JP2011058767A - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP2011058767A
JP2011058767A JP2009211410A JP2009211410A JP2011058767A JP 2011058767 A JP2011058767 A JP 2011058767A JP 2009211410 A JP2009211410 A JP 2009211410A JP 2009211410 A JP2009211410 A JP 2009211410A JP 2011058767 A JP2011058767 A JP 2011058767A
Authority
JP
Japan
Prior art keywords
hot water
temperature
storage tank
water storage
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009211410A
Other languages
Japanese (ja)
Inventor
Makoto Shimizu
真 清水
Takeji Watanabe
竹司 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009211410A priority Critical patent/JP2011058767A/en
Publication of JP2011058767A publication Critical patent/JP2011058767A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump water heater capable of achieving high efficiency of a heat pump cycle by effectively using intermediate temperature water within a hot water storage tank for the heat pump cycle directly. <P>SOLUTION: The heat pump water heater includes: a refrigerant circuit 20 comprising a compressor 16, a radiator 17, a decompression means 18 and an evaporator 19; and the hot water storage tank 15 for storing hot water heated by the radiator 17. Heat exchange is performed between hot water in an intermediate temperature region within the hot water storage tank 15 and a refrigerant made to flow within the evaporator 19. The intermediate temperature heating with low efficiency of a heat pump can be reduced. Since intermediate temperature water can be effectively used for the heat pump cycle directly, system efficiency for storing hot water can be improved. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ヒートポンプ給湯機に関するものである。   The present invention relates to a heat pump water heater.

従来、この種のヒートポンプ給湯機は、圧縮機、冷媒対水熱交換器およびヒートポンプ熱交換器を冷媒配管によりループ状に接続してなり、かつ、二酸化炭素を冷媒として用いたヒートポンプ冷媒回路と、貯湯タンク、循環ポンプおよび冷媒対水熱交換器を給湯用水配管によりループ状に接続してなり、貯湯タンク内の底部の水を冷媒対水熱交換器に循環して加熱し、この冷媒対水熱交換器で加熱された湯を貯湯タンクの天部に戻して貯湯タンクに貯留可能とした給湯用水循環回路とを備え、上記貯湯タンク内天部から取り出した高温の湯と、上記貯湯タンク内中間部から取り出した中間温度域の湯と、水道水配管から給水される水道水を利用部へ供給可能に構成されている(例えば、特許文献1参照)。   Conventionally, this type of heat pump water heater is a heat pump refrigerant circuit in which a compressor, a refrigerant-to-water heat exchanger, and a heat pump heat exchanger are connected in a loop by refrigerant piping, and carbon dioxide is used as a refrigerant. A hot water storage tank, a circulation pump and a refrigerant-to-water heat exchanger are connected in a loop by a hot water supply water pipe, and the water at the bottom in the hot water tank is circulated to the refrigerant-to-water heat exchanger to heat it. The hot water heated by the heat exchanger is returned to the top of the hot water storage tank so that the hot water can be stored in the hot water storage tank, and the hot water taken out from the hot water tank top and the hot water storage tank The hot water of the intermediate temperature range taken out from the intermediate part and the tap water supplied from a tap water piping are comprised so that supply to a utilization part is possible (for example, refer patent document 1).

特開2004−361081号公報JP 2004-361081 A

しかしながら、上記従来の構成では、貯湯タンクの中間部から取り出した中間温度域の湯を有効に利用できるため、無駄に多量の水道水を混合して給湯することを抑えることができるとともに、不要な沸き上げをおさえることができるが、直接ヒートポンプサイクルの高効率を実現することができないという課題を有している。   However, in the above conventional configuration, hot water in the intermediate temperature range taken out from the intermediate portion of the hot water storage tank can be used effectively, so that it is possible to suppress wasteful mixing and supply of hot water and unnecessary. Although boiling can be suppressed, it has the subject that the high efficiency of a direct heat pump cycle cannot be implement | achieved.

本発明は、前記従来の課題を解決するもので、貯湯タンク内の中温水を直接ヒートポンプサイクルに有効に利用することで、ヒートポンプサイクルの高効率を実現することができるヒートポンプ給湯機を提供することを目的とするものである。   The present invention solves the above-described conventional problems, and provides a heat pump water heater capable of realizing high efficiency of a heat pump cycle by effectively using medium temperature water in a hot water storage tank directly in the heat pump cycle. It is intended.

上記課題を解決するために、本発明のヒートポンプ給湯機は、圧縮機、放熱器、減圧手段、蒸発器からなる冷媒回路と、前記放熱器で加熱した温水を貯湯する貯湯タンクとを備え、前記貯湯タンク内の中間温度域の湯と、前記蒸発器内を流れる冷媒とを熱交換する構成を有することを特徴とするもので、貯湯タンク内の中温水を直接ヒートポンプサイクルに有効に利用することで、ヒートポンプサイクルの高効率を実現することができるヒートポンプ給湯機を提供できる。   In order to solve the above problems, a heat pump water heater of the present invention includes a refrigerant circuit including a compressor, a radiator, a decompression unit, and an evaporator, and a hot water storage tank that stores hot water heated by the radiator. It is characterized by having a configuration for exchanging heat between hot water in an intermediate temperature range in the hot water storage tank and the refrigerant flowing in the evaporator, and effectively using the medium temperature water in the hot water storage tank directly in the heat pump cycle. Thus, it is possible to provide a heat pump water heater that can realize high efficiency of the heat pump cycle.

本発明によれば、貯湯タンク内の中温水を直接ヒートポンプサイクルに有効に利用することで、ヒートポンプサイクルの高効率を実現することができるヒートポンプ給湯機を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the heat pump water heater which can implement | achieve the high efficiency of a heat pump cycle can be provided by using effectively the intermediate temperature water in a hot water storage tank for a direct heat pump cycle.

本発明の実施の形態1におけるヒートポンプ給湯機の概略構成図1 is a schematic configuration diagram of a heat pump water heater in Embodiment 1 of the present invention. 本発明の実施の形態2におけるヒートポンプ給湯機の概略構成図The schematic block diagram of the heat pump water heater in Embodiment 2 of this invention.

第1の発明は、圧縮機、放熱器、減圧手段、蒸発器からなる冷媒回路と、前記放熱器で
加熱した温水を貯湯する貯湯タンクとを備え、前記貯湯タンク内の中間温度域の湯と、前記蒸発器内を流れる冷媒とを熱交換する構成を有することを特徴とするヒートポンプ給湯機で、ヒートポンプの効率の低い中温沸き上げを少なくすることができる。また、中温水を直接ヒートポンプサイクルに有効に利用することができるため、貯湯するためのシステム効率を向上することができる。
1st invention is equipped with the refrigerant circuit which consists of a compressor, a radiator, pressure reduction means, and an evaporator, and the hot water storage tank which stores the hot water heated with the said heat radiator, The hot water of the intermediate temperature range in the said hot water storage tank, In the heat pump water heater having a configuration for exchanging heat with the refrigerant flowing in the evaporator, it is possible to reduce boiling of the intermediate temperature with low efficiency of the heat pump. Further, since the medium-temperature water can be effectively used for the direct heat pump cycle, the system efficiency for storing hot water can be improved.

第2の発明は、蒸発器の空気の流れ方向の下流に送風手段を設けたことを特徴とするもので、中温水を直接ヒートポンプサイクルに有効に利用するとともに、大気熱を利用した効率のよい冷媒回路とすることができる。   The second invention is characterized in that a blowing means is provided downstream of the evaporator in the air flow direction, and the medium-temperature water is effectively used directly in the heat pump cycle, and is efficient using atmospheric heat. It can be set as a refrigerant circuit.

第3の発明は、蒸発器内を流れる冷媒と熱交換する湯水には、貯湯タンクの高さ方向における中間位置近傍、もしくは、それ以上高い位置に貯湯された湯水を利用する構成としたことを特徴とするもので、中温水を的確に直接ヒートポンプサイクルに有効に利用することができる。   According to a third aspect of the present invention, hot water stored in the vicinity of the intermediate position in the height direction of the hot water storage tank or higher is used as hot water to exchange heat with the refrigerant flowing in the evaporator. It is a feature, and it is possible to effectively use medium-temperature water in a direct heat pump cycle.

第4の発明は、貯湯タンクに貯湯されている湯水の温度を検出する貯湯タンク水温度検出手段を備え、蒸発器内を流れる冷媒と熱交換する前記貯湯タンク内の湯水の温度が所定温度以上の場合には、前記貯湯タンク内の湯水と、前記蒸発器内を流れる冷媒とを熱交換させない構成としたことを特徴とするもので、中温水を的確に直接ヒートポンプサイクルに有効に利用することができる。   4th invention is equipped with the hot water tank water temperature detection means which detects the temperature of the hot water currently stored in the hot water storage tank, and the temperature of the hot water in the said hot water tank which heat-exchanges with the refrigerant | coolant which flows through an evaporator is more than predetermined temperature In this case, it is characterized in that the hot water in the hot water storage tank and the refrigerant flowing in the evaporator are not subjected to heat exchange, and the medium-temperature water is effectively and directly used for the heat pump cycle. Can do.

第5の発明は、貯湯タンクに貯湯されている湯水の温度を検出する貯湯タンク水温度検出手段と外気温検出手段とを備え、蒸発器内を流れる冷媒と熱交換する前記貯湯タンク内の湯水の温度が所定温度以下で、かつ、前記外気温検出手段の検出温度より高い場合には、前記貯湯タンク内の湯水と、前記蒸発器内を流れる冷媒とを熱交換させる構成としたことを特徴とするもので、中温水を的確に直接ヒートポンプサイクルに有効に利用することができる。   According to a fifth aspect of the present invention, there is provided a hot water tank water temperature detecting means for detecting the temperature of the hot water stored in the hot water tank and an outside air temperature detecting means, and the hot water in the hot water tank that exchanges heat with the refrigerant flowing in the evaporator. When the temperature is lower than a predetermined temperature and higher than the detected temperature of the outside air temperature detecting means, the hot water in the hot water storage tank and the refrigerant flowing in the evaporator are heat exchanged. Therefore, the medium-temperature water can be accurately and effectively used directly in the heat pump cycle.

以下、本発明の実施の形態について図面を参照しながら説明する。なお、本発明の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited by the form of this invention.

(実施の形態1)
図1は本発明の第1の実施の形態における給湯機の概略構成図を示すものである。
(Embodiment 1)
FIG. 1 shows a schematic configuration diagram of a water heater in the first embodiment of the present invention.

図1において、15は熱を貯める貯湯タンクで、16は圧縮機、17は放熱器、18は減圧手段、19は蒸発器であり、20の冷媒回路を構成している。また、21は給湯熱交換器であり、放熱器17と熱交換関係を有する。給湯熱交換器21および貯湯タンク15から22の給湯回路を構成している。また、23は冷媒回路20の蒸発器19と熱交換関係を有する貯湯熱交換器で、貯湯タンク15と貯湯熱交換器23で24の貯湯熱利用回路を構成している。冷媒回路20、給湯回路22および貯湯熱利用回路24のそれぞれの回路は、配管で接続されている。   In FIG. 1, 15 is a hot water storage tank for storing heat, 16 is a compressor, 17 is a radiator, 18 is a decompression means, 19 is an evaporator, and constitutes a refrigerant circuit 20. Reference numeral 21 denotes a hot water supply heat exchanger, which has a heat exchange relationship with the radiator 17. The hot water supply heat exchanger 21 and the hot water storage tanks 15 to 22 constitute a hot water supply circuit. A hot water storage heat exchanger 23 has a heat exchange relationship with the evaporator 19 of the refrigerant circuit 20, and the hot water storage tank 15 and the hot water storage heat exchanger 23 constitute a 24 hot water storage heat utilization circuit. Each circuit of the refrigerant circuit 20, the hot water supply circuit 22, and the hot water storage heat utilization circuit 24 is connected by piping.

以上のように構成された給湯機について、以下その動作を説明する。   The operation of the water heater configured as described above will be described below.

冷媒回路20は、圧縮機16、放熱器17、減圧手段18、蒸発器19が配管で接続されており、冷媒として、例えばHFC冷媒を使う。なお、二酸化炭素冷媒を使う等、何ら限定しない。   The refrigerant circuit 20 includes a compressor 16, a radiator 17, a decompression unit 18, and an evaporator 19 connected by piping, and uses, for example, an HFC refrigerant as the refrigerant. In addition, there is no limitation, such as using a carbon dioxide refrigerant.

蒸発器19は、空気が通過することにより大気熱を得て、配管を流れるHFC冷媒を加熱する。加熱されたHFC冷媒は蒸発ガス化し、圧縮機16へ流入する。そして高温高圧
ガスとなったHFC冷媒は放熱器17へ流入する。給湯回路22は、貯湯タンク15と給湯熱交換器21が配管で接続されており、貯湯タンク15にある水が給湯ポンプ26で循環されている。給湯熱交換器21は放熱器17と熱交換関係を有しており、給湯熱交換器21内の水は温められるとともに、放熱器17内のHFC冷媒は熱を奪われ冷やされる。
The evaporator 19 obtains atmospheric heat by the passage of air and heats the HFC refrigerant flowing through the piping. The heated HFC refrigerant is evaporated and flows into the compressor 16. Then, the HFC refrigerant that has become the high-temperature and high-pressure gas flows into the radiator 17. In the hot water supply circuit 22, the hot water storage tank 15 and the hot water supply heat exchanger 21 are connected by piping, and water in the hot water storage tank 15 is circulated by the hot water supply pump 26. The hot water supply heat exchanger 21 has a heat exchange relationship with the radiator 17, and the water in the hot water supply heat exchanger 21 is warmed, and the HFC refrigerant in the radiator 17 is deprived of heat and cooled.

熱を奪われた放熱器17内の冷媒は凝縮液化し、さらに減圧手段18で減圧され冷えたHFC冷媒として蒸発器19に流入し、空気が通過することにより、大気熱を得て、再度加熱され蒸発ガス化する。また、給湯熱交換器21内の温められた水は、貯湯タンク15に貯められる。   The refrigerant in the radiator 17 that has been deprived of heat is condensed and liquefied, and further flows into the evaporator 19 as an HFC refrigerant that has been depressurized and cooled by the decompression means 18. Evaporates. Further, the warmed water in the hot water supply heat exchanger 21 is stored in the hot water storage tank 15.

貯湯タンク15は、高温のお湯として蓄熱する。高温のお湯は、例えば給湯としてお風呂で利用、床暖房等に利用、また、温水を利用した温風暖房などに利用する。なお、貯湯タンク15は、水以外でも、蓄熱可能なものであれば、何ら限定しない。このように冷媒回路20および給湯回路22で、この過程を繰り返すことにより、貯湯タンク15にある水は高温に沸き上げられる。   The hot water storage tank 15 stores heat as hot water. Hot water is used, for example, as a hot water supply in a bath, for floor heating, etc., or for hot air heating using hot water. The hot water storage tank 15 is not limited as long as it can store heat other than water. Thus, by repeating this process in the refrigerant circuit 20 and the hot water supply circuit 22, the water in the hot water storage tank 15 is boiled to a high temperature.

次に貯湯熱利用回路24について説明する。   Next, the hot water storage heat utilization circuit 24 will be described.

前日の夜、給湯機としてお風呂を利用し、翌日は朝から再びお風呂を利用する場合、貯湯タンク15にある水は、例えば30℃程度の中温で残っている場合がある。また、例えば夏季では、翌日夕方や夜にお風呂を利用する場合でも30℃程度の中温で残っているときがあり、お風呂として使用するには、この中温水を沸き上げる必要がある。   When using a bath as a hot water supply machine the night before and using the bath again the next day from the morning, the water in the hot water storage tank 15 may remain at a medium temperature of about 30 ° C., for example. Further, for example, in the summer, even when using a bath the next day in the evening or at night, it may remain at a medium temperature of about 30 ° C., and it is necessary to boil this medium-temperature water to use it as a bath.

このように、貯湯タンク15にある水が中温で、高温に沸き上げる場合について説明する。貯湯熱利用回路24は、貯湯タンク15と貯湯熱交換器23が配管で接続されており、貯湯タンク15にある水が貯湯ポンプ28で循環されている。   The case where the water in the hot water storage tank 15 is heated to a high temperature will be described. In the hot water storage heat utilization circuit 24, the hot water storage tank 15 and the hot water storage heat exchanger 23 are connected by piping, and water in the hot water storage tank 15 is circulated by the hot water storage pump 28.

貯湯タンク15にある中温水を高温に沸き上げるため、冷媒回路20で、前述と同様の冷媒回路すなわちヒートポンプの過程を繰り返すが、貯湯熱交換器23と熱交換関係を有する蒸発器19は、貯湯熱利用回路24により、中温水が流れる貯湯熱交換器23の熱を利用し、例えば、冬季において、大気熱である外気温が2℃、中温水が30℃のように、大気熱より高い温度を得て、配管を流れるHFC冷媒をより高い温度で加熱する。より高く加熱されたHFC冷媒は蒸発ガス化し、圧縮機16へ流入する。そして高温高圧ガスとなったHFC冷媒は放熱器17へ流入していく。また、蒸発器19によって熱を奪われた貯湯熱交換器23内の中温水は低温の水、例えば15℃程度の水となり、貯湯タンク15に戻る。冷媒回路20では、前述と同様にこの15℃程度の低温水をヒートポンプで沸き上げる。   In order to boil the medium-temperature water in the hot water storage tank 15 to a high temperature, the refrigerant circuit 20 repeats the same refrigerant circuit, that is, a heat pump process, as described above, but the evaporator 19 having a heat exchange relationship with the hot water storage heat exchanger 23 The heat utilization circuit 24 uses the heat of the hot water storage heat exchanger 23 through which the intermediate temperature water flows. For example, in winter, the ambient temperature is 2 ° C. and the intermediate temperature water is 30 ° C. And the HFC refrigerant flowing through the pipe is heated at a higher temperature. The higher-heated HFC refrigerant is evaporated and flows into the compressor 16. Then, the HFC refrigerant that has become the high-temperature and high-pressure gas flows into the radiator 17. Further, the medium temperature water in the hot water storage heat exchanger 23 deprived of heat by the evaporator 19 becomes low temperature water, for example, water at about 15 ° C., and returns to the hot water storage tank 15. In the refrigerant circuit 20, the low-temperature water of about 15 ° C. is boiled with a heat pump, as described above.

このように貯湯タンク15にある中温水を高温に沸き上げる場合は、貯湯熱利用回路24、冷媒回路20および給湯回路22で、この過程を繰り返すことにより、高効率で貯湯タンク15にある中温水は高温に沸き上げられる。   When boiling the hot water in the hot water storage tank 15 to a high temperature as described above, the hot water storage circuit 15, the refrigerant circuit 20, and the hot water supply circuit 22 repeat this process so that the hot water in the hot water storage tank 15 is highly efficient. Is boiled to a high temperature.

以上のように、ヒートポンプの効率の低い中温沸き上げを少なくすることができる。また、中温水を直接ヒートポンプサイクルに有効に利用することができる。
すなわち、貯湯するためのシステム効率を向上することができる。
As described above, it is possible to reduce the medium temperature boiling with low efficiency of the heat pump. Further, the medium temperature water can be effectively used for the direct heat pump cycle.
That is, the system efficiency for storing hot water can be improved.

また、30は送風手段であるファンである。蒸発器19は大気熱も利用可能な熱交換器とし、蒸発器19の空気の流れ方向の下流に設けたファン30と、上流方向には貯湯熱交換器23を備えた構成としている。   Reference numeral 30 denotes a fan which is a blowing means. The evaporator 19 is a heat exchanger that can also use atmospheric heat, and includes a fan 30 provided downstream in the air flow direction of the evaporator 19 and a hot water storage heat exchanger 23 in the upstream direction.

貯湯熱交換器23と熱交換関係を有する蒸発器19は、大気熱も利用可能な熱交換器とするとともに、蒸発器19の空気の流れ方向の下流に設けたファン30と、上流方向には貯湯熱交換器23を設けたことで、貯湯熱利用回路24により、中温水が流れる貯湯熱交換器23の熱に加えて、大気熱を利用することができる。   The evaporator 19 having a heat exchange relationship with the hot water storage heat exchanger 23 is a heat exchanger that can also use atmospheric heat, and a fan 30 provided downstream in the air flow direction of the evaporator 19 and an upstream direction. By providing the hot water storage heat exchanger 23, the hot water storage heat utilization circuit 24 can use atmospheric heat in addition to the heat of the hot water storage heat exchanger 23 through which the medium-temperature water flows.

例えば、夏季において、大気熱である外気温が35℃、中温水が30℃のように、中温水より高い大気熱を得て、配管を流れるHFC冷媒をさらに高い温度で加熱する。さらに高く加熱されたHFC冷媒は蒸発ガス化し、圧縮機16へ流入する。そして高温高圧ガスとなったHFC冷媒は放熱器17へ流入していく。   For example, in summer, atmospheric heat higher than the medium temperature water is obtained such that the outside air temperature is 35 ° C. and the medium temperature water is 30 ° C., and the HFC refrigerant flowing through the pipe is heated at a higher temperature. Further, the HFC refrigerant heated to a higher temperature is evaporated and flows into the compressor 16. Then, the HFC refrigerant that has become the high-temperature and high-pressure gas flows into the radiator 17.

このように、貯湯タンク15にある中温水を高温に沸き上げる場合、貯湯熱利用回路24、冷媒回路20および給湯回路22で、蒸発器19は大気熱も利用可能な熱交換器とし、蒸発器19の空気の流れ方向の下流に設けたファン30と、上流方向には貯湯熱交換器23、とした構成により、この過程を繰り返すことにより、大気熱を利用しながら、高効率で貯湯タンク15にある中温水は高温に沸き上げられる。   In this way, when the medium temperature water in the hot water storage tank 15 is boiled to a high temperature, the evaporator 19 is a heat exchanger that can also use atmospheric heat in the hot water storage heat utilization circuit 24, the refrigerant circuit 20, and the hot water supply circuit 22. By repeating this process with a fan 30 provided downstream of 19 in the air flow direction and a hot water storage heat exchanger 23 in the upstream direction, the hot water storage tank 15 can be used with high efficiency while utilizing atmospheric heat. The medium temperature water in is heated to a high temperature.

これにより、中温水を直接ヒートポンプサイクルに有効に利用するとともに、大気熱を利用した効率のよい冷媒回路とすることができる。すなわち、貯湯するためのシステム効率をより向上することができる。   As a result, the intermediate temperature water can be effectively used for the direct heat pump cycle, and an efficient refrigerant circuit using atmospheric heat can be obtained. That is, the system efficiency for storing hot water can be further improved.

(実施の形態2)
図2は、本発明の2の実施の形態における給湯機の概略構成図を示すものである。図2において、31は貯湯熱利用回路における水取り入れ部、32は貯湯タンク高さの中間位置である。
(Embodiment 2)
FIG. 2 is a schematic configuration diagram of a water heater in the second embodiment of the present invention. In FIG. 2, 31 is a water intake part in the hot water storage heat utilization circuit, and 32 is an intermediate position of the hot water storage tank height.

貯湯タンク15にある水は上部ほど高温であり、下部にある水は低温である。そこで、貯湯熱利用回路水取り入れ部31を、貯湯タンク15の高さ方向の中間位置32と同等もしくはそれ以上に高い位置に構成することにより、中温水を貯湯熱利用回路24にて循環することができる。   The water in the hot water storage tank 15 is hotter at the top, and the water at the bottom is cold. Therefore, the hot water storage heat utilization circuit water intake portion 31 is configured at a position equal to or higher than the intermediate position 32 in the height direction of the hot water storage tank 15 to circulate the intermediate hot water in the hot water storage heat utilization circuit 24. Can do.

また、33は貯湯タンク15の高さ方向の中間位置に設けられ、湯水の温度を検出する貯湯タンク水温度検出手段で、25は制御装置である。貯湯タンクの水の温度を検出する貯湯タンク水温度検出手段33を設けることにより、より正確に貯湯タンクの状態を検出することができる。また、制御装置25では、中温沸き上げを少なくするように、冷媒回路20、給湯回路22、貯湯熱利用回路24に配設された流体駆動手段を選択判断し運転させる。   Reference numeral 33 denotes a hot water storage tank water temperature detecting means provided at an intermediate position in the height direction of the hot water storage tank 15 for detecting the temperature of the hot water, and 25 is a control device. By providing the hot water tank water temperature detecting means 33 for detecting the temperature of the hot water in the hot water tank, the state of the hot water tank can be detected more accurately. Further, the control device 25 selects and determines the fluid driving means disposed in the refrigerant circuit 20, the hot water supply circuit 22, and the hot water storage heat utilization circuit 24 so as to reduce the medium temperature boiling.

すなわち、例えば、(1)貯湯タンク水温度検出手段33の検出温度が45℃以上であれば、冷媒回路20の圧縮機16、給湯回路22の給湯ポンプ26およびファン30を駆動させる。(2)貯湯タンク水温度検出手段33の検出温度が30℃以上で45℃未満であれば、冷媒回路20の圧縮機16、給湯回路22の給湯ポンプ26、貯湯熱利用回路24の貯湯ポンプ28を駆動させる。(3)貯湯タンク水温度検出手段33の検出温度が30℃未満であれば、冷媒回路20の圧縮機16、給湯回路22の給湯ポンプ26およびファン30を駆動させる。   That is, for example, (1) if the detected temperature of the hot water tank water temperature detecting means 33 is 45 ° C. or higher, the compressor 16 of the refrigerant circuit 20, the hot water supply pump 26 of the hot water supply circuit 22, and the fan 30 are driven. (2) If the temperature detected by the hot water storage tank water temperature detection means 33 is 30 ° C. or higher and lower than 45 ° C., the compressor 16 of the refrigerant circuit 20, the hot water supply pump 26 of the hot water supply circuit 22, and the hot water storage pump 28 of the hot water storage heat utilization circuit 24. Drive. (3) If the detected temperature of the hot water tank water temperature detecting means 33 is less than 30 ° C., the compressor 16 of the refrigerant circuit 20, the hot water supply pump 26 of the hot water supply circuit 22, and the fan 30 are driven.

以上のように、制御装置25は貯湯タンク水温度検出手段33の検出温度に基づき、動作させる冷媒回路20、給湯回路22、貯湯熱利用回路24に配設された流体駆動手段およびファン30を選択する。   As described above, the control device 25 selects the fluid drive means and the fan 30 arranged in the refrigerant circuit 20, the hot water supply circuit 22, and the hot water storage heat utilization circuit 24 to be operated based on the temperature detected by the hot water tank water temperature detection means 33. To do.

また、34は外気温検出手段で、制御装置25では、中温沸き上げを少なくするように
、外気温検出手34の検出温度に基づいて、段冷媒回路20、給湯回路22、貯湯熱利用回路24に配設された流体駆動手段を選択判断し運転させる。
Further, reference numeral 34 denotes an outside air temperature detecting means. In the control device 25, the stage refrigerant circuit 20, the hot water supply circuit 22, and the hot water storage heat utilization circuit 24 based on the detected temperature of the outside air temperature detecting hand 34 so as to reduce boiling of the intermediate temperature. The fluid driving means arranged in the above is selected and judged to be operated.

すなわち、例えば、(1)貯湯タンク水温度検出手段33の検出温度が45℃以上であれば、冷媒回路20の圧縮機16、給湯回路22の給湯ポンプ26およびファン30を駆動させる。(2)貯湯タンク水温度検出手段33の検出温度が45℃未満で、かつ外気温検出手段34の検出温度より高い場合は、冷媒回路20の圧縮機16、給湯回路22の給湯ポンプ26、貯湯熱利用回路24の貯湯ポンプ28を駆動させる。(3)貯湯タンク水温度検出手段33の検出温度が45℃未満で、かつ外気温検出手段34の検出温度より低い場合は、冷媒回路20の圧縮機16、給湯回路22の給湯ポンプ26およびファン30を駆動させる。   That is, for example, (1) if the detected temperature of the hot water tank water temperature detecting means 33 is 45 ° C. or higher, the compressor 16 of the refrigerant circuit 20, the hot water supply pump 26 of the hot water supply circuit 22, and the fan 30 are driven. (2) When the detected temperature of the hot water tank water temperature detecting means 33 is lower than 45 ° C. and higher than the detected temperature of the outside air temperature detecting means 34, the compressor 16 of the refrigerant circuit 20, the hot water pump 26 of the hot water supply circuit 22, hot water storage The hot water storage pump 28 of the heat utilization circuit 24 is driven. (3) When the detected temperature of the hot water storage tank water temperature detecting means 33 is lower than 45 ° C. and lower than the detected temperature of the outside air temperature detecting means 34, the compressor 16 of the refrigerant circuit 20, the hot water supply pump 26 of the hot water supply circuit 22, and the fan 30 is driven.

以上のように、制御装置25は貯湯タンク水温度検出手段33および外気温検出手段34の検出温度に基づき、動作させる冷媒回路20、給湯回路22、貯湯熱利用回路24に配設された流体駆動手段およびファン30を選択する。   As described above, the control device 25 is based on the temperatures detected by the hot water tank water temperature detecting means 33 and the outside air temperature detecting means 34, and is operated by the fluid drive disposed in the refrigerant circuit 20, the hot water supply circuit 22, and the hot water storage heat utilization circuit 24. The means and fan 30 are selected.

以上の動作により、ヒートポンプの効率の低い中温沸き上げをさらに少なくすることができる。また、中温水を直接ヒートポンプサイクルにさらに有効に利用することができ、貯湯するためのシステム効率をより一層向上することができる。   With the above operation, it is possible to further reduce the medium temperature boiling with low efficiency of the heat pump. Further, the medium-temperature water can be used more effectively for the direct heat pump cycle, and the system efficiency for storing hot water can be further improved.

本発明は、給湯機や快適な室内環境をつくる温水暖房、床暖房等の空調システムにも展開が可能である。また、戸建て住宅や集合住宅などの一般住宅のみならず、非住宅などにも適用できる。   The present invention can also be applied to air conditioning systems such as hot water heaters and hot water heaters and floor heaters that create a comfortable indoor environment. Moreover, it can be applied not only to ordinary houses such as detached houses and apartment houses but also to non-residential houses.

15 貯湯タンク
16 圧縮機
17 放熱器
18 減圧手段
19 蒸発器
20 冷媒回路
21 給湯熱交換器
22 給湯回路
23 貯湯熱交換器
24 貯湯熱利用回路
25 制御装置
26 給湯ポンプ
28 貯湯ポンプ
30 送風手段(ファン)
33 貯湯タンク水温度検出手段
34 外気温検出手段
DESCRIPTION OF SYMBOLS 15 Hot water storage tank 16 Compressor 17 Radiator 18 Depressurization means 19 Evaporator 20 Refrigerant circuit 21 Hot water supply heat exchanger 22 Hot water supply circuit 23 Hot water storage heat exchanger 24 Hot water storage heat utilization circuit 25 Control device 26 Hot water supply pump 28 Hot water storage pump 30 Blower (fan) )
33 Hot water tank water temperature detection means 34 Outside air temperature detection means

Claims (5)

圧縮機、放熱器、減圧手段、蒸発器からなる冷媒回路と、前記放熱器で加熱した温水を貯湯する貯湯タンクとを備え、前記貯湯タンク内の中間温度域の湯と、前記蒸発器内を流れる冷媒とを熱交換する構成を有することを特徴とするヒートポンプ給湯機。 A refrigerant circuit comprising a compressor, a radiator, a decompression means, and an evaporator; and a hot water storage tank for storing hot water heated by the radiator; hot water in an intermediate temperature range in the hot water storage tank; and the interior of the evaporator A heat pump water heater having a configuration for exchanging heat with a flowing refrigerant. 蒸発器の空気の流れ方向の下流に送風手段を設けたことを特徴とする請求項1に記載のヒートポンプ給湯機。 The heat pump water heater according to claim 1, wherein an air blowing means is provided downstream of the evaporator in the air flow direction. 蒸発器内を流れる冷媒と熱交換する湯水には、貯湯タンクの高さ方向における中間位置近傍、もしくは、それ以上高い位置に貯湯された湯水を利用する構成としたことを特徴とする請求項1または2に記載のヒートポンプ給湯機。 The hot water stored in the vicinity of the intermediate position in the height direction of the hot water storage tank or higher than that is used as the hot water to exchange heat with the refrigerant flowing in the evaporator. Or the heat pump hot water supply apparatus of 2. 貯湯タンクに貯湯されている湯水の温度を検出する貯湯タンク水温度検出手段を備え、蒸発器内を流れる冷媒と熱交換する前記貯湯タンク内の湯水の温度が所定温度以上の場合には、前記貯湯タンク内の湯水と、前記蒸発器内を流れる冷媒とを熱交換させない構成としたことを特徴とする請求項1〜3のいずれか1項に記載のヒートポンプ給湯機。 A hot water storage tank water temperature detecting means for detecting the temperature of hot water stored in the hot water storage tank is provided, and when the temperature of the hot water in the hot water storage tank exchanging heat with the refrigerant flowing in the evaporator is equal to or higher than a predetermined temperature, The heat pump water heater according to any one of claims 1 to 3, wherein the hot water in the hot water storage tank and the refrigerant flowing in the evaporator are configured not to exchange heat. 貯湯タンクに貯湯されている湯水の温度を検出する貯湯タンク水温度検出手段と外気温検出手段とを備え、蒸発器内を流れる冷媒と熱交換する前記貯湯タンク内の湯水の温度が所定温度以下で、かつ、前記外気温検出手段の検出温度より高い場合には、前記貯湯タンク内の湯水と、前記蒸発器内を流れる冷媒とを熱交換させる構成としたことを特徴とする請求項1〜4のいずれか1項に記載のヒートポンプ給湯機。 A hot water tank water temperature detecting means for detecting the temperature of hot water stored in the hot water storage tank and an outside air temperature detecting means are provided, and the temperature of the hot water in the hot water tank that exchanges heat with the refrigerant flowing in the evaporator is below a predetermined temperature. And when it is higher than the detected temperature of the outside air temperature detecting means, the hot water in the hot water storage tank and the refrigerant flowing in the evaporator are configured to exchange heat. The heat pump water heater according to any one of 4.
JP2009211410A 2009-09-14 2009-09-14 Heat pump water heater Pending JP2011058767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009211410A JP2011058767A (en) 2009-09-14 2009-09-14 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009211410A JP2011058767A (en) 2009-09-14 2009-09-14 Heat pump water heater

Publications (1)

Publication Number Publication Date
JP2011058767A true JP2011058767A (en) 2011-03-24

Family

ID=43946605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009211410A Pending JP2011058767A (en) 2009-09-14 2009-09-14 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP2011058767A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013145098A (en) * 2012-01-16 2013-07-25 Denso Corp Heat exchanger and water heater having the same
KR20150111775A (en) * 2014-03-26 2015-10-06 한홍규 Heat pump type hot water supply system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013145098A (en) * 2012-01-16 2013-07-25 Denso Corp Heat exchanger and water heater having the same
KR20150111775A (en) * 2014-03-26 2015-10-06 한홍규 Heat pump type hot water supply system
KR101590119B1 (en) * 2014-03-26 2016-01-29 한홍규 Heat pump type hot water supply system

Similar Documents

Publication Publication Date Title
JP2010151329A (en) Storage type hot water supply apparatus
JP2007232282A (en) Heat pump type water heater
JP2014196849A (en) Heat pump water heater
JP2009299942A (en) Hot water supply system
JP2008249248A (en) Heat pump type hot water supply system
JP6689801B2 (en) Solar air conditioning system
JP5176474B2 (en) Heat pump water heater
JP2008082601A (en) Heat pump hot water supply device
JP2012225596A (en) Heat pump system for heating
TWI781329B (en) Reverse osmosis treatment method and system
JP2011058767A (en) Heat pump water heater
JP2005207651A (en) Heat pump hot water supply heater
CN201463403U (en) Thermostatic industrial chiller
JP2006250367A (en) Heat pump water heater
JP2007278655A (en) Heat storage type hot water supplier
JP2009236369A (en) Absorption chiller/heater
JP4455518B2 (en) Heat pump water heater
JP2004340419A (en) Heat pump type water-heater
JP2011080724A (en) Solar energy utilization system
JP2012013346A (en) Hot-water heating water heater
JP2009281629A (en) Heat pump water heater
JP5187155B2 (en) Heat pump water heater
JP4882478B2 (en) Regenerative water heater
EP2489944A1 (en) Thermal generator with CO2 operating vapor compression cycle
JP2009097799A (en) Heat pump water heater