US20230090312A1 - Blower device - Google Patents

Blower device Download PDF

Info

Publication number
US20230090312A1
US20230090312A1 US17/993,210 US202217993210A US2023090312A1 US 20230090312 A1 US20230090312 A1 US 20230090312A1 US 202217993210 A US202217993210 A US 202217993210A US 2023090312 A1 US2023090312 A1 US 2023090312A1
Authority
US
United States
Prior art keywords
air flow
pressure loss
centrifugal fan
axial direction
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/993,210
Other languages
English (en)
Inventor
Kenichirou Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Assigned to DENSO CORPORATION reassignment DENSO CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MAEDA, KENICHIROU
Publication of US20230090312A1 publication Critical patent/US20230090312A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00457Ventilation unit, e.g. combined with a radiator
    • B60H1/00471The ventilator being of the radial type, i.e. with radial expulsion of the air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H1/00035Air flow details of HVAC devices for sending an air stream of uniform temperature into the passenger compartment
    • B60H1/0005Air flow details of HVAC devices for sending an air stream of uniform temperature into the passenger compartment the air being firstly cooled and subsequently heated or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/62Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H2001/00078Assembling, manufacturing or layout details
    • B60H2001/00085Assembling, manufacturing or layout details of air intake
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H2001/00078Assembling, manufacturing or layout details
    • B60H2001/00092Assembling, manufacturing or layout details of air deflecting or air directing means inside the device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H2001/00078Assembling, manufacturing or layout details
    • B60H2001/00107Assembling, manufacturing or layout details characterised by the relative position of the heat exchangers, e.g. arrangements leading to a curved airflow

