JP2006162086A - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP2006162086A
JP2006162086A JP2004349348A JP2004349348A JP2006162086A JP 2006162086 A JP2006162086 A JP 2006162086A JP 2004349348 A JP2004349348 A JP 2004349348A JP 2004349348 A JP2004349348 A JP 2004349348A JP 2006162086 A JP2006162086 A JP 2006162086A
Authority
JP
Japan
Prior art keywords
water
heat exchanger
hot water
temperature refrigerant
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004349348A
Other languages
Japanese (ja)
Inventor
Masahito Megata
雅人 目片
Noriho Okaza
典穂 岡座
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004349348A priority Critical patent/JP2006162086A/en
Publication of JP2006162086A publication Critical patent/JP2006162086A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump water heater capable of reducing electricity cost, by improving operation efficiency, while simultaneously providing hot water and cold water. <P>SOLUTION: When operating this heat pump water heater, heat is exchanged between water and a high temperature refrigerant by a high temperature refrigerant-water heat exchanger 2, and the heated hot water is stored in a hot water storage tank 8a. At the same time, heat is exchanged between the water and a low temperature refrigerant by a low temperature refrigerant-water heat exchanger 4, and the cooled cold water is stored in a hot water storage tank 8b. Thus, the hot water and the cold water can be simultaneously generated, and the operation efficiency is improved by using the cold water for air-conditioning in a season reducing a use quantity of hot water such as the summer period while using the hot water in a bath, and thus the heat pump water heater for reducing running cost can be provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、貯湯用のタンクを備えるヒートポンプ給湯機に関するものである。   The present invention relates to a heat pump water heater having a hot water storage tank.

現在、給湯機としてはガスや電気ヒータを用いて水を加熱する方式のものが大勢的であるが、近年のエネルギー利用効率化の要望の観点からヒートポンプを利用した給湯機も徐々に一般世帯に普及していっている。また最近は、単に湯を直接利用するだけではなく、湯を利用して床下暖房や部屋暖房、浴室乾燥を行う多機能型と呼ばれるタイプのものも普及が進んでいる。   Currently, there are many hot water heaters that use water or gas heaters to heat water. However, in recent years, water heaters using heat pumps have gradually become common households in view of demands for energy efficiency. It is spreading. Recently, a type called a multi-function type that uses hot water to perform underfloor heating, room heating, and bathroom drying has also become widespread.

図5に従来のヒートポンプ給湯機の構成図を示す。ヒートポンプ給湯機の場合、圧縮機1で高温・高圧に加熱された冷媒は高温冷媒対水用熱交換器2で循環ポンプ7にて貯湯タンク8から送られてきた水と熱交換される。この結果、水は加熱されて湯になり、同時に冷媒温度は低下する。湯は再び貯湯タンク8に戻され、利用されるまで貯湯タンク8に貯留される。温度の下がった冷媒は減圧装置3を通じることにより低温・低圧の二相流に変化し、蒸発器4へ送られる。前記蒸発器4では送風ファン9によって強制的に大気から熱を奪うことにより内部の冷媒は蒸発し、気化する。気化した冷媒は再び圧縮機1に吸い込まれ、高温・高圧に加熱されることにより再び水を加熱していく。   The block diagram of the conventional heat pump water heater is shown in FIG. In the case of a heat pump water heater, the refrigerant heated to high temperature and high pressure by the compressor 1 is heat-exchanged with the water sent from the hot water storage tank 8 by the circulation pump 7 in the heat exchanger 2 for high temperature refrigerant to water. As a result, the water is heated to hot water, and at the same time, the refrigerant temperature decreases. The hot water is returned to the hot water storage tank 8 and stored in the hot water storage tank 8 until it is used. The refrigerant that has fallen in temperature changes to a low-temperature and low-pressure two-phase flow through the decompression device 3 and is sent to the evaporator 4. In the evaporator 4, the internal refrigerant is evaporated and vaporized by forcibly removing heat from the atmosphere by the blower fan 9. The vaporized refrigerant is sucked into the compressor 1 again and heated to high temperature and high pressure to heat the water again.

この運転を繰り返していくにつれ、貯湯タンク8内は充分に加熱された湯で満たされていく。貯湯タンク8内の湯はコントローラー(図示せず)にて設定された温度で出湯するために混合弁(図示せず)で水道水と混ぜられ、所定の温度で各部の蛇口や床下暖房系、部屋暖房系、浴室乾燥系へ送られ、利用される。   As this operation is repeated, the hot water storage tank 8 is filled with sufficiently heated hot water. The hot water in the hot water storage tank 8 is mixed with tap water by a mixing valve (not shown) in order to discharge at a temperature set by a controller (not shown). It is sent to the room heating system and bathroom drying system for use.

ここで、夏期等の冷房負荷が増加する季節には電力需要のピーク緩和および冷房使用による電気代削減のため、ヒートポンプ給湯機の低圧側で生成される冷熱を用いて水を冷却し、貯湯タンクに貯留ののち、冷房に使用するような構成も考えられており、貯水と貯湯の両方が可能な貯水、貯湯式給湯装置も公開されている(例えば、特許文献1参照)。
特開平6−159845号公報
Here, in the summer season when the cooling load increases, the water is cooled using the cold generated on the low pressure side of the heat pump water heater to reduce the electricity demand peak and reduce the electricity bill by using cooling. In addition, a configuration that is used for cooling after storage is also considered, and a water storage and hot water storage type hot water supply device that can store both water and hot water are also disclosed (for example, see Patent Document 1).
JP-A-6-159845

しかしながら、上記従来の貯水、貯湯式給湯装置は、水を加熱または冷却するのに使用される冷媒対水用熱交換器は1つしか配設されていないため、湯と水を同時に作ることは不可能であり、一度湯を作成した後、水を作成するといった工程が必要となる。   However, since the conventional water storage and hot water storage type hot water supply apparatus has only one refrigerant-to-water heat exchanger used to heat or cool water, it is not possible to make hot water and water at the same time. It is impossible, and a process of creating water after creating hot water is required.

本発明は、上記従来の課題を解決するもので、高温冷媒、低温冷媒と水とを同時に熱交換させることにより、運転効率を向上させ、ランニングコストを低減させたヒートポンプ給湯機を提供することを目的とする。   The present invention solves the above-described conventional problems, and provides a heat pump water heater that improves operating efficiency and reduces running costs by simultaneously exchanging heat between a high-temperature refrigerant, a low-temperature refrigerant, and water. Objective.

前記従来の課題を解決するために、本発明のヒートポンプ給湯機は、圧縮機、高温の熱媒体と被熱交換液とが熱交換される高温冷媒対水用熱交換器、減圧装置、冷媒対空気用熱交換器を順次接続した冷媒回路と、前記冷媒対空気用熱交換器に接続され低温の熱媒体と被熱交換液とが熱交換される低温冷媒対水用熱交換器とを備え、前記高温冷媒対水用熱交換器と前記低温冷媒対水用熱交換器とにて同時に熱媒体と被熱交換液とが熱交換される構成としたもので、湯と同時に冷水を生成することが可能となる。   In order to solve the conventional problems, a heat pump water heater of the present invention includes a compressor, a high-temperature refrigerant-to-water heat exchanger in which a high-temperature heat medium and a heat exchange liquid exchange heat, a decompression device, and a refrigerant pair. A refrigerant circuit in which air heat exchangers are sequentially connected, and a low-temperature refrigerant-to-water heat exchanger that is connected to the refrigerant-to-air heat exchanger and exchanges heat between the low-temperature heat medium and the heat exchange liquid. The heat medium and the heat exchange liquid are simultaneously heat-exchanged in the high-temperature refrigerant / water heat exchanger and the low-temperature refrigerant / water heat exchanger, and generate cold water simultaneously with hot water. It becomes possible.

本発明のヒートポンプ給湯機は、湯と冷水を同時に生成することにより運転効率の向上と電気代の削減が可能となる。   The heat pump water heater of the present invention can improve operating efficiency and reduce electricity bills by simultaneously generating hot water and cold water.

第1の発明は、圧縮機、高温の熱媒体と被熱交換液とが熱交換される高温冷媒対水用熱交換器、減圧装置、冷媒対空気用熱交換器を順次接続した冷媒回路と、前記冷媒対空気用熱交換器に接続され低温の熱媒体と被熱交換液とが熱交換される低温冷媒対水用熱交換器とを備え、前記高温冷媒対水用熱交換器と前記低温冷媒対水用熱交換器とにて同時に熱媒体と被熱交換液とが熱交換される構成としたもので、湯と同時に冷水を生成することが可能となり、運転効率を向上し電気代を削減することができる。   A first invention includes a compressor, a high-temperature refrigerant-to-water heat exchanger that exchanges heat between a high-temperature heat medium and a heat exchange liquid, a decompression device, and a refrigerant circuit that sequentially connects a refrigerant-to-air heat exchanger A low-temperature refrigerant-to-water heat exchanger connected to the refrigerant-to-air heat exchanger to exchange heat between the low-temperature heat medium and the heat exchange liquid, and the high-temperature refrigerant-to-water heat exchanger and the The heat exchanger and the heat exchange liquid exchange heat at the same time with a low-temperature refrigerant-to-water heat exchanger, and it is possible to generate cold water at the same time as hot water. Can be reduced.

第2の発明は、圧縮機と高温冷媒対水用熱交換器との間、および前記高温冷媒対水用熱交換器と減圧装置との間、および前記減圧装置と低温冷媒対水用熱交換器との間、および前記低温冷媒対水用熱交換器と前記圧縮機との間に三方弁を配設し、前記複数の三方弁の一方と冷媒対空気用熱交換器とを接続する構成としたもので、冷媒対空気用熱交換器を蒸発器としてだけではなく、放熱器として使用することが可能となり、湯の使用量よりも冷水の使用量が多い場合にもヒートポンプの運転を継続することができる。   The second invention provides heat exchange between the compressor and the high-temperature refrigerant / water heat exchanger, between the high-temperature refrigerant / water heat exchanger and the decompression device, and between the decompression device and the low-temperature refrigerant / water heat exchange. A three-way valve between the low-temperature refrigerant-to-water heat exchanger and the compressor, and one of the plurality of three-way valves is connected to the refrigerant-to-air heat exchanger The refrigerant-to-air heat exchanger can be used not only as an evaporator but also as a radiator, and the heat pump continues to operate even when the amount of cold water used is greater than the amount of hot water used can do.

第3の発明は、高温冷媒対水用熱交換器、低温冷媒対水用熱交換器にそれぞれ接続された貯湯部を備え、前記複数の貯湯部のうち、前記高温冷媒対水用熱交換器と接続された貯湯部の入水経路および出水経路に水側三方弁を配設し、前記高温冷媒対水用熱交換器への入口経路および前記低温冷媒対水用熱交換器への入口経路に循環ポンプを配設する構成としたもので、複数の貯湯部をすべて貯湯用に使用するか、もしくは1つを冷水貯留用にするかを容易に切りかえることが可能となる。   3rd invention is equipped with the hot water storage part respectively connected to the heat exchanger for high temperature refrigerant | coolants vs. water, and the heat exchanger for low temperature refrigerant | coolants vs. water, The said heat exchanger for high temperature refrigerant | coolants vs. water among these hot water storage parts A water-side three-way valve is provided in the water intake path and the water discharge path of the hot water storage section connected to the hot water storage section, and the inlet path to the high temperature refrigerant / water heat exchanger and the low temperature refrigerant / water heat exchanger With the configuration in which the circulation pump is provided, it is possible to easily switch between using all of the plurality of hot water storage portions for hot water storage or one for cold water storage.

第4の発明は、高温冷媒対水用熱交換器、低温冷媒対水用熱交換器にそれぞれ接続された貯湯部を備え、前記複数の貯湯部のうち、すべての貯湯部の入水経路および出水経路に三方弁を配設し、前記高温冷媒対水用熱交換器への入口経路および前記低温冷媒対水用熱交換器への入口経路に循環ポンプを配設する構成としたもので、貯湯部のすべてを冷水貯留用にするなど、より柔軟な使用方法が可能となる。   4th invention is equipped with the hot water storage part each connected to the heat exchanger for high temperature refrigerant | coolants vs. water, and the heat exchanger for low temperature refrigerant | coolants vs. water, and the water intake path and the water discharge of all the hot water storage parts among these hot water storage parts A three-way valve is disposed in the path, and a circulation pump is disposed in the inlet path to the high-temperature refrigerant / water heat exchanger and the inlet path to the low-temperature refrigerant / water heat exchanger. More flexible usage methods are possible, such as using all of the parts for cold water storage.

第5の発明は、熱媒体が二酸化炭素であることを特徴とするもので、高温高効率の貯湯運転と地球環境保全を実現することができる。   The fifth invention is characterized in that the heat medium is carbon dioxide, and can realize high-temperature and high-efficiency hot water storage operation and global environmental conservation.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiment.

(実施の形態1)
図1は本発明の実施の形態1におけるヒートポンプ給湯機の構成図である。また、本発明のヒートポンプ給湯機に用いる冷媒(熱媒体)としては、従来広く用いられているR22等のフロン系冷媒でも良いが、オゾン層保全及び地球温暖化防止等の環境保護的側面から近年盛んに研究されている自然冷媒である二酸化炭素冷媒の方が、より大きな効果を得ることが可能であるため、以下では、冷媒として二酸化炭素を用いるが、その他の冷媒であってもよいものである。
(Embodiment 1)
FIG. 1 is a configuration diagram of a heat pump water heater in Embodiment 1 of the present invention. In addition, the refrigerant (heat medium) used in the heat pump water heater of the present invention may be a fluorocarbon refrigerant such as R22 that has been widely used in the past. However, in recent years from the viewpoint of environmental protection such as ozone layer preservation and global warming prevention. Since carbon dioxide refrigerant, which is a natural refrigerant that has been actively studied, can achieve a greater effect, carbon dioxide is used as the refrigerant in the following, but other refrigerants may be used. is there.

ヒートポンプ給湯機は、圧縮機1、高温冷媒対水用熱交換器2、減圧装置3、低温冷媒対水用熱交換器4、冷媒対空気用熱交換器5、電磁弁6a、6bからなる冷媒循環回路Aと、前記高温冷媒対水用熱交換器2、低温冷媒対水用熱交換器4、循環ポンプ7a、7b
、貯湯部である貯湯タンク8a、8bを接続した給湯回路Bからなり、前記圧縮機1、冷媒対水用熱交換器2、減圧装置3、低温冷媒対水用熱交換器4、冷媒対空気用熱交換器5、電磁弁6a、6b、送風ファン9等はヒートポンプユニット内に収容されている。また、前記循環ポンプ7a、7b、貯湯タンク8a、8b、制御手段(図示せず)等はタンクユニット内に収容されている。
The heat pump water heater is a refrigerant comprising a compressor 1, a high-temperature refrigerant-to-water heat exchanger 2, a decompression device 3, a low-temperature refrigerant-to-water heat exchanger 4, a refrigerant-to-air heat exchanger 5, and electromagnetic valves 6a and 6b. The circulation circuit A, the high-temperature refrigerant-to-water heat exchanger 2, the low-temperature refrigerant-to-water heat exchanger 4, the circulation pumps 7a, 7b
The hot water storage circuit B is connected to hot water storage tanks 8a and 8b, which are hot water storage units, and includes the compressor 1, the refrigerant-to-water heat exchanger 2, the decompression device 3, the low-temperature refrigerant-to-water heat exchanger 4, and the refrigerant-to-air. The heat exchanger 5, the electromagnetic valves 6a and 6b, the blower fan 9 and the like are accommodated in the heat pump unit. The circulation pumps 7a and 7b, hot water storage tanks 8a and 8b, control means (not shown) and the like are accommodated in a tank unit.

入水温検知手段10a、10bは、高温冷媒対水用熱交換器2および低温冷媒対水用熱交換器4の水側入口に設置されており、貯湯タンク8a、8bから供給された入水温度を検出する。出水温検知手段11a、11bは、高温冷媒対水用熱交換器2および低温冷媒対水用熱交換器4の水側出口に設置されており、ヒートポンプ給湯機で加熱および冷却された出水温度を検出する。制御手段は、室内に設置されているコントローラー(図示せず)で設定された温度と前記出水温検知手段11a、11bで検知している温度が等しくなるように圧縮機1の運転周波数、減圧装置3の開度、循環ポンプ7a、7bの回転数、送風ファン9の回転数等を制御する。   The incoming water temperature detection means 10a, 10b are installed at the water side inlets of the high-temperature refrigerant-to-water heat exchanger 2 and the low-temperature refrigerant-to-water heat exchanger 4, and use the incoming water temperature supplied from the hot water storage tanks 8a, 8b. To detect. The outlet water temperature detection means 11a, 11b are installed at the water side outlet of the heat exchanger 2 for high temperature refrigerant / water and the heat exchanger 4 for low temperature refrigerant / water, and the temperature of the outlet water heated and cooled by the heat pump water heater is detected. To detect. The control means includes an operating frequency of the compressor 1 and a pressure reducing device so that the temperature set by a controller (not shown) installed in the room is equal to the temperature detected by the outlet water temperature detecting means 11a and 11b. 3, the rotational speed of the circulation pumps 7 a and 7 b, the rotational speed of the blower fan 9, and the like are controlled.

上記のヒートポンプ給湯機では、前記圧縮機1より圧縮され吐出された高温・高圧の過熱ガス冷媒は、前記高温冷媒対水用熱交換器2に流入し、ここで水道から貯湯タンク8aを通じて前記循環ポンプ7aから送られてきた水を加熱する。二酸化炭素冷媒は凝縮域がなく超臨界域で熱交換されるため、冷媒温度は前記高温冷媒対水用熱交換器2内で緩やかに低下し、前記減圧装置3で減圧される。ここで、貯湯タンク8bに充分な冷水が貯留されていない場合、前記冷媒対空気用熱交換器5に通じる経路中の電磁弁6bは閉じられ、冷媒は前記冷媒対空気用熱交換器5に並列に接続された前記低温冷媒対水用熱交換器4に流入する。   In the heat pump water heater, the high-temperature and high-pressure superheated gas refrigerant compressed and discharged from the compressor 1 flows into the high-temperature refrigerant-to-water heat exchanger 2 where the circulation is performed through the hot water storage tank 8a. The water sent from the pump 7a is heated. Since the carbon dioxide refrigerant does not have a condensing region and is heat-exchanged in the supercritical region, the refrigerant temperature gradually decreases in the high-temperature refrigerant-to-water heat exchanger 2 and is decompressed by the decompression device 3. Here, when sufficient cold water is not stored in the hot water storage tank 8b, the electromagnetic valve 6b in the path leading to the refrigerant-to-air heat exchanger 5 is closed, and the refrigerant flows into the refrigerant-to-air heat exchanger 5. It flows into the low-temperature refrigerant-to-water heat exchanger 4 connected in parallel.

低温冷媒対水用熱交換器4では、水道から貯湯タンク8bを通じて前記循環ポンプ7bから送られてきた水を冷却し、冷媒は水から熱を吸熱して蒸発ガス化し、前記圧縮機1へ戻る。また、貯湯タンク8bに充分な冷水が貯留されており冷水を作る必要がない場合、低温冷媒対水用熱交換器4に通じる経路中の電磁弁6aは閉じられ、冷媒は冷媒対空気用熱交換器5に流入する。冷媒対空気用熱交換器5では、送風ファン7によって強制的に大気から熱を奪うことにより蒸発ガス化し、前記圧縮機1へ戻る。   In the low-temperature refrigerant-to-water heat exchanger 4, the water sent from the circulation pump 7 b from the water supply through the hot water storage tank 8 b is cooled, and the refrigerant absorbs heat from the water to evaporate and returns to the compressor 1. . When sufficient cold water is stored in the hot water storage tank 8b and it is not necessary to make cold water, the electromagnetic valve 6a in the path leading to the low-temperature refrigerant-to-water heat exchanger 4 is closed, and the refrigerant is refrigerant-to-air heat. It flows into the exchanger 5. In the refrigerant-to-air heat exchanger 5, the blower fan 7 forcibly removes heat from the atmosphere to evaporate and return to the compressor 1.

前記高温冷媒対水用熱交換器2で加熱された湯は、前記貯湯タンク8aの上部に流入し、貯留され、必要に応じて利用部へ供給される。また、前記低温冷媒対水用熱交換器4で冷却された冷水は、前記貯湯タンク8bの下部に流入し、貯留され、必要に応じて利用部へ供給される。   The hot water heated by the high-temperature refrigerant-to-water heat exchanger 2 flows into the upper part of the hot water storage tank 8a, is stored, and is supplied to the use section as necessary. Further, the cold water cooled by the low-temperature refrigerant-to-water heat exchanger 4 flows into the lower part of the hot water storage tank 8b, is stored, and is supplied to the utilization unit as necessary.

以上より、本実施の形態によれば、湯と同時に冷水を生成することが可能となり、運転効率を向上し電気代を削減することができる。なお、流路の切り替えに複数の電磁弁ではなく、三方弁等他の手段を用いても何ら問題はない。また、本実施の形態に示した各種材料や数値などは必ずしもこれに限定されるものではなく、所定の役割を果たすことができるならば別の材料や数値で何ら問題はない。   As described above, according to the present embodiment, it becomes possible to generate cold water simultaneously with hot water, thereby improving the operation efficiency and reducing the electricity bill. It should be noted that there is no problem even if other means such as a three-way valve are used for switching the flow path instead of a plurality of electromagnetic valves. The various materials and numerical values shown in this embodiment are not necessarily limited to these, and there is no problem with other materials and numerical values as long as they can play a predetermined role.

(実施の形態2)
図2は本発明の実施の形態2におけるヒートポンプ給湯機の構成図である。ヒートポンプ給湯機の構造は、上記実施の形態1に対して、電磁弁の代わりに圧縮機1と高温冷媒対水用熱交換器2の間、および前記高温冷媒対水用熱交換器2と減圧装置3の間、および前記減圧装置3と低温冷媒対水用熱交換器4の間、および前記低温冷媒対水用熱交換器4と前記圧縮機1の間にそれぞれ三方弁12a、12b、12c、12dを設置し、前記三方弁12a、12b、12c、12dのそれぞれ一方と冷媒対空気用熱交換器5を接続した以外は実施の形態1と同様である。
(Embodiment 2)
FIG. 2 is a configuration diagram of a heat pump water heater in Embodiment 2 of the present invention. The structure of the heat pump water heater is reduced between the compressor 1 and the high-temperature refrigerant-to-water heat exchanger 2, and the high-temperature refrigerant-to-water heat exchanger 2 with respect to the first embodiment, instead of the solenoid valve. Three-way valves 12a, 12b, 12c between the devices 3, and between the decompression device 3 and the low-temperature refrigerant-to-water heat exchanger 4, and between the low-temperature refrigerant-to-water heat exchanger 4 and the compressor 1, respectively. , 12d, and one of the three-way valves 12a, 12b, 12c, 12d is connected to the refrigerant-to-air heat exchanger 5 in the same manner as in the first embodiment.

まず貯湯タンク8a、8bに充分な湯および冷水が貯留されていない場合、前記圧縮機1より吐出された高温・高圧の過熱ガス冷媒は、三方弁12aにより前記高温冷媒対水用熱交換器2に流入し、ここで水道から貯湯タンク8aを通じて循環ポンプ7aから送られてきた水を加熱する。冷媒温度は前記高温冷媒対水用熱交換器2内で緩やかに低下し、三方弁12bを通じて前記減圧装置3で減圧され、三方弁12cにより冷媒は前記低温冷媒対水用熱交換器4に流入する。低温冷媒対水用熱交換器4では、水道から貯湯タンク8bを通じて前記循環ポンプ7bから送られてきた水を冷却し、冷媒は水から熱を吸熱して蒸発ガス化し、三方弁12dを通じて前記圧縮機1へ戻る。   First, when sufficient hot water and cold water are not stored in the hot water storage tanks 8a and 8b, the high-temperature and high-pressure superheated gas refrigerant discharged from the compressor 1 is transferred to the high-temperature refrigerant-to-water heat exchanger 2 by a three-way valve 12a. The water sent from the circulation pump 7a through the hot water storage tank 8a is heated here. The refrigerant temperature gradually decreases in the high-temperature refrigerant-to-water heat exchanger 2, is reduced in pressure by the decompression device 3 through the three-way valve 12b, and the refrigerant flows into the low-temperature refrigerant-to-water heat exchanger 4 through the three-way valve 12c. To do. The low-temperature refrigerant-to-water heat exchanger 4 cools the water sent from the water supply through the hot water storage tank 8b from the circulation pump 7b, and the refrigerant absorbs heat from the water to evaporate and is compressed through the three-way valve 12d. Return to Machine 1.

貯湯タンク8aに充分な湯が貯留されているが、貯湯タンク8bに充分な冷水が貯留されていない場合、前記圧縮機1より吐出された高温・高圧の過熱ガス冷媒は、三方弁12aにより冷媒対空気用熱交換器5に送られる。冷媒対空気用熱交換器5では、送風ファン7によって強制的に冷媒から熱を奪い低温冷媒とした後、三方弁12bを通じて前記減圧装置3で減圧され、三方弁12cにより冷媒は前記低温冷媒対水用熱交換器4に流入する。低温冷媒対水用熱交換器4では、水道から貯湯タンク8bを通じて前記循環ポンプ7bから送られてきた水を冷却し、冷媒は水から熱を吸熱して蒸発ガス化し、三方弁12dを通じて前記圧縮機1へ戻る。   When sufficient hot water is stored in the hot water storage tank 8a but not enough cold water is stored in the hot water storage tank 8b, the high-temperature and high-pressure superheated gas refrigerant discharged from the compressor 1 is cooled by the three-way valve 12a. It is sent to the heat exchanger 5 for air. In the refrigerant-to-air heat exchanger 5, the blower fan 7 forcibly removes heat from the refrigerant to form a low-temperature refrigerant, and then the pressure is reduced by the decompression device 3 through the three-way valve 12b. The refrigerant is cooled by the three-way valve 12c. It flows into the water heat exchanger 4. The low-temperature refrigerant-to-water heat exchanger 4 cools the water sent from the water supply through the hot water storage tank 8b from the circulation pump 7b, and the refrigerant absorbs heat from the water to evaporate and is compressed through the three-way valve 12d. Return to Machine 1.

貯湯タンク8bに充分な冷水が貯留されているが、貯湯タンク8aに充分な湯が貯留されていない場合、前記圧縮機1より吐出された高温・高圧の過熱ガス冷媒は、三方弁12aを通じて前記高温冷媒対水用熱交換器2に流入し、ここで水道から貯湯タンク8aを通じて前記循環ポンプ7aから送られてきた水を加熱する。冷媒温度は前記高温冷媒対水用熱交換器2内で緩やかに低下し、三方弁12bを通じて前記減圧装置3で減圧され、三方弁12cにより冷媒は前記冷媒対空気用熱交換器5に流入する。冷媒対空気用熱交換器5では、送風ファン7によって強制的に大気から熱を奪うことにより蒸発ガス化し、前記圧縮機1へ戻る。   When sufficient cold water is stored in the hot water storage tank 8b, but not enough hot water is stored in the hot water storage tank 8a, the high-temperature / high-pressure superheated gas refrigerant discharged from the compressor 1 passes through the three-way valve 12a. The water flows into the high-temperature refrigerant-to-water heat exchanger 2 where the water sent from the circulation pump 7a through the hot water storage tank 8a is heated. The refrigerant temperature gradually decreases in the high-temperature refrigerant-to-water heat exchanger 2 and is reduced in pressure by the decompression device 3 through the three-way valve 12b, and the refrigerant flows into the refrigerant-to-air heat exchanger 5 through the three-way valve 12c. . In the refrigerant-to-air heat exchanger 5, the blower fan 7 forcibly removes heat from the atmosphere to evaporate and return to the compressor 1.

貯湯タンク8a、8bに充分な湯および冷水が貯留されている場合、ヒートポンプ給湯機は運転を行わない。   When sufficient hot water and cold water are stored in the hot water storage tanks 8a and 8b, the heat pump water heater does not operate.

以上より、本実施の形態によれば、冷媒対空気用熱交換器を蒸発器としてだけではなく、放熱器として使用することが可能となり、湯の使用量よりも冷水の使用量が多い場合にもヒートポンプの運転を継続することができる。なお、流路の切り替えには三方弁以外に電磁弁等他の手段を用いても何ら問題はない。なお、本実施の形態に示した各種材料や数値などは必ずしもこれに限定されるものではなく、所定の役割を果たすことができるならば別の材料や数値で何ら問題はない。   As described above, according to the present embodiment, the refrigerant-to-air heat exchanger can be used not only as an evaporator but also as a radiator, and when the amount of cold water used is greater than the amount of hot water used. Can continue to operate the heat pump. It should be noted that there is no problem in using other means such as an electromagnetic valve in addition to the three-way valve for switching the flow path. Note that the various materials and numerical values shown in this embodiment are not necessarily limited to these, and there is no problem with other materials and numerical values as long as they can play a predetermined role.

(実施の形態3)
図3は本発明の実施の形態3におけるヒートポンプ給湯機の給湯回路の構成図である。冷媒循環回路Aについては実施の形態1または実施の形態2と同一である。
(Embodiment 3)
FIG. 3 is a configuration diagram of a hot water supply circuit of a heat pump water heater in Embodiment 3 of the present invention. The refrigerant circuit A is the same as that in the first embodiment or the second embodiment.

給湯回路Bについて説明する。貯湯専用として使用される貯湯タンク8aの下部には水道からの給水部13が接続される。ヒートポンプ運転時は、貯湯タンク8aの下部から流出する水は水側三方弁14aを通じ循環ポンプ7aを介して高温冷媒対水用熱交換器2に送られる。ここで高温冷媒と熱交換し加熱された湯は水側三方弁14bを通じ貯湯タンク8aの上部から戻り、貯湯タンク8a内に貯留される。   The hot water supply circuit B will be described. A water supply unit 13 from the water supply is connected to the lower part of the hot water storage tank 8a used exclusively for hot water storage. During the heat pump operation, water flowing out from the lower portion of the hot water storage tank 8a is sent to the high-temperature refrigerant-to-water heat exchanger 2 through the water-side three-way valve 14a and the circulation pump 7a. Here, the hot water heated by exchanging heat with the high-temperature refrigerant returns from the upper part of the hot water storage tank 8a through the water side three-way valve 14b and is stored in the hot water storage tank 8a.

貯湯貯水兼用として使用される貯湯タンク8bが貯水用として使用される場合、給水部13から水側三方弁14cを通じて貯湯タンク8bの上部に水を供給し、低温水利用部へ
冷水を送るため水側電磁弁15aが開けられ、高温水利用部への経路にある水側電磁弁15bが閉じられる。ヒートポンプ運転時は、貯湯タンク8bの上部から流出する水は循環ポンプ7bを介して低温冷媒対水用熱交換器4に送られる。ここで低温冷媒と熱交換し冷却された冷水は貯湯タンク8bの下部から戻り、貯湯タンク8b内に貯留される。
When the hot water storage tank 8b used for hot water storage is also used for water storage, water is supplied from the water supply unit 13 to the upper part of the hot water storage tank 8b through the water side three-way valve 14c, and the cold water is sent to the low temperature water utilization unit. The side solenoid valve 15a is opened, and the water side solenoid valve 15b on the route to the high temperature water utilization unit is closed. During the heat pump operation, the water flowing out from the upper part of the hot water storage tank 8b is sent to the low-temperature refrigerant-to-water heat exchanger 4 through the circulation pump 7b. Here, the cold water cooled by heat exchange with the low-temperature refrigerant returns from the lower part of the hot water storage tank 8b and is stored in the hot water storage tank 8b.

貯湯貯水兼用として使用される貯湯タンク8bが貯湯用として使用される場合、給水部13から水側三方弁14cを通じて貯湯タンク8bの下部に水を供給し、高温水利用部へ温水を送るため水側電磁弁15bが開けられ、低温水利用部への経路にある水側電磁弁15aが閉じられる。ヒートポンプ運転時は、貯湯タンク8bの下部から流出する水は水側三方弁14aを通じ循環ポンプ7aを介して高温冷媒対水用熱交換器2に送られる。ここで高温冷媒と熱交換し加熱された湯は水側三方弁14bを通じ貯湯タンク8bの上部から戻り、貯湯タンク8b内に貯留される。   When the hot water storage tank 8b used for hot water storage is also used for hot water storage, water is supplied from the water supply unit 13 to the lower part of the hot water storage tank 8b through the water side three-way valve 14c, and the hot water is sent to the high temperature water utilization unit. The side electromagnetic valve 15b is opened, and the water side electromagnetic valve 15a in the path to the low temperature water utilization unit is closed. During the heat pump operation, water flowing out from the lower part of the hot water storage tank 8b is sent to the high-temperature refrigerant-to-water heat exchanger 2 through the water-side three-way valve 14a and the circulation pump 7a. Here, the hot water heated by exchanging heat with the high-temperature refrigerant returns from the upper part of the hot water storage tank 8b through the water side three-way valve 14b and is stored in the hot water storage tank 8b.

以上より、本実施の形態によれば、複数の貯湯タンクをすべて貯湯用に使用するか、もしくは1つを冷水貯留用にするかを容易に切りかえることが可能となる。なお、流路の切り替えには三方弁以外に電磁弁等他の手段を用いても何ら問題はない。なお、本実施の形態に示した各種材料や数値などは必ずしもこれに限定されるものではなく、所定の役割を果たすことができるならば別の材料や数値で何ら問題はない。   As described above, according to the present embodiment, it is possible to easily switch between using all of the plurality of hot water storage tanks for hot water storage or one for cold water storage. It should be noted that there is no problem in using other means such as an electromagnetic valve in addition to the three-way valve for switching the flow path. Note that the various materials and numerical values shown in this embodiment are not necessarily limited to these, and there is no problem with other materials and numerical values as long as they can play a predetermined role.

(実施の形態4)
図4は本発明の実施の形態4におけるヒートポンプ給湯機の給湯回路の構成図である。冷媒循環回路については実施の形態1または実施の形態2と同一である。
(Embodiment 4)
FIG. 4 is a configuration diagram of a hot water supply circuit of a heat pump water heater in Embodiment 4 of the present invention. The refrigerant circuit is the same as that in the first or second embodiment.

給湯回路Bについて説明する。貯湯タンク8a、8bがともに貯湯用として使用される場合、まず貯湯タンク8aを湯で満たすため、給水部13から水側三方弁14dを通じて貯湯タンク8aの下部に水を供給し、水側電磁弁15a、15bは閉じられ、低温水利用部への経路にある水側電磁弁15cが閉じられ、高温水利用部への経路にある水側電磁弁15dが開けられる。ヒートポンプ運転時は、貯湯タンク8aの下部から流出する水は、水側三方弁14aを通じ循環ポンプ7aを介して高温冷媒対水用熱交換器2に送られる。   The hot water supply circuit B will be described. When both the hot water storage tanks 8a and 8b are used for hot water storage, first, in order to fill the hot water storage tank 8a with hot water, water is supplied from the water supply unit 13 to the lower part of the hot water storage tank 8a through the water side three-way valve 14d. 15a and 15b are closed, the water-side electromagnetic valve 15c on the path to the low-temperature water utilization section is closed, and the water-side electromagnetic valve 15d on the path to the high-temperature water utilization section is opened. During the heat pump operation, water flowing out from the lower portion of the hot water storage tank 8a is sent to the high-temperature refrigerant-to-water heat exchanger 2 through the water-side three-way valve 14a and the circulation pump 7a.

ここで高温冷媒と熱交換し加熱された湯は水側三方弁14bを通じ貯湯タンク8aの上部から戻り、貯湯タンク8a内に貯留される。貯湯タンク8aが湯で満たされると、次は貯湯タンク8bを湯で満たすため、給水部13から水側三方弁14cを通じて貯湯タンク8bの下部に水を供給し、水側電磁弁15bが開けられる。ヒートポンプ運転時は、貯湯タンク8bの下部から流出する水は水側三方弁14eおよび水側三方弁14aを通じ循環ポンプ7aを介して高温冷媒対水用熱交換器2に送られる。ここで高温冷媒と熱交換し加熱された湯は水側三方弁14bおよび14fを通じ貯湯タンク8bの上部から戻り、貯湯タンク8b内に貯留される。   Here, the hot water heated by exchanging heat with the high-temperature refrigerant returns from the upper part of the hot water storage tank 8a through the water side three-way valve 14b and is stored in the hot water storage tank 8a. When the hot water storage tank 8a is filled with hot water, the hot water storage tank 8b is filled with hot water, so that water is supplied from the water supply unit 13 to the lower part of the hot water storage tank 8b through the water side three-way valve 14c, and the water side solenoid valve 15b is opened. . During the heat pump operation, water flowing out from the lower part of the hot water storage tank 8b is sent to the high-temperature refrigerant-to-water heat exchanger 2 through the water-side three-way valve 14e and the water-side three-way valve 14a through the circulation pump 7a. The hot water heated by exchanging heat with the high-temperature refrigerant returns from the upper part of the hot water storage tank 8b through the water-side three-way valves 14b and 14f and is stored in the hot water storage tank 8b.

貯湯タンク8aが貯湯用、8bが貯水用として使用される場合、給水部13から水側三方弁14dを通じて貯湯タンク8aの下部に水を供給し低温水利用部への経路にある水側電磁弁15cが閉じられ、高温水利用部への経路にある水側電磁弁15dが開けられる。同時に給水部13から水側三方弁14cを通じて貯湯タンク8bの上部に水を供給し高温水利用部への経路にある水側電磁弁15bが閉じられ、低温水利用部への経路にある水側電磁弁15aが開けられる。ヒートポンプ運転時は、貯湯タンク8aの下部から流出する水は水側三方弁14aを通じ循環ポンプ7aを介して高温冷媒対水用熱交換器2に送られる。   When the hot water storage tank 8a is used for hot water storage and 8b is used for water storage, water is supplied from the water supply unit 13 to the lower part of the hot water storage tank 8a through the water side three-way valve 14d, and the water side electromagnetic valve in the path to the low temperature water utilization unit 15c is closed and the water-side solenoid valve 15d in the path to the high-temperature water utilization part is opened. At the same time, water is supplied from the water supply unit 13 to the upper part of the hot water storage tank 8b through the water-side three-way valve 14c, and the water-side electromagnetic valve 15b on the route to the high-temperature water use unit is closed, and the water side on the route to the low-temperature water use unit The electromagnetic valve 15a is opened. During the heat pump operation, water flowing out from the lower portion of the hot water storage tank 8a is sent to the high-temperature refrigerant-to-water heat exchanger 2 through the water-side three-way valve 14a and the circulation pump 7a.

ここで高温冷媒と熱交換し加熱された湯は、水側三方弁14bを通じ貯湯タンク8aの上部から戻り、貯湯タンク8a内に貯留される。また、貯湯タンク8bの上部から流出す
る水は水側三方弁14fを通じ循環ポンプ7bを介して低温冷媒対水用熱交換器4に送られる。ここで低温冷媒と熱交換し冷却された冷水は水側三方弁14eを通じ貯湯タンク8bの下部から戻り、貯湯タンク8b内に貯留される。
The hot water heated by exchanging heat with the high-temperature refrigerant returns from the upper part of the hot water storage tank 8a through the water-side three-way valve 14b and is stored in the hot water storage tank 8a. The water flowing out from the upper part of the hot water storage tank 8b is sent to the low-temperature refrigerant-to-water heat exchanger 4 through the water-side three-way valve 14f and the circulation pump 7b. Here, the cold water cooled and exchanged with the low-temperature refrigerant returns from the lower part of the hot water storage tank 8b through the water side three-way valve 14e and is stored in the hot water storage tank 8b.

貯湯タンク8a、8bがともに貯水用として使用される場合、まず貯湯タンク8bを冷水で満たすため、給水部13から水側三方弁14cを通じて貯湯タンク8bの上部に水を供給し、水側電磁弁15c、15dは閉じられ、低温水利用部への経路にある水側電磁弁15aが開けられ、高温水利用部への経路にある水側電磁弁15bが閉じられる。ヒートポンプ運転時は、貯湯タンク8bの上部から流出する水は水側三方弁14fを通じ循環ポンプ7bを介して低温冷媒対水用熱交換器4に送られる。   When both the hot water storage tanks 8a and 8b are used for water storage, in order to fill the hot water storage tank 8b with cold water, water is supplied from the water supply unit 13 to the upper part of the hot water storage tank 8b through the water side three-way valve 14c, and the water side electromagnetic valve 15c and 15d are closed, the water-side solenoid valve 15a on the path to the low-temperature water utilization section is opened, and the water-side solenoid valve 15b on the path to the high-temperature water utilization section is closed. During the heat pump operation, the water flowing out from the upper part of the hot water storage tank 8b is sent to the low-temperature refrigerant-to-water heat exchanger 4 through the water-side three-way valve 14f and the circulation pump 7b.

ここで低温冷媒と熱交換し冷却された冷水は、水側三方弁14eを通じ貯湯タンク8bの下部から戻り、貯湯タンク8b内に貯留される。貯湯タンク8bが冷水で満たされると、次は貯湯タンク8aを冷水で満たすため、給水部13から水側三方弁14dを通じて貯湯タンク8aの上部に水を供給し、水側電磁弁15cが開けられる。ヒートポンプ運転時は、貯湯タンク8aの上部から流出する水は水側三方弁14bおよび水側三方弁14fを通じ循環ポンプ7bを介して低温冷媒対水用熱交換器4に送られる。ここで低温冷媒と熱交換し冷却された冷水は水側三方弁14eおよび14aを通じ貯湯タンク8aの下部から戻り、貯湯タンク8a内に貯留される。   Here, the chilled water cooled by exchanging heat with the low-temperature refrigerant returns from the lower part of the hot water storage tank 8b through the water side three-way valve 14e and is stored in the hot water storage tank 8b. When the hot water storage tank 8b is filled with cold water, next, the hot water storage tank 8a is filled with cold water, so water is supplied from the water supply unit 13 to the upper part of the hot water storage tank 8a through the water side three-way valve 14d, and the water side electromagnetic valve 15c is opened. . During the heat pump operation, the water flowing out from the upper part of the hot water storage tank 8a is sent to the low-temperature refrigerant-to-water heat exchanger 4 through the water-side three-way valve 14b and the water-side three-way valve 14f through the circulation pump 7b. Here, the cold water cooled and exchanged with the low-temperature refrigerant returns from the lower part of the hot water storage tank 8a through the water-side three-way valves 14e and 14a and is stored in the hot water storage tank 8a.

以上より、本実施の形態によれば、貯湯部のすべてを冷水貯留用にするなど、より柔軟な使用方法が可能となる。なお、流路の切り替えには三方弁以外に電磁弁等他の手段を用いても何ら問題はない。なお、本実施の形態に示した各種材料や数値などは必ずしもこれに限定されるものではなく、所定の役割を果たすことができるならば別の材料や数値で何ら問題はない。   As described above, according to the present embodiment, a more flexible usage method is possible, for example, all of the hot water storage section is for cold water storage. It should be noted that there is no problem in using other means such as an electromagnetic valve in addition to the three-way valve for switching the flow path. Note that the various materials and numerical values shown in this embodiment are not necessarily limited to these, and there is no problem with other materials and numerical values as long as they can play a predetermined role.

以上のように、本発明にかかるヒートポンプ給湯機は、高温側排熱、低温側排熱の両方とも有効活用できるため、冷凍システムを有する空調装置等にも適用できる。   As described above, since the heat pump water heater according to the present invention can effectively utilize both high-temperature side exhaust heat and low-temperature side exhaust heat, it can be applied to an air conditioner having a refrigeration system.

本発明の実施の形態1におけるヒートポンプ給湯機の構成図Configuration diagram of heat pump water heater in Embodiment 1 of the present invention 本発明の実施の形態2におけるヒートポンプ給湯機の構成図The block diagram of the heat pump water heater in Embodiment 2 of this invention 本発明の実施の形態3におけるヒートポンプ給湯機の給湯回路の構成図The block diagram of the hot water supply circuit of the heat pump water heater in Embodiment 3 of this invention 本発明の実施の形態4におけるヒートポンプ給湯機の給湯回路の構成図The block diagram of the hot water supply circuit of the heat pump water heater in Embodiment 4 of this invention 従来のヒートポンプ給湯機の構成図Configuration diagram of conventional heat pump water heater

符号の説明Explanation of symbols

1 圧縮機
2 高温冷媒対水用熱交換器
3 減圧装置
4 低温冷媒対水用熱交換器
5 冷媒対空気用熱交換器
8 貯湯タンク(貯湯部)
12 三方弁
14 水側三方弁
DESCRIPTION OF SYMBOLS 1 Compressor 2 Heat exchanger for high-temperature refrigerant | coolant versus water 3 Pressure reducing device 4 Heat exchanger for low-temperature refrigerant | coolant versus water 5 Heat exchanger for refrigerant | coolant versus air 8 Hot water storage tank (hot water storage part)
12 Three-way valve 14 Water-side three-way valve

Claims (5)

圧縮機、高温の熱媒体と被熱交換液とが熱交換される高温冷媒対水用熱交換器、減圧装置、冷媒対空気用熱交換器を順次接続した冷媒回路と、前記冷媒対空気用熱交換器に接続され低温の熱媒体と被熱交換液とが熱交換される低温冷媒対水用熱交換器とを備え、前記高温冷媒対水用熱交換器と前記低温冷媒対水用熱交換器とにて同時に熱媒体と被熱交換液とが熱交換される構成としたヒートポンプ給湯機。 A refrigerant circuit in which a compressor, a high-temperature refrigerant-to-water heat exchanger for exchanging heat between the high-temperature heat medium and the heat exchange liquid, a decompression device, a refrigerant-to-air heat exchanger are sequentially connected, and the refrigerant-to-air A low-temperature refrigerant-to-water heat exchanger connected to the heat exchanger and exchanging heat between the low-temperature heat medium and the heat exchange liquid, the high-temperature refrigerant-to-water heat exchanger and the low-temperature refrigerant-to-water heat A heat pump water heater configured to exchange heat between the heat medium and the heat exchange liquid simultaneously with the exchanger. 圧縮機と高温冷媒対水用熱交換器との間、および前記高温冷媒対水用熱交換器と減圧装置との間、および前記減圧装置と低温冷媒対水用熱交換器との間、および前記低温冷媒対水用熱交換器と前記圧縮機との間に三方弁を配設し、前記複数の三方弁の一方と冷媒対空気用熱交換器とを接続する構成とした請求項1記載のヒートポンプ給湯機。 Between the compressor and the high-temperature refrigerant-to-water heat exchanger, between the high-temperature refrigerant-to-water heat exchanger and the decompression device, and between the decompression device and the low-temperature refrigerant-to-water heat exchanger, and 2. A configuration in which a three-way valve is disposed between the low-temperature refrigerant-to-water heat exchanger and the compressor, and one of the plurality of three-way valves is connected to a refrigerant-to-air heat exchanger. Heat pump water heater. 高温冷媒対水用熱交換器、低温冷媒対水用熱交換器にそれぞれ接続された貯湯部を備え、前記複数の貯湯部のうち、前記高温冷媒対水用熱交換器と接続された貯湯部の入水経路および出水経路に水側三方弁を配設し、前記高温冷媒対水用熱交換器への入口経路および前記低温冷媒対水用熱交換器への入口経路に循環ポンプを配設する構成とした請求項1または2記載のヒートポンプ給湯機。 A hot water storage section connected to the high temperature refrigerant versus water heat exchanger among the plurality of hot water storage sections, comprising a hot water storage section connected to each of the high temperature refrigerant versus water heat exchanger and the low temperature refrigerant versus water heat exchanger. A water-side three-way valve is disposed in the water intake path and the water discharge path, and a circulation pump is disposed in the inlet path to the high-temperature refrigerant / water heat exchanger and the inlet path to the low-temperature refrigerant / water heat exchanger. The heat pump water heater according to claim 1 or 2, wherein the heat pump water heater is configured. 高温冷媒対水用熱交換器、低温冷媒対水用熱交換器にそれぞれ接続された貯湯部を備え、前記複数の貯湯部のうち、すべての貯湯部の入水経路および出水経路に三方弁を配設し、前記高温冷媒対水用熱交換器への入口経路および前記低温冷媒対水用熱交換器への入口経路に循環ポンプを配設する構成とした請求項1または2記載のヒートポンプ給湯機。 A hot water storage unit connected to each of the high-temperature refrigerant-to-water heat exchanger and the low-temperature refrigerant-to-water heat exchanger is provided, and a three-way valve is arranged in each of the plurality of hot water storage units. The heat pump water heater according to claim 1 or 2, wherein a circulation pump is provided in an inlet path to the high-temperature refrigerant / water heat exchanger and an inlet path to the low-temperature refrigerant / water heat exchanger. . 熱媒体が二酸化炭素であることを特徴とする請求項1〜4のいずれか1項に記載のヒートポンプ給湯機。 The heat pump water heater according to any one of claims 1 to 4, wherein the heat medium is carbon dioxide.
JP2004349348A 2004-12-02 2004-12-02 Heat pump water heater Pending JP2006162086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004349348A JP2006162086A (en) 2004-12-02 2004-12-02 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004349348A JP2006162086A (en) 2004-12-02 2004-12-02 Heat pump water heater

Publications (1)

Publication Number Publication Date
JP2006162086A true JP2006162086A (en) 2006-06-22

Family

ID=36664301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004349348A Pending JP2006162086A (en) 2004-12-02 2004-12-02 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP2006162086A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133540A (en) * 2007-11-30 2009-06-18 Sanyo Electric Co Ltd Heat pump system
JP2009133543A (en) * 2007-11-30 2009-06-18 Sanyo Electric Co Ltd Refrigerating device
JP2009133541A (en) * 2007-11-30 2009-06-18 Sanyo Electric Co Ltd Heat pump system
CN102338508A (en) * 2011-08-18 2012-02-01 王全龄 Ultra-low water temperature evaporator and heat pump unit comprising same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133540A (en) * 2007-11-30 2009-06-18 Sanyo Electric Co Ltd Heat pump system
JP2009133543A (en) * 2007-11-30 2009-06-18 Sanyo Electric Co Ltd Refrigerating device
JP2009133541A (en) * 2007-11-30 2009-06-18 Sanyo Electric Co Ltd Heat pump system
CN102338508A (en) * 2011-08-18 2012-02-01 王全龄 Ultra-low water temperature evaporator and heat pump unit comprising same

Similar Documents

Publication Publication Date Title
JP3858015B2 (en) Refrigerant circuit and heat pump water heater
JP2004257586A (en) Refrigerator using carbon dioxide as refrigerant
JP2006283989A (en) Cooling/heating system
JP2014145583A (en) Air conditioner
JP4298990B2 (en) Refrigeration equipment using carbon dioxide as refrigerant
JP2020159663A (en) Air conditioner
JP2004218944A (en) Heat pump air conditioning and water heater
JP2007163071A (en) Heat pump type cooling/heating system
JP2006017427A (en) Cooling system
JP2004218943A (en) Air conditioning and water heater
JP2008082601A (en) Heat pump hot water supply device
JP4033788B2 (en) Heat pump equipment
JP2006010137A (en) Heat pump system
JP2005308344A (en) Heat pump water heater
JP2004156806A (en) Warm/cold thermal system
JP2009162403A (en) Air conditioner
KR200412598Y1 (en) Heat pump system for having function of hot water supply
JP2006017377A (en) Heat pump water heater
JP2006162086A (en) Heat pump water heater
JP2007278655A (en) Heat storage type hot water supplier
JP4449779B2 (en) Heat pump water heater
JP2004251557A (en) Refrigeration device using carbon dioxide as refrigerant
JP4882478B2 (en) Regenerative water heater
JP2009281629A (en) Heat pump water heater
KR200414655Y1 (en) Heat pump for condensing heat of room cooler, which is capable of using heating and hot water