TWI763525B - 類比數位轉換器及其操作方法 - Google Patents

類比數位轉換器及其操作方法 Download PDF

Info

Publication number
TWI763525B
TWI763525B TW110120507A TW110120507A TWI763525B TW I763525 B TWI763525 B TW I763525B TW 110120507 A TW110120507 A TW 110120507A TW 110120507 A TW110120507 A TW 110120507A TW I763525 B TWI763525 B TW I763525B
Authority
TW
Taiwan
Prior art keywords
capacitor array
capacitor
comparator
capacitors
level
Prior art date
Application number
TW110120507A
Other languages
English (en)
Other versions
TW202249436A (zh
Inventor
林楷越
王維駿
黃詩雄
劉凱尹
Original Assignee
瑞昱半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞昱半導體股份有限公司 filed Critical 瑞昱半導體股份有限公司
Priority to TW110120507A priority Critical patent/TWI763525B/zh
Priority to US17/551,104 priority patent/US11637558B2/en
Application granted granted Critical
Publication of TWI763525B publication Critical patent/TWI763525B/zh
Publication of TW202249436A publication Critical patent/TW202249436A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/46Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter
    • H03M1/466Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter using switched capacitors
    • H03M1/468Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter using switched capacitors in which the input S/H circuit is merged with the feedback DAC array
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0602Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic
    • H03M1/0604Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic at one point, i.e. by adjusting a single reference value, e.g. bias or gain error
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0617Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
    • H03M1/0634Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale
    • H03M1/0656Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the time domain, e.g. using intended jitter as a dither signal
    • H03M1/066Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the time domain, e.g. using intended jitter as a dither signal by continuously permuting the elements used, i.e. dynamic element matching
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0617Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
    • H03M1/0634Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale
    • H03M1/0656Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the time domain, e.g. using intended jitter as a dither signal
    • H03M1/066Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the time domain, e.g. using intended jitter as a dither signal by continuously permuting the elements used, i.e. dynamic element matching
    • H03M1/0673Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the time domain, e.g. using intended jitter as a dither signal by continuously permuting the elements used, i.e. dynamic element matching using random selection of the elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0617Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
    • H03M1/0675Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy
    • H03M1/0678Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy using additional components or elements, e.g. dummy components
    • H03M1/068Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy using additional components or elements, e.g. dummy components the original and additional components or elements being complementary to each other, e.g. CMOS
    • H03M1/0682Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy using additional components or elements, e.g. dummy components the original and additional components or elements being complementary to each other, e.g. CMOS using a differential network structure, i.e. symmetrical with respect to ground
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/124Sampling or signal conditioning arrangements specially adapted for A/D converters
    • H03M1/1245Details of sampling arrangements or methods
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/46Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/74Simultaneous conversion
    • H03M1/80Simultaneous conversion using weighted impedances
    • H03M1/802Simultaneous conversion using weighted impedances using capacitors, e.g. neuron-mos transistors, charge coupled devices
    • H03M1/804Simultaneous conversion using weighted impedances using capacitors, e.g. neuron-mos transistors, charge coupled devices with charge redistribution

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

類比數位轉換器包含交換電路、第一電容陣列、第二電容陣列及比較器。類比數位轉換器之操作方法包含於第一取樣期間,將交換訊號切換至第一準位,以使交換電路將第一電容陣列耦接於比較器之第一輸入端及第一訊號源,及將第二電容陣列耦接於比較器之第二輸入端及第二訊號源,及於第二取樣期間,將交換訊號切換至第二準位,以使交換電路將第一電容陣列耦接於比較器之第二輸入端及第二訊號源,及將第二電容陣列耦接於比較器之第一輸入端及第一訊號源。控制邏輯電路係於複數個取樣期間依據均勻順序將交換訊號於第一準位及第二準位之間進行切換。

Description

類比數位轉換器及其操作方法
本發明關於電子電路,特別是一種類比數位轉換器及其操作方法。
類比數位轉換器(analog-to-digital converter, ADC)是用於將類比形式的連續訊號轉換為數位形式的離散訊號的裝置,在音頻系統、視訊系統、通訊系統、及各種數位訊號處理系統中得到廣泛運用。逐次逼近暫存器(successive approximation register, SAR)類比數位轉換器係為一種類比數位轉換器,使用電容陣列進行類比至數位轉換,具有低功耗的特性,適用於行動裝置或可攜式裝置。然而,由於SAR ADC採用之電容陣列中電容的不匹配,會造成SAR ADC的非線性誤差,減低SAR ADC的精確度。
本發明實施例提供一種類比數位轉換器之操作方法。類比數位轉換器包含第一電容陣列、第二電容陣列、一交換電路、比較器及控制邏輯電路。第一選擇電路耦接於第一電容陣列,第二選擇電路耦接於第二電容陣列,交換電路耦接於第一電容陣列及第二電容陣列,比較器耦接於交換電路,控制邏輯電路耦接於交換電路、第一選擇電路及第二選擇電路。比較器包含第一輸入端及第二輸入端。操作方法包含:於第一取樣期間,將交換訊號切換至第一準位,以使交換電路將第一電容陣列耦接於比較器之第一輸入端及第一訊號源,及將第二電容陣列耦接於比較器之第二輸入端及第二訊號源;及於第二取樣期間,將交換訊號切換至第二準位,以使交換電路將第一電容陣列耦接於比較器之第二輸入端及第二訊號源,及將第二電容陣列耦接於比較器之第一輸入端及第一訊號源。控制邏輯電路係於複數個取樣期間依據均勻順序將交換訊號於第一準位及第二準位之間進行切換,且第一準位及第二準位相異。
本發明實施例提供一種類比數位轉換器,包含第一電容陣列、第二電容陣列、比較器、交換電路及控制邏輯電路。比較器包含第一輸入端及第二輸入端。交換電路耦接於第一電容陣列、第二電容陣列及比較器,用以於第一取樣期間,當交換訊號切換至第一準位時將第一電容陣列耦接於比較器之第一輸入端及第一訊號源及將第二電容陣列耦接於比較器之第二輸入端及第二訊號源,及於第二取樣期間,當交換訊號切換至第二準位時將第一電容陣列耦接於第二訊號源及將第二電容陣列耦接於第一訊號源及將第一電容陣列耦接於比較器之第二輸入端及將第二電容陣列耦接於比較器之第一輸入端。控制邏輯電路耦接於交換電路,用以於複數個取樣期間依據均勻順序將交換訊號於第一準位及第二準位之間進行切換,且第一準位及第二準位相異。
第1圖係為本發明實施例中類比數位轉換器1之電路示意圖。類比數位轉換器1係為3位元電容切分式(split capacitor)逐次逼近暫存器(successive approximation register, SAR)類比數位轉換器,可依據逐次逼近方法(如二元搜尋法)將差動輸入電壓Vip, Vin轉換為數位輸出資料Dout。差動輸入電壓Vip, Vin可分別由第一訊號源及第二訊號源提供。數位輸出資料Dout可包含3位元。類比數位轉換器1可於每個操作週期內產生一組數位輸出資料Dout。每個操作週期可包含取樣階段(或稱為採集階段)及量化階段(或稱為轉換階段),類比數位轉換器1可於取樣階段對差動輸入電壓Vip, Vin進行取樣以產生一對取樣訊號,及於量化階段將該對取樣訊號進行量化以產生數位輸出資料Dout。量化階段可包含複數(3)次轉換,用以依次產生數位輸出資料Dout之複數個(3)位元。於複數個取樣階段中,類比數位轉換器1可依據2種電壓設置而被重置,藉以降低由於電容性元件失配產生之電壓誤差,降低其積分非線性度(integral nonlinearity,INL)誤差及微分非線性度(differential nonlinearity,DNL)誤差,同時提供高速類比至數位轉換。
類比數位轉換器1可包含交換電路10、第一電容陣列141、第一選擇電路121、第二電容陣列142、第二選擇電路122、比較器16及控制邏輯電路18。交換電路10可耦接於第一電容陣列141、第二電容陣列142、比較器16及控制邏輯電路18。第一選擇電路121可耦接於第一電容陣列141,第二選擇電路122可耦接於第二電容陣列142。比較器16可包含第一接收端,耦接於交換電路10,第二接收端,耦接於交換電路10,及輸出端,耦接於控制邏輯電路18。控制邏輯電路18耦接於第一選擇電路121及第二選擇電路122。
第一電容陣列141可包含3組電容,3組電容之電容值各不相同,每組電容包含第一電容及第二電容,第一電容及第二電容具有實質上相等之電容值。第一電容陣列141之第一組電容可包含第一電容C1pa及第二電容C1pb,第二組電容可包含第一電容C2pa及第二電容C2pb,第三組電容可包含第一電容C3pa及第二電容C3pb。第一電容陣列141之第一組電容、第二組電容及第三組電容可分別對應數位輸出資料Dout之最高有效位元(most significant bit, MSB)至最低有效位元(least significant bit, LSB)。第一電容C1pa及第二電容C1pb可分別具有實質上相等之電容值3C,且第一電容陣列141之第一組電容可具有電容值6C;第一電容C2pa及第二電容C2pb可分別具有實質上相等之電容值2C,且第一電容陣列141之第二組電容可具有電容值4C;第一電容C3pa及第二電容C3pb可分別具有實質上相等之電容值1C,且第一電容陣列141之第三組電容可具有電容值2C。電容C1pa, C1pb, C2pa, C2pb, C3pa, C3pb,可各自包含上板及下板。電容C1pa, C1pb, C2pa, C2pb, C3pa, C3pb之上板可耦接至交換電路10。
相似地,第二電容陣列142亦包含3組電容,3組電容之電容值各不相同,每組電容包含第一電容及第二電容,第一電容及第二電容具有實質上相等之電容值。第二電容陣列142之第一組電容可包含第一電容C1na及第二電容C1nb,第二組電容可包含第一電容C2na及第二電容C2nb,第三組電容可包含第一電容C3na及第二電容C3nb。第二電容陣列142之第一組電容、第二組電容及第三組電容可分別對應數位輸出資料Dout之最高有效位元至最低有效位元。第一電容C1na及第二電容C1nb可分別具有實質上相等之電容值3C,且第二電容陣列142之第一組電容可具有電容值6C;第一電容C2na及第二電容C2nb可分別具有實質上相等之電容值2C,且第二電容陣列142之第二組電容可具有電容值4C;第一電容C3na及第二電容C3nb可分別具有實質上相等之電容值1C,且第二電容陣列142之第三組電容可具有電容值2C。電容C1na, C1nb, C2na, C2nb, C3na, C3nb可各自包含上板及下板。電容C1na, C1nb, C2na, C2nb, C3na, C3nb之上板可耦接至交換電路10。
第一選擇電路121可接收第一參考電壓V1及第二參考電壓V2以設置第一電容陣列141之3組電容,第二選擇電路122可接收第一參考電壓V1及第二參考電壓V2以設置第二電容陣列142之3組電容。在一些實施例中,第一參考電壓V1可為供電電壓,例如1.8V,第二參考電壓V2可為接地電壓,例如0V。在另一些實施例中,第一參考電壓V1可為接地電壓,第二參考電壓V2可為供電電壓。第一選擇電路121可耦接於電容C1pa, C1pb, C2pa, C2pb, C3pa, C3pb之下板。第二選擇電路122可耦接於電容C1na, C1nb, C2na, C2nb, C3na, C3nb之下板。
第一選擇電路121及第二選擇電路122可由一個或複數個多工器及/或開關實現,但不限於此。第一選擇電路121之一個或複數個多工器及/或開關可從控制邏輯電路18接收選擇訊號以分別從第一參考電壓V1及第二參考電壓V2中選擇一者以輸出至電容C1pa, C1pb, C2pa, C2pb, C3pa, C3pb。第二選擇電路122之一個或複數個多工器及/或開關可從控制邏輯電路18接收選擇訊號以分別從第一參考電壓V1及第二參考電壓V2中選擇一者以輸出至電容C1na, C1nb, C2na, C2nb, C3na, C3nb。
交換電路10可包含開關SW11至SW18。開關SW11可包含第一端,耦接於第一訊號源;及第二端,耦接於第一電容陣列141。開關SW12可包含第一端,耦接於第二訊號源;及第二端,耦接於第一電容陣列141。開關SW13可包含第一端,耦接於第一訊號源;及第二端,耦接於第二電容陣列142。開關SW14可包含第一端,耦接於第二訊號源;及第二端,耦接於第二電容陣列142。開關SW15可包含第一端,耦接於第一電容陣列141;及第二端,耦接於比較器16之第一輸入端。開關SW16可包含第一端,耦接於第二電容陣列142;及第二端,耦接於比較器16之第一輸入端。開關SW17可包含第一端,耦接於第一電容陣列141;及第二端,耦接於比較器16之第二輸入端。開關SW18可包含第一端,耦接於第二電容陣列142;及第二端,耦接於比較器16之第二輸入端。
在取樣階段時,交換電路10可依據交換訊號Sswp而導通開關SW11至SW14中之2者,且截止另外2者,依據交換訊號Sswp而導通開關SW15至SW18中之2者,且截止另外2者,使第一電容陣列141及第二電容陣列142可分別取樣差動輸入電壓Vip, Vin,且比較器16之第一輸入端及第二輸入端分別接收電壓Vp, Vn。
於取樣期間,第一選擇電路121及第二選擇電路122可依據將第一種電壓設置或第二種電壓設置中之電壓輸出至電容C1pa, C1pb, C2pa, C2pb, C3pa, C3pb及電容C1na, C1nb, C2na, C2nb, C3na, C3nb。表格1及2分別顯示第一種電壓設置及第二種電壓設置:
表格1
電容 C1pa C1pb C2pa C2pb C3pa C3pb
下板電壓 V1 V2 V1 V2 V1 V2
電容 C1na C1nb C2na C2nb C3na C3nb
下板電壓 V1 V2 V1 V2 V1 V2
表格2
電容 C1pa C1pb C2pa C2pb C3pa C3pb
下板電壓 V2 V1 V2 V1 V2 V1
電容 C1na C1nb C2na C2nb C3na C3nb
下板電壓 V2 V1 V2 V1 V2 V1
控制邏輯電路18可於複數個取樣期間依據均勻順序將交換訊號Sswp於第一準位及第二準位之間進行切換,且該第一準位及該第二準位相異。在一些實施例中,第一準位可為第一參考電壓V1,第二準位可為第二參考電壓V2。均勻順序可為交替順序、隨機順序或其他特定順序。當均勻順序為交替順序時,控制邏輯電路18可將交換訊號Sswp輪流於第一準位及第二準位之間進行切換。當均勻順序為隨機順序時,控制邏輯電路18可將交換訊號Sswp隨機進行切換,且交換訊號Sswp切換至第一準位及第二準位之機率實質上相同。開關SW11至SW18可依據交換訊號Sswp而被截止或導通。其他特定順序可為非屬純交替或非屬純隨機的順序。例如,其他特定順序可為N個取樣期間中交換訊號Sswp為第一準位,接續的N個取樣期間中交換訊號Sswp為第二準位的順序,又在另一些實施例中,可由先前取樣的資訊來決定本筆資料的操作時交換訊號Sswp為第一準位或第二準位。
在一些實施例中,當進行取樣且交換訊號Sswp在第一準位時,交換電路10可依據交換訊號Sswp而導通開關SW11及SW14,且截止開關SW12及SW13,依據交換訊號Sswp而導通開關SW15及SW18,且截止開關SW16及SW17,使第一電容陣列141從第一訊號源取樣輸入電壓Vip及從第二訊號源第二電容陣列142取樣輸入電壓Vin,使比較器16之第一輸入端接收電壓Vp及比較器16之第二輸入端接收電壓Vn;當進行取樣且交換訊號Sswp在第二準位時,交換電路10可依據交換訊號Sswp而導通開關SW12及SW13,且截止開關SW11及SW14,依據交換訊號Sswp而導通開關SW16及SW17,且截止開關SW15及SW18,使第一電容陣列141從第二訊號源取樣輸入電壓Vin及第二電容陣列142從第一訊號源取樣輸入電壓Vip,使比較器16之第一輸入端接收電壓Vp及比較器16之第二輸入端接收電壓Vn。
在一些實施例中,開關SW15至SW18可替換為耦接於比較器16輸出端之多工器,或者以多工器/邏輯閘之形式融合於控制邏輯電路18內部,用以於交換訊號Sswp在第一準位時,分別使第一電容陣列141及第二電容陣列142從第一訊號源取樣Vip及從第二訊號源取樣Vin及輸出電壓Vp,Vn至比較器16的第一輸入端及第二輸入端;及用以於交換訊號Sswp在第二準位時,分別使第二電容陣列142及第一電容陣列141從第一訊號源取樣Vip及從第二訊號源第二電容陣列142取樣Vin及輸出電壓Vp,Vn至比較器16的第一輸入端及第二輸入端。
在另一些實施例中,當進行取樣且交換訊號Sswp在第一準位時,交換電路10可依據交換訊號Sswp而導通開關SW12及SW13,且截止開關SW11及SW14,依據交換訊號Sswp而導通開關SW16及SW17,且截止開關SW15及SW18,使第一電容陣列141從第二訊號源取樣輸入電壓Vin及第二電容陣列142從第一訊號源取樣輸入電壓Vip,使比較器16之第一輸入端接收電壓Vp及比較器16之第二輸入端接收電壓Vn;當進行取樣且交換訊號Sswp在第二準位時,交換電路10可依據交換訊號Sswp而導通開關SW11及SW14,且截止開關SW12及SW13,依據交換訊號Sswp而導通開關SW15及SW18,且截止開關SW16及SW17,使第一電容陣列141從第一訊號源取樣輸入電壓Vip及第二電容陣列142從第二訊號源取樣輸入電壓Vin,使比較器16之第一輸入端接收電壓Vp及比較器16之第二輸入端接收電壓Vn。
在一些實施例中,交換電路10中之開關SW11至SW18亦可由輸入多工器及輸出多工器取代。於第一取樣期間,交換訊號Sswp切換至第一準位時,輸入多工器將第一電容陣列141耦接於第一訊號源,及將第二電容陣列142耦接於第二訊號源,輸出多工器將第一電容陣列141耦接於比較器16之第一輸入端,及將第二電容陣列142耦接於比較器16之第二輸入端。於第二取樣期間,交換訊號Sswp切換至第二準位時,輸入多工器將第一電容陣列141耦接於第二訊號源,及將第二電容陣列142耦接於第一訊號源,輸出多工器將第一電容陣列141耦接於比較器16之第二輸入端,及將第二電容陣列142耦接於比較器16之第一輸入端。交換訊號Sswp之控制方式可於前述段落找到,在此不再贅述。
在量化階段,類比數位轉換器1可針對數位輸出資料Dout之3位元進行3轉換,比較器16可比較電壓Vp及Vn以產生3比較結果,控制邏輯電路18可將每個比較結果儲存作為數位輸出資料Dout之1位元之位元值,及依據每個比較結果輸出選擇訊號至第一選擇電路121及第二選擇電路122以更新電壓Vp及Vn。比較結果可為二進位”0”或二進位”1”。舉例而言,進行最高有效位元之轉換時,若交換訊號Sswp之位準使得交換電路10導通的開關為開關SW11、SW14、SW15、SW18時,若電壓Vp大於電壓Vn,則比較器16可產生二進位”1”做為比較結果,控制邏輯電路18可將二進位”1”儲存作為最高有效位元,設定第一選擇電路121以輸出接地電壓至電容C1pa, C1pb之下板以下拉電壓Vp,及設定第二選擇電路122以輸出供電電壓至電容C1na, C1nb之下板以提升電壓Vn。更新後之電壓Vp會較先前之電壓Vp低,更新後之電壓Vn會較先前之電壓Vn高。若電壓Vp小於電壓Vn,則比較器16可產生二進位”0”做為比較結果,控制邏輯電路18可將二進位”0”儲存作為最高有效位元,設定第一選擇電路121以輸出供電電壓至電容C1pa, C1pb之下板以提升電壓Vp,及設定第二選擇電路122以輸出接地電壓至電容C1na, C1nb之下板以下拉電壓Vn。更新後之電壓Vp會較先前之電壓Vp高,更新後之電壓Vn會較先前之電壓Vn低。類比數位轉換器1可依序比較及更新電壓Vp及Vn以產生數位輸出資料Dout之3位元之3位元值,及輸出數位輸出資料Dout以供後續使用。
當交換訊號Sswp切換後,控制邏輯電路18亦需要交換第一選擇電路121及第二選擇電路122的選擇訊號。第1A圖及第1B圖分別表示交換訊號Sswp在第一準位及第二準位的示意圖。如第1A圖所示,若交換訊號Sswp在第一準位,開關SW11、SW14、SW15、SW18導通,開關SW12、SW13、SW16、SW17截止,控制邏輯電路18可輸出選擇訊號Ssel1至第一選擇電路121及輸出選擇訊號Ssel2至第二選擇電路122。如第1B圖所示,若交換訊號Sswp在第二準位,開關SW12、SW13、SW16、SW17導通,開關SW11、SW14、SW15、SW18截止,控制邏輯電路18可輸出選擇訊號Ssel2至第一選擇電路121及輸出選擇訊號Ssel1至第二選擇電路122。
第2圖係為類比數位轉換器1的操作方法200之流程圖。操作方法200包含步驟S202及S204,用以於複數個取樣期間使用2種連接設置來連接第一電容陣列141及第二電容陣列142。任何合理的技術變更或是步驟調整都屬於本發明所揭露的範疇。步驟S202及S204如下:
步驟S202:  於第一取樣期間,將交換訊號Sswp切換至第一準位,以使交換電路10將第一電容陣列141耦接於比較器16之第一輸入端及第一訊號源,及將第二電容陣列142耦接於比較器16之第二輸入端及第二訊號源;
步驟S204:  於第二取樣期間,將交換訊號Sswp切換至第二準位,以使交換電路10將第一電容陣列141耦接於比較器16之第二輸入端及第二訊號源,及將第二電容陣列142耦接於比較器16之第一輸入端及第一訊號源。
在步驟S202,於第一取樣期間,交換訊號Sswp切換至第一準位時,開關SW11被導通以將第一電容陣列141耦接於第一訊號源,開關SW14被導通以將第二電容陣列142耦接於第二訊號源,開關SW15被導通以將第一電容陣列141耦接於比較器16之第一輸入端,開關SW18被導通以將第二電容陣列142耦接於比較器16之第二輸入端,開關SW12、SW13、SW16、SW12被截止。在步驟S204,於第二取樣期間,當交換訊號Sswp切換至第二準位時,開關SW12被導通以將第一電容陣列141耦接於第二訊號源,開關SW13被導通以將第二電容陣列142耦接於第一訊號源,開關SW17被導通以將第一電容陣列141耦接於比較器16之第二輸入端,開關SW16被導通以將第二電容陣列142耦接於比較器16之第一輸入端,開關SW11、SW14、SW15、SW18被截止。
第3圖係為本發明實施例中另一種類比數位轉換器3之電路示意圖。類比數位轉換器3可為單向切換(monotonic switching/set-and-down switching)逐次逼近暫存器類比數位轉換器。類比數位轉換器3及類比數位轉換器1之間之差異在於類比數位轉換器3分別使用第一電容陣列341及第二電容陣列342替換類比數位轉換器1之第一電容陣列141及第二電容陣列142,及分別使用第一選擇電路321及第二選擇電路322替換類比數位轉換器1之第一選擇電路121及第二選擇電路122。以下針對類比數位轉換器3之差異進行解釋。第一電容陣列341包含電容C1p、C2p、C3p及C4p、第二電容陣列342包含電容C1n、C2n、C3n及C4n。第一選擇電路321可包含一個或複數個多工器及/或開關,用以分別輸出供電電壓或接地電壓至電容C1p、C2p、C3p及C4p, 第二選擇電路322可包含一個或複數個多工器及/或開關,用以分別輸出供電電壓或接地電壓至電容C1n、C2n、C3n及C4n。在取樣期間,第一選擇電路321及第二選擇電路322可依據表格3顯示之電壓設置重置第一選擇電路321及第二選擇電路322,將供電電壓VR輸出至電容C1p、C2p、C3p及C4p之下板,將供電電壓VR輸出至C1n、C2n、C3n及C4n之下板。
表格3
電容 C1p C2p C3p C4p
下板電壓 VR VR VR VR
電容 C1n C2n C3n C4n
下板電壓 VR VR VR VR
在轉換期間,當進行最高有效位元之轉換時,若電壓Vp大於電壓Vn,則比較器16可產生二進位”1”做為比較結果,控制邏輯電路18可將二進位”1”儲存作為最高有效位元,第一選擇電路321可輸出接地電壓至電容C1p之下板以更新電壓Vp,及第二選擇電路322可維持輸出供電電壓VR至電容C1n之下板以維持電壓Vn。更新後之電壓Vp會較先前之電壓Vp低,電壓Vn維持不變。若電壓Vp小於電壓Vn,則比較器16可產生二進位”0”做為比較結果,控制邏輯電路18可將二進位”0”儲存作為最高有效位元,第一選擇電路321可維持輸出供電電壓VR至電容C1p之下板以維持電壓Vp,及第二選擇電路322可輸出接地電壓至電容C1n之下板以更新電壓Vn。更新後之電壓Vn會較先前之電壓Vn低,電壓Vp維持不變。類比數位轉換器1可依序比較及更新電壓Vp及Vn以產生數位輸出資料Dout。
數位轉換器3亦可使用方法200,於複數個取樣期間中將交換訊號Sswp均勻切換於第一準位及第二準位之間。
由於類比數位轉換器1,3及操作方法200在複數個取樣期間將交換訊號Sswp均勻地切換於第一準位及第二準位之間,因此整個類比數位轉換器的輸出-輸入曲線 (transfer curve)等效上會在兩種組態中切換,而使得平均非線性度誤差,在多數的數位碼位置將得到正負相抵的效果,降低因電容不匹配造成之微分線性度誤差以及積分線性度誤差。在一些實施例中,若電容陣列141及142為十位元二進制權重配置,當每個單位電容值有百分之二為標準差的隨機飄移時,以類比數位轉換器1搭配方法200一起使用,最大微分非線性度誤差會由約0.37LSB降低至0.3LSB;而在微分線性度數位輸出碼的統計圖中,微分線性度誤差有明顯高峰的數位碼(例如在整個ADC滿幅範圍的 1/4, 1/8, 1/16, 1/32……處的數位碼),的誤差平均可降低0.05 LSB。
本發明不限於實施例採用之3位元SAR ADC,熟習此技藝者亦可依據本發明的精神將方法200應用於其他大小之SAR ADC。類比數位轉換器1,3及操作方法200在複數個取樣期間將交換訊號Sswp均勻地切換於第一準位及第二準位之間,降低相同組電容或不同組電容之間之電容失配產生的微分非線性度誤差及積分非線性度誤差,大幅改善SAR ADC之線性度。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。
1,3:類比數位轉換器 10:交換電路 121,321:第一選擇電路 122,322:第二選擇電路 141,341:第一電容陣列 142,342:第二電容陣列 16:比較器 18:控制邏輯電路 200:方法 S202,S204:步驟 C1pa,C1pb,C2pa,C2pb,C3pa,C3pb,C1na,C1nb,C2na,C2nb,C3na,C3nb,C1p,C2p,C3p,C4p,C1n,C2n,C3n,C4n:電容 Dout:數位輸出資料 SW11至SW18:開關 Sswp:交換訊號 V1:第一參考電壓 V2:第二參考電壓 Vip,Vin:差動輸入電壓 Vp,Vn:電壓
第1圖係為本發明實施例中一種類比數位轉換器之電路示意圖。 第1A圖及第1B圖分別表示第1圖之交換訊號在第一準位及第二準位的示意圖。 第2圖係為第1圖中之類比數位轉換器的操作方法之流程圖。 第3圖係為本發明實施例中另一種類比數位轉換器之電路示意圖。
1:類比數位轉換器
10:交換電路
121:第一選擇電路
122:第二選擇電路
141:第一電容陣列
142:第二電容陣列
16:比較器
18:控制邏輯電路
C1pa,C1pb,C2pa,C2pb,C3pa,C3pb,C1na,C1nb,C2na,C2nb,C3na,C3nb:電容
Dout:數位輸出資料
Sswp:交換訊號
SW11至SW18:開關
V1:第一參考電壓
V2:第二參考電壓
Vip,Vin:差動輸入電壓
Vp,Vn:電壓

Claims (10)

  1. 一種類比數位轉換器之操作方法,該類比數位轉換器包含一第一電容陣列、一第二電容陣列、一交換電路、一比較器及一控制邏輯電路,該交換電路耦接於該第一電容陣列及該第二電容陣列,該比較器耦接於該交換電路,該控制邏輯電路耦接於該交換電路,該比較器包含一第一輸入端及一第二輸入端,該操作方法包含: 於一第一取樣期間,將一交換訊號切換至一第一準位,以使該交換電路將該第一電容陣列耦接於該比較器之該第一輸入端及一第一訊號源,及將該第二電容陣列耦接於該比較器之該第二輸入端及一第二訊號源;及 於一第二取樣期間,將該交換訊號切換至一第二準位,以使該交換電路將該第一電容陣列耦接於該比較器之該第二輸入端及該第二訊號源,及將該第二電容陣列耦接於該比較器之該第一輸入端及該第一訊號源; 其中該控制邏輯電路係於複數個取樣期間依據一均勻順序將該交換訊號於該第一準位及該第二準位之間進行切換,且該第一準位及該第二準位相異。
  2. 如請求項1所述之操作方法,其中該類比數位轉換器另包含一第一選擇電路及一第二選擇電路,該第一電容陣列之每組電容包含一第一電容及一第二電容,具有實質上相等之電容值,該第二電容陣列之每組電容包含一第一電容及一第二電容,具有實質上相等之電容值,該操作方法另包含於該第一取樣期間及該第二取樣期間,該第一選擇電路將一第一參考電壓輸出至該第一電容陣列中之該每組電容之該第一電容及一第二參考電壓輸出至該第一電容陣列中之該每組電容之該第二電容,該第二選擇電路將該第一參考電壓輸出至該第二電容陣列中之該每組電容之該第一電容及該第二參考電壓輸出至該第二電容陣列中之該每組電容之該第二電容。
  3. 如請求項1所述之操作方法,其中該類比數位轉換器另包含一第一選擇電路及一第二選擇電路,該第一電容陣列包含複數個電容,該第二電容陣列包含複數個電容,該操作方法另包含: 於該第一取樣期間及該第二取樣期間,該第一選擇電路將一參考電壓輸出至該第一電容陣列中之該些電容,及該第二選擇電路將該參考電壓輸出至該第二電容陣列中之該些電容。
  4. 如請求項1所述之操作方法,其中該均勻順序為一交替順序。
  5. 如請求項1所述之操作方法,其中該均勻順序為一隨機順序。
  6. 如請求項1所述之操作方法,其中該均勻順序為一特定順序。
  7. 一種類比數位轉換器,包含: 一第一電容陣列; 一第二電容陣列; 一比較器,包含一第一輸入端及一第二輸入端; 一交換電路,耦接於該第一電容陣列、該第二電容陣列及該比較器,用以於一第一取樣期間,當一交換訊號切換至一第一準位時將該第一電容陣列耦接於該比較器之該第一輸入端及一第一訊號源,及將該第二電容陣列耦接於該比較器之該第二輸入端及一第二訊號源,及於一第二取樣期間,當該交換訊號切換至一第二準位時將該第一電容陣列耦接於該第二訊號源及將該第二電容陣列耦接於該第一訊號源,及將該第一電容陣列耦接於該比較器之該第二輸入端及將該第二電容陣列耦接於該比較器之該第一輸入端;及 一控制邏輯電路,耦接於該交換電路,用以於複數個取樣期間依據一均勻順序將該交換訊號於該第一準位及該第二準位之間進行切換,且該第一準位及該第二準位相異。
  8. 如請求項7所述之類比數位轉換器,其中: 該交換電路包含一第一開關、一第二開關、一第三開關、一第四開關、一第五開關、一第六開關、一第七開關及一第八開關; 於該第一取樣期間,該交換訊號切換至該第一準位時,該第一開關將該第一電容陣列耦接於該第一訊號源,該第四開關將該第二電容陣列耦接於該第二訊號源,該第五開關將該第一電容陣列耦接於該比較器之該第一輸入端及該第八開關將該第二電容陣列耦接於該比較器之該第二輸入端;及 於該第二取樣期間,該交換訊號切換至該第二準位時,該第二開關將該第一電容陣列耦接於該第二訊號源,該第三開關將該第二電容陣列耦接於該第一訊號源,該第六開關將該第一電容陣列耦接於該比較器之該第二輸入端及該第七開關將該第二電容陣列耦接於該比較器之該第一輸入端。
  9. 如請求項7所述之類比數位轉換器,其中: 該交換電路包含一輸入多工器及一輸出多工器; 於該第一取樣期間,該交換訊號切換至該第一準位時,該輸入多工器將該第一電容陣列耦接於該第一訊號源,及將該第二電容陣列耦接於該第二訊號源,該輸出多工器將該第一電容陣列耦接於該比較器之該第一輸入端,及將該第二電容陣列耦接於該比較器之該第二輸入端;及 於該第二取樣期間,該交換訊號切換至該第二準位時,該輸入多工器將該第一電容陣列耦接於該第二訊號源,及將該第二電容陣列耦接於該第一訊號源,該輸出多工器將該第一電容陣列耦接於該比較器之該第二輸入端,及將該第二電容陣列耦接於該比較器之該第一輸入端。
  10. 如請求項7所述之類比數位轉換器,其中: 第一電容陣列包含N組電容,該第一電容陣列中之每組電容包含一第一電容及一第二電容,具有實質上相等之電容值,N係為大於2之正整數; 該第二電容陣列包含N組電容,該第二電容陣列中之每組電容包含一第一電容及一第二電容,具有實質上相等之電容值;及 該類比數位轉換器另包含: 一第一選擇電路,耦接於該第一電容陣列,用以於一取樣期間,將一第一參考電壓輸出至該第一電容陣列中之該每組電容之該第一電容,及一第二參考電壓輸出至該第一電容陣列中之該每組電容之該第二電容;及 一第二選擇電路,耦接於該第二電容陣列,用以於該取樣期間,將該第一參考電壓輸出至該第二電容陣列中之該每組電容之該第二電容,及該第二參考電壓輸出至該第二電容陣列中之該每組電容之該第一電容。
TW110120507A 2021-06-04 2021-06-04 類比數位轉換器及其操作方法 TWI763525B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW110120507A TWI763525B (zh) 2021-06-04 2021-06-04 類比數位轉換器及其操作方法
US17/551,104 US11637558B2 (en) 2021-06-04 2021-12-14 Analog-to-digital converter capable of reducing nonlinearity and method of operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110120507A TWI763525B (zh) 2021-06-04 2021-06-04 類比數位轉換器及其操作方法

Publications (2)

Publication Number Publication Date
TWI763525B true TWI763525B (zh) 2022-05-01
TW202249436A TW202249436A (zh) 2022-12-16

Family

ID=82593977

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110120507A TWI763525B (zh) 2021-06-04 2021-06-04 類比數位轉換器及其操作方法

Country Status (2)

Country Link
US (1) US11637558B2 (zh)
TW (1) TWI763525B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140266839A1 (en) * 2013-03-14 2014-09-18 Analog Devices Technology Flash adc shuffling
US20180183456A1 (en) * 2016-12-23 2018-06-28 Avnera Corporation Chopper stabilized comparator for successive approximation register analog to digital converter
US10355709B1 (en) * 2018-08-24 2019-07-16 Analog Devices, Inc. Multiplexed sigma-delta analog-to-digital converter
CN111800139A (zh) * 2019-04-09 2020-10-20 联咏科技股份有限公司 逐次逼近寄存器模拟-数字转换器及其偏移检测方法
US10833691B1 (en) * 2019-11-26 2020-11-10 Bae Systems Information And Electronic Systems Integration Inc. Signal chopping switch circuit with shared bootstrap capacitor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7456768B2 (en) * 2006-04-07 2008-11-25 Washington State University Analog-to-digital converters based on an interleaving architecture and associated methods
US8508400B2 (en) 2011-06-24 2013-08-13 Mediatek Inc. Successive approximation register analog to digital converter and conversion method thereof
TWI482438B (zh) 2012-09-26 2015-04-21 Realtek Semiconductor Corp 連續漸進式數位類比轉換器及其方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140266839A1 (en) * 2013-03-14 2014-09-18 Analog Devices Technology Flash adc shuffling
US20180183456A1 (en) * 2016-12-23 2018-06-28 Avnera Corporation Chopper stabilized comparator for successive approximation register analog to digital converter
US10355709B1 (en) * 2018-08-24 2019-07-16 Analog Devices, Inc. Multiplexed sigma-delta analog-to-digital converter
CN111800139A (zh) * 2019-04-09 2020-10-20 联咏科技股份有限公司 逐次逼近寄存器模拟-数字转换器及其偏移检测方法
US10833691B1 (en) * 2019-11-26 2020-11-10 Bae Systems Information And Electronic Systems Integration Inc. Signal chopping switch circuit with shared bootstrap capacitor

Also Published As

Publication number Publication date
US20220393693A1 (en) 2022-12-08
TW202249436A (zh) 2022-12-16
US11637558B2 (en) 2023-04-25

Similar Documents

Publication Publication Date Title
TWI467924B (zh) 連續近似暫存器類比對數位轉換器及其轉換方法
CN108574487B (zh) 逐次逼近寄存器模数转换器
KR102001762B1 (ko) Dac 커패시턴스 어레이, sar형 아날로그-디지털 컨버터 및 전력 소비의 감소 방법
TW202101914A (zh) 類比數位轉換器之校正電路及校正方法
CN111711453B (zh) 逐次逼近型模数转换器
KR20190071536A (ko) 연속근사 레지스터 아날로그 디지털 변환기 및 그것의 동작 방법
CN113794475B (zh) 电容阵列型逐次逼近模数转换器的校准方法
CN113839673A (zh) 一种新型数字域自校准逐次逼近模数转换器
CN111756380A (zh) 一种共享桥接电容阵列的两步式逐次逼近型模数转换器
CN113839672A (zh) 一种利用冗余电容模拟域自校准逐次逼近模数转换器
CN110535467B (zh) 逐步逼近型模数转换装置的电容阵列校准方法和装置
TWI739722B (zh) 類比數位轉換器及其操作方法
US11075646B2 (en) Σ-Δmodulator and method for reducing nonlinear error and gain error
TWI763525B (zh) 類比數位轉換器及其操作方法
CN109039338B (zh) 差分电容阵列及其开关切换方法
CN207410329U (zh) 一种Pipeline SAR-ADC装置
TWI763524B (zh) 類比數位轉換器之操作方法
CN109245771B (zh) 一种逐次逼近型数模转换器
CN110198167B (zh) 一种非对称的sar adc电容开关时序电路及方法
Liu et al. A fully differential SAR/single-slope ADC for CMOS imager sensor
CN115499011A (zh) 模拟数字转换器及其操作方法
TWI751958B (zh) 連續漸進式類比數位轉換器
CN113114263B (zh) Sar模数转换器
TWI717900B (zh) 循續漸近式類比至數位轉換器及其參考漣波抑制電路
CN115499012A (zh) 模拟数字转换器及其操作方法