US20160082558A1 - Numerically controlled machine tool - Google Patents

Numerically controlled machine tool Download PDF

Info

Publication number
US20160082558A1
US20160082558A1 US14/888,384 US201414888384A US2016082558A1 US 20160082558 A1 US20160082558 A1 US 20160082558A1 US 201414888384 A US201414888384 A US 201414888384A US 2016082558 A1 US2016082558 A1 US 2016082558A1
Authority
US
United States
Prior art keywords
post member
driving
machine tool
numerically controlled
controlled machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/888,384
Other versions
US10118264B2 (en
Inventor
Byung Duk Min
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20160082558A1 publication Critical patent/US20160082558A1/en
Application granted granted Critical
Publication of US10118264B2 publication Critical patent/US10118264B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/01Frames, beds, pillars or like members; Arrangement of ways
    • B23Q1/015Frames, beds, pillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C1/00Milling machines not designed for particular work or special operations
    • B23C1/002Gantry-type milling machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C1/00Milling machines not designed for particular work or special operations
    • B23C1/007Milling machines not designed for particular work or special operations movable milling machines, e.g. on rails
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/01Frames, beds, pillars or like members; Arrangement of ways
    • B23Q1/012Portals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/01Frames, beds, pillars or like members; Arrangement of ways
    • B23Q1/017Arrangements of ways
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • B23Q1/28Means for securing sliding members in any desired position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/44Movable or adjustable work or tool supports using particular mechanisms
    • B23Q1/46Movable or adjustable work or tool supports using particular mechanisms with screw pairs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/22Feeding members carrying tools or work
    • B23Q5/32Feeding working-spindles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/70Stationary or movable members for carrying working-spindles for attachment of tools or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/155Arrangements for automatic insertion or removal of tools, e.g. combined with manual handling
    • B23Q3/157Arrangements for automatic insertion or removal of tools, e.g. combined with manual handling of rotary tools
    • B23Q3/15706Arrangements for automatic insertion or removal of tools, e.g. combined with manual handling of rotary tools a single tool being inserted in a spindle directly from a storage device, i.e. without using transfer devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/22Feeding members carrying tools or work
    • B23Q5/34Feeding other members supporting tools or work, e.g. saddles, tool-slides, through mechanical transmission
    • B23Q5/38Feeding other members supporting tools or work, e.g. saddles, tool-slides, through mechanical transmission feeding continuously
    • B23Q5/40Feeding other members supporting tools or work, e.g. saddles, tool-slides, through mechanical transmission feeding continuously by feed shaft, e.g. lead screw
    • B23Q5/44Mechanism associated with the moving member
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/306664Milling including means to infeed rotary cutter toward work
    • Y10T409/307728Milling including means to infeed rotary cutter toward work including gantry-type cutter-carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/30784Milling including means to adustably position cutter
    • Y10T409/307952Linear adjustment
    • Y10T409/308288Linear adjustment including gantry-type cutter-carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/309576Machine frame
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T483/00Tool changing
    • Y10T483/17Tool changing including machine tool or component
    • Y10T483/1733Rotary spindle machine tool [e.g., milling machine, boring, machine, grinding machine, etc.]
    • Y10T483/179Direct tool exchange between spindle and matrix
    • Y10T483/1793Spindle comprises tool changer
    • Y10T483/1795Matrix indexes selected tool to transfer position

Definitions

  • the present invention relates to a numerically controlled machine tool, and more particularly, to a numerically controlled machine tool which may accurately control a position of a machining member for machining a workpiece.
  • a numerically controlled machine tool is a machine tool that is driven by using a numerical control device and is called an NC machine tool.
  • the numerical control device includes a calculator command mechanism for ordering an operation of the machine tool, a mechanism for detecting whether the machine tool moves according to the command, and a mechanism that compares a target value to a detected value to automatically correct an error when the target value and the detected value are different from each other.
  • a machining order, a cutting speed, and a kind or size of cutting tool which are provided as machining conditions of a workpiece are analyzed as symbols that are expressed by specific numbers from a machining drawing.
  • a command is inputted into the machine tool to operate according to the command, thereby automatically cutting the workpiece.
  • Numerically controlled machine tools that are produced for manufacturing a plurality of components may be applicable to cam cutting by a milling machine or a process for automatically a punching position in a boring machine.
  • the numerical control method may be adopted to a lathe and thus generalized.
  • an NC machine tool in which a computer is built may be called a computerized numerical control (CNC) machine tool.
  • CNC computerized numerical control
  • a main shaft spindle bundle for machining a workpiece vertically and horizontally moves to automatically determine a position of a chuck for machining the workpiece.
  • a pair of guides for horizontally moving the main shaft spindle bundle is lengthily installed in a horizontal direction.
  • the two guides are vertically spaced apart from each other.
  • a back surface of the main spindle bundle is slidably coupled to the pair of guides.
  • three driving parts are vertically slid to automatically determine a position of a cutter for machining a workpiece.
  • a pair of guides for vertically sliding the three driving parts is lengthily installed in a vertical direction on a front surface of a post member.
  • the two guides are horizontally spaced apart from each other.
  • a back surface of the sliding member for supporting the three driving parts is slidably coupled to the pair of guides.
  • an object of the present invention is to provide a numerically controlled machine tool in which concentration of a post member, which is slid to control a position of a machining member, in one direction is prevented to realize smooth sliding of the post member and accurately locate the machining member at a proper position.
  • a numerically controlled machine tool of the present invention includes: a first post member installed on a main body so as to be slidable in a left/right direction; and first, second, and third horizontal rails lengthily installed on the main body in the left/right direction, the first, second, and third horizontal rails being respectively coupled to two point of a back surface and one point of a front surface of the first post member to guide the sliding of the first post member.
  • the first and second horizontal rails may be installed to be vertically spaced apart from each other on a rear side of the first post member, and the third horizontal rail may be installed on a front side of the first post member.
  • the third horizontal rail may be disposed at a position corresponding between heights of the first and second horizontal rails.
  • a first driving part constituted by a first driving motor and a first driving screw to slide the first post member may be disposed between the first and second rails, wherein the first driving screw may be disposed at a center of a line connecting driving centers of the first and second horizontal rails to each other, and the third horizontal rail may be disposed on a line that is perpendicular to the center of the line connecting the driving centers of the first and second horizontal rails to each other.
  • a line connecting driving centers of the first and third horizontal rails to each other and a line connecting driving centers of the second and third horizontal rails to each other may have the same length.
  • the numerically controlled machine tool may further include: a second post member installed on the first post member so as to be slidable in a vertical direction; and first, second, and third vertical rails lengthily installed on the second post member in the vertical direction, the first, second, and third being respectivley coupled to three points of the first post member to guide elevation of the second post member with respect to the first post member.
  • the first and second vertical rails may be installed opposite to each other on both side portions of the second post member, and the third vertical rail may be installed on a front surface of he second post member.
  • a second driving part constituted by a second driving screw that is screw-coupled to a back surface of the second post member to vertically slide the second post member and a second driving motor for driving the second driving screw may be lengthily installed at a rear center of the second post member in the vertical direction, and the third vertical rail and the second driving screw may be disposed in parallel to each other on opposite sides with respect to the second post member.
  • the numerically controlled machine tool according to the present invention may have following effects.
  • the load of the first post member may be supported by the third horizontal rail to minimize the position displacement, which may occur by the errors of the first and second horizontal rails, due to the load of the first post member.
  • the first driving screw may be disposed at a center of the line connecting the driving centers of the first and second horizontal rails to each other, and the third horizontal rail may be disposed at a position corresponding between the heights of the first and second horizontal rails.
  • the third horizontal rail may be disposed on the line that is perpendicular to the center of the line connecting the first and second horizontal lines to each other.
  • the run-out error of the second post member in the left/right and front/rear directions, which may occur by the horizontal movement of the first post member according to the position of the second post member may be minimized to allow the second post member to be stably and accurately slid in the vertical direction.
  • the force imbalance which may occur in the first and second vertical rails by the third vertical rail when the second driving screw rotates, may be restrained to allow the second post member to be stably and smoothly slid.
  • the machining member for machining the workpiece may be accurately controlled in position.
  • FIG. 1 is a perspective view of a numerically controlled machine tool according to a preferred embodiment of the present invention.
  • FIG. 2 is an enlarged perspective view illustrating a state in which a first post member is installed on an upper body.
  • FIG. 3 is a view illustrating a relationship between the first member, a horizontal rail, and a first driving screw.
  • FIG. 4 is a view illustrating an arrangement relationship between first, second, and third horizontal rails and the first driving screw.
  • FIG. 5 is an enlarged perspective view illustrating a state in which a second post member is installed on the first post member.
  • FIG. 6 is a view illustrating a relationship between the second post member, a vertical rail, and a second driving screw.
  • FIG. 1 is a perspective view of a numerically controlled machine tool according to a preferred embodiment of the present invention.
  • a numerically controlled machine tool includes a lower body 10 , an upper body 20 , a first post member 30 , a first driving part 40 , a second post member 50 , a second driving part 60 , and a worktable 70 .
  • the lower body 10 has a flat top surface.
  • the worktable 70 is installed on the top surface of the lower body 10 so as to be slidable along a rail (not shown).
  • the upper body 20 is installed on the top surface of the lower body 10 to support the first post member 30 , the first driving part 40 , the second post member 50 , and the second driving part 60 .
  • the upper body 20 is constituted by a pair of supports 21 and 22 that are spaced apart from each other forward and backward to support the above-described components.
  • the front support 21 that is disposed at a front side may have a height less than that of the rear support 22 that is disposed at a rear side.
  • the front support 21 and the rear support 22 are spaced a predetermined distance from each other.
  • the first post member 30 is disposed between the front and rear supports 21 and 22 so as to be slidable in a left/right direction.
  • the first post member 30 is installed on the upper body so as to be slidable in the left/right direction. Two points of a rear surface and one point of a front surface of the first post member 30 may be slidably coupled to first, second, and third horizontal rails that are disposed on the upper body 20 , respectively.
  • the first driving part 40 is installed on a front surface of the rear support 22 of the two supports 21 and 22 constituting the upper body 20 to laterally move the first post member 30 when the first driving part 40 is driven.
  • the first driving part 40 includes a first driving motor 41 and a first driving screw 42 shaft-coupled to the first driving motor 41 and to which a first coupling part 33 (that will be described below) disposed on the back surface of the first post member 30 is screw-coupled outside the first driving motor 41 .
  • the second post member 50 is installed on the first post member 30 so as to be vertically slidable.
  • a machining member (not shown) for machining the workpiece is mounted on a lower of the second post member 50 .
  • the second driving part 60 is installed on the back surface of the first post member 30 to vertically move the second post member 50 when the second driving part 60 is driven.
  • the worktable 70 is installed on the top surface of the lower body 10 , and the workpiece is mounted on a top surface of the workpiece 70 .
  • the worktable 70 is installed to be slidable forward and backward by a third driving part (not shown).
  • FIG. 2 is an enlarged perspective view illustrating a state in which the first post member is installed on the upper body
  • FIG. 3 is a view illustrating a relationship between the first member, the horizontal rail, and the first driving screw
  • FIG. 4 is a view illustrating an arrangement relationship between the first, second, and third horizontal rails and the first driving screw.
  • the first, second, and third horizontal rails 80 , 81 , and 82 for guiding the sliding of the first post member 30 are lengthily installed on the two supports 21 and 21 constituting the upper body 20 in the left/right direction. As described above, a top surface of the rear support 22 has a height greater than that of a top surface of the front support 21 .
  • the first horizontal rail 80 is installed on the top surface of the rear support 22 , and a top surface of the first horizontal rail 80 is disposed above the top surface of the rear support 22 .
  • the second horizontal rail 81 is installed to be spaced a predetermined distance from the first horizontal rail 80 on a front surface of the rear support 22 , and a top surface of the second horizontal rail faces a front side.
  • the second horizontal rail 81 is disposed to protrude forward from the first horizontal rail 80 .
  • the third horizontal rail 82 is installed on the top surface of the front support 21 , and a top surface of the third horizontal rail 82 is disposed above the top surface of the front support 21 .
  • Sliding parts 31 respectively and slidably engaged with the horizontal rails 80 , 81 , and 82 are disposed on the two points of the back surface and the one point of the front surface of the first post member 30 .
  • the sliding part 31 engaged with the third horizontal rail 82 may support the load of the first post member 30 , which is concentrated forward, to secure a stable position of the first post member 30 .
  • the first driving screw 42 is disposed at a center of a line L 1 connecting a driving center of the first horizontal rail 80 to a driving center of the second horizontal rail 81 .
  • the third horizontal rail 82 is disposed at a position corresponding between the heights of the first and second horizontal rails 80 and 81 .
  • the third horizontal rail 82 is disposed on a line that is perpendicular to a center of the line L 1 connecting the first and second horizontal rails 80 and 81 to each other.
  • a virtual line L 2 connecting driving centers of the first and third horizontal rails 80 and 82 to each other and a virtual line L 3 connecting driving centers of the second and third horizontal rails 81 and 82 to each other have the same length.
  • a triangle that is defined by the lines L 1 , L 2 , and L 3 connecting the driving centers of the horizontal rails 80 , 81 , and 82 to each other may be an isosceles triangle. This is done for a reason in which an imbalance in force that is transmitted into the first and second horizontal rails 80 and 81 due to moment generated by the third horizontal rail 82 when the first driving screw 41 rotates is solved to realize the stable sliding.
  • the machining member for machining the workpiece may be accurately controlled in position.
  • the first driving screw 41 is shaft-coupled to the first driving motor 41 , and a first coupling part 32 disposed on the back surface of the first post member 30 is screw-coupled to the outside of the first driving screw 42 .
  • the first driving motor 41 is driven, the first post member 30 is laterally slid in a state where rotation of the first driving screw 42 is prevented when the first driving screw 42 rotates.
  • FIG. 5 is an enlarged perspective view illustrating a state in which the second post member is installed on the first post member
  • FIG. 6 is a view illustrating a relationship between the second post member, the vertical rail, and the second driving screw.
  • An installation space through which the second post member 50 is installed to vertically pass is provided in the first post member 30 .
  • a plurality of sliding guides 33 respectively and slidably engaged with first, second, and third vertical rails 90 , 91 , and 92 that will be described below are installed inside the installation space.
  • the second post member 50 has a hollow and a flat back surface when viewed in a plane. Also, the second post member 50 has a curved front surface and both curved side portions.
  • the vertical rails 90 , 91 , and 92 for guiding the sliding of the second post member 50 in a vertical direction are lengthily installed on both side portions and front surface of the second post member 50 in the vertical direction.
  • the first and second vertical rails 90 and 91 are installed on both side portions of the second post member 50 to face each other. This is done for preventing the horizontal movement due to a change in vertical height of the second post member 50 , which occurs by the horizontal movement of the first post member 30 , from occurring.
  • the third vertical rail 92 is installed at a center of the front surface of the second post member 50 . This is done for preventing the forward and backward movement due to a change in center of gravity of the second post member 50 , which occurs when the second post member is vertically slid, from occurring.
  • the second driving part 60 is installed at a rear center of the second post member 50 .
  • the second driving part 60 includes a second driving motor 61 and a second driving screw 62 shaft-coupled to the second driving motor 61 and to which a second coupling part 51 disposed on the back surface of the second post member is screw-coupled outside the second driving motor 61 .
  • the second driving screw 62 is disposed at the rear center of the second post member 50
  • the third vertical rail 92 is disposed at a center of the front surface of the second post member 50 .
  • the third vertical rail 92 and the second driving screw 62 are disposed parallel to each other on opposite sides with respect to the second post member 50 .
  • the imbalance of the force transmitted into the first and second vertical rails 90 and 91 due to the moment occurring by the third vertical rail 92 when the second driving screw 62 rotates may be solved to allow the second post member 50 to be stably and smoothly slid. Therefore, the machining member for machining the workpiece may be accurately controlled in position.
  • Front support 22 Rear support
  • First coupling part 32 Sliding guide
  • Second coupling part 60 Second driving part
  • Second driving motor 63 Second driving screw
  • Second horizontal rail 82 Third horizontal rail

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Machine Tool Units (AREA)

Abstract

A numerically controlled machine tool that can accurately control a position of a machining member for machining a workpiece. The numerically controlled machine tool comprises: a first post member installed on a main body slidingly in a left/right direction; and first, second and third horizontal rails installed on the main body lengthily in the left/right direction and respectively coupled to two points of the rear surface and one point of the front surface of the first post member for guiding sliding of the first post member.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a numerically controlled machine tool, and more particularly, to a numerically controlled machine tool which may accurately control a position of a machining member for machining a workpiece.
  • BACKGROUND OF THE INVENTION
  • A numerically controlled machine tool is a machine tool that is driven by using a numerical control device and is called an NC machine tool. The numerical control device includes a calculator command mechanism for ordering an operation of the machine tool, a mechanism for detecting whether the machine tool moves according to the command, and a mechanism that compares a target value to a detected value to automatically correct an error when the target value and the detected value are different from each other.
  • A machining order, a cutting speed, and a kind or size of cutting tool which are provided as machining conditions of a workpiece are analyzed as symbols that are expressed by specific numbers from a machining drawing. When these symbols are inputted into the control device, a command is inputted into the machine tool to operate according to the command, thereby automatically cutting the workpiece.
  • Numerically controlled machine tools that are produced for manufacturing a plurality of components may be applicable to cam cutting by a milling machine or a process for automatically a punching position in a boring machine. In recent years, the numerical control method may be adopted to a lathe and thus generalized. As semiconductor technologies and computers are developed, an NC machine tool in which a computer is built may be called a computerized numerical control (CNC) machine tool.
  • Examples of the CNC machine tool according to the related art are disclosed in Korean Patent Application No. 1996-0013171 (hereinafter, referred to as “Prior Document 1”) and Korean Patent Application No. 2009-0032675 (hereinafter, referred to as “Prior Document 2”).
  • According to the CNC lathe of Prior Document 1, a main shaft spindle bundle for machining a workpiece vertically and horizontally moves to automatically determine a position of a chuck for machining the workpiece. Here, a pair of guides for horizontally moving the main shaft spindle bundle is lengthily installed in a horizontal direction. The two guides are vertically spaced apart from each other. A back surface of the main spindle bundle is slidably coupled to the pair of guides.
  • According to the CNC lathe of Prior Document 1, which has the above-described structure, only the back surface of the main shaft spindle is supported by the guides, and a front surface is not supported. Thus, while the main shaft spindle bundle is horizontally slid, a load may be concentrated forward to interrupt smooth sliding. As a result, it may be difficult to accurately control a position of the chuck.
  • According to the CNC machine tool of Prior Document 2, three driving parts are vertically slid to automatically determine a position of a cutter for machining a workpiece. Here, a pair of guides for vertically sliding the three driving parts is lengthily installed in a vertical direction on a front surface of a post member. The two guides are horizontally spaced apart from each other. A back surface of the sliding member for supporting the three driving parts is slidably coupled to the pair of guides.
  • According to the CNC machine tool of Prior Document 2, which has the above-described structure, only the back surface of the sliding member is supported by the guides, and a front surface is not supported, like Prior Document 1. Thus, while the sliding member is vertically slid, a load may be concentrated forward to interrupt smooth sliding. As a result, it may be difficult to accurately control a position of the cutter.
  • SUMMARY OF THE INVENTION Technical Problem
  • To solve the conventional problems as described above, an object of the present invention is to provide a numerically controlled machine tool in which concentration of a post member, which is slid to control a position of a machining member, in one direction is prevented to realize smooth sliding of the post member and accurately locate the machining member at a proper position.
  • Technical Solution
  • A numerically controlled machine tool of the present invention includes: a first post member installed on a main body so as to be slidable in a left/right direction; and first, second, and third horizontal rails lengthily installed on the main body in the left/right direction, the first, second, and third horizontal rails being respectively coupled to two point of a back surface and one point of a front surface of the first post member to guide the sliding of the first post member.
  • The first and second horizontal rails may be installed to be vertically spaced apart from each other on a rear side of the first post member, and the third horizontal rail may be installed on a front side of the first post member.
  • The third horizontal rail may be disposed at a position corresponding between heights of the first and second horizontal rails.
  • A first driving part constituted by a first driving motor and a first driving screw to slide the first post member may be disposed between the first and second rails, wherein the first driving screw may be disposed at a center of a line connecting driving centers of the first and second horizontal rails to each other, and the third horizontal rail may be disposed on a line that is perpendicular to the center of the line connecting the driving centers of the first and second horizontal rails to each other.
  • A line connecting driving centers of the first and third horizontal rails to each other and a line connecting driving centers of the second and third horizontal rails to each other may have the same length.
  • The numerically controlled machine tool may further include: a second post member installed on the first post member so as to be slidable in a vertical direction; and first, second, and third vertical rails lengthily installed on the second post member in the vertical direction, the first, second, and third being respectivley coupled to three points of the first post member to guide elevation of the second post member with respect to the first post member.
  • The first and second vertical rails may be installed opposite to each other on both side portions of the second post member, and the third vertical rail may be installed on a front surface of he second post member.
  • A second driving part constituted by a second driving screw that is screw-coupled to a back surface of the second post member to vertically slide the second post member and a second driving motor for driving the second driving screw may be lengthily installed at a rear center of the second post member in the vertical direction, and the third vertical rail and the second driving screw may be disposed in parallel to each other on opposite sides with respect to the second post member.
  • Advantages Effects
  • The numerically controlled machine tool according to the present invention may have following effects.
  • First, since the two points of the back surface and the one point of the front surface of the first post member that is slid in the left/right direction are slidably supported by the first, second, and third horizontal rails, the load of the first post member may be supported by the third horizontal rail to minimize the position displacement, which may occur by the errors of the first and second horizontal rails, due to the load of the first post member.
  • Particularly, the first driving screw may be disposed at a center of the line connecting the driving centers of the first and second horizontal rails to each other, and the third horizontal rail may be disposed at a position corresponding between the heights of the first and second horizontal rails. Here, the third horizontal rail may be disposed on the line that is perpendicular to the center of the line connecting the first and second horizontal lines to each other. Thus, when the first driving screw rotates, the force imbalance, which may occur by the third horizontal rail, may be restrained to allow the first post member to be stably slid. Thus, the machining member for machining the workpiece may be accurately controlled in position.
  • Second, since the three points of the first post member and the first, second, and third vertical rails disposed on the second post member are slidably coupled to each other, the run-out error of the second post member in the left/right and front/rear directions, which may occur by the horizontal movement of the first post member according to the position of the second post member may be minimized to allow the second post member to be stably and accurately slid in the vertical direction.
  • Particularly, if the third vertical rail is disposed at a position that is parallel and opposite to the second driving screw with respect to the second post member, the force imbalance, which may occur in the first and second vertical rails by the third vertical rail when the second driving screw rotates, may be restrained to allow the second post member to be stably and smoothly slid. Thus, the machining member for machining the workpiece may be accurately controlled in position.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of a numerically controlled machine tool according to a preferred embodiment of the present invention.
  • FIG. 2 is an enlarged perspective view illustrating a state in which a first post member is installed on an upper body.
  • FIG. 3 is a view illustrating a relationship between the first member, a horizontal rail, and a first driving screw.
  • FIG. 4 is a view illustrating an arrangement relationship between first, second, and third horizontal rails and the first driving screw.
  • FIG. 5 is an enlarged perspective view illustrating a state in which a second post member is installed on the first post member.
  • FIG. 6 is a view illustrating a relationship between the second post member, a vertical rail, and a second driving screw.
  • DETAILED DESCRIPTION
  • Hereinafter, a numerically controlled machine tool according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
  • FIG. 1 is a perspective view of a numerically controlled machine tool according to a preferred embodiment of the present invention.
  • A numerically controlled machine tool according to the present invention includes a lower body 10, an upper body 20, a first post member 30, a first driving part 40, a second post member 50, a second driving part 60, and a worktable 70.
  • The lower body 10 has a flat top surface. The worktable 70 is installed on the top surface of the lower body 10 so as to be slidable along a rail (not shown).
  • The upper body 20 is installed on the top surface of the lower body 10 to support the first post member 30, the first driving part 40, the second post member 50, and the second driving part 60. The upper body 20 is constituted by a pair of supports 21 and 22 that are spaced apart from each other forward and backward to support the above-described components. The front support 21 that is disposed at a front side may have a height less than that of the rear support 22 that is disposed at a rear side. The front support 21 and the rear support 22 are spaced a predetermined distance from each other. The first post member 30 is disposed between the front and rear supports 21 and 22 so as to be slidable in a left/right direction.
  • The first post member 30 is installed on the upper body so as to be slidable in the left/right direction. Two points of a rear surface and one point of a front surface of the first post member 30 may be slidably coupled to first, second, and third horizontal rails that are disposed on the upper body 20, respectively.
  • The first driving part 40 is installed on a front surface of the rear support 22 of the two supports 21 and 22 constituting the upper body 20 to laterally move the first post member 30 when the first driving part 40 is driven. The first driving part 40 includes a first driving motor 41 and a first driving screw 42 shaft-coupled to the first driving motor 41 and to which a first coupling part 33 (that will be described below) disposed on the back surface of the first post member 30 is screw-coupled outside the first driving motor 41.
  • The second post member 50 is installed on the first post member 30 so as to be vertically slidable. A machining member (not shown) for machining the workpiece is mounted on a lower of the second post member 50.
  • The second driving part 60 is installed on the back surface of the first post member 30 to vertically move the second post member 50 when the second driving part 60 is driven.
  • The worktable 70 is installed on the top surface of the lower body 10, and the workpiece is mounted on a top surface of the workpiece 70. The worktable 70 is installed to be slidable forward and backward by a third driving part (not shown).
  • FIG. 2 is an enlarged perspective view illustrating a state in which the first post member is installed on the upper body, FIG. 3 is a view illustrating a relationship between the first member, the horizontal rail, and the first driving screw, and FIG. 4 is a view illustrating an arrangement relationship between the first, second, and third horizontal rails and the first driving screw.
  • The first, second, and third horizontal rails 80, 81, and 82 for guiding the sliding of the first post member 30 are lengthily installed on the two supports 21 and 21 constituting the upper body 20 in the left/right direction. As described above, a top surface of the rear support 22 has a height greater than that of a top surface of the front support 21.
  • The first horizontal rail 80 is installed on the top surface of the rear support 22, and a top surface of the first horizontal rail 80 is disposed above the top surface of the rear support 22. The second horizontal rail 81 is installed to be spaced a predetermined distance from the first horizontal rail 80 on a front surface of the rear support 22, and a top surface of the second horizontal rail faces a front side. The second horizontal rail 81 is disposed to protrude forward from the first horizontal rail 80. The third horizontal rail 82 is installed on the top surface of the front support 21, and a top surface of the third horizontal rail 82 is disposed above the top surface of the front support 21.
  • Sliding parts 31 respectively and slidably engaged with the horizontal rails 80, 81, and 82 are disposed on the two points of the back surface and the one point of the front surface of the first post member 30.
  • The sliding part 31 engaged with the third horizontal rail 82 may support the load of the first post member 30, which is concentrated forward, to secure a stable position of the first post member 30.
  • The first driving screw 42 is disposed at a center of a line L1 connecting a driving center of the first horizontal rail 80 to a driving center of the second horizontal rail 81. Also, the third horizontal rail 82 is disposed at a position corresponding between the heights of the first and second horizontal rails 80 and 81. Here, it is preferable that the third horizontal rail 82 is disposed on a line that is perpendicular to a center of the line L1 connecting the first and second horizontal rails 80 and 81 to each other. Also, it is preferable that a virtual line L2 connecting driving centers of the first and third horizontal rails 80 and 82 to each other and a virtual line L3 connecting driving centers of the second and third horizontal rails 81 and 82 to each other have the same length. Thus, a triangle that is defined by the lines L1, L2, and L3 connecting the driving centers of the horizontal rails 80, 81, and 82 to each other may be an isosceles triangle. This is done for a reason in which an imbalance in force that is transmitted into the first and second horizontal rails 80 and 81 due to moment generated by the third horizontal rail 82 when the first driving screw 41 rotates is solved to realize the stable sliding. Thus, the machining member for machining the workpiece may be accurately controlled in position.
  • The first driving screw 41 is shaft-coupled to the first driving motor 41, and a first coupling part 32 disposed on the back surface of the first post member 30 is screw-coupled to the outside of the first driving screw 42. Thus, when the first driving motor 41 is driven, the first post member 30 is laterally slid in a state where rotation of the first driving screw 42 is prevented when the first driving screw 42 rotates.
  • FIG. 5 is an enlarged perspective view illustrating a state in which the second post member is installed on the first post member, and FIG. 6 is a view illustrating a relationship between the second post member, the vertical rail, and the second driving screw.
  • An installation space through which the second post member 50 is installed to vertically pass is provided in the first post member 30. A plurality of sliding guides 33 respectively and slidably engaged with first, second, and third vertical rails 90, 91, and 92 that will be described below are installed inside the installation space.
  • The second post member 50 has a hollow and a flat back surface when viewed in a plane. Also, the second post member 50 has a curved front surface and both curved side portions.
  • The vertical rails 90, 91, and 92 for guiding the sliding of the second post member 50 in a vertical direction are lengthily installed on both side portions and front surface of the second post member 50 in the vertical direction.
  • The first and second vertical rails 90 and 91 are installed on both side portions of the second post member 50 to face each other. This is done for preventing the horizontal movement due to a change in vertical height of the second post member 50, which occurs by the horizontal movement of the first post member 30, from occurring.
  • The third vertical rail 92 is installed at a center of the front surface of the second post member 50. This is done for preventing the forward and backward movement due to a change in center of gravity of the second post member 50, which occurs when the second post member is vertically slid, from occurring.
  • The second driving part 60 is installed at a rear center of the second post member 50. The second driving part 60 includes a second driving motor 61 and a second driving screw 62 shaft-coupled to the second driving motor 61 and to which a second coupling part 51 disposed on the back surface of the second post member is screw-coupled outside the second driving motor 61. Here, the second driving screw 62 is disposed at the rear center of the second post member 50, and the third vertical rail 92 is disposed at a center of the front surface of the second post member 50. The third vertical rail 92 and the second driving screw 62 are disposed parallel to each other on opposite sides with respect to the second post member 50.
  • When the third vertical rail 92 is disposed at a position that is parallel and opposite to the second driving screw 62 as described above, the imbalance of the force transmitted into the first and second vertical rails 90 and 91 due to the moment occurring by the third vertical rail 92 when the second driving screw 62 rotates may be solved to allow the second post member 50 to be stably and smoothly slid. Therefore, the machining member for machining the workpiece may be accurately controlled in position.
  • Although the numerically controlled machine tool is described based on the preferred embodiment of the present invention as described above, the technical scope of the present invention is not limited to only the specific embodiment, and thus all suitable modifications and equivalents coming with the scope of the appended claims.
  • DESCRIPTION OF REFERENCE NUMERALS
  • 10: Lower body 20: Upper body
  • 21: Front support 22: Rear support
  • 30: First post member 31: Sliding part
  • 32: First coupling part 32: Sliding guide
  • 40: First driving part 41: Second driving motor
  • 42: First driving screw 50: Second post member
  • 51: Second coupling part 60: Second driving part
  • 61: Second driving motor 63: Second driving screw
  • 70: Worktable 80: First horizontal rail
  • 81: Second horizontal rail 82: Third horizontal rail
  • 90: First vertical rail 91: Second vertical rail
  • 92: Third vertical rail

Claims (11)

What is claimed is:
1. A numerically controlled machine tool comprising:
a first post member installed on a main body so as to be slidable in a left/right direction; and
first, second, and third horizontal rails lengthily installed on the main body in the left/right direction, the first, second, and third horizontal rails being respectively coupled to two point of a back surface and one point of a front surface of the first post member to guide the sliding of the first post member.
2. The numerically controlled machine tool of claim 1, wherein the first and second horizontal rails are installed to be vertically spaced apart from each other on a rear side of the first post member, and
the third horizontal rail is installed on a front side of the first post member.
3. The numerically controlled machine tool of claim 2, wherein the third horizontal rail is disposed at a position corresponding between heights of the first and second horizontal rails.
4. The numerically controlled machine tool of claim 3, wherein a first driving part constituted by a first driving motor and a first driving screw to slide the first post member is disposed between the first and second rails,
wherein the first driving screw is disposed at a center of a line connecting driving centers of the first and second horizontal rails to each other, and
the third horizontal rail is disposed on a line that is perpendicular to the center of the line connecting the driving centers of the first and second horizontal rails to each other.
5. The numerically controlled machine tool of claim 4, wherein a line connecting driving centers of the first and third horizontal rails to each other and a line connecting driving centers of the second and third horizontal rails to each other have the same length.
6. The numerically controlled machine tool of claim 1, further comprising:
a second post member installed on the first post member so as to be slidable in a vertical direction; and
first, second, and third vertical rails lengthily installed on the second post member in the vertical direction, the first, second, and third being respectivley coupled to three points of the first post member to guide elevation of the second post member with respect to the first post member.
7. The numerically controlled machine tool of claim 6, wherein the first and second vertical rails are installed opposite to each other on both side portions of the second post member, and
the third vertical rail is installed on a front surface of he second post member.
8. The numerically controlled machine tool of claim 7, wherein a second driving part constituted by a second driving screw that is screw-coupled to a back surface of the second post member to vertically slide the second post member and a second driving motor for driving the second driving screw is lengthily installed at a rear center of the second post member in the vertical direction, and
the third vertical rail and the second driving screw are disposed in parallel to each other on opposite sides with respect to the second post member.
9. A numerically controlled machine tool comprising:
a second post member installed on a first post member so as to be slidable in a vertical direction; and
first, second, and third vertical rails lengthily installed on the second post member in the vertical direction, the first, second, and third being respectivley coupled to three points of the first post member to guide elevation of the second post member with respect to the first post member.
10. The numerically controlled machine tool of claim 9, wherein the first and second vertical rails are installed opposite to each other on both side portions of the second post member, and
the third vertical rail is installed on a front surface of the second post member.
11. The numerically controlled machine tool of claim 10, wherein a second driving part constituted by a second driving screw that is screw-coupled to a back surface of the second post member to vertically slide the second post member and a second driving motor for driving the second driving screw is lengthily installed at a rear center of the second post member in the vertical direction, and
the third vertical rail and the second driving screw are disposed in parallel to each other on opposite sides with respect to the second post member.
US14/888,384 2013-05-03 2014-04-23 Numerically controlled machine tool Expired - Fee Related US10118264B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2013-0050013 2013-05-03
KR1020130050013A KR101497075B1 (en) 2013-05-03 2013-05-03 Numerical control machine tool
PCT/KR2014/003528 WO2014178559A1 (en) 2013-05-03 2014-04-23 Numerically controlled machine tool

Publications (2)

Publication Number Publication Date
US20160082558A1 true US20160082558A1 (en) 2016-03-24
US10118264B2 US10118264B2 (en) 2018-11-06

Family

ID=51843636

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/888,384 Expired - Fee Related US10118264B2 (en) 2013-05-03 2014-04-23 Numerically controlled machine tool

Country Status (8)

Country Link
US (1) US10118264B2 (en)
EP (1) EP2992994B1 (en)
JP (1) JP6162883B2 (en)
KR (1) KR101497075B1 (en)
CN (1) CN105163900B (en)
BR (1) BR112015027637A8 (en)
RU (1) RU2638469C2 (en)
WO (1) WO2014178559A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD788196S1 (en) * 2014-09-12 2017-05-30 Pocket NC Company Multi-axis machine
CN108115452A (en) * 2017-12-30 2018-06-05 东莞市巨冈机械工业有限公司 A kind of rigid and the good overhead viaduct type gantry processor bed of stability
USD861750S1 (en) * 2018-05-02 2019-10-01 Pocket NC Company Multi-axis machine

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101668062B1 (en) * 2015-01-19 2016-10-20 민병덕 Numerical control machine tool
EP3278922B1 (en) * 2016-08-03 2018-12-05 Maxxtron Technology Co., Ltd. Sliding seat device with surrounding structure
KR101957057B1 (en) * 2017-11-30 2019-03-11 현대위아 주식회사 Machine tools
CN110605427A (en) * 2018-06-14 2019-12-24 烟台中集来福士海洋工程有限公司 Portable planer type milling machine
CN109877852A (en) * 2019-04-19 2019-06-14 广州陈扬枝科技有限责任公司 Cooking machine and mechanical arm mechanism
DE102019111873A1 (en) * 2019-05-07 2020-11-12 Chiron-Werke Gmbh & Co. Kg Machine tool with portal
RU2739460C1 (en) * 2020-05-06 2020-12-24 Общество с ограниченной ответственностью "Лакомства для здоровья" Chocolate milling machine
CN113714843A (en) * 2021-09-22 2021-11-30 宜春职业技术学院(宜春市技术工人学校) Manipulator device for hole turning of numerical control tool magazine machine tool
WO2023053335A1 (en) * 2021-09-30 2023-04-06 Dmg森精機株式会社 Machine tool
CN114633075B (en) * 2022-03-31 2024-01-26 江苏名业机械科技有限公司 Special processing device for Roots blower rotor and application method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6068431A (en) * 1996-12-09 2000-05-30 Helis S.A. Machine tool having a gantry and a vertical spindle
US6798088B2 (en) * 2002-11-07 2004-09-28 Industrial Technology Research Institute Structure for symmetrically disposed linear motor operated tool machine
US20060008335A1 (en) * 2004-07-08 2006-01-12 Seiji Furuhashi Machine tool
US20100119319A1 (en) * 2008-11-12 2010-05-13 Buffalo Machinery Company Limited Processing machine
US20120039683A1 (en) * 2009-08-04 2012-02-16 Akira Sugiyama Ram guiding apparatus of machine tool

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609137A (en) * 1983-06-29 1985-01-18 Hitachi Ltd Travelling stage
KR960013171B1 (en) 1993-11-06 1996-09-30 김현철 Cnc lathe
RU2130824C1 (en) * 1997-07-28 1999-05-27 Подольский машиностроительный завод Portal type machine tool
JP2000079528A (en) * 1998-09-01 2000-03-21 Nagase Integrex:Kk Support structure for head in work machine
JP3914356B2 (en) * 1999-07-19 2007-05-16 トーヨーエイテック株式会社 Machine Tools
TW521677U (en) * 2001-10-18 2003-02-21 Ind Tech Res Inst Gantry type hybrid parallel linkage 5-axis machine tool
JP4410002B2 (en) * 2004-03-18 2010-02-03 株式会社森精機製作所 Machine Tools
KR100723887B1 (en) 2004-08-06 2007-05-31 원진테크닉큐주식회사 The surge voltage preventing system in an uninterruptible electric power distribution construction
EP2301711B1 (en) * 2005-03-18 2014-01-15 Horkos Corp Machine tool
JP4061553B2 (en) * 2005-03-18 2008-03-19 ホーコス株式会社 Machine Tools
RU63729U1 (en) * 2006-12-19 2007-06-10 Открытое акционерное общество "Станкон" CNC LONG MILLING MACHINE
KR20090032675A (en) 2007-09-28 2009-04-01 펭-티엔 첸 Cnc machine tool having a sliding member movable at a high speed
JP5582916B2 (en) * 2010-08-13 2014-09-03 株式会社東京精密 Grinder
KR101286765B1 (en) * 2011-07-26 2013-07-16 이민지 Transferring device for Accuracy Movement of Gantry Robot
CN202271167U (en) * 2011-09-20 2012-06-13 沈阳机床股份有限公司中捷钻镗床厂 An automatic boring & milling machine
CN102699768A (en) * 2011-09-21 2012-10-03 杨东佐 Numerical control equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6068431A (en) * 1996-12-09 2000-05-30 Helis S.A. Machine tool having a gantry and a vertical spindle
US6798088B2 (en) * 2002-11-07 2004-09-28 Industrial Technology Research Institute Structure for symmetrically disposed linear motor operated tool machine
US20060008335A1 (en) * 2004-07-08 2006-01-12 Seiji Furuhashi Machine tool
US20100119319A1 (en) * 2008-11-12 2010-05-13 Buffalo Machinery Company Limited Processing machine
US20120039683A1 (en) * 2009-08-04 2012-02-16 Akira Sugiyama Ram guiding apparatus of machine tool

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD788196S1 (en) * 2014-09-12 2017-05-30 Pocket NC Company Multi-axis machine
CN108115452A (en) * 2017-12-30 2018-06-05 东莞市巨冈机械工业有限公司 A kind of rigid and the good overhead viaduct type gantry processor bed of stability
USD861750S1 (en) * 2018-05-02 2019-10-01 Pocket NC Company Multi-axis machine

Also Published As

Publication number Publication date
CN105163900A (en) 2015-12-16
BR112015027637A8 (en) 2018-11-13
BR112015027637A2 (en) 2017-08-29
JP6162883B2 (en) 2017-07-12
KR101497075B1 (en) 2015-03-03
EP2992994A4 (en) 2017-05-31
RU2638469C2 (en) 2017-12-13
KR20140131105A (en) 2014-11-12
EP2992994A1 (en) 2016-03-09
JP2016516601A (en) 2016-06-09
US10118264B2 (en) 2018-11-06
EP2992994B1 (en) 2019-12-25
RU2015147706A (en) 2017-05-12
WO2014178559A1 (en) 2014-11-06
CN105163900B (en) 2017-06-23

Similar Documents

Publication Publication Date Title
US10118264B2 (en) Numerically controlled machine tool
CN208196162U (en) The vertical compound multi-panel machining center that crouches of single column
CN109262288A (en) Double main shaft double-workbench horizontal Machining centers
CN102365149A (en) Ram guiding apparatus of machine tool
CN106181434B (en) A kind of coarse-fine combined numerically controlled processing center machine tool
CN102001027A (en) Four-axis four-linkage vertical machining centre
KR20200034775A (en) shelf
KR101668062B1 (en) Numerical control machine tool
CN204381470U (en) A kind of novel vertical sleeping combination multi spindle drilling machine
KR102165419B1 (en) X-axis transfering device of machine tool
CN209157698U (en) Double main shaft double-workbench horizontal Machining centers
CN110340412A (en) Vertical sleeping Compositions of metal-working machines
JP5435169B1 (en) Machine Tools
KR101801202B1 (en) Machining center with multiple spindle
CN104801988A (en) Novel numerical control machine tool with multi-axial machining function
CN104802013B (en) A kind of numerical control machining center of multiaspect processing
CN104827353A (en) Numerical control machining center with multi-axis and multi-surface machining function
KR20160002573U (en) High speed double-column type machine center
CN104440340A (en) Tool magazine bracket and slide plate integrated structure
CN110216491A (en) The vertical compound multi-panel machining center that crouches of single column
CN220073296U (en) Inclined Y double-spindle double-Y-axis power turret numerical control lathe
CN220825662U (en) Split machine tool base and numerical control machining equipment
CN202621968U (en) Horizontal numerical control four-shaft boring-milling machine
JP5721506B2 (en) Machine Tools
CN104842172B (en) Numerical control machining center having multidirectional machining function

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20221106