JP2009256204A - Method for making carbon nanotube - Google Patents

Method for making carbon nanotube Download PDF

Info

Publication number
JP2009256204A
JP2009256204A JP2009101371A JP2009101371A JP2009256204A JP 2009256204 A JP2009256204 A JP 2009256204A JP 2009101371 A JP2009101371 A JP 2009101371A JP 2009101371 A JP2009101371 A JP 2009101371A JP 2009256204 A JP2009256204 A JP 2009256204A
Authority
JP
Japan
Prior art keywords
metal substrate
polishing
carbon nanotubes
carbon nanotube
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009101371A
Other languages
Japanese (ja)
Other versions
JP5038349B2 (en
Inventor
Feng-Wei Dai
風偉 戴
▲ハン▼ ▲ヨウ▼
Han You
Chang-Shen Chang
長生 張
Hsien-Sheng Pei
先声 白
Kaili Jiang
開利 姜
守善 ▲ハン▼
Feng-Yan Fan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qinghua University
Hon Hai Precision Industry Co Ltd
Original Assignee
Qinghua University
Hon Hai Precision Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qinghua University, Hon Hai Precision Industry Co Ltd filed Critical Qinghua University
Publication of JP2009256204A publication Critical patent/JP2009256204A/en
Application granted granted Critical
Publication of JP5038349B2 publication Critical patent/JP5038349B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for making carbon nanotubes directly on a metal substrate. <P>SOLUTION: The method for making carbon nanotubes includes: a step 1 of providing a metal substrate; a step 2 of polishing one surface of the metal substrate; a step 3 of putting the polished metal substrate into a reaction device; a step 4 of introducing a first protecting gas to the reaction device in a process of heating the inside of the reaction device at a prescribed temperature; and a step 5 of introducing a gas containing carbon and a second protecting gas into the reaction device. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、カーボンナノチューブの製造方法に関し、特に金属基板にカーボンナノチューブを製造する方法に関するものである。   The present invention relates to a method for producing carbon nanotubes, and more particularly to a method for producing carbon nanotubes on a metal substrate.

カーボンナノチューブは1991年に発見された新しい一次元ナノ材料となるものである。カーボンナノチューブは高引張強さ及び高熱安定性を有し、また、異なる螺旋構造により、金属にも半導体にもなる。カーボンナノチューブは、理想的な一次元構造を有し、優れた力学機能、電気機能及び熱学機能などを有するので、材料科学、化学、物理などの科学領域、例えば、フィールドエミッタ(field emitter)を応用した平面ディスプレイ、単一電子デバイス、(single−electron device)、原子間力顕微鏡(Atomic Force Microscope, AFM)のプローブ、熱センサー、光センサー、フィルターなどに広く応用されている。   Carbon nanotubes become a new one-dimensional nanomaterial discovered in 1991. Carbon nanotubes have high tensile strength and high thermal stability, and can be both metals and semiconductors due to different helical structures. Since carbon nanotubes have an ideal one-dimensional structure and have excellent mechanical functions, electrical functions, thermodynamic functions, etc., they can be applied to scientific fields such as material science, chemistry, and physics, such as field emitters. It is widely applied to applied flat displays, single-electronic devices, single-electron devices, atomic force microscope (AFM) probes, thermal sensors, optical sensors, filters, and the like.

現在、CVD方法によりカーボンナノチューブを成長させることが広く利用されている。CVD方法により、遷移金属を触媒として利用して、所定の温度でカーボンを含むガスを分解させて、カーボンナノチューブを成長させる。現在、CVD方法によってカーボンナノチューブを成長させる工程において、シリコン基板が利用されている。しかし、電界放出装置、電子銃などの電子装置に利用される場合、大電流を付加するために、カーボンナノチューブを成長させる基板は金属であることが必要である。   Currently, growing carbon nanotubes by CVD is widely used. A CVD method is used to decompose carbon-containing gas at a predetermined temperature using a transition metal as a catalyst to grow carbon nanotubes. Currently, a silicon substrate is used in a process of growing carbon nanotubes by a CVD method. However, when used in an electronic device such as a field emission device or an electron gun, a substrate on which carbon nanotubes are grown needs to be a metal in order to apply a large current.

