JP2000349365A - Photoelectric current multiplier element - Google Patents

Photoelectric current multiplier element

Info

Publication number
JP2000349365A
JP2000349365A JP11159494A JP15949499A JP2000349365A JP 2000349365 A JP2000349365 A JP 2000349365A JP 11159494 A JP11159494 A JP 11159494A JP 15949499 A JP15949499 A JP 15949499A JP 2000349365 A JP2000349365 A JP 2000349365A
Authority
JP
Japan
Prior art keywords
electrode
layer
photocurrent
ito electrode
ito
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11159494A
Other languages
Japanese (ja)
Inventor
Yoshio Watanabe
好雄 渡辺
Masayoshi Shizuka
昌義 閑
Satoru Tanaka
哲 田中
Tatsuo Fukuda
辰男 福田
Yasuhiro Iiizumi
安広 飯泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futaba Corp
Original Assignee
Futaba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futaba Corp filed Critical Futaba Corp
Priority to JP11159494A priority Critical patent/JP2000349365A/en
Publication of JP2000349365A publication Critical patent/JP2000349365A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

PROBLEM TO BE SOLVED: To increase the S/N ratio by suppressing dark current, while maintaining multiplication factor to some degree. SOLUTION: This element 1 is equipped with an ITO electrode 3 on an element board 2, a TAZ layer 4 having carrier selectivity on the ITO electrode 3, an NTCDA(naphthalene tetracarboxylic acid) layer 5 on the TAZ layer 4, an Au electrode 6 on the NTCDA layer 5, and a drive power source 10 for applying a positive voltage to the Au electrode 6 and applying a negative voltage to the ITO electrode 3. At irradiation of light from outside to the Au electrode 6, photocarriers generated in the NTCDA layer 5 are blocked efficiently with the TAZ layer 4, and a high electric field is generated at the interface to the ITO electrode 3, and electrons are forcedly injected through a channel from the ITO electrode 3, and multiplication of only the photoelectric currents occurs, and besides it increases the multiplication by raising the applied voltage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光電流増倍効果に
よる光電変換を利用し、得た電子を有機エレクトロルミ
ネッセンス(EL)発光の原理を用いて再び光に変換す
る光−光変換素子としての光電流増倍素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light-to-light conversion element for converting obtained electrons into light again using the principle of organic electroluminescence (EL) by utilizing photoelectric conversion by a photocurrent multiplication effect. And a photocurrent multiplying device.

【0002】[0002]

【従来の技術】図6は増倍現象が確認されている光電流
増倍素子の断面図である。この光電流増倍素子11は、
透明なガラス基板からなる素子基板2の内面に、ITO
膜によるITO電極3と、図7の構造式で示される厚さ
500nmの蒸着膜からなるNTCDA(ナフタレンテ
トラカルボン酸)層5と、厚さ400nmのAu蒸着膜
からなるAu電極6とが順次積層形成されたものであ
り、Au電極6には駆動電源10の−極が接続され、I
TO電極3には駆動電源10の+極が接続されている。
2. Description of the Related Art FIG. 6 is a cross-sectional view of a photocurrent multiplier in which a multiplication phenomenon has been confirmed. This photocurrent multiplier 11 is
ITO on the inner surface of the element substrate 2 made of a transparent glass substrate
An ITO electrode 3 of a film, an NTCDA (naphthalenetetracarboxylic acid) layer 5 of a 500 nm-thick vapor-deposited film represented by the structural formula in FIG. 7 and an Au electrode 6 of a 400 nm-thick Au vapor-deposited film are sequentially laminated. The negative electrode of the drive power supply 10 is connected to the Au electrode 6 and
The positive electrode of the drive power supply 10 is connected to the TO electrode 3.

【0003】上記構成による光電流増倍素子11におい
て、両電極3,6間に所定の電圧を印加し、Au電極6
の外側から光を照射する。この光の照射によって生成し
たホール(正孔)は、−極であるAu電極6の近傍にト
ラップホールとして蓄積される。その結果、NTCDA
層5とAu電極6の界面に電界が集中し、−極(Au電
極6)から電子注入が起こって増倍現象が発生する。
In the photocurrent multiplying element 11 having the above-described structure, a predetermined voltage is applied between the electrodes 3 and 6 so that the Au electrode 6
Irradiate light from outside. The holes (holes) generated by this light irradiation are accumulated as trap holes in the vicinity of the Au electrode 6, which is the negative electrode. As a result, NTCDA
An electric field concentrates on the interface between the layer 5 and the Au electrode 6, and electron injection occurs from the negative electrode (Au electrode 6) to cause a multiplication phenomenon.

【0004】具体的には、真空度0.1Paの室温下に
おいて、400nmの単色光の照射により、増倍率数十
万を超える増倍光電流が確認され、またS/N比につい
ては約30倍前後の値が確認されている。
More specifically, a multiplied photocurrent exceeding several hundred thousand is confirmed by irradiation of monochromatic light of 400 nm at room temperature with a degree of vacuum of 0.1 Pa, and the S / N ratio is about 30. A value around twice has been confirmed.

