US20170117335A1 - Method and apparatus for detecting infrared radiation with gain - Google Patents

Method and apparatus for detecting infrared radiation with gain Download PDF

Info

Publication number
US20170117335A1
US20170117335A1 US15/397,656 US201715397656A US2017117335A1 US 20170117335 A1 US20170117335 A1 US 20170117335A1 US 201715397656 A US201715397656 A US 201715397656A US 2017117335 A1 US2017117335 A1 US 2017117335A1
Authority
US
United States
Prior art keywords
layer
electrode
photodetector
ito
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/397,656
Inventor
Franky So
Do Young Kim
Jae Woong Lee
Bhabendra K. Pradhan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Florida Research Foundation Inc
Nanoholdings LLC
Original Assignee
University of Florida Research Foundation Inc
Nanoholdings LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Florida Research Foundation Inc, Nanoholdings LLC filed Critical University of Florida Research Foundation Inc
Priority to US15/397,656 priority Critical patent/US20170117335A1/en
Publication of US20170117335A1 publication Critical patent/US20170117335A1/en
Assigned to UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INCORPORATED reassignment UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SO, FRANKY, KIM, DO YOUNG, LEE, JAE WOONG
Assigned to NANOHOLDINGS, LLC reassignment NANOHOLDINGS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PRADHAN, BHABENDRA K.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • H01L27/3227
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H01L27/288
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022475Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of indium tin oxide [ITO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022491Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of a thin transparent metal layer, e.g. gold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/14Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the light source or sources being controlled by the semiconductor device sensitive to radiation, e.g. image converters, image amplifiers or image storage devices
    • H01L31/141Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the light source or sources being controlled by the semiconductor device sensitive to radiation, e.g. image converters, image amplifiers or image storage devices the semiconductor device sensitive to radiation being without a potential-jump barrier or surface barrier
    • H01L31/143Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the light source or sources being controlled by the semiconductor device sensitive to radiation, e.g. image converters, image amplifiers or image storage devices the semiconductor device sensitive to radiation being without a potential-jump barrier or surface barrier the light source being a semiconductor device with at least one potential-jump barrier or surface barrier, e.g. light emitting diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • H01L31/1808Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System including only Ge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K65/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element and at least one organic radiation-sensitive element, e.g. organic opto-couplers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L2031/0344Organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • IR light is not visible to the human eye, but an IR photodetector can detect IR light.
  • IR photodetectors have a wide range of potential applications, including night vision, range finding, security, and semiconductor wafer inspections.
  • IR can refer to radiation having wavelengths longer than visible light (>0.7 ⁇ m) up to about 14 ⁇ m.
  • Embodiments of the subject invention relate to a photodetector capable of producing gain (i.e., a photodetector with gain).
  • the photodetector can be, for example, an infrared (IR) photodetector. That is, the photodetector can be sensitive to at least a portion of light in the IR region.
  • Embodiments of the subject invention also pertain to an IR-to-visible upconversion device.
  • the IR-to-visible upconversion device can include a photodetector and an organic light-emitting device (OLED).
  • a photodetector with gain can include a first electrode, a light sensitizing layer on the first electrode, an electron blocking/tunneling layer on the light sensitizing layer, and a second electrode on the electron blocking/tunneling layer.
  • a method of fabricating a photodetector with gain can include: forming a first electrode; forming a light sensitizing layer on the first electrode; forming an electron blocking/tunneling layer on the light sensitizing layer; and forming a second electrode on the electron blocking/tunneling layer.
  • an IR-to-visible upconversion device can include a photodetector with gain and an OLED coupled to the photodetector with gain.
  • the photodetector with gain can include a first electrode, a light sensitizing layer on the first electrode, an electron blocking/tunneling layer on the light sensitizing layer, and a second electrode on the electron blocking/tunneling layer.
  • a method of forming an IR-to-visible upconversion device can include: forming a photodetector with gain; forming an OLED; and coupling the OLED to the photodetector with gain.
  • Forming the photodetector with gain can include: forming a first electrode; forming a light sensitizing layer on the first electrode; forming an electron blocking/tunneling layer on the light sensitizing layer; and forming a second electrode on the electron blocking/tunneling layer.
  • FIG. 1A shows an absorption spectrum of PbS nanocrystals which can be used as an IR sensitizing layer according to an embodiment of the subject invention.
  • FIG. 1B shows a schematic perspective view of a photodetector according to an embodiment of the subject invention.
  • FIG. 2A shows a schematic energy band diagram of a photodetector, according to an embodiment of the subject invention, under applied voltage in the dark.
  • FIG. 2B shows a schematic energy band diagram of a photodetector, according to an embodiment of the subject invention, under applied voltage and IR irradiation.
  • FIG. 3A shows a schematic energy band diagram of a photodetector according to an embodiment of the subject invention.
  • FIG. 3B shows current vs. voltage characteristics for a photodetector according to an embodiment of the subject invention under dark and photo (1240 nm infrared illumination) conditions.
  • FIG. 4A shows a plot of gain as a function of applied voltage for a photodetector according to an embodiment of the subject invention.
  • FIG. 5A shows a schematic energy band diagram of an infrared-to-visible upconversion device according to an embodiment of the subject invention.
  • FIG. 5B shows a schematic energy band diagram of an infrared-to-visible upconversion device according to an embodiment of the subject invention.
  • FIG. 5C shows a schematic energy band diagram of an infrared-to-visible upconversion device according to an embodiment of the subject invention.
  • the photodetector is capable of absorbing the light to which it is sensitive and generating a carrier.
  • the term “not sensitive” or “insensitive” is used herein, in conjunction with describing a photodetector not being sensitive or being insensitive to a certain type of light or to photons having a wavelength of a given value or within a given range, it is understood that the photodetector is not able to absorb the light to which it is not sensitive and generate a carrier from the absorption of the light.
  • Embodiments of the subject invention relate to a photodetector capable of producing gain (i.e., a photodetector with gain).
  • the photodetector can be, for example, an infrared (IR) photodetector. That is, the photodetector can be sensitive to at least a portion of light in the IR region. In a specific embodiment, the photodetector is sensitive to at least a portion of the wavelength range from 0.7 ⁇ m to 14 ⁇ m, inclusive or non-inclusive. In certain embodiments, the photodetector can be sensitive to IR light and can be insensitive to visible light.
  • IR infrared
  • a light sensitizing layer of the photodetector can be insensitive to at least a portion of the wavelength range from 0.4 ⁇ m to 0.7 ⁇ m.
  • a light sensitizing layer of the photodetector can be insensitive to the entire wavelength range from 0.4 ⁇ m to 0.7 ⁇ m, inclusive or non-inclusive.
  • a photodetector 10 can include a first electrode 30 , a light sensitizing layer 50 , an electron blocking/tunneling layer 60 , and a second electrode 70 .
  • the photodetector 10 can also optionally include a substrate 20 and/or a hole blocking layer 40 .
  • the substrate 20 can be, for example, a glass substrate.
  • FIG. 1B includes labels of certain materials for the various components, these are intended for demonstrative purposes only and embodiments of the subject invention are not limited thereto.
  • the first electrode 30 can be a cathode, and the second electrode 70 can be an anode. In an alternative embodiment, the first electrode 30 can be an anode, and the second electrode 70 can be a cathode. In certain embodiments, the first electrode 30 and/or the second electrode 70 can be transparent to at least a portion of visible and/or at least a portion of IR light, though embodiments are not limited thereto.
  • the first electrode 30 can include one or more of the following materials: indium tin oxide (ITO), indium zinc oxide (IZO), aluminum tin oxide (ATO), aluminum zinc oxide (AZO), silver, calcium, magnesium, gold, aluminum, carbon nanotubes, silver nanowire, LiF/Al/ITO, Ag/ITO, and CsCO 3 /ITO.
  • the first electrode 30 can be an ITO electrode.
  • the second electrode 70 can include one or more of the following materials: ITO, IZO, ATO, AZO, silver, calcium, magnesium, gold, aluminum, carbon nanotubes, silver nanowire, LiF/Al/ITO, Ag/ITO, and CsCO 3 /ITO.
  • the second electrode 70 can be a silver electrode.
  • the photodetector 10 can be an IR photodetector and the light sensitizing layer 50 can be an IR sensitizing layer. That is, the IR sensitizing layer can be sensitive to at least a portion of light in the IR range.
  • the light sensitizing layer 50 can include, for example, one or more of the following materials: PbS nanocrystals (quantum dots), PbSe nanocrystals (quantum dots), PCTDA, SnPc, SnPc:C60, AlPcCl, AlPcCl60, TiOPc, TiOPc:C60, PbSe, PbS, InAs, InGaAs, Si, Ge, and GaAs.
  • FIG. 1A shows an absorption spectrum for PbS nanocrystals as a light sensitizing layer 50 .
  • the PbS nanocrystal light sensitizing layer shows absorbance in at least a portion of the IR region.
  • the electron blocking/tunneling layer can be a 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC)/MoO 3 stack layer.
  • the TAPC layer can have a thickness of, for example, 0 nm to 100 nm.
  • the MoO 3 layer can have a thickness of, for example, 0 nm to 100 nm.
  • the photodetector can include a hole blocking layer, and the hole blocking layer can include one or more of the following materials: ZnO, naphthalene tetracarboxylic anhydride (NTCDA), 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), p-bis(triphenylsilyl)benzene (UGH2), 4,7-diphenyl-1,10-phenanthroline (BPhen), tris-(8-hydroxy quinoline) aluminum (Alq3), 3,5′-N,N′-dicarbazole-benzene (mCP), C60, tris[3-(3-pyridyl)-mesityl]borane (3TPYMB), and TiO 2 .
  • NTCDA naphthalene tetracarboxylic anhydride
  • BCP 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline
  • BPhen p-bis(tri
  • the photodetector can include a first electrode, light sensitizing layer on the first electrode, an electron blocking/tunneling layer on the light sensitizing layer, and a second electrode on the electron blocking/tunneling layer.
  • the electron blocking/tunneling layer can be, for example, a TAPC/MoO 3 stack layer, and the TAPC/MoO 3 stack layer can be positioned such that the TAPC layer is in direct contact with the light sensitizing layer and the MoO 3 layer is in direct contact with the second electrode.
  • the light sensitizing layer can be, for example, an IR sensitizing layer and can include, e.g., PbS quantum dots.
  • the photodetector can include a hole blocking layer on the first electrode and under the light sensitizing layer.
  • FIGS. 2A and 2B demonstrate the operating principle of a photodetector according to an embodiment of the subject invention.
  • a bias is applied in the dark (i.e., no visible and/or IR light)
  • holes are blocked from the first electrode due to hole blocking layer
  • electrons are blocked from second electrode due to the electron blocking layer.
  • the photodetector is irradiated with light (e.g., IR light)
  • the light sensitizing layer e.g., an IR sensitizing layer
  • the electrons flow to the first electrode due to the applied bias.
  • the holes are accumulated in bulk trap sites of the electron blocking/tunneling layer, and the accumulated holes reduce the barrier width of the electron blocking/tunneling layer.
  • the electron tunneling from the second electrode to the light sensitizing layer is enhanced significantly, thus producing gain.
  • FIG. 3A shows a schematic band diagram of a photodetector according to an embodiment of subject invention
  • FIG. 3B shows the dark and photo current density-voltage (J-V) characteristics for a photodetector according to an embodiment of the subject invention.
  • FIG. 4A shows a plot of the gain versus the applied voltage for a photodetector according to the subject invention
  • FIG. 4B shows a plot of the detectivity versus the applied voltage for a photodetector according to an embodiment of the subject invention.
  • a very high gain can be seen, including a gain of more than 150 at an applied bias of ⁇ 20 V.
  • the detectivity is saturated to more than 5 ⁇ 10 12 Jones at values of the applied voltage of less than ⁇ 18 V.
  • a photodetector exhibits gain at applied bias (i.e., it is a photodetector with gain).
  • the photodetector can exhibit a gain of, for example, about 150 at an applied bias of ⁇ 20 V.
  • the photodetector can exhibit a gain any of the following values or ranges: 2, about 2, at least 2, 3, about 3, at least 3, . . . , 160, about 160, at least 160 (where the “. . .
  • represents each number between 3 and 160, “about” each number between 3 and 160, and “at least” each number between 3 and 160), or any range having a first endpoint of any number from 2 to 159 and a second endpoint of any number from 3 to 160.
  • the gain values and ranges of the preceding sentence can be exhibited at any applied voltage value from ⁇ 30 V to 30 V.
  • the IR-to-visible upconversion device 500 can include a photodetector 10 and a light-emitting device (LED) 200 .
  • the LED 200 can be an organic LED (OLED).
  • the IR-to-visible upconversion device 500 can be an IR-to-visible upconversion device with gain, and the photodetector 10 can be a photodetector with gain.
  • the IR-to-visible upconversion device can include a photodetector with gain, as illustrated in FIGS.
  • the OLED 200 can include at least one electrode, a hole transporting layer (HTL), a light emitting layer (LEL), and an electron transporting layer (ETL).
  • HTL hole transporting layer
  • LEL light emitting layer
  • ETL electron transporting layer
  • At least one electrode of the OLED 200 can be transparent to at least a portion of visible light and/or at least a portion of IR light, though embodiments are not limited thereto.
  • Each electrode of the OLED 200 can include one or more of the following materials: ITO, 1 ZO, ATO, AZO, silver, calcium, magnesium, gold, aluminum, carbon nanotubes, silver nanowire, LiF/Al/ITO, Ag/ITO, CsCO 3 /ITO, and a Mg:Ag/Alq3 stack layer, though embodiments are not limited thereto.
  • the HTL of the OLED 200 can include one or more of the following materials: NPD, TAPC, TFB, TPD, and diamine derivative, though embodiments are not limited thereto.
  • the LEL of the OLED 200 can include one or more of the following materials: Iridium tris(2-phenylpyidine) (Ir(ppy)3), [2-methoxy-5-(2-ethylhexyloxy)-p-phenylenevinylene] (MEH-PPV), Tris-(8-quinolinolato) aluminum) (Alq3), and bis[(4,6-di-fluorophenyl)-pyridinate-]picolinate (Flrpic), though embodiments are not limited thereto.
  • the ETL of the OLED 200 can include one or more of the following materials: BCP, Bphen, 3TPYMB, and Alq3, though embodiments are not limited thereto.
  • the electrode of the OLED 200 is a Mg:Ag/Alq3 stack layer.
  • the Mg:Ag layer of the Mg:Ag/Alq3 stack layer can have a composition of, for example, Mg:Ag (10:1) and can have a thickness of, for example, less than 30 nm.
  • the Alq3 layer of the Mg:Ag/Alq3 stack layer can have a thickness of, for example, from 0 nm to 200 nm.
  • the photodetector 10 can be a photodetector with gain as described herein, though only one electrode need be present. That is, the photodetector 10 can include at least one electrode, a light sensitizing layer, and an electron blocking/tunneling layer. The photodetector 10 can also optionally include a substrate and/or a hole blocking layer.
  • the electrode can include one or more of the following materials: ITO, IZO, ATO, AZO, silver, calcium, magnesium, gold, aluminum, carbon nanotubes, silver nanowire, LiF/Al/ITO, Ag/ITO, and CsCO 3 /ITO.
  • the photodetector 10 can be an IR photodetector and the light sensitizing layer can be an IR sensitizing layer.
  • the light sensitizing layer can include, for example, one or more of the following materials: PbS nanocrystals (quantum dots), PbSe nanocrystals (quantum dots), PCTDA, SnPc, SnPc:C60, AlPcCl, AlPcCl:C60, TiOPc, TiOPc:C60, PbSe, PbS, InAs, InGaAs, Si, Ge, and GaAs.
  • the electron blocking/tunneling layer can be a TAPC/MoO 3 stack layer.
  • the TAPC layer can have a thickness of, for example, 0 nm to 100 nm.
  • the MoO 1 layer can have a thickness of, for example, 0 nm to 100 nm.
  • the photodetector can include a hole blocking layer, and the hole blocking layer can include one or more of the following materials: ZnO, NTCDA, BCP, UGH2, BPhen, Alq3, mCP, 3TPYMB, and TiO 2 .
  • the IR-to-visible upconversion device 500 can also include an interconnecting part 100 between the photodetector 10 and the OLED 200 .
  • the interconnecting part 100 can be positioned such that the electron blocking/tunneling layer of the photodetector 10 is closer than the light sensitizing layer is to the interconnecting part 100 , and the HTL of the OLED 200 is closer than the ETL is to the interconnecting part 100 .
  • the photodetector 10 can include an electrode under the light sensitizing layer, and that electrode can be an anode.
  • the OLED 200 can include an electrode on the ETL, and that electrode can be a cathode.
  • the interconnecting part 100 can include an HBL 110 and an EBL 120 .
  • the lowest unoccupied molecular orbital (LUMO) of the HBT, 110 of the interconnecting part 100 can be close to the highest occupied molecular orbital (HOMO) of the EBL 120 of the interconnecting part 100 .
  • LUMO unoccupied molecular orbital
  • HOMO highest occupied molecular orbital
  • the LUMO of the HBL 110 of the interconnecting part 100 and the HOMO of the EBL 120 of the interconnecting part 100 can be no more than 1 eV apart.
  • the LUMO of the HBL 110 of the interconnecting part 100 and the HOMO of the EBL 120 of the interconnecting part 100 can be no more than 0.5 eV apart. That is, the energy difference between the HOMO of the EBL 120 of the interconnecting part 100 and the LUMO of the HBL 110 of the interconnecting part 100 can be 0.5 eV or less.
  • the interconnecting part 100 can be positioned within the IR-to-visible upconversion device 500 such that the HBL 120 of the interconnecting part 100 can be adjacent to the photodetector 10 and the EBL 120 of the interconnecting part 100 can be adjacent to the OLED 200 .
  • the photodetector 10 can include a second electrode 70 on its EBL/tunneling layer, and the HBL 120 of the interconnecting part 100 can be in direct contact with the second electrode 70 of the photodetector 10 .
  • the second electrode 70 of the photodetector 10 can be a cathode.
  • the second electrode 70 of the photodetector 10 can include one or more of the following materials: ITO, IZO, ATO, AZO, silver, calcium, magnesium, gold, aluminum, carbon nanotubes, silver nanowire, LT/Al/ITO, Ag/ITO, and CsCO 3 /ITO.
  • the second electrode 70 of the photodetector 10 can be a silver electrode.
  • the interconnecting part 100 in FIG. 5A does not necessarily include any additional components beyond the HBL 110 and the EBL 120 .
  • additional components may be present (e.g., one or more electrodes or substrates).
