 リン酸 無処理 理 処理液 種類 (1) (2) (4) (5) (6) 亜鉛処理 冷延鋼板 板 処理膜厚 (/ m) 0. 3 0. 3 1. 0 0. 5 1. 5 冷延鋼板
電着塗料 種類 *チ才ン -1 力チ才ン -1 Λチオン- 1 Λチオン- 1 カチオン- 1 力チ才ン -1 カチオン- 1 電 200V 21 20 20 21 20 20 21 着 最大電着膜厚 ( m) 250V 25 25 26 25 25 24 26 特 300V 28 29 29 29 29 28 30 性 クーロン収量 (mgZC) 32 32 32 32 32 32 33

Claims

請求の範囲 わさ 2 樹
23
〔4〕
Figure imgf000079_0001
15 (各式中、 R1 および R2 は同一または異なって、 水
8 脂又はゲイ索含有樹脂である請求の範囲第 1項に記載 のキレー ト形成性樹脂。
④ 一般式 〔5〕 、 〔6〕 、 〔7〕 又は 〔8〕 で表わさ れる化合物のァミノ基と、 重合性二重結合を有する樹 脂または化合物中の重合性二重結合とを付加反応させ ることを特徵とする請求の範囲第 1項に記載のキレー ト形成性樹脂の製造方法、
1 0
1 5
Figure imgf000080_0001
⑥ 請求の範囲第 1項に記載のキレー ト形成性樹脂を含 有する防食用塗料。
⑦ 請求の範囲第 1項に記載のキレー ト形成性樹脂に架 橋剤を配合してなるキレー ト形成性樹脂組成物。
⑧ 金属表面に電着塗膜を形成するにあたり、 請求の範 囲第 5項に記載の金属表面処理剤を金属表面に接触さ せて塗装前処理を施してなる金属表面に、 電着塗装を 行なうことを特徴とする電着塗膜形成方法。
PCT/JP1992/000113 1991-02-05 1992-02-05 Film-forming chelating resin, production thereof, use thereof, and formation of electrodeposition coating WO1992013902A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US07/930,524 US5342901A (en) 1991-02-05 1992-02-05 Film-formable, chelate-forming resin, process for preparation thereof, use thereof and method for forming electrophoretic coating
DE4290288A DE4290288C2 (de) 1991-02-05 1992-02-05 Zu einem Film formbares, chelatbildendes Harz, Verfahren zur Herstellung desselben, Verwendung desselben und Verfahren zur Bildung eines elektrophoretischen Überzugs

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP3102182A JPH05271330A (ja) 1991-02-05 1991-02-05 被膜形成可能なキレート形成性樹脂
JP3/102182 1991-02-05
JP4247591A JPH04258603A (ja) 1991-02-13 1991-02-13 被膜形成が可能なキレート形成性樹脂
JP3/42475 1991-02-13
JP3593591A JPH04276098A (ja) 1991-03-01 1991-03-01 電着塗膜形成方法
JP3/35935 1991-03-01

Publications (1)

Publication Number Publication Date
WO1992013902A1 true WO1992013902A1 (en) 1992-08-20

Family

ID=27288925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/000113 WO1992013902A1 (en) 1991-02-05 1992-02-05 Film-forming chelating resin, production thereof, use thereof, and formation of electrodeposition coating

Country Status (2)

Country Link
DE (1) DE4290288T1 (ja)
WO (1) WO1992013902A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999005099A1 (en) * 1997-07-21 1999-02-04 Commonwealth Scientific And Industrial Research Organisation Synthesis of dithioester chain transfer agents and use of bis(thioacyl) disulfides or dithioesters as chain transfer agents
CN114096581A (zh) * 2019-07-15 2022-02-25 凯密特尔有限责任公司 用于金属预处理的组合物和方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS592309B2 (ja) * 1976-06-16 1984-01-18 大日本塗料株式会社 キレ−ト結合性一液型塗料組成物
JPS6121575B2 (ja) * 1982-07-15 1986-05-28 Shoji Yamada

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS592309B2 (ja) * 1976-06-16 1984-01-18 大日本塗料株式会社 キレ−ト結合性一液型塗料組成物
JPS6121575B2 (ja) * 1982-07-15 1986-05-28 Shoji Yamada

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999005099A1 (en) * 1997-07-21 1999-02-04 Commonwealth Scientific And Industrial Research Organisation Synthesis of dithioester chain transfer agents and use of bis(thioacyl) disulfides or dithioesters as chain transfer agents
US6512081B1 (en) 1997-07-21 2003-01-28 E.I. Dupont Nemours And Company Synthesis of dithioester chain transfer agents and use of bis(thioacyl) disulfides or dithioesters as chain transfer agents
CN114096581A (zh) * 2019-07-15 2022-02-25 凯密特尔有限责任公司 用于金属预处理的组合物和方法

Also Published As

Publication number Publication date
DE4290288T1 (ja) 1993-01-28

Similar Documents

Publication Publication Date Title
CN1046305C (zh) 产生防腐蚀的、粘合牢固的涂漆的简化方法和由此获得的工件
CN1263892C (zh) 金属表面处理用组合物及经表面处理过的金属材料
US7772333B2 (en) Film-forming material containing resin with -Si(OR)3 and crosslinkable groups
US5342901A (en) Film-formable, chelate-forming resin, process for preparation thereof, use thereof and method for forming electrophoretic coating
JP5627570B2 (ja) ビニルピロリドンコポリマーを含有するカソード電着塗料
US20030102217A1 (en) Method for forming multilayer coating film
JPWO2005056884A1 (ja) 有機高分子複合電気亜鉛合金めっき液組成物及び該組成物を用いためっき金属材
US4443569A (en) Process for the production of thermosetting aqueous electrocoating compositions susceptible of being cathodically deposited and the use thereof
WO1992013902A1 (en) Film-forming chelating resin, production thereof, use thereof, and formation of electrodeposition coating
JPS60199074A (ja) 表面処理組成物及び表面処理方法
JP2975195B2 (ja) 電着塗膜形成方法
US7714068B2 (en) Coating compositions containing silane, methods for producing a coating composition and a coated substrate
JPH08120494A (ja) 塗装方法
JP2997562B2 (ja) カチオン電着塗料及び塗膜形成方法
JPH05271330A (ja) 被膜形成可能なキレート形成性樹脂
WO1999012660A1 (fr) Procede de formation de films de revetement multicouches
JP3227168B2 (ja) 水性防錆塗料組成物
JP2000136331A (ja) カチオン電着塗料用アクリル樹脂
US20080227926A1 (en) Crosslinkers containing silane
JPH07292027A (ja) 被膜形成可能なキレート形成性樹脂
JP2001288598A (ja) カチオン電着塗装方法
US20020175082A1 (en) Method of cationic electrodeposition coating and coated article obtained thereby
JPH04335069A (ja) カチオン電着塗料組成物及びカチオン電着塗装方法
JPH04323400A (ja) 電着塗装のための金属表面の塗装前処理方法
JPH0632824A (ja) 被膜形成可能なキレート形成性樹脂

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE US

RET De translation (de og part 6b)

Ref document number: 4290288

Country of ref document: DE

Date of ref document: 19930128

WWE Wipo information: entry into national phase

Ref document number: 4290288

Country of ref document: DE