Ch. Emmenegger、“Carbon nanotube synthesized on metallic substrate”、 Applied Surface Science、2000年、第162−163巻、p.452−456Ch. Emmenegger, “Carbon nanotubes synthesized on metallic substrate”, Applied Surface Science, 2000, 162-163, p. 452-456

前記の課題を解決するために、非特許文献1に金属基板にカーボンナノチューブを成長させる方法が掲載されている。この成長方法において、アルミニウム基板に、硝酸鉄(Fe(NO)層を形成して、該基板を加熱して前記硝酸鉄をナノ粒子に形成させた後、カーボンを含むガス及び保護ガスを導入してカーボンナノチューブを成長させる。しかし、硝酸鉄の導電性が低いので、硝酸鉄の粒子から成長されたカーボンナノチューブと金属基板との電気接続が低下する。且つ、この成長方法において、硝酸鉄を加熱してナノ粒子を形成する工程が必要であるので、成長方法は複雑であり、コストが高くなる。 In order to solve the above problems, Non-Patent Document 1 discloses a method for growing carbon nanotubes on a metal substrate. In this growth method, after forming an iron nitrate (Fe (NO 3 ) 3 ) layer on an aluminum substrate and heating the substrate to form the iron nitrate into nanoparticles, a gas containing carbon and a protective gas To grow carbon nanotubes. However, since the conductivity of iron nitrate is low, the electrical connection between the carbon nanotubes grown from the iron nitrate particles and the metal substrate is reduced. In addition, in this growth method, a process of forming iron nanoparticles by heating iron nitrate is required, so that the growth method is complicated and cost is increased.

本発明は、前記課題を解決するために、直接金属基板にカーボンナノチューブを成長させる方法を提供する。   In order to solve the above-mentioned problems, the present invention provides a method for growing carbon nanotubes directly on a metal substrate.

本発明のカーボンナノチューブの製造方法は、金属基板を提供する第一ステップと、前記金属基板の一つの表面を研磨する第二ステップと、前記金属基板を反応装置に設置する第三ステップと、所定の温度で前記反応装置を加熱する過程において、前記反応装置の中に第一保護ガスを導入する第四ステップと、カーボンを含むガス及び第二保護ガスを前記反応装置の中に導入する第五ステップと、を含む。   The method for producing carbon nanotubes of the present invention includes a first step of providing a metal substrate, a second step of polishing one surface of the metal substrate, a third step of installing the metal substrate in a reaction apparatus, and a predetermined step. A fourth step of introducing a first protective gas into the reactor, and a fifth step of introducing a gas containing carbon and a second protective gas into the reactor. Steps.

前記金属基板は銅からなる。   The metal substrate is made of copper.

前記第二ステップは、第一方向に沿って前記金属基板の一つの表面を研磨する第一サブステップと、第二方向に沿って、前記金属基板の前記研磨した表面を研磨する第二サブステップと、再び第一方向に沿って前記金属基板の前記研磨した表面を研磨する第三サブステップと、を含む。   The second step includes a first sub-step of polishing one surface of the metal substrate along a first direction, and a second sub-step of polishing the polished surface of the metal substrate along a second direction. And a third sub-step of polishing the polished surface of the metal substrate along the first direction again.

前記第二ステップにおいて、異なる方向に沿って前記金属基板を研磨して、前記金属基板の表面に交叉した微細な溝を形成する。   In the second step, the metal substrate is polished along different directions to form fine grooves crossing the surface of the metal substrate.

前記第四ステップにおいて、加熱温度は400℃〜800℃である。   In the fourth step, the heating temperature is 400 ° C to 800 ° C.

従来の技術と比べて、本発明の製造方法において、別に触媒層を形成する工程が必要でなく、直接金属基板にカーボンナノチューブを成長させることができるので、本発明の製造方法は簡単であり、コストが低くなる。さらに、本発明の製造方法は大量の生産に適用できる。   Compared with the prior art, the manufacturing method of the present invention does not require a separate step of forming a catalyst layer, and carbon nanotubes can be grown directly on a metal substrate, so the manufacturing method of the present invention is simple, Cost is lower. Furthermore, the manufacturing method of the present invention can be applied to mass production.

本発明のカーボンナノチューブの製造方法のフローチャートである。It is a flowchart of the manufacturing method of the carbon nanotube of this invention. 本発明のカーボンナノチューブのSEM写真である。It is a SEM photograph of the carbon nanotube of the present invention. 本発明のカーボンナノチューブのTEM写真である。It is a TEM photograph of the carbon nanotube of the present invention.

以下、図面を参照して、本発明の実施形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1を参照すると、本発明のカーボンナノチューブの製造方法は、金属基板を提供する第一ステップと、前記金属基板の一つの表面を研磨する第二ステップと、前記金属基板を反応装置に設置する第三ステップと、所定の温度で前記反応装置を加熱する過程において、前記反応装置の中に第一保護ガスを導入する第四ステップと、カーボンを含むガス及び第二保護ガスを前記反応装置の中に導入する第五ステップと、を含む。   Referring to FIG. 1, the carbon nanotube manufacturing method of the present invention includes a first step of providing a metal substrate, a second step of polishing one surface of the metal substrate, and installing the metal substrate in a reaction apparatus. A third step, a fourth step of introducing a first protective gas into the reaction device in the course of heating the reaction device at a predetermined temperature, and a gas containing carbon and a second protective gas for the reaction device. And a fifth step to be introduced.

本実施例において、前記第一ステップで提供された金属基板は銅からなる。前記金属基板の形状及び寸法は実用の条件に応じて設定することができる。本実施例において、前記金属基板は長方形の板型であり、その厚さは0.5cm〜5cmであり、その面積は4cm〜100cmである。 In this embodiment, the metal substrate provided in the first step is made of copper. The shape and dimensions of the metal substrate can be set according to practical conditions. In this embodiment, the metal substrate is a plate-type rectangular, its thickness is 0.5Cm~5cm, the area is 4 cm 2 100 cm 2.

前記第二ステップにおいて、まず、#600〜#800の研磨紙を利用して、第一方向に沿って前記金属基板の一つの表面を3〜5分間研磨する。次に、第二方向に沿って、#1000〜#1300の研磨紙を利用して、前記金属基板の前記研磨した表面を5〜8分間研磨する。最後に、#1500〜#2000の研磨紙を利用して、再び第一方向に沿って前記金属基板の前記研磨した表面を10〜15分間研磨する。毎回前記金属基板を研磨した後、生じた金属粉末を除去することが好ましい。前記第一方向と第二方向とは、0°〜90°で交叉し、90°で交叉することが好ましい。   In the second step, first, one surface of the metal substrate is polished for 3 to 5 minutes along the first direction using # 600 to # 800 polishing paper. Next, the polished surface of the metal substrate is polished for 5 to 8 minutes using # 1000 to # 1300 polishing paper along the second direction. Finally, the polished surface of the metal substrate is again polished for 10 to 15 minutes along the first direction using # 1500 to # 2000 polishing paper. It is preferable to remove the resulting metal powder after polishing the metal substrate each time. The first direction and the second direction cross at 0 ° to 90 °, and preferably cross at 90 °.

前記金属基板を研磨することにより、前記金属基板の表面を平滑に処理することができる。且つ、異なる方向に沿って前記金属基板を研磨することにより、前記金属基板の表面に交叉した微細な溝を形成することができる。前記微細な溝は交叉して複数の領域を形成する。   By polishing the metal substrate, the surface of the metal substrate can be processed smoothly. Further, by polishing the metal substrate along different directions, it is possible to form fine grooves intersecting the surface of the metal substrate. The fine grooves intersect to form a plurality of regions.

本実施例において、前記第三ステップにおいて利用した前記反応容器は、石英の反応炉又はチューブ炉であることができる。前記金属基板は、前記反応容器の中央部に設置される。この場合、前記金属基板の、前記研磨した表面と反対面を前記反応容器の内壁に接触させる。   In this embodiment, the reaction vessel used in the third step may be a quartz reaction furnace or a tube furnace. The metal substrate is installed at the center of the reaction vessel. In this case, the surface of the metal substrate opposite to the polished surface is brought into contact with the inner wall of the reaction vessel.

前記第四ステップにおいて、前記第一保護ガスは窒素である。本実施例において、前記反応容器の内部を400℃〜800℃程度まで加熱し、700℃まで加熱することが好ましい。前記反応容器を加熱する過程において、前記金属基板の微細な溝が交叉して形成した複数の領域に複数の均一な銅粒子などの金属粒子が形成される。前記銅粒子は、カーボンナノチューブを成長させる種として利用できる。本実施例において、前記銅粒子の直径は、1〜10nmである。前記銅粒子の密度は、前記研磨処理の回数及び研磨方向の間の角度に関係する。即ち、研磨処理の回数が大きくなり、研磨方向の間の角度が小さくなるほど、銅粒子の密度が大きくなる。   In the fourth step, the first protective gas is nitrogen. In this example, it is preferable that the inside of the reaction vessel is heated to about 400 ° C. to 800 ° C. and heated to 700 ° C. In the process of heating the reaction vessel, metal particles such as a plurality of uniform copper particles are formed in a plurality of regions formed by crossing fine grooves of the metal substrate. The copper particles can be used as seeds for growing carbon nanotubes. In a present Example, the diameter of the said copper particle is 1-10 nm. The density of the copper particles is related to the angle between the number of polishing processes and the polishing direction. That is, as the number of polishing processes increases and the angle between the polishing directions decreases, the density of the copper particles increases.

前記第五ステップにおいて、前記カーボンを含むガスは、アセチレンやエチレンなどの炭化水素であり、保護ガスは不活性ガス又は窒素である。前記第一保護ガス及び第二保護ガスは同じであることができる。アセチレンは低分解温度を有するので、カーボンを含むガスとして利用されることが好ましい。前記第五ステップにおいて、カーボンを含むガス及び保護ガスを前記反応容器の内部に導入して、400〜800℃でカーボンナノチューブを5〜30分間成長させる。この場合、前記複数の銅粒子から複数のカーボンナノチューブが成長されることができる。この後、前記反応容器を冷却した後、前記金属基板を前記反応容器から取り出す。   In the fifth step, the carbon-containing gas is a hydrocarbon such as acetylene or ethylene, and the protective gas is an inert gas or nitrogen. The first protective gas and the second protective gas may be the same. Since acetylene has a low decomposition temperature, it is preferably used as a gas containing carbon. In the fifth step, a carbon-containing gas and a protective gas are introduced into the reaction vessel, and carbon nanotubes are grown at 400 to 800 ° C. for 5 to 30 minutes. In this case, a plurality of carbon nanotubes can be grown from the plurality of copper particles. Thereafter, after cooling the reaction vessel, the metal substrate is taken out of the reaction vessel.

図2及び図3を参照すると、本発明の製造方法によって得られたカーボンナノチューブは、前記金属基板に配向せず配列されている。前記カーボンナノチューブの一端は前記金属基板に接続されている。前記カーボンナノチューブの直径は5nm〜20nmである。   Referring to FIGS. 2 and 3, the carbon nanotubes obtained by the production method of the present invention are arranged without being oriented on the metal substrate. One end of the carbon nanotube is connected to the metal substrate. The diameter of the carbon nanotube is 5 nm to 20 nm.

Claims (5)

金属基板を提供する第一ステップと、
前記金属基板の一つの表面を研磨する第二ステップと、
前記金属基板を反応装置に設置する第三ステップと、
所定の温度で前記反応装置を加熱する過程において、前記反応装置の中に第一保護ガスを導入する第四ステップと、
カーボンを含むガス及び第二保護ガスを前記反応装置の中に導入する第五ステップと、
を含むことを特徴とするカーボンナノチューブの製造方法。
A first step of providing a metal substrate;
A second step of polishing one surface of the metal substrate;
A third step of installing the metal substrate in the reactor;
A fourth step of introducing a first protective gas into the reactor in the course of heating the reactor at a predetermined temperature;
A fifth step of introducing a gas containing carbon and a second protective gas into the reactor;
A method for producing a carbon nanotube, comprising:
前記金属基板は銅からなることを特徴とする、請求項1に記載のカーボンナノチューブの製造方法。   The method of manufacturing a carbon nanotube according to claim 1, wherein the metal substrate is made of copper. 前記第二ステップは、
第一方向に沿って前記金属基板の一つの表面を研磨する第一サブステップと、
第二方向に沿って、前記金属基板の前記研磨した表面を研磨する第二サブステップと、
再び第一方向に沿って前記金属基板の前記研磨した表面を研磨する第三サブステップと、
を含むことを特徴とする、請求項1又は2に記載のカーボンナノチューブの製造方法。
The second step includes
A first sub-step of polishing one surface of the metal substrate along a first direction;
A second sub-step of polishing the polished surface of the metal substrate along a second direction;
A third sub-step of polishing the polished surface of the metal substrate again along the first direction;
The method for producing carbon nanotubes according to claim 1, wherein the carbon nanotube production method comprises carbon nanotubes.
前記第二ステップにおいて、
異なる方向に沿って前記金属基板を研磨して、前記金属基板の表面に交叉した微細な溝を形成することを特徴とする、請求項1〜3のいずれか一項に記載のカーボンナノチューブの製造方法。
In the second step,
The carbon nanotube production according to any one of claims 1 to 3, wherein the metal substrate is polished along different directions to form fine grooves intersecting the surface of the metal substrate. Method.
前記第四ステップにおいて、加熱温度は400℃〜800℃であることを特徴とする、請求項1〜4のいずれか一項に記載のカーボンナノチューブの製造方法。   5. The method for producing carbon nanotubes according to claim 1, wherein in the fourth step, the heating temperature is 400 ° C. to 800 ° C. 6.
JP2009101371A 2008-04-18 2009-04-17 Method for producing carbon nanotube Active JP5038349B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008100667448A CN101559939B (en) 2008-04-18 2008-04-18 Preparation method of carbon nano tube
CN200810066744.8 2008-04-18

Publications (2)

Publication Number Publication Date
JP2009256204A true JP2009256204A (en) 2009-11-05
JP5038349B2 JP5038349B2 (en) 2012-10-03

Family

ID=41201267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009101371A Active JP5038349B2 (en) 2008-04-18 2009-04-17 Method for producing carbon nanotube

Country Status (3)

Country Link
US (1) US20090263310A1 (en)
JP (1) JP5038349B2 (en)
CN (1) CN101559939B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013514967A (en) * 2009-12-21 2013-05-02 ウルトラ インコーポレイテッド High performance carbon nanotube energy storage device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5246765B2 (en) * 2008-10-29 2013-07-24 国立大学法人 東京大学 Carbon nanotube formation method
JP5374354B2 (en) * 2009-12-25 2013-12-25 日東電工株式会社 Carbon nanotube composite structure and adhesive member
FR2965102B1 (en) * 2010-09-17 2016-12-16 Centre Nat De La Rech Scient (Cnrs) HIGH VOLTAGE EMITTING ELECTRON GUN, PARTICULARLY INTENDED FOR ELECTRONIC MICROSCOPY
CN102324335B (en) * 2011-06-07 2013-10-23 天津工业大学 Method for preparing compound electrical contact material
CN104637758B (en) * 2014-12-11 2017-08-29 温州大学 The method of direct growth carbon nanotube field emission cathode in nickeliferous metallic substrates
CN110240145B (en) * 2019-07-03 2021-05-28 西安交通大学 Transition layer-support-free metal-based array carbon nanotube electrode material and preparation method and application thereof
CN110697686B (en) * 2019-09-17 2021-06-22 北京化工大学 Method for preparing carbon nano tube by heating powder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001048512A (en) * 1999-08-04 2001-02-20 Ulvac Japan Ltd Preparation of perpendicularly oriented carbon nanotube
JP2002518280A (en) * 1998-06-19 2002-06-25 ザ・リサーチ・ファウンデーション・オブ・ステイト・ユニバーシティ・オブ・ニューヨーク Aligned free-standing carbon nanotubes and their synthesis
JP2005001936A (en) * 2003-06-11 2005-01-06 Fujikura Ltd Method of manufacturing carbon nanotube
JP2006290736A (en) * 2005-04-14 2006-10-26 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Thermal interface material and method of manufacturing the same
JP2007055821A (en) * 2005-08-22 2007-03-08 Ulvac Japan Ltd Method for producing graphite nanofiber

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1174918C (en) * 2001-09-05 2004-11-10 武汉大学 Nanometer carbon pipe preparing process
CN1239387C (en) * 2002-11-21 2006-02-01 清华大学 Carbon nano transistor array and grwoth method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002518280A (en) * 1998-06-19 2002-06-25 ザ・リサーチ・ファウンデーション・オブ・ステイト・ユニバーシティ・オブ・ニューヨーク Aligned free-standing carbon nanotubes and their synthesis
JP2001048512A (en) * 1999-08-04 2001-02-20 Ulvac Japan Ltd Preparation of perpendicularly oriented carbon nanotube
JP2005001936A (en) * 2003-06-11 2005-01-06 Fujikura Ltd Method of manufacturing carbon nanotube
JP2006290736A (en) * 2005-04-14 2006-10-26 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Thermal interface material and method of manufacturing the same
JP2007055821A (en) * 2005-08-22 2007-03-08 Ulvac Japan Ltd Method for producing graphite nanofiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013514967A (en) * 2009-12-21 2013-05-02 ウルトラ インコーポレイテッド High performance carbon nanotube energy storage device

Also Published As

Publication number Publication date
CN101559939B (en) 2011-05-04
JP5038349B2 (en) 2012-10-03
CN101559939A (en) 2009-10-21
US20090263310A1 (en) 2009-10-22

Similar Documents

Publication Publication Date Title
JP5038349B2 (en) Method for producing carbon nanotube
JP4474502B2 (en) Method for producing carbon nanotube array
JP5027167B2 (en) Carbon nanotube structure and manufacturing method thereof
JP5816981B2 (en) Control method of graphene film growth
KR100668352B1 (en) Fabrication method of n-doped single-walled carbon nanotubes
JP4116031B2 (en) Carbon nanotube matrix growth apparatus and multilayer carbon nanotube matrix growth method
JP5065336B2 (en) Method for producing carbon nanotube film
EP2298697B1 (en) Method for producing a carbon wire assembly and a conductive film
Lim et al. Plasma-assisted synthesis of carbon nanotubes
US20050172370A1 (en) Forming nanostructures
US7161286B2 (en) Carbon nanotube array and method for making same
JP5029603B2 (en) Method for producing carbon nanotube
Hsu et al. Diamond nanowire–a challenge from extremes
McLean et al. Boron nitride nanotube nucleation via network fusion during catalytic chemical vapor deposition
JP2009012176A (en) High density carbon nano-tube array and its growth method
JP2011068501A (en) Reused substrate for producing carbon nanotube, substrate for producing carbon nanotube, and method for manufacturing the substrate
US20070071895A1 (en) Method for making carbon nanotube-based device
US10961123B2 (en) Apparatus and method for synthesizing vertically aligned carbon nanotubes
KR101313753B1 (en) Method for growth of carbon nanoflakes and carbon nanoflakes structure
Il’in et al. Vertically aligned carbon nanotubes production by PECVD
Li et al. From top to down—Recent advances in etching of 2D materials
Maruyama et al. Initial growth process of carbon nanotubes in surface decomposition of SiC
JP2005314162A (en) Conductivity-variable three-layer carbon nanotube, method of synthesizing three-layer carbon nanotube, and method of synthesizing conductivity-variable three-layer carbon nanotube
Kolahdouz et al. Substrate engineering for Ni-assisted growth of carbon nano-tubes
US20090257944A1 (en) Method for producing carbon nanotube

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5038349

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250