Definitions

  • the present disclosure relates to a blower device.
  • a blower device includes a centrifugal blower, an air flow guide and a casing.
  • the centrifugal blower includes a centrifugal fan that rotates about an axis, sucks air from one side of the blower device in an axial direction of the centrifugal fan, and blows the air outward in a radial direction of the centrifugal fan from a center located at the axis.
  • the air flow guide is disposed between the centrifugal fan and the other side of the blower device in the axial direction.
  • the casing accommodates the centrifugal fan and allows the air to flow as an air flow toward the other side in the axial direction.
  • the air flow from the centrifugal fan includes a first air flow and a second air flow.
  • the first air flow is from the centrifugal fan, bent toward the other side in the axial direction, and then toward the other side in the axial direction.
  • the second air flow is from the centrifugal fan, bent toward the other side in the axial direction, and then bent inward in the radial direction.
  • a first pressure loss is a pressure loss generated in the first air flow between the centrifugal fan and an end of the air flow guide facing the other side in the axial direction.
  • a second pressure loss is a pressure loss generated in the second air flow between the centrifugal fan and the end of the air flow guide facing the other side in the axial direction.
  • a first pressure loss ratio is a divided value obtained by dividing the second pressure loss by the first pressure loss.
  • a third pressure loss is a pressure loss generated in the first air flow between the centrifugal fan and an end of the air flow guide facing the one side in the axial direction.
  • a fourth pressure loss is a pressure loss generated in the second air flow between the centrifugal fan and the end of the air flow guide facing in the axial direction.
  • a second pressure loss ratio is a divided value obtained by dividing the fourth pressure loss by the third pressure loss. The air flow guide makes the first pressure loss ratio smaller than the second pressure loss ratio.
  • FIG. 1 is a cross-sectional view illustrating a cross-sectional configuration of an interior air conditioning unit according to a first embodiment.
  • FIG. 2 is a cross-sectional view illustrating a flow of an air flow in the interior air conditioning unit according to the first embodiment of FIG. 1 .
  • FIG. 3 is a cross-sectional view illustrating a cross-sectional configuration of an interior air conditioning unit according to a comparative example.
  • FIG. 4 is a cross-sectional view illustrating a cross-sectional configuration of an interior air conditioning unit according to a second embodiment.
  • FIG. 5 is a view of an internal configuration of the interior air conditioning unit according to the second embodiment of FIG. 4 as viewed from an upper side in a vertical direction.
  • FIG. 6 is a front view of a filter of the interior air conditioning unit according to the second embodiment of FIG. 4 as viewed from one side in an axial direction.
  • FIG. 7 is a cross-sectional view illustrating a cross-sectional configuration of an interior air conditioning unit according to a third embodiment.
  • FIG. 8 is a view illustrating a plate surface of a rib member in the interior air conditioning unit according to the third embodiment of FIG. 7 .
  • FIG. 9 is a cross-sectional view taken along line IX-IX of FIG. 8 .
  • FIG. 10 is a cross-sectional view illustrating a cross-sectional configuration of an interior air conditioning unit according to a fourth embodiment.
  • FIG. 11 is a cross-sectional view illustrating a cross-sectional configuration of an interior air conditioning unit according to a fifth embodiment.
  • FIG. 12 is a cross-sectional view illustrating a cross-sectional configuration of an interior air conditioning unit according to a sixth embodiment.
  • FIG. 13 is a view of an internal configuration of the interior air conditioning unit according to the sixth embodiment of FIG. 12 as viewed from an upper side in a vertical direction.
  • FIG. 14 is a cross-sectional view illustrating a cross-sectional configuration of an interior air conditioning unit according to a seventh embodiment.
  • a vehicle air conditioner of a comparative example includes a centrifugal fan and a cooling heat exchanger disposed in a casing.
  • the centrifugal fan sucks an air from one side of the vehicle air conditioner in an axial direction and blows the air outward in a radial direction.
  • the cooling heat exchanger is disposed between the centrifugal fan and the other side of the vehicle air conditioner in the axial direction. The cooling heat exchanger cools the air blown from the centrifugal fan by use of refrigerant. Therefore, cool air can be blown from the cooling heat exchanger.
  • the present inventor has studied a wind speed distribution of the air blown from the centrifugal fan in the vehicle air conditioner of the comparative example described above.
  • a part of the air blown from the centrifugal fan flows into an edge area of an air inflow surface of the cooling heat exchanger.
  • Another part of the air blown from the centrifugal fan and excluding the air flowing into the edge area of the air inflow surface flows into a central area of the air inflow surface of the cooling heat exchanger.
  • a flow of the part of the air blown from the centrifugal fan through the edge area of the air inflow surface of the cooling heat exchanger is referred to as a first air flow.
  • a flow of the other part of the air blown from the centrifugal fan through the central area of the air inflow surface of the cooling heat exchanger is referred to as a second air flow.
  • the first air flow from the centrifugal fan is bent toward the other side of the vehicle air conditioner in the axial direction, and then directly toward the other side in the axial direction.
  • the second air flow from the centrifugal fan is bent toward the other side in the axial direction, bent inward in the radial direction, further bent toward the other side in the axial direction, and then toward the other side in the axial direction.
  • the first air flow from the centrifugal fan is bent only once, and then toward the other side in the axial direction.
  • the second air flow from the centrifugal fan is bent three times, and then toward the other side in the axial direction.
  • the second air flow has a pressure loss greater than that of the first air flow. Therefore, an air volume of the first air flow is greater than an air volume of the second air flow. This increases inequality in the wind speed distribution of the air blown from the centrifugal fan.
  • Such increase of inequality in the wind speed distribution of the air also can occur in a blower device in which the cooling heat exchanger is not disposed in the casing.
  • inequality in a wind speed distribution of an air blown from a centrifugal fan can be reduced.
  • a blower device includes a centrifugal blower, an air flow guide and a casing.
  • the centrifugal blower includes a centrifugal fan that rotates about an axis, sucks air from one side of the blower device in an axial direction of the centrifugal fan, and blows the air outward in a radial direction of the centrifugal fan from a center located at the axis.
  • the air flow guide is disposed between the centrifugal fan and the other side of the blower device in the axial direction.
  • the casing accommodates the centrifugal fan and allows the air to flow as an air flow toward the other side in the axial direction.
  • the air flow from the centrifugal fan includes a first air flow and a second air flow.
  • the first air flow is from the centrifugal fan, bent toward the other side in the axial direction, and then toward the other side in the axial direction.
  • the second air flow is from the centrifugal fan, bent toward the other side in the axial direction, and then bent inward in the radial direction.
  • a first pressure loss is a pressure loss generated in the first air flow between the centrifugal fan and an end of the air flow guide facing the other side in the axial direction.
  • a second pressure loss is a pressure loss generated in the second air flow between the centrifugal fan and the end of the air flow guide facing the other side in the axial direction.
  • a first pressure loss ratio is a divided value obtained by dividing the second pressure loss by the first pressure loss.
  • a third pressure loss is a pressure loss generated in the first air flow between the centrifugal fan and an end of the air flow guide facing the one side in the axial direction.
  • a fourth pressure loss is a pressure loss generated in the second air flow between the centrifugal fan and the end of the air flow guide facing in the axial direction.
  • a second pressure loss ratio is a divided value obtained by dividing the fourth pressure loss by the third pressure loss. The air flow guide makes the first pressure loss ratio smaller than the second pressure loss ratio.
  • a difference between a wind speed of the first air flow and a wind speed of the second air flow can be made small as compared with a case where the air flow guide is not provided.
  • the blower device capable of reducing inequality in wind speed distribution of the air blown from the centrifugal fan.
  • FIGS. 1 and 2 illustrate an overall configuration of an interior air conditioning unit 10 of a vehicle air conditioner according to the first embodiment.
  • the interior air conditioning unit 10 of the present embodiment is disposed on a front side in a vehicle traveling direction with respect to an instrument panel in a vehicle interior.
  • the interior air conditioning unit 10 includes an air conditioning casing 20 , a centrifugal blower 30 , a cooling heat exchanger 40 , and a filter 50 .
  • the air conditioning casing 20 is formed by a resin material, and an air inlet 21 , an air flow passage 22 , and an air outlet 23 are formed in the air conditioning casing 20 .
  • the air inlet 21 causes an air flow to flow into the air flow passage 22 from the vehicle interior or the vehicle exterior.
  • the air flow passage 22 causes the air flow to flow from the air inlet 21 toward the air outlet 23 .
  • the air outlet 23 causes the air flow from the air flow passage 22 to be blown to the vehicle interior.
  • the centrifugal blower 30 is disposed in the air conditioning casing 20 .
  • the centrifugal blower 30 includes a centrifugal fan 31 and a blower casing 32 .
  • the centrifugal fan 31 rotates about an axis S, sucks the air flow from one side of the interior air conditioning unit 10 in an axial direction through an air inlet 32 a of the blower casing 32 , and blows the air flow outward in a radial direction centered on the axis S through air outlets 32 b and 32 c.
  • the centrifugal fan 31 is rotationally driven by an electric motor (not illustrated).
  • the blower casing 32 is formed to cover both sides of the centrifugal fan 31 in the axial direction.
  • the axial direction is a direction in which the axis S extends.
  • the axial direction is parallel to a horizontal direction.
  • the blower casing 32 forms the air inlet 32 a that opens toward the one side in the axial direction with respect to the centrifugal fan 31 and the air outlets 32 b and 32 c that open outward in the radial direction centered on the axis S with respect to the centrifugal fan 31 .
  • the air outlet 32 b is disposed on the upper side of the vertical direction with respect to the centrifugal fan 31 .
  • the air outlet 32 c is disposed on the lower side of the vertical direction with respect to the centrifugal fan 31 .
  • the cooling heat exchanger 40 is disposed in the air conditioning casing 20 .
  • the cooling heat exchanger 40 is disposed between the centrifugal blower 30 and the other side of the interior air conditioning unit 10 in the axial direction.
  • the cooling heat exchanger 40 has an air inflow surface 41 into which an air flow blown from the centrifugal fan 31 flows.
  • the air inflow surface 41 is formed so as to be orthogonal to the axial direction.
  • the axis S is formed to penetrate the central side of the air inflow surface 41 .
  • the cooling heat exchanger 40 makes a refrigeration cycle that circulates a refrigerant together with a compressor, a heat radiator, and a decompressor, and cools the air flow flowing into the air inflow surface 41 with the refrigerant. As a result, cold air is blown from the cooling heat exchanger 40 .
  • the filter 50 is disposed between the centrifugal blower 30 and the cooling heat exchanger 40 in the air conditioning casing 20 .
  • the filter 50 filters the air flow blown from the centrifugal blower 30 toward the cooling heat exchanger 40 to remove dust or the like.
  • a pressure loss is uniform over a plane direction orthogonal to the axial direction.
  • the filter 50 has a function of equalizing the wind speed distribution of the air flow passing through the cooling heat exchanger.
  • the blower casing 32 rotates the centrifugal fan 31 about the axis S. Therefore, the centrifugal fan 31 sucks the air flow from the one side in the axial direction through the air inlet 32 a, and blows the air flow outward in the radial direction centered on the axis S through the air outlets 32 b and 32 c.
  • the cooling heat exchanger 40 cools the air flows flowing into the air inflow surface 41 with the refrigerant and blows out the cold air.
  • the cold air is blown into the vehicle interior from the air outlet 23 .
  • the filter 50 has a function of equalizing the wind speed distribution of the air flow passing through the cooling heat exchanger 40 .
  • details of equalization of the wind speed distribution by the filter 50 will be described with reference to FIGS. 2 and 3 .
  • FIG. 2 illustrates a ventilation path of the air flow that passes through the filter 50 and the cooling heat exchanger 40 after the air flow is blown from the centrifugal fan 31 in the interior air conditioning unit 10 of the present embodiment.
  • FIG. 3 illustrates a ventilation path of the air flow that passes through the cooling heat exchanger 40 after the air flow is blown from the centrifugal fan 31 in an interior air conditioning unit 10 A of a comparative example.
  • the interior air conditioning unit 10 A of the comparative example has a configuration in which the filter 50 is removed from the interior air conditioning unit 10 of the present embodiment.
  • the air flow blown from the centrifugal fan 31 through the air outlets 32 b and 32 c includes an air flow K 1 flowing into the central side of the air inflow surface 41 of the cooling heat exchanger 40 and an air flow K 2 flowing into the central side of the air inflow surface 41 of the cooling heat exchanger 40 .
  • the air flow K 1 is a first air flow that is blown from the centrifugal fan 31 through the air outlets 32 b and 32 c, bent toward the other side in the axial direction, and then directly flows into the air inflow surface 41 of the cooling heat exchanger 40 .
  • the air flow K 2 is a second air flow that is blown from the centrifugal fan 31 through the air outlets 32 b and 32 c, bent toward the other side in the axial direction, bent inward in the radial direction, further bent toward the other side in the axial direction, and then flows into the air inflow surface 41 of the cooling heat exchanger 40 .
  • the air flow K 1 is bent only once, and flows into the air inflow surface 41 of the cooling heat exchanger 40 .
  • the second air flow K 2 is bent three times, and flows into the air inflow surface 41 of the cooling heat exchanger 40 .
  • a pressure loss generated each time the air flow K 1 and the air flow K 2 bend in the ventilation path is defined as R 1 .
  • a pressure loss generated when the air flow K 1 and the air flow K 2 pass through the cooling heat exchanger 40 is defined as R 2 .
  • a pressure loss generated when the air flow K 1 and the air flow K 2 pass through the filter 50 is defined as R 3 .
  • a pressure loss AG 1 generated in the air flow K 1 that is blown from the centrifugal fan 31 and passes through the cooling heat exchanger 40 in the interior air conditioning unit 10 A of the comparative example in which the filter 50 is not provided as illustrated in FIG. 3 is represented by Equation 1.
  • a pressure loss AG 2 generated in the air flow K 2 that is blown from the centrifugal fan 31 and passes through the cooling heat exchanger 40 in the interior air conditioning unit 10 A of the comparative example is represented by Equation 2.
  • a pressure loss AS 1 generated in the air flow K 1 that is blown from the centrifugal fan 31 and passes through the cooling heat exchanger 40 in the interior air conditioning unit 10 of the present embodiment is represented by Equation 3.
  • a pressure loss AS 2 generated in the air flow K 2 that is blown from the centrifugal fan 31 and passes through the cooling heat exchanger 40 in the interior air conditioning unit 10 of the present embodiment is represented by Equation 4.
  • a pressure loss ratio AG 2 /AG 1 which is obtained by dividing the pressure loss AG 2 by the pressure loss AG 1 , is represented by Equation 5.
  • a pressure loss ratio AS 2 /AS 1 which is obtained by dividing the pressure loss AS 2 by the pressure loss AS 1 , is represented by Equation 6.
  • Equation 7 ⁇ A, which is a difference obtained by subtracting (AS 2 /AS 1 ) from (AG 2 /AG 1 ), is represented by Equation 7.
  • Equation 7 (2 ⁇ R 1 ⁇ R 3)>zero holds for (2 ⁇ R 1 ⁇ R 3) that is a numerator in Equation 7.
  • AG 2 /AG 1 which is the pressure loss ratio of the comparative example
  • AS 2 /AS 1 which is the pressure loss ratio of the present embodiment
  • AS 2 /AS 1 of the present embodiment can be made smaller than the pressure loss ratio AG 2 /AG 1 of the comparative example by the pressure loss R 3 of the filter 50 .
  • Such an effect of reducing the pressure loss ratio of the present embodiment is more effective as the pressure loss R 3 of the filter 50 is greater.
  • the pressure loss ratio of the present embodiment can be made smaller than the pressure loss ratio of the comparative example.
  • a pressure loss generated in the air flow K 1 between the centrifugal fan 31 and an end of the filter 50 facing the other side of the interior air conditioning unit 10 in the axial direction is defined as a pressure loss XA 1 (that is, a first pressure loss).
  • the pressure loss XA 1 is equal to (R 1 +R 3 ).
  • a pressure loss generated in the air flow K 2 between the centrifugal fan 31 and the end of the filter 50 facing the other side in the axial direction is defined as a pressure loss XA 2 (that is, a second pressure loss).
  • the pressure loss XA 2 is equal to (R 1 ⁇ 3+R 3 ).
  • a pressure loss ratio (XA 2 /XA 1 ), which is the first pressure loss ratio obtained by dividing the pressure loss XA 2 by the pressure loss XA 1 , is equal to (R 1 ⁇ 3+R 3 )/(R 1 +R 3 ).
  • a pressure loss generated in the air flow K 1 between the centrifugal fan 31 and an end of the filter 50 facing the one side of the interior air conditioning unit 10 in the axial direction is defined as a pressure loss XB 1 (that is, a third pressure loss).
  • the pressure loss XB 1 is equal to R 1 .
  • a pressure loss generated in the air flow K 2 between the centrifugal fan 31 and the end of the filter 50 facing the one side in the axial direction is defined as a pressure loss XB 2 (that is, a fourth pressure loss).
  • the pressure loss XB 2 is equal to (R 1 ⁇ 3).
  • a pressure loss ratio (XB 2 /XB 1 ), which is the second pressure loss obtained by dividing the pressure loss XB 2 by the pressure loss XB 1 , is equal to (R 1 ⁇ 3)/(R 1 ).
  • (R 1 ⁇ 3+R 3 )/(R 1 +R 3 ) is made smaller than (R 1 ⁇ 3)/(R 1 ) by the pressure loss R 3 of the filter 50 . Therefore, the pressure loss ratio (XA 2 /XA 1 ) is smaller than the pressure loss ratio (XB 2 /XB 1 ).
  • the interior air conditioning unit 10 includes the centrifugal blower 30 including the centrifugal fan 31 that rotates about the axis S to suck the air flow from the one side in the axial direction and blow the air flow outward in the radial direction centered on the axis.
  • the interior air conditioning unit 10 includes the filter 50 as an air flow guide disposed between the centrifugal fan 31 and the other side in the axial direction, and an air conditioning casing 20 that accommodates the centrifugal fan 31 and the filter 50 and allows the air to flow as an air flow toward the other side in the axial direction.
  • the air flow from the centrifugal fan 31 includes the air flow K 1 and the air flow K 2 .
  • the air flow K 1 is the first air flow that is from the centrifugal fan 31 , bent toward the other side in the axial direction, and then toward the other side in the axial direction.
  • the air flow K 2 is the second air flow that is from the centrifugal fan 31 , bent toward the other side in the axial direction, bent inward in the radial direction, further bent toward the other side in the axial direction, and then flows toward the other side in the axial direction.
  • a pressure loss generated in the air flow K 1 between the centrifugal fan 31 and the end of the filter 50 facing the other side in the axial direction is defined as a pressure loss YA 1 .
  • a pressure loss generated in the air flow K 2 between the centrifugal fan 31 and the end of the filter 50 facing the other side in the axial direction is defined as a pressure loss YA 2 .
  • a divided value obtained by dividing the pressure loss YA 2 by the pressure loss YA 1 is defined as a pressure loss ratio (YA 2 /YA 1 ).
  • a pressure loss generated in the air flow K 1 between the centrifugal fan 31 and the end of the filter 50 facing the one side in the axial direction is defined as a pressure loss YB 1 .
  • a pressure loss generated in the air flow K 2 between the centrifugal fan 31 and the end of the filter 50 facing the one side in the axial direction is defined as a pressure loss YB 2 .
  • a divided value obtained by dividing the pressure loss YB 2 by the pressure loss YB 1 is defined as a pressure loss ratio (YB 2 /YB 1 ).
  • the pressure loss R 3 of the filter 50 makes the pressure loss ratio (YA 2 /YA 1 ) smaller than the pressure loss ratio (YB 2 /YB 1 ).
  • the difference between the wind speed of the air flow K 2 and the wind speed of the air flow K 1 can be reduced as compared with the case of the interior air conditioning unit 10 A not provided with the filter 50 . Accordingly, the filter 50 can reduce inequality in the wind speed distribution of the air blown from the centrifugal fan 31 . Therefore, it is possible to reduce inequality in the wind speed distribution of the air flowing through the cooling heat exchanger 40 .
  • the pressure loss ratio (AS 2 /AS 1 ) of the interior air conditioning unit 10 of the present embodiment including the filter 50 is smaller than the pressure loss ratio (AG 2 /AG 1 ) of the interior air conditioning unit 10 A of the comparative example not provided with the filter 50 .
  • the filter 50 since the filter 50 generates the pressure loss R 3 in each of the air flow K 1 and the air flow K 2 by filtering the air flow K 1 and air flow K 2 blown from the centrifugal fan 31 , the pressure loss ratio (AS 2 /AS 1 ) becomes smaller than the pressure loss ratio (AG 2 /AG 1 ) of the comparative example.
  • the interior air conditioning unit 10 of the first embodiment includes a filter 50 using a filter medium 51 formed in a wave shape
  • FIGS. 4 , 5 , and 6 the same reference numerals as those in FIG. 1 denote the same components, and the description thereof will be omitted.
  • the interior air conditioning unit 10 of the present embodiment is different from the interior air conditioning unit 10 of the first embodiment only in including the filter 50 , and thus the filter 50 of the present embodiment will be mainly described below.
  • the filter 50 of the present embodiment includes a filter medium 51 that is formed in a film shape and filters the air flow K 1 and the air flow K 2 .
  • the filter medium 51 is formed in a wave shape having folds 52 extending in the radial direction from the center located at the axis S.
  • An extending direction in which the folds 52 extend is a vertical direction, and the extending direction is the same as the radial direction in which the air flow K 2 is bent for the second time (that is, a direction bending at the second step). Therefore, the pressure loss generated by the filter 50 is equal in the vertical direction.
  • the folds 52 of the filter medium 51 do not prevent the air flow K 2 from being bent inward in the radial direction with respect to the axis for the second time, and thus the air flow K 2 can smoothly pass through the filter medium 51 .
  • the filter medium 51 includes the folds 52 extending in the same direction as the radial direction centered on the axis S. Therefore, the folds 52 can cancel the flow of the swirling flow.
  • An interior air conditioning unit 10 of the present embodiment uses the guide 60 instead of the filter 50 of the interior air conditioning unit 10 of the first embodiment.
  • the same reference numerals as those in FIG. 1 denote the same components, and the description thereof will be omitted.
  • the guide 60 is provided between the centrifugal blower 30 and the cooling heat exchanger 40 .
  • the guide 60 includes two rib members 60 a and two rib members 60 b.
  • One rib member 60 a of two rib members 60 a is a plate member disposed on the upper side of the vertical direction in the air conditioning casing 20 .
  • the other rib member 60 a other than one rib member 60 a of two rib members 60 a is a plate member disposed on the lower side of the vertical direction in the air conditioning casing 20 .
  • one rib member 60 a is referred to as an upper rib member 60 a
  • the other rib member 60 a is referred to as a lower rib member 60 a.
  • two rib members 60 a and two rib members 60 b are provided independently of the air conditioning casing 20 .
  • the upper rib member 60 a and the lower rib member 60 a are each formed in a plate shape.
  • the upper rib member 60 a has a plate surface 61 a extending in a direction intersecting a thickness direction.
  • the upper rib member 60 a is disposed to have the plate surface 61 a inclined with respect to the axis S.
  • the upper rib member 60 a is formed such that a distance between the plate surface 61 a and the central axis S in the radial direction decreases in the axial direction from one side to the other side of the interior air conditioning unit 10 .
  • the upper rib member 60 a of the present embodiment is formed such that a height of the plate surface 61 a in the vertical direction decreases in the axial direction from the one side to the other side.
  • the upper rib member 60 a guides, with the plate surface 61 a of the upper rib member 60 a, the air flow K 1 from the air outlet 32 b inward in the radial direction centered on the axis S.
  • the plate surface 61 a of the upper rib member 60 a obstructs the air flow K 1 from the air outlet 32 b toward the other side of the axial direction.
  • the lower rib member 60 a is disposed to have the plate surface 61 a inclined with respect to the axis S.
  • the lower rib member 60 a is formed such that a distance between the plate surface 61 a and the central axis S in the radial direction decreases in the axial direction from one side to the other side.
  • the lower rib member 60 a of the present embodiment is formed such that a height of the plate surface 61 a in the vertical direction increases in the axial direction from one side to the other side.
  • the lower rib member 60 a guides, with the plate surface 61 a of the lower rib member 60 a, the air flow K 1 from the air outlet 32 c inward in the radial direction centered on the axis S.
  • the plate surface 61 a of the lower rib member 60 a obstructs the air flow K 1 from the air outlet 32 c toward the other side in the axial direction.
  • Two rib members 60 b are disposed between the upper rib member 60 a and the lower rib member 60 a.
  • One rib member 60 b of two rib members 60 b is a plate member disposed on the upper side of the vertical direction in the air conditioning casing 20 .
  • the other rib member 60 b other than one rib member 60 b of two rib members 60 b is a plate member disposed on the lower side of the vertical direction in the air conditioning casing 20 .
  • one rib member 60 b is referred to as an upper rib member 60 b
  • the other rib member 60 b is referred to as a lower rib member 60 b.
  • the upper rib member 60 b and the lower rib member 60 b are each formed in a plate shape.
  • the upper rib member 60 b has a plate surface 61 b extending in a direction intersecting a thickness direction.
  • the upper rib member 60 b is disposed to have the plate surface 61 b inclined with respect to the axis S.
  • the upper rib member 60 b is formed such that a distance between the plate surface 61 b and the central axis S in the radial direction decreases in the axial direction from the one side to the other side.
  • the upper rib member 60 b of the present embodiment is formed such that a height of the plate surface 61 b in the vertical direction decreases in the axial direction from the one side to the other side.
  • the upper rib member 60 b guides, with the plate surface 61 b of the upper rib member 60 b, the air flow K 1 from the air outlet 32 b inward in the radial direction centered on the axis S (that is, downward in the vertical direction).
  • the lower rib member 60 b is disposed to have the plate surface 61 b inclined with respect to the axis S.
  • the lower rib member 60 b is formed such that a distance between the plate surface 61 b and the central axis S in the radial direction decreases in the axial direction from the one side to the other side.
  • the lower rib member 60 b of the present embodiment is formed such that a height of the plate surface 61 b in the vertical direction increases in the axial direction from the one side to the other side.
  • the lower rib member 60 b guides, with the plate surface 61 b of the lower rib member 60 b, the air flow K 1 from the air outlet 32 c inward in the radial direction centered on the axis S (that is, upward in the vertical direction).
  • a pressure loss generated in the air flow K 1 between the centrifugal fan 31 and an end of the upper rib member 60 a facing the other side in the axial direction or between the centrifugal fan 31 and an end of the lower rib member 60 a facing the other side in the axial direction is defined as a pressure loss YA 1 .
  • a pressure loss generated in the air flow K 2 between the centrifugal fan 31 and an end of the upper rib member 60 b facing the other side in the axial direction or between the centrifugal fan 31 and an end of the lower rib member 60 b facing the other side in the axial direction is defined as a pressure loss YA 2 .
  • a divided value obtained by dividing the pressure loss YA 2 by the pressure loss YA 1 is defined as a pressure loss ratio (YA 2 /YA 1 ).
  • a pressure loss generated in the air flow K 1 between the centrifugal fan 31 and an end of the upper rib member 60 a facing the one side in the axial direction or between the centrifugal fan 31 and an end of the lower rib member 60 a facing the one side in the axial direction is defined as a pressure loss YB 1 .
  • a pressure loss generated in the air flow K 2 between the centrifugal fan 31 and an end of the upper rib member 60 b facing the one side in the axial direction or between the centrifugal fan 31 and an end of the lower rib member 60 b facing the one side in the axial direction is defined as a pressure loss YB 2 .
  • a divided value obtained by dividing the pressure loss YA 2 by the pressure loss YB 1 is defined as a pressure loss ratio (YB 2 /YB 1 ).
  • the guide 60 makes the pressure loss ratio (YA 2 /YA 1 ) smaller than the pressure loss ratio (YB 2 /YB 1 ).
  • the filter 50 can suppress the occurrence of deviation in the wind speed distribution of the air flow blown from the centrifugal fan 31 . Therefore, it is possible to suppress the occurrence of deviation in the wind speed distribution of the air flow flowing through the cooling heat exchanger 40 .
  • the pressure loss ratio (AS 2 /AS 1 ) of the interior air conditioning unit 10 of the present embodiment including the guide 60 is smaller than the pressure loss ratio (AG 2 /AG 1 ) of the interior air conditioning unit 10 A of the comparative example not provided with the guide 60 .
  • FIG. 10 the same reference numerals as those in FIG. 1 denote the same components, and the description thereof will be omitted.
  • the interior air conditioning unit 10 of the present embodiment includes an air conditioning casing 20 in which the filter 50 is removed and which replaces the air conditioning casing 20 of FIG. 1 .
  • the air conditioning casing 20 of the present embodiment includes an inlet-side casing 24 , a guide casing 25 , and an outlet-side casing 26 .
  • the inlet-side casing 24 forms an air flow passage through which an air flow flows in the axial direction.
  • the guide casing 25 forms an air flow passage through which the air flow flows in the axial direction.
  • the guide casing 25 is disposed between the inlet-side casing 24 and the other side of the interior air conditioning unit 10 in the axial direction.
  • the outlet-side casing 26 is disposed between the guide casing 25 and the other side in the axial direction.
  • air flow passages are connected to each other to form an air flow passage 22 .
  • the centrifugal blower 30 is disposed in the inlet-side casing 24 .
  • the cooling heat exchanger 40 is disposed in the outlet-side casing 26 .
  • the cross-sectional area of the air flow passage of the outlet-side casing 26 is smaller than the cross-sectional area of the air flow passage of the inlet-side casing 24 .
  • a distance between the guide casing 25 and the central axis S in the radial direction decreases in the axial direction from one side to the other side of the interior air conditioning unit 10 in the axial direction.
  • the guide casing 25 obstructs the air flow K 1 toward the other side of the axial direction by making the air flow K 1 blown from the centrifugal fan 31 flow inward in the radial direction centered on the axis S.
  • the guide casing 25 is disposed between the centrifugal fan 31 and the other side in the axial direction. In the guide casing 25 , a pressure loss is generated in the air flow K 1 blown from the centrifugal fan 31 . The guide casing 25 does not obstruct the air flow K 2 blown from the centrifugal fan 31 toward the other side of the axial direction.
  • a pressure loss generated in the air flow K 1 between the centrifugal fan 31 and an end of the guide casing 25 facing the other side in the axial direction is defined as a pressure loss YA 1 .
  • a pressure loss generated in the air flow K 2 between the centrifugal fan 31 and the end of the guide casing 25 facing the other side in the axial direction is defined as a pressure loss YA 2 .
  • a divided value obtained by dividing the pressure loss YA 2 by the pressure loss YA 1 is defined as a pressure loss ratio (YA 2 /YA 1 ).
  • a pressure loss generated in the air flow K 1 between the centrifugal fan 31 and an end of the guide casing 25 facing the one side in the axial direction is defined as a pressure loss YB 1 .
  • a pressure loss generated in the air flow K 2 between the centrifugal fan 31 and the end of the guide casing 25 facing the one side in the axial direction is defined as a pressure loss YB 2 .
  • a divided value obtained by dividing the pressure loss R 2 by the pressure loss R 1 is defined as a pressure loss ratio (YB 2 /YB 1 ).
  • the guide casing 25 makes the pressure loss ratio (YA 2 /YA 1 ) smaller than the pressure loss ratio (YB 2 /YB 1 ).
  • the guide casing 25 can reduce inequality in the wind speed distribution of the air blown from the centrifugal fan 31 . Therefore, it is possible to reduce inequality in the wind speed distribution of the air flowing through the cooling heat exchanger 40 .
  • the pressure loss ratio (AS 2 /AS 1 ) of the interior air conditioning unit 10 of the present embodiment including the guide casing 25 is smaller than the pressure loss ratio (AG 2 /AG 1 ) of the interior air conditioning unit 10 A of the comparative example not provided with the guide casing 25 .
  • inequality in the wind speed distribution of the air blown from the centrifugal fan 31 can be reduced as compared with the comparative example. Therefore, it is possible to reduce inequality in the wind speed distribution of the air flow flowing through the cooling heat exchanger 40 as compared with the comparative example.
  • FIG. 11 an example in which the air flow K 2 blown from the centrifugal fan 31 is guided inward in the radial direction centered on the axis S by a blower motor cover 34 by a Coanda effect in the first embodiment will be described with reference to FIG. 11 .
  • the same reference numerals as those in FIG. 1 denote the same components.
  • the present embodiment is mainly different from the first embodiment in the configuration of the centrifugal blower 30 .
  • the configuration of the centrifugal blower 30 will be mainly described.
  • the centrifugal blower 30 includes a centrifugal fan 31 , a blower casing 32 , and an electric motor 33 .
  • the centrifugal fan 31 rotates about an axis S, sucks the air flow from one side of an interior air conditioning unit 10 in the axial direction through an air inlet 32 a of the blower casing 32 , and blows the air flow outward in a radial direction centered on the axis S through air outlets 32 b and 32 c.
  • the centrifugal fan 31 is rotationally driven by the electric motor 33 .
  • the electric motor 33 is disposed on the other side of the axial direction with respect to the centrifugal fan 31 .
  • the blower casing 32 is formed to cover both sides of the centrifugal fan 31 and both sides the electric motor 33 in the axial direction.
  • the blower casing 32 forms the air inlet 32 a that is open toward the one side in the axial direction from the centrifugal fan 31 , and the air outlets 32 b and 32 c that are open outward in the radial direction from the central axis S of the centrifugal fan 31 .
  • the air outlet 32 b is disposed upward of the centrifugal fan 31 in the vertical direction.
  • the air outlet 32 c is disposed downward of the centrifugal fan 31 in the vertical direction.
  • the blower casing 32 includes the blower motor cover 34 disposed between the electric motor 33 and the other side in the axial direction to cover the electric motor 33 .
  • the blower motor cover 34 includes an outer diameter portion 34 a, a guide portion 34 b, and a central portion 34 c.
  • the outer diameter portion 34 a is disposed outward in the radial direction centered on the axis S.
  • the outer diameter portion 34 a is formed in an annular shape centered on the axis S.
  • the central portion 34 c is disposed inward of the outer diameter portion 34 a in the radial direction centered on the axis S.
  • the central portion 34 c is formed in a disk shape centered on the axis S.
  • the central portion 34 c is disposed between the outer diameter portion 34 a and the other side in the axial direction.
  • the guide portion 34 b is disposed between the outer diameter portion 34 a and the central portion 34 c. A distance between the guide portion 34 b and the central axis S in the radial direction decreases in the axial direction toward the other side.
  • the blower motor cover 34 of the present embodiment guides the air flow K 2 blown from the centrifugal fan 31 inward in the radial direction centered on the axis S by a Coanda effect.
  • the blower casing 32 rotates the centrifugal fan 31 about the axis S. Therefore, the centrifugal fan 31 sucks the air flow from the one side in the axial direction through the air inlet 32 a, and blows the air flow outward in the radial direction centered on the axis S through the air outlets 32 b and 32 c.
  • the air flow K 1 and the air flow K 2 which are blown from the air outlets 32 b and 32 c, flow into the air inflow surface 41 of the cooling heat exchanger 40 .
  • the cooling heat exchanger 40 cools, with the refrigerant, the air flow K 1 and the air flow K 2 , which flow into the air inflow surface 41 , and blows out the cold air.
  • the air flow K 1 from the centrifugal fan 31 through the air outlets 32 b and 32 c is bent toward the other side in the axial direction, and then directly into the air inflow surface 41 of the cooling heat exchanger 40 . That is, the air flow K 1 is not affected by the blower motor cover 34 .
  • the air flow K 2 After being blown from the centrifugal fan 31 through the air outlets 32 b and 32 c, the air flow K 2 is bent toward the other side in the axial direction, and then guided inward in the radial direction centered on the axis S along the blower motor cover 34 by a Coanda effect. Thereafter, after that, the air flow K 2 is a second air flow that is bent toward the other side in the axial direction and flows into the air inflow surface 41 of the cooling heat exchanger.
  • a pressure loss generated in the air flow K 1 between the centrifugal fan 31 and an end of the blower motor cover 34 facing the other side in the axial direction is defined as a pressure loss YA 1 .
  • a pressure loss generated in the air flow K 2 between the centrifugal fan 31 and the end of the blower motor cover 34 facing the other side in the axial direction is defined as a pressure loss YA 2 .
  • a divided value obtained by dividing the pressure loss YA 2 by the pressure loss YA 1 is defined as a pressure loss ratio (YA 2 /YA 1 ).
  • a pressure loss generated in the air flow K 1 between the centrifugal fan 31 and an end of the blower motor cover 34 facing the one side in the axial direction is defined as a pressure loss YB 1 .
  • a pressure loss generated in the air flow K 2 between the centrifugal fan 31 and the end of the blower motor cover 34 facing the one side in the axial direction is defined as a pressure loss YB 2 .
  • the pressure loss YA 2 is smaller than the pressure loss YB 2 due to a Coanda effect.
  • a divided value obtained by dividing the pressure loss YB 2 by the pressure loss YB 1 is defined as a pressure loss ratio (YB 2 /YB 1 ).
  • the blower motor cover 34 makes the pressure loss ratio (YA 2 /YA 1 ) smaller than the pressure loss ratio (YB 2 /YB 1 ).
  • the guide casing 25 can reduce inequality in the wind speed distribution of the air flow blown from the centrifugal fan 31 . Therefore, it is possible to reduce inequality in the wind speed distribution of the air flow flowing through the cooling heat exchanger 40 .
  • the pressure loss ratio (AS 2 /AS 1 ) of the interior air conditioning unit 10 of the present embodiment including the guide casing 25 is smaller than the pressure loss ratio (AG 2 /AG 1 ) of the interior air conditioning unit 10 A of the comparative example not provided with the blower motor cover 34 .
  • inequality in the wind speed distribution of the air flow blown from the centrifugal fan 31 can be reduced as compared with the comparative example. Therefore, it is possible to reduce inequality in the wind speed distribution of the air flow flowing through the cooling heat exchanger 40 as compared with the comparative example.
  • the present embodiment is mainly different from the first embodiment in the configuration of the centrifugal blower 30 .
  • the configuration of the centrifugal blower 30 will be mainly described.
  • the centrifugal blower 30 includes a centrifugal fan 31 and a blower casing 32 .
  • the blower casing 32 forms an air inlet 32 a that is open toward one side of an interior air conditioning unit 10 in the axial direction from the centrifugal fan 31 , and an air outlet 32 b that is open outward in the radial direction centered on the axis S (that is, upward in the vertical direction) from the centrifugal fan 31 .
  • the centrifugal blower 30 is disposed on the lower side of the vertical direction.
  • the filter 50 is disposed on an air flow upstream side with respect to the cooling heat exchanger 40
  • the present disclosure is not limited thereto, and the filter 50 may be disposed on an air flow downstream side with respect to the cooling heat exchanger 40 as in the seventh embodiment illustrated in FIG. 14 .
  • the filter 50 is disposed on the other side of the axial direction with respect to the cooling heat exchanger 40 .
  • blower device of the present disclosure is applied to the interior air conditioning unit 10
  • the present disclosure is not limited thereto, and the blower device of the present disclosure may be applied to a device other than the interior air conditioning unit 10 .
  • the filter 50 having the same pressure loss in the plane direction orthogonal to the axial direction has been described.
  • the filter 50 in which the pressure loss is great in a region on the outer side in the radial direction centered on the axis S and the pressure loss is small in a region on the inner side in the radial direction centered on the axis S may be used.
  • the filter 50 having the same pressure loss in the vertical direction has been described.
  • the filter 50 in which the pressure loss is great in a region on the outer side in the radial direction centered on the axis S and the pressure loss is small in a region on the inner side in the radial direction centered on the axis S may be used.
  • a numerical value of the constituent element of the embodiment is not limited to a specific number except for a case where the numerical value such as the number of the constituent elements, a numerical value of the constituent element, the amount of the constituent elements, or a range of the constituent element is mentioned, a case where it is explicitly stated that the constituent element is particularly essential, and a case where the element is considered to be obviously essential in principle.
  • the shapes, the positional relationship, and the like of the constituent elements are not limited except for a case where the shapes, the positional relationship, and the like are explicitly stated and a case where the shapes, the positional relationship, and the like are limited to specific shapes, a positional relationship, and the like in principle.
  • the external environmental information of a vehicle for example, humidity outside the vehicle
  • the first to seventh embodiments and other embodiments configured as described above may configure an additional viewpoint idea as below.
  • a blower device includes a centrifugal blower ( 30 ) including a centrifugal fan ( 31 ) that rotates about an axis (S) to suck air from one side of the blower device in an axial direction and blow the air outward in a radial direction from a center located at the axis.
  • the blower device includes an air flow guide ( 50 , 60 , 34 , 24 ) disposed between the centrifugal fan and the other side of the blower device in the axial direction.
  • the blower device includes a casing ( 20 ) that accommodates the centrifugal fan and the air flow guide and allows air to flow as an air flow toward the other side in the axial direction.
  • the air flow from the centrifugal fan includes a first air flow (K 1 ) that is from the centrifugal fan, bent toward the other side in the axial direction, and then toward the other side in the axial direction.
  • the air flow from the centrifugal fan includes a second air flow (K 2 ) that is from the centrifugal fan, bent toward the other side in the axial direction, and then bent inward in the radial direction.
  • K 2 second air flow
  • a pressure loss generated in the first air flow between the centrifugal fan and an end of the air flow guide facing the other side in the axial direction is defined as a first pressure loss.
  • a pressure loss generated in the second air flow between the centrifugal fan and an end of the air flow guide facing the other side in the axial direction is defined as a second pressure loss.
  • a divided value obtained by dividing the second pressure loss by the first pressure loss is defined as a pressure loss ratio.
  • the air flow guide makes a pressure loss ratio smaller than a pressure loss ratio of a blower device without the air flow guide.
  • a blower device includes a centrifugal blower ( 30 ) including a centrifugal fan ( 31 ) that rotates about an axis (S) to suck air from one side of the blower device in an axial direction and blow the air outward in a radial direction from a center located at the axis.
  • the blower device includes a filter ( 50 ) disposed between the centrifugal fan and the other side of the other side of the blower device in the axial direction, and a casing ( 20 ) that accommodates the centrifugal fan and the filter and allows the air to flow as an air flow toward the other side in the axial direction.
  • the air flow from the centrifugal fan includes a first air flow (K 1 ) that is from the centrifugal fan, bent toward the other side in the axial direction, and then toward the other side in the axial direction.
  • the air flow from the centrifugal fan includes a second air flow (K 2 ) that is from the centrifugal fan, bent toward the other side in the axial direction, and then bent inward in the radial direction.
  • K 2 second air flow
  • the filter filters the first air flow and the second air flow to generate a pressure loss equal to a third pressure loss (R 3 ) in each of the first air flow and the second air flow.
  • a blower device includes a centrifugal blower ( 30 ) including a centrifugal fan ( 31 ) that rotates about an axis (S) to suck air from one side of the blower device in an axial direction and blow the air outward in a radial direction from a center located at the axis.
  • the blower device includes a filter ( 50 ) disposed between the centrifugal fan and the other side in the axial direction, and a casing ( 20 ) that accommodates the centrifugal fan and the air flow guide and allows the air to flow as an air flow toward the other side in the axial direction.
  • the air flow from the centrifugal fan includes a first air flow (K 1 ) that is from the centrifugal fan, bent toward the other side in the axial direction, and then toward the other side in the axial direction.
  • the air flow blown from the centrifugal fan includes a second air flow (K 2 ) that is from the centrifugal fan, bent toward the other side in the axial direction, and then bent inward in the radial direction.
  • K 2 second air flow
  • the centrifugal blower includes a blower motor ( 33 ) that is disposed between the centrifugal fan and the other side of the blower device in the axial direction and rotates the centrifugal fan, and a blower motor cover ( 34 ) disposed between the blower motor and the other side in the axial direction to cover the blower motor.
  • the blower motor cover ( 34 ) guides the second air flow inward in the radial direction by the Coanda effect.
  • a blower device includes a centrifugal blower ( 30 ) including a centrifugal fan ( 31 ) that rotates about an axis (S) to suck air from one side of the blower device in an axial direction and blow the air outward in a radial direction from a center located at the axis.
  • the blower includes an air flow guide ( 60 ) disposed between the centrifugal fan and the other side of the blower device in the axial direction, and a casing ( 20 ) that accommodates the centrifugal fan and the air flow guide and allows the air to flow as an air flow toward the other side in the axial direction.
  • the air flow from the centrifugal fan includes a first air flow (K 1 ) that is from the centrifugal fan, bent toward the other side in the axial direction, and then toward the other side in the axial direction.
  • the air flow from the centrifugal fan includes a second air flow (K 2 ) that is from the centrifugal fan, bent toward the other side in the axial direction, and then bent inward in the radial direction.
  • K 2 second air flow
  • the air flow guide is a plate member including a plate surface ( 61 a ) that obstructs the first air flow toward the other side in the axial direction and generates a pressure loss in the first air flow.
  • a blower device includes a centrifugal blower ( 30 ) including a centrifugal fan ( 31 ) that rotates about an axis (S) to suck air from one side of the blower device in an axial direction and blow the air outward in a radial direction from a center located at the axis.
  • the blower device includes an air flow guide ( 24 ) disposed between the centrifugal fan and the other side of the blower device in the axial direction, and a casing ( 20 ) that accommodates the centrifugal fan and allows the air to flow as an air flow toward the other side in the axial direction.
  • the air flow from the centrifugal fan includes a first air flow (K 1 ) that is from the centrifugal fan, bent toward the other side in the axial direction, and then toward the other side in the axial direction.
  • the air flow from the centrifugal fan includes a second air flow (K 2 ) that is from the centrifugal fan, bent toward the other side in the axial direction, and then bent inward in the radial direction.
  • K 2 second air flow
  • the air flow guide is a plate member including a plate surface ( 61 a ) that obstructs the first air flow toward the other side in the axial direction and generates a pressure loss in the first air flow.
  • the casing forms the air flow guide ( 24 ) that obstructs the first air flow toward the other side in the axial direction and generates a pressure loss in the first air flow.
  • the blower device includes a centrifugal blower.
  • the centrifugal blower ( 30 ) includes a centrifugal fan ( 32 ) that rotates about an axis (S), sucks air from one side of the blower device in an axial direction of the centrifugal fan, and blows the air outward in a radial direction of the centrifugal fan from a center located at the axis.
  • the blower device includes an air flow guide ( 50 , 60 , 34 , 24 ) disposed between the centrifugal fan and the other side of the blower device in the axial direction, and a casing ( 20 ) accommodating the centrifugal fan and allowing the air to flow as an air flow toward the other side in the axial direction.
  • the air flow from the centrifugal fan includes a first air flow and a second air flow.
  • the first air flow (K 1 ) is from the centrifugal fan, bent toward the other side in the axial direction, and then toward the other side in the axial direction.
  • the second air flow (K 2 ) is from the centrifugal fan, bent toward the other side in the axial direction, and then bent inward in the radial direction.
  • a first pressure loss is a pressure loss generated in the first air flow between the centrifugal fan and an end of the air flow guide facing the other side in the axial direction.
  • a second pressure loss is a pressure loss generated in the second air flow between the centrifugal fan and the end of the air flow guide facing the other side in the axial direction.
  • a first pressure loss ratio is a divided value obtained by dividing the second pressure loss by the first pressure loss.
  • a third pressure loss is a pressure loss generated in the first air flow between the centrifugal fan and an end of the air flow guide facing the one side in the axial direction.
  • a fourth pressure loss is a pressure loss generated in the second air flow between the centrifugal fan and the end of the air flow guide facing in the axial direction.
  • a second pressure loss ratio is a divided value obtained by dividing the fourth pressure loss by the third pressure loss.
  • the air flow guide makes the first pressure loss ratio smaller than the second pressure loss ratio.
  • the air flow guide is a filter ( 50 ) that filters the first air flow and the second air flow to generate a pressure loss equal to the third pressure loss (R 3 ) in each of the first air flow and the second air flow.
  • the filter includes a filter medium ( 51 ) formed in a film shape and configured to filter the first air flow and the second air flow.
  • the filter medium is formed in a wave shape having folds ( 52 ) extending in a direction same as the radial direction.
  • the centrifugal blower includes a blower motor ( 33 ) disposed between the centrifugal fan and the other side in the axial direction and configured to rotate the centrifugal fan, and a blower motor cover ( 34 ) disposed between the blower motor and the other side in the axial direction and covering the blower motor.
  • the blower motor cover ( 34 ) forms the air flow guide that guides the second air flow inward in the radial direction by a Coanda effect.
  • the air flow guide is a plate member including a plate surface ( 61 a ) configured to generate a pressure loss in the first air flow by obstructing the first air flow toward the other side in the axial direction.
  • the air flow guide is a plate member including a plate surface ( 61 b ) configured to guide the second air flow inward in the radial direction.
  • the casing forms the air flow guide ( 24 ) configured to generate a pressure loss in the first air flow by obstructing the first air flow toward the other side in the axial direction.
  • the blower device further includes a cooling heat exchanger ( 40 ) accommodated in the casing, disposed between the air flow guide and the other side in the axial direction, and configured to cool the first air flow and the second air flow that have passed through the air flow guide.
  • a cooling heat exchanger ( 40 ) accommodated in the casing, disposed between the air flow guide and the other side in the axial direction, and configured to cool the first air flow and the second air flow that have passed through the air flow guide.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Air-Conditioning For Vehicles (AREA)
US17/993,210 2020-05-29 2022-11-23 Blower device Pending US20230090312A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020094105A JP7400629B2 (ja) 2020-05-29 2020-05-29 送風機器
JP2020-094105 2020-05-29
PCT/JP2021/019777 WO2021241565A1 (ja) 2020-05-29 2021-05-25 送風機器

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019777 Continuation WO2021241565A1 (ja) 2020-05-29 2021-05-25 送風機器

Publications (1)

Publication Number Publication Date
US20230090312A1 true US20230090312A1 (en) 2023-03-23

Family

ID=78744477

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/993,210 Pending US20230090312A1 (en) 2020-05-29 2022-11-23 Blower device

Country Status (5)

Country Link
US (1) US20230090312A1 (ja)
JP (1) JP7400629B2 (ja)
CN (1) CN115666983A (ja)
DE (1) DE112021003030T5 (ja)
WO (1) WO2021241565A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105546663A (zh) * 2014-10-24 2016-05-04 Lg电子株式会社 空气净化器
US9709073B2 (en) * 2012-10-03 2017-07-18 Minebea Co., Ltd. Centrifugal fan
US10118502B2 (en) * 2014-06-11 2018-11-06 Panasonic Intellectual Property Management Co., Ltd. Temperature conditioning unit, temperature conditioning system, and vehicle provided with temperature conditioning unit
US20190270359A1 (en) * 2016-11-23 2019-09-05 Denso Corporation Vehicular air conditioning device
US10458417B2 (en) * 2012-05-28 2019-10-29 Delta Electronics, Inc. Centrifugal fan with axial-flow wind

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3456047B2 (ja) * 1995-02-10 2003-10-14 株式会社デンソー 車両用空調装置
JP6319514B2 (ja) * 2015-04-28 2018-05-09 株式会社デンソー 送風機
JP6583378B2 (ja) * 2016-11-07 2019-10-02 株式会社デンソー 車両用空調ユニット
JP7009967B2 (ja) * 2017-01-24 2022-01-26 株式会社デンソー 車両用空調装置
JP6747469B2 (ja) * 2017-07-25 2020-08-26 株式会社デンソー 車両用空調ユニット
WO2019021707A1 (ja) 2017-07-25 2019-01-31 株式会社デンソー 車両用空調ユニット
JP6760225B2 (ja) * 2017-07-25 2020-09-23 株式会社デンソー 車両用空調ユニット
JP6958222B2 (ja) * 2017-10-20 2021-11-02 株式会社デンソー 車両用空調装置
JP6939700B2 (ja) * 2018-05-17 2021-09-22 株式会社デンソー 車両用空調ユニット
JP6816742B2 (ja) * 2018-05-28 2021-01-20 株式会社デンソー 車両用空調装置
JP2020094105A (ja) 2018-12-11 2020-06-18 株式会社カネカ 有機重合体の製造方法および硬化性組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10458417B2 (en) * 2012-05-28 2019-10-29 Delta Electronics, Inc. Centrifugal fan with axial-flow wind
US9709073B2 (en) * 2012-10-03 2017-07-18 Minebea Co., Ltd. Centrifugal fan
US10118502B2 (en) * 2014-06-11 2018-11-06 Panasonic Intellectual Property Management Co., Ltd. Temperature conditioning unit, temperature conditioning system, and vehicle provided with temperature conditioning unit
CN105546663A (zh) * 2014-10-24 2016-05-04 Lg电子株式会社 空气净化器
US20190270359A1 (en) * 2016-11-23 2019-09-05 Denso Corporation Vehicular air conditioning device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
machine translation of CN-105546663, Yoo et al, published May 4, 2016 (Year: 2016) *

Also Published As

Publication number Publication date
CN115666983A (zh) 2023-01-31
WO2021241565A1 (ja) 2021-12-02
JP7400629B2 (ja) 2023-12-19
JP2021187286A (ja) 2021-12-13
DE112021003030T5 (de) 2023-06-01

Similar Documents

Publication Publication Date Title
JP6319514B2 (ja) 送風機
EP3333431B1 (en) Centrifugal blower, air-conditioning device, and refrigeration cycle device
WO2017221460A1 (ja) 空調装置
JP6384599B2 (ja) 車両用空調装置
JP5297128B2 (ja) 送風装置、車両用空調装置
WO2015115065A1 (ja) 送風機
WO2016174851A1 (ja) 車両用空調装置
WO2015059884A1 (ja) 遠心送風機および空調装置
US20230090312A1 (en) Blower device
JP2018001820A (ja) 送風ユニット
US20060083610A1 (en) Centrifugal blower
US20220252082A1 (en) Centrifugal blower
JP2016196208A (ja) 室内空調ユニットおよび送風機
JP4715857B2 (ja) 車両用空調装置
WO2021106406A1 (ja) 送風機
JP6098504B2 (ja) 車両用空調装置
WO2019220925A1 (ja) 車両用空調ユニット
WO2020105294A1 (ja) 送風機
JP5131075B2 (ja) 空調装置
CN113260524A (zh) 车辆用空调单元
US11988226B2 (en) Centrifugal blower
JP7255448B2 (ja) 送風機
JPWO2018025532A1 (ja) 車両用空調装置
WO2021085086A1 (ja) 送風機
KR20100021712A (ko) 차량용 공조시스템

Legal Events

Date Code Title Description
AS Assignment

Owner name: DENSO CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MAEDA, KENICHIROU;REEL/FRAME:061863/0486

Effective date: 20221026

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER