TWI781329B - Reverse osmosis treatment method and system - Google Patents

Reverse osmosis treatment method and system Download PDF

Info

Publication number
TWI781329B
TWI781329B TW108123536A TW108123536A TWI781329B TW I781329 B TWI781329 B TW I781329B TW 108123536 A TW108123536 A TW 108123536A TW 108123536 A TW108123536 A TW 108123536A TW I781329 B TWI781329 B TW I781329B
Authority
TW
Taiwan
Prior art keywords
reverse osmosis
heat
raw water
water
heat pump
Prior art date
Application number
TW108123536A
Other languages
Chinese (zh)
Other versions
TW202005706A (en
Inventor
青木孝司
小野雄壱
Original Assignee
日商栗田工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商栗田工業股份有限公司 filed Critical 日商栗田工業股份有限公司
Publication of TW202005706A publication Critical patent/TW202005706A/en
Application granted granted Critical
Publication of TWI781329B publication Critical patent/TWI781329B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/08Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/10Accessories; Auxiliary operations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/22Cooling or heating elements
    • B01D2313/221Heat exchangers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

原水在由加熱泵10的冷凝器13加熱後,經由以蒸氣為熱源的熱交換器4而被供給至RO裝置6。在加熱泵10的蒸發器11的導熱管11a中流通自冷凍系統20的熱交換器24流出的溫媒體的一部分。藉由通過導熱管11a而降溫的媒體被循環供給至熱交換器24。冷凍系統20使來自冷凍機主體21的冷媒體在空調等的熱交換器24中循環流通。Raw water is supplied to the RO device 6 via the heat exchanger 4 using steam as a heat source after being heated by the condenser 13 of the heat pump 10 . A part of the warm medium flowing out from the heat exchanger 24 of the refrigeration system 20 flows through the heat transfer pipe 11 a of the evaporator 11 of the heat pump 10 . The medium cooled by passing through the heat pipe 11 a is circulated and supplied to the heat exchanger 24 . The refrigeration system 20 circulates the refrigerant from the refrigerator main body 21 through a heat exchanger 24 of an air conditioner or the like.

Description

逆滲透處理方法及系統Reverse osmosis treatment method and system

本發明是有關於一種使用逆滲透膜裝置來對水進行處理的逆滲透處理方法及系統,特別是有關於一種利用加熱泵對向逆滲透膜裝置的給水進行加熱的逆滲透處理方法及系統。 The present invention relates to a reverse osmosis treatment method and system that uses a reverse osmosis membrane device to treat water, in particular to a reverse osmosis treatment method and system that uses a heat pump to heat feed water to the reverse osmosis membrane device.

在逆滲透膜裝置(以下,有時稱為逆滲透(Reverse Osmosis,RO)裝置)中,為了維持處理水量(藉由防止水的黏度下降而維持流量(flux),藉由二氧化矽飽和溶解度上升而提高回收率),而將給水溫度加溫至25℃左右。所述給水的加熱中使用蒸氣、溫水、電加熱器等,會消耗能量。 In a reverse osmosis membrane device (hereinafter, sometimes referred to as a reverse osmosis (RO) device), in order to maintain the amount of treated water (by preventing the viscosity of the water from falling and maintaining the flux), the saturation solubility of silica rise to increase the recovery rate), and the temperature of the feed water is heated to about 25°C. The use of steam, warm water, electric heaters, etc. for the heating of the feed water consumes energy.

在日本專利特開2012-91118號公報的申請項7中記載了將RO裝置的給水藉由加熱泵加熱至23℃~25℃,但在同號公報中並無關於加熱泵的熱源的具體的記載。 In the application item 7 of Japanese Patent Laid-Open No. 2012-91118, it is described that the feed water of the RO device is heated to 23 ° C ~ 25 ° C by the heat pump, but there is no specific information about the heat source of the heat pump in the same publication. recorded.

[現有技術文獻] [Prior art literature]

[專利文獻] [Patent Document]

[專利文獻1] 日本專利特開2012-91118號公報 [Patent Document 1] Japanese Patent Laid-Open No. 2012-91118

本發明的目的在於降低利用加熱泵對向RO裝置的給水進行 加熱的逆滲透處理方法及系統中的加熱成本。 The purpose of the present invention is to reduce the use of heat pumps to feed water to the RO device. Heated reverse osmosis treatment methods and heating costs in the system.

本發明的逆滲透處理方法為將原水利用加熱泵加熱後,利用逆滲透膜裝置進行膜分離處理的逆滲透處理方法,所述逆滲透處理方法的特徵在於,作為所述加熱泵的熱源流體,使用自冷凍系統的熱交換器流出的溫媒體。 The reverse osmosis treatment method of the present invention is a reverse osmosis treatment method that uses a reverse osmosis membrane device to perform membrane separation treatment after the raw water is heated by a heat pump. The reverse osmosis treatment method is characterized in that, as the heat source fluid of the heat pump, Use warm media from the heat exchanger of the refrigeration system.

本發明的逆滲透處理系統為將原水利用加熱泵加熱後,利用逆滲透膜裝置進行膜分離處理的逆滲透處理系統,所述逆滲透處理系統的特徵在於,作為所述加熱泵的熱源流體,使用自冷凍系統的熱交換器流出的溫媒體。 The reverse osmosis treatment system of the present invention is a reverse osmosis treatment system that uses a reverse osmosis membrane device to perform membrane separation treatment after raw water is heated by a heat pump. The reverse osmosis treatment system is characterized in that, as the heat source fluid of the heat pump, Use warm media from the heat exchanger of the refrigeration system.

在本發明的一態樣中,將由所述加熱泵所加熱的原水利用第二熱交換器加熱後,供給至所述逆滲透膜裝置。 In one aspect of the present invention, the raw water heated by the heat pump is supplied to the reverse osmosis membrane device after being heated by the second heat exchanger.

在本發明的一態樣中,對所述第二熱交換器供給來自鍋爐的蒸氣作為原水加熱用熱源流體。 In one aspect of the present invention, steam from a boiler is supplied to the second heat exchanger as a heat source fluid for heating raw water.

在本發明的一態樣中,將由所述加熱泵所加熱的原水的至少一部分作為鍋爐給水而送水至所述鍋爐。 In one aspect of the present invention, at least a part of the raw water heated by the heat pump is sent to the boiler as boiler feed water.

在本發明的一態樣中,設置在與所述加熱泵的冷凝器的導熱管之間循環水的給水槽,將原水供給至所述給水槽,使原水在所述導熱管與給水槽之間循環而加熱,將經加熱的原水自所述給水槽供給至所述逆滲透膜裝置。 In one aspect of the present invention, a water supply tank for circulating water between the heat conduction pipe of the condenser of the heat pump is provided, and the raw water is supplied to the water supply tank so that the raw water flows between the heat conduction pipe and the water supply tank. The heated raw water is supplied to the reverse osmosis membrane device from the water supply tank by circulating and heating.

在本發明的一態樣中,設置在與所述加熱泵的冷凝器的導熱管之間循環水的給水槽,將原水供給至所述給水槽,使原水 在所述導熱管與給水槽之間循環而加熱,將經加熱的原水的至少一部分作為鍋爐給水而送水至所述鍋爐。 In one aspect of the present invention, a water supply tank that circulates water between the heat pipe of the condenser of the heat pump is provided, and the raw water is supplied to the water supply tank to make the raw water It circulates and heats between the heat transfer pipe and the water supply tank, and at least a part of the heated raw water is sent to the boiler as boiler feed water.