【0005】ここで、前記増倍率(光電流量子効率)と
は、光電流として流れたキャリア数を有機光電層が吸収
したフォトン数で割って算出した数値である。また、S
/N比は、光電流・暗電流比であり、光電流(光照射し
て電圧を印加した時に流れる電流)を暗電流(光照射を
せずに電圧を印加した時に流れる電流)で割って算出し
た数値である。これら増倍率とS/N比とは、印加電圧
に対して相反関係を示している。すなわち、素子が破壊
するまでは、電圧を上げることにより、増倍率は上昇
し、逆にS/N比は減少することが確認されている。具
体的数値を示すと、上記光電流増倍素子11において、
印加電圧25Vのときに増倍率3万倍、S/N比6倍を
示し、印加電圧30Vのときに増倍率11万倍、S/N
比5倍を示す。
Here, the multiplication factor (photocurrent quantum efficiency) is a numerical value calculated by dividing the number of carriers flowing as photocurrent by the number of photons absorbed by the organic photoelectric layer. Also, S
The / N ratio is a photocurrent / dark current ratio, and is obtained by dividing photocurrent (current flowing when voltage is applied by light irradiation) by dark current (current flowing when voltage is applied without light irradiation). It is a calculated numerical value. The multiplication factor and the S / N ratio show a reciprocal relationship with the applied voltage. That is, it has been confirmed that by increasing the voltage, the multiplication factor increases and the S / N ratio decreases until the element is destroyed. To show specific numerical values, in the photomultiplier 11 described above,
When the applied voltage is 25 V, the multiplication factor is 30,000, and the S / N ratio is 6 times. When the applied voltage is 30 V, the multiplication factor is 110,000, and the S / N ratio is S / N.
The ratio is 5 times.

【0006】この増倍現象はペリレン顔料、キナクリド
ン顔料、フタロシアニン顔料においても低温域で確認さ
れている。
[0006] This multiplication phenomenon has also been confirmed in the low temperature range for perylene pigments, quinacridone pigments and phthalocyanine pigments.

【0007】[0007]

【発明が解決しようとする課題】ここで、上述した構造
の従来の光電流増倍素子11について、固体素子への製
品化を想定して大気中の室温状態にて素子特性を確認し
た。
Here, the characteristics of the conventional photomultiplier element 11 having the above-described structure were confirmed at room temperature in the air, assuming commercialization as a solid-state element.

【0008】その結果、上記従来の光電流増倍素子11
によれば、素子破壊までの増倍率は約11万倍程度を確
認できたが、S/N比については5倍程度であり、雑音
特性(熱雑音、ショット雑音等)が劣っていた。
As a result, the conventional photomultiplier 11
According to the results, the multiplication factor up to the destruction of the element was confirmed to be about 110,000 times, but the S / N ratio was about 5 times, and the noise characteristics (thermal noise, shot noise, etc.) were inferior.

【0009】したがって、固体素子として実用化するに
は、増倍率が大きいだけでは不十分であり、暗電流を抑
えてS/N比を極力大きくする必要があった。
Therefore, for practical use as a solid-state device, it is not sufficient to increase the multiplication factor alone, and it is necessary to suppress the dark current and increase the S / N ratio as much as possible.

【0010】そこで、本発明は、上記問題点に鑑みてな
されたものであり、増倍率をある程度維持しながら暗電
流を抑えてS/N比を大きくすることができる光電流増
倍素子を提供することを目的としている。
Accordingly, the present invention has been made in view of the above problems, and provides a photocurrent multiplier capable of increasing the S / N ratio by suppressing the dark current while maintaining the gain to some extent. It is intended to be.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明は、少なくとも光照射側が透光性を
示す電極からなる一対の電極と、前記一対の電極間に設
けられた光電効果を示す有機光電材料層と、前記一対の
電極のうちの陰極電極をなす第1電極と前記有機光電材
料層との間に設けられたキャリアー選択性のあるバッフ
ァー層とを備えたことを特徴とする。
In order to achieve the above object, the invention according to claim 1 is directed to a pair of electrodes, at least on the light-irradiating side, made of a translucent electrode, and a photoelectric converter provided between the pair of electrodes. An organic photoelectric material layer exhibiting an effect, and a buffer layer having carrier selectivity provided between the first electrode serving as a cathode electrode of the pair of electrodes and the organic photoelectric material layer. And

【0012】請求項2の発明は、透光性を有する第1電
極と、前記第1電極に対向して設けられた光が照射され
る側の第2電極と、前記第1電極と前記第2電極との間
に設けられた光電効果を示す有機光電材料層と、前記第
1電極と前記有機光電材料層との間に設けられたキャリ
アー選択性のあるバッファー層と、前記第1電極に−電
圧を印加し、前記第2電極に+電圧を印加する駆動電源
とを備えたことを特徴とする。
According to a second aspect of the present invention, there is provided a first electrode having a light-transmitting property, a second electrode provided to face the first electrode to be irradiated with light, the first electrode and the first electrode. An organic photoelectric material layer exhibiting a photoelectric effect provided between the two electrodes; a buffer layer having carrier selectivity provided between the first electrode and the organic photoelectric material layer; A driving power supply for applying a negative voltage and applying a positive voltage to the second electrode.

【0013】請求項3の発明は、ITO電極と、前記I
TO電極に対向して設けられた光が照射される側のAu
電極と、前記Au電極と前記ITO電極との間に設けら
れたNTCDA層と、前記ITO電極と前記NTCDA
層との間に設けられたキャリアー選択性のあるバッファ
ー層と、前記ITO電極に−電圧を印加し、前記Au電
極に+電圧を印加する駆動電源とを備えたことを特徴と
する。
According to a third aspect of the present invention, an ITO electrode and the I electrode
Au on the side irradiated with light provided opposite to the TO electrode
An electrode, an NTCDA layer provided between the Au electrode and the ITO electrode, the ITO electrode and the NTCDA
A buffer layer having carrier selectivity provided between the first and second layers and a drive power supply for applying a negative voltage to the ITO electrode and applying a positive voltage to the Au electrode.

【0014】請求項4の発明は、請求項1又は2の光電
流増倍素子において、前記第1電極の仕事関数と前記バ
ッファー層のLUMOの差が0.5eV以上であること
を特徴とする。
According to a fourth aspect of the present invention, in the photocurrent multiplier of the first or second aspect, the difference between the work function of the first electrode and the LUMO of the buffer layer is 0.5 eV or more. .

【0015】請求項5の発明は、請求項1〜4のいずれ
かの光電流増倍素子において、前記バッファー層がTA
Z又はBCPからなることを特徴とする。
According to a fifth aspect of the present invention, in the photocurrent multiplying device according to any one of the first to fourth aspects, the buffer layer is made of TA.
Z or BCP.

【0016】請求項6の発明は、請求項3の光電流増倍
素子において、前記ITO電極を設けるための透光性の
基板を有し、前記ITO電極と前記Au電極と前記NT
CDA層と前記バッファー層を封止する外囲器を備えた
ことを特徴とする。
According to a sixth aspect of the present invention, in the photomultiplier according to the third aspect, there is provided a light-transmitting substrate for providing the ITO electrode, wherein the ITO electrode, the Au electrode, and the NT are provided.
An envelope for sealing the CDA layer and the buffer layer is provided.

【0017】請求項7の発明は、請求項6の光電流増倍
素子において、前記外囲器の内部がドライ雰囲気に置換
されていることを特徴とする。
According to a seventh aspect of the present invention, in the photocurrent multiplier of the sixth aspect, the inside of the envelope is replaced with a dry atmosphere.

【0018】[0018]

【発明の実施の形態】図1は本発明による光電流増倍素
子の実施の形態を示す図である。なお、図6の従来の光
電流増倍素子と同一の構成要素には同一番号を付して説
明する。
FIG. 1 is a diagram showing an embodiment of a photocurrent multiplier according to the present invention. The same components as those of the conventional photomultiplier shown in FIG. 6 are denoted by the same reference numerals.

【0019】本実施の形態の光電流増倍素子1は、従来
の光電流増倍素子11におけるITO電極3と有機光電
材料層5との間にキャリアー選択性のあるバッファー層
4を介在させ、ITO電極3を陰極電極としている。こ
れにより、従来の光電流増倍素子11と比較して、印加
電圧に対し、増倍効果増大と暗電流の低減によりS/N
比の改善を図っている。
The photocurrent multiplier 1 of the present embodiment has a carrier-selective buffer layer 4 between the ITO electrode 3 and the organic photoelectric material layer 5 in the conventional photocurrent multiplier 11, The ITO electrode 3 is used as a cathode electrode. As a result, compared with the conventional photomultiplier element 11, the S / N ratio is increased by increasing the multiplication effect and reducing the dark current with respect to the applied voltage.
The ratio is being improved.

【0020】以下、図1に基いて具体的に本例の光電流
増倍素子1の構造を説明する。
Hereinafter, the structure of the photomultiplier 1 of this embodiment will be specifically described with reference to FIG.

【0021】図1に示す光電流増倍素子1は、絶縁性及
び透明性を有するガラス基板からなる素子基板2を基部
としている。この素子基板2の内面には、第1電極とし
てのITO膜からなるITO電極3が所定パターン形状
に形成されている。このITO電極3の上には、キャリ
アー選択性(ホールブロッキング性、電子輸送性)のあ
るバッファー層として、図2に示す構造式からなる厚さ
10nmの薄膜によるTAZ(トリアゾール)層4が形
成されている。
The photocurrent multiplying element 1 shown in FIG. 1 is based on an element substrate 2 made of a glass substrate having insulation and transparency. On the inner surface of the element substrate 2, an ITO electrode 3 made of an ITO film as a first electrode is formed in a predetermined pattern. On this ITO electrode 3, as a buffer layer having carrier selectivity (hole blocking property, electron transport property), a TAZ (triazole) layer 4 of a 10 nm-thick thin film having the structural formula shown in FIG. 2 is formed. ing.

【0022】TAZ層4の上には、光電効果を示す有機
光電材料層として、厚さ500nmのNTCDA(ナフ
タレンテトラカルボン酸)層5が形成されている。NT
CDA層5の上には、第2電極としての金属からなる透
光性電極6が形成されている。本例における透光性電極
6は、NTCDA層5の上に厚さ20nmのAu薄膜で
形成されたAu電極からなる。
On the TAZ layer 4, an NTCDA (naphthalenetetracarboxylic acid) layer 5 having a thickness of 500 nm is formed as an organic photoelectric material layer exhibiting a photoelectric effect. NT
On the CDA layer 5, a translucent electrode 6 made of metal as a second electrode is formed. The translucent electrode 6 in this example is an Au electrode formed of a 20 nm-thick Au thin film on the NTCDA layer 5.

【0023】なお、バッファー層としてのTAZ層4、
光電効果を示すNTCDA層5、透光性電極としてのA
u電極6は、蒸着装置内で抵抗加熱により大気中に曝す
ことなくITO膜付きの素子基板2の上に順次成膜され
る。
The TAZ layer 4 as a buffer layer,
NTCDA layer 5 exhibiting photoelectric effect, A as translucent electrode
The u-electrode 6 is sequentially formed on the element substrate 2 with the ITO film without being exposed to the atmosphere by resistance heating in a vapor deposition device.

