JP5899804B2 - Heat dissipation sheet and method for manufacturing the heat dissipation sheet - Google Patents

Heat dissipation sheet and method for manufacturing the heat dissipation sheet Download PDF

Info

Publication number
JP5899804B2
JP5899804B2 JP2011237584A JP2011237584A JP5899804B2 JP 5899804 B2 JP5899804 B2 JP 5899804B2 JP 2011237584 A JP2011237584 A JP 2011237584A JP 2011237584 A JP2011237584 A JP 2011237584A JP 5899804 B2 JP5899804 B2 JP 5899804B2
Authority
JP
Japan
Prior art keywords
sheet
resin
carbon nanotubes
cnt
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011237584A
Other languages
Japanese (ja)
Other versions
JP2013098245A (en
Inventor
正明 乘松
正明 乘松
大介 岩井
大介 岩井
作山 誠樹
誠樹 作山
水野 義博
義博 水野
高治 浅野
高治 浅野
幸恵 崎田
幸恵 崎田
真一 廣瀬
真一 廣瀬
洋平 八木下
洋平 八木下
山口 佳孝
佳孝 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2011237584A priority Critical patent/JP5899804B2/en
Publication of JP2013098245A publication Critical patent/JP2013098245A/en
Application granted granted Critical
Publication of JP5899804B2 publication Critical patent/JP5899804B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

本出願は放熱シート及び該放熱シートの製造方法に関する。以下に説明される実施の形態では、実施例として放熱素子としてカーボンナノチューブを用いた放熱シート及び該放熱シートの製造方法が説明される。   The present application relates to a heat dissipation sheet and a method for manufacturing the heat dissipation sheet. In the embodiment described below, a heat radiating sheet using carbon nanotubes as a heat radiating element and a method for manufacturing the heat radiating sheet will be described as examples.

シリコンを用いた大規模集積回路(LSI)に代表される半導体デバイスは、微細化により速度、消費電力の面などで性能向上が図られてきた。しかしながら、これらの半導体デバイスが動作する際に生じる熱が半導体デバイスの動作に影響し、最終的には半導体デバイスの破壊の原因になることがある。このため、パーソナルコンピュータの中央処理装置(CPU)には半導体デバイスの温度監視機能が付いており、半導体デバイスが一定の温度を超えるとCPUは動作を停止する。(非特許文献1参照)   Semiconductor devices typified by large-scale integrated circuits (LSIs) using silicon have been improved in terms of speed, power consumption, and the like by miniaturization. However, the heat generated when these semiconductor devices operate can affect the operation of the semiconductor devices and ultimately cause the semiconductor devices to be destroyed. For this reason, the central processing unit (CPU) of the personal computer has a semiconductor device temperature monitoring function, and the CPU stops operating when the semiconductor device exceeds a certain temperature. (See Non-Patent Document 1)

このようなことから、半導体デバイスの発生する熱を効率良く放熱するための方法が検討されている。この方法の1つとして、半導体デバイスに放熱フィンを備えた放熱部品であるヒートシンクを取り付けることが行われている。この場合、半導体デバイスとヒートシンクの間に、熱伝導性及び密着性の良い放熱シートを設けることが特許文献1に開示されている。   For this reason, a method for efficiently radiating the heat generated by the semiconductor device has been studied. As one of the methods, a heat sink, which is a heat radiating component provided with a heat radiating fin, is attached to a semiconductor device. In this case, Patent Document 1 discloses that a heat dissipating sheet having good thermal conductivity and adhesion is provided between the semiconductor device and the heat sink.

特許文献1に開示の放熱シートは、金属製短繊維を抄造し、焼結した薄い金属繊維シートの多孔質の空間部分に、熱伝導性接着剤を含浸、充填したものである。これに対して、近年、高い熱伝導性を持つカーボンナノチューブ(CNT:Carbon Nano Tube)を利用した放熱シートの検討が進められている。カーボンナノチューブ(以後CNTと記す)は、炭素原子からなる材料である。   The heat dissipating sheet disclosed in Patent Document 1 is obtained by impregnating and filling a porous space portion of a thin metal fiber sheet obtained by making a metal short fiber and sintering it. On the other hand, in recent years, studies on heat dissipation sheets using carbon nanotubes (CNT: Carbon Nano Tube) having high thermal conductivity have been conducted. A carbon nanotube (hereinafter referred to as CNT) is a material composed of carbon atoms.

ここで、図1(a)から図1(e)と図2(a)に示す断面図により、CNTを用いた放熱シートの製造方法の一例の関連技術を説明する。図1(a)は、放熱シートを製造するために用いるシリコン基板1を示している。シリコン基板1の上には二酸化シリコン膜2が形成されており、二酸化シリコン膜2の上に触媒(例えば鉄の薄膜)3がスパッタリング等で製膜されている。CNTはこの触媒3の上に設けられる。   Here, the related art of an example of the manufacturing method of the thermal radiation sheet using CNT is demonstrated with reference to sectional drawing shown to FIG. 1 (a) to FIG.1 (e) and FIG.2 (a). Fig.1 (a) has shown the silicon substrate 1 used in order to manufacture a thermal radiation sheet. A silicon dioxide film 2 is formed on the silicon substrate 1, and a catalyst (for example, an iron thin film) 3 is formed on the silicon dioxide film 2 by sputtering or the like. CNTs are provided on the catalyst 3.

触媒3と二酸化シリコン膜2が形成されたシリコン基板1は図示しない成長炉の中に入れられ、図1(b)に示すように、成長炉内で触媒3が凝集し、そこからCNT4が、シリコン基板1に対して垂直な方向に成長される。CNT4は、基本的には一様な平面のグラファイトを丸めて円筒状にしたチューブ構造であり、その直径は0.4〜50nmであって、成長後の長さは数〜数百μm程度である。即ち、CNT4は、電子顕微鏡によって観察できる程度の極小のものである。従って、触媒3の上に成長したCNT4は肉眼では目視できないが、ここでは、チューブ構造のCNT4を1本の線で表して本数を減らし、各CNT4の間には隙間(CNTの密度は1平方センチメートルあたり109〜1010本程度なので隙間は140nm程度)があることを示すために、その間隔を実際よりも非常に大きく描いてある。 The silicon substrate 1 on which the catalyst 3 and the silicon dioxide film 2 are formed is put in a growth furnace (not shown), and as shown in FIG. 1 (b), the catalyst 3 aggregates in the growth furnace, from which the CNT 4 becomes, Growing in a direction perpendicular to the silicon substrate 1. CNT4 is basically a tube structure in which uniform flat graphite is rounded into a cylindrical shape, the diameter is 0.4 to 50 nm, and the length after growth is about several to several hundred μm. is there. That is, the CNT 4 is extremely small so that it can be observed with an electron microscope. Therefore, the CNT4 grown on the catalyst 3 cannot be visually observed, but here, the CNT4 having a tube structure is represented by a single line to reduce the number of CNT4, and there is a gap between the CNT4 (the density of the CNT is 1 square centimeter). In order to show that there is a gap of about 10 9 to 10 10 holes, the gap is about 140 nm).

CNT4が成長したシリコン基板1上には、CNT4が束になって存在する。CNT4が成長したシリコン基板1は成長炉から取り出され、図1(c)に示すようにCNT4の先端部に金薄膜5が蒸着される。次いでシート状の樹脂6がCNT4の上に置かれ、加熱されて樹脂6が溶かされ、溶けた樹脂6をCNT4の束の隙間に含浸させる。樹脂6を加熱によってCNT4の束の隙間に含浸させただけでは、樹脂6はCNT4の根元部までは含浸しない。そして、樹脂6が含浸したCNT4を冷却して硬化すると、CNT4の束は樹脂6によってシート状のCNT40になる。シート状のCNT40は、シリコン基板1から剥離して取り出される。シート状のCNT40を図1(d)に示す。   On the silicon substrate 1 on which the CNTs 4 are grown, the CNTs 4 are present in a bundle. The silicon substrate 1 on which the CNT 4 is grown is taken out of the growth furnace, and a gold thin film 5 is deposited on the tip of the CNT 4 as shown in FIG. Next, the sheet-like resin 6 is placed on the CNT 4 and heated to melt the resin 6, and the melted resin 6 is impregnated in the gaps of the bundle of CNTs 4. The resin 6 does not impregnate the root portion of the CNT 4 simply by impregnating the gap between the bundles of the CNT 4 by heating. When the CNT 4 impregnated with the resin 6 is cooled and cured, the bundle of CNT 4 becomes a sheet-like CNT 40 by the resin 6. The sheet-like CNT 40 is peeled off from the silicon substrate 1 and taken out. A sheet-like CNT 40 is shown in FIG.

シート状のCNT40は、図1(e)に示すように、発熱素子7とヒートシンク9で挟み込み、ボルト8で締め付けて加圧すると共に加熱する。樹脂6が含浸したシート状のCNT40を加圧・加熱することにより、余分な樹脂6が外部に排出され、図2(a)に示すように放熱シート10ができあがる。この状態では、CNT4の先端部が発熱素子7に接触し、CNT4の基部がヒートシンク4に接触し、発熱素子7で発生した熱は、CNT4を介してヒートシンク9に伝わり、発熱素子7が冷却される。   As shown in FIG. 1 (e), the sheet-like CNT 40 is sandwiched between the heat generating element 7 and the heat sink 9, tightened with a bolt 8, pressurized, and heated. By pressurizing and heating the sheet-like CNTs 40 impregnated with the resin 6, excess resin 6 is discharged to the outside, and the heat dissipation sheet 10 is completed as shown in FIG. In this state, the tip of the CNT 4 is in contact with the heating element 7, the base of the CNT 4 is in contact with the heat sink 4, and the heat generated in the heating element 7 is transmitted to the heat sink 9 via the CNT 4, and the heating element 7 is cooled. The

特開2000−101004号公報JP 2000-101004 A

日経PC on line「熱暴走」とは:パソコン関連用語の意味・解説 (http://pc.nikkeibp.co.jp/word/page/10117151/)Nikkei PC on line “Thermal Runaway”: Meaning and explanation of PC related terms (http://pc.nikkeibp.co.jp/word/page/10117151/)

放熱シート10は、図2(a)に示したように、圧力を加えて発熱素子7とヒートシンク9の間に介在させ、発熱素子7で発生した熱をヒートシンク9に逃がしている。ところが、図2(b)に示すように、発熱素子7とヒートシンク9の間に介在させた放熱シート10において、樹脂6がCNT4の先端部に残っていると、伝熱性が悪くなり、冷却効率が低下するという問題点があった。即ち、樹脂6がCNT4の先端部に残ると、CNT4と放熱素子7が接触できず、全体として熱抵抗が増し、冷却効率が低下する問題点があった。そして、CNT4の両端面に接触抵抗として樹脂6が介在しない構造を可能にする材料選定や作製方法の最適化は困難であった。   As shown in FIG. 2A, the heat radiating sheet 10 is interposed between the heat generating element 7 and the heat sink 9 by applying pressure, and the heat generated in the heat generating element 7 is released to the heat sink 9. However, as shown in FIG. 2B, in the heat dissipation sheet 10 interposed between the heat generating element 7 and the heat sink 9, if the resin 6 remains at the tip of the CNT 4, the heat transfer property deteriorates and the cooling efficiency is reduced. There has been a problem of lowering. That is, if the resin 6 remains at the tip of the CNT 4, there is a problem that the CNT 4 and the heat dissipating element 7 cannot come into contact with each other, increasing the thermal resistance as a whole and lowering the cooling efficiency. In addition, it is difficult to select a material and optimize a manufacturing method that enables a structure in which the resin 6 does not intervene as contact resistance on both end faces of the CNT 4.

本発明者らは、CNT4を使用した放熱シート10を発熱素子7とヒートシンク9の間に設置する際に、圧力や温度(樹脂の硬化温度)を変えて検討したが、CNT4の先端部に樹脂6が残る問題点は解決できなかった。更に、CNT4に樹脂6を加熱して含浸させた後に、カッターでCNT4の先端部側の樹脂6を削り取る方法も試みたが、作業工数を考えると量産化に対して最適な方法ではなかった。従って、シート状のCNT40の製造後に、簡単にCNT4の先端部分の樹脂6を取り除く方法が求められていた。   The inventors of the present invention have considered changing the pressure and temperature (resin curing temperature) when installing the heat dissipation sheet 10 using CNT4 between the heat generating element 7 and the heat sink 9. The problem of remaining 6 could not be solved. Furthermore, after the resin 6 was heated and impregnated into the CNT 4, a method of scraping off the resin 6 on the tip side of the CNT 4 with a cutter was also tried. However, considering the number of work steps, it was not an optimal method for mass production. Therefore, there has been a demand for a method of easily removing the resin 6 at the tip of the CNT 4 after the manufacture of the sheet-like CNT 40.

本出願は、CNTを使用した放熱シートにおいて、発熱素子とヒートシンクの間にこれを介在させて熱圧着する際に、簡単にCNTの先端部分の樹脂を削減することが可能な放熱シート及び該放熱シートの製造方法を提供することを目的としている。   The present application relates to a heat-dissipating sheet using CNTs, and when the heat-pressing is performed by interposing this between a heat-generating element and a heat sink, the heat-dissipating sheet capable of easily reducing the resin at the tip of the CNT and the heat dissipating It aims at providing the manufacturing method of a sheet | seat.

本出願の放熱シートは、成長炉内でシリコン基板に対して垂直な方向にカーボンナノチューブを成長させて形成したカーボンナノチューブの束に、樹脂を加熱して含浸させた後に硬化させてシート状のカーボンナノチューブを形成し、これをシリコン基板から剥離して形成した放熱シートにおいて、樹脂には、所定の除去処理によって樹脂内から溶出させて樹脂内に空孔を形成可能なナノ微粒子を、8〜70wt%で含有させたことを特徴とする。   The heat-dissipating sheet of the present application is obtained by heating a resin nanotube to a bundle of carbon nanotubes formed by growing carbon nanotubes in a direction perpendicular to a silicon substrate in a growth furnace, and then curing the resin by sheeting. In the heat-dissipating sheet formed by forming the nanotubes and peeling them from the silicon substrate, the resin contains 8 to 70 wt% of nanoparticles capable of forming pores in the resin by elution from the resin by a predetermined removal treatment. %.

本出願の放熱シートの製造方法の第1の形態は、シリコン基板の表面に触媒を成膜し、シリコン基板を成長炉に入れて、触媒の上に垂直方向に、カーボンナノチューブを成長させてカーボンナノチューブの束を作り、カーボンナノチューブの束の上にナノ微粒子を、8〜70wt%で含有させた樹脂を置き、樹脂を加熱してカーボンナノチューブの束に含浸させた後に冷却し、樹脂が含浸してシート状になったカーボンナノチューブの束を前記シリコン基板から剥離し、剥離したカーボンナノチューブのシートに対してナノ微粒子の除去処理を行って、カーボンナノチューブの表面近傍に位置するナノ微粒子を溶かし出して表面に空孔を形成し、樹脂表面に空孔が形成されたカーボンナノチューブのシートを発熱素子と放熱部材とで挟み込み、この状態で加熱すると共に、発熱素子と放熱部材との間に圧力を加えてカーボンナノチューブのシートを加熱圧縮して余分な樹脂を発熱素子と放熱部材との間から排出して、発熱素子と放熱部材との間に放熱シートを形成することを特徴とする。   The first form of the heat-radiation sheet manufacturing method of the present application is that a catalyst is formed on the surface of a silicon substrate, the silicon substrate is placed in a growth furnace, and carbon nanotubes are grown vertically on the catalyst to form carbon. A bundle of nanotubes is made, a resin containing nano-particles at 8 to 70 wt% is placed on the bundle of carbon nanotubes, the resin is heated and impregnated into the bundle of carbon nanotubes, cooled, and the resin is impregnated. The sheet-like bundle of carbon nanotubes is peeled off from the silicon substrate, the nano-particles are removed from the peeled carbon nanotube sheet, and the nano-particles located near the surface of the carbon nanotubes are dissolved. A sheet of carbon nanotubes with holes formed on the surface and holes formed on the resin surface is sandwiched between the heating element and the heat dissipation member While heating in this state, pressure is applied between the heat generating element and the heat radiating member to heat and compress the carbon nanotube sheet to discharge excess resin from between the heat generating element and the heat radiating member. A heat dissipation sheet is formed between the members.

本出願の放熱シートの製造方法の第2の形態は、シリコン基板の表面に触媒を成膜し、シリコン基板を成長炉に入れて、触媒の上に垂直方向に、カーボンナノチューブを成長させてカーボンナノチューブの束を作り、カーボンナノチューブの束の上にナノ微粒子を、8〜70wt%で含有させた樹脂を置き、樹脂を加熱して前記カーボンナノチューブの束に含浸させた後に冷却し、樹脂が含浸して形成されたシート状のカーボンナノチューブを、シリコン基板を剥離して取り出し、シート状のカーボンナノチューブを、加熱しても樹脂と溶け合わない材料で作られた2枚の押圧板の間に挟んで加圧、加熱処理を行って余分な樹脂をシート状のカーボンナノチューブから排出し、加圧、加熱処理後に冷却して2枚の押圧板を取り外してシート状のカーボンナノチューブを取り出し、取り出したシート状のカーボンナノチューブにナノ微粒子の除去処理を施して、樹脂表面に含まれるナノ微粒子を溶かし出して樹脂表面に空孔が形成されたシート状のカーボンナノチューブを製造することを特徴とする。   In the second embodiment of the method for manufacturing a heat dissipation sheet of the present application, a catalyst is formed on the surface of a silicon substrate, the silicon substrate is placed in a growth furnace, and carbon nanotubes are grown vertically on the catalyst to form carbon. A bundle of nanotubes is made, a resin containing nano-particles in an amount of 8 to 70 wt% is placed on the bundle of carbon nanotubes, the resin is heated and impregnated in the bundle of carbon nanotubes, and then cooled, and the resin is impregnated. The sheet-like carbon nanotubes formed in this way are removed by peeling the silicon substrate, and the sheet-like carbon nanotubes are sandwiched between two pressing plates made of a material that does not melt with the resin even when heated. Excess resin is discharged from the sheet-like carbon nanotubes by pressure and heat treatment, cooled after pressurization and heat treatment, and the two press plates are removed to form a sheet The carbon nanotubes are taken out, the nano-particles are removed from the taken-out sheet-like carbon nanotubes, and the nano-particles contained in the resin surface are dissolved to produce sheet-like carbon nanotubes having pores formed on the resin surface. It is characterized by that.

本出願の放熱シートの製造方法の第3の形態は、酸化膜付きシリコン基板の表面に触媒を成膜し、シリコン基板を成長炉に入れて、触媒の上に垂直方向に、カーボンナノチューブを成長させてカーボンナノチューブの束を作り、カーボンナノチューブの束の上にナノ微粒子を、8〜70wt%で含有させた樹脂を置き、樹脂を加熱してカーボンナノチューブの束に含浸させた後に冷却し、樹脂が含浸して形成されたシート状のCNTを、シリコン基板に設置したまま、シート状のカーボンナノチューブにナノ微粒子の除去処理を施して樹脂表面に含まれるナノ微粒子を溶かし出して樹脂表面に空孔を形成し、樹脂表面に空孔を形成されたシート状のカーボンナノチューブからシリコン基板を除去してシート状のカーボンナノチューブを製造することを特徴とする。   The third form of the manufacturing method of the heat dissipation sheet of the present application is that a catalyst is formed on the surface of a silicon substrate with an oxide film, the silicon substrate is placed in a growth furnace, and carbon nanotubes are grown vertically on the catalyst. To make a bundle of carbon nanotubes, place a resin containing nano-particles at 8 to 70 wt% on the bundle of carbon nanotubes, heat the resin to impregnate the bundle of carbon nanotubes, cool the resin, While the sheet-like CNTs formed by impregnating the resin are placed on the silicon substrate, the nano-particles are removed from the sheet-like carbon nanotubes to dissolve the nanoparticles contained in the resin surface, and the resin surface has pores. Then, the silicon substrate is removed from the sheet-like carbon nanotube in which pores are formed on the resin surface to produce a sheet-like carbon nanotube. It is characterized in.

本出願の放熱シートの製造方法の第4の形態は、シリコン基板の表面に触媒を成膜し、シリコン基板を成長炉に入れて、触媒の上に垂直方向に、カーボンナノチューブを成長させてカーボンナノチューブの束を作り、カーボンナノチューブの束の上にナノ微粒子を、8〜70wt%で含有させた樹脂を置き、樹脂を加熱してカーボンナノチューブの束に含浸させた後に冷却し、樹脂が含浸して形成されたシート状のカーボンナノチューブを、シリコン基板に設置したまま、シート状のカーボンナノチューブの表面にレジストを塗布してレジスト層を形成し、レジスト層が形成されたシート状のカーボンナノチューブの上に、電極形成部に孔が開けられたマスクを被せ、紫外線を照射してレジスト剥離部を形成し、紫外線照射後にマスクを除去したシート状のカーボンナノチューブに対して、レジストの溶解及びナノ微粒子の除去処理を施して前記レジスト剥離部内に露出する樹脂表面に含まれるナノ微粒子を溶かし出して樹脂表面に空孔を形成し、シート状のカーボンナノチューブに導電性金属を蒸着して金属蒸着部を形成する処理を行い、シート状のカーボンナノチューブからレジスト層を剥離すると共に、シリコン基板を除去してシート状のCNTを製造することを特徴とする。レジストの溶解は、アルカリ処理により行う。レジストの現像液は強アルカリ(例えば東京応化工業のNMD−W)であるので、これで樹脂内部のナノ微粒子が溶かし出す材料の樹脂を用いれば現像液で不要なレジストを溶かし、樹脂表面に含まれるナノ微粒子を溶かし出して樹脂表面に空孔を形成できる。所定のパターンにレジスト層を剥離すると、この所定のパターンのCNTに接続された電極を形成することができる。   In the fourth embodiment of the method for manufacturing a heat dissipation sheet of the present application, a catalyst is formed on the surface of a silicon substrate, the silicon substrate is placed in a growth furnace, and carbon nanotubes are grown vertically on the catalyst to form carbon. A bundle of nanotubes is made, a resin containing nano-particles at 8 to 70 wt% is placed on the bundle of carbon nanotubes, the resin is heated and impregnated into the bundle of carbon nanotubes, cooled, and the resin is impregnated. The sheet-like carbon nanotubes formed in this way are placed on the silicon substrate, a resist is applied to the surface of the sheet-like carbon nanotubes to form a resist layer, and the top of the sheet-like carbon nanotubes on which the resist layer is formed is formed. Next, cover the electrode forming part with a mask with holes, and irradiate with ultraviolet rays to form a resist peeling part, and then remove the mask after irradiating with ultraviolet rays The sheet-like carbon nanotubes are subjected to a resist dissolution and nanoparticle removal treatment to dissolve the nanoparticles contained in the resin surface exposed in the resist peeling portion, thereby forming pores on the resin surface. A metal-deposited portion is formed by depositing a conductive metal on the carbon nanotubes, and the resist layer is removed from the carbon nanotubes, and the silicon substrate is removed to produce the sheet-like CNTs. Features. The resist is dissolved by alkali treatment. Since the resist developer is a strong alkali (for example, NMD-W manufactured by Tokyo Ohka Kogyo Co., Ltd.), if the resin is a material that dissolves the nano-particles inside the resin, the developer will dissolve unnecessary resist and be contained on the resin surface. The nanoparticles can be dissolved to form pores on the resin surface. When the resist layer is peeled into a predetermined pattern, an electrode connected to the CNT having the predetermined pattern can be formed.

(a)はCNT層を形成するための二酸化シリコン膜付きのシリコン基板の上に触媒を製膜した基板の構成を示す断面図、(b)は(a)に示した基板上に成長炉内でCNTを成長させた状態を示す断面図、(c)は基板上に成長させたCNTの先端部に金薄膜を施し、その上にシート状の樹脂を置く動作を示す断面図、(d)はCNTを成長させた基板を、樹脂が置かれた状態で加熱して樹脂をCNTに含浸させた後に基板を剥離した状態を示す断面図、(e)は(d)に示した樹脂が含浸したCNTを発熱素子とヒートシンクで挟み込んで余分な樹脂を加圧・加熱して外部に排出する工程を示す断面図である。(A) is sectional drawing which shows the structure of the board | substrate which formed the catalyst on the silicon substrate with a silicon dioxide film for forming a CNT layer, (b) is the inside of a growth furnace on the board | substrate shown to (a) Sectional drawing which shows the state which grew CNT in (c), (c) is sectional drawing which shows the operation | movement which gives a gold thin film to the front-end | tip part of CNT grown on the board | substrate, and places sheet-like resin on it, (d) Is a cross-sectional view showing a state in which the substrate on which the CNT is grown is heated in a state where the resin is placed and the resin is impregnated with the CNT, and then the substrate is peeled off, and (e) is impregnated with the resin shown in (d). FIG. 5 is a cross-sectional view showing a process of sandwiching CNTs between a heat generating element and a heat sink, pressurizing and heating excess resin, and discharging to the outside. (a)は図1(e)に示した樹脂が含浸した状態のCNTを発熱素子とヒートシンクで挟み込んで加圧・加熱して余分な樹脂を外部に排出してCNTの先端部を発熱素子に接触させ、CNTの基部をヒートシンクに接触させた状態を示す断面図、(b)は(a)に示すB部の部分拡大断面図である。(A) is a state in which the CNT impregnated with the resin shown in FIG. 1 (e) is sandwiched between a heat generating element and a heat sink, pressurized and heated to discharge excess resin to the outside, and the tip of the CNT is used as a heat generating element. Sectional drawing which shows the state which was made to contact and the base part of CNT was made to contact the heat sink, (b) is the elements on larger scale of the B section shown to (a). 本出願に係る放熱シートの製造方法の第1の実施例を示すものであり、(a)は表面にシリコン層と触媒層を形成したシリコン基板の断面図、(b)は(a)のシリコン基板上に成長炉内でCNTを成長させた状態を示す断面図、(c)はCNTが成長したシリコン基板を成長炉から取り出してCNTの先端部に金薄膜を施した後にナノ微粒子を含ませたシート状の樹脂をCNTの上に置く様子を示す断面図、(d)は樹脂が載置されたCNTを加熱して樹脂をCNTの隙間に含浸させ、基板を除去した状態を示す断面図、(e)は(d)に示した状態のシート状のCNTにアルカリ処理を施して樹脂表面に含まれるナノ微粒子溶かし出して樹脂表面に空孔を形成した状態を示す断面図である。1 shows a first embodiment of a method for manufacturing a heat dissipation sheet according to the present application, wherein (a) is a sectional view of a silicon substrate having a silicon layer and a catalyst layer formed on the surface, and (b) is silicon of (a). Sectional view showing a state in which CNTs are grown in a growth furnace on a substrate, (c) is a nano-particles after a silicon substrate on which CNTs have been grown is taken out of the growth furnace and a gold thin film is applied to the tip of the CNTs. Sectional drawing which shows a mode that the sheet-like resin put on CNT is shown, (d) is sectional drawing which shows the state which heated the CNT with which resin was mounted, impregnated the resin in the gap of CNT, and removed the board | substrate (E) is sectional drawing which shows the state which performed the alkali treatment to the sheet-like CNT of the state shown to (d), melt | dissolved the nanoparticle contained in the resin surface, and formed the void | hole in the resin surface. (a)は図3(e)に示したシート状のCNTを発熱素子とヒートシンクの間に取り付けてボルトで固定した状態を示す断面図、(b)は(a)の状態で加圧と加熱とを行い、余分な樹脂をシート状のCNTから排出した状態を示す断面図、(c)は(b)のC部の部分拡大断面図である。3A is a cross-sectional view showing a state in which the sheet-like CNT shown in FIG. 3E is attached between a heating element and a heat sink and fixed with a bolt, and FIG. 3B is a state in which pressure and heating are performed in the state of FIG. Are cross-sectional views showing a state in which excess resin is discharged from the sheet-like CNTs, and (c) is a partially enlarged cross-sectional view of a portion C in (b). (a)は樹脂を含浸させた後の2本のCNT間に存在するナノ微粒子の状態の一例を示す説明図、(b)は樹脂中のナノ微粒子の体積比の一例を示す斜視図である。(A) is explanatory drawing which shows an example of the state of the nanoparticle which exists between two CNTs after impregnating resin, (b) is a perspective view which shows an example of the volume ratio of the nanoparticle in resin. . (a)は樹脂中に粒径の異なるナノ微粒子を混入した場合の図3(c)の工程の変形実施例を示す断面図、(b)は(a)に示した樹脂が載置されたCNTを加熱して樹脂をCNTの隙間にしみ込ませた時の、樹脂中の粒径の異なるナノ微粒子の状態を説明する説明図である。(A) is sectional drawing which shows the modified example of the process of FIG.3 (c) at the time of mixing the nanoparticle from which a particle size differs in resin, (b) has mounted resin shown to (a) It is explanatory drawing explaining the state of the nano fine particle from which the particle size in resin differs when a CNT was heated and resin was made to soak into the clearance gap between CNTs. 本出願に係る放熱シートの製造方法の第2の実施例を示すものであり、(a)は第1の実施例の図3(d)までの手順で製造されたシート状のCNTを、加熱しても樹脂と溶け合わない材料で作られた2枚の押圧板の間に挟み込んだ状態を示す断面図、(b)は(a)の状態で加圧、加熱処理を行って余分な樹脂をシート状のCNTから排出した状態を示す断面図、(c)は(b)に示した2枚の押圧板を取り外した状態のシート状のCNTを示す断面図、(d)は(c)に示したシート状のCNTにアルカリ処理を施して樹脂表面に含まれるナノ微粒子を溶かし出して樹脂表面に空孔を形成した状態のシート状のCNTの断面とその部分拡大断面を示す断面図である。The 2nd Example of the manufacturing method of the thermal radiation sheet which concerns on this application is shown, (a) heats the sheet-like CNT manufactured by the procedure to FIG.3 (d) of a 1st Example. A cross-sectional view showing a state of being sandwiched between two pressing plates made of a material that does not melt with the resin, (b) is a sheet of excess resin that is pressed and heated in the state of (a) Sectional drawing which shows the state discharged | emitted from the shape of CNT, (c) is sectional drawing which shows sheet-like CNT of the state which removed the two press plates shown in (b), (d) is shown in (c) FIG. 2 is a cross-sectional view showing a cross section of a sheet-like CNT in a state where pores are formed on the resin surface by subjecting the sheet-like CNT to an alkali treatment to dissolve nanoparticles contained on the resin surface and forming pores on the resin surface. 本出願に係る放熱シートの製造方法の第3の実施例を示すものであり、(a)は表面にシリコン層と触媒層を形成したシリコン基板の断面図、(b)は(a)のシリコン基板上に成長炉内でCNTを成長させた状態を示す断面図、(c)はCNTが成長したシリコン基板を成長炉から取り出しCNTの線端部に金薄膜を施した後にナノ微粒子を含ませたシート状の樹脂をCNTの上に置く様子を示す断面図、(d)は樹脂が載置されたCNTを加熱して樹脂をCNTの隙間にしみ込ませた状態を示す断面図、(e)は(d)に示した状態のシート状のCNTにアルカリ処理を施して樹脂表面に含まれるナノ微粒子を溶かし出し、樹脂表面に空孔を形成したシート状のCNT示す断面図、(f)は(a)の状態からシリコン基板を除去したシート状のCNTを示す断面である。The 3rd Example of the manufacturing method of the thermal radiation sheet which concerns on this application is shown, (a) is sectional drawing of the silicon substrate which formed the silicon layer and the catalyst layer in the surface, (b) is silicon of (a) Sectional view showing the state in which the CNTs are grown on the substrate in the growth furnace, (c) is a nano-particles after removing the silicon substrate on which the CNTs were grown from the growth furnace and applying a gold thin film to the end of the CNTs. Sectional drawing which shows a mode that the sheet-like resin put on CNT is shown, (d) is sectional drawing which shows the state which heated the CNT with which resin was mounted, and the resin was made to soak into the clearance gap between CNTs, (e) (D) is a cross-sectional view showing a sheet-like CNT formed by subjecting a sheet-like CNT in the state shown in (d) to an alkali treatment to dissolve nanoparticles contained in the resin surface and forming pores on the resin surface, (f) The silicon substrate removed from the state of (a) It is a cross section showing the Jo of CNT. 本出願に係る放熱シートの製造方法の第4の実施例を示すものであり、(a)は第3の実施例の図3(e)の状態のシリコン基板上に形成されたシート状のCNTの表面にレジスト層を施した状態を示す部分拡大断面図、(b)は(a)のレジスト層の上に電極形成部に孔が開けられたマスクを被せ、紫外線を照射する状態を示す部分拡大断面図、(c)は紫外線照射後にマスクを除去した状態のシート状のCNTの部分拡大断面図、(d)は(c)の状態のシート状のCNTに対してアルカリ処理を施した状態を示す部分拡大断面図である。The 4th Example of the manufacturing method of the thermal radiation sheet which concerns on this application is shown, (a) is the sheet-like CNT formed on the silicon substrate of the state of FIG.3 (e) of 3rd Example. The partial expanded sectional view which shows the state which gave the resist layer to the surface of (a), (b) is the part which shows the state which covers the resist layer of (a) with the mask in which the electrode formation part was pierced, and irradiates with an ultraviolet-ray Enlarged sectional view, (c) is a partially enlarged sectional view of a sheet-like CNT in a state where the mask is removed after UV irradiation, and (d) is a state where an alkali treatment is applied to the sheet-like CNT in the state of (c) FIG. (a)は図9(d)の状態のシート状のCNTに導電性金属を蒸着させた状態を示す部分拡大断面図、(b)は(a)の状態のシート状のCNTからレジスト層を剥離した状態のシート状のCNTを示す部分拡大断面図である。9A is a partially enlarged cross-sectional view showing a state in which a conductive metal is deposited on the sheet-like CNT in the state of FIG. 9D, and FIG. 9B is a diagram showing a resist layer from the sheet-like CNT in the state of FIG. It is a partial expanded sectional view which shows the sheet-like CNT of the peeled state.

以下、添付図面を用いて本出願の実施の形態を、具体的な実施例に基づいて詳細に説明する。なお、図1、図2で説明した放熱シートの構成部材と同じ構成部材については同じ符号を付して説明する。   Hereinafter, embodiments of the present application will be described in detail based on specific examples with reference to the accompanying drawings. In addition, the same code | symbol is attached | subjected and demonstrated about the same structural member as the structural member of the thermal radiation sheet demonstrated in FIG. 1, FIG.

図3は、本出願に係る放熱シートの製造方法の第1の実施例の工程を説明する断面図である。第1の実施例では、図1(a)に示すように、表面にシリコン層2と触媒層3を形成したシリコン基板1を用意する。触媒層3は、例えば、Fe、Co、Ni等で構成される。シリコン基板1は図示しない成長炉の中に入れ、図3(b)に示すように、シリコン基板1の触媒3の上にCNT4を成長させる。図1で説明したように、CNT4はチューブ構造であり、その直径は0.4〜50nmであって、成長後の長さは例えば1〜200μm程度である。第1の実施例でもチューブ構造のCNT4を1本の線で表し、各CNT4の間には隙間(CNTの密度は、1平方センチメートルあたり109〜1010本程度なので、実際の隙間は140nm程度)があることを示すために、その間隔を実際よりも非常に大きく描いてある。 Drawing 3 is a sectional view explaining the process of the 1st example of the manufacturing method of the heat dissipation sheet concerning this application. In the first embodiment, as shown in FIG. 1A, a silicon substrate 1 having a silicon layer 2 and a catalyst layer 3 formed on the surface is prepared. The catalyst layer 3 is made of, for example, Fe, Co, Ni, or the like. The silicon substrate 1 is put in a growth furnace (not shown), and CNTs 4 are grown on the catalyst 3 of the silicon substrate 1 as shown in FIG. As described with reference to FIG. 1, the CNT 4 has a tube structure, the diameter is 0.4 to 50 nm, and the length after growth is, for example, about 1 to 200 μm. Also in the first embodiment, the tube-structured CNT4 is represented by one line, and a gap is formed between each CNT4 (the actual gap is about 140 nm because the density of the CNT is about 10 9 to 10 10 per square centimeter). In order to show that there is, the interval is drawn much larger than actual.

CNT4が成長したシリコン基板1の上には、CNT4が束になって存在する。CNT4が成長したシリコン基板1は成長炉から取り出され、図3(c)に示すようにCNT4の先端部に金薄膜5が施される。次いでシート状の樹脂6がCNT4の上に置かれる。第1の実施例では樹脂6の中に、ナノ微粒子11が分散されて混入されている。樹脂6に分散するナノ粒子11のサイズは、第1の実施例ではCNT4の間隔より小さい。ナノ微粒子11については後述する。ナノ微粒子11が混入された樹脂6は、CNT4の上に置かれた状態で加熱されて溶かされ、溶けた樹脂6をCNT4の隙間に含浸させる。樹脂6を加熱によってCNT4の隙間に含浸させただけでは、樹脂6はCNT4の根元部までは達しない。そして、樹脂6が含浸したCNT4は冷えて硬化すると、CNT4の束は樹脂6によってシート状のCNT40になる。シート状のCNT40は、シリコン基板1から剥離して取り出される。シート状のCNT40を図3(d)に示す。図3(a)〜(d)の工程は、樹脂6の中にナノ微粒子11が混入されている以外は図1(a)〜(d)の工程と同じである。   On the silicon substrate 1 on which the CNTs 4 are grown, the CNTs 4 are present in a bundle. The silicon substrate 1 on which the CNT 4 has grown is taken out of the growth furnace, and a gold thin film 5 is applied to the tip of the CNT 4 as shown in FIG. Next, a sheet-like resin 6 is placed on the CNT 4. In the first embodiment, nanoparticles 11 are dispersed and mixed in the resin 6. The size of the nanoparticles 11 dispersed in the resin 6 is smaller than the interval of the CNTs 4 in the first embodiment. The nanoparticle 11 will be described later. The resin 6 in which the nanoparticles 11 are mixed is heated and melted while being placed on the CNT 4, and the melted resin 6 is impregnated in the gaps of the CNT 4. The resin 6 does not reach the root of the CNT 4 simply by impregnating the gap between the CNT 4 with the resin 6. When the CNT 4 impregnated with the resin 6 is cooled and hardened, the bundle of CNT 4 becomes a sheet-like CNT 40 by the resin 6. The sheet-like CNT 40 is peeled off from the silicon substrate 1 and taken out. A sheet-like CNT 40 is shown in FIG. The steps of FIGS. 3A to 3D are the same as the steps of FIGS. 1A to 1D except that the nanoparticles 11 are mixed in the resin 6.

ここで、樹脂6に混入するナノ微粒子11について説明する。ナノ微粒子11としては、これを含ませた樹脂6に対してアルカリ性溶液を接触させるアルカリ処理、酸性溶液を接触させる酸処理、又は急速昇温する高温処理を行った時に、樹脂11から溶け出すか蒸発して後に空孔12が残る材料を使用する。このようなナノ微粒子11には、例えば、Ni、Co、Fe、Cu、Ru、Ti、Ta、Mo、W、Re、Vの何れか、又はNi、Co、Fe、Cu、Ru、Ti、Ta、Mo、W、Re、Vの何れかを含む合金を使用することができる。第1の実施例ではこのナノ微粒子11にナノシリカを使用している。よって、以後の説明では、ナノ微粒子11はナノシリカ11として説明する。ナノシリカを含む樹脂としては、例えば荒川化学工業のポミラン(登録商標)がある。一般に、金属微粒子に対しては酸処理か高温処理が行われ、ナノシリカに対してはアルカリ処理が行われる。   Here, the nano fine particles 11 mixed in the resin 6 will be described. As the nanoparticle 11, it is dissolved out of the resin 11 when an alkali treatment in which an alkaline solution is brought into contact with the resin 6 containing the nanoparticle 11, an acid treatment in which an acidic solution is brought into contact, or a high-temperature treatment in which the temperature is rapidly raised is performed. A material that evaporates and leaves pores 12 later is used. Examples of such nanoparticles 11 include Ni, Co, Fe, Cu, Ru, Ti, Ta, Mo, W, Re, and V, or Ni, Co, Fe, Cu, Ru, Ti, and Ta. An alloy containing any of Mo, W, Re, and V can be used. In the first embodiment, nano silica is used for the nano particles 11. Therefore, in the following description, the nanoparticle 11 will be described as nanosilica 11. An example of the resin containing nano silica is Pomilan (registered trademark) manufactured by Arakawa Chemical Industries. Generally, acid treatment or high-temperature treatment is performed on metal fine particles, and alkali treatment is performed on nanosilica.

図5(a)は、図3(d)に示した樹脂6を含浸させた後の2本のCNT4の間に存在するナノシリカ11の状態の一例を示すものである。CNT4の直径は約25nm、高さが50μmであり、CNT4の間隔は140nm以内である。また、図5(b)は、第1の実施例における樹脂6の中のナノシリカ11の体積比の割合を示すものであり、11.6nm立方の樹脂6の中に直径5nmのナノシリカ11が1個あることを示している。ナノシリカ11の比重は樹脂6の2倍(体積比で4%)であるので、第1の実施例におけるナノシリカ11の樹脂内重量比は8wt%である。なお、ナノシリカ11の直径は55nmまで可能であり、凝集すればその直径が数百μmも可能である。また、図5(a)では樹脂6の中のナノシリカ11は整然と整列しているが、実際には樹脂6の中のナノシリカ11はこのように整列された状態で分散してはいない。   FIG. 5A shows an example of the state of the nanosilica 11 existing between the two CNTs 4 after impregnating the resin 6 shown in FIG. 3D. The diameter of the CNT4 is about 25 nm, the height is 50 μm, and the interval between the CNT4 is within 140 nm. FIG. 5B shows the volume ratio of the nanosilica 11 in the resin 6 in the first embodiment. One nanosilica 11 having a diameter of 5 nm is 1 in 11.6 nm cubic resin 6. It shows that there are pieces. Since the specific gravity of the nano silica 11 is twice that of the resin 6 (4% by volume), the weight ratio in the resin of the nano silica 11 in the first embodiment is 8 wt%. The diameter of the nanosilica 11 can be up to 55 nm, and if it aggregates, the diameter can be several hundred μm. In FIG. 5A, the nano silica 11 in the resin 6 is regularly arranged. However, the nano silica 11 in the resin 6 is not actually dispersed in such an aligned state.

シリコン基板1から剥離して取り出された図3(d)に示されるシート状のCNT40に対しては、その表面をアルカリ溶液に浸すアルカリ処理を行う。アルカリ処理を行うと樹脂6の表面に露出するナノシリカ11、或いは樹脂6の表面近傍に位置するナノシリカ11は、アルカリ溶液に溶けて樹脂6から出て行く。そして、ナノシリカ11が溶け出した後の樹脂6の中には、図3(e)に示すように空孔12が残る。空孔12の中にCNT4の先端部が露出することもある。   The sheet-like CNTs 40 shown in FIG. 3D that are peeled off from the silicon substrate 1 are subjected to an alkali treatment in which the surface is immersed in an alkali solution. When the alkali treatment is performed, the nanosilica 11 exposed on the surface of the resin 6 or the nanosilica 11 located in the vicinity of the surface of the resin 6 dissolves in the alkaline solution and exits from the resin 6. In the resin 6 after the nano silica 11 is dissolved, the pores 12 remain as shown in FIG. The tip of the CNT 4 may be exposed in the hole 12.

樹脂6の中のナノシリカ11の含有率を8wt%にした場合は、アルカリ処理時間を長くして、樹脂6の表面から数μm深い位置にあるナノシリカ11を溶融する。また、樹脂6の中のナノシリカ11の体積を大きくしたり、含有率を増加したりすれば、アルカリ処理時間を短くしてアルカリ処理の深さを浅くすることができる。樹脂6の中のナノシリカ11の含有率の最大値は、製造メーカーによって異なるが、ある製造メーカーの製品では、最大75wt%まで可能であり、他の製造メーカーの製品では、最大50wt%まで可能であって、推奨値は20wt%である。   When the content of the nanosilica 11 in the resin 6 is 8 wt%, the alkali treatment time is increased to melt the nanosilica 11 located at a position several μm deep from the surface of the resin 6. Moreover, if the volume of the nano silica 11 in the resin 6 is increased or the content rate is increased, the alkali treatment time can be shortened and the depth of the alkali treatment can be reduced. The maximum content of the nano silica 11 in the resin 6 varies depending on the manufacturer. However, it can be up to 75 wt% for one manufacturer's product and up to 50 wt% for another manufacturer's product. The recommended value is 20 wt%.

シート状のCNT40は、図4(a)に示すように、発熱素子7とヒートシンク9で挟み込み、ボルト8で締め付けて加圧すると共に加熱する。樹脂6が含浸したシート状のCNT40を加圧、加熱することにより、余分な樹脂6が外部に排出され、図4(b)に示すように放熱シート10Aができあがる。このとき、空孔12の数が多いと、図4(c)に示すように、樹脂6が外部に排出された状態で空孔12が繋がって空孔連結部13が形成され、CNT4の先端部が空孔連結部13の中に露出して直接発熱素子7に接触するようになる。CNT4の基部はヒートシンク4に接触しているので、発熱素子7で発生した熱は、CNT4を介してヒートシンク9に伝わり、発熱素子7が効率良く冷却される。   As shown in FIG. 4A, the sheet-like CNT 40 is sandwiched between the heat generating element 7 and the heat sink 9, and is tightened with a bolt 8 to be pressurized and heated. By pressurizing and heating the sheet-like CNTs 40 impregnated with the resin 6, excess resin 6 is discharged to the outside, and a heat dissipation sheet 10A is completed as shown in FIG. 4B. At this time, if the number of the holes 12 is large, as shown in FIG. 4C, the holes 12 are connected in a state where the resin 6 is discharged to the outside to form the hole connecting portion 13, and the tip of the CNT 4 is formed. The part is exposed in the hole connecting part 13 and comes into direct contact with the heating element 7. Since the base portion of the CNT 4 is in contact with the heat sink 4, the heat generated in the heat generating element 7 is transmitted to the heat sink 9 through the CNT 4, and the heat generating element 7 is efficiently cooled.

ヘンケルジャパン社製の6880樹脂(登録商標)で検討したところ、CNT4の長さが成長時に比べて80%になるように加圧、加熱すれば熱抵抗を最小にできることが分かった。この時の加圧、加熱後の樹脂6のみの部分の厚さは4〜5μm程度であった。以上のことから樹脂6の厚さが表面からCNT4の長さの20%だけ減少するようにナノシリカ11を溶出すれば良いので、この時間だけアルカリ処理を行えば良いことが分かった。   Examination with 6880 Resin (registered trademark) manufactured by Henkel Japan Co., Ltd. revealed that the thermal resistance can be minimized by applying pressure and heating so that the length of CNT4 is 80% of that during growth. At this time, the thickness of only the resin 6 after pressing and heating was about 4 to 5 μm. From the above, it was found that the nanosilica 11 should be eluted so that the thickness of the resin 6 is reduced by 20% of the length of the CNT 4 from the surface.

以上説明した第1の実施例では、図5(a)に示したように、樹脂6の中に分散させるナノシリカ11の粒径は揃えてあり、ナノシリカ11の粒径はCNT4の間隔よりも小さい。一方、図4(c)に示すような空孔連結部13を形成するために、変形例として、図6(a)に示すように、樹脂6の中に、粒径の小さなナノシリカ11Sと粒径の大きなナノシリカ11Lを混在させても良い。この場合、ナノシリカ11Lの粒径を隣接するCNT4の間隔よりも大きくしておけば、樹脂6を加熱してCNT4の束に含浸させた時に、図6(b)に示すように、粒径の大きなナノシリカ11LがCNT4の先端部近傍に集まり、アルカリ処理によって図4(c)に示すような空孔連結部13を容易に形成することができる。空孔連結部13が多く形成されるとCNT4の先端近傍の樹脂の厚さが薄くなるため、より多くのCNT4の先端部が直接発熱素子7に接触し、放熱シートの放熱効果が向上する。   In the first embodiment described above, as shown in FIG. 5A, the particle diameters of the nanosilica 11 dispersed in the resin 6 are uniform, and the particle diameter of the nanosilica 11 is smaller than the interval of the CNT4. . On the other hand, in order to form the hole coupling portion 13 as shown in FIG. 4C, as a modification, as shown in FIG. Nano silica 11L having a large diameter may be mixed. In this case, if the particle diameter of the nanosilica 11L is made larger than the interval between adjacent CNTs 4, when the resin 6 is heated and impregnated in a bundle of CNTs 4, as shown in FIG. Large nanosilica 11L gathers in the vicinity of the tip of CNT4, and the hole connecting portion 13 as shown in FIG. 4C can be easily formed by alkali treatment. When a large number of hole connecting portions 13 are formed, the thickness of the resin in the vicinity of the tip of the CNT 4 becomes thin, so that the tip of more CNT 4 directly contacts the heating element 7 and the heat dissipation effect of the heat dissipation sheet is improved.

次に、図7(a)〜(d)に示す断面図を用いて本出願に係る放熱シートの製造方法の第2の実施例を説明する。なお、第2の実施例の放熱シートの製造方法では、図3(d)に示したシート状のCNT40を作るまでは第1の実施例と同じであるので、ここではその説明を省略する。第2の実施例では、図7(a)に示すように、第1の実施例の図3(a)〜(d)の手順で製造されたシート状のCNT40を、加熱しても樹脂と溶け合わない材料で作られた2枚の押圧板13,14の間に挟み込む。2枚の押圧板13,14は、例えばテフロン(登録商標)等の樹脂で作ることができる。   Next, the 2nd Example of the manufacturing method of the thermal radiation sheet which concerns on this application is described using sectional drawing shown to Fig.7 (a)-(d). In addition, since the manufacturing method of the heat radiating sheet of the second embodiment is the same as that of the first embodiment until the sheet-like CNT 40 shown in FIG. 3D is manufactured, the description thereof is omitted here. In the second embodiment, as shown in FIG. 7 (a), the sheet-like CNT 40 manufactured by the procedure of FIGS. 3 (a) to 3 (d) of the first embodiment is not heated and the resin It is sandwiched between two pressing plates 13 and 14 made of materials that do not melt together. The two pressing plates 13 and 14 can be made of a resin such as Teflon (registered trademark).

この状態で加圧、加熱処理を行って更に樹脂6をシート状のCNTに含浸させると共に、余分な樹脂6をシート状のCNT40から排出すると図7(b)に示す状態となる。そして、図7(b)の状態で樹脂6を硬化させた後に2枚の押圧板13,14を取り外すと、図7(c)に示す状態となる。この状態でシート状のCNT40にアルカリ処理を施して樹脂6の表面に含まれるナノシリカ11を溶かし出して樹脂6の表面に空孔12、或いは空孔連結部13を形成すると図7(d)に示すシート状のCNT40が出来上がり、放熱シートとなる。図7(d)に示すシート状のCNT40は、このまま図4(b)に示したように、発熱素子7とヒートシンク8の間に挿入してボルト8で締結すると放熱シートとして機能する。   In this state, pressure and heat treatment are performed to further impregnate the resin 6 with the sheet-like CNTs, and when the excess resin 6 is discharged from the sheet-like CNTs 40, the state shown in FIG. Then, when the two pressing plates 13 and 14 are removed after the resin 6 is cured in the state shown in FIG. 7B, the state shown in FIG. 7C is obtained. In this state, when the sheet-like CNT 40 is subjected to an alkali treatment to dissolve the nanosilica 11 contained on the surface of the resin 6 to form holes 12 or hole connecting portions 13 on the surface of the resin 6, FIG. The sheet-like CNT 40 shown is completed and becomes a heat dissipation sheet. As shown in FIG. 4B, the sheet-like CNT 40 shown in FIG. 7D functions as a heat dissipation sheet when inserted between the heating element 7 and the heat sink 8 and fastened with the bolts 8.

図8(a)〜(f)は、本出願に係る放熱シートの製造方法の第3の実施例を示すものである。第3の実施例では、図8(a)に示す酸化シリコン層2と触媒層3を形成したシリコン基板1を図示しない成長炉に入れてシリコン基板1の触媒3の上に、図8(b)に示すCNT4を成長させる。そして、図8(c)に示すように、CNT4が成長したシリコン基板1を成長炉から取り出しCNTの線端部に金薄膜を施した後に、ナノシリカ11を分散させたシート状の樹脂6をCNTの上に置き、加熱してナノシリカ11をCNT4の隙間に含浸させる。図8(d)はナノシリカ11を含浸させて出来上がったシート状のCNT40を示すものである。   FIGS. 8A to 8F show a third embodiment of the method for manufacturing a heat dissipation sheet according to the present application. In the third embodiment, the silicon substrate 1 on which the silicon oxide layer 2 and the catalyst layer 3 shown in FIG. 8A are formed is placed in a growth furnace (not shown) and placed on the catalyst 3 of the silicon substrate 1 as shown in FIG. CNT4 shown in FIG. Then, as shown in FIG. 8C, after the silicon substrate 1 on which the CNT 4 has been grown is taken out of the growth furnace and a gold thin film is applied to the end portion of the CNT, the sheet-like resin 6 in which the nanosilica 11 is dispersed is added to the CNT. And is heated to impregnate the nano silica 11 in the gaps of the CNTs 4. FIG. 8 (d) shows a sheet-like CNT 40 made by impregnating nano silica 11.

第1の実施例では、図8(d)に示す状態のシリコン基板1からシート状のCNT40を剥離していたが、第3の実施例ではシリコン基板1からシート状のCNT40を剥離せず、このままの状態でアルカリ処理を施す。そして、樹脂6の表面に含まれるナノシリカ11を溶かし出して、図8(e)に示すように、樹脂6の表面に空孔12、或いは空気孔連結部13が形成されたシート状のCNT40を製造する。この状態でシリコン基板1からシート状のCNT40を剥離すれば、図8(f)に示すような樹脂6の表面に空孔12、或いは空気孔連結部13が形成されたシート状のCNT40が製造でき、放熱シートとして使用できる。図8(f)に示すシート状のCNT40は、このまま図4(b)に示したように、発熱素子7とヒートシンク9の間に挿入してボルト8で締結して放熱シートとして使用することができる。   In the first embodiment, the sheet-like CNT 40 is peeled from the silicon substrate 1 in the state shown in FIG. 8D, but in the third embodiment, the sheet-like CNT 40 is not peeled from the silicon substrate 1, An alkali treatment is performed in this state. Then, the nano-silica 11 contained on the surface of the resin 6 is melted, and as shown in FIG. 8 (e), the sheet-like CNTs 40 in which the holes 12 or the air hole connecting portions 13 are formed on the surface of the resin 6 are formed. To manufacture. If the sheet-like CNTs 40 are peeled from the silicon substrate 1 in this state, the sheet-like CNTs 40 having the holes 12 or the air hole connecting portions 13 formed on the surface of the resin 6 as shown in FIG. Can be used as a heat dissipation sheet. As shown in FIG. 4B, the sheet-like CNT 40 shown in FIG. 8F can be used as a heat-dissipating sheet by inserting it between the heat generating element 7 and the heat sink 9 and fastening with bolts 8. it can.

図9(a)〜(d)と図10(a)、(b)は、本出願に係る放熱シートの製造方法の第4の実施例の工程を示す部分拡大断面図である。なお、第4の実施例の放熱シートの製造方法では、図8(d)に示したシート状のCNT40を作るまでは第3の実施例と同じであるので、ここではその説明を省略する。図9(a)は、第3の実施例の図3(d)の状態のシリコン基板1の上に形成されたシート状のCNT40の表面に、レジストを塗布してレジスト層21を形成した状態を示している。   9 (a) to 9 (d) and FIGS. 10 (a) and 10 (b) are partial enlarged cross-sectional views showing the steps of the fourth embodiment of the method for manufacturing a heat dissipation sheet according to the present application. In addition, since the manufacturing method of the heat-radiation sheet | seat of a 4th Example is the same as that of a 3rd Example until the sheet-like CNT40 shown in FIG.8 (d) is made, the description is abbreviate | omitted here. FIG. 9A shows a state where a resist layer 21 is formed by applying a resist to the surface of the sheet-like CNT 40 formed on the silicon substrate 1 in the state of FIG. 3D of the third embodiment. Is shown.

第4の実施例では、シート状のCNT40の表面に電極を形成する。このため、図9(b)に示すように、電極形成が必要な箇所に孔22Aが開けられたマスク22をレジスト層21の上に被せ、マスク22の上から紫外線23を照射する。レジスト層21は、紫外線23が照射された部分だけが溶けてシート状のCNT40が露出する。図9(c)は紫外線23を照射した後にマスク22を除去した状態のシート状のCNT40を示すものであり、紫外線照射部にはレジスト剥離部24が形成されている。第4の実施例では、この状態でシート状のCNT40に対してアルカリ処理を施す。図9(d)はアルカリ処理により、レジスト剥離部24内のシート状のCNT40に、空孔12又は空孔連結部13が現れた状態を示している。空孔12又は空孔連結部13内には、多くの場合、CNT4の先端部が露出、或いは突出している。   In the fourth embodiment, an electrode is formed on the surface of the sheet-like CNT 40. For this reason, as shown in FIG. 9B, a mask 22 having a hole 22 </ b> A formed at a position where electrode formation is required is placed on the resist layer 21, and ultraviolet rays 23 are irradiated from above the mask 22. In the resist layer 21, only the portion irradiated with the ultraviolet rays 23 is melted to expose the sheet-like CNT 40. FIG. 9C shows the sheet-like CNT 40 in a state in which the mask 22 is removed after the ultraviolet ray 23 is irradiated, and a resist stripping portion 24 is formed in the ultraviolet ray irradiation portion. In the fourth embodiment, alkali treatment is performed on the sheet-like CNTs 40 in this state. FIG. 9D shows a state where the holes 12 or the hole connecting portions 13 appear in the sheet-like CNTs 40 in the resist stripping portion 24 by the alkali treatment. In many cases, the tip of the CNT 4 is exposed or protrudes in the hole 12 or the hole connecting part 13.

第4の実施例では、図9(d)に示した状態のシート状のCNT40に、導電性金属を蒸着させて金属蒸着部25を形成する。シート状のCNT40に金属蒸着部25が形成された状態を図10(a)に示す。金属蒸着部25はレジスト層21の上側と、レジスト剥離部24内のシート状のCNT40の露出部の上側に形成される。この状態で、シート状のCNT40からレジスト層21を剥離すると、レジスト剥離部24内のシート状のCNT40の露出部の上側に形成された金属蒸着部25だけが残って電極部26となる。   In the fourth embodiment, a metal deposition unit 25 is formed by depositing a conductive metal on the sheet-like CNT 40 in the state shown in FIG. FIG. 10A shows a state in which the metal vapor deposition portion 25 is formed on the sheet-like CNT 40. The metal vapor deposition part 25 is formed above the resist layer 21 and above the exposed part of the sheet-like CNT 40 in the resist stripping part 24. When the resist layer 21 is peeled from the sheet-like CNT 40 in this state, only the metal vapor deposition part 25 formed on the upper side of the exposed part of the sheet-like CNT 40 in the resist peeling part 24 remains and becomes the electrode part 26.

空孔12又は空孔連結部13内にCNT4の先端部が露出、或いは突出している場合、電極部26はCNT4の先端部に電気的に結合しているので、電極部26は、CNT4を通じてシート状のCNT40の裏面側の電極部26に重なる部分に電気的に接続する。このように、第4の実施例では、任意の場所に電極部26を形成したシート状のCNT40を製造することができる。なお、第4の実施例では、シート状のCNT40の表面に形成した電極部26とCNT4の先端部とを確実に電気的に接続する必要があるので、樹脂6へのナノシリカ11の含有率を、電極部を形成しない場合に比べて大きくすれば良い。   When the tip of the CNT 4 is exposed or protrudes in the hole 12 or the hole connecting portion 13, the electrode 26 is electrically coupled to the tip of the CNT 4. The CNT 40 is electrically connected to a portion overlapping the electrode portion 26 on the back surface side. Thus, in the fourth embodiment, a sheet-like CNT 40 in which the electrode part 26 is formed at an arbitrary place can be manufactured. In the fourth embodiment, it is necessary to reliably connect the electrode part 26 formed on the surface of the sheet-like CNT 40 and the tip part of the CNT 4, so the content of the nanosilica 11 in the resin 6 is determined. What is necessary is just to enlarge compared with the case where an electrode part is not formed.

以上、本出願を特にその好ましい実施の形態を参照して詳細に説明した。本出願の容易な理解のために、本出願の具体的な形態を以下に付記する。   The present application has been described in detail with particular reference to preferred embodiments thereof. For easy understanding of the present application, specific forms of the present application are appended below.

(付記1) 成長炉内でシリコン基板に対して垂直な方向にカーボンナノチューブを成長させて形成したカーボンナノチューブの束に、樹脂を加熱して含浸させた後に硬化させてシート状のカーボンナノチューブを形成し、これを前記シリコン基板から剥離して形成した放熱シートにおいて、
前記樹脂には、所定の除去処理によって前記樹脂内から溶出させて前記樹脂内に空孔を形成可能なナノ微粒子を、8〜70wt%で含有させたことを特徴とする放熱シート。
(付記2) 前記ナノ微粒子は、0.5〜100nmの直径範囲にあることを特徴とする付記1に記載の放熱シート。
(付記3) 前記ナノ微粒子として、前記カーボンナノチューブの間隔よりも直径が小さいナノ微粒子と直径が大きい微粒子とを混ぜ合わせたことを特徴とする付記2に記載の放熱シート。
(付記4) 前記除去処理が、前記樹脂の表面にアルカリ性の溶液を接触させるアルカリ処理、前記樹脂の表面に酸性の溶液を接触させる酸性処理、及び急速昇温して前記ナノ微粒子を蒸発させる処理の何れかであることを特徴とする付記1から3の何れかに記載の放熱シート。
(付記5) 前記ナノ微粒子がNi、Co、Fe、Cu、Ru、Ti、Ta、Mo、W、Re、Vの何れか、又はNi、Co、Fe、Cu、Ru、Ti、Ta、Mo、W、Re、Vの何れかを含む合金からなることを特徴とする付記1から4の何れかに記載の放熱シート。
(Appendix 1) A sheet of carbon nanotubes is formed by heating and impregnating a bundle of carbon nanotubes formed by growing carbon nanotubes in a growth furnace in a direction perpendicular to the silicon substrate, followed by curing. In the heat dissipation sheet formed by peeling this from the silicon substrate,
The heat-dissipating sheet, wherein the resin contains 8 to 70 wt% of nano-particles that can be eluted from the resin by a predetermined removal treatment to form pores in the resin.
(Additional remark 2) The said nano fine particle exists in the diameter range of 0.5-100 nm, The thermal radiation sheet of Additional remark 1 characterized by the above-mentioned.
(Additional remark 3) The heat radiation sheet of Additional remark 2 characterized by mixing the nano fine particle with a diameter smaller than the space | interval of the said carbon nanotube, and the fine particle with a large diameter as said nano fine particle.
(Additional remark 4) The said removal process is an alkali process which makes an alkaline solution contact the surface of the said resin, an acid process which makes an acidic solution contact the surface of the said resin, and a process which evaporates the said nanoparticle by rapidly heating up The heat dissipation sheet according to any one of supplementary notes 1 to 3, wherein the heat dissipation sheet is any one of the following.
(Supplementary Note 5) The nano fine particles may be any one of Ni, Co, Fe, Cu, Ru, Ti, Ta, Mo, W, Re, V, or Ni, Co, Fe, Cu, Ru, Ti, Ta, Mo, The heat dissipation sheet according to any one of appendices 1 to 4, wherein the heat dissipation sheet is made of an alloy containing any one of W, Re, and V.

(付記6) 前記ナノ微粒子がナノシリカであることを特徴とする付記5に記載の放熱シート。
(付記7) 前記シリコン基板上に成長させて形成されたカーボンナノチューブの各個の先端部に金薄膜が施されていることを特徴とする付記1から6の何れかに記載の放熱シート。
(付記8) シリコン基板の表面に触媒を成膜し、
前記シリコン基板を成長炉に入れて、前記触媒の上に垂直方向に、カーボンナノチューブを成長させてカーボンナノチューブの束を作り、
前記カーボンナノチューブの束の上に、ナノ微粒子を8〜70wt%で含有させたシート状の樹脂を置き、
前記樹脂を加熱して前記カーボンナノチューブの束に含浸させた後に硬化させ、
前記樹脂が含浸して形成されたシート状のカーボンナノチューブを前記シリコン基板から剥離し、
剥離した前記シート状のカーボンナノチューブに対して前記ナノ微粒子の除去処理を行って、前記カーボンナノチューブの表面近傍に位置する前記ナノ微粒子を溶出して前記表面に空孔を形成し、
前記樹脂表面に空孔が形成された前記シート状のカーボンナノチューブを発熱素子と放熱部材とで挟み込み、
この状態で加熱すると共に、前記発熱素子と前記放熱部材との間に圧力を加えて前記シート状のカーボンナノチューブを加熱圧縮して余分な樹脂を前記発熱素子と前記放熱部材との間から排出して、前記発熱素子と前記放熱部材との間に放熱シートを製造することを特徴とする放熱シートの製造方法。
(付記9) シリコン基板の表面に触媒を成膜し、
前記シリコン基板を成長炉に入れて、前記触媒の上に垂直方向に、カーボンナノチューブを成長させてカーボンナノチューブの束を作り、
前記カーボンナノチューブの束の上にナノ微粒子を、8〜70wt%で含有させた樹脂を置き、
前記樹脂を加熱して前記カーボンナノチューブの束に含浸させた後に冷却し、
前記樹脂が含浸して形成されたシート状のカーボンナノチューブを、前記シリコン基板を剥離して取り出し、
前記シート状のカーボンナノチューブを、加熱しても樹脂と溶け合わない材料で作られた2枚の押圧板の間に挟んで加圧、加熱処理を行って余分な樹脂をシート状のCNTから排出し、
加圧、加熱処理後に冷却して2枚の押圧板を取り外して前記シート状のCNTを取り出し、
取り出したシート状のCNTに前記ナノ微粒子の除去処理を施して、樹脂表面に含まれるナノ微粒子を溶かし出して樹脂表面に空孔が形成されたシート状のCNTを製造することを特徴とする放熱シートの製造方法。
(付記10) 酸化膜付きシリコン基板の表面に触媒を成膜し、
前記シリコン基板を成長炉に入れて、前記触媒の上に垂直方向に、カーボンナノチューブを成長させてカーボンナノチューブの束を作り、
前記カーボンナノチューブの束の上にナノ微粒子を、8〜70wt%で含有させた樹脂を置き、
前記樹脂を加熱して前記カーボンナノチューブの束に含浸させた後に冷却し、
前記樹脂が含浸して形成されたシート状のCNTを、前記シリコン基板に設置したまま、シート状のCNTに前記ナノ微粒子の除去処理を施して樹脂表面に含まれるナノ微粒子を溶かし出して樹脂表面に空孔を形成し、
樹脂表面に空孔を形成されたシート状のCNTから前記シリコン基板を除去してシート状のCNTを製造することを特徴とする放熱シートの製造方法。
(Additional remark 6) The said nano fine particle is nano silica, The heat dissipation sheet | seat of Additional remark 5 characterized by the above-mentioned.
(Additional remark 7) The gold | metal thin film is given to each front-end | tip part of the carbon nanotube formed by growing on the said silicon substrate, The heat radiating sheet in any one of Additional remark 1 to 6 characterized by the above-mentioned.
(Appendix 8) Forming a catalyst film on the surface of a silicon substrate,
Put the silicon substrate in a growth furnace, grow carbon nanotubes vertically on the catalyst to make a bundle of carbon nanotubes,
On the bundle of carbon nanotubes, a sheet-like resin containing nanoparticles in an amount of 8 to 70 wt% is placed,
Curing after heating the resin to impregnate the bundle of carbon nanotubes,
Strip the sheet-like carbon nanotubes formed by impregnating the resin from the silicon substrate,
Performing the removal treatment of the nano-particles on the exfoliated sheet-like carbon nanotubes, eluting the nano-particles located near the surface of the carbon nanotubes to form pores on the surface,
Sandwiching the sheet-like carbon nanotubes with pores formed on the resin surface between a heat generating element and a heat radiating member;
While heating in this state, pressure is applied between the heat generating element and the heat radiating member to heat and compress the sheet-like carbon nanotubes, and excess resin is discharged from between the heat generating element and the heat radiating member. Then, a heat radiating sheet is manufactured between the heat generating element and the heat radiating member.
(Appendix 9) Forming a catalyst film on the surface of a silicon substrate,
Put the silicon substrate in a growth furnace, grow carbon nanotubes vertically on the catalyst to make a bundle of carbon nanotubes,
A resin containing nanoparticles in an amount of 8 to 70 wt% is placed on the bundle of carbon nanotubes,
Cooling the resin after heating and impregnating the bundle of carbon nanotubes,
The sheet-like carbon nanotubes formed by impregnating the resin are removed by peeling the silicon substrate,
The sheet-like carbon nanotubes are sandwiched between two pressing plates made of a material that does not melt with the resin even when heated, and pressure and heat treatment are performed to discharge excess resin from the sheet-like CNTs,
Pressurization, cooling after heat treatment, removing the two pressing plates and taking out the sheet-like CNT,
The sheet-like CNT taken out is subjected to the removal process of the nano-particles, and the nano-particles contained in the resin surface are dissolved to produce sheet-like CNTs having pores formed on the resin surface. Sheet manufacturing method.
(Appendix 10) A catalyst is formed on the surface of a silicon substrate with an oxide film,
Put the silicon substrate in a growth furnace, grow carbon nanotubes vertically on the catalyst to make a bundle of carbon nanotubes,
A resin containing nanoparticles in an amount of 8 to 70 wt% is placed on the bundle of carbon nanotubes,
Cooling the resin after heating and impregnating the bundle of carbon nanotubes,
While the sheet-like CNT formed by impregnating the resin is placed on the silicon substrate, the nano-particles contained in the resin surface are dissolved by subjecting the sheet-like CNT to the removal process of the nano-particles and the resin surface. Forming holes in the
A method for producing a heat-dissipating sheet, comprising producing a sheet-like CNT by removing the silicon substrate from a sheet-like CNT having pores formed on a resin surface.

(付記11) シリコン基板の表面に触媒を成膜し、
前記シリコン基板を成長炉に入れて、前記触媒の上に垂直方向に、カーボンナノチューブを成長させてカーボンナノチューブの束を作り、
前記カーボンナノチューブの束の上にナノ微粒子を、8〜70wt%で含有させた樹脂を置き、
前記樹脂を加熱して前記カーボンナノチューブの束に含浸させた後に冷却し、
前記樹脂が含浸して形成されたシート状のカーボンナノチューブを、前記シリコン基板に設置したまま、シート状のカーボンナノチューブの表面にレジストを塗布してレジスト層を形成し、
レジスト層が形成されたシート状のカーボンナノチューブの上に、電極形成部に孔が開けられたマスクを被せ、紫外線を照射してレジスト剥離部を形成し、
紫外線照射後にマスクを除去したシート状のカーボンナノチューブに対して、レジストの溶解及び前記ナノ微粒子の除去処理を施して前記レジスト剥離部内に露出する樹脂表面に含まれるナノ微粒子を溶かし出して前記樹脂表面に空孔を形成し、
前記シート状のカーボンナノチューブに導電性金属を蒸着して金属蒸着部を形成する処理を行い、
前記シート状のカーボンナノチューブからレジスト層を剥離すると共に、前記シリコン基板を除去してシート状のCNTを製造することを特徴とする放熱シートの製造方法。
(付記12) 前記ナノ微粒子は、0.5〜100nmの直径範囲にあることを特徴とする付記8に記載の放熱シートの製造方法。
(付記13) 前記ナノ微粒子として、前記カーボンナノチューブの間隔よりも直径が小さいナノ微粒子と直径が大きい微粒子とを混ぜ合わせたことを特徴とする付記12に記載の放熱シートの製造方法。
(付記14) 前記除去処理が、前記樹脂の表面にアルカリ性の溶液を接触させるアルカリ処理、前記樹脂の表面に酸性の溶液を接触させる酸性処理、及び急速昇温して前記ナノ微粒子を蒸発させる処理の何れかであることを特徴とする付記8から11の何れかに記載の放熱シートの製造方法。
(付記15) 前記ナノ微粒子がNi,Co,Fe,Cu,Ru,Ti,Ta,Mo,W,Re,Vの何れか、又はNi,Co,Fe,Cu,Ru,Ti,Ta,Mo,W,Re,Vの何れかを含む合金からなることを特徴とする付記8から14の何れかに記載の放熱シートの製造方法。
(Appendix 11) Forming a catalyst film on the surface of a silicon substrate,
Put the silicon substrate in a growth furnace, grow carbon nanotubes vertically on the catalyst to make a bundle of carbon nanotubes,
A resin containing nanoparticles in an amount of 8 to 70 wt% is placed on the bundle of carbon nanotubes,
Cooling the resin after heating and impregnating the bundle of carbon nanotubes,
While the sheet-like carbon nanotubes formed by impregnating the resin are placed on the silicon substrate, a resist is applied to the surface of the sheet-like carbon nanotubes to form a resist layer,
On the sheet-like carbon nanotube on which the resist layer is formed, cover the electrode forming portion with a mask with a hole, and irradiate ultraviolet rays to form a resist peeling portion,
For the sheet-like carbon nanotubes from which the mask has been removed after ultraviolet irradiation, the resin surface is dissolved by dissolving the resist and removing the nanoparticles to dissolve the nanoparticles contained in the resin surface exposed in the resist stripping portion. Forming holes in the
Conducting a process of forming a metal deposition part by depositing a conductive metal on the sheet-like carbon nanotube,
A method for producing a heat-dissipating sheet, comprising: removing a resist layer from the sheet-like carbon nanotubes and removing the silicon substrate to produce a sheet-like CNT.
(Additional remark 12) The said nano fine particle exists in the diameter range of 0.5-100 nm, The manufacturing method of the thermal radiation sheet of Additional remark 8 characterized by the above-mentioned.
(Additional remark 13) The manufacturing method of the thermal radiation sheet of Additional remark 12 characterized by mixing the nanoparticle with a diameter smaller than the space | interval of the said carbon nanotube, and the microparticle with a large diameter as said nanoparticle.
(Additional remark 14) The said removal process is the alkali process which contacts an alkaline solution on the surface of the said resin, the acidic process which contacts an acidic solution on the surface of the said resin, and the process which evaporates the said nanoparticle by rapidly heating up The method of manufacturing a heat dissipation sheet according to any one of appendices 8 to 11, wherein the method is any one of the following.
(Supplementary Note 15) The nano fine particles may be any one of Ni, Co, Fe, Cu, Ru, Ti, Ta, Mo, W, Re, V, or Ni, Co, Fe, Cu, Ru, Ti, Ta, Mo, 15. The method for manufacturing a heat dissipation sheet according to any one of appendices 8 to 14, wherein the heat dissipation sheet is made of an alloy containing any one of W, Re, and V.

(付記16) 前記ナノ微粒子がナノシリカであることを特徴とする付記15に記載の放熱シートの製造方法。
(付記17) 前記カーボンナノチューブの束が作られた後、各カーボンナノチューブの各個の先端部に金薄膜を施すことを特徴とする付記8に記載の放熱シートの製造方法。
(Additional remark 16) The manufacturing method of the thermal radiation sheet of Additional remark 15 characterized by the above-mentioned nano fine particle being nano silica.
(Additional remark 17) After the bundle of the said carbon nanotube is made, the gold thin film is given to each front-end | tip part of each carbon nanotube, The manufacturing method of the thermal radiation sheet of Additional remark 8 characterized by the above-mentioned.

1 シリコン基板
2 二酸化シリコン層
3 触媒
4 カーボンナノチューブ(CNT)
5 金薄膜
6 樹脂
7 発熱素子
9 ヒートシンク
10 放熱シート
11 ナノ微粒子
12 空孔
21 レジスト層
22 マスク
23 紫外線
24 レジスト剥離部
25 金属蒸着部
26 電極部
40 シート状のCNT
DESCRIPTION OF SYMBOLS 1 Silicon substrate 2 Silicon dioxide layer 3 Catalyst 4 Carbon nanotube (CNT)
5 Gold Thin Film 6 Resin 7 Heating Element 9 Heat Sink 10 Heat Dissipation Sheet 11 Nanoparticle 12 Hole 21 Resist Layer 22 Mask 23 Ultraviolet 24 Resist Stripping Part 25 Metal Deposition Part 26 Electrode Part 40 Sheet-like CNT

Claims (4)

シリコン基板に垂直な方向に形成されたカーボンナノチューブの束と、該カーボンナノチューブの束の隙間に設けた樹脂とを有し、
前記樹脂が、8〜70wt%のナノ微粒子と、該ナノ微粒子の上方に形成された空孔連結部とを含有することを特徴とする放熱シート。
Includes a bundle of silicon down board to be formed on the vertical ones direction the car carbon nanotubes, and a resin provided in the gap bundle of the carbon nanotubes,
Radiation sheet in which the resins are characterized by containing a 8 to 70 wt% of nanoparticles, and a pore connecting portions formed above the nanoparticulates.
前記ナノ微粒子は、前記カーボンナノチューブの間隔よりも直径が小さいナノ微粒子と直径が大きい微粒子とを有することを特徴とする請求項1に記載の放熱シート。 The heat dissipation sheet according to claim 1, wherein the nano fine particles include nano fine particles having a diameter smaller than an interval between the carbon nanotubes and fine particles having a large diameter. シリコン基板の表面に触媒を成膜し、
前記シリコン基板を成長炉に入れて、前記触媒の上に垂直方向に、カーボンナノチューブを成長させてカーボンナノチューブの束を作り、
前記カーボンナノチューブの束の上に、ナノ微粒子を8〜70wt%で含有させたシート状の樹脂を置き、
前記樹脂を加熱して前記カーボンナノチューブの束に含浸させた後に硬化させ、
前記樹脂が含浸して形成されたシート状のカーボンナノチューブを前記シリコン基板から剥離し、
剥離した前記シート状のカーボンナノチューブに対して前記ナノ微粒子の除去処理を行って、前記カーボンナノチューブの表面近傍に位置する前記ナノ微粒子を溶出して前記表面に空孔を形成し、
前記樹脂表面に空孔が形成された前記シート状のカーボンナノチューブを発熱素子と放熱部材とで挟み込み、
この状態で加熱すると共に、前記発熱素子と前記放熱部材との間に圧力を加えて前記シート状のカーボンナノチューブを加熱圧縮して余分な樹脂を前記発熱素子と前記放熱部材との間から排出して、前記発熱素子と前記放熱部材との間に放熱シートを製造することを特徴とする放熱シートの製造方法。
A catalyst is deposited on the surface of the silicon substrate,
Put the silicon substrate in a growth furnace, grow carbon nanotubes vertically on the catalyst to make a bundle of carbon nanotubes,
On the bundle of carbon nanotubes, a sheet-like resin containing nanoparticles in an amount of 8 to 70 wt% is placed,
Curing after heating the resin to impregnate the bundle of carbon nanotubes,
Strip the sheet-like carbon nanotubes formed by impregnating the resin from the silicon substrate,
Performing the removal treatment of the nano-particles on the exfoliated sheet-like carbon nanotubes, eluting the nano-particles located near the surface of the carbon nanotubes to form pores on the surface,
Sandwiching the sheet-like carbon nanotubes with pores formed on the resin surface between a heat generating element and a heat radiating member;
While heating in this state, pressure is applied between the heat generating element and the heat radiating member to heat and compress the sheet-like carbon nanotubes, and excess resin is discharged from between the heat generating element and the heat radiating member. Then, a heat radiating sheet is manufactured between the heat generating element and the heat radiating member.
前記除去処理が、前記樹脂の表面にアルカリ性の溶液を接触させるアルカリ処理、前記樹脂の表面に酸性の溶液を接触させる酸性処理、及び急速昇温して前記ナノ微粒子を蒸発させる処理の何れかであることを特徴とする請求項に記載の放熱シートの製造方法。 The removal treatment is one of an alkali treatment in which an alkaline solution is brought into contact with the surface of the resin, an acid treatment in which an acidic solution is brought into contact with the surface of the resin, and a treatment in which the nanoparticles are rapidly heated to evaporate the nanoparticles. The method for manufacturing a heat dissipation sheet according to claim 3 , wherein the heat dissipation sheet is provided.
JP2011237584A 2011-10-28 2011-10-28 Heat dissipation sheet and method for manufacturing the heat dissipation sheet Active JP5899804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011237584A JP5899804B2 (en) 2011-10-28 2011-10-28 Heat dissipation sheet and method for manufacturing the heat dissipation sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011237584A JP5899804B2 (en) 2011-10-28 2011-10-28 Heat dissipation sheet and method for manufacturing the heat dissipation sheet

Publications (2)

Publication Number Publication Date
JP2013098245A JP2013098245A (en) 2013-05-20
JP5899804B2 true JP5899804B2 (en) 2016-04-06

Family

ID=48619922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011237584A Active JP5899804B2 (en) 2011-10-28 2011-10-28 Heat dissipation sheet and method for manufacturing the heat dissipation sheet

Country Status (1)

Country Link
JP (1) JP5899804B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6344076B2 (en) * 2014-06-18 2018-06-20 富士通株式会社 Method for manufacturing connection member and method for manufacturing electronic device
US9482477B2 (en) 2014-07-28 2016-11-01 Northrop Grumman Systems Corporation Nano-thermal agents for enhanced interfacial thermal conductance
CN105990278A (en) * 2015-02-02 2016-10-05 明安国际企业股份有限公司 Heat conduction element and manufacturing method thereof
CN106158666A (en) * 2015-04-02 2016-11-23 明安国际企业股份有限公司 The manufacture method of high heat-conductive assembly
CN109817829A (en) * 2019-01-31 2019-05-28 武汉华星光电半导体显示技术有限公司 Heat dissipation film and display panel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340681A (en) * 2004-05-31 2005-12-08 Hitachi Ltd Radiator, electronic apparatus, and engine control unit
CA2666815C (en) * 2006-10-17 2013-05-28 Purdue Research Foundation Electrothermal interface material enhancer
JP5104688B2 (en) * 2007-10-22 2012-12-19 富士通株式会社 Sheet-like structure, method for producing the same, and electronic device
CN101826467B (en) * 2009-03-02 2012-01-25 清华大学 Preparation method of thermal interface material
CN102792441B (en) * 2010-03-12 2016-07-27 富士通株式会社 Radiator structure and manufacture method thereof

Also Published As

Publication number Publication date
JP2013098245A (en) 2013-05-20

Similar Documents

Publication Publication Date Title
JP5899804B2 (en) Heat dissipation sheet and method for manufacturing the heat dissipation sheet
CN101626674B (en) Radiating structure and preparation method thereof
JP4915826B2 (en) Application of carbon nanotubes
Ren et al. One-step preparation of silver hexagonal microsheets as electrically conductive adhesive fillers for printed electronics
JP3948000B2 (en) High thermal conductivity member, method for manufacturing the same, and heat dissipation system using the same
EP2162910B1 (en) A thermal interface material
EP1696046A1 (en) Metal base carbon fiber composite material and process for producing the same
WO2005040065A1 (en) Method for producing carbon nanotube-dispersed composite material
JP5790023B2 (en) Manufacturing method of electronic parts
US20060083927A1 (en) Thermal interface incorporating nanotubes
CN101460393A (en) Production of nano-structures
WO2007061143A1 (en) Double-walled carbon nanotube, aligned double-walled carbon nanotube bulk structure, and process for production of the carbon nanotube or the bulk structure
JP2013115094A (en) Heat radiating material and method for manufacturing the same
JP5013116B2 (en) Sheet-like structure, method for producing the same, and electronic device
Sridhar et al. Direct growth of carbon nanofiber forest on nickel foam without any external catalyst
CN111247096A (en) Scalable preparation of pristine porous graphene nanoplatelets by dry microwave radiation
JP6202104B2 (en) Sheet-like structure, electronic device using the same, method for producing sheet-like structure, and method for producing electronic device
Sun et al. Oxidized graphite nanoplatelets as an improved filler for thermally conducting epoxy-matrix composites
KR101797671B1 (en) Manufacturing method of Ag-carbon nanocomposite for heat dissipation, and Ag-carbon nanocomposite obtained thereof, and uses thereof
KR101473708B1 (en) Method of manufacturing heat sink plate having excellent thermal conductivity in thickness direction and heat sink plate manufactured by the same
Zhao et al. Direct growth of carbon nanotubes on metal supports by chemical vapor deposition
KR20160132730A (en) Manufacturing process of graphene coated metal fine structures
KR102085230B1 (en) Manufacturing method of carbon based-metal composite with amorphous layer
JP2007181766A (en) Method for manufacturing carbon nano-structural body, catalytic metal particle composite material and its manufacturing method
TW201006369A (en) Heat conduction structure and method for making the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160222

R150 Certificate of patent or registration of utility model

Ref document number: 5899804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150