  • the IR-to-visible upconversion device 500 does not include an interconnecting part 100 , and the photodetector 10 is positioned directly adjacent to the OLED 200 .
  • the OLED 200 can be positioned such that the ETL of the OLED 200 is closer to the light sensitizing layer of the photodetector 10 than it is to the electron blocking/tunneling layer of the photodetector 10 .
  • the photodetector can include a hole blocking layer adjacent to the light sensitizing layer, and the ETL of the OLED 200 can be positioned adjacent to and in contact with the hole blocking layer of the photodetector 10 .
  • the photodetector 10 can include an electrode adjacent to and in contact with the electron blocking/tunneling layer, and the OLED 200 can include an electrode adjacent to and in contact with the HTL.
  • the electrode of the photodetector 10 can be, for example, a cathode, and the electrode of the OLED 200 can be, for example, an anode.
  • a substrate (not shown) can also be present.
  • the IR-to-visible upconversion device 500 can be flipped or turned around and still function properly.
  • the substrate can be adjacent to the anode in FIG. 5B and adjacent to the cathode in FIG. 5C , such that FIG. 5B shows a similar configuration to that of FIG. 5C but with the IR-to-visible upconversion device 500 turned around on the substrate.
  • the substrate can be adjacent to the anode or the cathode.
  • an IR-to-visible upconversion device 500 can include an interconnecting part 100 (as shown in FIG. 5A ), and the substrate can be adjacent to the anode.
  • IR light can be incident on the IR-to-visible upconversion device 500 from any direction, and visible light can be emitted from the IR-to-visible upconversion device 500 in any direction.
  • the OLED 200 can be transparent to at least a portion of light in the IR spectrum, though embodiments are not limited thereto.
  • the photodetector 10 can be transparent to at least a portion of light in the visible spectrum, though embodiments are not limited thereto.
  • the IR-to-visible upconversion device 500 functions by emitting visible light from the OLED 200 when the photodetector 10 absorbs IR light. That is, the light sensitizing layer (e.g., an IR sensitizing layer) of the photodetector 10 absorbs IR light, causing carriers to flow. The carriers flow to the OLED 200 , either directly or via an interconnecting part 100 , causing the LEL of the OLED 200 to emit visible light.
  • the IR-to-visible upconversion device 500 can include a photodetector 10 with gain and can advantageously exhibit gain.
  • Embodiments of the subject invention also relate to methods of fabricating a photodetector with gain.
  • the photodetector can be, for example, an IR photodetector.
  • a method of fabricating a photodetector with gain can include: forming a light sensitizing layer on a first electrode, forming an electron blocking/tunneling layer on the light sensitizing layer, and forming a second electrode on the electron blocking/tunneling layer.
  • the method can also optionally include forming the first electrode on a substrate and/or forming a hole blocking layer on the first electrode such that the light sensitizing layer is formed on the hole blocking layer.
  • the substrate can be, for example, a glass substrate.
  • the first electrode can be a cathode, and the second electrode can be an anode. In an alternative embodiment, the first electrode can be an anode, and the second electrode can be a cathode. In certain embodiments, the first electrode and/or the second electrode can be transparent to at least a portion of visible and/or at least a portion of IR light, though embodiments are not limited thereto.
  • the first electrode can include one or more of the following materials: indium tin oxide (ITO), indium zinc oxide (IZO), aluminum tin oxide (ATO), aluminum zinc oxide (AZO), silver, calcium, magnesium. gold, aluminum, carbon nanotubes, silver nanowire, LiF/Al/ITO, Ag/ITO, and CsCO 3 /ITO.
  • the second electrode can include one or more of the following materials: ITO, IZO, ATO, AZO, silver, calcium, magnesium, gold, aluminum, carbon nanotubes, silver nanowire, LiF/Al/ITO, Ag/ITO, and CsCO 3 /ITO.
  • the photodetector can be an IR photodetector and the light sensitizing layer can be an IR sensitizing layer.
  • the light sensitizing layer can include, for example, one or more of the following materials: PbS nanocrystals (quantum dots), PbSe nanocrystals (quantum dots), PCTDA, SnPc, SnYc:C60, AlNCl, AlPcCl:C60, TiOPc, TiOPc:C60, PbSe, PbS, InAs, InGaAs, Si, Ge, and GaAs.
  • the electron blocking/tunneling layer can be a TAPC/MoO 3 stack layer.
  • the TAPC layer can be formed to a thickness of, for example, 0 nm to 100 nm.
  • the MoO 3 layer can be formed to a thickness of, for example, 0 nm to 100 nm.
  • the method can include forming a hole blocking layer, and the hole blocking layer can include one or more of the following materials: ZnO, NTCDA, BCP, UGH2, BPhen, Alq3, 3mCP, 3TPYMB, and TiO 2 .
  • the method of fabricating a photodetector can include: forming a light sensitizing layer on a first electrode, forming an electron blocking/tunneling layer on the light sensitizing layer, and forming a second electrode on the electron blocking/tunneling layer.
  • the electron blocking/tunneling layer can be, for example, a TAPC/MoO 3 stack layer, and the TAPC/MoO 3 stack layer can be formed such that the TAPC layer is formed directly on and in contact with the light sensitizing layer and the MoO 3 layer is formed directly on and in contact with the TAPC layer.
  • the second electrode can then be formed directly on and in contact with the MoO 3 layer of the TAPC/MoO 3 stack layer.
  • the light sensitizing layer can be, for example, an IR sensitizing layer and can include, e.g., PbS quantum dots.
  • the method can include forming a hole blocking layer on the first electrode such that the light sensitizing layer is formed directly on and in contact with the hole blocking layer.
  • Embodiments of the subject invention also relate to methods of detecting radiation using a photodetector with gain.
  • the photodetector can be, for example, an IR photodetector such that the method can detect IR radiation.
  • a method of using a photodetector with gain to detect radiation can include: providing a photodetector with gain, wherein the photodetector includes a first electrode, a light sensitizing layer, an electron blocking/tunneling layer, and a second electrode.
  • the photodetector can also optionally include a substrate and/or a hole blocking layer.
  • the substrate can be, for example, a glass substrate.
  • the first electrode can be a cathode, and the second electrode can be an anode. In an alternative embodiment, the first electrode can be an anode, and the second electrode can be a cathode. In certain embodiments, the first electrode and/or the second electrode can be a transparent electrode.
  • the first electrode can include one or more of the following materials: indium tin oxide (ITO), indium zinc oxide (IZO), aluminum tin oxide (ATO), aluminum zinc oxide (AZO), silver, calcium, magnesium, gold, aluminum, carbon nanotubes, silver nanowire, LiF/Al/ITO, Ag/ITO, and CsCO 3 /ITO.
  • the second electrode can include one or more of the following materials: ITO, IZO, ATO, AZO, silver, calcium, magnesium, gold, aluminum, carbon nanotubes, silver nanowire, LiF/Al/ITO, Ag/ITO, and CsCO 3 /ITO.
  • the photodetector can be an IR photodetector and the light sensitizing layer can be an IR sensitizing layer.
  • the light sensitizing layer can include, for example, one or more of the following materials: PbS nanocrystals (quantum dots), PbSe nanocrystals (quantum dots), PCTDA, SnPc, SnPc:C60, AlPcCl, AlPcCl:C60, TiOPc, TiOPc:C60, PbSe, PbS, InAs, InGaAs, Si, Ge, and GaAs.
  • the electron blocking/tunneling layer can be a TAPC/MoO 3 stack layer.
  • the TAPC layer can be formed to a thickness of, for example, 0 nm to 100 nm.
  • the MoO 3 layer can be formed to a thickness of, for example, 0 nm to 100 nm.
  • the photodetector can include a hole blocking layer, and the hole blocking layer can include one or more of the following materials: ZnO, NTCDA, BCP, UGH2, BPhen, Alq3, 3mCP, 3TPYMB, and TiO 2 .
  • the photodetector can include: a light sensitizing layer on a first electrode, an electron blocking/tunneling layer on the light sensitizing layer, and a second electrode on the electron blocking/tunneling layer.
  • the electron blocking/tunneling layer can be, for example, a TAPC/MoO 3 stack layer, and the TAPC/MoO 3 stack layer can be positioned such that the TAPC layer is directly on and in contact with the light sensitizing layer and the MoO 3 layer is directly on and in contact with the TAPC layer.
  • the second electrode can then be directly on and in contact with the MoO 3 layer of the TAPC/MoO 3 stack layer.
  • the light sensitizing layer can be, for example, an IR sensitizing layer and can include, e.g., PbS quantum dots.
  • the photodetector can include a hole blocking layer on the first electrode and under the light sensitizing layer.
  • Embodiments of the subject invention also relate to methods of forming an IR-to-visible upconversion device.
  • the IR-to-visible upconversion device can be an IR-to-visible upconversion device with gain
  • the photodetector can be a photodetector with gain.
  • a method of fabricating an IR-to-visible upconversion device can include: forming a photodetector with gain; forming an LED; and coupling the LED and the photodetector with gain.
  • the LED can be an OLED.
  • Forming the OLED can include: forming at least one electrode, forming a hole transporting layer (HTL), forming a light emitting layer (LEL), and forming an electron transporting layer (ETL).
  • HTL hole transporting layer
  • LEL light emitting layer
  • ETL electron transporting layer
  • At least one electrode of the OLED can be transparent to at least a portion of visible and/or at least a portion of IR light, though embodiments are not limited thereto.
  • Each electrode of the OLED can include one or more of the following materials: ITO, IZO, ATO, AZO, silver, calcium, magnesium, gold, aluminum, carbon nanotubes, silver nanowire, LiF/Al/ITO, Ag/ITO, CsCO 3 /ITO, and a Mg:Ag/Alq3 stack layer, though embodiments are not limited thereto.
  • the HTL of the OLED can include one or more of the following materials: NPD, TAPC, TFB, TPD, and diamine derivative, though embodiments are not limited thereto.
  • the LEL of the OLED can include one or more of the following materials: Ir(ppy)3, MEH-PPV, Alq3, and Flrpic, though embodiments are not limited thereto.
  • the ETL of the OLED can include one or more of the following materials: BCP, Bphen, 3TPYMB, and Alq3, though embodiments are not limited thereto.
  • the electrode of the OLED is a Mg:Ag/Alq3 stack layer.
  • the Mg:Ag layer of the Mg:Ag/Alq3 stack layer can have a composition of, for example, Mg:Ag (10:1) and can be formed to a thickness of, for example, less than 30 nm.
  • the Alq3 layer of the Mg:Ag/Alq3 stack layer can be formed to a thickness of, for example, from 0 nm to 200 nm.
  • the photodetector can be a photodetector with gain and can be formed as described herein, though only one electrode need be formed. That is, forming the photodetector can include forming at least one electrode, forming a light sensitizing layer, and forming an electron blocking/tunneling layer. Forming the photodetector can also optionally include proving a substrate and/or forming a hole blocking layer.
  • the electrode can be formed of one or more of the following materials: ITO. IZO, ATO, AZO, silver, calcium, magnesium, gold, aluminum, carbon nanotubes, silver nanowire, LiF/Al/ITO, Ag/ITO, and CsCO 3 /ITO.
  • the photodetector can be an IR photodetector and the light sensitizing layer can be an IR sensitizing layer.
  • the light sensitizing layer can be formed of, for example, one or more of the following materials: PbS nanocrystals (quantum dots), PbSe nanocrystals (quantum dots), PCTDA, SnPc, SnPc:C60, AlPcCl, AlPcCl:C60, TiOPc, TiOPc:C60, PbSe, PbS, InAs, InGaAs, Si, Ge, and GaAs.
  • the electron blocking/tunneling layer can be a TAPC/MoO 3 stack layer.
  • the TAPC layer can be formed to a thickness of, for example, 0 nm to 100 nm.
  • the MoO 3 layer can be formed to a thickness of, for example, 0 nm to 100 nm.
  • forming the photodetector can include forming a hole blocking layer, and the hole blocking layer can include one or more of the following materials: ZnO, NTCDA, BCP, UGH2, BPhen, Alq3, mCP, 3TPYMB, and TiO 2 .
  • coupling the photodetector with gain to the OLED can include coupling the photodetector with gain to an interconnecting part and coupling the OLED to the interconnecting part.
  • the photodetector can be coupled to the interconnecting part such that the electron blocking/tunneling layer of the photodetector is closer than the light sensitizing layer is to the interconnecting part.
  • the OLED can be coupled to the interconnecting part such that the HTL of the OLED is closer than the ETL is to the interconnecting part.
  • the photodetector can include an electrode under the light sensitizing layer, and that electrode can be an anode.
  • the OLED can include an electrode on the ETL, and that electrode can be a cathode.
  • coupling the photodetector with gain to the OLED can include coupling the photodetector with gain directly to the OLED.
  • the photodetector with gain can be coupled to the OLED such that the ETL of the OLED is closer to the light sensitizing layer of the photodetector than it is to the electron blocking/tunneling layer of the photodetector.
  • the photodetector can include a hole blocking layer adjacent to the light sensitizing layer, and the photodetector with gain can be coupled to the OLED such that the ETL of the OLED is adjacent to and in contact with the hole blocking layer of the photodetector.
  • the photodetector can include an electrode adjacent to and in contact with the electron blocking/tunneling layer, and the OLED can include an electrode adjacent to and in contact with the HTL.
  • the electrode of the photodetector can be, for example, a cathode, and the electrode of the OLED can be, for example, an anode.
  • Embodiments of the subject invention also relate to methods of upconverting IR radiation to visible radiation using an IR-to-visible upconversion device.
  • the IR-to-visible upconversion device can include a photodetector and an LED.
  • the LED can be an OLED.
  • the IR-to-visible upconversion device can be an IR-to-visible upconversion device with gain, and the photodetector can be a photodetector with gain.
  • the OLED can include at least one electrode, a hole transporting layer (HTL), a light emitting layer (LEL), and an electron transporting layer (ETL).
  • HTL hole transporting layer
  • LEL light emitting layer
  • ETL electron transporting layer
  • At least one electrode of the OLED can be transparent to at least a portion of visible and/or at least a portion of IR light, though embodiments are not limited thereto.
  • Each electrode of the OLED can include one or more of the following materials: ITO, IZO, ATO, AZO, silver, calcium, magnesium, gold, aluminum, carbon nanotubes, silver nanowire, LiF/Al/ITO, Ag/ITO, CsCO 3 /ITO, and a Mg:Ag/Alq3 stack layer, though embodiments are not limited thereto.
  • the HTL of the OLED can include one or more of the following materials: NPD, TAPC, TFB, TPD, and diamine derivative, though embodiments are not limited thereto,
  • the LEL of the OLED can include one or more of the following materials: Ir(ppy)3, MEH-PPV, Alq3, and Flrpic, though embodiments are not limited thereto.
  • the ETL of the OLED can include one or more of the following materials: BCP, Bphen, 3TPYMB, and Alq3, though embodiments are not limited thereto.
  • the electrode of the OLED is a Mg:Ag/Alq3 stack layer.
  • the Mg:Ag layer of the Mg:Ag/Alq3 stack layer can have a composition of, for example, Mg:Ag (10:1) and can have a thickness of, for example, less than 30 nm.
  • the Alq3 layer of the Mg:Ag/Alq3 stack layer can have a thickness of, for example, from 0 nm to 200 nm.
  • the photodetector can be a photodetector with gain as described herein, though only one electrode need be present. That is, the photodetector can include at least one electrode, a light sensitizing layer, and an electron blocking/tunneling layer. The photodetector can also optionally include a substrate and/or a hole blocking layer.
  • the electrode can include one or more of the following materials: ITO, IZO, ATO, AZO, silver, calcium, magnesium, gold, aluminum, carbon nanotubes, silver nanowire, LiF/Al/ITO, Ag/ITO, and CsCO 3 /ITO.
  • the photodetector can be an IR photodetector and the light sensitizing layer can be an IR sensitizing layer.
  • the light sensitizing layer can include, for example, one or more of the following materials: PbS nanocrystals (quantum dots), PbSe nanocrystals (quantum dots), PCTDA, SnPc, SnPc:C60, AlPcCl, AlPcCl:C60, TiOPc, TiOPc:C60, PbSe, PbS, InAs, InGaAs, Si, Ge, and GaAs.
  • the electron blocking/tunneling layer can be a TAPC/MoO 3 stack layer.
  • the TAPC layer can have a thickness of, for example, 0 nm to 100 nm.
  • the MoO 3 layer can have a thickness of, for example, 0 nm to 100 nm.
  • the photodetector can include a hole blocking layer, and the hole blocking layer can include one or more of the following materials: ZnO, NTCDA, BCP, UGH2, BPhen, Alq3, mCP, 3TPYMB, and TiO 2 .
  • the IR-to-visible upconversion device can also include an interconnecting part between the photodetector and the OLED.
  • the interconnecting part can be positioned such that the electron blocking/tunneling layer of the photodetector is closer than the light sensitizing layer is to the interconnecting part, and the HTL of the OLED is closer than the ETL is to the interconnecting part.
  • the photodetector can include an electrode under the light sensitizing layer, and that electrode can be an anode.
  • the OLED can include an electrode on the ETL, and that electrode can be a cathode.
  • the IR-to-visible upconversion device does not include an interconnecting part, and the photodetector is positioned directly adjacent to the OLED.
  • the OLED can be positioned such that the ETL of the OLED is closer to the light sensitizing layer of the photodetector than it is to the electron blocking/tunneling layer, of the photodetector.
  • the photodetector can include a hole blocking layer adjacent to the light sensitizing layer, and the ETL of the OLED can be positioned adjacent to and in contact with the hole blocking layer of the photodetector.
  • the photodetector can include an electrode adjacent to and in contact with the electron blocking/tunneling layer, and the OLED can include an electrode adjacent to and in contact with the HTL.
  • the electrode of the photodetector can be, for example, a cathode, and the electrode of the OLED can be, for example, an anode.
  • the IR-to-visible upconversion device can be flipped or turned around and still function properly.
  • the OLED can be transparent to at least a portion of light in the IR spectrum, though embodiments are not limited thereto.
  • the photodetector can be transparent to at least a portion of light in the visible spectrum, though embodiments are not limited thereto.
  • the IR-to-visible upconversion device upconverts IR light to visible light.
  • the IR-to-visible upconversion emits visible light from the OLED when the photodetector absorbs IR light. That is, the light sensitizing layer (e.g., an IR sensitizing layer) of the photodetector absorbs IR light, causing carriers to flow. The carriers flow to the OLED, either directly or via an interconnecting part, causing the LEL of the OLED to emit visible light.
  • the IR-to-visible upconversion device can include a photodetector with gain and can advantageously exhibit gain.
  • a photodetector was fabricated on a glass substrate.
  • the photodetector included an ITO first electrode, a ZnO hole blocking layer on the first electrode, a PbS quantum dot light sensitizing layer on the hole blocking layer, a TAPC/MoO 3 stack electron blocking/tunneling layer on the light sensitizing layer, and a second electrode on the electron blocking/tunneling layer.
  • the PbS quantum dot light sensitizing layer had the absorbance spectrum shown in FIG. 1A .
  • the photodetector displayed the J-V characteristic curves (for dark and IR illumination at 1240 nm and 0.302 W/cm 2 ) shown in FIG. 3B . Additionally, the photodetector exhibited the gain and detectivity, as functions of applied voltage, shown in FIGS. 4A and 4B , respectively.