在本發明的一態樣中,所述冷凍系統包括冷凍機主體及導入來自所述冷凍機主體的冷媒體並流出溫媒體的所述熱交換器,使自所述熱交換器流出的溫媒體的一部分返回至所述冷凍機主體,將剩餘部分導入至所述加熱泵的蒸發器,並使利用所述蒸發器進行了降溫的媒體返回至所述熱交換器的冷媒體流入側。 In one aspect of the present invention, the refrigeration system includes a refrigerator main body and the heat exchanger that introduces the cold medium from the refrigerator main body and flows out the warm medium, so that the warm medium flowing out of the heat exchanger A part of it is returned to the main body of the refrigerator, the remaining part is introduced into the evaporator of the heat pump, and the medium cooled by the evaporator is returned to the cooling medium inflow side of the heat exchanger.

在本發明的一態樣中,所述冷凍系統包括冷凍機主體及導入來自所述冷凍機主體的冷媒體並流出溫媒體的所述熱交換器,使自所述熱交換器流出的溫媒體的一部分返回至所述冷凍機主體,將剩餘部分導入至所述加熱泵的蒸發器,並使利用所述蒸發器進行了降溫的媒體返回至所述冷凍機主體。 In one aspect of the present invention, the refrigeration system includes a refrigerator main body and the heat exchanger that introduces the cold medium from the refrigerator main body and flows out the warm medium, so that the warm medium flowing out of the heat exchanger A part of the medium is returned to the main body of the refrigerator, the remaining part is introduced into the evaporator of the heat pump, and the medium whose temperature has been lowered by the evaporator is returned to the main body of the refrigerator.

根據本發明,藉由利用自冷凍系統的熱交換器流出的溫媒體作為熱源的加熱泵對向RO裝置的給水進行加熱,可降低所述給水的加熱成本。 According to the present invention, the heating cost of the feed water can be reduced by heating the feed water to the RO device by the heat pump using the warm medium flowing from the heat exchanger of the refrigeration system as a heat source.

在本發明的一態樣中,利用加熱泵的蒸發器來使自冷凍系統的熱交換器流出的溫媒體降溫,所以可降低冷凍機的冷凍負荷。藉此,削減冷凍機主體的消耗電力,可增大因加熱泵的設置而產生的總的效益。 In one aspect of the present invention, the evaporator of the heat pump is used to lower the temperature of the warm medium flowing out of the heat exchanger of the refrigeration system, so that the refrigeration load of the refrigerator can be reduced. Thereby, the power consumption of the main body of the refrigerator can be reduced, and the overall profit due to the installation of the heat pump can be increased.

1、3、5、7、8、22、26、28、30、31、33、35、37、46、47、50、53、60、63、66、67、71、82、83、86:配管 1, 3, 5, 7, 8, 22, 26, 28, 30, 31, 33, 35, 37, 46, 47, 50, 53, 60, 63, 66, 67, 71, 82, 83, 86: Piping

2、45、81、84:泵 2, 45, 81, 84: pump

4:蒸氣式熱交換器(熱交換器) 4: Steam heat exchanger (heat exchanger)

6:RO裝置 6: RO device

10:加熱泵 10: Heat pump

11:蒸發器 11: Evaporator

11a、13a:導熱管 11a, 13a: heat pipe

12:壓縮機 12: Compressor

13:冷凝器 13: Condenser

14:膨脹閥 14: Expansion valve

20:冷凍系統(冷凍機) 20: Refrigeration system (freezer)

21:冷凍機主體 21: Refrigerator body

21a:媒體送出部(冷凍機主體送出部) 21a: Media delivery part (refrigerator main body delivery part)

21b:媒體返回部(冷凍機主體返回部) 21b: Media return part (return part of the main body of the freezer)

24:熱交換器 24: heat exchanger

25:媒體循環用泵 25: Pump for media circulation

27、29、32、36、51、61、85:閥 27, 29, 32, 36, 51, 61, 85: Valve

40:冷卻塔 40: cooling tower

41:灑水管 41: sprinkler pipe

42:填充材層 42:Filler layer

43:百葉窗 43: Shutters

44:池 44: pool

48:排氣扇 48:Exhaust fan

52、64、80:給水槽 52, 64, 80: water tank

62:第一軟水器(軟水器) 62: The first water softener (water softener)

65:第二軟水器(軟水器) 65: Second water softener (water softener)

70:鍋爐 70: Boiler

圖1是第一實施形態的逆滲透處理系統的方塊圖。 Fig. 1 is a block diagram of a reverse osmosis treatment system according to a first embodiment.

圖2是第二實施形態的逆滲透處理系統的方塊圖。 Fig. 2 is a block diagram of a reverse osmosis treatment system according to a second embodiment.

圖3是第三實施形態的逆滲透處理系統的方塊圖。 Fig. 3 is a block diagram of a reverse osmosis treatment system according to a third embodiment.

圖4是第四實施形態的逆滲透處理系統的方塊圖。 Fig. 4 is a block diagram of a reverse osmosis treatment system according to a fourth embodiment.

圖5是第五實施形態的逆滲透處理系統的方塊圖。 Fig. 5 is a block diagram of a reverse osmosis treatment system according to a fifth embodiment.

參照圖1對第一實施形態進行說明。 A first embodiment will be described with reference to FIG. 1 .

要被進行RO處理的原水自配管1由泵2供給至加熱泵10的冷凝器13,被加熱後自配管3通過以蒸氣為熱源的熱交換器4(第二熱交換器),並經由配管5而被供給至RO裝置6。RO裝置6的透過水是自配管7作為處理水而取出,而濃縮水流出至配管8。 The raw water to be subjected to RO treatment is supplied from the pipe 1 to the condenser 13 of the heat pump 10 by the pump 2, and after being heated, passes through the pipe 3 through the heat exchanger 4 (second heat exchanger) using steam as a heat source, and passes through the pipe 5 and supplied to the RO device 6. The permeated water of the RO device 6 is taken out from the pipe 7 as treated water, and the concentrated water flows out into the pipe 8 .

用於對熱交換器4供給蒸氣的鍋爐(boiler)的形式並無特別限定,可為小型直流鍋爐、水管鍋爐、圓鍋爐、排熱鍋爐等中的任一者。另外,在通常運轉時不需要利用蒸氣進行加溫,但在後述的冷凍機主體21的停止時或RO裝置6的啟動時等的加溫等中使用。但是,亦可視需要在通常運轉時亦利用熱交換器4對RO給水進行加熱。 The form of the boiler for supplying steam to the heat exchanger 4 is not particularly limited, and may be any of a small once-through boiler, a water tube boiler, a circular boiler, and an exhaust heat boiler. In addition, heating by steam is not required during normal operation, but it is used for heating when the refrigerator main body 21 is stopped or the RO device 6 is started, which will be described later. However, RO feed water may also be heated by the heat exchanger 4 during normal operation as needed.

加熱泵10為周知的構成,構成為:將來自蒸發器11的氟氯烷替代品等的熱媒體用壓縮機12藉由隔熱壓縮製成高溫後導入至冷凝器13,並將來自冷凝器13的熱媒體經由膨脹閥14而導入至蒸發器11,使其隔熱膨脹並降溫。原水經由泵2而通水至冷 凝器13內所設的導熱管13a,與高溫熱媒體進行熱交換而被加熱。 The heat pump 10 is a well-known structure, and it is configured that a heat medium such as a chlorofluorocarbon substitute from the evaporator 11 is introduced into the condenser 13 by a compressor 12 through adiabatic compression to a high temperature, and the heat medium from the condenser The heat medium at 13 is introduced into the evaporator 11 through the expansion valve 14, and is adiabatically expanded and cooled. Raw water passes through pump 2 to cool The heat conduction pipe 13a provided in the condenser 13 is heated by exchanging heat with a high-temperature heat medium.

自冷凍系統20的熱交換器24流出的溫媒體的一部分經由配管31及閥32而被導入至蒸發器11內所設的導熱管11a。藉由與蒸發器11內的低溫熱媒體的熱交換而降溫的冷媒體經由配管33而再度被導入至熱交換器24。 Part of the hot medium flowing out of the heat exchanger 24 of the refrigeration system 20 is introduced into the heat transfer pipe 11 a provided in the evaporator 11 through the pipe 31 and the valve 32 . The cooling medium whose temperature has been lowered by heat exchange with the low-temperature heating medium in the evaporator 11 is introduced again to the heat exchanger 24 through the pipe 33 .

冷凍系統20將由渦輪式冷凍機、抽吸式冷凍機等冷凍機主體21冷卻的冷媒體自冷凍機主體21的媒體送出部21a經由配管22而供給至空調機等的熱交換器24(第一熱交換器),使其吸收周圍的熱而將所述周圍冷卻。利用熱交換器24吸收所述周圍的熱而升溫的溫媒體的一部分自熱交換器24經由媒體循環用泵25、配管26、閥27而返回至冷凍機主體21的媒體返回部21b。 The refrigerating system 20 supplies the refrigerant cooled by the main body 21 of a refrigerating machine such as a turbo refrigerating machine or a pumping refrigerating machine from a medium delivery portion 21 a of the refrigerating machine main body 21 to a heat exchanger 24 (first heat exchanger) to cool the surroundings by absorbing heat from the surroundings. A part of the warm medium heated by absorbing the surrounding heat in the heat exchanger 24 returns to the medium return portion 21 b of the refrigerator main body 21 through the medium circulation pump 25 , piping 26 , and valve 27 from the heat exchanger 24 .

自熱交換器24流出的溫媒體的剩餘部分經由自配管26分支的配管31、閥32而流通至蒸發器11的導熱管11a,與加熱泵熱媒體進行熱交換而降溫成為冷媒體,並流出至配管33。配管33與所述配管22連通,所以來自配管33的冷媒體與來自所述冷凍機主體21的冷媒體合流而流入至熱交換器24。 The remaining part of the hot medium flowing out from the heat exchanger 24 passes through the pipe 31 branched from the pipe 26 and the valve 32 to the heat transfer pipe 11a of the evaporator 11, exchanges heat with the heat pump heat medium, cools down to become a cold medium, and flows out. to piping 33. Since the pipe 33 communicates with the pipe 22 , the refrigerant from the pipe 33 joins the refrigerant from the refrigerator main body 21 and flows into the heat exchanger 24 .

如此,在此實施形態中,作為在加熱泵10的蒸發器11的導熱管11a中流通的熱源流體,利用了自熱交換器24流出的溫媒體。而且,使藉由通過加熱泵10的蒸發器11的導熱管11a而降溫的冷媒體返回至熱交換器24。 Thus, in this embodiment, as the heat source fluid flowing through the heat transfer tube 11a of the evaporator 11 of the heat pump 10, the warm medium flowing out from the heat exchanger 24 is used. Then, the refrigerant whose temperature has been lowered by passing through the heat transfer pipe 11 a of the evaporator 11 of the heat pump 10 is returned to the heat exchanger 24 .

另外,此冷凍系統20的冷凍機主體21使用了來自冷卻塔40的冷水作為冷卻用的低溫流體。 In addition, the refrigerator body 21 of this refrigeration system 20 uses cold water from the cooling tower 40 as a low-temperature fluid for cooling.

在此冷卻塔40中,由灑水管41進行灑水的冷卻水在自填充材層42中流下期間與自百葉窗(Louver)43導入的空氣接觸,藉由蒸發潛熱而受到冷卻成為冷水,並貯留於池(pit)44(冷卻塔下部水槽)。包含蒸氣的空氣藉由排氣扇(fan)48而排氣至大氣中。池44的冷水經由泵45、配管46而被供給至冷凍機主體21,並進行熱交換而升溫。來自冷凍機主體21的回溫水經由配管47而被返送至灑水管41。 In this cooling tower 40, the cooling water sprayed by the sprinkler pipe 41 contacts the air introduced from the louver 43 while flowing down from the filling material layer 42, and is cooled by the latent heat of evaporation to become cold water, which is then stored. In the pool (pit) 44 (cooling tower lower tank). Air containing vapor is exhausted to the atmosphere by an exhaust fan (fan) 48 . The cold water in the tank 44 is supplied to the refrigerator main body 21 via the pump 45 and the piping 46, and is heated by heat exchange. The rewarmed water from the refrigerator main body 21 is returned to the sprinkler pipe 41 through the pipe 47 .

在如此構成的圖1的逆滲透處理裝置中,原水在由加熱泵10加熱後,視需要由熱交換器4進行加熱,而被供給至RO裝置6。 In the reverse osmosis processing apparatus of FIG. 1 comprised in this way, after raw water is heated by the heat pump 10, it heats by the heat exchanger 4 as needed, and is supplied to the RO apparatus 6.

在此實施形態中,作為加熱泵10的溫熱源,使用了自冷凍系統20中所設置的空調機等的熱交換器24流出的溫媒體,所以可降低冷凍機主體21的冷凍負荷。而且,因可藉此降低冷凍機主體21的消耗電力,所以由加熱泵10消耗的電力幾乎被抵消。因此,可將加溫用的蒸氣的削減額直接作為效益來計入,因此可儘早回收設置加熱泵的投資。 In this embodiment, as the heat source of the heat pump 10, the heat medium flowing out from the heat exchanger 24 of the air conditioner or the like installed in the refrigeration system 20 is used, so the refrigeration load of the refrigerator main body 21 can be reduced. Furthermore, since the electric power consumption of the refrigerator main body 21 can be reduced by this, the electric power consumed by the heat pump 10 is almost cancelled. Therefore, the amount of reduction of steam for heating can be directly included as a profit, and therefore the investment for installing the heat pump can be recovered as early as possible.

參照圖2對第二實施形態進行說明。 A second embodiment will be described with reference to FIG. 2 .

在圖1的冷凍系統20中,是使自冷凍機主體21經由配管22而送來的冷媒體與自蒸發器11經由配管33而送來的冷媒體合流後流入至空調機等的熱交換器24,但在圖2的實施形態中,是僅使自冷凍機主體21的媒體送出部21a經由配管22而送來的冷媒體流入至熱交換器24。 In the refrigeration system 20 shown in FIG. 1 , the refrigerant sent from the refrigerator main body 21 through the pipe 22 and the refrigerant sent from the evaporator 11 through the pipe 33 are combined to flow into an air conditioner or the like. 24, however, in the embodiment of FIG. 2 , only the refrigerant sent from the medium delivery portion 21a of the refrigerator main body 21 through the piping 22 flows into the heat exchanger 24.

自所述熱交換器24流出的溫媒體藉由媒體循環用泵25送出至配管28。被送出的溫媒體的一部分經由閥29、配管30而循環至冷凍機主體21的媒體返回部21b。 The warm medium flowing out from the heat exchanger 24 is sent out to a pipe 28 by a pump 25 for medium circulation. A part of the warm medium sent out is circulated to the medium return part 21b of the refrigerator main body 21 through the valve 29 and the piping 30 .

被送出至配管28的溫媒體的剩餘部分經由自配管28分支的配管35及閥36而流通至蒸發器11的導熱管11a,與加熱泵熱媒體進行熱交換而降溫成為冷媒體,並自配管37合流至配管30,返回至冷凍機主體21的媒體返回部21b。 The remaining part of the hot medium sent to the piping 28 flows to the heat transfer pipe 11a of the evaporator 11 through the piping 35 branched from the piping 28 and the valve 36, and exchanges heat with the heat pump heating medium to cool down to become a cooling medium. 37 joins the pipe 30 and returns to the medium return portion 21b of the refrigerator main body 21 .

圖2的其他構成與圖1相同,同一符號表示同一部分。 The other configurations in FIG. 2 are the same as those in FIG. 1 , and the same symbols denote the same parts.

在此實施形態中,亦與圖1的實施形態同一地,作為加熱泵10的溫熱源,使用了自冷凍系統20中所設置的空調機等的熱交換器24流出的溫媒體,所以可降低冷凍機主體21的冷凍負荷。 In this embodiment, also in the same manner as in the embodiment of FIG. 1, as the heat source of the heat pump 10, the heat medium flowing out from the heat exchanger 24 of an air conditioner or the like installed in the refrigeration system 20 is used. The refrigeration load of the refrigerator main body 21 is reduced.

另外,按照圖1的系統將原水(20℃)加熱至25℃後以100m3/h進行RO處理,而以性能係數(Coefficient Of Performance,COP)5來運轉作為冷凍機主體21的渦輪冷凍機(500RT),將冷凍機主體21的媒體設為水,並設冷凍機主體返回部21b的流入水(溫媒體)溫度為12℃、冷凍機主體送出部21a的流出水(冷媒體)溫度為7℃,不對熱交換器4供給蒸氣,以COP(性能係數)6來運轉加熱泵(470kW)的情況下,據估算,與僅藉由蒸氣式熱交換器4來將原水自20℃加溫至25℃,而利用3台小型直流鍋爐(換算蒸發量2000kg/h、燃料液化天然氣(liquified natural gas,LNG)、蒸氣壓力0.7MPa)對蒸氣式熱交換器4供給 蒸氣的情況相比,能量成本成為80%以下。 In addition, according to the system in Fig. 1, the raw water (20°C) is heated to 25°C, and then the RO treatment is performed at 100m 3 /h, and the turbo refrigerator as the refrigerator main body 21 is operated at a coefficient of performance (Coefficient Of Performance, COP) of 5 (500RT), the medium of the refrigerator main body 21 is set as water, and the temperature of the inflow water (warm medium) of the refrigerator main body return part 21b is 12°C, and the temperature of the outflow water (cold medium) of the refrigerator main body delivery part 21a is At 7°C, without supplying steam to the heat exchanger 4, when the heat pump (470kW) is operated at a COP (coefficient of performance) of 6, it is estimated that the raw water is heated from 20°C only by the steam heat exchanger 4 Compared with the case of using three small once-through boilers (converted evaporation capacity 2000kg/h, fuel liquefied natural gas (LNG), vapor pressure 0.7MPa) to supply steam to the steam heat exchanger 4, the energy Cost becomes 80% or less.

而且,圖1的系統據估算與僅藉由加熱泵將原水自20℃加溫至25℃的情況相比,能量成本成為90%以下。 Furthermore, the system in FIG. 1 is estimated to have an energy cost of 90% or less compared to the case where raw water is heated from 20°C to 25°C only by a heat pump.

參照圖3對第三實施形態進行說明。 A third embodiment will be described with reference to FIG. 3 .

在圖1中,通過加熱泵10的冷凝器13的導熱管13a而被加熱的原水其全部量自配管3被送水至熱交換器4,並且自鍋爐對熱交換器4供給蒸氣作為熱源流體。在圖3中,使所述配管3分支為配管50、配管60的兩個系統。 In FIG. 1 , the entire amount of raw water heated by the heat pipe 13 a of the condenser 13 of the heat pump 10 is sent from the pipe 3 to the heat exchanger 4 , and steam is supplied from the boiler to the heat exchanger 4 as a heat source fluid. In FIG. 3 , the piping 3 is branched into two systems of piping 50 and piping 60 .

流至配管50的加熱原水經由閥51、給水槽52及配管53而被送水至熱交換器4。而且,對給水槽52連接有具有閥85的配管86,以便將不會由加熱泵10進行加熱的原水(以下,有時記載為「非加熱原水」)供給至給水槽52。 The heating raw water flowing into the piping 50 is sent to the heat exchanger 4 through the valve 51 , the water supply tank 52 , and the piping 53 . Also, a pipe 86 having a valve 85 is connected to the water supply tank 52 so that raw water not heated by the heat pump 10 (hereinafter, sometimes referred to as “unheated raw water”) is supplied to the water supply tank 52 .

流至配管60的加熱原水經由閥61、第一軟水器62及配管63而被送水至給水槽64。亦將通過第二軟水器65的鍋爐用水經由配管66而導入至給水槽64。軟水器62、軟水器65具有容器及填充在所述容器內的離子交換樹脂,將原水或鍋爐用水製成軟水。鍋爐用水可為來自與原水同一水源的水,亦可為來自另外的水源的水。 The heated raw water flowing into the piping 60 is sent to the water supply tank 64 via the valve 61 , the first water softener 62 , and the piping 63 . The boiler water passed through the second water softener 65 is also introduced into the water supply tank 64 through the pipe 66 . The water softener 62 and the water softener 65 have a container and an ion exchange resin filled in the container, and soften raw water or boiler water. Boiler water may be water from the same water source as the raw water, or may be water from another water source.

給水槽64內的水經由配管67而被供給至鍋爐70。鍋爐70中產生的蒸氣經由配管71而被供給至熱交換器4。來自配管53的原水由所述熱交換器4加熱,並被供給至RO裝置6。另外,亦可將熱交換器4中蒸氣冷凝而產生的冷凝水送水至給水槽64。 The water in the water supply tank 64 is supplied to the boiler 70 through the pipe 67 . Steam generated in boiler 70 is supplied to heat exchanger 4 via pipe 71 . Raw water from the piping 53 is heated by the heat exchanger 4 and supplied to the RO device 6 . In addition, the condensed water generated by the condensation of steam in the heat exchanger 4 may also be sent to the water supply tank 64 .

圖3的另一構成與圖1相同,同一符號表示同一部分。 Another configuration of FIG. 3 is the same as that of FIG. 1, and the same symbols denote the same parts.

在圖3中,與加熱泵10連通的熱交換器24、冷凍機20及冷卻塔40的構成為圖1的構成,但亦可如圖2般構成。 In FIG. 3 , the heat exchanger 24 communicating with the heat pump 10 , the refrigerator 20 , and the cooling tower 40 are configured as in FIG. 1 , but they may also be configured as in FIG. 2 .

根據此第三實施形態,藉由1台加熱泵10,不僅可對向RO裝置6的給水進行加熱,亦可對向鍋爐70的給水的一部分進行加熱。 According to this third embodiment, not only the feed water to the RO device 6 but also a part of the feed water to the boiler 70 can be heated by one heat pump 10 .

而且,可藉由閥51及閥61來切換加熱原水的供給目標,或調整供給量。並且,藉由使用閥51及閥61將加熱泵10的加熱原水優先地供給至RO裝置6,並將加熱原水的餘剩部分設為向鍋爐70的給水,在有效果地削減要被供給至RO裝置6的原水的加溫用的蒸氣的同時,能夠有效地利用由加熱泵10加熱的原水。 Furthermore, the supply target of the heating raw water can be switched or the supply amount can be adjusted by the valve 51 and the valve 61 . In addition, by using the valve 51 and the valve 61 to preferentially supply the heating raw water of the heat pump 10 to the RO device 6, and use the remaining part of the heating raw water as the feed water to the boiler 70, it is effective to reduce the amount of raw water to be supplied to the RO. The raw water heated by the heat pump 10 can be effectively used while the steam for heating the raw water in the device 6 is used.

例如,在加熱原水不足RO裝置6的給水的設定溫度(例如25℃)的情況下,以將RO裝置6的給水的全部量設為加熱原水的方式調整閥51、閥61。在加熱原水的全部量超過RO裝置6的給水量的情況下,將加熱原水的餘剩部分送水至給水槽64作為鍋爐給水來使用。在夏季等,加熱原水超過RO裝置6的給水的設定溫度(例如25℃)的情況下,藉由調整閥51、閥61進而閥85,在以使RO裝置6的給水成為設定溫度的方式調整供給至給水槽64的加熱原水與非加熱原水的供給量的同時,將加熱原水的餘剩部分送水至給水槽64。藉由如此,能夠在一年間有效地利用由加熱泵加熱的原水。 For example, when the heated raw water is lower than the set temperature (for example, 25° C.) of the feed water to the RO device 6 , the valves 51 and 61 are adjusted so that the entire amount of the feed water to the RO device 6 becomes the heated raw water. When the total amount of heated raw water exceeds the feed water amount of the RO device 6 , the remainder of the heated raw water is sent to the water feed tank 64 to be used as boiler feed water. In summer, etc., when the heated raw water exceeds the set temperature (for example, 25° C.) of the feed water of the RO device 6, by adjusting the valve 51, the valve 61 and the valve 85, the feed water of the RO device 6 is adjusted in a manner to reach the set temperature. The heating raw water and the non-heating raw water supplied to the water supply tank 64 are supplied to the water supply tank 64 with the remainder of the heating raw water. In this way, the raw water heated by the heat pump can be effectively used throughout the year.

另外,亦可根據非加熱原水的溫度或者季節來切換加熱 原水的供給目標。例如,在非加熱原水的溫度超過了規定溫度的情況下或者在夏季,亦可以將RO裝置6的給水的全部量設為非加熱原水,而將加熱原水全部用作鍋爐給水的方式來調整閥51、閥61及閥85。而且,在非加熱原水的溫度為規定的溫度以下的情況下或者在夏季以外的季節,亦可以將RO裝置6的給水的全部量設為加熱原水,並將加熱原水的餘剩部分用作鍋爐給水的方式來調整閥51、閥61及閥85。 In addition, the heating can also be switched according to the temperature or season of the non-heated raw water Raw water supply target. For example, when the temperature of non-heated raw water exceeds a predetermined temperature or in summer, the entire amount of feed water to the RO device 6 may be used as non-heated raw water, and all heated raw water may be used as boiler feed water to adjust the valve. 51. Valve 61 and valve 85. Furthermore, when the temperature of the non-heated raw water is below a predetermined temperature or in seasons other than summer, the entire amount of feed water to the RO device 6 may be used as heated raw water, and the remainder of the heated raw water may be used as boiler feed water. Adjust the valve 51, the valve 61 and the valve 85 in the same way.

參照圖4對第四實施形態進行說明。 A fourth embodiment will be described with reference to FIG. 4 .

在圖3的系統中,是將由加熱泵10的冷凝器13加熱的原水直接送水至配管3,但在圖4的系統中,是將來自配管1的原水導入至給水槽80,將給水槽80內的原水經由泵81及配管82而送水至冷凝器13的導熱管13a。自導熱管13a流出的經加熱的原水經由配管83而被返送至給水槽80。如此,給水槽80內的原水的溫度變高。所述給水槽80內的溫度高的原水經由泵84而被送水至配管3。 In the system of FIG. 3, the raw water heated by the condenser 13 of the heat pump 10 is directly sent to the pipe 3, but in the system of FIG. The raw water inside is sent to the heat transfer pipe 13 a of the condenser 13 via the pump 81 and the pipe 82 . The heated raw water flowing out from the heat transfer pipe 13 a is returned to the water supply tank 80 through the pipe 83 . Thus, the temperature of the raw water in the water supply tank 80 becomes high. The high-temperature raw water in the water supply tank 80 is sent to the pipe 3 via the pump 84 .

圖4的其他構成與圖3相同,同一符號表示同一部分。根據圖4的系統,亦可獲得與圖3的系統同樣的效果。另外,在圖4中,使原水在給水槽80與冷凝器13中循環,所以可將與圖3時相比加熱為更高的溫度的原水送出至配管3。 Other configurations in FIG. 4 are the same as those in FIG. 3 , and the same symbols denote the same parts. According to the system of FIG. 4, the same effect as that of the system of FIG. 3 can also be obtained. In addition, in FIG. 4 , since the raw water is circulated through the water supply tank 80 and the condenser 13 , the raw water heated to a higher temperature than that in FIG. 3 can be sent to the pipe 3 .

在圖4中,與加熱泵10連通的熱交換器、冷凍機20及冷卻塔40的構成為圖1的構成,但亦可如圖2般構成。 In FIG. 4 , the configurations of the heat exchanger, the refrigerator 20 and the cooling tower 40 communicating with the heat pump 10 are those of FIG. 1 , but they may be configured as in FIG. 2 .

設想圖3的裝置,將估算在以下的條件下進行運轉時的 蒸氣成本而得的結果示於表1。 Assuming the device in Figure 3, it will be estimated that when operating under the following conditions The results obtained for steam costs are shown in Table 1.

<運轉條件> <Operating conditions>

鍋爐:直流鍋爐、換算蒸發量6000kg/h×10台、燃料LNG、蒸氣壓力0.7MPa Boiler: once-through boiler, converted evaporation capacity 6000kg/h x 10 units, fuel LNG, steam pressure 0.7MPa

RO裝置:原水供給量100m3/h RO device: raw water supply 100m 3 /h

加熱泵:470kW、COP(性能係數)6 Heat pump: 470kW, COP (coefficient of performance) 6

RO給水的加溫以外的蒸氣使用量:240,000t/年 Steam consumption other than heating of RO feed water: 240,000t/year

加熱泵中的原水的平均加溫溫度:5℃ Average heating temperature of raw water in the heat pump: 5°C

LNG單價:50日元/Nm3=蒸氣單價3963日元/t、假定因5℃的熱回收,蒸氣的燃料被削減0.8%(蒸氣單價3931日元)。 LNG unit price: 50 yen/Nm 3 =steam unit price 3,963 yen/t, assuming that due to heat recovery at 5°C, steam fuel is reduced by 0.8% (steam unit price 3,931 yen).

[試驗例1] [Test example 1]

將加熱泵的加熱原水的全部量用作鍋爐給水,RO給水是利用來自鍋爐的蒸氣(1,228t/年)將原水自20℃加熱至25℃。 The entire amount of raw water heated by the heat pump is used as boiler feed water, and the RO feed water is heated from 20°C to 25°C by steam from the boiler (1,228t/year).

[試驗例2] [Test example 2]

夏季以外的季節將加熱泵的加熱原水的全部量用作RO給水。夏季假設原水有25℃而將原水不加熱來利用。鍋爐給水的全部量使用了未加熱的原水。 In seasons other than summer, the entire amount of raw water heated by the heat pump is used as RO feed water. In summer, it is assumed that the raw water has a temperature of 25°C and the raw water is used without heating. Unheated raw water was used for the entire amount of boiler feed water.

[試驗例3] [Test example 3]

夏季將加熱泵的加熱原水的全部量用作鍋爐給水,除此以外的季節將加熱泵的加熱原水的全部量用作RO給水。 In summer, the entire amount of heating raw water of the heat pump is used as boiler feed water, and in other seasons, the entire amount of heating raw water of the heat pump is used as RO feed water.

[表1]

Figure 108123536-A0305-02-0014-1
[Table 1]
Figure 108123536-A0305-02-0014-1

如表1所示,在藉由根據季節來切換加熱泵的加熱原水的供給目標,有效果地削減要被供給至RO裝置的原水的加溫用的蒸氣的同時,藉由有效果地利用由加熱泵加熱的原水,抑制蒸氣成本成為可能。 As shown in Table 1, by switching the heating raw water supply target of the heat pump according to the season, the steam for heating the raw water to be supplied to the RO device is effectively reduced, and by effectively utilizing the Raw water heated by a heat pump makes it possible to suppress steam costs.

參照圖5對第五實施形態進行說明。 A fifth embodiment will be described with reference to FIG. 5 .

此實施形態是在圖1的系統中設置給水槽80、泵81、配管82、配管83、泵84而成。與圖4時相同,使原水在導熱管13a與給水槽80之間循環而加熱。將經加熱的原水自泵84經由配管3而僅送水至RO裝置6。 This embodiment is formed by installing a water supply tank 80, a pump 81, a pipe 82, a pipe 83, and a pump 84 in the system of FIG. 1 . As in the case of FIG. 4 , raw water is heated by circulating between the heat transfer pipe 13 a and the water supply tank 80 . Only the heated raw water is sent from the pump 84 to the RO device 6 through the piping 3 .

根據此實施形態,將與圖1的情況相比,被加熱為更高的溫度的原水送水至RO裝置。 According to this embodiment, raw water heated to a higher temperature than in the case of FIG. 1 is sent to the RO device.

所述實施形態為本發明的一例,本發明亦可採用圖示以外的形態。 The above-described embodiment is an example of the present invention, and the present invention may also take forms other than those shown in the drawings.

例如,在圖1、圖2、圖5中使用了蒸氣式熱交換器4,但亦可代替蒸氣式熱交換器4而設置以蒸氣以外為熱源的熱交換器。 For example, in FIG. 1 , FIG. 2 , and FIG. 5 , the vapor heat exchanger 4 is used, but instead of the vapor heat exchanger 4 , a heat exchanger using a heat source other than steam may be provided.

雖使用特定的態樣詳細地說明了本發明,但在不脫離本 發明的意圖及範圍的情況下,可進行各種變更,這一點對所屬技術領域中具有通常知識者而言是顯而易見的。 Although the present invention has been described in detail using specific aspects, it should not be departed from the present invention. It is obvious to those skilled in the art that various changes can be made without departing from the intent and scope of the invention.

本申請是基於2018年7月6日提出申請的日本專利申請2018-129257,並藉由引用來援引其全部內容。 This application is based on Japanese Patent Application No. 2018-129257 filed on July 6, 2018, the entire contents of which are incorporated by reference.

1、3、5、7、8、22、26、31、33、46、47‧‧‧配管 1, 3, 5, 7, 8, 22, 26, 31, 33, 46, 47‧‧‧Piping

2、45‧‧‧泵 2. 45‧‧‧pump

4‧‧‧蒸氣式熱交換器(熱交換器) 4‧‧‧Steam heat exchanger (heat exchanger)

6‧‧‧RO裝置 6‧‧‧RO device

10‧‧‧加熱泵 10‧‧‧heat pump

11‧‧‧蒸發器 11‧‧‧evaporator

11a、13a‧‧‧導熱管 11a, 13a‧‧‧Heat pipe

12‧‧‧壓縮機 12‧‧‧Compressor

13‧‧‧冷凝器 13‧‧‧Condenser

14‧‧‧膨脹閥 14‧‧‧Expansion valve

20‧‧‧冷凍系統(冷凍機) 20‧‧‧refrigeration system (freezer)

21‧‧‧冷凍機主體 21‧‧‧The main body of the refrigerator

21a‧‧‧媒體送出部(冷凍機主體送出部) 21a‧‧‧Media sending part (refrigerator main body sending part)

21b‧‧‧媒體返回部(冷凍機主體返回部) 21b‧‧‧Media return part (refrigerator main body return part)

24‧‧‧熱交換器 24‧‧‧Heat Exchanger

25‧‧‧媒體循環用泵 25‧‧‧Media circulation pump

27、32‧‧‧閥 27, 32‧‧‧valve

40‧‧‧冷卻塔 40‧‧‧cooling tower

41‧‧‧灑水管 41‧‧‧sprinkler pipe

42‧‧‧填充材層 42‧‧‧Filler layer

43‧‧‧百葉窗 43‧‧‧Shutters

44‧‧‧池 44‧‧‧pool

48‧‧‧排氣扇 48‧‧‧exhaust fan

Claims (14)

一種逆滲透處理方法,其為將原水利用加熱泵加熱後,利用逆滲透膜裝置進行膜分離處理的逆滲透處理方法,所述逆滲透處理方法的特徵在於,作為所述加熱泵的熱源流體,使用自具有冷凍機主體(21)及第一熱交換器(24)的冷凍系統的所述第一熱交換器(24)流出的溫媒體,所述逆滲透處理方法是使自所述第一熱交換器(24)流出的溫媒體的一部分返回至所述冷凍機主體(21),將剩餘部分導入至所述加熱泵,並使利用所述加熱泵進行了降溫的媒體返回至所述第一熱交換器(24)。 A reverse osmosis treatment method, which is a reverse osmosis treatment method that uses a reverse osmosis membrane device to perform membrane separation treatment after raw water is heated by a heat pump. The reverse osmosis treatment method is characterized in that, as the heat source fluid of the heat pump, Using the warm medium flowing out from the first heat exchanger (24) of the refrigeration system having the refrigerator main body (21) and the first heat exchanger (24), the reverse osmosis treatment method is to make the A part of the warm medium flowing out of the heat exchanger (24) is returned to the refrigerator main body (21), the remaining part is introduced to the heat pump, and the medium cooled by the heat pump is returned to the first heat pump. A heat exchanger (24). 一種逆滲透處理方法,其為將原水利用加熱泵加熱後,利用逆滲透膜裝置進行膜分離處理的逆滲透處理方法,所述逆滲透處理方法的特徵在於,作為所述加熱泵的熱源流體,使用自具有冷凍機主體(21)及第一熱交換器(24)的冷凍系統的所述第一熱交換器(24)流出的溫媒體,所述逆滲透處理方法是使自所述第一熱交換器(24)流出的溫媒體的一部分返回至所述冷凍機主體(21),將剩餘部分導入至所述加熱泵,並使利用所述加熱泵進行了降溫的媒體返回至所述冷凍機主體(21)。 A reverse osmosis treatment method, which is a reverse osmosis treatment method that uses a reverse osmosis membrane device to perform membrane separation treatment after raw water is heated by a heat pump. The reverse osmosis treatment method is characterized in that, as the heat source fluid of the heat pump, Using the warm medium flowing out from the first heat exchanger (24) of the refrigeration system having the refrigerator main body (21) and the first heat exchanger (24), the reverse osmosis treatment method is to make the A part of the warm medium flowing out of the heat exchanger (24) is returned to the refrigerator main body (21), the remaining part is introduced to the heat pump, and the medium cooled by the heat pump is returned to the refrigerator. Machine body (21). 如申請專利範圍第1項或第2項所述的逆滲透處理方 法,其中,將由所述加熱泵所加熱的原水利用第二熱交換器(4)加熱後,供給至所述逆滲透膜裝置。 The reverse osmosis treatment method described in item 1 or item 2 of the scope of patent application The method wherein the raw water heated by the heat pump is supplied to the reverse osmosis membrane device after being heated by the second heat exchanger (4). 如申請專利範圍第3項所述的逆滲透處理方法,其中,對所述第二熱交換器(4)供給來自鍋爐的蒸氣作為原水加熱用熱源流體。 The reverse osmosis treatment method described in claim 3 of the patent application, wherein steam from a boiler is supplied to the second heat exchanger (4) as a heat source fluid for heating raw water. 如申請專利範圍第4項所述的逆滲透處理方法,其中,將由所述加熱泵所加熱的原水的至少一部分作為鍋爐給水而送水至所述鍋爐。 The reverse osmosis treatment method described in Claim 4 of the patent application, wherein at least a part of the raw water heated by the heat pump is sent to the boiler as boiler feed water. 如申請專利範圍第1項或第2項所述的逆滲透處理方法,其中,設置在與所述加熱泵的冷凝器的導熱管之間循環水的給水槽,將原水供給至所述給水槽,使原水在所述導熱管與給水槽之間循環而加熱,將經加熱的原水自所述給水槽供給至所述逆滲透膜裝置。 The reverse osmosis treatment method described in item 1 or item 2 of the scope of patent application, wherein a water supply tank for circulating water between the heat pipe of the condenser of the heat pump is provided, and raw water is supplied to the water supply tank The raw water is heated by circulating between the heat transfer pipe and the water supply tank, and the heated raw water is supplied from the water supply tank to the reverse osmosis membrane device. 如申請專利範圍第5項所述的逆滲透處理方法,其中,設置在與所述加熱泵的冷凝器的導熱管之間循環水的給水槽,將原水供給至所述給水槽,使原水在所述導熱管與給水槽之間循環而加熱,將經加熱的原水的至少一部分作為鍋爐給水而送水至所述鍋爐。 The reverse osmosis treatment method described in item 5 of the patent scope of the application, wherein a water supply tank for circulating water between the heat transfer pipe of the condenser of the heat pump is arranged, and the raw water is supplied to the water supply tank so that the raw water is The heat conduction pipe and the water supply tank are heated by circulation, and at least a part of the heated raw water is sent to the boiler as boiler feed water. 一種逆滲透處理系統,其為將原水利用加熱泵加熱後,利用逆滲透膜裝置進行膜分離處理的逆滲透處理系統,所述逆滲透處理系統的特徵在於,作為所述加熱泵的熱源流體,使用自具有冷凍機主體(21) 及第一熱交換器(24)的冷凍系統的所述第一熱交換器(24)流出的溫媒體,所述逆滲透處理系統是使自所述第一熱交換器(24)流出的溫媒體的一部分返回至所述冷凍機主體(21),將剩餘部分導入至所述加熱泵,並使利用所述加熱泵進行了降溫的媒體返回至所述第一熱交換器(24)。 A reverse osmosis treatment system, which is a reverse osmosis treatment system that uses a reverse osmosis membrane device to perform membrane separation treatment after raw water is heated by a heat pump. The reverse osmosis treatment system is characterized in that, as the heat source fluid of the heat pump, Use own freezer body (21) and the warm medium flowing out of the first heat exchanger (24) of the refrigeration system of the first heat exchanger (24), the reverse osmosis treatment system is to make the warm medium flowing out of the first heat exchanger (24) A part of the medium is returned to the refrigerator main body (21), the remaining part is introduced to the heat pump, and the medium cooled by the heat pump is returned to the first heat exchanger (24). 一種逆滲透處理系統,其為將原水利用加熱泵加熱後,利用逆滲透膜裝置進行膜分離處理的逆滲透處理系統,所述逆滲透處理系統的特徵在於,作為所述加熱泵的熱源流體,使用自具有冷凍機主體(21)及第一熱交換器(24)的冷凍系統的所述第一熱交換器(24)流出的溫媒體,所述逆滲透處理系統是使自所述第一熱交換器(24)流出的溫媒體的一部分返回至所述冷凍機主體(21),將剩餘部分導入至所述加熱泵,並使利用所述加熱泵進行了降溫的媒體返回至所述冷凍機主體(21)。 A reverse osmosis treatment system, which is a reverse osmosis treatment system that uses a reverse osmosis membrane device to perform membrane separation treatment after raw water is heated by a heat pump. The reverse osmosis treatment system is characterized in that, as the heat source fluid of the heat pump, Using the warm medium flowing out from the first heat exchanger (24) of the refrigeration system having the refrigerator main body (21) and the first heat exchanger (24), the reverse osmosis treatment system is made from the first A part of the warm medium flowing out of the heat exchanger (24) is returned to the refrigerator main body (21), the remaining part is introduced to the heat pump, and the medium cooled by the heat pump is returned to the refrigerator. Machine body (21). 如申請專利範圍第8項或第9項所述的逆滲透處理系統,其具有將由所述加熱泵所加熱的原水進一步加熱後供給至所述逆滲透膜裝置的第二熱交換器(4)。 The reverse osmosis treatment system as described in item 8 or item 9 of the scope of patent application, which has a second heat exchanger (4) that further heats the raw water heated by the heat pump and supplies it to the reverse osmosis membrane device . 如申請專利範圍第10項所述的逆滲透處理系統,其具有對所述第二熱交換器(4)供給蒸氣作為原水加熱用熱源流體的鍋爐。 The reverse osmosis treatment system according to claim 10 of the patent application, which has a boiler that supplies steam to the second heat exchanger (4) as a heat source fluid for heating raw water. 如申請專利範圍第11項所述的逆滲透處理系統,其具有將由所述加熱泵所加熱的原水的至少一部分作為鍋爐給水而送水至所述鍋爐的部件。 The reverse osmosis treatment system according to claim 11, which has means for sending at least a part of the raw water heated by the heat pump to the boiler as boiler feed water. 如申請專利範圍第8項或第9項所述的逆滲透處理系統,其具有在與所述加熱泵的冷凝器的導熱管之間循環水的給水槽,將原水供給至所述給水槽,使原水在所述導熱管與給水槽之間循環而加熱,將經加熱的原水自所述給水槽供給至所述逆滲透膜裝置。 The reverse osmosis treatment system as described in item 8 or item 9 of the scope of patent application, which has a water supply tank that circulates water between the heat transfer pipe of the condenser of the heat pump, and supplies raw water to the water supply tank, The raw water is heated by circulating between the heat transfer pipe and the water supply tank, and the heated raw water is supplied from the water supply tank to the reverse osmosis membrane device. 如申請專利範圍第12項所述的逆滲透處理系統,其設置在與所述加熱泵的冷凝器的導熱管之間循環水的給水槽,將原水供給至所述給水槽,使原水在所述導熱管與給水槽之間循環而加熱,將經加熱的原水的至少一部分作為鍋爐給水而送水至所述鍋爐。 The reverse osmosis treatment system described in item 12 of the scope of the patent application is provided with a water supply tank for circulating water between the heat transfer pipe of the condenser of the heat pump, and supplies the raw water to the water supply tank so that the raw water is in the said water supply tank. Circulating between the heat conduction pipe and the water supply tank is heated, and at least a part of the heated raw water is sent to the boiler as boiler feed water.
TW108123536A 2018-07-06 2019-07-04 Reverse osmosis treatment method and system TWI781329B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018129257 2018-07-06
JP2018-129257 2018-07-06

Publications (2)

Publication Number Publication Date
TW202005706A TW202005706A (en) 2020-02-01
TWI781329B true TWI781329B (en) 2022-10-21

Family

ID=69060581

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108123536A TWI781329B (en) 2018-07-06 2019-07-04 Reverse osmosis treatment method and system

Country Status (5)

Country Link
JP (1) JP6777236B2 (en)
KR (1) KR102477968B1 (en)
CN (1) CN112384479B (en)
TW (1) TWI781329B (en)
WO (1) WO2020008884A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6819735B1 (en) * 2019-07-08 2021-01-27 栗田工業株式会社 Heat pump system
WO2022013977A1 (en) * 2020-07-15 2022-01-20 栗田工業株式会社 Heat pump system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012091118A (en) * 2010-10-27 2012-05-17 Japan Organo Co Ltd Water treatment system and water treatment method
TW201238647A (en) * 2010-10-27 2012-10-01 Organo Corp Water treatment system and water treatment method
JP2018027256A (en) * 2016-08-19 2018-02-22 日本ウォーターシステム株式会社 Waster treatment equipment
TW201834737A (en) * 2017-03-16 2018-10-01 日商栗田工業股份有限公司 Reverse osmosis treatment method and device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634808A (en) * 1986-06-24 1988-01-09 Takuma Co Ltd Reverse-osmosis membrane device system
JPH01130785A (en) * 1987-11-18 1989-05-23 Ishikawajima Harima Heavy Ind Co Ltd Ozonized water sterilizer
JP3303151B2 (en) * 1993-12-16 2002-07-15 清水建設株式会社 Hot water supply heat pump system utilizing cooling waste heat
JP2006159003A (en) * 2004-12-02 2006-06-22 Mayekawa Mfg Co Ltd Heating and cooling method and apparatus for ultrapure water
JP5325431B2 (en) * 2008-02-29 2013-10-23 パナソニック株式会社 Waste heat recovery equipment for refrigeration equipment
JP5971088B2 (en) * 2012-11-08 2016-08-17 三浦工業株式会社 Boiler feed water heating system
JP2016107178A (en) * 2014-12-02 2016-06-20 三浦工業株式会社 Water treatment system
CN204702545U (en) * 2015-06-04 2015-10-14 杭州英普水处理技术有限公司 A kind of reverse osmosis former water water inlet heating unit
JP6149993B1 (en) * 2016-09-14 2017-06-21 栗田工業株式会社 Ultrapure water production equipment
CN106988813B (en) * 2017-05-15 2019-04-09 华电电力科学研究院 A kind of system and method using waste heat driving process equipment
CN107060928B (en) * 2017-05-15 2023-10-27 华电电力科学研究院有限公司 System and method for supplying electric energy and heat energy by utilizing process waste heat

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012091118A (en) * 2010-10-27 2012-05-17 Japan Organo Co Ltd Water treatment system and water treatment method
TW201238647A (en) * 2010-10-27 2012-10-01 Organo Corp Water treatment system and water treatment method
TWI533924B (en) * 2010-10-27 2016-05-21 奧璐佳瑙股份有限公司 Water treatment system and water treatment method
JP2018027256A (en) * 2016-08-19 2018-02-22 日本ウォーターシステム株式会社 Waster treatment equipment
TW201834737A (en) * 2017-03-16 2018-10-01 日商栗田工業股份有限公司 Reverse osmosis treatment method and device

Also Published As

Publication number Publication date
WO2020008884A1 (en) 2020-01-09
JP6777236B2 (en) 2020-10-28
TW202005706A (en) 2020-02-01
KR20210024463A (en) 2021-03-05
CN112384479A (en) 2021-02-19
JPWO2020008884A1 (en) 2020-07-09
CN112384479B (en) 2022-03-18
KR102477968B1 (en) 2022-12-14

Similar Documents

Publication Publication Date Title
US20100000709A1 (en) Heating and heat recovery unit for an air conditioning system
JP6568938B2 (en) Heat pump air conditioning system using composite heat source and control method thereof
BR112013031910B1 (en) REFRIGERATION SYSTEM
KR101896382B1 (en) Energy saving refrigeration and defrosting system through 3 stage condensation heat exchange
KR100963221B1 (en) Heat pump system using terrestrial heat source
TWI781329B (en) Reverse osmosis treatment method and system
JP2020159663A (en) Air conditioner
JP2023030204A (en) Absorption refrigerator and control method for absorption refrigerator
JP6689801B2 (en) Solar air conditioning system
JPH02195130A (en) Heat pump capable of supplying both cold and hot fluids simultaneously
JP5615686B2 (en) Supercritical cycle heat pump equipment
JP2005291094A (en) Power plant facility using liquefied gas vaporizing device
JP2007278655A (en) Heat storage type hot water supplier
JP5490841B2 (en) Water refrigerant heater and water refrigerant water heater using the same
EP3623724A1 (en) Heat pump with pre-heating / pre-cooling of heat / cold source
JP6455752B2 (en) Refrigeration system
KR20110056847A (en) Heat-pump system
JP2009115387A (en) Water refrigerant heater and water refrigerant water heater using the same
JP2006162086A (en) Heat pump water heater
JP2011058767A (en) Heat pump water heater
JP2009250580A (en) Heat pump device
TWI512254B (en) Multi-temperature multi-function system with compound controllable energy-saving module
JP6341481B2 (en) Refrigeration system
CN105526728A (en) Supermarket cold chain system
KR20220074259A (en) the water-cooled air-conditioning and heating equipment for the ship using the seawater

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent