TWI738644B - 炭纖維強化成形體及其製造方法 - Google Patents

炭纖維強化成形體及其製造方法 Download PDF

Info

Publication number
TWI738644B
TWI738644B TW105110241A TW105110241A TWI738644B TW I738644 B TWI738644 B TW I738644B TW 105110241 A TW105110241 A TW 105110241A TW 105110241 A TW105110241 A TW 105110241A TW I738644 B TWI738644 B TW I738644B
Authority
TW
Taiwan
Prior art keywords
carbon fiber
resin
carbon
molded body
base material
Prior art date
Application number
TW105110241A
Other languages
English (en)
Other versions
TW201708097A (zh
Inventor
小向拓治
輝平広美
中井勉之
Original Assignee
日商霓塔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商霓塔股份有限公司 filed Critical 日商霓塔股份有限公司
Publication of TW201708097A publication Critical patent/TW201708097A/zh
Application granted granted Critical
Publication of TWI738644B publication Critical patent/TWI738644B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/046Carbon nanorods, nanowires, nanoplatelets or nanofibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/24Thermosetting resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins

Abstract

提供可避免炭纖維由母材剝離,具有高強度的炭 纖維強化成形體。

一種炭纖維強化成形體,其係包括母材12, 及分散在上述母材12中的複合材料14的炭纖維強化成形體,其特徵在於:上述複合材料14包含:炭纖維16;及形成在上述炭纖維16的表面,包含複數奈米碳管18a的構造體,上述複數奈米碳管18a,形成互相直接連接的網路構造,在上述炭纖維16的表面,將表面的一部分作為附著部20直接附著的同時,藉由設於上述附著部20以外至少一部分的結著構件22,物理性結合。

Description

炭纖維強化成形體及其製造方法
本發明係關於炭纖維強化成形體及其製造方法。
有包括以炭材料等形成的纖維,與形成在上述纖維表面的構造體的複合材料的提案(例如,專利文獻1)。在專利文獻1,記載上述構造體包含複數奈米碳管,上述複數奈米碳管,形成互相直接連接的網路構造的同時,直接附著在上述纖維表面。包含如此的複合材料的成形體,可顯現纖維原本的功能,同時可發揮來自CNT的導電性、熱傳導性、機械強度等的功能。
使用炭纖維作為複合材料的成形體(以下,將此稱為炭纖維強化成形體),用途擴大到飛機、汽車、一般產業、體育用品等各式各樣的領域。在如此的炭纖維強化成形體,對強度等的特性的要求,變得更加嚴格。
[先前技術文獻] [專利文獻]
[專利文獻1]國際公開第2014/175319號
在炭纖維強化成形體,炭纖維與母材的接著力小時,炭纖維有時會從母材剝離。界面剝離,由於會引起成形體 的機械性強度的下降,故期望極力避免。
因此本發明,係以提供可避免炭纖維由母材剝離,具有高強度的炭纖維強化成形體為目標。
關於本發明的炭纖維強化成形體,其係包括母材及分散在上述母材中的複合材料的炭纖維強化成形體,其特徵在於:上述複合材料包含:炭纖維;及形成在上述炭纖維的表面,包含複數奈米碳管的構造體,上述複數奈米碳管,形成互相直接連接的網路構造,在上述炭纖維的表面,將表面的一部分作為附著部直接附著,同時藉由設於上述附著部以外的至少一部分的結著構件,物理性結合。
根據本發明,炭纖維強化成形體,包括分散在母材中的複合材料。在複合材料,炭纖維的表面形成包含複數CNT的構造體。複數CNT,係將表面的一部分作為附著部直接附著在炭纖維的表面。再者,附著部以外的至少一部分,在CNT與炭纖維之間存在結著構件。藉由該結著構件,CNT可與炭纖維表面物理性結合。CNT堅固地接著於炭纖維表面,可提升CNT與炭纖維的接著力。
此外,在母材與炭纖維之間,由於炭纖維表面介在著堅固地接著的CNT,故可提高母材與炭纖維的接著力。結果,可避免炭纖維從母材的剝離,可得具有高強度的炭纖維強化成形體。
10、40‧‧‧炭纖維強化成形體
12、42‧‧‧母材
14‧‧‧複合材料
16‧‧‧炭纖維
18‧‧‧構造體
18a‧‧‧奈米碳管(CNT)
20‧‧‧附著部
22‧‧‧結著構件
24‧‧‧CNT複合樹脂層
30‧‧‧被檢體
32‧‧‧刀片
34‧‧‧微滴
34a‧‧‧熱塑性樹脂
44‧‧‧樹脂
46‧‧‧填充劑
第1圖係表示關於第1實施形態的炭纖維強化成形體的構成的概略圖。
第2圖係表示包含於複合材料中的炭纖維的表面的構成的概略圖。
第3圖係說明CNT在炭纖維表面的狀態的放大概略圖。
第4圖係說明應力緩和的示意圖。
第5圖係表示界面抗剪強度的測定方法的示意圖。
第6圖係對由試料的複合材料取出的炭纖維,進行界面抗剪強度測定之後的炭纖維表面的SEM照片,第6圖A係試料1,第6圖B係試料2。
第7圖係表示關於第2實施形態的炭纖維強化成形體的構成的概略圖。
以下,參照圖面詳細說明關於本發明的實施形態。
1.第1實施形態
[全體構成]
如第1圖所示,炭纖維強化成形體10,包括:母材12;及分散於該母材12中的複數複合材料14。
本實施形態之情形,母材12係以黏度高的樹脂材料的硬化物所形成者。可使用的樹脂材料,係以JIS K7210所記載的熔融指數測定儀,在根據材料種類決定的標準條件的溫度.負荷下所測定的熔體質量流速(MFR)為1~100g/10min程度,可舉例如熱塑性樹脂。熱塑性樹脂之中,特別可舉非極性 樹脂,可使用例如聚丙烯。聚丙烯,以熔融指數測定儀在230℃.2.16kg測定的MRF為10~70g/10min程度。
複合材料14,係如第2圖所示,在炭纖維16的表面形成構造體18者。在第2圖,為說明,僅表示1條炭纖維16,但在本實施形態,在表面形成構造體18的炭纖維16,係複數條,成束以炭纖維束的狀態構成複合材料14。關於炭纖維束,將會再說明。
炭纖維16,可使用例如,由市售的炭纖維束去除樹脂組合物所得的包含於纖維束中的纖維。再者,炭纖維束,係將數千~數萬條炭纖維束起,為收束以微量的樹脂(施膠劑)附著者。
炭纖維16的表面的構造體18,包含複數奈米碳管(以下稱為CNT)18a。CNT18a,藉由在炭纖維16的表面的大致全體均勻地分散相互纏繞,互相以沒有介在物直接接觸或直接連接形成網路構造的同時,在炭纖維16的表面的邊界以無介在物的狀態,直接附著在該表面上。在此所述連接,包含物理性的連接(僅為接觸)。此外,在此所述附著,係指以凡德瓦力的鍵結。再者,所謂「直接接觸或者直接連接」,係包含複數CNT,以無介在物,僅以接觸的狀態之外,亦包含複數CNT一體連接的狀態,而不應被限定解釋。
形成構造體18的CNT18a的長度,以0.1~50μm為佳。CNT18a的長度為0.1μm以上,則CNT18a會相互纏繞而直接連接。此外,CNT18a的長度為50μm以下,則容易均勻分散。另一方面,CNT18a的長度未滿0.1μm,則CNT18a會變得難以相互纏繞。此外,CNT18a的長度超過50μm,則會變得容易團聚。
CNT18a,平均直徑以約30nm以下為佳。CNT18a的直徑為30nm以下,則富有柔軟性,可在各炭纖維16的表面上形成網路構造。另一方面,CNT18a的直徑超過30nm,則柔軟性消失,而變得難以各炭纖維16表面上形成網路構造。再者,CNT18a的直徑,係使用穿透式電子顯微鏡(TEM:Transmission Electron Microscope)照片測定的平均直徑。CNT18a的平均直徑,以約20nm以下更佳。
複數CNT18a,均勻地附著於炭纖維16的表面為佳。在此,所述附著,係指以凡德瓦力的鍵結。CNT18a,係如第3圖所示,將其表面的一部分作為附著部20,直接附著在炭纖維16的表面。
在本實施形態,如圖示,鄰接於附著部20進一步設置結著構件22。結著構件22,係以熱硬化性樹脂的硬化物形成者,可使用例如環氧樹脂的硬化物。結著構件22,係藉由沾濕接著,使CNT18a物理性結合於炭纖維16。附著部20周邊,由於附著部20以外的至少一部分,以結著構件22補強,故可提高CNT18a與炭纖維16的接著力。
[製造方法]
接著,說明炭纖維強化成形體10的製造方法。在製造炭纖維強化成形體10,首先使用含有CNT18a的分散液,在炭纖維16的表面形成構造體18,炭纖維16與CNT18a之間設結著構件22得到複合材料14。接著,藉由將母材12的原料與複合材料14混合混煉之後,使之硬化,可製造炭纖維強化成形體10。以下,依序說明各步驟。
<分散液的調製>
在分散液的調製,可使用以下所製造的CNT18a。CNT18a,係使用例如日本特開2007-126311號公報所述的熱CVD法在矽基板上成膜由鋁、鐵所組成的觸媒膜,將用於CNT的成長的觸媒金屬微粒子化,可在加熱氣氛中,使碳化氫氣體與觸媒金屬接觸而製造。亦可使用藉由電弧放電法、雷射蒸鍍法等其他的製造方法所得的CNT,但使用極力不包含CNT以外的雜質者為佳。關於該雜質,亦可在製造CNT之後,藉由在惰性氣體中,以高溫退火去除。在該製造例製造的CNT,係以具有直徑為30nm以下而長度為100μm至數mm的高高寬比直線配向地長條CNT。CNT,以單層或多層均可,但以多層CNT為佳。
接著,使用上述所製造的CNT18a,製造將CNT18a單離分散的分散液。所謂單離分散,係指CNT18a,分別以1條物理性分離而沒有相互纏繞的狀態分散在分散劑中的狀態,2以上的CNT18a以束狀集合的集合物的比例在10%以下的狀態的意思。
分散液,係將如上所述地製作的CNT18a,加入分散劑,藉由均質儀或剪切、超音波分散機等圖謀CNT18a的分散均勻化。分散劑,可使用水、乙醇、甲醇、異丙醇等的醇類或甲苯、丙酮、四氫呋喃、甲乙酮、己烷、正己烷、***、二甲苯、醋酸甲酯、醋酸乙酯等的有機溶劑。分散液的調製,未必需要分散劑、界面活性劑等的添加劑,在不限制炭纖維16及CNT18a的功能的範圍,亦可採用如此的添加劑。
<構造體的形成>
炭纖維16,可藉由將市售的炭纖維束浸漬在樹脂去除劑,去除樹脂組合物而準備。炭纖維束,並無特別限定,可舉例如,東麗(股)製,型號:Torayca T700SC-12000。樹脂去除劑,可使用例如,甲乙酮等的有機溶劑。為有效率地去除樹脂組合物,對浸漬炭纖維束的樹脂去除劑,賦予超音波等的機械性能量為佳。藉由從炭纖維束去除樹脂組合物,可得含有複數炭纖維16的纖維束。
將如此地準備的包含炭纖維16的纖維束,以浸漬在上述分散液的狀態,對該分散液賦予剪切或超音波等的機械性能量。CNT18a,係藉由作用在與炭纖維16表面之間的凡德瓦力,附著在各個炭纖維16的表面上。之後,將包含複數炭纖維16的纖維束由分散液拉出,藉由乾燥,使CNT18a在附著部20,直接附著在炭纖維16表面。
如此地,具有CNT18a互相直接連接的網路構造的構造體18,形成在纖維束中的各個炭纖維16表面。再者,藉由反覆浸漬及乾燥的步驟,可在炭纖維16表面形成既定厚度的構造體18。
<結著構件的形成>
作為結著構件22的原料的環氧樹脂,係溶解於溶劑調製溶液。溶劑,可使用例如,甲苯、二甲苯、甲乙酮(MEK),甲基異丁基酮(MIBK)、丁醇、醋酸乙酯、及醋酸丁酯。
將包含在表面形成構造體18的炭纖維16的纖維束,浸漬於環氧樹脂的溶液。之後,藉由在烘箱內加熱,使環氧樹脂硬化。加熱,例如以80~150℃,進行0.5~5小時程度即可。藉此,由環氧樹脂的硬化物組成的結著構件22,形成在 CNT18a的附著部20以外的至少一部分,使CNT18a與炭纖維16物理性結合得到複合材料14。
如此地製作的複合材料14,裁切成適合與樹脂膠片混煉的尺寸。複合材料14,係例如使用,纖維切割機等,裁切成1~20mm程度的長度。
<成形體的製作>
將如上所製造的複合材料14,與作為母材12的原料的熱塑性樹脂的膠片混合混煉。熱塑性樹脂,可使用聚丙烯。
例如,將裁切的複合材料14與聚丙烯製的膠片混合物熔融、混煉,擠出成形為線狀。混煉,一般係以190~230℃進行,此時的樹脂的熔融物(母材的樹脂材料)的黏度為10~70g/10min程度。冷卻之後,裁切成所期望的長度,可得本實施形態的炭纖維強化成形體10。
[作用及效果]
如上所述地構成的炭纖維強化成形體10,係藉由包含在表面具有包含CNT18a的構造體18的炭纖維16的複合材料14所強化。複合材料14,由於在表面具有起因於構造體18的細微凹凸,故藉由錨定效果,強化炭纖維16與母材12的接著力。
對在複合材料14的炭纖維16,彈性係數高,由樹脂材料的硬化物所組成的母材12的彈性係數低。在炭纖維強化成形體10,在炭纖維16與母材12的界面,藉由母材12的一部分與CNT18a,形成如第4圖所示的CNT複合樹脂層24。由於可藉由介在於炭纖維16與母材12之間的CNT複合樹脂層24,抑制彈性係數急劇地變化,故可緩和在炭纖維16與母 材12的界面的應力集中。
並且,在包含於本實施形態的炭纖維強化成形體10中的複合材料14,CNT18a,不僅直接附著在炭纖維16的表面,亦藉由結著構件22與炭纖維16的表面物理性結合。藉由結著構件22的存在,提高CNT18a與炭纖維16的接著力,故即使受到剪力時,CNT18a由炭纖維16剝落的危險性極小。因此,製造本實施形態的炭纖維強化成形體10時,即使使用高黏度的樹脂材料作為母材12的原料進行混煉時,可使CNT18a保持在炭纖維16的表面
在炭纖維強化成形體10,在於炭纖維16與母材12之間,確實介在CNT18a。藉由該CNT18a,可提高炭纖維16與母材12的接著力。
如此地在本實施形態,由於CNT18a介在於炭纖維16與母材12之間,故可提高炭纖維16與母材12的接著性。為提高與炭纖維16的接著力,無須將母材12本身改質。
[實施例]
以下,使用包含複數炭纖維的炭纖維束製作複合材料,將由複合材料取出的炭纖維作為被檢體,以微滴法測定炭纖維與樹脂界面的抗剪強度。
(試料)
使之附著在炭纖維表面的CNT,使用以熱CVD法在矽基板上,成長為直徑10~15nm,長度100μm以上的MW-CNT(Multi-Walled Carbon Nanotubes,多層奈米碳管)。在CNT的觸媒殘渣去除,使用硫酸與硝酸的3:1混酸,清洗後過 濾乾燥。使用甲乙酮作為CNT分散劑,調製分散液。在分散液中的CNT濃度為0.01wt%。
炭纖維束,使用將直徑7μm的炭纖維束起12000條的炭纖維束(東麗(股)製,型號:Torayca T-700SC-12000)。首先,將炭纖維束浸漬在樹脂去除劑去除樹脂組合物,得到包含複數炭纖維的纖維束。樹脂去除劑,使用MEK。去除樹脂組合物時,對浸漬炭纖維束的樹脂去除劑,以超音波賦予機械性能量。
接著,將纖維束浸漬在分散液,藉由超音波賦予機械性能量,使纖維束中的炭纖維各個附著在CNT的表面。之後,由分散液取出纖維束,藉由乾燥機乾燥,在纖維束中的炭纖維的各個表面形成構造體。
調製在MEK溶解環氧樹脂的溶液作為接著構件的原料。將包含在如上所述的表面形成構造體的炭纖維的纖維束,浸漬於該溶液。接著,在130℃的烘箱內,加熱1小時左右,使環氧樹脂硬化。如此,在CNT的附著部以外的至少一部分形成接著構件,得到試料1的複合材料。在試料1的複合材料,CNT係直接附著在炭纖維的表面,進一步藉由接著構件物理性結合。
此外,變更以下的點以外,以與試料1同樣的手法,得到試料2~4的複合材料。
試料2:在炭纖維表面不設使CNT物理性結合的接著構件
試料3:在炭纖維表面不使CNT附著,僅設結著構件
試料4:在炭纖維表面不使CNT附著,亦不設接著構件
(評估1)
由試料1~4的複合材料分別取出1條炭纖維作為被檢體, 測定被檢體的界面抗剪強度。界面抗剪強度的測定,使用複合材界面特性評估裝置(東榮產業(股)製,HM410)。首先,在80℃的氣氛中,對被檢體,塗佈液狀的熱塑性樹脂,製作微滴,以125℃×1小時的條件加熱。熱塑性樹脂,使用SunAllomer(股)製,型號:PM801A。
冷卻至室溫之後,如第5圖所示,將被檢體30以刀片32包夾。接著,使被檢體30以0.12mm/min的速度向被檢體30的長邊方向(圖中箭頭方向)移動,由微滴34拉出被檢體30的同時,以載荷管(無圖示)測定拉拔時的最大負荷F。測定,係在室溫、大氣氣氛下,對各被檢體進行5次。以下式(1),算出界面抗剪強度τ,評估試料1~4的界面抗剪強度。將其結果,與被檢體的表面狀態一起示於第1表。再者,下式(1)中,F:拉拔時的最大負荷,d:纖維徑,L:微滴的拉拔方向的長度。
τ=F/(d π L)...(1)
Figure 105110241-A0202-12-0011-1
如上述第1表所示,在CNT與炭纖維之間設有結著構件的試料1,界面抗剪強度高達12.4MPa。CNT附著在炭纖維的表面,但不存在結著構件的試料2,則界面抗剪強度僅達10.6MPa。沒有CNT附著在炭纖維的表面(試料3、4),結著構件的有無並不太影響界面抗剪強度,而為9.7~9.8MPa。再 者,沒有去除樹脂組合物的未處理炭纖維束(東麗(股)製,型號:Torayca T-700SC-12000),亦同樣地求得的界面抗剪強度為8.0MPa。
試料1的複合材料,係CNT附著在炭纖維表面,進一步在CNT與炭纖維之間存在結著構件。可推測CNT以結著構件與炭纖維表面物理性結合,提高CNT與炭纖維接著力,而提升界面抗剪強度。
第6圖A、第6圖B,係進行界面抗剪強度測定之後的試料1及試料2的炭纖維的微滴剝離的部分的SEM照片。如第6圖A所示,由試料1取出的炭纖維16的表面,與CNT18a一起,可確認熱塑性樹脂34a。熱塑性樹脂34a,係微滴34的一部分殘存。
雖在SEM照片並沒有明確地出現,在試料1,CNT18a係藉由結著構件與炭纖維16表面物理性結合。CNT18a,係與炭纖維16堅固地接著,由炭纖維16表面剝落的危險性小。微滴34,係經由如此的CNT18a與炭纖維16接著,故亦可提高微滴34與炭纖維16的接著力。結果,推測可得很高的界面抗剪強度。
另一方面,如第6圖B所示試料2,在炭纖維56表面,並沒有確認到熱塑性樹脂,亦沒有附著CNT。可知設於炭纖維56表面的微滴,伴隨CNT,由炭纖維56的表面剝落。CNT,由於沒有藉由結著構件與炭纖維物理性結合,可知界面抗剪強度較試料1小。
如以上所得的界面抗剪強度的測定結果,顯示藉 由設置使CNT與炭纖維物理性結合的結著構件,係可與微滴強固地接著的複合材料。藉由使用如此的複合材料,推測可得提升炭纖維與母材的界面的抗剪強度的纖維強化成形體。
(評估2)
使用試料1及試料3的複合材料,製作以聚丙烯樹脂為母材的一方向預浸料(纖維體積含有率:60%)。將製作的預浸料,使用熱壓制機(成形溫度:190℃)層積3層,得到評估用板片(厚度:約0.4mm)。
評估用板片,係以沖壓加工製作JIS K6252所示角型試片。關於所得試驗片,以Autograph(島津製造所AGS-5kNX)進行拉伸試驗(試驗速度:1mm/min)。將其結果,與複合構件的表面狀態一起彙整於下述第2表。
Figure 105110241-A0202-12-0013-2
如上述第2表所示,藉由在炭纖維的表面存在奈米碳管網路構造,試料1的拉伸強度較試料3增大。此係,可認為是起因於藉由存在於炭纖維表面的奈米碳管,提升炭纖維與母材的界面接著性。
2.第2實施形態
[全體構成]
接著,關於本發明的第2實施形態的炭纖維強化成形體40的全體構成,對與第1實施形態的炭纖維強化成形體10同樣 的構成附以同樣的符號,參照第7圖說明。
第7圖所示炭纖維強化成形體40,包括母材42,與分散於該母材42中的複數複合材料14。本實施形態之情形,係母材42,係以含有填充劑46的樹脂44的硬化物形成,此點不同以外,係以與第1實施形態的炭纖維強化成形體10同樣的構成。
在本實施形態,母材42,係以熔融指數測定儀測定的230℃的MRF為10~70g/10min程度的樹脂組合物的硬化物形成者。在母材42,係在作為樹脂44的聚丙烯中,分散作為填充劑46的CNT。CNT,可使用如第1實施形態所說明,在炭纖維16的表面形成構造體18的同樣的CNT。
作為填充劑46的CNT,以1~20vol%程度的濃度,含於樹脂44中。
如參照第3圖所說明,炭纖維18a,係將表面的一部分作為附著部20,直接附著在炭纖維16的表面上。藉由設於附著部20以外的至少一部分的結著構件22,使CNT18a與炭纖維16物理性結合,故可提高CNT18a與炭纖維16的接著力。
[製造方法]
接著,說明炭纖維強化成形體40的製造方法。炭纖維強化成形體40,使用含有填充劑46的樹脂44作為母材42的原料以外,可與第1實施形態之情形同樣地製造。
將作為填充劑46的CNT與樹脂44混合,調製藉由熔融指數測定儀測定在230℃的MRF為10~70g/10min程度的樹脂組合物。混合,只要按照樹脂44、填充劑46,採用適當的手法即可。
將以與第1實施形態的情形同樣地得到的複合材料14,與樹脂組合物混合,成形可得第2實施形態的炭纖維強化成形體40。可按照樹脂組合物使用適當的手法混合,成形。
[作用及效果]
在第2實施形態的炭纖維強化成形體40,母材42,係以分散填充劑46的樹脂44的硬化物構成。此點以外,由於與第1實施形態的炭纖維強化成形體10同樣,故在第2實施形態的炭纖維強化成形體,亦可得到與第1實施形態之情形同樣的效果。
並且,由於母材42係以分散填充劑46的樹脂44的硬化物所構成,故第2實施形態的炭纖維強化成形體40,亦包括具有高壓縮強度的優點。
3.變形例
本發明並非限定於上述實施形態,可在本發明的宗旨的範圍內適宜變更。
例如,在第1實施形態,係將母材12以熱塑性樹脂的聚丙烯形成之情形說明,亦可為例如PA(聚醯胺)、PPS(聚苯硫醚)、PEI(聚醚醯亞胺)、PC(聚碳酸酯)、PET(聚對苯二甲酸乙二醇酯)、PEEK(聚醚醚酮),PEKK(聚醚酮酮)、聚乙烯等的熱塑性樹脂。在第2實施形態,作為含於母材42的樹脂44,亦可使用例如PA,填充劑46,亦可使用例如奈米碳管、碳奈米纖維、碳黑等。使用以任意組合調製樹脂44與填充劑46之樹脂材料,製作母材42。
在任一實施形態,藉由熔融指數測定儀測定的JIS K7210所記載的熔融指數測定儀,在根據材料種類決定的標準 條件的溫度.負荷下所測定的熔體質量流速(MFR)為1~100g/10min程度的樹脂材料時,可充分發揮本發明的效果。
使用包含在由市售的炭纖維束去除樹脂組合物的纖維束的纖維作為炭纖維16,說明製作複合材料14的步驟,惟本發明並不限於此。例如,只要是沒有以樹脂組合物覆蓋的纖維,可省略去除樹脂組合物的步驟。
此外,複合材料14,係例如以包括將炭纖維以數千~數萬條束起纖維束之情形說明,惟本發明不限於此,亦可以1條炭纖維形成複合材料。此時,炭纖維16,可使用藉由鍛燒聚丙烯腈、嫘縈、瀝青等的來自石油、煤炭、煤焦油的有機纖維,或來自木材或植物纖維的有機纖維而得之直徑約3~15μm的纖維。
炭纖維16,並非限定如炭纖維束等的連續纖維,亦可使用1~20mm程度的長度的纖維。此時,為製造成形體與樹脂膠片混煉之前,可省略切斷複合材料14的步驟。
在結著構件22的形成,亦可將結著構件22的材料的環氧樹脂的溶液乳膠化。例如,藉由對在溶劑溶解環氧樹脂而成的溶液中,例如加入非離子系乳化劑等的乳化劑,使之乳膠化。結著構件22,在環氧樹脂的硬化物之外,例如使用酚樹脂、聚氨酯樹脂、三聚氰胺樹脂、尿素樹脂、聚醯亞胺樹脂等的硬化物時亦可得到同樣的效果。此外,亦可使用矽烷偶合劑作為結著構件。變更結著構件22的材料時,亦可與環氧樹脂之情形同樣地形成結著構件22。
結著構件22,只要設在CNT18a的附著部20以外 的至少一部分,即可得到提升炭纖維16與母材12、42的接著力的效果。在CNT18a的剩餘的表面,亦可設結著構件22。
在包括CNT18a直接附著在炭纖維16表面的複合材料14,只要CNT18a藉由結著構件22與炭纖維16物理性結合,如上所述可避免炭纖維從母材12、42剝離,可得具有高強度的炭纖維強化成形體10、40。
12、42‧‧‧母材
14‧‧‧複合材料
16‧‧‧炭纖維
18‧‧‧構造體
18a‧‧‧奈米碳管(CNT)
20‧‧‧附著部
22‧‧‧結著構件

Claims (9)

  1. 一種炭纖維強化成形體,包括:母材及分散在上述母材中的複合材料,其特徵在於:上述複合材料包含:炭纖維;及形成在上述炭纖維的表面,包含複數奈米碳管的構造體,上述複數奈米碳管,形成互相直接連接的網路構造,在上述炭纖維的表面,將表面的一部分作為附著部以無介在物的狀態直接附著,同時藉由設於上述附著部以外的至少一部分的結著構件,物理性結合,上述結著構件存在於上述複數奈米碳管與上述炭纖維之間,上述結著構件係熱硬化性樹脂的硬化物,上述母材係熱塑性樹脂的硬化物,在上述母材與上述炭纖維的界面,藉由上述母材的一部分與上述複數奈米碳管,形成CNT複合樹脂層。
  2. 根據申請專利範圍第1項之炭纖維強化成形體,其中上述熱硬化性樹脂係選自由環氧樹脂、酚樹脂、聚氨酯樹脂、三聚氰胺樹脂、尿素樹脂、及聚醯亞胺樹脂。
  3. 根據申請專利範圍第2項之炭纖維強化成形體,其中上述熱硬化性樹脂係環氧樹脂。
  4. 根據申請專利範圍第1項之炭纖維強化成形體,其中上述熱塑性樹脂係非極性樹脂。
  5. 根據申請專利範圍第4項之炭纖維強化成形體,其中上述非極性樹脂係聚丙烯。
  6. 根據申請專利範圍第1至3項中任一項炭纖維強化成形體,其中上述母材係包含1~20vol.%的填充劑。
  7. 根據申請專利範圍第6項之炭纖維強化成形體,其中上述填充劑,選自奈米碳管、碳奈米纖維、及碳黑。
  8. 一種炭纖維強化成形體的製造方法,上述炭纖維強化成形體包括母材及分散在上述母材中的複合材料,其特徵在於包括下列步驟:以將包含炭纖維的纖維束浸漬在將複數奈米碳管單離分散的分散液的狀態,賦予機械性能量,將上述複數奈米碳管附著在各個上述炭纖維的表面,之後將上述纖維束由上述分散液拉出,藉由乾燥,使上述複數奈米碳管在附著部,直接附著在上述炭纖維,形成具有上述複數奈米碳管互相直接連接的網路構造的構造體;將包含在上述表面形成上述構造體的上述炭纖維的上述纖維束,浸漬於熱硬化性樹脂的溶液,在上述附著部以外的至少一部分形成由上述熱硬化性樹脂的硬化物構成的結著構件,使上述複數奈米碳管與上述炭纖維物理性結合得到複合材料;以及將上述複合材料與上述母材的原料之熱塑性樹脂混合而混煉並擠出成形。
  9. 根據申請專利範圍第8項之炭纖維強化成形體的製造方法,其中將上述熱硬化性樹脂的溶液乳膠化。
TW105110241A 2015-03-31 2016-03-31 炭纖維強化成形體及其製造方法 TWI738644B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-072259 2015-03-31
JP2015072259A JP6835393B2 (ja) 2015-03-31 2015-03-31 炭素繊維強化成形体の製造方法

Publications (2)

Publication Number Publication Date
TW201708097A TW201708097A (zh) 2017-03-01
TWI738644B true TWI738644B (zh) 2021-09-11

Family

ID=57005765

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105110241A TWI738644B (zh) 2015-03-31 2016-03-31 炭纖維強化成形體及其製造方法

Country Status (7)

Country Link
US (1) US10329392B2 (zh)
EP (1) EP3279255B1 (zh)
JP (1) JP6835393B2 (zh)
KR (1) KR102511974B1 (zh)
CN (1) CN107429016B (zh)
TW (1) TWI738644B (zh)
WO (1) WO2016159121A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6489519B2 (ja) * 2014-10-23 2019-03-27 ニッタ株式会社 強化繊維の製造方法
WO2017099260A1 (en) * 2015-12-10 2017-06-15 Canon Kabushiki Kaisha Resin composition, production process thereof and optical instrument
JP2020501367A (ja) 2016-12-02 2020-01-16 ファーストキャップ・システムズ・コーポレイションFastCAP SYSTEMS Corporation 複合電極
JP7020633B2 (ja) * 2017-02-13 2022-02-16 ニッタ株式会社 複合素材、およびこれを用いたプリプレグ
WO2018151053A1 (ja) * 2017-02-14 2018-08-23 ニッタ株式会社 炭素繊維強化成形体
US20190062524A1 (en) * 2017-08-25 2019-02-28 The Boeing Company Carbon Nanotube Enhanced Polymers and Methods for Manufacturing the Same
CN107722310A (zh) * 2017-09-26 2018-02-23 深圳八六三计划材料表面技术研发中心 一种条带状石墨烯增强聚甲基丙烯酸甲酯复合材料的制备方法
JP7084706B2 (ja) 2017-09-27 2022-06-15 ニッタ株式会社 複合素材、プリプレグ、炭素繊維強化成形体、および複合素材の製造方法
KR101967871B1 (ko) * 2017-11-27 2019-04-10 울산과학기술원 실레인 물질을 이용한 탄소 나노 복합재의 제조 방법 및 이를 이용하여 형성한 탄소 나노 복합재
KR20210019059A (ko) * 2018-06-11 2021-02-19 니타 가부시키가이샤 복합 소재, 프리프레그, 탄소 섬유 강화 성형체 및 복합 소재의 제조 방법
JP7402631B2 (ja) * 2018-08-27 2023-12-21 帝人株式会社 極細炭素繊維混合物、その製造方法、及び炭素系導電助剤
US11557765B2 (en) 2019-07-05 2023-01-17 Fastcap Systems Corporation Electrodes for energy storage devices
CN112680956A (zh) * 2019-10-18 2021-04-20 南京理工大学 一种提高纤维金属层板界面性能的方法
JP7406959B2 (ja) * 2019-11-20 2023-12-28 ニッタ株式会社 複合素材、炭素繊維強化成形体及び複合素材の製造方法
CN114031795B (zh) * 2021-09-10 2023-08-15 青岛大学 一种增强碳纤维树脂基复合材料界面性能的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100270069A1 (en) * 2009-04-24 2010-10-28 Lockheed Martin Corporation Cnt-infused emi shielding composite and coating
WO2014175319A1 (ja) * 2013-04-24 2014-10-30 ニッタ株式会社 複合素材および成形品

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4576801B2 (ja) * 1999-06-15 2010-11-10 日東紡績株式会社 電波吸収性天井板、その製造方法及びそれを用いた室内無線通信障害の防止方法
JP3972674B2 (ja) * 2002-02-14 2007-09-05 東レ株式会社 炭素繊維その製造方法および炭素繊維強化樹脂組成物
JP4107475B2 (ja) * 2002-02-22 2008-06-25 三菱レイヨン株式会社 繊維強化複合材料用の補強繊維
US20060004126A1 (en) * 2004-06-30 2006-01-05 Park Edward H Thermoplastic vulcanizate with functional fillers
JP5057010B2 (ja) 2005-11-01 2012-10-24 ニッタ株式会社 カーボンファイバの製造方法
EP2022886B1 (en) * 2006-05-02 2013-10-16 Goodrich Corporation Methods of making nanoreinforced carbon fiber and aircraft components comprising nanoreinforced carbon fiber
FR2924133B1 (fr) * 2007-11-26 2012-12-14 Porcher Ind Element de renfort longitudinal a base de fibres minerales ou organiques et son procede d'obtention
JP2011528056A (ja) * 2008-07-17 2011-11-10 ナノシル エス.エー. 強化熱硬化性高分子複合体の製造方法
JP2013076198A (ja) * 2011-09-13 2013-04-25 Nitta Ind Corp Cnt/炭素繊維複合素材、この複合素材を用いた繊維強化成形品、および複合素材の製造方法
JP2013206623A (ja) * 2012-03-27 2013-10-07 Kawasaki Heavy Ind Ltd ファイバー電極及びファイバー電極を有するファイバー電池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100270069A1 (en) * 2009-04-24 2010-10-28 Lockheed Martin Corporation Cnt-infused emi shielding composite and coating
WO2014175319A1 (ja) * 2013-04-24 2014-10-30 ニッタ株式会社 複合素材および成形品

Also Published As

Publication number Publication date
EP3279255A4 (en) 2018-12-05
CN107429016B (zh) 2020-07-24
KR102511974B1 (ko) 2023-03-20
EP3279255C0 (en) 2023-09-06
JP6835393B2 (ja) 2021-02-24
KR20170133335A (ko) 2017-12-05
US20180112047A1 (en) 2018-04-26
EP3279255A1 (en) 2018-02-07
US10329392B2 (en) 2019-06-25
CN107429016A (zh) 2017-12-01
JP2016190969A (ja) 2016-11-10
WO2016159121A1 (ja) 2016-10-06
TW201708097A (zh) 2017-03-01
EP3279255B1 (en) 2023-09-06

Similar Documents

Publication Publication Date Title
TWI738644B (zh) 炭纖維強化成形體及其製造方法
CN110055749B (zh) 强化纤维的制造方法
TWI677424B (zh) 具有高z-方向導電率之複合材料及製造複合材料的方法
JP6063562B2 (ja) 複合素材、成形品および複合素材の製造方法
CN107429477B (zh) 复合材料的制造方法及复合材料
EP3419381A2 (en) Electromechanical ice protection systems with carbon additive loaded thermoplastic heating elements
US20090280324A1 (en) Prepreg Nanoscale Fiber Films and Methods
JP2013076198A (ja) Cnt/炭素繊維複合素材、この複合素材を用いた繊維強化成形品、および複合素材の製造方法
KR102588148B1 (ko) 복합 소재, 프리프레그, 탄소 섬유 강화 성형체 및 복합 소재의 제조 방법
JP6814422B2 (ja) 炭素繊維及び樹脂を含む複合材料並びに当該複合材料を含む中間基材及び成形体
Carley et al. Nano-engineered composites: interlayer carbon nanotubes effect
KR101845936B1 (ko) 프리프레그용 cnt-고분자필름 및 이의 제조방법
JP6035084B2 (ja) カーボン/カーボンコンポジット用の中間材料
Shah et al. Carbon Nanostructures for electromagnetic shielding and lightning strike protection applications in aircraft
KR101251015B1 (ko) Rtm 공정용 유리섬유기재 전처리방법, 상기 방법에 의해 전처리된 유리섬유기재, 및 상기 유리섬유기재를 사용하여 제조된 rtm 성형제품
Chen Effect of Chemical Cross-Links on the Mechanical and Thermal Properties of Graphene-Reinforced Polymer Matrix Composites
JP2020026498A (ja) 複合素材、プリプレグ、炭素繊維強化成形体及び複合素材の製造方法