Abstract

Photodetectors, methods of fabricating the same, and methods using the same to detect radiation are described. A photodetector can include a first electrode, a light sensitizing layer, an electron blocking/tunnelling layer, and a second electrode. Infrared-to-visible upconversion devices, methods of fabricating the same, and methods using the same to detect radiation are also described. An Infrared-to-visible upconversion device can include a photodetector and an OLDE coupled to the photodetector.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • The present application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/503,317, filed Jun. 30, 2011, the disclosure of which is hereby incorporated by reference in its entirety, including any figures, tables, or drawings.
  • BACKGROUND OF INVENTION
  • Infrared (IR) light is not visible to the human eye, but an IR photodetector can detect IR light. IR photodetectors have a wide range of potential applications, including night vision, range finding, security, and semiconductor wafer inspections. IR can refer to radiation having wavelengths longer than visible light (>0.7 μm) up to about 14 μm.
  • BRIEF SUMMARY
  • Embodiments of the subject invention relate to a photodetector capable of producing gain (i.e., a photodetector with gain). The photodetector can be, for example, an infrared (IR) photodetector. That is, the photodetector can be sensitive to at least a portion of light in the IR region. Embodiments of the subject invention also pertain to an IR-to-visible upconversion device. The IR-to-visible upconversion device can include a photodetector and an organic light-emitting device (OLED).
  • In an embodiment, a photodetector with gain can include a first electrode, a light sensitizing layer on the first electrode, an electron blocking/tunneling layer on the light sensitizing layer, and a second electrode on the electron blocking/tunneling layer.
  • In another embodiment, a method of fabricating a photodetector with gain can include: forming a first electrode; forming a light sensitizing layer on the first electrode; forming an electron blocking/tunneling layer on the light sensitizing layer; and forming a second electrode on the electron blocking/tunneling layer.
  • In another embodiment, an IR-to-visible upconversion device can include a photodetector with gain and an OLED coupled to the photodetector with gain. The photodetector with gain can include a first electrode, a light sensitizing layer on the first electrode, an electron blocking/tunneling layer on the light sensitizing layer, and a second electrode on the electron blocking/tunneling layer.
  • In another embodiment, a method of forming an IR-to-visible upconversion device can include: forming a photodetector with gain; forming an OLED; and coupling the OLED to the photodetector with gain. Forming the photodetector with gain can include: forming a first electrode; forming a light sensitizing layer on the first electrode; forming an electron blocking/tunneling layer on the light sensitizing layer; and forming a second electrode on the electron blocking/tunneling layer.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1A shows an absorption spectrum of PbS nanocrystals which can be used as an IR sensitizing layer according to an embodiment of the subject invention.
  • FIG. 1B shows a schematic perspective view of a photodetector according to an embodiment of the subject invention.
  • FIG. 2A shows a schematic energy band diagram of a photodetector, according to an embodiment of the subject invention, under applied voltage in the dark.
  • FIG. 2B shows a schematic energy band diagram of a photodetector, according to an embodiment of the subject invention, under applied voltage and IR irradiation.
  • FIG. 3A shows a schematic energy band diagram of a photodetector according to an embodiment of the subject invention.
  • FIG. 3B shows current vs. voltage characteristics for a photodetector according to an embodiment of the subject invention under dark and photo (1240 nm infrared illumination) conditions.
  • FIG. 4A shows a plot of gain as a function of applied voltage for a photodetector according to an embodiment of the subject invention.
  • FIG. 4B shows a plot of detectivity as a function of applied voltage on a photodetector according to an embodiment of the subject invention.
  • FIG. 5A shows a schematic energy band diagram of an infrared-to-visible upconversion device according to an embodiment of the subject invention.
  • FIG. 5B shows a schematic energy band diagram of an infrared-to-visible upconversion device according to an embodiment of the subject invention.
  • FIG. 5C shows a schematic energy band diagram of an infrared-to-visible upconversion device according to an embodiment of the subject invention.
  • DETAILED DISCLOSURE
  • When the terms “on” or “over” are used herein, when referring to layers, regions, patterns, or structures, it is understood that the layer, region, pattern or structure can be directly on another layer or structure, or intervening layers, regions, patterns, or structures may also be present. When the terms “under” or “below” are used herein, when referring to layers, regions, patterns, or structures, it is understood that the layer, region, pattern or structure can be directly under the other layer or structure, or intervening layers, regions, patterns, or structures may also be present. When the term “directly on” is used herein, when referring to layers, regions, patterns, or structures, it is understood that the layer, region, pattern or structure is directly on another layer or structure, such that no intervening layers, regions, patterns, or structures are present.
  • When the term “about” is used herein, in conjunction with a numerical value, it is understood that the value can be in a range of 95% of the value to 105% of the value, i.e. the value can be +/−5% of the stated value. For example, “about 1 kg” means from 0.95 kg to 1.05 kg.
  • When the term “sensitive” is used herein, in conjunction with describing a photodetector being sensitive to a certain type of light or to photons having a wavelength of a given value or within a given range, it is understood that the photodetector is capable of absorbing the light to which it is sensitive and generating a carrier. When the term “not sensitive” or “insensitive” is used herein, in conjunction with describing a photodetector not being sensitive or being insensitive to a certain type of light or to photons having a wavelength of a given value or within a given range, it is understood that the photodetector is not able to absorb the light to which it is not sensitive and generate a carrier from the absorption of the light.
  • Embodiments of the subject invention relate to a photodetector capable of producing gain (i.e., a photodetector with gain). The photodetector can be, for example, an infrared (IR) photodetector. That is, the photodetector can be sensitive to at least a portion of light in the IR region. In a specific embodiment, the photodetector is sensitive to at least a portion of the wavelength range from 0.7 μm to 14 μm, inclusive or non-inclusive. In certain embodiments, the photodetector can be sensitive to IR light and can be insensitive to visible light. For example, a light sensitizing layer of the photodetector can be insensitive to at least a portion of the wavelength range from 0.4 μm to 0.7 μm. In an embodiment, a light sensitizing layer of the photodetector can be insensitive to the entire wavelength range from 0.4 μm to 0.7 μm, inclusive or non-inclusive.
  • Referring to FIG. 1B, in an embodiment, a photodetector 10 can include a first electrode 30, a light sensitizing layer 50, an electron blocking/tunneling layer 60, and a second electrode 70. The photodetector 10 can also optionally include a substrate 20 and/or a hole blocking layer 40. The substrate 20 can be, for example, a glass substrate. Though FIG. 1B includes labels of certain materials for the various components, these are intended for demonstrative purposes only and embodiments of the subject invention are not limited thereto.
  • The first electrode 30 can be a cathode, and the second electrode 70 can be an anode. In an alternative embodiment, the first electrode 30 can be an anode, and the second electrode 70 can be a cathode. In certain embodiments, the first electrode 30 and/or the second electrode 70 can be transparent to at least a portion of visible and/or at least a portion of IR light, though embodiments are not limited thereto.
  • The first electrode 30 can include one or more of the following materials: indium tin oxide (ITO), indium zinc oxide (IZO), aluminum tin oxide (ATO), aluminum zinc oxide (AZO), silver, calcium, magnesium, gold, aluminum, carbon nanotubes, silver nanowire, LiF/Al/ITO, Ag/ITO, and CsCO3/ITO. In a particular embodiment, the first electrode 30 can be an ITO electrode. The second electrode 70 can include one or more of the following materials: ITO, IZO, ATO, AZO, silver, calcium, magnesium, gold, aluminum, carbon nanotubes, silver nanowire, LiF/Al/ITO, Ag/ITO, and CsCO3/ITO. In a particular embodiment, the second electrode 70 can be a silver electrode.
  • In certain embodiments, the photodetector 10 can be an IR photodetector and the light sensitizing layer 50 can be an IR sensitizing layer. That is, the IR sensitizing layer can be sensitive to at least a portion of light in the IR range. The light sensitizing layer 50 can include, for example, one or more of the following materials: PbS nanocrystals (quantum dots), PbSe nanocrystals (quantum dots), PCTDA, SnPc, SnPc:C60, AlPcCl, AlPcCl60, TiOPc, TiOPc:C60, PbSe, PbS, InAs, InGaAs, Si, Ge, and GaAs.
  • FIG. 1A shows an absorption spectrum for PbS nanocrystals as a light sensitizing layer 50. Referring to FIG. 1A, the PbS nanocrystal light sensitizing layer shows absorbance in at least a portion of the IR region.
  • In an embodiment, the electron blocking/tunneling layer can be a 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC)/MoO3 stack layer. The TAPC layer can have a thickness of, for example, 0 nm to 100 nm. The MoO3 layer can have a thickness of, for example, 0 nm to 100 nm.
  • In an embodiment, the photodetector can include a hole blocking layer, and the hole blocking layer can include one or more of the following materials: ZnO, naphthalene tetracarboxylic anhydride (NTCDA), 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), p-bis(triphenylsilyl)benzene (UGH2), 4,7-diphenyl-1,10-phenanthroline (BPhen), tris-(8-hydroxy quinoline) aluminum (Alq3), 3,5′-N,N′-dicarbazole-benzene (mCP), C60, tris[3-(3-pyridyl)-mesityl]borane (3TPYMB), and TiO2.
  • In an exemplary embodiment, the photodetector can include a first electrode, light sensitizing layer on the first electrode, an electron blocking/tunneling layer on the light sensitizing layer, and a second electrode on the electron blocking/tunneling layer. The electron blocking/tunneling layer can be, for example, a TAPC/MoO3 stack layer, and the TAPC/MoO3 stack layer can be positioned such that the TAPC layer is in direct contact with the light sensitizing layer and the MoO3 layer is in direct contact with the second electrode. The light sensitizing layer can be, for example, an IR sensitizing layer and can include, e.g., PbS quantum dots. In a further embodiment, the photodetector can include a hole blocking layer on the first electrode and under the light sensitizing layer.
  • FIGS. 2A and 2B demonstrate the operating principle of a photodetector according to an embodiment of the subject invention. Referring to FIG. 2A, when a bias is applied in the dark (i.e., no visible and/or IR light), holes are blocked from the first electrode due to hole blocking layer, and electrons are blocked from second electrode due to the electron blocking layer. Referring to FIG. 2B, when the photodetector is irradiated with light (e.g., IR light), the light sensitizing layer (e.g., an IR sensitizing layer) generates electron-hole pairs, and the electrons flow to the first electrode due to the applied bias. The holes are accumulated in bulk trap sites of the electron blocking/tunneling layer, and the accumulated holes reduce the barrier width of the electron blocking/tunneling layer. Thus, the electron tunneling from the second electrode to the light sensitizing layer is enhanced significantly, thus producing gain.
  • FIG. 3A shows a schematic band diagram of a photodetector according to an embodiment of subject invention, and FIG. 3B shows the dark and photo current density-voltage (J-V) characteristics for a photodetector according to an embodiment of the subject invention.
  • FIG. 4A shows a plot of the gain versus the applied voltage for a photodetector according to the subject invention, and FIG. 4B shows a plot of the detectivity versus the applied voltage for a photodetector according to an embodiment of the subject invention. Referring to FIG. 4A, a very high gain can be seen, including a gain of more than 150 at an applied bias of −20 V. Referring to FIG. 4B, the detectivity is saturated to more than 5×1012 Jones at values of the applied voltage of less than −18 V.
  • According to embodiments of the subject invention, a photodetector exhibits gain at applied bias (i.e., it is a photodetector with gain). The photodetector can exhibit a gain of, for example, about 150 at an applied bias of −20 V. In various embodiments, the photodetector can exhibit a gain any of the following values or ranges: 2, about 2, at least 2, 3, about 3, at least 3, . . . , 160, about 160, at least 160 (where the “. . . ” represents each number between 3 and 160, “about” each number between 3 and 160, and “at least” each number between 3 and 160), or any range having a first endpoint of any number from 2 to 159 and a second endpoint of any number from 3 to 160. The gain values and ranges of the preceding sentence can be exhibited at any applied voltage value from −30 V to 30 V.
  • Referring to FIGS. 5A-5C, embodiments of the subject invention also pertain to an IR-to-visible upconversion device 500. The IR-to-visible upconversion device 500 can include a photodetector 10 and a light-emitting device (LED) 200. In many embodiments, the LED 200 can be an organic LED (OLED). The IR-to-visible upconversion device 500 can be an IR-to-visible upconversion device with gain, and the photodetector 10 can be a photodetector with gain. In specific embodiments, the IR-to-visible upconversion device can include a photodetector with gain, as illustrated in FIGS. 1A-1B, 2A-2B, 3A-3B, and 4A-4B and/or as described in connection with the photodetectors of FIGS. 1A-1B, 2A-2B, 3A-3B, and 4A-4B. The OLED 200 can include at least one electrode, a hole transporting layer (HTL), a light emitting layer (LEL), and an electron transporting layer (ETL).
  • At least one electrode of the OLED 200 can be transparent to at least a portion of visible light and/or at least a portion of IR light, though embodiments are not limited thereto.
  • Each electrode of the OLED 200 can include one or more of the following materials: ITO, 1ZO, ATO, AZO, silver, calcium, magnesium, gold, aluminum, carbon nanotubes, silver nanowire, LiF/Al/ITO, Ag/ITO, CsCO3/ITO, and a Mg:Ag/Alq3 stack layer, though embodiments are not limited thereto. The HTL of the OLED 200 can include one or more of the following materials: NPD, TAPC, TFB, TPD, and diamine derivative, though embodiments are not limited thereto. The LEL of the OLED 200 can include one or more of the following materials: Iridium tris(2-phenylpyidine) (Ir(ppy)3), [2-methoxy-5-(2-ethylhexyloxy)-p-phenylenevinylene] (MEH-PPV), Tris-(8-quinolinolato) aluminum) (Alq3), and bis[(4,6-di-fluorophenyl)-pyridinate-]picolinate (Flrpic), though embodiments are not limited thereto. The ETL of the OLED 200 can include one or more of the following materials: BCP, Bphen, 3TPYMB, and Alq3, though embodiments are not limited thereto.
  • In a particular embodiment, the electrode of the OLED 200 is a Mg:Ag/Alq3 stack layer. The Mg:Ag layer of the Mg:Ag/Alq3 stack layer can have a composition of, for example, Mg:Ag (10:1) and can have a thickness of, for example, less than 30 nm. The Alq3 layer of the Mg:Ag/Alq3 stack layer can have a thickness of, for example, from 0 nm to 200 nm.
  • The photodetector 10 can be a photodetector with gain as described herein, though only one electrode need be present. That is, the photodetector 10 can include at least one electrode, a light sensitizing layer, and an electron blocking/tunneling layer. The photodetector 10 can also optionally include a substrate and/or a hole blocking layer.
  • The electrode can include one or more of the following materials: ITO, IZO, ATO, AZO, silver, calcium, magnesium, gold, aluminum, carbon nanotubes, silver nanowire, LiF/Al/ITO, Ag/ITO, and CsCO3/ITO.
  • In certain embodiments, the photodetector 10 can be an IR photodetector and the light sensitizing layer can be an IR sensitizing layer. The light sensitizing layer can include, for example, one or more of the following materials: PbS nanocrystals (quantum dots), PbSe nanocrystals (quantum dots), PCTDA, SnPc, SnPc:C60, AlPcCl, AlPcCl:C60, TiOPc, TiOPc:C60, PbSe, PbS, InAs, InGaAs, Si, Ge, and GaAs.
  • In an embodiment, the electron blocking/tunneling layer can be a TAPC/MoO3 stack layer. The TAPC layer can have a thickness of, for example, 0 nm to 100 nm. The MoO1 layer can have a thickness of, for example, 0 nm to 100 nm.
  • In an embodiment, the photodetector can include a hole blocking layer, and the hole blocking layer can include one or more of the following materials: ZnO, NTCDA, BCP, UGH2, BPhen, Alq3, mCP, 3TPYMB, and TiO2.
  • Referring to FIG. 5A, in a further embodiment, the IR-to-visible upconversion device 500 can also include an interconnecting part 100 between the photodetector 10 and the OLED 200. The interconnecting part 100 can be positioned such that the electron blocking/tunneling layer of the photodetector 10 is closer than the light sensitizing layer is to the interconnecting part 100, and the HTL of the OLED 200 is closer than the ETL is to the interconnecting part 100. The photodetector 10 can include an electrode under the light sensitizing layer, and that electrode can be an anode. The OLED 200 can include an electrode on the ETL, and that electrode can be a cathode.
  • In an embodiment, the interconnecting part 100 can include an HBL 110 and an EBL 120. The lowest unoccupied molecular orbital (LUMO) of the HBT, 110 of the interconnecting part 100 can be close to the highest occupied molecular orbital (HOMO) of the EBL 120 of the interconnecting part 100. Thus, when a bias is applied, electrons and holes can be generated in the interconnecting part 100. In an embodiment, the LUMO of the HBL 110 of the interconnecting part 100 and the HOMO of the EBL 120 of the interconnecting part 100 can be no more than 1 eV apart. In a further embodiment, the LUMO of the HBL 110 of the interconnecting part 100 and the HOMO of the EBL 120 of the interconnecting part 100 can be no more than 0.5 eV apart. That is, the energy difference between the HOMO of the EBL 120 of the interconnecting part 100 and the LUMO of the HBL 110 of the interconnecting part 100 can be 0.5 eV or less. The interconnecting part 100 can be positioned within the IR-to-visible upconversion device 500 such that the HBL 120 of the interconnecting part 100 can be adjacent to the photodetector 10 and the EBL 120 of the interconnecting part 100 can be adjacent to the OLED 200. In embodiment, the photodetector 10 can include a second electrode 70 on its EBL/tunneling layer, and the HBL 120 of the interconnecting part 100 can be in direct contact with the second electrode 70 of the photodetector 10. The second electrode 70 of the photodetector 10 can be a cathode. The second electrode 70 of the photodetector 10 can include one or more of the following materials: ITO, IZO, ATO, AZO, silver, calcium, magnesium, gold, aluminum, carbon nanotubes, silver nanowire, LT/Al/ITO, Ag/ITO, and CsCO3/ITO. In a particular embodiment, the second electrode 70 of the photodetector 10 can be a silver electrode. Though the dotted line around the interconnecting part 100 in FIG. 5A extends beyond the HBL 110 and the EBL 120, the interconnecting part does not necessarily include any additional components beyond the HBL 110 and the EBL 120. In certain embodiments, additional components may be present (e.g., one or more electrodes or substrates).
  • Referring again to FIGS. 5B and 5C, in an embodiment, the IR-to-visible upconversion device 500 does not include an interconnecting part 100, and the photodetector 10 is positioned directly adjacent to the OLED 200. The OLED 200 can be positioned such that the ETL of the OLED 200 is closer to the light sensitizing layer of the photodetector 10 than it is to the electron blocking/tunneling layer of the photodetector 10. In a particular embodiment, the photodetector can include a hole blocking layer adjacent to the light sensitizing layer, and the ETL of the OLED 200 can be positioned adjacent to and in contact with the hole blocking layer of the photodetector 10. The photodetector 10 can include an electrode adjacent to and in contact with the electron blocking/tunneling layer, and the OLED 200 can include an electrode adjacent to and in contact with the HTL. The electrode of the photodetector 10 can be, for example, a cathode, and the electrode of the OLED 200 can be, for example, an anode.
  • In the IR-to-visible upconversion devices 500 shown in FIGS. 5A-5C, a substrate (not shown) can also be present. In many embodiments, the IR-to-visible upconversion device 500 can be flipped or turned around and still function properly. For example, the substrate can be adjacent to the anode in FIG. 5B and adjacent to the cathode in FIG. 5C, such that FIG. 5B shows a similar configuration to that of FIG. 5C but with the IR-to-visible upconversion device 500 turned around on the substrate. In the IR-to-visible upconversion device 500 depicted in FIG. 5A, the substrate can be adjacent to the anode or the cathode. In a particular embodiment, an IR-to-visible upconversion device 500 can include an interconnecting part 100 (as shown in FIG. 5A), and the substrate can be adjacent to the anode. IR light can be incident on the IR-to-visible upconversion device 500 from any direction, and visible light can be emitted from the IR-to-visible upconversion device 500 in any direction. The OLED 200 can be transparent to at least a portion of light in the IR spectrum, though embodiments are not limited thereto. The photodetector 10 can be transparent to at least a portion of light in the visible spectrum, though embodiments are not limited thereto.
  • Referring again to FIGS. 5A-5C, the IR-to-visible upconversion device 500 functions by emitting visible light from the OLED 200 when the photodetector 10 absorbs IR light. That is, the light sensitizing layer (e.g., an IR sensitizing layer) of the photodetector 10 absorbs IR light, causing carriers to flow. The carriers flow to the OLED 200, either directly or via an interconnecting part 100, causing the LEL of the OLED 200 to emit visible light. The IR-to-visible upconversion device 500 can include a photodetector 10 with gain and can advantageously exhibit gain.
  • Embodiments of the subject invention also relate to methods of fabricating a photodetector with gain. The photodetector can be, for example, an IR photodetector. In an embodiment, a method of fabricating a photodetector with gain can include: forming a light sensitizing layer on a first electrode, forming an electron blocking/tunneling layer on the light sensitizing layer, and forming a second electrode on the electron blocking/tunneling layer.
  • The method can also optionally include forming the first electrode on a substrate and/or forming a hole blocking layer on the first electrode such that the light sensitizing layer is formed on the hole blocking layer. The substrate can be, for example, a glass substrate.
  • The first electrode can be a cathode, and the second electrode can be an anode. In an alternative embodiment, the first electrode can be an anode, and the second electrode can be a cathode. In certain embodiments, the first electrode and/or the second electrode can be transparent to at least a portion of visible and/or at least a portion of IR light, though embodiments are not limited thereto.
  • The first electrode can include one or more of the following materials: indium tin oxide (ITO), indium zinc oxide (IZO), aluminum tin oxide (ATO), aluminum zinc oxide (AZO), silver, calcium, magnesium. gold, aluminum, carbon nanotubes, silver nanowire, LiF/Al/ITO, Ag/ITO, and CsCO3/ITO. The second electrode can include one or more of the following materials: ITO, IZO, ATO, AZO, silver, calcium, magnesium, gold, aluminum, carbon nanotubes, silver nanowire, LiF/Al/ITO, Ag/ITO, and CsCO3/ITO. In certain embodiments, the photodetector can be an IR photodetector and the light sensitizing layer can be an IR sensitizing layer. The light sensitizing layer can include, for example, one or more of the following materials: PbS nanocrystals (quantum dots), PbSe nanocrystals (quantum dots), PCTDA, SnPc, SnYc:C60, AlNCl, AlPcCl:C60, TiOPc, TiOPc:C60, PbSe, PbS, InAs, InGaAs, Si, Ge, and GaAs. In an embodiment, the electron blocking/tunneling layer can be a TAPC/MoO3 stack layer. The TAPC layer can be formed to a thickness of, for example, 0 nm to 100 nm. The MoO3 layer can be formed to a thickness of, for example, 0 nm to 100 nm.
  • In an embodiment, the method can include forming a hole blocking layer, and the hole blocking layer can include one or more of the following materials: ZnO, NTCDA, BCP, UGH2, BPhen, Alq3, 3mCP, 3TPYMB, and TiO2.
  • In a particular embodiment, the method of fabricating a photodetector can include: forming a light sensitizing layer on a first electrode, forming an electron blocking/tunneling layer on the light sensitizing layer, and forming a second electrode on the electron blocking/tunneling layer. The electron blocking/tunneling layer can be, for example, a TAPC/MoO3 stack layer, and the TAPC/MoO3 stack layer can be formed such that the TAPC layer is formed directly on and in contact with the light sensitizing layer and the MoO3 layer is formed directly on and in contact with the TAPC layer. The second electrode can then be formed directly on and in contact with the MoO3 layer of the TAPC/MoO3 stack layer. The light sensitizing layer can be, for example, an IR sensitizing layer and can include, e.g., PbS quantum dots. In a further embodiment, the method can include forming a hole blocking layer on the first electrode such that the light sensitizing layer is formed directly on and in contact with the hole blocking layer.
  • Embodiments of the subject invention also relate to methods of detecting radiation using a photodetector with gain. The photodetector can be, for example, an IR photodetector such that the method can detect IR radiation. In an embodiment, a method of using a photodetector with gain to detect radiation can include: providing a photodetector with gain, wherein the photodetector includes a first electrode, a light sensitizing layer, an electron blocking/tunneling layer, and a second electrode. The photodetector can also optionally include a substrate and/or a hole blocking layer. The substrate can be, for example, a glass substrate.
  • The first electrode can be a cathode, and the second electrode can be an anode. In an alternative embodiment, the first electrode can be an anode, and the second electrode can be a cathode. In certain embodiments, the first electrode and/or the second electrode can be a transparent electrode.
  • The first electrode can include one or more of the following materials: indium tin oxide (ITO), indium zinc oxide (IZO), aluminum tin oxide (ATO), aluminum zinc oxide (AZO), silver, calcium, magnesium, gold, aluminum, carbon nanotubes, silver nanowire, LiF/Al/ITO, Ag/ITO, and CsCO3/ITO. The second electrode can include one or more of the following materials: ITO, IZO, ATO, AZO, silver, calcium, magnesium, gold, aluminum, carbon nanotubes, silver nanowire, LiF/Al/ITO, Ag/ITO, and CsCO3/ITO.
  • In certain embodiments, the photodetector can be an IR photodetector and the light sensitizing layer can be an IR sensitizing layer. The light sensitizing layer can include, for example, one or more of the following materials: PbS nanocrystals (quantum dots), PbSe nanocrystals (quantum dots), PCTDA, SnPc, SnPc:C60, AlPcCl, AlPcCl:C60, TiOPc, TiOPc:C60, PbSe, PbS, InAs, InGaAs, Si, Ge, and GaAs.
  • In an embodiment, the electron blocking/tunneling layer can be a TAPC/MoO3 stack layer. The TAPC layer can be formed to a thickness of, for example, 0 nm to 100 nm. The MoO3 layer can be formed to a thickness of, for example, 0 nm to 100 nm.
  • In an embodiment, the photodetector can include a hole blocking layer, and the hole blocking layer can include one or more of the following materials: ZnO, NTCDA, BCP, UGH2, BPhen, Alq3, 3mCP, 3TPYMB, and TiO2.
  • In a particular embodiment, the photodetector can include: a light sensitizing layer on a first electrode, an electron blocking/tunneling layer on the light sensitizing layer, and a second electrode on the electron blocking/tunneling layer. The electron blocking/tunneling layer can be, for example, a TAPC/MoO3 stack layer, and the TAPC/MoO3 stack layer can be positioned such that the TAPC layer is directly on and in contact with the light sensitizing layer and the MoO3 layer is directly on and in contact with the TAPC layer. The second electrode can then be directly on and in contact with the MoO3 layer of the TAPC/MoO3 stack layer. The light sensitizing layer can be, for example, an IR sensitizing layer and can include, e.g., PbS quantum dots. In a further embodiment, the photodetector can include a hole blocking layer on the first electrode and under the light sensitizing layer.
  • Embodiments of the subject invention also relate to methods of forming an IR-to-visible upconversion device. The IR-to-visible upconversion device can be an IR-to-visible upconversion device with gain, and the photodetector can be a photodetector with gain. In an embodiment, a method of fabricating an IR-to-visible upconversion device can include: forming a photodetector with gain; forming an LED; and coupling the LED and the photodetector with gain. The LED can be an OLED. Forming the OLED can include: forming at least one electrode, forming a hole transporting layer (HTL), forming a light emitting layer (LEL), and forming an electron transporting layer (ETL).
  • At least one electrode of the OLED can be transparent to at least a portion of visible and/or at least a portion of IR light, though embodiments are not limited thereto. Each electrode of the OLED can include one or more of the following materials: ITO, IZO, ATO, AZO, silver, calcium, magnesium, gold, aluminum, carbon nanotubes, silver nanowire, LiF/Al/ITO, Ag/ITO, CsCO3/ITO, and a Mg:Ag/Alq3 stack layer, though embodiments are not limited thereto. The HTL of the OLED can include one or more of the following materials: NPD, TAPC, TFB, TPD, and diamine derivative, though embodiments are not limited thereto. The LEL of the OLED can include one or more of the following materials: Ir(ppy)3, MEH-PPV, Alq3, and Flrpic, though embodiments are not limited thereto. The ETL of the OLED can include one or more of the following materials: BCP, Bphen, 3TPYMB, and Alq3, though embodiments are not limited thereto. In a particular embodiment, the electrode of the OLED is a Mg:Ag/Alq3 stack layer.
  • The Mg:Ag layer of the Mg:Ag/Alq3 stack layer can have a composition of, for example, Mg:Ag (10:1) and can be formed to a thickness of, for example, less than 30 nm. The Alq3 layer of the Mg:Ag/Alq3 stack layer can be formed to a thickness of, for example, from 0 nm to 200 nm.
  • The photodetector can be a photodetector with gain and can be formed as described herein, though only one electrode need be formed. That is, forming the photodetector can include forming at least one electrode, forming a light sensitizing layer, and forming an electron blocking/tunneling layer. Forming the photodetector can also optionally include proving a substrate and/or forming a hole blocking layer.
  • The electrode can be formed of one or more of the following materials: ITO. IZO, ATO, AZO, silver, calcium, magnesium, gold, aluminum, carbon nanotubes, silver nanowire, LiF/Al/ITO, Ag/ITO, and CsCO3/ITO.
  • In certain embodiments, the photodetector can be an IR photodetector and the light sensitizing layer can be an IR sensitizing layer. The light sensitizing layer can be formed of, for example, one or more of the following materials: PbS nanocrystals (quantum dots), PbSe nanocrystals (quantum dots), PCTDA, SnPc, SnPc:C60, AlPcCl, AlPcCl:C60, TiOPc, TiOPc:C60, PbSe, PbS, InAs, InGaAs, Si, Ge, and GaAs.
  • In an embodiment, the electron blocking/tunneling layer can be a TAPC/MoO3 stack layer. The TAPC layer can be formed to a thickness of, for example, 0 nm to 100 nm. The MoO3 layer can be formed to a thickness of, for example, 0 nm to 100 nm.
  • In an embodiment, forming the photodetector can include forming a hole blocking layer, and the hole blocking layer can include one or more of the following materials: ZnO, NTCDA, BCP, UGH2, BPhen, Alq3, mCP, 3TPYMB, and TiO2.
  • In a further embodiment, coupling the photodetector with gain to the OLED can include coupling the photodetector with gain to an interconnecting part and coupling the OLED to the interconnecting part. The photodetector can be coupled to the interconnecting part such that the electron blocking/tunneling layer of the photodetector is closer than the light sensitizing layer is to the interconnecting part. The OLED can be coupled to the interconnecting part such that the HTL of the OLED is closer than the ETL is to the interconnecting part. The photodetector can include an electrode under the light sensitizing layer, and that electrode can be an anode. The OLED can include an electrode on the ETL, and that electrode can be a cathode.
  • In an embodiment, coupling the photodetector with gain to the OLED can include coupling the photodetector with gain directly to the OLED. The photodetector with gain can be coupled to the OLED such that the ETL of the OLED is closer to the light sensitizing layer of the photodetector than it is to the electron blocking/tunneling layer of the photodetector. In a particular embodiment, the photodetector can include a hole blocking layer adjacent to the light sensitizing layer, and the photodetector with gain can be coupled to the OLED such that the ETL of the OLED is adjacent to and in contact with the hole blocking layer of the photodetector. The photodetector can include an electrode adjacent to and in contact with the electron blocking/tunneling layer, and the OLED can include an electrode adjacent to and in contact with the HTL. The electrode of the photodetector can be, for example, a cathode, and the electrode of the OLED can be, for example, an anode.
  • Embodiments of the subject invention also relate to methods of upconverting IR radiation to visible radiation using an IR-to-visible upconversion device. The IR-to-visible upconversion device can include a photodetector and an LED. The LED can be an OLED. The IR-to-visible upconversion device can be an IR-to-visible upconversion device with gain, and the photodetector can be a photodetector with gain. The OLED can include at least one electrode, a hole transporting layer (HTL), a light emitting layer (LEL), and an electron transporting layer (ETL).
  • At least one electrode of the OLED can be transparent to at least a portion of visible and/or at least a portion of IR light, though embodiments are not limited thereto. Each electrode of the OLED can include one or more of the following materials: ITO, IZO, ATO, AZO, silver, calcium, magnesium, gold, aluminum, carbon nanotubes, silver nanowire, LiF/Al/ITO, Ag/ITO, CsCO3/ITO, and a Mg:Ag/Alq3 stack layer, though embodiments are not limited thereto. The HTL of the OLED can include one or more of the following materials: NPD, TAPC, TFB, TPD, and diamine derivative, though embodiments are not limited thereto, The LEL of the OLED can include one or more of the following materials: Ir(ppy)3, MEH-PPV, Alq3, and Flrpic, though embodiments are not limited thereto. The ETL of the OLED can include one or more of the following materials: BCP, Bphen, 3TPYMB, and Alq3, though embodiments are not limited thereto.
  • In a particular embodiment, the electrode of the OLED is a Mg:Ag/Alq3 stack layer. The Mg:Ag layer of the Mg:Ag/Alq3 stack layer can have a composition of, for example, Mg:Ag (10:1) and can have a thickness of, for example, less than 30 nm. The Alq3 layer of the Mg:Ag/Alq3 stack layer can have a thickness of, for example, from 0 nm to 200 nm.
  • The photodetector can be a photodetector with gain as described herein, though only one electrode need be present. That is, the photodetector can include at least one electrode, a light sensitizing layer, and an electron blocking/tunneling layer. The photodetector can also optionally include a substrate and/or a hole blocking layer.
  • The electrode can include one or more of the following materials: ITO, IZO, ATO, AZO, silver, calcium, magnesium, gold, aluminum, carbon nanotubes, silver nanowire, LiF/Al/ITO, Ag/ITO, and CsCO3/ITO.
  • In certain embodiments, the photodetector can be an IR photodetector and the light sensitizing layer can be an IR sensitizing layer. The light sensitizing layer can include, for example, one or more of the following materials: PbS nanocrystals (quantum dots), PbSe nanocrystals (quantum dots), PCTDA, SnPc, SnPc:C60, AlPcCl, AlPcCl:C60, TiOPc, TiOPc:C60, PbSe, PbS, InAs, InGaAs, Si, Ge, and GaAs.
  • In an embodiment, the electron blocking/tunneling layer can be a TAPC/MoO3 stack layer. The TAPC layer can have a thickness of, for example, 0 nm to 100 nm. The MoO3 layer can have a thickness of, for example, 0 nm to 100 nm.
  • In an embodiment, the photodetector can include a hole blocking layer, and the hole blocking layer can include one or more of the following materials: ZnO, NTCDA, BCP, UGH2, BPhen, Alq3, mCP, 3TPYMB, and TiO2.
  • In a further embodiment, the IR-to-visible upconversion device can also include an interconnecting part between the photodetector and the OLED. The interconnecting part can be positioned such that the electron blocking/tunneling layer of the photodetector is closer than the light sensitizing layer is to the interconnecting part, and the HTL of the OLED is closer than the ETL is to the interconnecting part. The photodetector can include an electrode under the light sensitizing layer, and that electrode can be an anode. The OLED can include an electrode on the ETL, and that electrode can be a cathode.
  • In an embodiment, the IR-to-visible upconversion device does not include an interconnecting part, and the photodetector is positioned directly adjacent to the OLED. The OLED can be positioned such that the ETL of the OLED is closer to the light sensitizing layer of the photodetector than it is to the electron blocking/tunneling layer, of the photodetector. In a particular embodiment, the photodetector can include a hole blocking layer adjacent to the light sensitizing layer, and the ETL of the OLED can be positioned adjacent to and in contact with the hole blocking layer of the photodetector. The photodetector can include an electrode adjacent to and in contact with the electron blocking/tunneling layer, and the OLED can include an electrode adjacent to and in contact with the HTL. The electrode of the photodetector can be, for example, a cathode, and the electrode of the OLED can be, for example, an anode.
  • In many embodiments, the IR-to-visible upconversion device can be flipped or turned around and still function properly. The OLED can be transparent to at least a portion of light in the IR spectrum, though embodiments are not limited thereto. The photodetector can be transparent to at least a portion of light in the visible spectrum, though embodiments are not limited thereto.
  • The IR-to-visible upconversion device upconverts IR light to visible light. The IR-to-visible upconversion emits visible light from the OLED when the photodetector absorbs IR light. That is, the light sensitizing layer (e.g., an IR sensitizing layer) of the photodetector absorbs IR light, causing carriers to flow. The carriers flow to the OLED, either directly or via an interconnecting part, causing the LEL of the OLED to emit visible light. The IR-to-visible upconversion device can include a photodetector with gain and can advantageously exhibit gain.
  • EXAMPLE 1
  • A photodetector was fabricated on a glass substrate. The photodetector included an ITO first electrode, a ZnO hole blocking layer on the first electrode, a PbS quantum dot light sensitizing layer on the hole blocking layer, a TAPC/MoO3 stack electron blocking/tunneling layer on the light sensitizing layer, and a second electrode on the electron blocking/tunneling layer. The PbS quantum dot light sensitizing layer had the absorbance spectrum shown in FIG. 1A. The photodetector displayed the J-V characteristic curves (for dark and IR illumination at 1240 nm and 0.302 W/cm2) shown in FIG. 3B. Additionally, the photodetector exhibited the gain and detectivity, as functions of applied voltage, shown in FIGS. 4A and 4B, respectively.
  • All patents, patent applications, provisional applications, and publications referred to or cited herein are incorporated by reference in their entirety, including all figures and tables, to the extent they are not inconsistent with the explicit teachings of this specification.
  • It should be understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application.

Claims (37)

1. A photodetector with gain, comprising:
a first electrode;
a light sensitizing layer on the first electrode;
an electron blocking/tunneling layer on the light sensitizing layer; and
a second electrode on the electron blocking/tunneling layer.
2. The photodetector with gain according to claim 1, wherein the light sensitizing layer is sensitive to photons having a wavelength in a range of from 0.7 μm to 14 μm, inclusive.
3. The photodetector with gain according to claim 2, wherein the light sensitizing layer is insensitive to photons having a wavelength of at least 0.4 μm and less than 0.7 μm.
4. The photodetector with gain according to claim 1, wherein the light sensitizing layer comprises PbS quantum dots or PbSe quantum dots.
5. The photodetector with gain according to claim 1, wherein the light sensitizing layer comprises PbS quantum dots.
6. The photodetector with gain according to claim 1, wherein the light sensitizing layer comprises at least one material selected from the group consisting of PbS quantum dots, PbSe quantum dots, PCTDA, SnPc, SnPc:C60, AlPcCl, AlPcCl:C60, TiOPc, TiOPc:C60, PbSe, PbS, InAs, InGaAs, Si, Ge, and GaAs.
7. The photodetector with gain according to claim 1, wherein the first electrode comprises at least one material selected from the group consisting of indium tin oxide (ITO), indium zinc oxide (IZO), aluminum tin oxide (ATO), aluminum zinc oxide (AZO), silver, calcium, magnesium, gold, aluminum, carbon nanotubes, silver nanowire, LiF/Al/ITO, Ag/ITO, and CsCO3/ITO.
8. The photodetector with gain according to claim 1, wherein the second electrode comprises at least one material selected from the group consisting of indium tin oxide (ITO), indium zinc oxide (IZO), aluminum tin oxide (ATO), aluminum zinc oxide (AZO), silver, calcium, magnesium, gold, aluminum, carbon nanotubes, silver nanowire, LiF/Al/ITO, Ag/ITO, and CsCO3/ITO.
9. The photodetector with gain according to claim 1, wherein the first electrode is an anode, and wherein the second electrode is a cathode.
10. The photodetector with gain according to claim 9, wherein the first electrode comprises at least one material selected from the group consisting of indium tin oxide (ITO), indium zinc oxide (IZO), aluminum tin oxide (ATO), aluminum zinc oxide (AZO), silver, calcium, magnesium, gold, aluminum, carbon nanotubes, silver nanowire, LiF/Al/ITO, Ag/ITO, and CsCO3/ITO; and wherein the second electrode comprises at least one material selected from the group consisting of indium tin oxide (ITO), indium zinc oxide (IZO), aluminum tin oxide (ATO), aluminum zinc oxide (AZO), silver, calcium, magnesium, gold, aluminum, carbon nanotubes, silver nanowire, LiF/Al/ITO, Ag/ITO, and CsCO3/ITO.
11. The photodetector with gain according to claim 1, wherein the electron blocking/tunneling layer is a 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC)/MoO3 stack layer.
12. The photodetector with gain according to claim 11, wherein the TAPC layer is in direct contact with the light sensitizing layer, and wherein the MoO3 layer is in direct contact with the second electrode.
13. The photodetector with gain according to claim 11, wherein the TAPC layer has a thickness of no more than 100 nm, and wherein the MoO3 layer has a thickness of no more than 100 nm.
14. The photodetector with gain according to claim 1, further comprising a hole blocking layer on the first electrode and under the light sensitizing layer.
15. The photodetector with gain according to claim 14, wherein the hole blocking layer comprises at least one material selected from the group consisting of ZnO, naphthalene tetracarboxylic anhydride (NTCDA), 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), p-bis(triphenylsilyl)benzene (UGH2), 4,7-diphenyl-1,10-phenanthroline (BPhen), tris-(8-hydroxy quinoline) aluminum (Alq3), 3,5′-N,N′-dicarbazole-benzene (mCP), C60, tris[3-(3-pyridyl)-mesityl]borane (3TPYMB), and TiO2.
16. The photodetector with gain according to claim 1, further comprising a glass substrate under the first electrode.
17. The photodetector with gain according to claim 1,
wherein the electron blocking/tunneling layer is a TAPC/MoO3 stack layer,
wherein the TAPC layer is in direct contact with the light sensitizing layer,
wherein the MoO3 layer is in direct contact with the second electrode, and
wherein the light sensitizing layer comprises PbS quantum dots.
18. The photodetector with gain according to claim 17, further comprising a hole blocking layer on the first electrode and under the light sensitizing layer.
19. A method of fabricating a photodetector with gain, comprising:
forming a first electrode;
forming a light sensitizing layer on the first electrode;
forming an electron blocking/tunneling layer on the light sensitizing layer; and
forming a second electrode on the electron blocking/tunneling layer.
20. The method according to claim 19, wherein the light sensitizing layer is sensitive to photons having a wavelength in a range of from 0.7 μm to 14 μm, inclusive.
21. The method according to claim 20, wherein the light sensitizing layer is insensitive to photons having a wavelength of at least 0.4 μm and less than 0.7 μm.
22. The method according to claim 19, wherein the light sensitizing layer comprises PbS quantum dots or PbSe quantum dots.
23. The method according to claim 19, wherein the light sensitizing layer comprises PbS quantum dots.
24. The method according to claim 19, wherein the light sensitizing layer comprises at least one material selected from the group consisting of PbS quantum dots, PbSe quantum dots, PCTDA, SnPc, SnPc:C60, AlPcCl, AlPcCl:C60, TiOPc, TiOPc:C60, PbSe, PbS, InAs, InGaAs, Si, Ge, and GaAs.
25. The method according to claim 19, wherein the first electrode comprises at least one material selected from the group consisting of indium tin oxide (ITO), indium zinc oxide (IZO), aluminum tin oxide (ATO), aluminum zinc oxide (AZO), silver, calcium, magnesium, gold, aluminum, carbon nanotubes, silver nanowire, LiF/Al/ITO, Ag/ITO, and CsCO3/ITO.
26. The method according to claim 19, wherein the second electrode comprises at least one material selected from the group consisting of indium tin oxide (ITO), indium zinc oxide (IZO), aluminum tin oxide (ATO), aluminum zinc oxide (AZO), silver, calcium, magnesium, gold, aluminum, carbon nanotubes, silver nanowire, LiF/Al/ITO, Ag/ITO, and CsCO3/ITO.
27. The method according to claim 19, wherein the first electrode is an anode, and wherein the second electrode is a cathode.
28. The method according to claim 27, wherein the first electrode comprises at least one material selected from the group consisting of indium tin oxide (ITO), indium zinc oxide (IZO), aluminum tin oxide (ATO), aluminum zinc oxide (AZO), silver, calcium, magnesium, gold, aluminum, carbon nanotubes, silver nanowire, LiF/Al/ITO, Ag/ITO, and CsCO3/ITO; and wherein the second electrode comprises at least one material selected from the group consisting of indium tin oxide (ITO), indium zinc oxide (IZO), aluminum tin oxide (ATO), aluminum zinc oxide (AZO), silver, calcium, magnesium, gold, aluminum, carbon nanotubes, silver nanowire, LiF/Al/ITO, Ag/ITO, and CsCO3/ITO.
29. The method according to claim 19, wherein forming the electron blocking/tunneling layer comprises forming a TAPC/MoO3 stack layer.
30. The method according to claim 29, wherein the TAPC layer is formed in direct contact with the light sensitizing layer, and wherein the second electrode is formed in direct contact with the MoO3 layer.
31. The method according to claim 29, wherein the TAPC layer has a thickness of no more than 100 nm, and wherein the MoO3 layer has a thickness of no more than 100 nm.
32. The method according to claim 19, further comprising forming a hole blocking layer on the first electrode, wherein the light sensitizing layer is formed on the hole blocking layer.
33. The method according to claim 32, wherein the hole blocking layer comprises at least one material selected from the group consisting of ZnO, naphthalene tetracarboxylic anhydride (NTCDA), 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), p-bis(triphenylsilyl)benzene (UGH2), 4,7-diphenyl-1,10-phenanthroline (BPhen), tris-(8-hydroxy quinoline) aluminum (Alq3), 3,5′-N,N′-dicarbazole-benzene (mCP), C60, tris[3-(3-pyridyl)-mesityl]borane (3TPYMB), and TiO2.
34. The method according to claim 19, wherein forming the first electrode comprises forming the first electrode on a glass substrate.
35. The method according to claim 19,
wherein forming the electron blocking/tunneling layer comprises forming a TAPC/MoO3 stack layer,
wherein the TAPC layer is formed in direct contact with the light sensitizing layer,
wherein the second electrode is formed in direct contact with the MoO3 layer, and
wherein the light sensitizing layer comprises PbS quantum dots.
36. The method according to claim 35, further comprising forming a hole blocking layer on the first electrode, wherein the light sensitizing layer is formed on the hole blocking layer.
37-98. (canceled)
US15/397,656 2011-06-30 2017-01-03 Method and apparatus for detecting infrared radiation with gain Abandoned US20170117335A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/397,656 US20170117335A1 (en) 2011-06-30 2017-01-03 Method and apparatus for detecting infrared radiation with gain

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201161503317P 2011-06-30 2011-06-30
PCT/US2012/045272 WO2013003850A2 (en) 2011-06-30 2012-07-02 A method and apparatus for detecting infrared radiation with gain
US201414129225A 2014-03-27 2014-03-27
US15/397,656 US20170117335A1 (en) 2011-06-30 2017-01-03 Method and apparatus for detecting infrared radiation with gain

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2012/045272 Division WO2013003850A2 (en) 2011-06-30 2012-07-02 A method and apparatus for detecting infrared radiation with gain
US14/129,225 Division US10134815B2 (en) 2011-06-30 2012-07-02 Method and apparatus for detecting infrared radiation with gain

Publications (1)

Publication Number Publication Date
US20170117335A1 true US20170117335A1 (en) 2017-04-27

Family

ID=47424832

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/129,225 Expired - Fee Related US10134815B2 (en) 2011-06-30 2012-07-02 Method and apparatus for detecting infrared radiation with gain
US15/397,656 Abandoned US20170117335A1 (en) 2011-06-30 2017-01-03 Method and apparatus for detecting infrared radiation with gain

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/129,225 Expired - Fee Related US10134815B2 (en) 2011-06-30 2012-07-02 Method and apparatus for detecting infrared radiation with gain

Country Status (11)

Country Link
US (2) US10134815B2 (en)
EP (1) EP2727154B1 (en)
JP (2) JP6502093B2 (en)
KR (1) KR102059208B1 (en)
CN (1) CN103733355B (en)
AU (1) AU2012275060A1 (en)
BR (1) BR112013033122A2 (en)
CA (1) CA2840498A1 (en)
MX (1) MX2013015214A (en)
RU (1) RU2014102650A (en)
WO (1) WO2013003850A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109728122A (en) * 2019-01-03 2019-05-07 吉林大学 One kind being based on FTO/TiO2/MoO3Ultraviolet detector of hetero-junctions and preparation method thereof
US10700141B2 (en) 2006-09-29 2020-06-30 University Of Florida Research Foundation, Incorporated Method and apparatus for infrared detection and display
US10749058B2 (en) 2015-06-11 2020-08-18 University Of Florida Research Foundation, Incorporated Monodisperse, IR-absorbing nanoparticles and related methods and devices
US20210360112A1 (en) * 2020-05-15 2021-11-18 Sharp Kabushiki Kaisha Image forming apparatus and document data classification method

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8498695B2 (en) 2006-12-22 2013-07-30 Novadaq Technologies Inc. Imaging system with a single color image sensor for simultaneous fluorescence and color video endoscopy
US9349970B2 (en) 2009-09-29 2016-05-24 Research Triangle Institute Quantum dot-fullerene junction based photodetectors
US9054262B2 (en) 2009-09-29 2015-06-09 Research Triangle Institute Integrated optical upconversion devices and related methods
MX2012013643A (en) 2010-05-24 2013-05-01 Univ Florida Method and apparatus for providing a charge blocking layer on an infrared up-conversion device.
EP2727154B1 (en) 2011-06-30 2019-09-18 University of Florida Research Foundation, Inc. A method and apparatus for detecting infrared radiation with gain
BR112015006873A2 (en) 2012-09-27 2017-07-04 Rhodia Operations process to produce silver and copolymer nanostructures useful in such a process
WO2014178923A2 (en) * 2013-01-25 2014-11-06 University Of Florida Research Foundation, Inc. A novel ir image sensor using a solution processed pbs photodetector
RU2523097C1 (en) * 2013-02-26 2014-07-20 Гариф Газизович Акчурин Ultra-wideband vacuum tunnel photodiode for detecting ultraviolet, visible and infrared optical radiation and method for production thereof
US20160254101A1 (en) * 2013-04-12 2016-09-01 Stephen R. Forrest Organic photosensitive devices with exciton-blocking charge carrier filters
CN103399058B (en) * 2013-08-22 2015-01-21 武汉大学 High-sensitivity fullerene photoelectric chemical probe and preparation method thereof
JP2015195333A (en) * 2014-03-19 2015-11-05 株式会社東芝 Organic photoelectric conversion element and imaging device
EP3155668B1 (en) * 2014-06-16 2021-02-17 B.G. Negev Technologies & Applications Ltd., at Ben-Gurion University Swir to visible image up-conversion integrated device
JP6161018B2 (en) * 2015-07-08 2017-07-12 パナソニックIpマネジメント株式会社 Imaging device
CN108289723B (en) 2015-11-13 2021-07-06 史赛克欧洲运营有限公司 System and method for illumination and imaging of an object
WO2017127929A1 (en) 2016-01-26 2017-08-03 Novadaq Technologies Inc. Configurable platform
WO2017163923A1 (en) * 2016-03-24 2017-09-28 ソニー株式会社 Photoelectric conversion element, method for measuring same, solid-state imaging element, electronic device, and solar cell
WO2017214730A1 (en) 2016-06-14 2017-12-21 Novadaq Technologies Inc. Methods and systems for adaptive imaging for low light signal enhancement in medical visualization
WO2018017976A1 (en) * 2016-07-21 2018-01-25 Massachusetts Institute Of Technology Far-infrared detection using weyl semimetals
US10547015B2 (en) 2016-12-02 2020-01-28 The Research Foundation For The State University Of New York Fabrication method for fused multi-layer amorphous selenium sensor
FR3059829B1 (en) * 2016-12-05 2019-05-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives INFRARED PHOTODETECTOR
KR101930879B1 (en) * 2016-12-14 2018-12-19 실리콘 디스플레이 (주) Infrared image sensor
TWI615611B (en) * 2016-12-20 2018-02-21 Gas detector
CN109713008A (en) * 2017-10-26 2019-05-03 苏州大学 A kind of near-infrared-visible up-conversion device and preparation method thereof
CN108831905B (en) * 2018-05-28 2021-07-09 东南大学 Infrared detection-visible display integrated system based on semiconductor quantum dots, preparation method and imaging method
CN109037372B (en) * 2018-07-20 2019-12-24 大连民族大学 Multiband photoresponse device based on molybdenum oxide micron band/p-type Si and preparation method thereof
CN110265561A (en) * 2019-06-17 2019-09-20 深圳扑浪创新科技有限公司 A kind of pure quantum dot up-conversion luminescence device and preparation method thereof
CN110400862B (en) * 2019-07-29 2021-04-02 中国科学院长春光学精密机械与物理研究所 Infrared thermal radiation light source and infrared sensor
TW202135334A (en) * 2020-02-13 2021-09-16 日商富士軟片股份有限公司 Photodetection element and image sensor
CN111628093B (en) * 2020-05-13 2021-06-29 电子科技大学 High-efficiency organic up-conversion device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9054262B2 (en) * 2009-09-29 2015-06-09 Research Triangle Institute Integrated optical upconversion devices and related methods

Family Cites Families (212)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57139976A (en) 1981-02-23 1982-08-30 Omron Tateisi Electronics Co Light emitting/receiving device
JPS58215081A (en) 1982-06-08 1983-12-14 Mitsui Toatsu Chem Inc Amorphous silicon solar battery
DE3379441D1 (en) 1982-09-23 1989-04-20 Secr Defence Brit Infrared detectors
JPS6030163A (en) 1983-07-28 1985-02-15 Fuji Electric Corp Res & Dev Ltd Thin film solar cell module
JPS61149831A (en) 1984-12-24 1986-07-08 Matsushita Electric Works Ltd Infrared detecting device
US4778692A (en) 1985-02-20 1988-10-18 Canon Kabushiki Kaisha Process for forming deposited film
EP0219711A1 (en) 1985-10-08 1987-04-29 Heimann GmbH Infrared detector
JPH0797657B2 (en) 1986-10-01 1995-10-18 株式会社小松製作所 Optical memory
US4885211A (en) 1987-02-11 1989-12-05 Eastman Kodak Company Electroluminescent device with improved cathode
JPS6412583A (en) * 1987-07-07 1989-01-17 Toshiba Corp Photodetector
JPH0216421A (en) 1988-07-04 1990-01-19 Matsushita Electric Ind Co Ltd Photodetector
JP2717583B2 (en) 1988-11-04 1998-02-18 キヤノン株式会社 Stacked photovoltaic element
JPH0379693A (en) 1989-04-28 1991-04-04 Quantex Corp High-performance luminiscent material for conversion to increased optical intensity and its manufacture
US5122905A (en) 1989-06-20 1992-06-16 The Dow Chemical Company Relective polymeric body
US5121398A (en) 1989-09-26 1992-06-09 Excel Technology, Inc. Broadly tunable, high repetition rate solid state lasers and uses thereof
US5315129A (en) 1990-08-20 1994-05-24 University Of Southern California Organic optoelectronic devices and methods
CA2100472C (en) 1991-01-16 2009-04-07 Kenneth W. Kinzler Inherited and somatic mutations of apc gene in colerectal cancer of humans
SE468188B (en) 1991-04-08 1992-11-16 Stiftelsen Inst Foer Mikroelek METHOD FOR CONNECTING RADIATION IN AN INFRARED DETECTOR, APPLIED DEVICE
US5270092A (en) 1991-08-08 1993-12-14 The Regents, University Of California Gas filled panel insulation
JPH05186702A (en) 1992-01-13 1993-07-27 Fuji Xerox Co Ltd Mixed crystal of dihalogenotin phthalocyanone with halogenogallium phthalocyanine and electrophotographic photoreceptor comprising the same
JPH06326350A (en) 1993-05-12 1994-11-25 Nichia Chem Ind Ltd Infrared ray-visible ray converting element
JP3405608B2 (en) 1993-09-17 2003-05-12 株式会社東芝 Organic EL device
JPH07122762A (en) 1993-10-22 1995-05-12 Asahi Chem Ind Co Ltd Thin film photovoltaic device
US5389788A (en) 1993-12-13 1995-02-14 Hughes Aircraft Company Infrared transducer and goggles incorporating the same
JPH07271067A (en) * 1994-03-30 1995-10-20 Mita Ind Co Ltd Laminate type electrophotographic photoreceptor
JPH087096A (en) 1994-06-20 1996-01-12 Fujitsu General Ltd Motion picture recognition system
FR2729757A1 (en) 1995-01-20 1996-07-26 Sofradir DEVICE FOR DETECTING ELECTROMAGNETIC WAVES, IN PARTICULAR IN INFRA RED RADIATION
US5710428A (en) 1995-08-10 1998-01-20 Samsung Electronics Co., Ltd. Infrared focal plane array detecting apparatus having light emitting devices and infrared camera adopting the same
US5811834A (en) 1996-01-29 1998-09-22 Toyo Ink Manufacturing Co., Ltd. Light-emitting material for organo-electroluminescence device and organo-electroluminescence device for which the light-emitting material is adapted
JPH1065200A (en) 1996-08-15 1998-03-06 Yokogawa Electric Corp Infrared radiation detecting element
US6211529B1 (en) 1996-08-27 2001-04-03 California Institute Of Technology Infrared radiation-detecting device
US5853497A (en) 1996-12-12 1998-12-29 Hughes Electronics Corporation High efficiency multi-junction solar cells
JPH10242493A (en) 1997-02-28 1998-09-11 Mitsubishi Heavy Ind Ltd Solar cell
US6337492B1 (en) 1997-07-11 2002-01-08 Emagin Corporation Serially-connected organic light emitting diode stack having conductors sandwiching each light emitting layer
US6441395B1 (en) 1998-02-02 2002-08-27 Uniax Corporation Column-row addressable electric microswitch arrays and sensor matrices employing them
US5965875A (en) 1998-04-24 1999-10-12 Foveon, Inc. Color separation in an active pixel cell imaging array using a triple-well structure
JPH11329736A (en) 1998-05-20 1999-11-30 Futaba Corp Optical modulation mirror
EP1048084A4 (en) 1998-08-19 2001-05-09 Univ Princeton Organic photosensitive optoelectronic device
US6140646A (en) 1998-12-17 2000-10-31 Sarnoff Corporation Direct view infrared MEMS structure
JP2000277265A (en) 1999-03-25 2000-10-06 Agency Of Ind Science & Technol Organic space light modulating element
JP2000349365A (en) * 1999-06-07 2000-12-15 Futaba Corp Photoelectric current multiplier element
JP2001006876A (en) 1999-06-25 2001-01-12 Futaba Corp Light-light transducer
JP4107354B2 (en) 1999-07-15 2008-06-25 独立行政法人科学技術振興機構 Millimeter-wave / far-infrared photodetector
US6512385B1 (en) 1999-07-26 2003-01-28 Paul Pfaff Method for testing a device under test including the interference of two beams
JP3950594B2 (en) 1999-09-03 2007-08-01 ローム株式会社 Display device
US6509574B2 (en) 1999-12-02 2003-01-21 Texas Instruments Incorporated Optocouplers having integrated organic light-emitting diodes
US20020066904A1 (en) 1999-12-03 2002-06-06 Han-Tzong Yuan Solid-state relay having integrated organic light-emitting diodes
AUPQ897600A0 (en) 2000-07-25 2000-08-17 Liddiard, Kevin Active or self-biasing micro-bolometer infrared detector
US6579629B1 (en) 2000-08-11 2003-06-17 Eastman Kodak Company Cathode layer in organic light-emitting diode devices
GB0024804D0 (en) 2000-10-10 2000-11-22 Microemissive Displays Ltd An optoelectronic device
US6828045B1 (en) 2003-06-13 2004-12-07 Idemitsu Kosan Co., Ltd. Organic electroluminescence element and production method thereof
DE10101995A1 (en) 2001-01-18 2002-07-25 Philips Corp Intellectual Pty Electrical or electronic switching arrangement comprises a detector unit and a comparator unit connected to the detector unit to compare the starting voltage with a reference voltage
JP2002340668A (en) 2001-05-18 2002-11-27 Denso Corp Thermopile infrared sensor, and inspection method therefor
WO2002099896A1 (en) 2001-06-05 2002-12-12 State University Of New York Infrared radiation imager
JP2003083809A (en) 2001-09-10 2003-03-19 Hamamatsu Photonics Kk Infrared visible conversion member and infrared detection device
US20030052365A1 (en) 2001-09-18 2003-03-20 Samir Chaudhry Structure and fabrication method for capacitors integratible with vertical replacement gate transistors
US7348946B2 (en) 2001-12-31 2008-03-25 Intel Corporation Energy sensing light emitting diode display
US7436038B2 (en) 2002-02-05 2008-10-14 E-Phocus, Inc Visible/near infrared image sensor array
US7378124B2 (en) 2002-03-01 2008-05-27 John James Daniels Organic and inorganic light active devices and methods for making the same
JP3933591B2 (en) 2002-03-26 2007-06-20 淳二 城戸 Organic electroluminescent device
US6951694B2 (en) 2002-03-29 2005-10-04 The University Of Southern California Organic light emitting devices with electron blocking layers
CA2480518C (en) 2002-03-29 2016-07-19 Massachusetts Institute Of Technology Light emitting device including semiconductor nanocrystals
EP1367659B1 (en) 2002-05-21 2012-09-05 Semiconductor Energy Laboratory Co., Ltd. Organic field effect transistor
TWI272874B (en) 2002-08-09 2007-02-01 Semiconductor Energy Lab Organic electroluminescent device
US20040031965A1 (en) * 2002-08-16 2004-02-19 Forrest Stephen R. Organic photonic integrated circuit using an organic photodetector and a transparent organic light emitting device
US20050126628A1 (en) 2002-09-05 2005-06-16 Nanosys, Inc. Nanostructure and nanocomposite based compositions and photovoltaic devices
US7119359B2 (en) 2002-12-05 2006-10-10 Research Foundation Of The City University Of New York Photodetectors and optically pumped emitters based on III-nitride multiple-quantum-well structures
US7052351B2 (en) 2002-12-31 2006-05-30 Eastman Kodak Company Using hole- or electron-blocking layers in color OLEDS
JP2003178887A (en) 2003-01-06 2003-06-27 Canon Inc Selecting method of electrode material for electric field light-emitting element
EP1447860A1 (en) 2003-02-17 2004-08-18 Rijksuniversiteit Groningen Organic material photodiode
US6869699B2 (en) 2003-03-18 2005-03-22 Eastman Kodak Company P-type materials and mixtures for electronic devices
US7727693B2 (en) 2003-04-24 2010-06-01 Sharp Kabushiki Kaisha Electrophotographic photoreceptor, electrophotographic image forming method, and electrophotographic apparatus
US20040222306A1 (en) 2003-05-08 2004-11-11 Anthony Fajarillo Methods, systems and apparatus for displaying bonsai trees
US6914315B2 (en) 2003-05-28 2005-07-05 Vtera Technology Inc. GaN-based heterostructure photodiode
KR101118810B1 (en) 2003-06-12 2012-03-20 시리카 코포레이션 Steady-state non-equilibrium distribution of free carriers and photon energy up-conversion using same
US7053412B2 (en) 2003-06-27 2006-05-30 The Trustees Of Princeton University And Universal Display Corporation Grey scale bistable display
US7148463B2 (en) * 2003-07-16 2006-12-12 Triquint Semiconductor, Inc. Increased responsivity photodetector
US6906326B2 (en) 2003-07-25 2005-06-14 Bae Systems Information And Elecronic Systems Integration Inc. Quantum dot infrared photodetector focal plane array
US7381953B1 (en) 2003-07-25 2008-06-03 Public Service Solutions, Inc. Infrared imaging device
US20050077539A1 (en) 2003-08-18 2005-04-14 Jan Lipson Semiconductor avalanche photodetector with vacuum or gaseous gap electron acceleration region
EP1513171A1 (en) 2003-09-05 2005-03-09 Sony International (Europe) GmbH Tandem dye-sensitised solar cell and method of its production
US6881502B2 (en) 2003-09-24 2005-04-19 Eastman Kodak Company Blue organic electroluminescent devices having a non-hole-blocking layer
US8884845B2 (en) 2003-10-28 2014-11-11 Semiconductor Energy Laboratory Co., Ltd. Display device and telecommunication system
US20080138797A1 (en) 2003-11-13 2008-06-12 Hunt William D Detection Systems and Methods
US6972431B2 (en) 2003-11-26 2005-12-06 Trustees Of Princeton University Multilayer organic photodetectors with improved performance
US7125635B2 (en) 2003-12-23 2006-10-24 Xerox Corporation Imaging members
BRPI0506541A (en) 2004-01-20 2007-02-27 Cyrium Technologies Inc solar cell with epitaxially grown quantum dot material
US6943425B2 (en) 2004-01-23 2005-09-13 Intevac, Inc. Wavelength extension for backthinned silicon image arrays
GB0401578D0 (en) 2004-01-24 2004-02-25 Koninkl Philips Electronics Nv Phototransistor
US7151339B2 (en) 2004-01-30 2006-12-19 Universal Display Corporation OLED efficiency by utilization of different doping concentrations within the device emissive layer
JP2005266537A (en) 2004-03-19 2005-09-29 Stanley Electric Co Ltd Infrared transmission filter and infrared projector equipped with the same
JP2005277113A (en) 2004-03-25 2005-10-06 Sanyo Electric Co Ltd Stacked solar cell module
US20050228277A1 (en) 2004-04-05 2005-10-13 Siemens Medical Solutions Usa, Inc. System and method for 2D partial beamforming arrays with configurable sub-array elements
US7773139B2 (en) 2004-04-16 2010-08-10 Apple Inc. Image sensor with photosensitive thin film transistors
WO2005101530A1 (en) 2004-04-19 2005-10-27 Edward Sargent Optically-regulated optical emission using colloidal quantum dot nanocrystals
US7773404B2 (en) 2005-01-07 2010-08-10 Invisage Technologies, Inc. Quantum dot optical devices with enhanced gain and sensitivity and methods of making same
JP2006013103A (en) 2004-06-25 2006-01-12 Sony Corp Organic electroluminescent element
US20060014044A1 (en) 2004-07-14 2006-01-19 Au Optronics Corporation Organic light-emitting display with multiple light-emitting modules
US7300731B2 (en) 2004-08-10 2007-11-27 E.I. Du Pont De Nemours And Company Spatially-doped charge transport layers
KR20060018583A (en) 2004-08-25 2006-03-02 삼성전자주식회사 White organic-inorganic hybrid electroluminescence device comprising semiconductor nanocrystals
US8026510B2 (en) 2004-10-20 2011-09-27 Dai Nippon Printing Co., Ltd. Organic electronic device and method for producing the same
JP2006128437A (en) 2004-10-29 2006-05-18 Sony Corp Organic electroluminescence (el) element and display
KR100678291B1 (en) 2004-11-11 2007-02-02 삼성전자주식회사 Photodetector Using Nanoparticles
US7402831B2 (en) 2004-12-09 2008-07-22 3M Innovative Properties Company Adapting short-wavelength LED's for polychromatic, broadband, or “white” emission
US7279705B2 (en) 2005-01-14 2007-10-09 Au Optronics Corp. Organic light-emitting device
TWI278252B (en) 2005-04-04 2007-04-01 Au Optronics Corp Organic light-emitting display device
US20060157806A1 (en) 2005-01-18 2006-07-20 Omnivision Technologies, Inc. Multilayered semiconductor susbtrate and image sensor formed thereon for improved infrared response
US7811479B2 (en) 2005-02-07 2010-10-12 The Trustees Of The University Of Pennsylvania Polymer-nanocrystal quantum dot composites and optoelectronic devices
US8115093B2 (en) 2005-02-15 2012-02-14 General Electric Company Layer-to-layer interconnects for photoelectric devices and methods of fabricating the same
KR100624307B1 (en) 2005-02-23 2006-09-19 제일모직주식회사 Brightness-enhanced Multi-layer Optical Film of Low Reflectivity for Display and Organic Light Emitting Diode Dispaly using the Same
JP4839632B2 (en) 2005-02-25 2011-12-21 ソニー株式会社 Imaging device
US7208738B2 (en) 2005-02-28 2007-04-24 Sundar Natarajan Yoganandan Light source utilizing an infrared sensor to maintain brightness and color of an LED device
CN101133499B (en) 2005-03-04 2010-06-16 松下电工株式会社 Stacked organic solar cell
JP4567495B2 (en) 2005-03-11 2010-10-20 株式会社リコー Optical wavelength conversion element
TWI305431B (en) 2005-04-06 2009-01-11 Au Optronics Corp Organic light emitting diode display
ES2297972A1 (en) 2005-05-30 2008-05-01 Universidad Politecnica De Madrid Quantum dot intermediate band infrared photodetector
US20090084436A1 (en) 2005-06-02 2009-04-02 The Regents Of The University Of California Effective organic solar cells based on triplet materials
US20090115310A1 (en) 2005-06-06 2009-05-07 Sharp Kabushiki Kaisha Coating liquid for hole injection and transport layer, production method of hole injection and transport layer, organic electroluminescent element, and production method thereof
KR20070000262A (en) 2005-06-27 2007-01-02 삼성전자주식회사 Formation method of the unique cathode electrodes utilizing mg-ag single thin films in organic light-emitting devices
US7247850B2 (en) 2005-08-05 2007-07-24 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government Infrared imager
WO2007017475A1 (en) 2005-08-08 2007-02-15 Siemens Aktiengesellschaft Organic photodetector with an increased sensitivity and use of a triaryl amine-fluorene polymer as an intermediate layer in a photodetector
DE102005037290A1 (en) 2005-08-08 2007-02-22 Siemens Ag Flat panel detector
KR100720100B1 (en) 2005-08-23 2007-05-18 한양대학교 산학협력단 Organic light emitting devices having hole blocking layer utilizing multiple hetero-structure and preparation method thereof
WO2007102051A2 (en) 2005-08-25 2007-09-13 Edward Sargent Quantum dot optical devices with enhanced gain and sensitivity and methods of making same
CN100424897C (en) 2005-09-28 2008-10-08 中国科学院上海技术物理研究所 Gallium nitride-base infrared visable wavelength conversion detector
KR100691567B1 (en) 2005-10-18 2007-03-09 신코엠 주식회사 Drive circuit of oled(organic light emitting diode) display panel and discharge method using it
US7947897B2 (en) * 2005-11-02 2011-05-24 The Trustees Of Princeton University Organic photovoltaic cells utilizing ultrathin sensitizing layer
US8013240B2 (en) 2005-11-02 2011-09-06 The Trustees Of Princeton University Organic photovoltaic cells utilizing ultrathin sensitizing layer
US8021763B2 (en) 2005-11-23 2011-09-20 The Trustees Of Princeton University Phosphorescent OLED with interlayer
KR101478004B1 (en) 2005-12-05 2015-01-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Organometallic Complex and Light-Emitting Element, Light-Emitting Device and Electronic Device using the Same
US7414294B2 (en) 2005-12-16 2008-08-19 The Trustees Of Princeton University Intermediate-band photosensitive device with quantum dots having tunneling barrier embedded in organic matrix
DE602006001930D1 (en) 2005-12-23 2008-09-04 Novaled Ag of organic layers
KR101288304B1 (en) 2006-01-27 2013-07-18 삼성디스플레이 주식회사 Organic light emitting compound and organic light emitting device comprising the same
US8003979B2 (en) 2006-02-10 2011-08-23 The Research Foundation Of State University Of New York High density coupling of quantum dots to carbon nanotube surface for efficient photodetection
WO2007095386A2 (en) 2006-02-13 2007-08-23 Solexant Corporation Photovoltaic device with nanostructured layers
CA2642678A1 (en) 2006-02-17 2007-08-30 Solexant Corporation Nanostructured electroluminescent device and display
US7440157B2 (en) 2006-03-02 2008-10-21 Fury Technologies Corporation Optically addressed spatial light modulator and method
WO2007099880A1 (en) 2006-03-03 2007-09-07 Semiconductor Energy Laboratory Co., Ltd. Light emitting material, light emitting element, light emitting device and electronic device
EP1997163A2 (en) 2006-03-23 2008-12-03 Solexant Corp. Photovoltaic device containing nanoparticle sensitized carbon nanotubes
US8247801B2 (en) 2006-03-31 2012-08-21 Imec Organic semi-conductor photo-detecting device
WO2007131126A2 (en) 2006-05-03 2007-11-15 Rochester Institute Of Technology Multi-junction, photovoltaic devices with nanostructured spectral enhancements and methods thereof
JP2008016831A (en) 2006-06-09 2008-01-24 Sumitomo Chemical Co Ltd Light-to-light conversion device
WO2008105792A2 (en) 2006-06-24 2008-09-04 Qd Vision, Inc. Methods for depositing nanomaterial, methods for fabricating a device, methods for fabricating an array of devices and compositions
TWI312531B (en) 2006-06-30 2009-07-21 Nat Taiwan Universit Photoelectric device and fabrication method thereof
US7955889B1 (en) 2006-07-11 2011-06-07 The Trustees Of Princeton University Organic photosensitive cells grown on rough electrode with nano-scale morphology control
JP5568305B2 (en) 2006-09-29 2014-08-06 ユニバーシティ オブ フロリダ リサーチ ファンデーション インコーポレーティッド Method and apparatus for infrared detection and display
US8080824B2 (en) 2006-11-15 2011-12-20 Academia Sinica Suppressing recombination in an electronic device
TW200847449A (en) 2006-12-06 2008-12-01 Solexant Corp Nanophotovoltaic device with improved quantum efficiency
US7799990B2 (en) 2007-03-12 2010-09-21 Northwestern University Electron-blocking layer / hole-transport layer for organic photovoltaics and applications of same
EP2143141A4 (en) 2007-04-18 2011-04-13 Invisage Technologies Inc Materials systems and methods for optoelectronic devices
US20100044676A1 (en) 2008-04-18 2010-02-25 Invisage Technologies, Inc. Photodetectors and Photovoltaics Based on Semiconductor Nanocrystals
WO2009002551A1 (en) 2007-06-26 2008-12-31 Qd Vision, Inc. Photovoltaic devices including quantum dot down-conversion materials useful for solar cells and materials including quantum dots
KR100838088B1 (en) 2007-07-03 2008-06-16 삼성에스디아이 주식회사 Organic light emitting device
US8563855B2 (en) 2007-07-23 2013-10-22 Basf Se Tandem photovoltaic cell
DE102007043648A1 (en) 2007-09-13 2009-03-19 Siemens Ag Organic photodetector for the detection of infrared radiation, process for the preparation thereof and use
US20100326506A1 (en) 2007-12-13 2010-12-30 Merck Patent Gmbh Photovoltaic Cells Comprising Group IV-VI Semiconductor Core-Shell Nanocrystals
CN101919068B (en) * 2007-12-18 2013-05-01 马莱克·T·麦克尔维兹 Quantum tunneling photodetector array
JP5162271B2 (en) 2008-02-15 2013-03-13 Agcテクノグラス株式会社 Glass member with optical multilayer film and method for producing the same
KR20090089073A (en) 2008-02-18 2009-08-21 삼성모바일디스플레이주식회사 An silanylamine-based compound and an organic light emitting diode comprising an organic layer comprising the same
US20090208776A1 (en) 2008-02-19 2009-08-20 General Electric Company Organic optoelectronic device and method for manufacturing the same
US20090214967A1 (en) 2008-02-26 2009-08-27 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, and image forming apparatus and process cartridge using the same
US20090217967A1 (en) 2008-02-29 2009-09-03 International Business Machines Corporation Porous silicon quantum dot photodetector
JP5108806B2 (en) 2008-03-07 2012-12-26 富士フイルム株式会社 Photoelectric conversion element and imaging element
WO2009116511A1 (en) 2008-03-19 2009-09-24 シャープ株式会社 Photosensitizing element and solar battery using the photosensitizing element
KR101995369B1 (en) 2008-04-03 2019-07-02 삼성 리서치 아메리카 인코포레이티드 Light-emitting device including quantum dots
JP4533939B2 (en) 2008-04-10 2010-09-01 三菱重工業株式会社 Infrared detector, infrared detector, and method of manufacturing infrared detector
US7821807B2 (en) 2008-04-17 2010-10-26 Epir Technologies, Inc. Nonequilibrium photodetectors with single carrier species barriers
JP2009272528A (en) 2008-05-09 2009-11-19 Fujifilm Corp Photoelectric conversion element, method of manufacturing photoelectric conversion element, and solid-state image sensor
WO2009152275A1 (en) 2008-06-11 2009-12-17 Plextronics, Inc. Encapsulation for organic optoelectronic devices
JP5258037B2 (en) 2008-09-08 2013-08-07 国立大学法人京都大学 Photoelectric conversion element, manufacturing method thereof, and solar cell
US20100059097A1 (en) 2008-09-08 2010-03-11 Mcdonald Mark Bifacial multijunction solar cell
JP2010067802A (en) 2008-09-11 2010-03-25 Seiko Epson Corp Photoelectric conversion device, electronic apparatus, method for manufacturing photoelectric conversion device, and method for manufacturing electronic apparatus
JP2010087205A (en) 2008-09-30 2010-04-15 Kaneka Corp Multi-junction thin-film photoelectric converter
WO2010062643A1 (en) 2008-10-28 2010-06-03 The Regents Of The University Of Michigan Stacked white oled having separate red, green and blue sub-elements
TWI407610B (en) 2008-11-28 2013-09-01 Univ Nat Chiao Tung Infrared light distance sensing device for organic semiconductors
KR101584990B1 (en) 2008-12-01 2016-01-13 엘지디스플레이 주식회사 White Organic Light Emitting Device and method for manufacturing the same
US7968215B2 (en) 2008-12-09 2011-06-28 Global Oled Technology Llc OLED device with cyclobutene electron injection materials
JP5331211B2 (en) 2008-12-19 2013-10-30 コーニンクレッカ フィリップス エヌ ヴェ Transparent organic light emitting diode
KR20200142125A (en) 2009-01-12 2020-12-21 더 리젠츠 오브 더 유니버시티 오브 미시간 Enhancement of organic photovoltaic cell open circuit voltage using electron/hole blocking exciton blocking layers
US8563850B2 (en) 2009-03-16 2013-10-22 Stion Corporation Tandem photovoltaic cell and method using three glass substrate configuration
DE102009018647A1 (en) 2009-04-23 2010-10-28 Osram Opto Semiconductors Gmbh Radiation-emitting device
JP2010263030A (en) 2009-05-01 2010-11-18 Japan Advanced Institute Of Science & Technology Hokuriku Organic el device
TWI380490B (en) 2009-05-05 2012-12-21 Univ Nat Chiao Tung Organic photosensitive photoelectric device
GB2470006B (en) 2009-05-05 2012-05-23 Cambridge Display Tech Ltd Device and method of forming a device
GB0909818D0 (en) 2009-06-08 2009-07-22 Isis Innovation Device
WO2010142575A2 (en) 2009-06-11 2010-12-16 Oerlikon Solar Ag, Trübbach Tandem solar cell integrated in a double insulating glass window for building integrated photovoltaic applications
JP2011098948A (en) 2009-06-25 2011-05-19 Yamagata Promotional Organization For Industrial Technology Bipyridine derivative and organic electroluminescent element containing the same
US9496315B2 (en) 2009-08-26 2016-11-15 Universal Display Corporation Top-gate bottom-contact organic transistor
JP2011065927A (en) 2009-09-18 2011-03-31 Toshiba Corp Light-emitting device
US9666818B2 (en) 2009-09-18 2017-05-30 Konica Minolta Holdings, Inc. Tandem-type organic photoelectric conversion element and solar battery
ES2723523T3 (en) 2009-09-29 2019-08-28 Res Triangle Inst Optoelectronic devices with the quantum-fullerene point junction
US20110073835A1 (en) 2009-09-29 2011-03-31 Xiaofan Ren Semiconductor nanocrystal film
KR101608903B1 (en) 2009-11-16 2016-04-20 삼성전자주식회사 Infrared image sensor
RU2012126145A (en) 2009-11-24 2013-12-27 Юниверсити Оф Флорида Рисерч Фаундейшн, Инк. METHOD AND DEVICE FOR PERCEPTION OF INFRARED RADIATION
CN101794834B (en) 2009-12-14 2013-06-12 湖南共创光伏科技有限公司 High-efficiency thin-film solar cell provided with up-conversion fluorescent material film and film preparation method thereof
MX2012013643A (en) 2010-05-24 2013-05-01 Univ Florida Method and apparatus for providing a charge blocking layer on an infrared up-conversion device.
CN101872793B (en) 2010-07-02 2013-06-05 福建钧石能源有限公司 Laminated solar cell and manufacturing method thereof
US9082922B2 (en) 2010-08-18 2015-07-14 Dayan Ban Organic/inorganic hybrid optical amplifier with wavelength conversion
WO2012071107A1 (en) 2010-11-23 2012-05-31 Qd Vision, Inc. Device including semiconductor nanocrystals & method
RU2013127809A (en) 2010-11-23 2014-12-27 Юниверсити Оф Флорида Рисерч Фаундейшн, Инк. IR PHOTODETECTORS WITH HIGH ABILITY TO DETECT AT LOW VOLTAGE EXCITATION
KR101890748B1 (en) 2011-02-01 2018-08-23 삼성전자주식회사 Pixel of multi stacked CMOS image sensor and method of manufacturing the same
US8592801B2 (en) 2011-02-28 2013-11-26 University Of Florida Research Foundation, Inc. Up-conversion device with broad band absorber
CA2828364A1 (en) 2011-02-28 2013-02-28 University Of Florida Research Foundation, Inc. Photodetector and upconversion device with gain (ec)
SG193600A1 (en) 2011-04-05 2013-10-30 Univ Florida Method and apparatus for integrating an infrared (ir) photovoltaic cell on a thin film photovoltaic cell
CN103765588B (en) 2011-06-06 2016-08-24 佛罗里达大学研究基金会有限公司 Integrated IR up-conversion device and the infrared imaging device of cmos image sensor
US9437835B2 (en) 2011-06-06 2016-09-06 University Of Florida Research Foundation, Inc. Transparent infrared-to-visible up-conversion device
WO2012168192A2 (en) 2011-06-07 2012-12-13 Bayer Intellectual Property Gmbh Synthesis of highly fluorescing semiconducting core-shell nanoparticles based on ib, iib, iiia, via elements of the periodic classification.
WO2012178071A2 (en) 2011-06-23 2012-12-27 Brown University Device and methods for temperature and humidity measurements using a nanocomposite film sensor
EP2727154B1 (en) 2011-06-30 2019-09-18 University of Florida Research Foundation, Inc. A method and apparatus for detecting infrared radiation with gain
JP5853486B2 (en) 2011-08-18 2016-02-09 ソニー株式会社 Imaging apparatus and imaging display system
EP2599898A1 (en) 2011-12-01 2013-06-05 Bayer Intellectual Property GmbH Continuous synthesis of high quantum yield InP/ZnS nanocrystals
WO2014178923A2 (en) 2013-01-25 2014-11-06 University Of Florida Research Foundation, Inc. A novel ir image sensor using a solution processed pbs photodetector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9054262B2 (en) * 2009-09-29 2015-06-09 Research Triangle Institute Integrated optical upconversion devices and related methods

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
by "Organic Photovoltaic cells and Organic Up-conversion Devices", pp. 1-173 (2009) to Kim (hereinafter "Kim"), available at: http://ufdc.ufl.edu/UFE0024091/00001 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10700141B2 (en) 2006-09-29 2020-06-30 University Of Florida Research Foundation, Incorporated Method and apparatus for infrared detection and display
US10749058B2 (en) 2015-06-11 2020-08-18 University Of Florida Research Foundation, Incorporated Monodisperse, IR-absorbing nanoparticles and related methods and devices
CN109728122A (en) * 2019-01-03 2019-05-07 吉林大学 One kind being based on FTO/TiO2/MoO3Ultraviolet detector of hetero-junctions and preparation method thereof
US20210360112A1 (en) * 2020-05-15 2021-11-18 Sharp Kabushiki Kaisha Image forming apparatus and document data classification method

Also Published As

Publication number Publication date
CA2840498A1 (en) 2013-01-03
JP6513733B2 (en) 2019-05-15
US10134815B2 (en) 2018-11-20
AU2012275060A1 (en) 2014-01-30
EP2727154A4 (en) 2015-03-04
RU2014102650A (en) 2015-08-10
WO2013003850A8 (en) 2013-05-16
MX2013015214A (en) 2014-03-21
CN103733355A (en) 2014-04-16
EP2727154B1 (en) 2019-09-18
JP2014521214A (en) 2014-08-25
US20140217284A1 (en) 2014-08-07
BR112013033122A2 (en) 2017-01-24
JP2017175149A (en) 2017-09-28
JP6502093B2 (en) 2019-04-17
EP2727154A2 (en) 2014-05-07
CN103733355B (en) 2017-02-08
WO2013003850A2 (en) 2013-01-03
KR102059208B1 (en) 2020-02-07
KR20140064767A (en) 2014-05-28
WO2013003850A3 (en) 2013-04-11

Similar Documents

Publication Publication Date Title
US20170117335A1 (en) Method and apparatus for detecting infrared radiation with gain
US9997571B2 (en) Method and apparatus for providing a charge blocking layer on an infrared up-conversion device
KR102031996B1 (en) Infrared imaging device integrating an ir up-conversion device with a cmos image sensor
US9437835B2 (en) Transparent infrared-to-visible up-conversion device
US20150372046A1 (en) A NOVEL IR IMAGE SENSOR USING A SOLUTION-PROCESSED PbS PHOTODETECTOR
JP6219172B2 (en) Photodetector with gain and up-conversion device (EC)
US9190458B2 (en) Method and apparatus for providing a window with an at least partially transparent one side emitting OLED lighting and an IR sensitive photovoltaic panel

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INCORPO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SO, FRANKY;KIM, DO YOUNG;LEE, JAE WOONG;SIGNING DATES FROM 20140228 TO 20140306;REEL/FRAME:044847/0627

Owner name: NANOHOLDINGS, LLC, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PRADHAN, BHABENDRA K.;REEL/FRAME:044847/0660

Effective date: 20140307

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION