TWI358988B - Heat conduction structure and method for making th - Google Patents

Heat conduction structure and method for making th Download PDF

Info

Publication number
TWI358988B
TWI358988B TW97128263A TW97128263A TWI358988B TW I358988 B TWI358988 B TW I358988B TW 97128263 A TW97128263 A TW 97128263A TW 97128263 A TW97128263 A TW 97128263A TW I358988 B TWI358988 B TW I358988B
Authority
TW
Taiwan
Prior art keywords
heat dissipation
carbon nanotube
nanotube array
dissipation structure
carbon
Prior art date
Application number
TW97128263A
Other languages
Chinese (zh)
Other versions
TW201006369A (en
Inventor
Shou-Shan Fan
Kai-Li Jiang
Chang-Hong Liu
Liang Liu
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97128263A priority Critical patent/TWI358988B/en
Publication of TW201006369A publication Critical patent/TW201006369A/en
Application granted granted Critical
Publication of TWI358988B publication Critical patent/TWI358988B/en

Links

Description

1358988 — 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種散熱結構及其製備方法,尤其涉及一種 基於奈米碳管的散熱結構及其製備方法。 【先前技術】 [0002] 近年來,隨著半導體器件集成工藝的快速發展,半導體 器件的集成化程度越來越高’半導體集成器件(如CPU) 的運行頻率也越來越高’其單位時間内產生的熱量增加 ,熱量的累積將引起溫度的升高,從而導致半導體集成 器件的運行性能包括穩定性下降,故,必需及時地將其 產生的熱量散發出去,目前’散熱已經成為半導體集成 工藝中必須解決的問題。 隨著器件體積的減小’其對散熱需求的提高,器件散熱 已成為一個重要的問題。請參見圖1,目前應用於器件散 熱的散熱結構100通常包括一散熱器i02和一熱介面材料 層1〇4。該散熱器102包括一基體106和設置於該基體1〇6 表面上的散熱鰭片108 ^該熱介面材料層1〇4通常設置於 散熱器102的基體106與散熱鰭片1〇8相對的表面上,用 於増加散熱結構100與半導體器件之間的散熱面積,改善 ,半導體器件與散熱結構100的熱傳遞效果^傳統熱介面材 料為將導熱係數較高的顆粒分散於聚合物基體中形成的 4 。材料,導熱係數較高的材料包括石墨、氮化硼氧 化分、氧化IS、銀或其他金屬等。該類複合材料的普遍 、心係整體材質導熱係數較小典型值為,這已經 不能適應半導體集成切度的提高對散熱的需求。且,1358988 - VI. Description of the Invention: [Technical Field] [0001] The present invention relates to a heat dissipation structure and a method of fabricating the same, and more particularly to a heat dissipation structure based on a carbon nanotube and a preparation method thereof. [Prior Art] [0002] In recent years, with the rapid development of semiconductor device integration processes, the degree of integration of semiconductor devices has become higher and higher. 'Semiconductor integrated devices (such as CPUs) are operating at higher frequencies. The heat generated inside increases, the accumulation of heat will cause the temperature to rise, resulting in the running performance of the semiconductor integrated device including the stability degradation, so it is necessary to dissipate the heat generated in time, and the current heat dissipation has become a semiconductor integrated process. The problem that must be solved. As device volume has decreased, its heat dissipation requirements have increased, and device heat dissipation has become an important issue. Referring to Figure 1, the heat dissipation structure 100 currently applied to the device heat dissipation generally includes a heat sink i02 and a thermal interface material layer 1〇4. The heat sink 102 includes a base body 106 and heat dissipation fins 108 disposed on the surface of the base body 〇6. The heat interface material layer 1-4 is generally disposed on the base body 106 of the heat sink 102 opposite to the heat dissipation fins 〇8. On the surface, the heat dissipation area between the heat dissipation structure 100 and the semiconductor device is improved, and the heat transfer effect of the semiconductor device and the heat dissipation structure 100 is improved. The conventional thermal interface material is formed by dispersing particles having a higher thermal conductivity in the polymer matrix. Of 4. Materials, materials with higher thermal conductivity include graphite, boron oxide oxides, oxidized IS, silver or other metals. The typical value of this type of composite material, the thermal conductivity of the overall material of the core is small, which can not meet the demand for heat dissipation of the semiconductor integrated cut. And,

[0003] 097128263 &單編號A0101 第4頁/共23頁 1003439776-0 1358988 [0004][0003] 097128263 &single number A0101 Page 4 of 23 1003439776-0 1358988 [0004]

[0005] “ 100年.11月2—5日梭正替換頁 由熱介面材料層的存在,使得這種散熱結構的體積受到 限制,很難滿足微小半導體器件的需求。另,傳統的散 熱鰭片的材料常採用金屬、金屬合金或導熱係數較高的 的顆粒分散於聚合物基體中形成的複合材料,這些材料 製備的散熱鰭片同樣存在著導熱係數較小的缺點,難以 滿足半導體集成化程度的提高對散熱的需求。 1991年,日本科學家Iijima在電弧放電試驗中發現了奈 米碳管(請參見 “Helical microtubules of graphitic carbon”,Nature, Suraio Iijima,vol 354,p56( 1 991 ))。因奈米碳管具有長徑比大,長度可 為直徑的幾千倍;強度高,為鋼的100倍,但重量只有鋼 的六分之一;韌性與彈性極佳的特性,且奈米碳管沿其 縱向方向有極高的熱導係數,使其成為最具潛力的熱介 面材料之一。美國物理學會上發表一篇名為“奈米碳管 顯著熱導性”的文章指出對於“Z”字形(10, 10)奈米 碳管在室溫下其導熱係數可達6600 W/mK。奈米碳管的 這一性質使其在半導體集成器件中的散熱結構中的應用 中具有廣闊的發展前景,成為人們的研究熱點。 先前技術中,將奈米碳管應用於散熱結構中時,通常係 將奈米碳管本身或奈米碳管的複合材料作為熱介面材料 應用。然,由於奈米碳管在熱介面材料中一般為無序排 列,未能充分利用奈米碳管縱向導熱的優勢,故,這種 散熱結構的散熱效率並未得到明顯提高。同時,由於這 種散熱結構同樣需要同時包括熱介面材料與散熱器,散 熱結構的體積受到限制,無法滿足微小器件的要求。 097128263 表單編號A0101 第5頁/共23頁 1003439776-0 1358988 [0006] 100年11月25日修正替換頁 有鑒於此,提供一種散熱效率高,體積小,可方便應用 於各種領域的散熱結構及其製備方法實為必要。 [0007] [0008] [0009] 【發明内容】 一種散熱結構,該散熱結構固定設置於一發熱元件表面 ,其中,該散熱結構包括一圖形化的奈米碳管陣列與一 固定層,該散熱結構通過該固定層固定於該發熱元件上 ,所述圖形化的奈米碳管陣列包括複數奈米碳管,該複 數奈米碳管暴露出固定層的奈米碳管的長度不相等,形 成預定圖形。 一種散熱結構的製備方法,其包括以下步驟:提供一發 熱元件,該發熱元件具有一表面;設置一熔融態固定層 於發熱元件的表面;製備一奈米碳管陣列形成於一基底 ,該奈米碳管陣列具有一第一端及與第一端相對的第二 端,第二端與基底連接;將上述奈米碳管陣列的第一端 ***該固定層中,冷卻該固定層至其凝固;除去奈米碳 管陣列的基底;以及將奈米碳管陣列圖形化,於發熱先 件的表面上形成一散熱結構。 與先前技術相比較,本技術方案所提供的散熱結構存在 以下優點:其一,該散‘結構直接固定於發熱元件上, 無需熱介面材料,體積較小,可方便應用於各種領域; 其二,該散熱結構中的奈米碳管以陣列形式存在,充分 利用了奈米碳管的縱向導熱性能,故,該散熱結構的散 熱效率高。[0005] "100 years. November 2-4, the shuttle replacement page is composed of a layer of thermal interface material, so that the volume of the heat dissipation structure is limited, and it is difficult to meet the demand of small semiconductor devices. In addition, the conventional heat sink fin The material of the sheet is often made of a metal, a metal alloy or a composite material having a high thermal conductivity dispersed in a polymer matrix. The fins prepared by these materials also have the disadvantage of a small thermal conductivity, which is difficult to satisfy semiconductor integration. The need for heat dissipation increased. In 1991, Japanese scientist Iijima discovered carbon nanotubes in an arc discharge test (see "Helical microtubules of graphitic carbon", Nature, Suraio Iijima, vol 354, p56 (1 991 )). The carbon nanotubes have a large aspect ratio and a length of several thousand times the diameter; the strength is 100 times that of steel, but the weight is only one-sixth of that of steel; the toughness and elasticity are excellent, and The carbon nanotube has a very high thermal conductivity along its longitudinal direction, making it one of the most promising thermal interface materials. The American Physical Society published an article called "Nano Carbon Tube". The article "Significant Thermal Conductivity" indicates that the thermal conductivity of the "Z" shaped (10, 10) carbon nanotubes can reach 6600 W/mK at room temperature. This property of the carbon nanotubes makes it a semiconductor integrated device. The application in the heat dissipation structure has broad development prospects and has become a research hotspot. In the prior art, when the carbon nanotubes were applied to the heat dissipation structure, the carbon nanotubes themselves or the carbon nanotubes were usually used. The composite material is applied as a thermal interface material. However, since the carbon nanotubes are generally disorderly arranged in the thermal interface material, the advantages of the longitudinal heat conduction of the carbon nanotubes are not fully utilized, so the heat dissipation efficiency of the heat dissipation structure is not At the same time, since this heat dissipating structure also needs to include both the thermal interface material and the heat sink, the volume of the heat dissipating structure is limited, and the requirements of the micro device cannot be met. 097128263 Form No. A0101 Page 5 of 23 1003439776-0 1358988 [0006] The revised replacement page of November 25, 100, in view of this, provides a heat dissipation structure with high heat dissipation efficiency and small volume, which can be conveniently applied to various fields and its system. The method is really necessary. [0007] [0009] [0009] [0009] [0009] A heat dissipation structure, the heat dissipation structure is fixedly disposed on a surface of a heat generating component, wherein the heat dissipation structure comprises a patterned carbon nanotube array and a a fixing layer, the heat dissipating structure is fixed to the heating element through the fixing layer, the patterned carbon nanotube array comprises a plurality of carbon nanotubes, and the plurality of carbon nanotubes expose a fixed layer of carbon nanotubes The length is not equal, forming a predetermined pattern. A method for preparing a heat dissipation structure, comprising the steps of: providing a heat generating component having a surface; providing a molten state fixed layer on a surface of the heat generating component; preparing a carbon nanotube The array is formed on a substrate, the carbon nanotube array has a first end and a second end opposite to the first end, the second end is connected to the substrate; and the first end of the carbon nanotube array is inserted into the fixed layer Cooling the fixed layer to its solidification; removing the substrate of the carbon nanotube array; and patterning the carbon nanotube array to form a heat dissipation structure on the surface of the heat generating member. Compared with the prior art, the heat dissipation structure provided by the technical solution has the following advantages: First, the dispersion structure is directly fixed on the heating element, does not require a thermal interface material, and has a small volume, and can be conveniently applied to various fields; The carbon nanotubes in the heat dissipation structure exist in an array form, and the longitudinal heat conduction performance of the carbon nanotubes is fully utilized, so that the heat dissipation structure has high heat dissipation efficiency.

【實施方式】 下面將結合附圖及具體實施例對本發明作進一步的詳細 097128263 表單编號A0101 第6頁/共23頁 1003439776-0 [0010] 1100年‘11月25日修正替换頁 說明。 請參閱圖2,本技術方案提供一種散熱結構1(),該散熱結 構10設置於一發熱元件12的表面18。該散熱結構ι〇包括 -圖形化的奈米碳管陣列16與—固定層14。圖形化的奈 米碳管陣列16包括-第-端162及與第一端162相對的第 二端164。圖形化的奈米碳管陣列16的第—端162設置於 固疋層14中,並通過固定層14使圖形化的奈米碳管陣列 16固定於發熱元件12的表面18,圖形化的奈米碳管陣列 16的·第二端164向遠離固定層14的方向延伸。可理解圖 形化的奈来碳管陣列16的第一端162也可穿透固定層14與 發熱元件12直接接觸’提高散熱效率。 所述固定層14的材料為導熱材料,包括複合材料或低熔 點的金屬。所述之複合材料包括導電聚合物複合材料、 導電陶瓷複合材料或其他導電複合材料,如含有奈米碳 管的塑膠。所述低熔點金屬包括錫、銦、鉛、銻、銀、 鉍以及其任意組合的合金或混合物,如錫鉛合金、銦錫 合金、錫銀合金等。所述固定層14的厚度不宜太厚,也 不宜太薄,太厚則不利於充分利用奈米碳管陣列16中的 奈米碳管的散熱性能,太薄則會降低其對圖形化的奈米 碳管陣列16的固定力,導致奈米碳管陣列16的傾倒。優 選地,所述固定層14的厚度為〇. 1毫米-1毫米。 所述之圖形化的奈米碳管陣列16包括複數個平行設置的 奈米碳管,奈米碳管沿圖形化的奈米碳管陣列16的第一 端162到第一端164的方向延伸’奈米碳管基本垂直於固 定層14的表面18。由於圖形化的奈米碳管陣列16的第一 表單編號A0101 第7頁/共23頁 1003439776-0 1358988 100年.11月25日接正替換頁 端162設置於固定層中,故,奈米碳管至少部分設置於固 定層14中,奈米碳管暴露於固定層14外的部分作為散熱 藉片,將發熱元件12所產生的熱量散發出去。所述之圖 形化的奈米碳管陣列16可根據發熱元件12的需要形成預 定的圖形’所述之預定圖形的形成包括以下三種情況: 其一,所述圖形化的奈米碳管陣列16中暴露出固定層14 的奈米碳管一部分被去除,其餘的奈米碳管暴露出固定 層14的部分的長度相等,形成預定的平面圖形,如圓形[Embodiment] The present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments. 097128263 Form No. A0101 Page 6 of 23 1003439776-0 [0010] 1100 ‘November 25 Revision Replacement Page Description. Referring to FIG. 2, the present technical solution provides a heat dissipation structure 1() disposed on a surface 18 of a heat generating component 12. The heat dissipation structure ι includes a patterned carbon nanotube array 16 and a fixed layer 14. The patterned carbon nanotube array 16 includes a first end 162 and a second end 164 opposite the first end 162. The first end 162 of the patterned carbon nanotube array 16 is disposed in the solid layer 14, and the patterned carbon nanotube array 16 is fixed to the surface 18 of the heating element 12 by the fixed layer 14, patterned nai The second end 164 of the carbon nanotube array 16 extends away from the fixed layer 14. It will be appreciated that the first end 162 of the patterned carbon nanotube array 16 can also penetrate the fixed layer 14 in direct contact with the heat generating component 12 to improve heat dissipation efficiency. The material of the pinned layer 14 is a thermally conductive material, including a composite or a low melting point metal. The composite material comprises a conductive polymer composite material, a conductive ceramic composite material or other conductive composite material, such as a plastic containing a carbon nanotube. The low melting point metal includes alloys or mixtures of tin, indium, lead, antimony, silver, antimony, and any combination thereof, such as tin-lead alloy, indium tin alloy, tin-silver alloy, and the like. The thickness of the fixing layer 14 is not too thick, and should not be too thin. Too thick is not suitable for fully utilizing the heat dissipation performance of the carbon nanotubes in the carbon nanotube array 16, and if it is too thin, it will reduce the pattern of the nai. The holding force of the carbon nanotube array 16 causes the pouring of the carbon nanotube array 16. Preferably, the thickness of the fixing layer 14 is from 0.1 mm to 1 mm. The patterned carbon nanotube array 16 includes a plurality of carbon nanotubes arranged in parallel, and the carbon nanotubes extend along the first end 162 of the patterned carbon nanotube array 16 to the first end 164. The carbon nanotubes are substantially perpendicular to the surface 18 of the fixed layer 14. Due to the first form number of the patterned carbon nanotube array 16 A0101 page 7 / 23 pages 1003439776-0 1358988 100 years. November 25th, the replacement page end 162 is set in the fixed layer, so, nano The carbon tube is at least partially disposed in the fixed layer 14, and the portion of the carbon nanotube exposed to the outside of the fixed layer 14 serves as a heat sink to dissipate heat generated by the heat generating element 12. The patterned carbon nanotube array 16 can form a predetermined pattern according to the needs of the heating element 12. The formation of the predetermined pattern includes the following three cases: First, the patterned carbon nanotube array 16 A portion of the carbon nanotube in which the fixed layer 14 is exposed is removed, and the remaining portions of the carbon nanotube are exposed to the same length of the fixed layer 14 to form a predetermined planar pattern, such as a circle.

、十字形、環形等;其二,所述圖形化的奈米碳管陣列 16中的暴露出固定層14的奈米碳管長度不同,形成預定 的立體圖形;其三,所述圖形化的奈米碳管陣列16中一 部分奈米碳管暴露出固定層14的部分被去除,其餘的奈 米碳官暴露出固定層14的部分的長度不相等,形成預定 圖形。本實施利中,圖形化的奈米碳管陣列16中一部分 奈米碳管暴露出固定層14的部分被去除,其餘的奈米碳 管暴露出g)定層14的部分的長度相等,形成如圖3所示的 十字通道。在應用時,該圖形化的奈米碳管陣列16 可增加空氣對流’有利於提高散熱效率。所述圖形化奈 米碳g陣列16的中奈米碳管的長度大於固定層14的厚度 。優選地,圖形化的奈米碳管陣列16 _奈米碳管的長度 097128263 約U. 3¾木-5毫米,本實施例中 · w 不,1、g ‘中奈米碳官的長度為!毫米。所述圖形化的奈米碳管冯 16中的奈米碳管為單壁奈米碳管、雙壁奈米碳管多 奈米碳管或其任意組合。該單壁奈讀管的直徑為〇 米一则奈米,料壁Μ碳管的餘為1.G奈米-100. 米’該多壁奈来碳管的直徑紅㈣] 表單编敌AGlfll Γ 第8頁/共23頁 1003439776-0 1358988a cross, a ring, etc.; second, the length of the carbon nanotubes in the patterned carbon nanotube array 16 exposing the fixed layer 14 is different to form a predetermined solid figure; third, the graphical Portions of the carbon nanotube array 16 in which a portion of the carbon nanotubes are exposed to the fixed layer 14 are removed, and the remaining portions of the carbon nanotubes that expose the fixed layer 14 are unequal in length to form a predetermined pattern. In this embodiment, a part of the carbon nanotube array 16 in the patterned carbon nanotube array 16 is exposed with the portion of the fixed layer 14 removed, and the remaining carbon nanotubes are exposed to g) the length of the portion of the fixed layer 14 is equal, forming The cross channel shown in Figure 3. When applied, the patterned carbon nanotube array 16 can increase air convection' to improve heat dissipation efficiency. The length of the carbon nanotubes of the patterned carbon nanoparticle array 16 is greater than the thickness of the fixed layer 14. Preferably, the length of the patterned carbon nanotube array 16_nanocarbon tube is 097128263 about U. 33⁄4 wood - 5 mm, in this embodiment · w no, 1, g ‘the length of the medium carbon carbon official is! Millimeter. The carbon nanotubes in the patterned carbon nanotubes 16 are single-walled carbon nanotubes, double-walled carbon nanotubes, or any combination thereof. The diameter of the single-walled tube is 〇米一纳米, the remainder of the wall Μ carbon tube is 1.G nano-100. m 'the diameter of the multi-walled carbon tube (four)] form edited AGlfll Γ Page 8 of 23 1003439776-0 1358988

100年.11月25日修正替換頁 形化的奈米碳管陣列1 6中的奈米碳管之間的距離為0. 1奈 来-5奈米。 [0014] 所述發熱元件12的具體形狀不限,其具有一表面18可用 於設置固定層14即可,該表面18可為一平面,也可為凸 面、凹面或凸凹不平面。發熱元件12的表面18的熔點應 高於固定層14的熔點,以確保該散熱結構10在形成於發 熱元件12上時不會對發熱元件造成破壞。發熱元件12可 係任何發熱元件,包括微型器件或大型器件,優選地, 發熱元件12為微型器件。 [0015] 請參閱圖4及圖5,本技術方案實施例提供一種製備上述 散熱結構10的製備方法,其具體包括以下步驟: [0016] 步驟一、提供一發熱元件12,該發熱元件12具有一表面 18 ° [0017] 所述發熱元件12的具體形狀不限,其具有一表面18可用 於設置固定層14即可。發熱元件12表面18的熔點應高於 固定層的熔點,以確保該散熱結構10在形成於發熱元件 12上時不會對發熱元件造成破壞。本實施例中,所述發 熱元件12為積體電路中所用的晶片。 [0018] 步驟二、形成一熔融態的固定層14於發熱元件12的表面 18 ° [0019] 將熔融態的固定層材料通過塗敷、印刷等方式設置於發 熱元件12的表面18上形成一固定層14 ,所述固定層14 的材料為導熱材料,其具體材料不限,可為低熔點的金 屬。所述低熔點金屬包括錫、銦、鉛 '銻 '銀、鉍以及 097128263 表單編號 A0101 第 9 頁/共 23 頁 1003439776-0 1358988 100年11月25日修正替換頁 前述各材料的合金或混合物,如錫錯合金、钢錫合金、 錫銀銅合金等,本實施例中,固定層材料優選為金屬錫 [0020] 步驟三、製備一奈米碳管陣列22形成於一基底20,該奈 米碳管陣列具有一第一端及與第一端相對的第二端,第 二端與基底20連接。 [0021] 該奈米碳管陣列22的具體製備方法不限,本技術方案實The distance between the carbon nanotubes in the shape of the carbon nanotube array 16 is 0. 1 Nai-5 nm. The specific shape of the heat generating component 12 is not limited, and a surface 18 may be used to provide the fixing layer 14. The surface 18 may be a flat surface, a convex surface, a concave surface, or a convex or concave surface. The surface 18 of the heat generating component 12 should have a melting point higher than the melting point of the fixed layer 14 to ensure that the heat dissipating structure 10 does not cause damage to the heat generating component when formed on the heat generating component 12. The heat generating component 12 can be any heat generating component, including a micro device or a large device. Preferably, the heat generating component 12 is a micro device. [0015] Please refer to FIG. 4 and FIG. 5, the embodiment of the present invention provides a method for preparing the heat dissipation structure 10, which specifically includes the following steps: [0016] Step 1: providing a heating element 12, the heating element 12 having A surface 18 ° [0017] The specific shape of the heat generating component 12 is not limited, and a surface 18 may be used to provide the fixing layer 14. The melting point of the surface 18 of the heat generating component 12 should be higher than the melting point of the fixed layer to ensure that the heat dissipating structure 10 does not cause damage to the heat generating component when formed on the heat generating component 12. In this embodiment, the heat generating element 12 is a wafer used in an integrated circuit. [0018] Step 2, forming a molten fixed layer 14 on the surface of the heating element 12 18 [0019] The molten fixed layer material is applied to the surface 18 of the heating element 12 by coating, printing or the like to form a The fixing layer 14 is made of a heat conductive material, and the specific material thereof is not limited, and may be a low melting point metal. The low melting point metal includes tin, indium, lead '锑' silver, ruthenium and 097128263 Form No. A0101 Page 9 of 23 1003439776-0 1358988 Correction of replacement page The alloy or mixture of the foregoing materials, For example, the tin alloy, the tin-tin alloy, the tin-silver-copper alloy, etc., in this embodiment, the fixed layer material is preferably metal tin [0020] Step 3, preparing a carbon nanotube array 22 formed on a substrate 20, the nano The carbon tube array has a first end and a second end opposite the first end, the second end being coupled to the substrate 20. [0021] The specific preparation method of the carbon nanotube array 22 is not limited, and the technical solution is

施例中奈米碳管陣列的製備方法採用化學氣相沈積法, 其具體包括以下步驟:(a)提供一平整基底20,該基底 20可選自玻璃、矽、二氧化矽、金屬或金屬氧化物,本 技術方案實施例優選為採用二氧化矽基底;(b)在基底 20表面均勻形成一催化劑層,該催化劑層材料可選用鐵 (Fe)、鈷(Co)、鎳(Ni )或其任意組合的合金之一 ;(c)將上述形成有催化劑層的基底20在700°C-900°C 的空氣中退火約30分鐘-90分鐘;(d)將處理過的基底 20置於反應爐中,在保護氣體環境下加熱到500°C-740 °C,然後通入碳源氣體反應約5分鐘-30分鐘,生長得到 奈米碳管陣列。該奈米碳管陣列為複數個彼此平行且垂 直於基底20生長的奈米碳管形成的奈米碳管陣列22。該 奈米碳管陣列22包括一第一端及與第一端相對的第二端 ,第二端與基底20連接,固定於基底20上,所述奈米碳 管在奈米碳管陣列22中從第一端向第二端延伸。 [0022] 本技術方案實施例中碳源氣可選用乙炔、乙烯、甲烷等 化學性質較活潑的碳氫化合物,本技術方案實施例優選 的碳源氣為乙炔;保護氣體為氮氣或惰性氣體,本技術 097128263 表單编號 A0101 第 10 頁/共 23 頁 . 1003439776-0 1358988The preparation method of the carbon nanotube array in the embodiment adopts a chemical vapor deposition method, which specifically includes the following steps: (a) providing a flat substrate 20, which may be selected from the group consisting of glass, ruthenium, ruthenium dioxide, metal or metal. Oxide, the embodiment of the technical solution preferably uses a ceria substrate; (b) uniformly forms a catalyst layer on the surface of the substrate 20, and the catalyst layer material may be selected from iron (Fe), cobalt (Co), nickel (Ni) or One of the alloys of any combination thereof; (c) annealing the above-described substrate 20 on which the catalyst layer is formed in air at 700 ° C to 900 ° C for about 30 minutes to 90 minutes; (d) placing the treated substrate 20 In the reaction furnace, it is heated to 500 ° C to 740 ° C in a protective gas atmosphere, and then reacted with a carbon source gas for about 5 minutes to 30 minutes to grow to obtain a carbon nanotube array. The carbon nanotube array is a plurality of carbon nanotube arrays 22 formed of carbon nanotubes that are parallel to each other and are grown perpendicular to the substrate 20. The carbon nanotube array 22 includes a first end and a second end opposite to the first end. The second end is connected to the substrate 20 and is fixed to the substrate 20, and the carbon nanotubes are arranged in the carbon nanotube array 22 The middle extends from the first end to the second end. [0022] In the embodiment of the present invention, the carbon source gas may be a chemically active hydrocarbon such as acetylene, ethylene or methane. The preferred carbon source gas in the embodiment of the technical solution is acetylene; the shielding gas is nitrogen or an inert gas. The present technology 097128263 Form No. A0101 Page 10 of 23. 1003439776-0 1358988

* 100年.11月25日修正替換頁 方案實施例優選的保護氣體為氬氣。 [0023] 可理解,本技術方案實施例提供的奈米碳管陣列不限於 上述製備方法,也可為石墨電極恒流電弧放電沈積法、 鐳射蒸發沈積法等。 [0024] 步驟四、將上述奈米碳管陣列22的第一端***該熔融態 的固定層14中,冷卻該固定層14至其凝固。 [0025] 將奈米碳管陣列22的第一端倒轉後,缓慢***熔融態的 固定層14中,奈米碳管陣列22***固定層14中的深度不 限,可根據實際情況調整,奈米碳管陣列22可穿透固定 層14與發熱元件12的表面直接接觸。 [0026] 為使奈米碳管陣列22順利***固定層14中,在奈米碳管 陣列22***固定層14之前,固定層14的應保持一定的溫 度,使其處於熔融態,當將奈米碳管陣列22***固定層 14中後,在室溫下冷卻該熔融態固定層14,待固定層14 凝固後,奈米碳管陣列22的第一端固定於固定層14中, 使奈米碳管陣列22中的奈米碳管通過該固定層14固定於 發熱元件12上。奈米碳管陣列22中奈米碳管與發熱元件 12的表面18所成的角度為90度。 [0027] 步驟五、除去奈米碳管陣列22的基底20。 [0028] 採用機械研磨、化學刻蝕等方法除去奈米碳管陣列22的 基底20,本實施例中,採用化學刻蝕的方法將基底20除 去。其具體包括以下步驟: [0029] 首先,提供一可溶解基底的腐蝕液,本實施例中,奈米 097128263 表單編號 A0101 第 11 頁/共 23 頁 1003439776-0 1358988 100年.11.月25日核正替換頁 碳管陣列22的基底20為二氧化矽,腐蝕液選鹽酸溶液》 [0030] 其次,將奈米碳管陣列22的基底20浸入該腐蝕液中浸泡 30分鐘_1小時。本實施例中,由於基底20的材料為二氧 化矽,奈米碳管陣列22中的催化劑材料為金屬,故,在 此浸泡過程中,基底20與催化劑溶解於該酸性溶液中, 從而將奈米碳管陣列22的基底20除去,使奈米碳管陣列 22的第二端與基底20脫離,暴露於空氣中。* 100 years. November 25 revised replacement page. The preferred shielding gas for the embodiment is argon. [0023] It can be understood that the carbon nanotube array provided by the embodiments of the present technical solution is not limited to the above preparation method, and may be a graphite electrode constant current arc discharge deposition method, a laser evaporation deposition method, or the like. [0024] Step 4, inserting the first end of the carbon nanotube array 22 into the fixed layer 14 in the molten state, and cooling the fixed layer 14 to solidify. [0025] After the first end of the carbon nanotube array 22 is inverted, it is slowly inserted into the fixed layer 14 in the molten state, and the depth of the carbon nanotube array 22 inserted into the fixed layer 14 is not limited, and can be adjusted according to actual conditions. The carbon nanotube array 22 can penetrate the fixed layer 14 in direct contact with the surface of the heat generating component 12. In order to smoothly insert the carbon nanotube array 22 into the fixed layer 14, before the carbon nanotube array 22 is inserted into the fixed layer 14, the fixed layer 14 should be kept at a certain temperature to be in a molten state. After the carbon nanotube array 22 is inserted into the fixed layer 14, the molten fixed layer 14 is cooled at room temperature. After the fixed layer 14 is solidified, the first end of the carbon nanotube array 22 is fixed in the fixed layer 14, so that The carbon nanotubes in the carbon nanotube array 22 are fixed to the heat generating component 12 through the fixing layer 14. The angle between the carbon nanotubes in the carbon nanotube array 22 and the surface 18 of the heat generating component 12 is 90 degrees. [0027] Step 5. The substrate 20 of the carbon nanotube array 22 is removed. [0028] The substrate 20 of the carbon nanotube array 22 is removed by mechanical polishing, chemical etching, or the like. In this embodiment, the substrate 20 is removed by chemical etching. Specifically, the method includes the following steps: [0029] First, an etching solution for dissolving a substrate is provided. In this embodiment, nano 097128263 Form No. A0101 Page 11 of 23 1003439776-0 1358988 100 years. 11.25. The substrate 20 of the positive replacement carbon nanotube array 22 is cerium oxide, and the etching solution is selected from the hydrochloric acid solution. [0030] Next, the substrate 20 of the carbon nanotube array 22 is immersed in the etching solution for 30 minutes to 1 hour. In this embodiment, since the material of the substrate 20 is cerium oxide, and the catalyst material in the carbon nanotube array 22 is metal, in the immersion process, the substrate 20 and the catalyst are dissolved in the acidic solution, thereby The substrate 20 of the carbon nanotube array 22 is removed, leaving the second end of the nanotube array 22 detached from the substrate 20 and exposed to air.

[0031] 可選擇地,最後,可採用酒精、丙酮等有機容劑洗滌奈 米碳管陣列22的第一端。 [0032] 步驟六、將奈米碳管陣列22圖形化,在發熱元件12的表 面18形成散熱結構10。 [0033] 本實施例中,將奈米碳管陣列22圖形化的方法為採用 卜1 00000瓦/平方毫米的雷射光束以800-1 500毫米/秒 的速度按照形成預定的圖形的路徑照射奈米碳管陣列22 ,在奈米碳管陣列22中形成預定的圖形。 [0034] 所述採用雷射光束照射奈米碳管陣列2 2的表面的方法具 體包括以下步驟: [0035] 首先,提供一雷射器,該雷射器的雷射光束的照射路徑 可通過電腦程式控制,本實施例中,所述雷射器為二氧 化碳雷射器。 [0036] 其次,確定好奈米碳管陣列22中所需要形成的圖樣,輸 入電腦程式中,控制雷射器中的雷射光束沿可形成該圖 樣的路徑照射,通過預先確定圖樣的方式,可實現批量 097128263 表單编號A0101 第12頁/共23頁 1003439776-0 100年.11月25日按正_^頁 化製備,有利於產業化生產。 最後,開啟雷射器,使一定功率的雷射光束以一定的速 度從正面直接照射奈米碳管陣列22中的部分奈来碳管, 形成圖形化的奈米碳管陣列16。經鐳射照射後,由於鐳 射的高能量被奈米碳管吸收,產生的高溫將處於鐳射照 射路控處處於固定層14外的奈米碳管被鐳射全部或部分 燒钱掉,從而在奈米碳管陣列22中形成預定的圖形,形 成圖形化的奈米碳管陣列16。圖形化的奈米碳管陣列16 包括一第一端162及與第一端162相對的第二端164。圖 形化的奈米碳管陣列16的第一端162設置於固定層14中, 並通過固定層14使圖形化的奈米碳管陣列16固定於發熱 元件12的表面18 ’圖形化的奈米碳管陣列16的第二端 164向遠離固定層14的方向延伸》 本實施例中,雷射光束的功率密度為70000-80000瓦/平 方毫求’掃描速度為1000-1200毫米/秒。上述雷射光束 功率密度和掃描速度較大,可在雷射光束照射奈米碳管 的瞬間刻蝕奈米碳管’不會對固定層14造成傷害,故, 該散熱結構1 〇對固定層14的材料的熔點無特殊要求。 可理解’本技術方案中還可固定雷射光束,通過電腦程 式控制和移動奈米碳管陣列22的運動路徑,在奈米碳管 陣列22中刻蝕所需圖樣。 將奈米碳管陣列22圖形化的目的係滿足散熱結構1〇在多 方面的應用和要求,如增加散熱結構10的通風、充分利 用散熱空間等β 表單編號Α0101 第13頁/共23頁 1(30343 9 776-0 1358988 _.一_ 100年11月25日核正替换頁 [0041] 上述散熱結構10在應用時,當發熱元件12的溫度增加時 ,發熱元件12產生熱量,由於圖形化的奈米碳管陣列16 的第一端162設置於固定層中,熱量通過固定層14傳遞給 圖形化的奈米碳管陣列16,將發熱元件12所產生的熱量 散發出去。 [0042] 本技術方案所提供的散熱結構存在以下優點:其一,該 散熱結構直接固定於發熱元件上,無需熱介面材料與散 熱器的結合,體積較小,可方便應用於各種領域;其二[0031] Alternatively, finally, the first end of the carbon nanotube array 22 may be washed with an organic solvent such as alcohol or acetone. [0032] Step 6. The carbon nanotube array 22 is patterned to form a heat dissipation structure 10 on the surface 18 of the heat generating component 12. [0033] In this embodiment, the method of patterning the carbon nanotube array 22 is to use a laser beam of 10,000 watts/mm 2 to illuminate at a speed of 800-1 500 mm/sec according to a path forming a predetermined pattern. The carbon nanotube array 22 forms a predetermined pattern in the carbon nanotube array 22. [0034] The method for illuminating the surface of the carbon nanotube array 2 2 with a laser beam specifically includes the following steps: [0035] First, a laser is provided, and the illumination path of the laser beam of the laser can pass Computer program control, in this embodiment, the laser is a carbon dioxide laser. [0036] Next, determining the pattern that needs to be formed in the good carbon nanotube array 22, inputting into a computer program, controlling the laser beam in the laser to illuminate along a path that can form the pattern, by predetermining the pattern, Can be realized batch 097128263 Form No. A0101 Page 12 / Total 23 Page 1003439776-0 100 years. November 25th according to the positive _^ page preparation, is conducive to industrial production. Finally, the laser is turned on so that a certain power of the laser beam directly illuminates a portion of the carbon nanotubes in the carbon nanotube array 22 from the front surface at a certain speed to form a patterned carbon nanotube array 16. After laser irradiation, since the high energy of the laser is absorbed by the carbon nanotubes, the high temperature generated by the laser irradiation path is outside the fixed layer 14 and the carbon nanotubes are completely or partially burned by the laser, thereby being in the nanometer. A predetermined pattern is formed in the carbon tube array 22 to form a patterned carbon nanotube array 16. The patterned carbon nanotube array 16 includes a first end 162 and a second end 164 opposite the first end 162. The first end 162 of the patterned carbon nanotube array 16 is disposed in the pinned layer 14 and the patterned carbon nanotube array 16 is secured to the surface 18 of the heating element 12 by the pinned layer 14 'patterned nano The second end 164 of the carbon tube array 16 extends away from the fixed layer 14. In this embodiment, the laser beam has a power density of 70,000 to 80,000 watts per square millimeter and a scanning speed of 1000 to 1200 mm/second. The above-mentioned laser beam power density and scanning speed are large, and the carbon nanotubes can be etched at the moment when the laser beam is irradiated with the carbon nanotubes, and the fixed layer 14 is not damaged. Therefore, the heat dissipation structure 1 〇 is fixed to the fixed layer The melting point of the 14 material has no special requirements. It can be understood that the laser beam can also be fixed in the technical solution, and the desired pattern is etched in the carbon nanotube array 22 by computer-controlled and moving the moving path of the carbon nanotube array 22. The purpose of patterning the carbon nanotube array 22 is to meet the application and requirements of the heat dissipation structure, such as increasing the ventilation of the heat dissipation structure 10, making full use of the heat dissipation space, etc. Form number Α0101 Page 13 of 23 (30343 9 776-0 1358988 _. A _November 25, nucleus replacement page [0041] When the above heat dissipation structure 10 is applied, when the temperature of the heat generating component 12 increases, the heat generating component 12 generates heat due to the patterning The first end 162 of the carbon nanotube array 16 is disposed in the fixed layer, and heat is transferred to the patterned carbon nanotube array 16 through the fixed layer 14 to dissipate the heat generated by the heating element 12. [0042] The heat dissipation structure provided by the technical solution has the following advantages: First, the heat dissipation structure is directly fixed on the heating element, does not require the combination of the heat interface material and the heat sink, has a small volume, and can be conveniently applied to various fields;

,該散熱結構中的奈米碳管以陣列形式存在,且該奈米 碳管陣列中的奈米碳管垂直於固定層的表面,充分利用 了奈米碳管的縱向導熱性能,故,該散熱結構的散熱效 率高;其三,該散熱結構中的奈米碳管作為散熱鰭片, 由於奈米碳管的直徑很小,一般為幾奈米到幾十奈米, 使單個奈米碳管散熱鰭片具有極大的長徑比,大大增加 了所述散熱結構的散熱面積,提高了散熱結構的散熱效The carbon nanotubes in the heat dissipation structure are in an array form, and the carbon nanotubes in the carbon nanotube array are perpendicular to the surface of the fixed layer, so that the longitudinal thermal conductivity of the carbon nanotubes is fully utilized, so The heat dissipation structure has high heat dissipation efficiency; thirdly, the carbon nanotubes in the heat dissipation structure serve as heat dissipation fins, because the diameter of the carbon nanotubes is small, generally ranging from several nanometers to several tens of nanometers, so that a single nano carbon The heat dissipation fin has a great aspect ratio, which greatly increases the heat dissipation area of the heat dissipation structure and improves the heat dissipation effect of the heat dissipation structure.

I 率;其四,由於散熱結構中的固定層係以熔融態直接與 發熱元件接觸,可實現充分接觸,增加了散熱面積,故 ,該散熱結構的散熱效率高。 [0043] 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡習知本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0044] 圖1為先前技術中的散熱結構的結構示意圖。 097128263 表單编號A0101 第14頁/共23頁 1003439776-0 1358988 [0045]I rate; fourthly, since the fixed layer in the heat dissipation structure is in direct contact with the heating element in a molten state, sufficient contact can be achieved, and the heat dissipation area is increased, so that the heat dissipation structure has high heat dissipation efficiency. [0043] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0044] FIG. 1 is a schematic structural view of a heat dissipation structure in the prior art. 097128263 Form No. A0101 Page 14 of 23 1003439776-0 1358988 [0045]

' 100年.11月25日按正替换頁 圖2為本技術方案實施例所提供的設置於發熱元件上的散 熱結構的剖面示意圖。 [0046] 圖3為圖2的俯視圖。 [0047] 圖4為本技術方案實施例所提供的散熱結構的製備方法的 流程圖。 [0048] 圖5為本技術方案實施例所提供的散熱結構的製備工藝流 程圖。 【主要元件符號說明】 [0049] 散熱器:102 [0050] 熱介面材料:104 [0051] 基體:106 [0052] 散熱鰭片:108 [0053] 散熱結構:10, 100 [0054] 發熱元件:12 [0055] 固定層:14 [0056] 發熱元件表面: 18 [0057] 圖形化的奈米碳管陣列:1 6 [0058] 奈米碳管陣列第 一端:162 [0059] 奈米碳管陣列第二端:164 [0060] 奈米碳管陣列基底:20 [0061] 奈米碳管陣列: 22 097128263 表單編號A0101 第15頁/共23頁 1003439776-0'100 years. November 25, according to the replacement page. Fig. 2 is a schematic cross-sectional view of the heat dissipation structure provided on the heat generating element provided by the embodiment of the present technical solution. 3 is a plan view of FIG. 2. 4 is a flow chart of a method for preparing a heat dissipation structure according to an embodiment of the present technical solution. [0048] FIG. 5 is a flow chart of a process for preparing a heat dissipation structure according to an embodiment of the present technical solution. [Main component symbol description] [0049] Heat sink: 102 [0050] Thermal interface material: 104 [0051] Base: 106 [0052] Heat sink fin: 108 [0053] Heat dissipation structure: 10, 100 [0054] Heating element: 12 [0055] Fixed layer: 14 [0056] Heating element surface: 18 [0057] Patterned carbon nanotube array: 1 6 [0058] Carbon nanotube array first end: 162 [0059] Nano carbon tube Array second end: 164 [0060] Carbon nanotube array substrate: 20 [0061] Carbon nanotube array: 22 097128263 Form number A0101 Page 15 of 23 1003439776-0

Claims (1)

1358988 1100年ll·月2b B核正雜頁1 七、申請專利範圍: 1 種散熱結構,該散熱結構固定設置於一發熱元件表面, 其改良在於,該散熱結構包括一圖形化的奈米碳管陣列與 固疋層,該圖升> 化的奈米碳管陣列通過該固定層固定於 該發熱元件上,所述圖形化的奈米碳管陣列包括複數奈米 碳管,該複數奈米碳管暴露出固定層的奈米碳管的長度不 相等,形成預定圖形。 2 ·如申晴專利範圍第1項所述之散熱結構,其中,所述之圖 形化的奈米碳官陣列包括一第一端及—與第一端相對第二 端,第一端設置於固定層中。 錢 3·如申請專利範圍第2項所述之散熱結構,其中,所述之圖 形化的奈米碳管_的第-端與發熱元件的表面接觸。 4.如申請專利範圍第2項所述之散熱結構,其中,所述之圖 形化的奈米竣管陣列包括複數個平行的奈米碳管,奈米碳 管從圖形化的奈米碳管陣列的第一端向第二端延伸。 .如申請專利範圍第4項所述之散熱結構,其中,所述之圖 形化的奈料料财的奈米碳^賴元件的表自 ^ .如申請專利範圍第4韻述之散熱結構,其t,所述之圖 形化的奈米碳管陣列中奈米碳管的長度為〇5毫米一 5毫米 〇 .如申請專利範圍第1項所述之散熱結構,其中,所述之固 定層的材料為錫'姻、錯、録、銀、细或其任意组合的合 金。 如申清專利範圍第1項所述之散熱結構,其中,所述之固 097128263 表單编號A0101 第16頁/共23頁 1003439776-0 100年.11月25日梭正替換真 定層的厚度為0. 1毫米-1毫米》 .如申請專利範圍第1項所述之散熱結構,其中,所述之圖 形化的奈求碳管陣列中暴露出固定層的奈米碳管 一部分被 除去,其餘的奈米碳管暴露出固定層的長度不相等。 .種散熱結構的製備方法,其包括以下步驟: 提供一發熱元件,該發熱元件具有一表面; 形成一熔融態固定層於發熱元件的表面; 製備-奈米碳管陣列形成於一基底,該奈米碳管陣列包括 —第-端及與第-端相對的第二端,第二端與基底連接; 將上述奈米碳管陣列的第一端***該固定層中,冷卻該固 定層至其凝固; 除去奈米碳管陣列的基底;以及 將奈米碳官陣列圖·形化,在發熱元件的表面形成一散熱結 構。 .如申請專利範圍第10項所述之散熱結構的製備方法,其中 所述之形成一熔融態固定層於發熱元件的表面的方法包 括塗敷法或印刷法。 .如申請專利範圍第10項所述之散熱結構的製備方法,其中 ,所述之冷卻該固定層為在室溫下自然冷卻。 •如申請專利範圍第10項所述之散熱結構的製備方法,其中 ,所述之除去奈米碳管陣列基底的方法包括機械研磨法或 化學刻蝕法。 如申請專利範圍第13項所述之散熱結構的製備方法,其中 ’所述之採用化學刻蝕法除去奈米碳管陣列基底的方法包 括以下步驟:提供一可溶解基底的腐蝕液;將奈米碳管陣 列的基底浸入該腐蝕液中浸泡30分鐘—1小時;以及,洗 1003439776-0 表單編號A0101 第17頁/共23頁 1358988 I 100年11月25曰梭正替換頁I 滌奈米碳管陣列的根部。 15 .如申請專利範圍第10項所述之散熱結構的製備方法,其中 ,所述之將奈米碳管陣列圖形化的方法為採用 10000-100000瓦/平方毫米的雷射光束以800-1 500毫米 /秒的速度按照形成預定的圖形的路徑照射奈米碳管陣列 ,在奈米碳管陣列中形成預定的圖形。 097128263 表單编號A0101 第18頁/共23頁 1003439776-01358988 1100 ll·month 2b B core positive page 1 VII. Patent application scope: 1 heat dissipation structure, the heat dissipation structure is fixedly disposed on a surface of a heating element, and the improvement is that the heat dissipation structure includes a patterned nano carbon a tube array and a solid layer, wherein the array of carbon nanotubes is fixed to the heating element through the fixing layer, the patterned carbon nanotube array comprising a plurality of carbon nanotubes, the plurality of carbon nanotubes The length of the carbon nanotubes exposed to the fixed layer of carbon nanotubes is not equal, forming a predetermined pattern. The heat dissipation structure of claim 1, wherein the patterned nano carbon array comprises a first end and a second end opposite to the first end, the first end being disposed at In the fixed layer. The heat dissipation structure according to claim 2, wherein the first end of the patterned carbon nanotube is in contact with the surface of the heat generating component. 4. The heat dissipation structure of claim 2, wherein the patterned nanotube array comprises a plurality of parallel carbon nanotubes, and the carbon nanotubes are patterned from carbon nanotubes. The first end of the array extends toward the second end. The heat dissipation structure according to claim 4, wherein the graphical representation of the carbon nano-components of the nano-materials is as described in the heat dissipation structure of the fourth aspect of the patent application. The length of the carbon nanotubes in the patterned carbon nanotube array is 〇5 mm to 5 mm. The heat dissipation structure according to claim 1, wherein the fixed layer The material is tin alloy, wrong, recorded, silver, fine or any combination of alloys. For example, the heat dissipation structure described in claim 1 of the patent scope, wherein the solid 097128263 form number A0101 page 16 / 23 pages 1003439776-0 100 years. November 25th the shuttle is replacing the thickness of the true layer The heat dissipation structure according to claim 1, wherein a part of the carbon nanotubes in the patterned carbon nanotube array exposed to the fixed layer is removed, The remaining carbon nanotubes exposed the fixed layers to lengths that were not equal. A method for preparing a heat dissipation structure, comprising the steps of: providing a heat generating component having a surface; forming a molten fixed layer on a surface of the heat generating component; and preparing a carbon nanotube array formed on a substrate, The carbon nanotube array includes a first end and a second end opposite to the first end, the second end is connected to the substrate; inserting the first end of the carbon nanotube array into the fixed layer, and cooling the fixed layer to Solidifying; removing the substrate of the carbon nanotube array; and shaping the nanocarbon array to form a heat dissipation structure on the surface of the heat generating component. The method for producing a heat dissipating structure according to claim 10, wherein the method of forming a molten state fixing layer on the surface of the heat generating component comprises a coating method or a printing method. The method for preparing a heat dissipation structure according to claim 10, wherein the cooling of the fixed layer is natural cooling at room temperature. The method of preparing a heat dissipating structure according to claim 10, wherein the method of removing the carbon nanotube array substrate comprises mechanical grinding or chemical etching. The method for preparing a heat dissipation structure according to claim 13, wherein the method for removing the carbon nanotube array substrate by chemical etching comprises the steps of: providing an etching solution capable of dissolving the substrate; The substrate of the carbon nanotube array is immersed in the etching solution for 30 minutes - 1 hour; and, washed 1003439776-0 Form No. A0101 Page 17 / Total 23 Page 1358988 I 100 years November 25 曰 Shuttle replacement page I TN The root of the carbon tube array. The method for preparing a heat dissipation structure according to claim 10, wherein the method for patterning the carbon nanotube array is to use a laser beam of 10,000 to 100,000 watts/mm 2 to 800-1 A velocity of 500 mm/sec is irradiated to the carbon nanotube array in a path forming a predetermined pattern to form a predetermined pattern in the carbon nanotube array. 097128263 Form No. A0101 Page 18 of 23 1003439776-0
TW97128263A 2008-07-25 2008-07-25 Heat conduction structure and method for making th TWI358988B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97128263A TWI358988B (en) 2008-07-25 2008-07-25 Heat conduction structure and method for making th

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97128263A TWI358988B (en) 2008-07-25 2008-07-25 Heat conduction structure and method for making th

Publications (2)

Publication Number Publication Date
TW201006369A TW201006369A (en) 2010-02-01
TWI358988B true TWI358988B (en) 2012-02-21

Family

ID=44826660

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97128263A TWI358988B (en) 2008-07-25 2008-07-25 Heat conduction structure and method for making th

Country Status (1)

Country Link
TW (1) TWI358988B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI491085B (en) * 2012-06-06 2015-07-01 Pin Siang Wang Complex heat dissipater and manufacturing method thereof

Also Published As

Publication number Publication date
TW201006369A (en) 2010-02-01

Similar Documents

Publication Publication Date Title
CN101626674B (en) Radiating structure and preparation method thereof
JP5102328B2 (en) Manufacturing method of heat conduction member
JP4704899B2 (en) Manufacturing method of heat conduction material
Yang et al. Catalytic growth of silicon nanowires assisted by laser ablation
Li et al. Carbon-assisted growth of SiO x nanowires
CN101591015A (en) The preparation method of banded carbon nano-tube film
Chang-Jian et al. Laser patterning of carbon-nanotubes thin films and their applications
Huang et al. Current development of 1D and 2D metallic nanomaterials for the application of transparent conductors in solar cells: Fabrication and modeling
JP2010260784A (en) Nano-material thin film
CN102709132B (en) Nanostructure is at suprabasil controllable growth and based on this electron emission device
JP2004292302A (en) Matrix structure of carbon nanotube and its manufacturing method
EP3321958A1 (en) Thermal interface material, manufacturing method thereof, thermally conductive pad, and heat sink system
JP2009256204A (en) Method for making carbon nanotube
JP5899804B2 (en) Heat dissipation sheet and method for manufacturing the heat dissipation sheet
Pan et al. The microstructures, growth mechanisms and properties of carbon nanowires and nanotubes fabricated at different CVD temperatures
TWI358988B (en) Heat conduction structure and method for making th
CN100356556C (en) Thermal interfacial material and method of manufacture
CN113981336B (en) Aluminum alloy composite heat dissipation material containing carbide/graphene sandwich structure for LED lamp and preparation method thereof
TWI250056B (en) Heat dissipating device and method of making same
KR20170000220A (en) The heat sink using nano carbon nano-graphene composites
TWI401209B (en) Field emission componet and method for making same
TWI414591B (en) Thermal interface material and method for making the same
JP2005101191A (en) Thermoelectric conversion type cooling apparatus and manufacturing method thereof
Chen Application of HTS in Material Preparation and New Devices
EP1575102A1 (en) Electrical conductor based on proton conducting carbon nanotubes