【0024】図1に示すように、ITO電極3が形成さ
れた素子基板2と、Au電極6の近傍に配置された透光
性を有する封止部材(例えばガラス基板)7との間は封
着材8で封止される。これにより、密閉されたパネル状
の外囲器9を構成する。
As shown in FIG. 1, a sealing is provided between the element substrate 2 on which the ITO electrode 3 is formed and a light-transmitting sealing member (eg, a glass substrate) 7 disposed near the Au electrode 6. It is sealed with the material 8. Thus, a sealed panel-shaped envelope 9 is formed.

【0025】具体的には、封止部材7の外周縁部分に紫
外線硬化樹脂による封着材8を塗布し、ドライエアーで
置換したグローボックス内で大気に曝すことなく、封止
部材7を素子基板2に張り付け、紫外線で紫外線硬化樹
脂を硬化固定する。なお、外囲器9の内部は、ドライ雰
囲気が保たれていればよく、ドライエアーに限らず、ド
ライ窒素の他、高真空状態に置換してもよい。
More specifically, a sealing material 8 made of an ultraviolet curable resin is applied to the outer peripheral edge portion of the sealing member 7, and the sealing member 7 is exposed to the air in a glow box replaced with dry air. It is attached to the substrate 2 and the ultraviolet curing resin is cured and fixed with ultraviolet light. Note that the inside of the envelope 9 only needs to maintain a dry atmosphere, and is not limited to dry air, and may be replaced with dry nitrogen or a high vacuum state.

【0026】Au電極6の一部は、同一材料により一体
形成された所定パターンの配線を介して素子基板2の端
部に引き出されており、駆動電源10の+極に接続され
ている。同様に、ITO電極3の一部も、同一材料によ
り一体形成された所定パターンの配線を介して素子基板
2の端部に引き出されており、駆動電源10の−極に接
続されている。そして、これら一対の電極(ITO電極
3、Au電極6)間には所定の電圧が印加されるように
なっている。
A part of the Au electrode 6 is led out to the end of the element substrate 2 through a wiring of a predetermined pattern integrally formed of the same material, and is connected to the positive pole of the driving power supply 10. Similarly, a part of the ITO electrode 3 is also drawn out to the end of the element substrate 2 via a wiring of a predetermined pattern integrally formed of the same material, and is connected to the negative pole of the driving power supply 10. A predetermined voltage is applied between the pair of electrodes (the ITO electrode 3 and the Au electrode 6).

【0027】ここで、上記光電流増倍素子1において、
ITO電極3側をマイナスに電圧印加し、波長400n
m、照度8μW/cm2 の単色光をAu電極6側に照射
した時の室温における光電流と、暗状態での暗電流をそ
れぞれの印加電圧に対して測定し、素子が破壊せずに機
能するまでの印加電圧、増倍率(光電流量子収率)及び
S/N比(明暗電流比)を算出した。
Here, in the photocurrent multiplier 1,
A negative voltage is applied to the ITO electrode 3 side, and the wavelength is 400 n
m, the photocurrent at room temperature when monochromatic light having an illuminance of 8 μW / cm 2 was irradiated on the Au electrode 6 side, and the dark current in the dark state were measured with respect to each applied voltage, and the element functioned without being destroyed. Applied voltage, multiplication factor (photocurrent quantum yield) and S / N ratio (light / dark current ratio) were calculated.

【0028】また、本例の光電流増倍素子1との特性比
較のため、バッファー層としてのTAZ層4がない構造
の従来の光電流増倍素子(ITO電極3/NTCDA層
5(500nm)/Au電極6(20nm))を作成
し、同等の条件で実験を行った。
In order to compare the characteristics with the photocurrent multiplier 1 of this embodiment, a conventional photocurrent multiplier (ITO electrode 3 / NTCDA layer 5 (500 nm)) having no TAZ layer 4 as a buffer layer was used. / Au electrode 6 (20 nm)) and an experiment was performed under the same conditions.

【0029】その結果、下記表1〜表3に示す結果が得
られた。
As a result, the results shown in the following Tables 1 to 3 were obtained.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【表3】 [Table 3]

【0033】そして、表1に示すように、本例の光電流
増倍素子1によれば、印加電圧30Vにおいて、増倍率
3万倍、S/N比80倍を記録した。これに対し、従来
の光電流増倍素子11では、表3に示すように、印加電
圧30Vにおいて、増倍率が11万倍と本例の光電流増
倍素子1より優れてはいるものの、S/N比が5倍と本
例の光電流増倍素子1よりも極めて低いという結果が得
られた。
As shown in Table 1, according to the photocurrent multiplying element 1 of this example, at an applied voltage of 30 V, a multiplication factor of 30,000 and an S / N ratio of 80 were recorded. On the other hand, as shown in Table 3, the conventional photocurrent multiplying element 11 has a multiplication factor of 110,000 times at an applied voltage of 30 V, which is superior to the photocurrent multiplying element 1 of the present example. The result was that the / N ratio was 5 times, which was extremely lower than that of the photocurrent multiplier 1 of this example.

【0034】また、表1に示すように、従来の光電流増
倍素子11において、S/N比の改善を優先し、上記本
例の光電流増倍素子1に近づくようにしたが、印加電圧
13Vのときに最高25倍のS/N比しか得られず、印
加電圧を高くしても低くしてもS/N比が下がり、逆に
増倍率が0.2万倍と本例の光電流増倍素子1よりも極
めて低くなるという結果が得られた。
Further, as shown in Table 1, in the conventional photocurrent multiplying element 11, the improvement of the S / N ratio was prioritized so as to approach the photocurrent multiplying element 1 of the present embodiment. At a voltage of 13 V, only a maximum of 25 times the S / N ratio can be obtained, and the S / N ratio decreases even if the applied voltage is increased or decreased. The result was extremely lower than that of the photocurrent multiplier 1.

【0035】さらに、表2に示すように、従来の光電流
増倍素子11において、増倍率を本例の光電流増倍素子
1と同一の3万倍に設定すると、印加電圧25Vで6倍
のS/N比しか得られなかった。
Further, as shown in Table 2, if the multiplication factor of the conventional photocurrent multiplication element 11 is set to 30,000 times, which is the same as that of the photocurrent multiplication element 1 of the present embodiment, it is 6 times at an applied voltage of 25V. Only the S / N ratio of was obtained.

【0036】すなわち、本例の光電流増倍素子1によれ
ば、同一の電圧を印加した場合、従来の光電流増倍素子
11よりもS/N比を大幅に改善することができる。
That is, according to the photocurrent multiplier 1 of this embodiment, when the same voltage is applied, the S / N ratio can be greatly improved as compared with the conventional photocurrent multiplier 11.

【0037】そして、本例の光電流増倍素子1における
S/N比の改善は、ITO電極3と光電効果を示すNT
CDA層5との間にキャリアー選択性(ホールブロック
性、電子輸送性)のあるTAZ層4をバッファー層とし
て積層し、ITO電極3にマイナス電圧を印加すること
によって得られる。
The improvement of the S / N ratio in the photocurrent multiplying element 1 of the present embodiment is achieved by using the ITO electrode 3 and the NT having the photoelectric effect.
It is obtained by laminating a TAZ layer 4 having carrier selectivity (hole blocking property, electron transport property) as a buffer layer between the CDA layer 5 and applying a negative voltage to the ITO electrode 3.

【0038】このメカニズムについては、ITO電極3
とTAZ層4の下記(1)〜(3)の特性から以下のよ
うに推測される。 (1)ITO電極3はP型特性を持ち、マイナス印加時
は電子注入し難い。 (2)TAZ層4はホールに対してブロック性を持ち、
電子は輸送する。 (3)ITO電極3の仕事関数とTAZ層4のLUMO
の差が0.5eV以上と大きく電子注入がし難い。
This mechanism is described in detail in
From the following characteristics (1) to (3) of the TAZ layer 4, it is estimated as follows. (1) The ITO electrode 3 has a P-type characteristic, and it is difficult to inject electrons when a negative voltage is applied. (2) The TAZ layer 4 has a blocking property for holes,
Electrons transport. (3) Work function of ITO electrode 3 and LUMO of TAZ layer 4
Is as large as 0.5 eV or more, making electron injection difficult.

【0039】そして、Au電極6の外側から光が照射さ
れていない状態で、ITO電極3にマイナス電圧が印加
された場合には、ITO電極3から電子が注入し難く、
Au電極6からのホールの注入も少なくTAZ層4にて
ブロックされる。このため、印加電圧を上げても暗電流
は抑えられる。
When a negative voltage is applied to the ITO electrode 3 in a state where light is not irradiated from the outside of the Au electrode 6, electrons are hardly injected from the ITO electrode 3,
The injection of holes from the Au electrode 6 is also small and is blocked by the TAZ layer 4. Therefore, the dark current can be suppressed even when the applied voltage is increased.

【0040】これに対し、Au電極6の外側から光が照
射された時は、NTCDA層5の内部で生成された光キ
ャリア(ホール)が効率良くTAZ層4にてブロック
(トラップ)され、ITO電極3との界面に高電界が発
生し、強制的にITO電極3より電子がトンネル注入さ
れ、光電流のみの増倍が生じ、しかも印加電圧を上げる
ことにより増倍を増す事が出来るものと推測される。
On the other hand, when light is irradiated from the outside of the Au electrode 6, photocarriers (holes) generated inside the NTCDA layer 5 are efficiently blocked (trapped) by the TAZ layer 4, and ITO A high electric field is generated at the interface with the electrode 3, electrons are forcibly tunnel injected from the ITO electrode 3, multiplication of only the photocurrent occurs, and the multiplication can be increased by increasing the applied voltage. Guessed.

【0041】以上説明した推測より、暗電流の低減、光
電流のみの増倍によってS/N比が改善される。すなわ
ち、素子破壊範囲以内であれば、印加電圧を上げても暗
電流の増加は殆ど見られず、光電流のみが増加し、増倍
率及びS/N比共に向上させることができる。
As described above, the S / N ratio is improved by reducing the dark current and multiplying only the photocurrent. That is, within the element breakdown range, even if the applied voltage is increased, almost no increase in the dark current is observed, only the photocurrent increases, and both the multiplication factor and the S / N ratio can be improved.

【0042】ここで、図4は上記光電流増倍素子1のT
AZ層4の膜厚を変えたときの印加電圧に対する増倍度
を示す特性図、図5は同TAZ層の膜厚を変えたときの
印加電圧に対するS/N比を示す特性図である。なお、
Au電極6の外側から照射される光の照射波長を400
nm、照射強度を7.6μw/cm2 とし、TAZ層4
の膜厚を50Å、100Å、200Åと変化させてい
る。
FIG. 4 shows the T of the photocurrent multiplying element 1.
FIG. 5 is a characteristic diagram showing the multiplication factor with respect to the applied voltage when the thickness of the AZ layer 4 is changed, and FIG. 5 is a characteristic diagram showing the S / N ratio with respect to the applied voltage when the thickness of the TAZ layer is changed. In addition,
The irradiation wavelength of light irradiated from the outside of the Au electrode 6 is 400
nm, the irradiation intensity was 7.6 μw / cm 2 , and the TAZ layer 4
Is changed to 50 °, 100 °, and 200 °.

【0043】上記図4及び図5からも明らかなように、
TAZ層4の厚さを制御することにより増倍率及びS/
N比を調整することができる。そして、TAZ層4の厚
さを厚くすれば、増倍率は減少するが、S/N比をさら
に改善することができる。
As is clear from FIGS. 4 and 5,
By controlling the thickness of the TAZ layer 4, the multiplication factor and S /
The N ratio can be adjusted. When the thickness of the TAZ layer 4 is increased, the multiplication factor decreases, but the S / N ratio can be further improved.

【0044】以上の事から次のような改善効果が得られ
る。増倍率を比較的維持しながらS/N比(増倍光電流
に対する暗電流の比)を16倍以上に改善可能であり、
例えば光センサ、光増幅器、波長検出器として固体素子
へ展開した時の雑音特性(熱雑音・ショット雑音等)が
向上し、感度の信頼性が向上する。
From the above, the following improvement effects can be obtained. The S / N ratio (ratio of dark current to multiplied photocurrent) can be improved to 16 times or more while relatively maintaining the multiplication factor.
For example, noise characteristics (thermal noise, shot noise, etc.) when developed into a solid-state device as an optical sensor, an optical amplifier, and a wavelength detector are improved, and the reliability of sensitivity is improved.

【0045】両電極(ITO電極3、Au電極6)間の
印加電圧によって増倍率及びS/N比が制御でき、用途
に応じて特性のコントロールが可能である。
The multiplication factor and the S / N ratio can be controlled by the voltage applied between both electrodes (ITO electrode 3 and Au electrode 6), and the characteristics can be controlled according to the application.

【0046】TAZ層4の膜厚制御により、素子特性と
して増倍率及びS/N比を制御できるので、実使用に合
った固体素子が可能となる。
By controlling the film thickness of the TAZ layer 4, the multiplication factor and the S / N ratio can be controlled as device characteristics, so that a solid-state device suitable for actual use can be realized.

【0047】ところで、上記実施の形態では、バッファ
ー層としてTAZ層4を用いた構成について説明した
が、バッファー層はキャリアー選択性(ホールブロック
性、電子輸送性)のある層であればよい。例えば図3に
示す構造式からなるBCP(バソクプロイン)等の層を
バッファー層としても同様の効果が得られる。
In the above embodiment, the configuration using the TAZ layer 4 as the buffer layer has been described, but the buffer layer may be any layer having carrier selectivity (hole blocking property, electron transport property). For example, the same effect can be obtained by using a layer such as BCP (basocuproin) having the structural formula shown in FIG. 3 as a buffer layer.

【0048】[0048]

【発明の効果】以上の説明で明らかなように、本発明の
光電流増倍素子は、一対の電極間に光電効果を示す有機
光電材料層を挟んだ構造において、一対の電極のうちの
陰極電極と有機光電材料層との間にキャリアー選択性
(ホールブロッキング性、電子輸送性)のあるバッファ
ー層を介在させている。これにより、光照射時には、有
機光電材料層で生成された光キャリア(ホール)が効率
良くバッファー層にてブロック(トラップ)され、陰極
電極との界面に高電界が発生し、強制的に陰極電極より
電子がトンネル注入され、光電流のみの増倍が生じ、し
かも印加電圧を上げることにより増倍を増す。その結
果、増倍率をある程度維持しながら暗電流を抑え、従来
の素子構成に比べてS/N比を大幅に改善することがで
きる。
As is apparent from the above description, the photocurrent multiplier of the present invention has a structure in which an organic photoelectric material layer exhibiting a photoelectric effect is sandwiched between a pair of electrodes. A buffer layer having carrier selectivity (hole blocking property, electron transport property) is interposed between the electrode and the organic photoelectric material layer. As a result, at the time of light irradiation, photocarriers (holes) generated in the organic photoelectric material layer are efficiently blocked (trapped) in the buffer layer, and a high electric field is generated at the interface with the cathode electrode. More electrons are injected into the tunnel and multiplication of only the photocurrent occurs, and the multiplication is increased by increasing the applied voltage. As a result, the dark current can be suppressed while maintaining the multiplication factor to some extent, and the S / N ratio can be greatly improved as compared with the conventional element configuration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による光電流増倍素子の一例の断面図FIG. 1 is a cross-sectional view of an example of a photocurrent multiplier according to the present invention.

【図2】本発明においてバッファー層を構成するTAZ
の構造式を示す図
FIG. 2 shows a TAZ constituting a buffer layer in the present invention.
Diagram showing the structural formula of

【図3】本発明においてバッファー層を構成するBCP
の構造式を示す図
FIG. 3 shows a BCP constituting a buffer layer in the present invention.
Diagram showing the structural formula of

【図4】本発明の光電流増倍素子におけるバッファー層
の膜厚を変えたときの印加電圧に対する増倍度を示す特
性図
FIG. 4 is a characteristic diagram showing the degree of multiplication with respect to applied voltage when the thickness of the buffer layer is changed in the photocurrent multiplier of the present invention.

【図5】本発明の光電流増倍素子におけるバッファー層
の膜厚を変えたときの印加電圧に対するS/N比を示す
特性図
FIG. 5 is a characteristic diagram showing an S / N ratio with respect to an applied voltage when the thickness of a buffer layer is changed in the photocurrent multiplier of the present invention.

【図6】従来の光電流増倍素子の一例の断面図FIG. 6 is a sectional view of an example of a conventional photocurrent multiplier.

【図7】従来の光電流増倍素子において有機層に使用さ
れているNTCDAの構造式を示す図
FIG. 7 is a diagram showing a structural formula of NTCDA used for an organic layer in a conventional photocurrent multiplier.

【符号の説明】[Explanation of symbols]

1…光電流増倍素子、2…素子基板、3…ITO電極
(第1電極)、4…TAZ層(バッファー層)、5…N
TCDA層(有機光電材料層)、6…透光性電極(第2
電極)、7…封止部材、9…外囲器、10…駆動電源。
REFERENCE SIGNS LIST 1 photomultiplier element 2 element substrate 3 ITO electrode (first electrode) 4 TAZ layer (buffer layer) 5 N
TCDA layer (organic photoelectric material layer), 6... Translucent electrode (second
Electrodes), 7: sealing member, 9: envelope, 10: drive power supply.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 哲 千葉県茂原市大芝629 双葉電子工業株式 会社内 (72)発明者 福田 辰男 千葉県茂原市大芝629 双葉電子工業株式 会社内 (72)発明者 飯泉 安広 千葉県茂原市大芝629 双葉電子工業株式 会社内 Fターム(参考) 5F088 AA20 AB11 AB13 BA01 BA04 DA13 FA04 FA05 JA07  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tetsu Tanaka 629 Oshiba, Mobara-shi, Chiba Futaba Electronics Industries Co., Ltd. (72) Inventor Tatsuo Fukuda 629 Oshiba, Mobara-shi, Chiba Futaba Electronics Co., Ltd. Inventor Yasuhiro Iizumi 629 Oshiba, Mobara-shi, Chiba Futaba Electronics Co., Ltd. F-term (reference) 5F088 AA20 AB11 AB13 BA01 BA04 DA13 FA04 FA05 JA07

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも光照射側が透光性を示す電極
からなる一対の電極と、 前記一対の電極間に設けられた光電効果を示す有機光電
材料層と、 前記一対の電極のうちの陰極電極をなす第1電極と前記
有機光電材料層との間に設けられたキャリアー選択性の
あるバッファー層とを備えたことを特徴とする光電流増
倍素子。
1. A pair of electrodes at least including a light-transmitting electrode on a light irradiation side; an organic photoelectric material layer having a photoelectric effect provided between the pair of electrodes; and a cathode electrode of the pair of electrodes. And a buffer layer having carrier selectivity provided between the first electrode and the organic photoelectric material layer.
【請求項2】 透光性を有する第1電極と、 前記第1電極に対向して設けられた光が照射される側の
第2電極と、 前記第1電極と前記第2電極との間に設けられた光電効
果を示す有機光電材料層と、 前記第1電極と前記有機光電材料層との間に設けられた
キャリアー選択性のあるバッファー層と、 前記第1電極に−電圧を印加し、前記第2電極に+電圧
を印加する駆動電源とを備えたことを特徴とする光電流
増倍素子。
2. A first electrode having a light-transmitting property, a second electrode provided to face the first electrode and irradiated with light, and between the first electrode and the second electrode. An organic photoelectric material layer exhibiting a photoelectric effect, a buffer layer having carrier selectivity provided between the first electrode and the organic photoelectric material layer, and a negative voltage applied to the first electrode. And a drive power supply for applying a positive voltage to the second electrode.
【請求項3】 ITO電極と、 前記ITO電極に対向して設けられた光が照射される側
のAu電極と、 前記Au電極と前記ITO電極との間に設けられたNT
CDA層と、 前記ITO電極と前記NTCDA層との間に設けられた
キャリアー選択性のあるバッファー層と、 前記ITO電極に−電圧を印加し、前記Au電極に+電
圧を印加する駆動電源とを備えたことを特徴とする光電
流増倍素子。
3. An ITO electrode, an Au electrode on the side irradiated with light provided opposite to the ITO electrode, and a NT provided between the Au electrode and the ITO electrode.
A CDA layer; a buffer layer having carrier selectivity provided between the ITO electrode and the NTCDA layer; and a driving power supply for applying a negative voltage to the ITO electrode and applying a positive voltage to the Au electrode. A photocurrent multiplying element comprising:
【請求項4】 前記第1電極の仕事関数と前記バッファ
ー層のLUMOの差が0.5eV以上であることを特徴
とする請求項1又は2記載の光電流増倍素子。
4. The photocurrent multiplier according to claim 1, wherein a difference between the work function of the first electrode and the LUMO of the buffer layer is 0.5 eV or more.
【請求項5】 前記バッファー層がTAZ又はBCPか
らなることを特徴とする請求項1〜4のいずれかに記載
の光電流増倍素子。
5. The photocurrent multiplier according to claim 1, wherein said buffer layer is made of TAZ or BCP.
【請求項6】 前記ITO電極を設けるための透光性の
基板を有し、前記ITO電極と前記Au電極と前記NT
CDA層と前記バッファー層を封止する外囲器を備えた
ことを特徴とする請求項3記載の光電流増倍素子。
6. A light-transmitting substrate for providing said ITO electrode, wherein said ITO electrode, said Au electrode and said NT
4. The photocurrent multiplier according to claim 3, further comprising an envelope for sealing the CDA layer and the buffer layer.
【請求項7】 前記外囲器の内部がドライ雰囲気に置換
されていることを特徴とする請求項6記載の光電流増倍
素子。
7. The photocurrent multiplier according to claim 6, wherein the inside of the envelope is replaced with a dry atmosphere.
JP11159494A 1999-06-07 1999-06-07 Photoelectric current multiplier element Pending JP2000349365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11159494A JP2000349365A (en) 1999-06-07 1999-06-07 Photoelectric current multiplier element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11159494A JP2000349365A (en) 1999-06-07 1999-06-07 Photoelectric current multiplier element

Publications (1)

Publication Number Publication Date
JP2000349365A true JP2000349365A (en) 2000-12-15

Family

ID=15695003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11159494A Pending JP2000349365A (en) 1999-06-07 1999-06-07 Photoelectric current multiplier element

Country Status (1)

Country Link
JP (1) JP2000349365A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014514730A (en) * 2011-02-28 2014-06-19 ユニバーシティ オブ フロリダ リサーチ ファウンデーション,インク. Photodetector with gain and up-conversion device (EC)
JP2014521214A (en) * 2011-06-30 2014-08-25 ユニバーシティー オブ フロリダ リサーチ ファウンデーション,インコーポレイテッド Method and apparatus for detecting infrared radiation with gain
US9997571B2 (en) 2010-05-24 2018-06-12 University Of Florida Research Foundation, Inc. Method and apparatus for providing a charge blocking layer on an infrared up-conversion device
US10700141B2 (en) 2006-09-29 2020-06-30 University Of Florida Research Foundation, Incorporated Method and apparatus for infrared detection and display
US10749058B2 (en) 2015-06-11 2020-08-18 University Of Florida Research Foundation, Incorporated Monodisperse, IR-absorbing nanoparticles and related methods and devices

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10700141B2 (en) 2006-09-29 2020-06-30 University Of Florida Research Foundation, Incorporated Method and apparatus for infrared detection and display
US9997571B2 (en) 2010-05-24 2018-06-12 University Of Florida Research Foundation, Inc. Method and apparatus for providing a charge blocking layer on an infrared up-conversion device
JP2014514730A (en) * 2011-02-28 2014-06-19 ユニバーシティ オブ フロリダ リサーチ ファウンデーション,インク. Photodetector with gain and up-conversion device (EC)
JP2014521214A (en) * 2011-06-30 2014-08-25 ユニバーシティー オブ フロリダ リサーチ ファウンデーション,インコーポレイテッド Method and apparatus for detecting infrared radiation with gain
JP2017175149A (en) * 2011-06-30 2017-09-28 ユニバーシティー オブ フロリダ リサーチ ファウンデーション, インコーポレイテッドUniversity Of Florida Research Foundation, Inc. Method and apparatus for detecting infrared radiation with gain
US10134815B2 (en) 2011-06-30 2018-11-20 Nanoholdings, Llc Method and apparatus for detecting infrared radiation with gain
US10749058B2 (en) 2015-06-11 2020-08-18 University Of Florida Research Foundation, Incorporated Monodisperse, IR-absorbing nanoparticles and related methods and devices

Similar Documents

Publication Publication Date Title
US8796699B2 (en) Method and apparatus for sensing infrared radiation
JP6219172B2 (en) Photodetector with gain and up-conversion device (EC)
Yang et al. Near infrared to visible light organic up-conversion devices with photon-to-photon conversion efficiency approaching 30%
Hammond et al. Balancing high gain and bandwidth in multilayer organic photodetectors with tailored carrier blocking layers
JP2010263039A (en) Lighting device
WO2017044805A1 (en) Light emitting phototransistor
JP2000349365A (en) Photoelectric current multiplier element
Kaneko et al. Fast response of organic photodetectors utilizing multilayered metal-phthalocyanine thin films
CN104681730A (en) Ultraviolet organic electroluminescence device based on gradient structure hole injection transmission and preparation method thereof
JP5532887B2 (en) Organic electronics panel
Ni et al. Organic light-emitting diode with TiOPc layer–a new multifunctional optoelectronic device
Katsume et al. Light amplification device using organic electroluminescent diode coupled with photoresponsive organic pigment film
JP3426211B2 (en) High-speed response photocurrent multiplier
Kovac et al. Transient electroluminescence of single and multilayer organic light emitting devices
JP3357030B2 (en) Multiplier using resin-dispersed organic semiconductor film
JP2000058942A (en) Photoelectric current doubling element
JPH06275864A (en) Light-to-light conversion element
JP2001006876A (en) Light-light transducer
JP4132761B2 (en) Charge injection controlled organic transistor device
JP3585452B2 (en) Organic optical computing device
Seo et al. Influence of thickness of poly (3-hexylthiophene-2, 5-diyl) hole transport layer on electrical characteristics of lead sulfide quantum dot-based shortwave infrared photodiodes
Kumar et al. Study of electron mobility in small molecular SAlq by transient electroluminescence method
JPWO2018198529A1 (en) Organic electroluminescence element, optical sensor and biological sensor
El Amrani et al. Organic optocoupler consisting of an optimized blue organic light emitting diode and an organic photoconductor
JP4170026B2 (en) Coplanar type organic light-light conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090113