TW201227789A - Field emission cathode structure and method for making same - Google Patents

Field emission cathode structure and method for making same Download PDF

Info

Publication number
TW201227789A
TW201227789A TW99146722A TW99146722A TW201227789A TW 201227789 A TW201227789 A TW 201227789A TW 99146722 A TW99146722 A TW 99146722A TW 99146722 A TW99146722 A TW 99146722A TW 201227789 A TW201227789 A TW 201227789A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
carbon
field emission
nanotube structure
emission cathode
Prior art date
Application number
TW99146722A
Other languages
Chinese (zh)
Other versions
TWI417923B (en
Inventor
Peng Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW99146722A priority Critical patent/TWI417923B/en
Publication of TW201227789A publication Critical patent/TW201227789A/en
Application granted granted Critical
Publication of TWI417923B publication Critical patent/TWI417923B/en

Links

Abstract

The present invention relates to a field emission cathode structure and a method for making same. The field emission cathode structure includes a first carbon nanotube structure and a second carbon nanotube structure. The second carbon nanotube structure is disposed on a surface of the first carbon nanotube structure and perpendicular to the surface of the first carbon nanotube structure. The second carbon nanotube structure includes a plurality of second carbon nanotubes. The second carbon nanotube structure include at least one peak. The tip of the peak is far from the surface of first carbon nanotube structure. The length of the second carbon nanotube is gradually reducing along the direction which is far from the tip.

Description

201227789 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種場發射陰極結構及其製備方法。 【先前技林亍】 [0002] 1 991年,曰本NEC公司研究人員意外發現奈米碳管,請參 見:"Helical microtubules of graphitic carbon" , S. Iijima, Nature, vol.354, p56 (1991) ,因為奈米碳管的優異特性,其潛在的應用一直受到人 們廣泛關注,尤其係在電子領域,由於奈米碳管的直徑 極小,大約幾奈米至十幾奈冰,在較小的電場作用下就 可從其尖端發射電子,因而可用作場發射陰極。 [0003] 近年來,人們在奈米材料及其應用領域進行各種研究, 尤其係對奈米碳管的生長方法及其應用。例如,李康雨 等人於2005年10月12日申請於2009年12月9日公告的公 告號為CN100568436的中國大陸專利揭示了一種奈米碳 管發射器件的製備方法,此發明利用PECVD (電漿增強化 學氣相沈積)法在第一奈米碳管表面生長出垂直第一奈 米碳管表面的第二奈米碳管,其包括下列步驟:先在形 成有催化劑材料層的第一基底上生長複數第一奈米碳管 ,然後,從所述第一基底分離所述第一奈米碳管並將分 離的奈米碳管浸入分散溶液,最後用所述分散溶液塗覆 第二基底並且烘焙所述第二基底,使所述第一奈米碳管 固定於第二基底,然後從所述第一奈米碳管表面的催化 劑顆粒上生長第二奈米碳管。所述第一奈米碳管及第二 奈米碳管構成的結構可用於場發射陰極結構。 099146722 表單編號A0101 第4頁/共42頁 0992080276-0 201227789 剛然、,通過±述方法製備的第 ^ +Θ2Χ 不木衩官及第二奈米碳管 構,發射陰極結構用於場發射時,由於第二奈米碳 奈求碳管的高度基本相同,因此相_奈米碳管 ^間存在f子《效應,使得電子發射主要集中於第二 不未故官的邊緣位置’從而產生邊緣增強效應,影響中 間位置奈米碳管的電子發射,導 發射的不均勾。 丨、未奴官中電子 【發明内容】 [0005] 〇 :=要提供一種電子發射比較均勻的場發射陰極結 ..;.......... ..201227789 VI. Description of the Invention: [Technical Field of the Invention] [0001] The present invention relates to a field emission cathode structure and a method of fabricating the same. [Formerly Tech Linyi] [0002] In 991, researchers at Sakamoto NEC accidentally discovered carbon nanotubes, see: "Helical microtubules of graphitic carbon" , S. Iijima, Nature, vol.354, p56 ( 1991), because of the excellent properties of carbon nanotubes, its potential applications have been widely concerned, especially in the field of electronics, because the diameter of the carbon nanotubes is very small, about a few nanometers to a dozen ice, in the smaller The electric field can emit electrons from its tip and thus can be used as a field emission cathode. [0003] In recent years, various studies have been conducted in the field of nanomaterials and their applications, especially on the growth methods and applications of carbon nanotubes. For example, the Chinese mainland patent published by Li Kangyu et al. on October 12, 2005, filed on Dec. 9, 2009, with the publication number CN100568436, discloses a method for preparing a carbon nanotube emitting device, which utilizes PECVD (plasma). The enhanced chemical vapor deposition method comprises growing a second carbon nanotube on the surface of the first carbon nanotube on the surface of the first carbon nanotube, comprising the steps of: firstly forming a first substrate on which the catalyst material layer is formed Growing a plurality of first carbon nanotubes, then separating the first carbon nanotube from the first substrate and immersing the separated carbon nanotubes in a dispersion solution, and finally coating the second substrate with the dispersion solution and The second substrate is baked, the first carbon nanotube is fixed to the second substrate, and then a second carbon nanotube is grown from the catalyst particles on the surface of the first carbon nanotube. The structure of the first carbon nanotube and the second carbon nanotube can be used for a field emission cathode structure. 099146722 Form No. A0101 Page 4 / Total 42 Page 0992080276-0 201227789 Just, the ^^Θ2Χ prepared by the method described by the method, the second cathode structure and the second carbon nanotube structure, the emission cathode structure is used for field emission Since the height of the second nanocarbon carbon nanotubes is substantially the same, there is a f-sub-effect between the phase and the carbon nanotubes, so that the electron emission is mainly concentrated on the edge position of the second undead. The enhancement effect affects the electron emission of the carbon nanotubes in the middle position and the uneven emission of the conduction.丨, 未奴官中电子 [Summary of the Invention] [0005] 〇 := To provide a field emission cathode junction with relatively uniform electron emission ..;..........

[0006] 一種場發射陰極結構,其包括:奈米碳管 一第二奈米碳管結構設置於所述第—奈米碳㈣㈣ 面,該第二奈米碳管結構包括複數第二奈米碳^,且= 述第二奈米碳管基本垂直於第一奈米碳;結構二3 ’其中’所述第二奈米碳管結候詩所述第_奈米碳 管結構表面的-端形成至少一尖端,所述第二奈:碳管 〇 結構中的複數第二奈米碳管的長度沿遠離所述尖端的頂 端的方向逐漸縮短。 ' [〇〇〇7] 一種場發射陰極結構的製備方法,其包括以下步驟:提 供一懸空設置的第一奈米碳管結構;以所述懸空設置的 第一奈米碳管結構作為基底,通過化學氣相沈積法在所 述第一奈米碳管結構的表面生長第二奈米碳管形成第 二奈米碳管結構,其中,通過向所述第一奈米碳管結構 通入電流使所述第一奈米碳管結構的溫度升高達到第二 奈米碳管的生長溫度;通電一段時間後,停止通電並停 099146722 表單編號A0101 第5頁/共42頁 0992080276-0 201227789 止通入氣體,得到所述場發射陰極結構。 [0008] [0009] [0010] [0011] 相較於Μ技術,所述場發射陰極結構中所述第二奈米 石反官結構具有-尖端,從而減小了奈米碳管之間的屏蔽 效應,並使電子發射射於尖端處的奈米碳f,因此可 減小第二奈米碳管結構中的邊緣增強效應,提高電子發 射密度的均勻性,並且製備方法簡單易行,適合在工業 上批量生長。 【實施方式】 下面將結合附圖及具體實施例對本技術方案進行詳細說 明。 請參閱圖1至圖4,本發明第一實施例提供一種場發射陰 極結構200,所述場發射陰極結構2〇〇包括一第一奈米碳 管結構212及一第二奈米碳管結構214,所述第二奈米碳 管結構214位於所述第一奈米碳管結構212的表面,並且 與所述第一奈米碳管結構21.2相連..。 所述第一奈米碳管結構212為膜狀結構或線狀結構,其包 括複數第一奈米碳管212a及分散於第一奈米碳管212a中 的催化劑顆粒213。所述第一奈米碳管212a基本平行於所 述第一奈米碳管結構212的表面,即所述第一奈米碳管 212a的軸向基本平行於所述第一奈米礙管結構212的表面 。所述催化劑顆粒213的材料為鐵(Fe)、鈷(Co)、鎳 (Ni )或其任意組合的合金之一,所述催化劑顆粒21 3分 散於第一奈米碳管212a表面或分散於相鄰的奈米碳管與 奈米碳管的連接處。所述第一奈米碳管結構212未經過任 何化學修飾或功能化處理,所述第一奈米碳管結構21 2中 099146722 表單編號A0101 第6頁/共42頁 0992080276-0 201227789 Ο [0012] 的複數第一奈米碳管212a可無序排列或有序排列。所謂 無序排列係指奈米碳管的排列方向無規則。所謂有序排 列係指奈米碳管的排列方向有規則。具體地,當第一奈 米碳管結構212包括無序排列的第一奈米碳管212a時,所 述第一奈米碳管212a相互纏繞或者各向同性排列;當第 一奈米碳管結構212包括有序排列的第一奈米碳管212a時 ,所述第一奈米碳管212a沿一方向或者複數方向擇優取 向延伸。所謂“擇優取向”係指所述第一奈米碳管結構 212中的大多數第一奈米碳管212a在一方向上具有較大的 取向幾率;即,該第一奈米碳管結構212中的大多數第一 奈米碳管212 a的軸向基本沿同一方向延伸。 Ο 具體地,所述第一奈米碳管結構212包括至少一奈米碳管 膜、至少一奈米碳管線或至少一奈米礙管膜與至少一奈 米碳管線的組合。所述奈米碳管膜或奈米碳管線為複數 奈米碳管組成的自支撐結構,所述複數奈米碳管通過凡 得瓦力(van der Waals force)相連。所述自支樓係 指第一奈米碳管結構212不需要大面積的載體支撐,而只 要相對兩邊提供支撐力即能整體上懸空而保持自身狀態 ,即將該第一奈米碳管結構212置於(或固定於)間隔一 定距離設置的兩個支撐體上時,位於兩個支撐體之間的 奈米碳管結構能夠懸空保持自身狀態。所述自支撐主要 通過奈米碳管結構中存在連續的通過凡得瓦力相連延伸 的奈米碳管而實現。 所述奈米碳管膜可為奈米碳管拉膜、奈米碳管碾壓膜和 奈米碳管絮化膜,所述奈米碳管線可為一非扭轉的奈米 099146722 表單編號A0101 第7頁/共42頁 0992080276-0 [0013] 201227789 碳管線或扭轉的奈米碳管線,本實施例中所述第一奈米 碳管結構21 2為奈米碳管拉膜。 [0014] 請參閱圖3,所述奈米碳管拉膜係由若干奈米碳管組成的 自支撐結構。所述若干奈米碳管沿同一方向擇優取向延 伸。該奈米碳管拉膜中大多數奈米碳管的整體延伸方向 基本朝同一方向。而且,所述大多數奈米碳管的整體延 伸方向基本平行於奈米碳管拉膜的表面。進一步地,所 述奈米碳管拉膜中多數奈米碳管係通過凡得瓦力首尾相 連。具體地,所述奈米碳管拉膜中基本朝同一方向延伸 的大多數奈米碳管中每一奈米碳/管與在延伸方向上相鄰 的奈米碳管通過凡得瓦力首尾相連。當然,所述奈米碳 管拉膜中存在少數隨機排列的奈米碳管,這些奈米碳管 不會對奈米碳管拉膜中大多數奈米碳管的整體取向排列 構成明顯影響。所述奈米碳管拉膜中基本朝同一方向延 伸的多數奈米碳管,並非絕對的直線狀,可適當的彎曲 ;或者並非完全按照延伸方向上排列,可適當的偏離延 伸方向。因此,不能排除奈米碳管拉膜的基本朝同一方 向延伸的多數奈米碳管中並列的奈米碳管之間可能存在 部份接觸。 [0015] 所述奈米碳管拉膜包括複數連續且定向排列的奈米碳管 片段。該若干奈米碳管片段通過凡得瓦力首尾相連。每 一奈米碳管片段包括複數相互平行的奈米碳管,該複數 相互平行的奈米碳管通過凡得瓦力緊密結合。該奈米碳 管片段具有任意的長度、厚度、均勻性及形狀。該奈米 碳管拉膜中的奈米碳管沿同一方向擇優取向延伸。所述 099146722 表單編號A0101 第8頁/共42頁 0992080276-0 201227789 奈米碳管拉膜還包括複數催化劑顆粒,所述催化劑顆粒 位於所述奈米碳管片段的一端。由於所述奈米碳管拉膜 包括複數連續奈米碳管片段,且所述奈米碳管片段具有 基本相同的長度,因此,所述催化劑顆粒在奈米碳管拉 膜中沿奈米碳管的延伸方向基本均勻分散,即所述催化 劑顆粒分散於奈米碳管拉膜中兩個通過凡得瓦力首尾相 連的奈米碳管之間的連接處。所述奈米碳管拉膜的結構 及其製備方法請參見2010年5月26日公告的,公告號為 CN1 01239712B的中國發明專利說明書。 當所述第一奈米碳管結構212包括複數奈米碳管膜時,該 複數奈米碳管膜可層疊設置形成一體結構,相鄰兩層奈 米碳管膜之間通過凡得瓦力緊密結合。優選的,當所述 奈米碳管膜為拉膜時,所述相鄰兩層奈米碳管膜中奈米 碳管的擇優取向延伸方向形成一夾角α,其中0° S a S 90°。當α=0°時,所述相鄰兩層奈米碳管膜可稱之為彼 此同向排列;當0 ° < a S 90 °時,所述相鄰兩層奈米碳管 膜可稱之為彼此交叉排列。所述複數層奈米碳管膜層疊 設置可提高其強度,第一奈米碳管結構212工作過程t可 更好的保持其形狀和結構。優選的,所述第一奈米碳管 結構212包括複數交叉排列的複數層奈米碳管膜,可進一 步增強其機械強度。本實施例中,所述第一奈米碳管結 構212為一層奈米碳管拉膜。 [0017] 進一步的,所述第一奈米碳管結構212的表面可進一步沈 積有若干催化劑顆粒,所述催化劑顆粒沈積在第一奈米 碳管結構212遠離基底220的表面,具體的,所述催化劑 099146722 表單編號A0101 第9頁/共42頁 0992080276-0 201227789 顆粒在所述第一奈米碳管結構2 1 2表面均勻分散,並且主 要分散於所述第一奈米碳管結構212中奈米碳管的表面, 所述催化劑顆粒的材料可為鐵(Fe)、鈷(c〇)、鎮( Ni)或其任意組合的合金之一。通過在第一奈米碳管结 構21 2的表面沈積所述催化劑顆粒,可控制生長奈米碳管 的密度。 [0018] 所述第二奈米碳管結構2 1 4位於所述第一奈米碳管結構 212遠離所述基底220的表面,並且與所述第一奈米碳管 結構21 2垂直相連。具體的,所述第二奈米碳管結構214 包括複數第二奈米碳管214a,所述複數第二奈米碳管 214a基本垂直於所述第一奈米碳管結構212的表面排列, 並且每一第二奈米碳管214a的一端均與所述第一奈米碳 管結構212的表面相連,另一端向遠離所述第一奈米碳管 結構212的方向延伸。所述第二奈米碳管結構214中基本 朝同一方向延伸的多數第二奈米碳管214a,並非絕對的 直線狀’可適當的彎曲;或者並非完全垂直於所述第一 奈米碳管結構212表面,可適常的偏離延伸方向。因此, 不能排除第二奈米碳管結構214中的基本垂直於第一奈米 碳管結構21 2的多數第二奈米碳管214a中並列的奈米碳管 之間可能存在部份接觸《但整體上所述第二奈米碳管結 構214中的第二奈米碳管214a垂直於所述第一奈米碳管結 構21 2的表面。 [0019 ] 所述第二奈米碳管結構21 4在遠離所述第一奈米碳管結構 212的表面具有一尖端2i4c,所述尖端214c為向遠離所 述第一奈米碳管結構212方向凸出的凸起結構。所述第二 099146722 表單編號A0101 第10頁/共42頁 0992080276-0 201227789 Ο[0006] A field emission cathode structure comprising: a carbon nanotube-second carbon nanotube structure disposed on the first-nano carbon (four) (four) plane, the second carbon nanotube structure including a plurality of second nanometers Carbon ^, and = the second carbon nanotube is substantially perpendicular to the first nanocarbon; the structure 2 3 'where the second carbon nanotubes are in the surface of the first carbon nanotube structure - The end forms at least one tip, and the length of the plurality of second carbon nanotubes in the second carbon nanotube structure is gradually shortened in a direction away from the tip end of the tip. [〇〇〇7] A method for preparing a field emission cathode structure, comprising the steps of: providing a first carbon nanotube structure in a suspended configuration; using the first carbon nanotube structure disposed in the suspended space as a substrate, Forming a second carbon nanotube structure on the surface of the first carbon nanotube structure by chemical vapor deposition to form a second carbon nanotube structure, wherein a current is introduced into the first carbon nanotube structure Increasing the temperature of the first carbon nanotube structure to the growth temperature of the second carbon nanotube; after energizing for a period of time, stopping the energization and stopping 099146722 Form No. A0101 Page 5 / Total 42 Page 0992080276-0 201227789 The gas is emitted to obtain the field emission cathode structure. [0011] [0011] [0011] Compared to the germanium technique, the second nanosine reverse structure in the field emission cathode structure has a -tip, thereby reducing the relationship between the carbon nanotubes The shielding effect and the electron emission are emitted to the nano carbon f at the tip end, thereby reducing the edge enhancement effect in the second carbon nanotube structure, improving the uniformity of the electron emission density, and the preparation method is simple and suitable, and is suitable for Batch growth in industry. [Embodiment] Hereinafter, the present technical solution will be described in detail with reference to the accompanying drawings and specific embodiments. Referring to FIG. 1 to FIG. 4, a first embodiment of the present invention provides a field emission cathode structure 200. The field emission cathode structure 2 includes a first carbon nanotube structure 212 and a second carbon nanotube structure. 214, the second carbon nanotube structure 214 is located on the surface of the first carbon nanotube structure 212, and is connected to the first carbon nanotube structure 21.2. The first carbon nanotube structure 212 is a film structure or a linear structure, and includes a plurality of first carbon nanotubes 212a and catalyst particles 213 dispersed in the first carbon nanotubes 212a. The first carbon nanotube 212a is substantially parallel to the surface of the first carbon nanotube structure 212, that is, the axial direction of the first carbon nanotube 212a is substantially parallel to the first nano-tube structure. The surface of 212. The material of the catalyst particles 213 is one of iron (Fe), cobalt (Co), nickel (Ni) or any combination thereof, and the catalyst particles 21 3 are dispersed on the surface of the first carbon nanotube 212a or dispersed. The junction of adjacent carbon nanotubes and carbon nanotubes. The first carbon nanotube structure 212 is not subjected to any chemical modification or functional treatment, the first carbon nanotube structure 21 2 in 099146722 Form No. A0101 Page 6 / Total 42 Page 0992080276-0 201227789 Ο [0012 The plurality of first carbon nanotubes 212a may be arranged in an orderly or ordered manner. The so-called disordered arrangement means that the arrangement direction of the carbon nanotubes is irregular. The so-called ordered arrangement means that the arrangement of the carbon nanotubes is regular. Specifically, when the first carbon nanotube structure 212 includes the first carbon nanotubes 212a that are disorderly arranged, the first carbon nanotubes 212a are entangled or isotropically aligned; when the first carbon nanotubes are When the structure 212 includes the first carbon nanotubes 212a in an ordered arrangement, the first carbon nanotubes 212a extend in a preferred orientation in one direction or in a plurality of directions. By "preferred orientation" is meant that most of the first carbon nanotubes 212a of the first carbon nanotube structure 212 have a greater probability of orientation in one direction; that is, the first carbon nanotube structure 212 The axial direction of most of the first carbon nanotubes 212a extends substantially in the same direction. Specifically, the first carbon nanotube structure 212 includes at least one carbon nanotube film, at least one nano carbon line, or a combination of at least one nano tube film and at least one carbon carbon line. The carbon nanotube membrane or nanocarbon pipeline is a self-supporting structure composed of a plurality of carbon nanotubes connected by a van der Waals force. The self-supporting building means that the first carbon nanotube structure 212 does not require a large-area carrier support, and the first carbon nanotube structure 212 is maintained as long as the supporting force is provided on both sides to be suspended. When placed on (or fixed to) two supports spaced apart by a certain distance, the carbon nanotube structure between the two supports can be suspended to maintain its own state. The self-supporting is mainly achieved by the presence of a continuous carbon nanotube extending through the van der Waals force in the carbon nanotube structure. The carbon nanotube film may be a carbon nanotube film, a carbon nanotube film and a carbon nanotube film, and the nano carbon line may be a non-twisted nano 099146722 Form No. A0101 Page 7 / Total 42 page 0992080276-0 [0013] 201227789 Carbon line or twisted nano carbon line, the first carbon nanotube structure 21 2 in the present embodiment is a carbon nanotube film. [0014] Referring to FIG. 3, the carbon nanotube film is a self-supporting structure composed of a plurality of carbon nanotubes. The plurality of carbon nanotubes are preferentially oriented in the same direction. Most of the carbon nanotubes in the carbon nanotube film are oriented in the same direction. Moreover, the overall extension direction of the majority of the carbon nanotubes is substantially parallel to the surface of the carbon nanotube film. Further, most of the carbon nanotubes in the carbon nanotube film are connected end to end by van der Waals force. Specifically, each of the carbon nanotubes in the majority of the carbon nanotubes extending in the same direction in the carbon nanotube film and the carbon nanotubes adjacent to each other in the extending direction pass the van der Waals end to end Connected. Of course, there are a small number of randomly arranged carbon nanotubes in the carbon nanotube film, and these carbon nanotubes do not significantly affect the overall orientation of most of the carbon nanotubes in the carbon nanotube film. Most of the carbon nanotubes extending substantially in the same direction in the carbon nanotube film are not absolutely linear and may be appropriately bent, or may not be arranged completely in the extending direction, and may be appropriately deviated from the extending direction. Therefore, it is not possible to exclude partial contact between the carbon nanotubes juxtaposed in the majority of the carbon nanotubes of the carbon nanotube film which are extended in the same direction. [0015] The carbon nanotube film comprises a plurality of continuous and aligned carbon nanotube segments. The several carbon nanotube segments are connected end to end by van der Waals force. Each of the carbon nanotube segments includes a plurality of mutually parallel carbon nanotubes, and the plurality of mutually parallel carbon nanotubes are tightly coupled by van der Waals force. The carbon nanotube segments have any length, thickness, uniformity, and shape. The carbon nanotubes in the carbon nanotube film are preferentially oriented in the same direction. The 099146722 Form No. A0101 Page 8 of 42 0992080276-0 201227789 The carbon nanotube film also includes a plurality of catalyst particles located at one end of the carbon nanotube segment. Since the carbon nanotube film comprises a plurality of continuous carbon nanotube segments, and the carbon nanotube segments have substantially the same length, the catalyst particles are along the nanocarbon in the carbon nanotube film The direction in which the tubes extend is substantially uniformly dispersed, that is, the catalyst particles are dispersed in the joint between the two carbon nanotubes which are connected end to end by the van der Waals force in the carbon nanotube film. For the structure of the carbon nanotube film and the preparation method thereof, please refer to the Chinese invention patent specification published on May 26, 2010, the publication number is CN1 01239712B. When the first carbon nanotube structure 212 comprises a plurality of carbon nanotube membranes, the plurality of carbon nanotube membranes may be stacked to form an integral structure, and the adjacent two layers of carbon nanotube membranes pass through the van der Waals force Closely integrated. Preferably, when the carbon nanotube film is a tensile film, the preferred orientation extending direction of the carbon nanotubes in the adjacent two layers of carbon nanotube film forms an angle α, wherein 0° S a S 90° . When α=0°, the adjacent two layers of carbon nanotube films may be said to be aligned in the same direction; when 0° < a S 90 °, the adjacent two layers of carbon nanotube film may be Called each other to cross each other. The stacking of the plurality of layers of carbon nanotube film can increase the strength thereof, and the working process of the first carbon nanotube structure 212 can better maintain its shape and structure. Preferably, the first carbon nanotube structure 212 comprises a plurality of cross-aligned layers of carbon nanotube membranes, which further enhances the mechanical strength. In this embodiment, the first carbon nanotube structure 212 is a layer of carbon nanotube film. [0017] Further, the surface of the first carbon nanotube structure 212 may be further deposited with a plurality of catalyst particles deposited on the surface of the first carbon nanotube structure 212 away from the substrate 220, specifically, Catalyst 099146722 Form No. A0101 Page 9 / Total 42 Page 0992080276-0 201227789 Particles are uniformly dispersed on the surface of the first carbon nanotube structure 2 1 2 and are mainly dispersed in the first carbon nanotube structure 212 The surface of the carbon nanotube, the material of the catalyst particles may be one of iron (Fe), cobalt (c), town (Ni) or an alloy of any combination thereof. The density of the grown carbon nanotubes can be controlled by depositing the catalyst particles on the surface of the first carbon nanotube structure 21 2 . [0018] The second carbon nanotube structure 2 1 4 is located on a surface of the first carbon nanotube structure 212 away from the substrate 220 and is perpendicularly connected to the first carbon nanotube structure 21 2 . Specifically, the second carbon nanotube structure 214 includes a plurality of second carbon nanotubes 214a, and the plurality of second carbon nanotubes 214a are arranged substantially perpendicular to a surface of the first carbon nanotube structure 212. And one end of each of the second carbon nanotubes 214a is connected to the surface of the first carbon nanotube structure 212, and the other end extends away from the first carbon nanotube structure 212. A plurality of second carbon nanotubes 214a extending substantially in the same direction in the second carbon nanotube structure 214 are not absolutely linear and may be appropriately curved; or are not completely perpendicular to the first carbon nanotube The surface of the structure 212 can be suitably offset from the direction of extension. Therefore, it is not excluded that there may be partial contact between the carbon nanotubes juxtaposed in the plurality of second carbon nanotubes 214a substantially perpendicular to the first carbon nanotube structure 21 2 in the second carbon nanotube structure 214. However, the second carbon nanotube 214a in the second carbon nanotube structure 214 is perpendicular to the surface of the first carbon nanotube structure 21 2 as a whole. [0019] The second carbon nanotube structure 214 has a tip 2i4c on a surface away from the first carbon nanotube structure 212, and the tip 214c is away from the first carbon nanotube structure 212. A raised structure that protrudes in the direction. The second 099146722 Form No. A0101 Page 10 of 42 0992080276-0 201227789 Ο

奈米碳管結構214中位於所述尖端214c的頂端位置的第二 奈米奴管214a的長度,大於附近的第二奈米碳管2143的 長度,並且在從頂端位置向附近延伸的一定範圍内第 二奈米碳管214a的長度遞減,形成尖端214c,所述長度 最長的第二奈米碳管214a作為尖端214c的頂端。本實施 例中,所述第二奈米碳管結構214具有一三角形結構的尖 端214c,所述二角形結構係指,所述第二奈米碳管結構 214在沿第一奈米碳管結構212中第一奈米碳管212a的延 伸方向上的刮面為一三角形。即相對於第一奈米碳管結 構212的表面,所述第二奈米碳管結構2丨4申的第二奈米 碳管214a的尚度對應所述三角形結構的形狀變化,所述 二角形結構的第二奈米碳管結構214中頂端位置處的第二 奈米碳管214a的長度最長,從而形成一尖端214c,由此 頂端位置沿第一奈米碳管結構212中第一奈米碳管212a的 分別向兩端延伸方向上,即在遠離尖端2i4c的頂端的方 向上,第二奈米碳管214a的長度逐渐丨_短,從而所述複 數第二奈米碳管214a形成一頂端位置高、邊緣逐漸降低 的三角形結構。由於所述第二奈米碳管結構214為具有一 二角形結構的尖端214c,因此在發射電子的過程中,可 有效的減小第二奈米碳管214a之間的屏蔽效應,進而減 小第二奈米碳管結構214的邊緣増強效應,並相應的增強 三角形結構頂端位置處奈米碳管的電子發射能力,使得 整個第二奈米碳管結構214具有較均勻的電子發射密度。 進一步的’所述第二奈米碳管結構214中的奈米碳管可呈 規律性分佈,優選的,所述複數第二奈米碳管214a基本 099146722 表單編號A0101 第11頁/共42頁 0992080276-0 [0020] 201227789 以等p气 趣的方式排列。本實施例中,由认 碳管红- … 由於所述第一奈米 〜楫2i2為奈米碳官拉膜,因此所 分散々述催化劑顆粒213 月文於弟〜奈米碳管結構212中通過凡 第一式」 伸瓦力首尾相連的 構^^管⑽之間的連接處。所述第二奈米碳管結 213上中的第二奈米碳管2Ua係生長於所述催化劑顆粒 、’通過催化劍顆粒213與所述第—奈米後管結構 相連。具體地,所述第二奈米碳管21 4QM 催化l4a的一端與所述 於劑、相連,所述第二奈米碳管214a的另—端垂直 第1米破管結構212的表面向外延伸。因此第二 H噢營結構214中的奈来碳管在沿拉膜的拉伸方向上基 /等間鞋排列,其間距的距離與拉膜中奈切管的長 一^本相同。由於所述複數奈米碳管等間距排列,可進 山二减小奈米碳管之間的屏蔽效應,進而減小第二奈米 陡s结樽214的邊緣增強效應,提高電子發射密度的均勻 [0021]The length of the second nanotube 214a at the top end of the tip end 214c in the carbon nanotube structure 214 is greater than the length of the nearby second carbon nanotube 2143, and is in a certain range extending from the tip position to the vicinity. The length of the inner second carbon nanotube 214a is decreased to form a tip end 214c, and the second carbon nanotube 214a having the longest length serves as the tip end of the tip end 214c. In this embodiment, the second carbon nanotube structure 214 has a triangular structure tip 214c, and the second structure means that the second carbon nanotube structure 214 is along the first carbon nanotube structure. The scraping surface in the extending direction of the first carbon nanotube 212a in 212 is a triangle. That is, relative to the surface of the first carbon nanotube structure 212, the degree of the second carbon nanotube structure 214a of the second carbon nanotube structure 2 丨4 corresponds to the shape change of the triangular structure, the second The second carbon nanotube 214a at the top end position of the second carbon nanotube structure 214 of the angular structure has the longest length, thereby forming a tip end 214c, whereby the tip position is along the first nanotube in the first carbon nanotube structure 212. The lengths of the second carbon nanotubes 214a are gradually 丨_ shorter in the direction in which the ends of the carbon nanotubes 212a extend toward the both ends, that is, in the direction away from the tips of the tips 2i4c, so that the plurality of second carbon nanotubes 214a are formed. A triangular structure with a high top position and a gradually decreasing edge. Since the second carbon nanotube structure 214 is a tip end 214c having a quadrangular structure, the shielding effect between the second carbon nanotubes 214a can be effectively reduced during electron emission, thereby reducing The edge of the second carbon nanotube structure 214 has a marginal effect and correspondingly enhances the electron emission capability of the carbon nanotube at the top end of the triangular structure, so that the entire second carbon nanotube structure 214 has a relatively uniform electron emission density. Further, the carbon nanotubes in the second carbon nanotube structure 214 may be regularly distributed. Preferably, the plurality of second carbon nanotubes 214a are substantially 099146722 Form No. A0101 Page 11 of 42 0992080276-0 [0020] 201227789 arranged in a turbulent manner. In this embodiment, the carbon nanotubes are red-... Since the first nano-~2i2 is a nano-carbon film, the catalyst particles 213 are dispersed in the body-nano carbon nanotube structure 212. Through the connection between the first and the first type of structure, the end of the structure is connected to the tube (10). The second carbon nanotube 2Ua in the second carbon nanotube junction 213 is grown on the catalyst particles, and is connected to the first nanotube structure by catalytic sword particles 213. Specifically, one end of the second carbon nanotube 21 4QM catalyzed l4a is connected to the agent, and the other end of the second carbon nanotube 214a is perpendicular to the surface of the first meter breaking structure 212. extend. Therefore, the carbon nanotubes in the second H camp structure 214 are arranged in the stretching direction of the stretched film in the direction of the stretched film, and the distance between the pitches is the same as the length of the cut-off tube in the drawn film. Since the plurality of carbon nanotubes are arranged at equal intervals, the shielding effect between the carbon nanotubes can be reduced by the mountain, thereby reducing the edge enhancement effect of the second nano-station 214 and increasing the electron emission density. Uniform [0021]

L0022J 請參間您 阅圖4,進一步的’所述塲發射陰感結構2〇〇包括一 基底2 ? r\ υ ’所述第一奈米碳管結構212設置於所述基底 齐2二^表兩’所述第二奈米碳管結構214設置於所述第一 \ g結構212遠離基底220的表面,並且向冷私 基底22 離所述 υ的方向延伸’即所述第二奈米碳管結構214 ,、木袄管214a —端與所述第一奈米碳管結構212連接 * 端向遠離所述基底220的方向延伸。所述第— 石炭管社·播 —奈米 〜攝212可平鋪設置於所述基底220的表面,A,敢 空言支晉 叫也可懸 ° 所述基底220的表面。 本實施例中’所述第一奈米碳管結構2丨2懸空設置於所述 099146722 表單編號Α0101 第12頁/共42頁 0992080276-0 201227789 Ο [0023] 基底220表面時,所述場發射陰極結構200可進一步包括 間隔設置的兩支撐體,本實施例中所述兩支撐體可為第 一導電基體221及第二導電基體222,所述第一導電基體 221及第二導電基體222的材料可為如金屬單質、金屬合 金、導電複合材料等,其形狀不限,只需確保第一導電 基體221,與第二導電基體222具有一平面,可使第一奈米 碳管結構21 2的兩端分別平鋪黏附即可。本實施例中,所 述第一導電基體221與第二導電基體222的形狀為一長方 體。所述第一導電基體221與第二導電基體222之間的間 距可根據實際需要設置。L0022J Please refer to Figure 4, and further 'the 塲 emission of the sensation structure 2 〇〇 includes a substrate 2 r r υ ' The first carbon nanotube structure 212 is disposed on the substrate 2 2 2 ^ The second carbon nanotube structure 214 is disposed on the surface of the first/g structure 212 away from the substrate 220, and extends toward the cold private substrate 22 away from the crucible, that is, the second nanometer. The carbon tube structure 214, the end of the raft tube 214a is connected to the first carbon nanotube structure 212, and the end extends away from the base 220. The first - Carboniferous Pipeline - Broadcast - Nano ~ Photo 212 can be laid flat on the surface of the substrate 220, A, dare to talk about the surface of the substrate 220 can also be suspended. In the present embodiment, the first carbon nanotube structure 2丨2 is suspended in the 099146722. Form No. 1010101 Page 12/Total 42 Page 0992080276-0 201227789 Ο [0023] When the surface of the substrate 220 is used, the field emission The cathode structure 200 may further include two support bodies which are disposed at intervals. In the embodiment, the two support bodies may be the first conductive base body 221 and the second conductive base body 222, and the first conductive base body 221 and the second conductive base body 222 The material may be, for example, a metal element, a metal alloy, a conductive composite material, or the like, and the shape thereof is not limited. It is only necessary to ensure that the first conductive substrate 221 has a plane with the second conductive substrate 222, so that the first carbon nanotube structure 21 2 Both ends can be tiled and adhered separately. In this embodiment, the shape of the first conductive substrate 221 and the second conductive substrate 222 is a rectangular parallelepiped. The spacing between the first conductive substrate 221 and the second conductive substrate 222 can be set according to actual needs.

本實施例提供的場發射陰極結構應用於場發射領域時, 一方面,由於所述第一奈米碳管結構212為自支撐結構, 因此可無需基底支撐而直接懸空設置於電極之間,因此 可更加方便的應用於場發射領域等;另一方面,由於所 述第二奈米碳管結構214為三角形,因此可減小第二奈米 碳管結構214中的邊緣增強效應,提高電子發射密度的均 勻性;並且,由於邊緣位置的奈米碳管的高度較低,可 避免與栅極電極相接觸,從而避免了短路現象的發生, 提高的場發射顯示結構的安全性及壽命。進一步的,當 所述場發射陰極結構用於熱場發射裝置時,可在第一奈 米碳管結構212中通入電流,利用第一奈米碳管結構212 產生熱量而給第二奈米碳管結構214加熱,從而去除吸附 在第二奈米碳管結構214中奈米碳管表面的雜質如氣體分 子等,因而使其電子發射更加的穩定。由於第一奈米碳 管結構212具有極小的單位面積比熱容,因而具有非常小 099146722 表單編號Α0101 第13頁/共42頁 0992080276-0 201227789 的加熱功耗及非常快的回應速度,因此使得所述場發射 陰極結構可適用於回應速度快的場發射裝置中。 [0024] 請一併參照圖5及圖6,本發明第一實施例進一步提供一 種所述場發射陰極結構200的製備方法,所述製備方法主 要包括以下步驟: [0025] 步驟S21,提供一懸空設置的第一奈米碳管結構212。 [0026] 所述第一奈米碳管結構21 2可為至少一奈米碳管膜或至少 一奈米碳管線,所述奈米碳管膜或奈米碳管線為由複數 奈米碳管組成的自支撐結構。所述奈米碳管膜可為奈米 碳管拉膜、奈米碳管碾壓膜或奈米碳管絮化膜中的一種 ,所述奈米碳管線可為一非扭轉的奈米碳管線或扭轉的 奈米碳管線。所述奈米碳管膜的尺寸不限,可根據實際 情況進行選擇。本實施例中,所述第一奈米碳管結構212 為奈米碳管拉膜。 [0027] 所述奈米碳管拉膜可通過從奈米碳管陣列直接拉取獲得 。從奈米碳管陣列中拉取獲得所述奈米碳管拉膜的具體 方法包括:(a)從所述奈米碳管陣列中選定一奈米碳管 片段,本實施例優選為採用具有一定寬度的膠帶或黏性 基條接觸該奈米碳管陣列以選定具有一定寬度的一奈米 碳管片段;(b)通過移動該拉伸工具,以一定速度拉取 該選定的奈米碳管片段,從而首尾相連的拉出若干奈米 碳管片段,進而形成一連續的奈米碳管拉膜。該若干奈 米碳管相互並排使該奈米碳管片段具有一定寬度。當該 被選定的奈米碳管片段在拉力作用下沿拉取方向逐漸脫 099146722 表單編號A0101 第14頁/共42頁 0992080276-0 201227789 離奈米破管陣列的生長基底的同時,由於凡得瓦力作用 ,與該選定的奈米衫片段相鄰的其他奈米碳管片段首 尾相連地相繼地被拉出,從而形成一連續、均勻且具有 —定寬度和擇優取向的奈米碳管拉膜。 [0028] Ο [0029] Ο 同時,在所述拉伸複數奈米碳管片斷形成一奈米碳管拉 膜的過程中’基底上的催化劑顆粒213會_於所述礙每 -奈米碳管片斷-端’從而從所述基底上分離,並分散 在奈米碳管拉膜中,並且所述催化劑顆粒213基本分散於 通過凡得瓦力首尾相連的兩根奈米碳管之間。由於通過 上述方法製備的奈米碳管陣列中的奈米碳管具有基本相 同的長度,從而所述奈米碳管片段的長度基本相同,因 此’在拉伸過程巾,催化_粒213均勻分散於奈米碳管 拉膜中’即’在沿奈米碳管延伸的方向上,所述催化劑 顆粒213基本以相同的間隔分散於通軌得瓦力首尾相連 的奈米碳管與奈米碳管之間的連接處。 可理解’通過將若干奈米碳管拉膜平行層疊鋪設,可製 備不同面難厚度·轉管膜。料Μ碳管拉膜的 厚度可為0.5奈米]〇〇微米。當奈米碳管膜包括複數層疊 設二的奈米碳管拉膜時’所述複數層奈米碳管拉臈彼: 層疊設置形成—體結構’相鄰兩層奈米碳管拉膜之間通 過凡传瓦力緊密結合,相鄰的奈米碳管拉膜中的奈米碳 管的延伸方向形成〆夾角a,G、aS9Q、所述複數層 奈米破管拉膜層疊設置可提高其強度,在後續的處理過 程中可更好的保持其形狀和結構。本實施例中奈米石炭管 拉膜的層數為1〇層,並且相鄰兩層奈来碳管拉膜彼此交 099146722 表單編獍A0101 第15頁/共42頁 201227789 叉排列。 [0030] 另外,當所述奈米碳管拉膜中的催化劑顆粒較少時,可 在所述第一奈米碳管結構21 2的表面進一步沈積催化劑顆 粒。所述催化劑顆粒可通過電子束蒸發、濺射、電漿體 沈積、電沈積或者催化劑溶液塗覆等方法沈積於所述第 一奈米碳管結構212的表面。 [0031] 所述懸空設置可通過以下步驟實現: [0032] 步驟S211,提供一基底220。 [0033] 所述基底220可選用矽基底,或選用形成有氧化層的矽基 底,也可選用其他耐高溫且不易發生反應的材料,如石 英等。所述基底220的大小、形狀不限,可根據實際需求 製備,本實施例優選為矩形矽基底。 [0034] 步驟S212,將所述第一奈米碳管結構212懸空設置於所述 基底220表面,主要包括: [0035] 首先,提供一第一導電基體221與第二導電基體222,所 述第一導電基體221與第二導電基體222間隔設置於所述 基底220表面,其間隔距離可根據實際需求設置。所述第 一導電基體221與第二導電基體222之間保持一定的距離 ,且相互絕緣。 [0036] 所述第一導電基體221與第二導電基體222相互保持一定 距離間隔設置於基底220上,該第一導電基體221與第二 導電基體222均由導電材料製成,如金屬單質、金屬合金 、導電複合材料等,所述金屬單質可為銅、鎢、金、鉬 099146722 表單編號A0101 第16頁/共42頁 0992080276-0 201227789 Ο [0037] 或鉑等,所述金屬合金可為銅錫合金等,所述導電複合 材料可為ΙΤΟ玻璃及導電漿料等。該第一導電基體221與 第二導電基體222的形狀不限,只需確保第一導電基體 221與第二導電基體222具有一平面,可使第一奈米碳管 結構21 2的兩端分別平鋪黏附即可。本實施例中,所述第 一導電基體221與第二導電基體222的形狀為一長方體。 所述第一導電基體221與第二導電基體222的間隔距離可 根據實際需要設置,第一導電基體221與第二導電基體 222之間的距離可為2毫米〜2厘米。本實施例中,所述第 一導電基體221與第二導電基體222之間的距離優選為1厘 米。When the field emission cathode structure provided in this embodiment is applied to the field of field emission, on the one hand, since the first carbon nanotube structure 212 is a self-supporting structure, it can be directly suspended between the electrodes without a substrate support, so It can be more conveniently applied to the field emission field and the like; on the other hand, since the second carbon nanotube structure 214 is triangular, the edge enhancement effect in the second carbon nanotube structure 214 can be reduced, and electron emission can be improved. Uniformity of density; and, because the height of the carbon nanotube at the edge position is low, contact with the gate electrode can be avoided, thereby avoiding the occurrence of a short circuit phenomenon, and the improved field emission display structure safety and life. Further, when the field emission cathode structure is used in a thermal field emission device, an electric current can be introduced into the first carbon nanotube structure 212, and heat is generated by the first carbon nanotube structure 212 to the second nanometer. The carbon tube structure 214 is heated to remove impurities such as gas molecules and the like adsorbed on the surface of the carbon nanotubes in the second carbon nanotube structure 214, thereby making the electron emission more stable. Since the first carbon nanotube structure 212 has a very small specific heat capacity per unit area, it has a very small heating power consumption of 091414622 Form No. 1010101, 13/42, 9292080276-0 201227789, and thus makes the said The field emission cathode structure can be adapted for use in field emission devices that respond quickly. [0024] Please refer to FIG. 5 and FIG. 6 together. The first embodiment of the present invention further provides a method for preparing the field emission cathode structure 200. The preparation method mainly includes the following steps: [0025] Step S21, providing a The first carbon nanotube structure 212 is suspended. [0026] The first carbon nanotube structure 21 2 may be at least one carbon nanotube film or at least one nano carbon pipeline, and the carbon nanotube membrane or the nano carbon pipeline is composed of a plurality of carbon nanotubes A self-supporting structure composed of. The carbon nanotube film may be one of a carbon nanotube film, a carbon nanotube film or a carbon nanotube film, and the nano carbon line may be a non-twisted nano carbon. Pipeline or twisted nanocarbon line. The size of the carbon nanotube film is not limited and can be selected according to actual conditions. In this embodiment, the first carbon nanotube structure 212 is a carbon nanotube film. [0027] The carbon nanotube film can be obtained by directly drawing from a carbon nanotube array. The specific method for extracting the carbon nanotube film from the carbon nanotube array comprises: (a) selecting a carbon nanotube segment from the carbon nanotube array, and the embodiment preferably adopts a tape or viscous strip of a certain width contacting the array of carbon nanotubes to select a carbon nanotube segment having a width; (b) pulling the selected nanocarbon at a certain speed by moving the stretching tool The tube segments, thereby connecting a plurality of carbon nanotube segments end to end, form a continuous carbon nanotube film. The plurality of carbon nanotubes are arranged side by side such that the carbon nanotube segments have a certain width. When the selected carbon nanotube segment is pulled off in the pulling direction under the pulling force, 099146722 Form No. A0101 Page 14 / Total 42 Page 0992080276-0 201227789 From the growth substrate of the nano tube array, due to the With the effect of the wattage, the other carbon nanotube segments adjacent to the selected nano-shirt segment are successively pulled out end to end to form a continuous, uniform carbon nanotube with a constant width and a preferred orientation. membrane. [0029] Ο At the same time, in the process of forming a carbon nanotube film by stretching the plurality of carbon nanotube segments, the catalyst particles 213 on the substrate may be _ per-carbon carbon The tube segment-end' is thus separated from the substrate and dispersed in the carbon nanotube film, and the catalyst particles 213 are substantially dispersed between the two carbon nanotubes connected end to end by the van der Waals force. Since the carbon nanotubes in the carbon nanotube array prepared by the above method have substantially the same length, the lengths of the carbon nanotube segments are substantially the same, so that the catalyst _ 213 is uniformly dispersed in the stretching process. In the direction in which the carbon nanotubes are pulled, that is, in the direction of extending along the carbon nanotubes, the catalyst particles 213 are dispersed at substantially the same interval in the end-to-end carbon nanotubes and nanocarbons. The junction between the tubes. It can be understood that by stacking a plurality of carbon nanotube films in parallel, it is possible to prepare a film having a different thickness and a duct film. The thickness of the carbon nanotube film can be 0.5 nm] 〇〇 micron. When the carbon nanotube film comprises a plurality of laminated carbon nanotube films, the plurality of layers of carbon nanotubes are pulled: the stacked layers are formed into a body structure, and the adjacent two layers of carbon nanotubes are pulled. Through the close combination of the wattage force, the extending direction of the carbon nanotubes in the adjacent carbon nanotube film forms an angle 〆, G, aS9Q, and the stacking of the plurality of layers of the nano tube can be improved. Its strength can better maintain its shape and structure during subsequent processing. In this embodiment, the number of layers of the nano-carboniferous tube is 1 layer, and the adjacent two layers of the carbon nanotube film are intertwined. 099146722 Form Compilation A0101 Page 15 of 42 201227789 Fork arrangement. In addition, when the number of catalyst particles in the carbon nanotube film is small, catalyst particles may be further deposited on the surface of the first carbon nanotube structure 21 2 . The catalyst particles may be deposited on the surface of the first carbon nanotube structure 212 by electron beam evaporation, sputtering, plasma deposition, electrodeposition or catalyst solution coating. [0031] The dangling setting can be achieved by the following steps: [0032] Step S211, a substrate 220 is provided. [0033] The substrate 220 may be selected from a ruthenium substrate, or a ruthenium substrate formed with an oxide layer, or other materials that are resistant to high temperatures and are not susceptible to reaction, such as quartz or the like. The size and shape of the substrate 220 are not limited and can be prepared according to actual needs. This embodiment is preferably a rectangular crucible substrate. [0034] Step S212, the first carbon nanotube structure 212 is suspended on the surface of the substrate 220, and mainly includes: [0035] First, a first conductive substrate 221 and a second conductive substrate 222 are provided, The first conductive substrate 221 and the second conductive substrate 222 are spaced apart from the surface of the substrate 220, and the separation distance can be set according to actual needs. The first conductive substrate 221 and the second conductive substrate 222 are kept at a certain distance and insulated from each other. [0036] The first conductive substrate 221 and the second conductive substrate 222 are disposed on the substrate 220 at a distance from each other. The first conductive substrate 221 and the second conductive substrate 222 are both made of a conductive material, such as a metal element. Metal alloy, conductive composite material, etc., the metal element can be copper, tungsten, gold, molybdenum 099146722 Form No. A0101 Page 16 / Total 42 page 0992080276-0 201227789 Ο [0037] or platinum, etc., the metal alloy can be A copper-tin alloy or the like, the conductive composite material may be a beryllium glass, a conductive paste or the like. The shape of the first conductive substrate 221 and the second conductive substrate 222 is not limited, and it is only necessary to ensure that the first conductive substrate 221 and the second conductive substrate 222 have a plane, so that the two ends of the first carbon nanotube structure 21 2 can be respectively Tile it and stick it. In this embodiment, the shape of the first conductive substrate 221 and the second conductive substrate 222 is a rectangular parallelepiped. The distance between the first conductive substrate 221 and the second conductive substrate 222 can be set according to actual needs. The distance between the first conductive substrate 221 and the second conductive substrate 222 can be 2 mm to 2 cm. In this embodiment, the distance between the first conductive substrate 221 and the second conductive substrate 222 is preferably 1 cm.

其次,將所述第一奈米碳管結構212懸空設置於基底220 一表面。所述懸空設置可通過將所述第一奈米碳管結構 212沿其拉伸方向的一端平鋪黏附於第一導電基體221上 且與第一導電基體221電連接;將所述第一奈米碳管結構 212的另一端沿其拉伸方向平鋪黏附於第二導電基體222 上且與第二導電基體222電連接,並使第一奈米碳管結構 212中間懸空並處於拉伸狀態,從而使得兩導電基體間的 電流沿所述第一奈米碳管結構212中第一奈米碳管212a的 延伸方向傳輸。即所述第一奈米碳管結構212兩端分別固 定於第一導電基體221與第二導電基體222上,而中間與 基底220間隔設置。由於所述第一奈米碳管結構212本身 具有一定的黏性,因此可將第一奈米碳管結構212兩端分 別直接黏附於第一導電基體221和第二導電基體222,也 可通過導電膠如銀膠等將第一奈米碳管結構212的兩端分 099146722 表單編號A0101 第17頁/共42頁 0992080276-0 201227789 別黏附於第一導電基體221和第二導電基體222。 [0038] 步驟S22,以所述懸空設置的第一奈米碳管結構212作為 基底,通過化學氣相沈積法在所述第一奈米碳管結構212 的表面生長第二奈米碳管214a,形成第二奈米碳管結構 214 ° [0039] 所述化學氣相沈積法主要包括以下步驟: [0040] 首先,將所述基底220置入反應室中,並通入保護氣體及 碳源氣體。所述保護氣體為氮氣、氬氣或其他惰性氣體 中的一種或複數種,本實施例中保護氣體優選的為氬氣 。所述碳源氣體可為甲烷、乙烷、乙炔及乙烯中的一種 或複數種的混合物,本實施例優選的為曱烷。 [0041] 其次,在第一導電基體221與第二導電基體222之間施加 一電壓,從而在第一奈米礙管結構21 2中通入電流,加熱 所述第一奈米碳管結構212,使所述第一奈米碳管結構 212的溫度達到奈米碳管的生長溫度,在所述第一奈米碳 管結構212的表面生長奈米碳管。第一導電基體221與第 二導電基體222之間施加的電壓與兩導電基體之間的距離 及第一奈米碳管結構212中奈米碳管的直徑相關。本實施 例中,第一奈米碳管結構212中的奈米碳管的直徑為5微 米,在第一導電基體221與第二導電基體222之間施加一 40伏特的直流電壓。第一奈米碳管結構212在焦耳熱的作 用下加熱到溫度為500°C至900°C,反應時間為30〜60分 鐘,在第一奈米碳管結構212的表面生長第二奈米碳管 214a。 099146722 表單編號A0101 第18頁/共42頁 0992080276-0 201227789 [0042] Ο 在加熱過程中,由於焦耳熱的作用使第一奈米碳管結構 212及周圍的溫度逐漸升高,同時第一奈米碳管結構212 内部產生的熱量通過第—奈米碳管結構212本身分別向第 一導電基體221或第二導電基體222的方向傳導及向周圍 輻射。由於導電基體具有良好的熱傳導作用,並且第一 奈米峡管結構212的中間位置離第一導電基體221或第二 導電基體222的距離最遠,因此該處的溫度最高,由此向 第一導電基體221、第二導電基體222延伸的方向上的溫 度逐漸降低,導電基體位置處的溫度最低,從而在第一 奈米碳管結構212表面形成一中間溫度高,沿中間位置到 分別向兩導電基體延伸的方向上,溫度逐漸降低的溫度 梯度。 [0043] Ο 經過一定時間後,在第一奈米碳管結構212的表面上生長 出複數第二奈米碳管214a,所述複數第二奈米碳管214a 形成第二奈米碳管結構214,由於位於兩個導電基體之間 中間位置處的第一奈米碳管結構212的溫度最高,因此, 在其他生長條件相.同.的情況下在形成;第二奈米碳管結 構214的過程中,此中間位置處的催化劑顆粒上的奈米碳 管生長速度最快’第二奈米碳管214a的長度最長,作為 第二奈米碳管結構214的頂端。相應的,由此中間位置分 別向兩導電基體延伸的方向上,也即第一奈米碳管結構 212中第一奈米碳管212a的延伸方向上,第二奈来碳管結 構214中奈米碳管的生長速度逐漸降低,因此形成一頂端 奈米碳管長、邊緣奈米碳管短的三角形結構。因此,通 過控制設置兩個導電基體的位置,即控制向所述第一奈 099146722 表單編號A0101 第19頁/共42頁 0992080276-0 201227789 米碳管結構212通電的方向與位置’即可控制所述第二奈 米碳管結構214形成尖端214(:的數量與位置。 [0044] 進一步的,在所述第一奈米碳管結構212通入電流加熱的 過程中,可通過^加熱裝置(圖未示)對所述反應室進 行加熱以提高第二·奈米碳管結構214中第二奈米碳管214a 的生長速度,所述加熱的溫度不高於所述第一奈米碳管 結構212產生的最低溫度。由於所述加熱溫度低於所述第 一奈米碳管結構212結構的最低溫度,因此並不影響第一 奈米碳管結構212表面的溫度梯度,而且通過採用加熱裝 置進一步對反應室進抒加熱,可進一步提高第二奈米碳 管結構214中第二奈米碳管214a的生長速度》 [0045] 步驟S23,對第一奈米碳管結構212通入電流一定時間後 ,停止通電,然後停止通入氣體,得到所述場發射陰極 結構2 0 〇。 [0046] 本發明提供的所述場發射陰極結構的製備方法,通過將 第一奈米碳管結構懸空設置於基底上,然後再通入電流 的方式加熱,因此在第一奈米碳管結構表面形成溫度梯 度’進而得到三角形的第二奈米碳管結構,製備方法簡 單易行,適合在工業上批量生長。 [0047] _ π”步—耳孢例提供一種場發射陰 極結構則’所述場發射陰極結構3GG包括-第-奈米碳 呂',~〇構312及第-奈米碳管結構314,所述場發射陰極結 構300與第-貝施例中所述場發射陰極結構的結構基 本相同,其不同在於’所述第二奈米碳管結構314遠離所 099146722 表單編號A0101 第20頁/共42頁 0992080276-0 201227789 述第一奈米碳管結構312的表面形成有複數尖端3丨切。 [0048] ❹ Ο [0049] 所述第一奈米碳管結構312包括複數平行於所述第一兴米 碳管結構312表面的第一奈米碳管3l2a,及分散於第一齐 米碳管結構31 2中的複數催化劑顆粒。優選的,所述第一 奈米碳管結構312為奈米碳管拉膜,所述奈米噥管^膜的 奈米碳管沿同一方向擇優取向排列,並通過凡得瓦力首 尾相連。所述第二奈米碳管結構314位於所述第—奈米碳 管結構312的表面,並且與所述第一奈米琰管結構Μ?垂 直相連。具體的’所述第二奈米碳管結構314包括複數第 二奈米碳管314a,所遠複數第二奈来碳管31 “美本垂直 於所述第一奈杀碳管結構312;的袅面,並且每—第二奈米 碳管314a的一端均與所述第一奈米碳管結構312的表面相 連。所述第二奈米碳管結構314的每一尖端3Uc與第一實 施例中尖端214c結構相同。所述複數尖端314C可連續設 置或相互間隔設置。所述複數尖端314c可按照—定的規 則排列’如可排列成直線’或者’如圖9、圖1〇所示,所 述複數尖端314 c可排列成具有一定圖形的陣列。可理解 ,所述複數尖端314c還可形成其他的圖案,可依據所述 場發射陰極結構300的實際應用進行選擇。 請參閱圖10,進一步的,所述場發射陰極結構3〇〇包括一 基底320,所述第一奈米碳管結構312設置於所述基底 320的表面,所述第二奈米碳管結構214設置於所述第一 奈米碳管結構312遠離基底320的表面,並且向遠離所述 基底320的方向延伸,即所述第二奈米碳管結構314中的 第二奈米碳管314a—端與所述第一奈米碳管結構3丨2連接 099146722 表單編號A0101 第21頁/共42頁 0992080276-0 201227789 ,另—端向遠離所述基底320的方向延伸。所述第一奈米 碳管結構312可平鋪設置於所述基底32〇的表面’也可懸 空設置於所述基底320的表面。 [0050] 所述第一奈米碳管結構312懸空設置於所述基底320表面 時’所述場發射陰極結構300可進一少包括間隔設置的複 數支撐體,本實施例中所述支撐體可為導電基體322,所 述導電基體322的材料可為如金屬單質、金屬合金、導電 複合材料等,其形狀不限,只需確保導電基體322具有一 平面,可使第一奈米碳管結構312的兩端分別平鋪黏附即 可。本實施例中,所述導電基體322的形狀為一長方體。 所述導電基體322之間的間距可根據實際需要設置。 [0051] 相對於第一實施例,本實施提供的場發射陰極結構300包 括複數第二奈米碳管結構,在大面積場發射顯示裝置領 域具有較好的應用前景。 [0052] 請參照圖11,所述場發射陰極結構300的製備方法與第一 實施例中所述場發射陰極結構的製備方法基本相同,其 不同在於’在所述基底320上詨置複數導電基體322,所 述複數導電基體322相互間隔排列且相互絕緣,優選的, 所述複數導電基體322等間距設置。具體的,所述製備方 法主要包括以下步驟: [0053] 步驟S31,提供一懸空設置的第一奈米碳管結構312。 [0054] 所述懸空設置可通過以下方法實現: [0055] 首先,提供一基底320 ; 099146722 表單編號A0101 第22頁/共42頁 0992080276-0 201227789 [0056] 其次,提供複數導電基體322 隔設置於所述基底320之一 所述複數導電基體3 2 2間 表面,其間隔距離可根據實際 [0057] Ο [0058]Next, the first carbon nanotube structure 212 is suspended from a surface of the substrate 220. The dangling arrangement may be affixed to the first conductive substrate 221 by electrically bonding one end of the first carbon nanotube structure 212 along its stretching direction to the first conductive substrate 221 and electrically connected to the first conductive substrate 221; The other end of the carbon nanotube structure 212 is tiled and adhered to the second conductive substrate 222 along its tensile direction and electrically connected to the second conductive substrate 222, and the first carbon nanotube structure 212 is suspended and stretched in the middle. Thereby, a current between the two conductive substrates is transmitted along the extending direction of the first carbon nanotubes 212a in the first carbon nanotube structure 212. That is, the two ends of the first carbon nanotube structure 212 are respectively fixed on the first conductive substrate 221 and the second conductive substrate 222, and the middle portion is spaced apart from the substrate 220. Since the first carbon nanotube structure 212 itself has a certain viscosity, the two ends of the first carbon nanotube structure 212 can be directly adhered to the first conductive substrate 221 and the second conductive substrate 222, respectively. Conductive adhesive such as silver glue or the like, the two ends of the first carbon nanotube structure 212 are divided into 099146722 Form No. A0101 Page 17 / Total 42 page 0992080276-0 201227789 Do not adhere to the first conductive substrate 221 and the second conductive substrate 222. [0038] Step S22, using the first carbon nanotube structure 212 disposed in the suspended space as a base, and growing a second carbon nanotube 214a on the surface of the first carbon nanotube structure 212 by chemical vapor deposition. Forming a second carbon nanotube structure 214 ° [0039] The chemical vapor deposition method mainly includes the following steps: [0040] First, the substrate 220 is placed in a reaction chamber, and a shielding gas and a carbon source are introduced. gas. The shielding gas is one or a plurality of nitrogen, argon or other inert gas, and the shielding gas in the present embodiment is preferably argon. The carbon source gas may be one or a mixture of methane, ethane, acetylene and ethylene, and decane is preferred in this embodiment. [0041] Next, a voltage is applied between the first conductive substrate 221 and the second conductive substrate 222, so that an electric current is passed through the first nano-barrier structure 21 2 to heat the first carbon nanotube structure 212. The temperature of the first carbon nanotube structure 212 is brought to the growth temperature of the carbon nanotubes, and the carbon nanotubes are grown on the surface of the first carbon nanotube structure 212. The voltage applied between the first conductive substrate 221 and the second conductive substrate 222 is related to the distance between the two conductive substrates and the diameter of the carbon nanotubes in the first carbon nanotube structure 212. In this embodiment, the diameter of the carbon nanotubes in the first carbon nanotube structure 212 is 5 micrometers, and a direct current voltage of 40 volts is applied between the first conductive substrate 221 and the second conductive substrate 222. The first carbon nanotube structure 212 is heated to a temperature of 500 ° C to 900 ° C under the action of Joule heat, and the reaction time is 30 to 60 minutes, and a second nanometer is grown on the surface of the first carbon nanotube structure 212. Carbon tube 214a. 099146722 Form No. A0101 Page 18 of 42 0992080276-0 201227789 [0042] Ο During the heating process, the temperature of the first carbon nanotube structure 212 and the surrounding temperature gradually increase due to the action of Joule heat, while the first nai The heat generated inside the carbon nanotube structure 212 is conducted to the first conductive substrate 221 or the second conductive substrate 222 by the first carbon nanotube structure 212 itself and radiated to the surroundings. Since the conductive substrate has a good heat conduction effect, and the intermediate position of the first nano-gorge structure 212 is the farthest from the first conductive substrate 221 or the second conductive substrate 222, the temperature at the place is the highest, thereby being the first The temperature in the direction in which the conductive substrate 221 and the second conductive substrate 222 extend gradually decreases, and the temperature at the position of the conductive substrate is the lowest, so that an intermediate temperature is formed on the surface of the first carbon nanotube structure 212, and the intermediate position is two to two. A temperature gradient in which the temperature gradually decreases in the direction in which the conductive substrate extends. [0043] After a certain period of time, a plurality of second carbon nanotubes 214a are grown on the surface of the first carbon nanotube structure 212, and the plurality of second carbon nanotubes 214a form a second carbon nanotube structure. 214. Since the temperature of the first carbon nanotube structure 212 at an intermediate position between the two conductive substrates is the highest, it is formed under the same conditions of the other growth conditions; the second carbon nanotube structure 214 During the process, the carbon nanotubes on the catalyst particles at this intermediate position have the fastest growth rate. The second carbon nanotubes 214a have the longest length as the top end of the second carbon nanotube structure 214. Correspondingly, the second intermediate carbon nanotube structure The growth rate of the carbon nanotubes is gradually reduced, thereby forming a triangular structure in which the top carbon nanotubes are long and the edge carbon nanotubes are short. Therefore, by controlling the position of the two conductive substrates, that is, controlling the direction and position of the first carbon nanotube structure 212 to the first nai 099146722 form number A0101 page 19 / total 42 page 0992080276-0 201227789 The second carbon nanotube structure 214 forms the number and position of the tip end 214. [0044] Further, during the heating process of the first carbon nanotube structure 212 to the current, the heating device can be used ( The reaction chamber is heated to increase the growth rate of the second carbon nanotube 214a in the second carbon nanotube structure 214, and the heating temperature is not higher than the first carbon nanotube The lowest temperature produced by the structure 212. Since the heating temperature is lower than the lowest temperature of the first carbon nanotube structure 212 structure, the temperature gradient of the surface of the first carbon nanotube structure 212 is not affected, and heating is employed. The device further heats the reaction chamber to further increase the growth rate of the second carbon nanotube 214a in the second carbon nanotube structure 214. [0045] Step S23, the current is applied to the first carbon nanotube structure 212. for sure After the interval, the energization is stopped, and then the gas is turned on to obtain the field emission cathode structure 20 〇. [0046] The method for preparing the field emission cathode structure provided by the present invention is to vacate the first carbon nanotube structure It is arranged on the substrate and then heated by means of electric current, so that a temperature gradient is formed on the surface of the first carbon nanotube structure to obtain a triangular second carbon nanotube structure, and the preparation method is simple and easy, and is suitable for industrial use. Batch growth [0047] _ π" step - the ear spore case provides a field emission cathode structure, then the field emission cathode structure 3GG includes - the first - nano carbon ru, ~ 〇 312 and the first carbon nanotube Structure 314, the field emission cathode structure 300 is substantially the same as the structure of the field emission cathode structure described in the first embodiment, except that the second carbon nanotube structure 314 is far from the 099146722 Form No. A0101 No. 20 Page / Total 42 pages 0992080276-0 201227789 The surface of the first carbon nanotube structure 312 is formed with a plurality of tips 3 丨 。 [0049] The first carbon nanotube structure 312 includes a plurality of parallel The first a first carbon nanotube 312a on the surface of the carbon nanotube structure 312, and a plurality of catalyst particles dispersed in the first zirconium tube structure 31. Preferably, the first carbon nanotube structure 312 is a nanometer. The carbon nanotube film is drawn, and the carbon nanotubes of the nanotube film are arranged in a preferred orientation in the same direction, and are connected end to end by van der Waals. The second carbon nanotube structure 314 is located in the first The surface of the carbon nanotube structure 312 is perpendicularly connected to the first nanotube structure. The specific second carbon nanotube structure 314 includes a plurality of second carbon nanotubes 314a. The second carbon nanotube 31 "is perpendicular to the kneading surface of the first carbon nanotube structure 312; and each end of the second carbon nanotube 314a is adjacent to the first carbon nanotube structure The surfaces of 312 are connected. Each tip 3Uc of the second carbon nanotube structure 314 is identical in construction to the tip end 214c of the first embodiment. The plurality of tips 314C can be continuously disposed or spaced apart from one another. The plurality of tips 314c may be arranged in a regular order 'as may be arranged in a straight line' or as shown in Figures 9 and 1B, the plurality of tips 314c may be arranged in an array having a pattern. It will be appreciated that the plurality of tips 314c may also form other patterns that may be selected depending on the actual application of the field emission cathode structure 300. Referring to FIG. 10, further, the field emission cathode structure 3 includes a substrate 320. The first carbon nanotube structure 312 is disposed on a surface of the substrate 320, and the second carbon nanotube structure is 214 is disposed on a surface of the first carbon nanotube structure 312 away from the substrate 320 and extends away from the substrate 320, that is, the second carbon nanotube 314a in the second carbon nanotube structure 314 The end is connected to the first carbon nanotube structure 3丨2, 099146722, Form No. A0101, Page 21/42, 0992080276-0 201227789, and the other end extends away from the substrate 320. The first carbon nanotube structure 312 may be laid flat on the surface of the substrate 32' or may be suspended from the surface of the substrate 320. [0050] When the first carbon nanotube structure 312 is suspended on the surface of the substrate 320, the field emission cathode structure 300 may further include a plurality of spacers disposed at intervals. In the embodiment, the support may be For the conductive substrate 322, the material of the conductive substrate 322 may be, for example, a metal element, a metal alloy, a conductive composite material, or the like, and the shape thereof is not limited, and it is only necessary to ensure that the conductive substrate 322 has a plane, so that the first carbon nanotube structure can be The two ends of the 312 can be tiled and adhered separately. In this embodiment, the conductive substrate 322 has a rectangular parallelepiped shape. The spacing between the conductive substrates 322 can be set according to actual needs. [0051] Compared with the first embodiment, the field emission cathode structure 300 provided by the present embodiment includes a plurality of second carbon nanotube structures, and has a good application prospect in the field of large-area field emission display devices. Referring to FIG. 11, the method for preparing the field emission cathode structure 300 is basically the same as the method for preparing the field emission cathode structure in the first embodiment, and the difference is that 'the plurality of conductive layers are disposed on the substrate 320. The base 322, the plurality of conductive substrates 322 are spaced apart from each other and insulated from each other. Preferably, the plurality of conductive substrates 322 are equally spaced. Specifically, the preparation method mainly includes the following steps: [0053] Step S31, providing a first carbon nanotube structure 312 that is suspended. [0054] The dangling setting can be achieved by the following method: [0055] First, a substrate 320 is provided; 099146722 Form No. A0101 Page 22 / Total 42 Page 0992080276-0 201227789 [0056] Next, a plurality of conductive substrates 322 are provided. The surface of the plurality of conductive substrates 3 2 2 of the substrate 320 may be separated by an actual distance [0057] 00 [0058]

需求設置。 所述複數導電基體之間保持的距冑I相互⑽ 所述複數導電絲可沿第^㈣f312a狀伸方向呈 -直線排列,也可形成4列的方式排列。該複數導電 基體322的形狀不限,只需破保複數V電基體322 ”有 平面可使卜奈祕管結構312的部份表面分別平鋪黏附 即可。本實施例中所述複數導電基體322的形狀為一長方 體,所述複數導電基體3221,直線排列。所述相鄰兩導 電基體322之間的間隔距離<根據實際需要汉置 再次,將所述4 —奈米破管麟312懸㈣置於基底 220-表面〆通過將一第—奈米碳管結構 312整體鋪設於所述複數導電基體322上,所述第一奈米 碳管結構312的部份表面分別對應_在所述導電基體 322的平面上與之電連摻。所述懸空設置也可通過在相鄰 的兩導電基體322上逐一乎舖黏附所述第一奈米碳管結構 312 ’進而形成一通過第一奈米喊管結構312及導電基體 322電連接的整體結構。無論採取何種方式’所述相鄰兩 導電基體322之間的部份第一奈米碳管結構312中間懸空 並處於拉伸狀態。即所述相鄰兩導電基體322之間的第一 奈米碳管結構312兩端分別固定於所述相鄰兩導電基體 322上,而中間與基底320間隔設置。所述每一導電基體 322上可進一步包括一固定元件(圖未示),所述固定元 件用於將所述第一奈米碳管結構312更加牢固的貼附於所 099146722 表單編號A0101 第23頁/共42頁 0992080276-0 201227789 述複數導電基體322上。 [0059]步驟S32,以所述懸空設置的第一奈米碳管結構312作為 基底,通過化學氣相沈積法在所述第一奈米碳管結構3 J 2 的表面生長第二奈米碳管314a,形成第二奈米碳管結構 314 °Demand settings. The distances between the plurality of conductive substrates are mutually mutually (10). The plurality of conductive wires may be arranged in a straight line along the extending direction of the (f) f312a, or may be arranged in a four-row manner. The shape of the plurality of conductive substrates 322 is not limited, and only a plurality of V-electron substrates 322 are required to be opaque. The surface of the plurality of conductive substrates 322 can be tiled and adhered. The plurality of conductive substrates are used in this embodiment. The shape of the 322 is a rectangular parallelepiped, and the plurality of conductive base bodies 3221 are arranged in a straight line. The distance between the adjacent two conductive base bodies 322 is determined according to the actual need, and the 4th nanometer is broken. The suspension (four) is placed on the substrate 220-surface, and a portion of the surface of the first carbon nanotube structure 312 is respectively corresponding to the surface of the first carbon nanotube structure 312. The conductive substrate 322 is electrically coupled to the plane of the conductive substrate 322. The floating arrangement can also be formed by first bonding the first carbon nanotube structure 312' on the adjacent two conductive substrates 322. The nano-calling structure 312 and the conductive substrate 322 are electrically connected to the overall structure. Regardless of the manner, the portion of the first carbon nanotube structure 312 between the adjacent two conductive substrates 322 is suspended and stretched. The adjacent Two ends of the first carbon nanotube structure 312 between the conductive substrates 322 are respectively fixed on the adjacent two conductive substrates 322, and are disposed at an interval from the substrate 320. Each of the conductive substrates 322 may further include a fixing. An element (not shown) for attaching the first carbon nanotube structure 312 more firmly to the 099146722 Form No. A0101 Page 23 / Total 42 Page 0992080276-0 201227789 Multiplicative Conductive Substrate [0059] Step S32, using the first carbon nanotube structure 312 disposed in the suspended space as a substrate, and growing on the surface of the first carbon nanotube structure 3 J 2 by chemical vapor deposition. Nano carbon tube 314a, forming a second carbon nanotube structure 314 °

[0060]在所述化學氣相沈積法生長第二奈米碳管314a長的過程 中’通過向第一奈米碳管結構312通入電流的方式使所述 第一奈米碳管結構312的溫度升高,達到第二奈米碳管 314a的所生長溫度。由於所述複數導電基體322沿第一奈 米碳管312a的延伸方向呈一直線排列,因此,在通電過 程中,每相鄰的兩個導電基體322之間中間位置處的溫度 最高,奈米碳管的生長速度最快,而遠離此中間位置分 別嚮導電基體322延伸的方向上,溫度逐漸降低,奈米碳 管的生長速度逐漸減小,從而在沿第一奈米碳管312a的 延伸方向上形成一三角形結構的尖端314c,長度最長的 奈米碳管為所述尖端314C鲂頂端P[0060] The first carbon nanotube structure 312 is made by passing an electric current to the first carbon nanotube structure 312 during the chemical vapor deposition method for growing the second carbon nanotube 314a. The temperature rises to reach the growth temperature of the second carbon nanotube 314a. Since the plurality of conductive substrates 322 are arranged in a line along the extending direction of the first carbon nanotubes 312a, the temperature at the intermediate position between each adjacent two conductive substrates 322 is the highest during the energization process, and the carbon is nanocarbon. The growth rate of the tube is the fastest, and the temperature gradually decreases in the direction away from the intermediate position to the conductive substrate 322, and the growth rate of the carbon nanotubes gradually decreases, thereby extending along the first carbon nanotube 312a. A tip 314c having a triangular structure is formed thereon, and the longest length of the carbon nanotube is the tip 314C 鲂 tip P

[〇〇61]進一步的,當所述複數導電墓禮322呈陣列排列時,在通 電的過程中,可選擇的在所述第一奈米碳管結構312的部 份表面通入電流,即可選擇的在相鄰的導電基體犯2之間 施加一電壓,從而在該相鄰的導電基體322之間生長第二 奈米碳管314a,形成-尖端314c。通過選擇性的在部份 相鄰的導電基體322之間施加電壓,生長第二奈米碳管 314a ’可形成複數尖端3Uc,並且該複數尖端3uc可按 —定規律排列,如形成陣列,或排列呈三角形、四邊形 寻圖案。 099146722 表單編號A0101 第24頁/共42頁 0992080276- 201227789 酬#驟如,對第-奈米碳管結構312通電—段時間後停止 通電加熱’錢停止通人氣體,得到所料發射陰極结 構300。 剛本發明提供的場發射陰極結構的製備方法,直接採用懸 空設置的奈米碳管拉膜作為基底生長奈米碳管製備二 法簡單適用於工業化生產,並且由於奈米碳管拉膜中 的催化劑顆粒分散比較均勻,從而在其表面生長的奈米 碳官呈規律性排列,能夠減小奈米碳管的電子屏蔽效應 ,提高場發射陰極結構發射電子的均勻性,因此可更好 地應用於場發射領域。另—方面,_直接在奈米碳管 膜中通入電流的方式加熱生長奈米碳管,減少了加熱設 備的設置’優化了製備工藝/ [0064] 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利巾請。惟’以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡習知本案 技藝之人士援依本發明之精神所作之等效修飾或變化, ◎ 皆應涵蓋於以下申請專利範圍内'。 【圖式簡單說明】 [0065] 圖1為本發明第—實施例提供的場發射陰極結構的結構 示意圖。 [0066] 圖2為圖1所示的場發射陰極結構沿π - Π方向的剖面圖。 [0067] 圖3為本發明第一實施例提供的場發射陰極結構中第一奈 米碳管結構的掃描電鏡照片。 [0068] 圖4為本發明第一實施例提供的場發射陰極結構中第一奈 099146722 表單編號A0101 第25頁/共42頁 0992080276-0 201227789 米碳管結構懸^設置在基底表面的結構示意圖。 [0069] [0070] [0071] [0072] [0073] [0074] [0075] [0076] [0077] [0078] [0079] [0080] [0081] 圖5為本發明第一實施例提供的場發射陰極結構的製備方 法的流程圖。 圖6為本發明第-實施例提供的場發射陰極結構的製備裝 置的示意圖。 圖7為本發明第二實施例提供的場發射陰極結構的結構示 意圖。 圖8為圖7所示的場發射陰極結構沿舰_泗方向的剔面圖。 圖9、圖1〇為本發明第二實施例提供的場發射陰極結構中 第一奈米碳管結構為圖案化的結構示意圖。 圖11為本發明第二實施例提供的場發射陰極結構中第一 奈米碳管結構懸空設置在基底表面的結構示意圖。 圖12為本發明第二實施例提供的場發射陰極結構的製備 裝置示意圖。 【主要元件符號說明】 場發射陰極結構:200,300 第—奈米碳管結構:212,312 第—奈米碳管:212a,312a 催化劑顆粒:213 第二奈米碳管結構:214 ’ 314 第二奈米碳管:214a ’ 314a 099146722 表單蝙號A0101 第26頁/共42頁 0992080276-0 201227789 [0082] 尖端:214c,314c [0083] 基底:220,320 [0084] 第一導電基體:221 [0085] 第二導電基體:222 [0086] 導電基體:322 〇 ❹ 099146722 表單編號A0101 第27頁/共42頁 0992080276-0[〇〇61] Further, when the plurality of conductive tombs 322 are arranged in an array, during the energization process, a current may be selectively applied to a part of the surface of the first carbon nanotube structure 312, that is, Optionally, a voltage is applied between adjacent conductive substrates 2 to grow a second carbon nanotube 314a between the adjacent conductive substrates 322 to form a tip 314c. By selectively applying a voltage between the adjacent conductive substrates 322, the second carbon nanotubes 314a' can be grown to form a plurality of tips 3Uc, and the plurality of tips 3uc can be arranged in a regular pattern, such as forming an array, or Arranged in a triangular or quadrangular pattern. 099146722 Form No. A0101 Page 24/Total 42 Page 0992080276- 201227789 Reminder, for example, energize the first-nanocarbon tube structure 312 - stop energizing heating after a period of time 'money stops the gas, and obtain the desired emission cathode structure 300 . The preparation method of the field emission cathode structure provided by the invention directly adopts the hollow carbon nanotube film which is suspended and arranged as a substrate, and the preparation method of the carbon nanotube is simple and suitable for industrial production, and is due to the film in the carbon nanotube film. The catalyst particles are dispersed evenly, so that the nanocarbons grown on the surface thereof are regularly arranged, which can reduce the electron shielding effect of the carbon nanotubes and improve the uniformity of electron emission of the field emission cathode structure, so that it can be better applied. In the field of field launching. On the other hand, _ directly grows the carbon nanotubes in the carbon nanotube film to heat the growth of the carbon nanotubes, reducing the setting of the heating device. 'Optimized preparation process / [0064] In summary, the present invention has indeed met The requirements of the invention patent, please file a patent towel according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Any equivalent modifications or variations made by those skilled in the art to the spirit of the present invention should be covered by the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0065] FIG. 1 is a schematic view showing the structure of a field emission cathode structure according to a first embodiment of the present invention. 2 is a cross-sectional view of the field emission cathode structure shown in FIG. 1 along the π −Π direction. 3 is a scanning electron micrograph of a first carbon nanotube structure in a field emission cathode structure according to a first embodiment of the present invention. 4 is a first embodiment of a field emission cathode structure according to a first embodiment of the present invention. 099147262 Form No. A0101 Page 25 / Total 42 Page 0992080276-0 201227789 Structure of a carbon tube structure suspended on a surface of a substrate . [0071] [0071] [0010] FIG. 5 is a first embodiment of the present invention. [0081] FIG. Flowchart of a method of preparing a field emission cathode structure. Fig. 6 is a schematic view showing a manufacturing apparatus of a field emission cathode structure according to a first embodiment of the present invention. Fig. 7 is a schematic view showing the structure of a field emission cathode structure according to a second embodiment of the present invention. Figure 8 is a cross-sectional view of the field emission cathode structure shown in Figure 7 taken along the ship_泗 direction. FIG. 9 and FIG. 1 are schematic diagrams showing the structure of a first carbon nanotube structure in a field emission cathode structure according to a second embodiment of the present invention. Figure 11 is a schematic view showing the structure of a first carbon nanotube structure suspended on a surface of a substrate in a field emission cathode structure according to a second embodiment of the present invention. FIG. 12 is a schematic diagram of a device for fabricating a field emission cathode structure according to a second embodiment of the present invention. [Main component symbol description] Field emission cathode structure: 200,300 No. - carbon nanotube structure: 212, 312 No. - carbon nanotube: 212a, 312a Catalyst particles: 213 Second carbon nanotube structure: 214 ' 314 Second carbon nanotube: 214a ' 314a 099146722 Form bat number A0101 Page 26 / Total 42 page 0992080276-0 201227789 [0082] Tip: 214c, 314c [0083] Base: 220, 320 [0084] First conductive substrate: 221 [0085] Second Conductive Substrate: 222 [0086] Conductive Substrate: 322 〇❹ 099146722 Form No. A0101 Page 27 / Total 42 Page 0992080276-0

Claims (1)

201227789 七、申請專利範圍: 1 . 一種場發射陰極結構,其包括:一第一奈米碳管結構及一 第二奈米碳管結構設置於所述第一奈米碳管結構的表面, 該第二奈米碳管結構包括複數第二奈米碳管,且所述第二 奈米碳管基本垂直於第一奈米碳管結構表面排列,其改良 在於,所述第二奈米碳管結構在遠離所述第一奈米碳管結 構表面的一端形成至少一尖端,所述第二奈米碳管結構中 的複數第二奈米碳管的長度沿遠離所述尖端的頂端的方向 逐漸縮短。 2 .如申請專利範圍第1項所述之場發射陰極結構,其中,所 述第一奈米碳管結構為複數第一奈米碳管組成的一自支撐 結構。 3 .如申請專利範圍第1項所述之場發射陰極結構,其中,所 述第二奈米碳管結構中,對應所述尖端頂端位置的第二奈 米碳管的長度大於其他位置處第二奈米碳管的長度。 4 .如申請專利範圍第1項所述之場發射陰極結構,其中,所 述第一奈米碳管結構包括至少一奈米碳管膜或至少一奈米 碳管線。 5 .如申請專利範圍第1項所述之場發射陰極結構,其中,所 述第一奈米碳管結構包括複數第一奈米碳管,該複數第一 奈米碳管基本平行於所述第一奈米碳管結構的表面,所述 第二奈米碳管垂直於所述第一奈米碳管。 6 .如申請專利範圍第5項所述的場發射陰極結構,其中,所 述複數第一奈米碳管沿同一方向擇優取向延伸。 7 .如申請專利範圍第6項所述的場發射陰極結構,其中,所 099146722 表單編號 A0101 第 28 頁/共 42 頁 0992080276-0 201227789 ϋ複數第奈米碳管中每—第—奈米碳管與在延伸方向上 相邮的第—奈米碳管通過凡得瓦力首尾相連。 8 _ ^請專利範項所述的場發射陰極結構,其中’所 述第-奈米礙管結構中包括複數催化劑顆粒,所述複數催 ,劑顆粒分散於兩個通過凡得瓦力首尾相連的第一奈米碳 管之間的連接處。 如申》月專利$&圍第8項所述的場發射陰極結構,其中,所 述複數催化劑顆粒在沿第—奈米碳管的延伸方尚上等間距 排列β 〇 1〇 .如申請專利範圍第8項所述的場發射陰極結構,其中’所 錢數第二奈米碳f分料過複數催化與所述第-奈米碳管結構相連。 11 .如申凊專利範圍第1項所述之場發射陰極結構,其中,所 述場發射陰極結構進一步包括 -基底,所述第^奈米碳管 結構設置在所述基底表面,所述複數第二奈米碳管設置在 所述第一奈米碳管結構遠離基底的表面,旅向遠離所述基 底的方向延伸。 Ο 12 .如申請專利範圍第U項所述的場發射陰極結構,其中,所 述場發射陰極結構進一步包括至少兩個導電基體相互間隔 設置在所述基底表面,所述第一奈米碳管、结構通過所述至 少兩個導電基體懸空設置。 13 ·如申請專利範圍第1項所述之場發射陰極結構,其中,所 述第二奈米碳管結構的表面形成有複數尖端,該複數尖端 相互間隔設置。 14 · 一種場發射陰極結構的製備方法,其包括以下步驟: 提供一懸空設置的第一奈米碳管結構; 099146722 表單編號 A0101 第 29 頁/共 42 頁 0992080276-0 201227789 以所述懸空設置的第一奈米碳管結構作為基底,通過化學 氣相沈積法在所述第一奈米碳管結構的表面生長第二奈米 碳管,形成第二奈米碳管結構,其中,通過向所述第一奈 米碳管結構通入電流使所述第一奈米碳管結構的溫度升高 達到第二奈米碳管的生長溫度; 通電一段時間後,停止通電並停止通入氣體,得到所述場 發射陰極結構。 15 .如申請專利範圍第14項所述的場發射陰極結構的製備方法 ,其中,所述第一奈米碳管結構的製備方法包括以下步驟 提供一奈米碳管陣列; 從所述奈米碳管陣列中直接抽取獲得至少一奈米碳管膜或 至少一奈米碳管線; 將所述至少一奈米碳管膜或至少一奈米碳管線懸空設置作 為所述第一奈米碳管結構。 16 .如申請專利範圍第15項所述之場發射陰極結構的製備方法 ,其中,所述第一奈米碳管結構包括複數第一奈米碳管, 該複數第一奈米碳管的軸向沿同_一方向擇優取向延伸。 17 .如申請專利範圍第16項所述之場發射陰極結構的製備方法 ,其中,通入電流的方向與所述第一奈米碳管結構中第一 奈米碳管的延伸方向相同。 18 .如申請專利範圍第16項所述之場發射陰極結構的製備方法 ,其中,在所述第一奈米碳管結構表面形成沿所述第一奈 米碳管延伸方向的溫度梯度。 099146722 表單編號A0101 第30頁/共42頁 0992080276-0201227789 VII. Patent application scope: 1. A field emission cathode structure, comprising: a first carbon nanotube structure and a second carbon nanotube structure disposed on a surface of the first carbon nanotube structure, The second carbon nanotube structure includes a plurality of second carbon nanotubes, and the second carbon nanotubes are arranged substantially perpendicular to a surface of the first carbon nanotube structure, and the improvement is that the second carbon nanotubes The structure forms at least one tip at an end remote from the surface of the first carbon nanotube structure, and the length of the plurality of second carbon nanotubes in the second carbon nanotube structure gradually decreases away from the tip end of the tip shorten. 2. The field emission cathode structure of claim 1, wherein the first carbon nanotube structure is a self-supporting structure composed of a plurality of first carbon nanotubes. 3. The field emission cathode structure according to claim 1, wherein in the second carbon nanotube structure, the length of the second carbon nanotube corresponding to the tip end position is greater than the other positions. The length of the carbon nanotubes. 4. The field emission cathode structure of claim 1, wherein the first carbon nanotube structure comprises at least one carbon nanotube film or at least one nanocarbon line. 5. The field emission cathode structure of claim 1, wherein the first carbon nanotube structure comprises a plurality of first carbon nanotubes, the plurality of first carbon nanotubes being substantially parallel to the a surface of the first carbon nanotube structure, the second carbon nanotube being perpendicular to the first carbon nanotube. 6. The field emission cathode structure of claim 5, wherein the plurality of first carbon nanotubes extend in a preferred orientation in the same direction. 7. The field emission cathode structure according to claim 6 of the patent application, wherein: 099146722 Form No. A0101 Page 28 of 42 0992080276-0 201227789 Each of the first carbon nanotubes of the first carbon nanotube The tube and the first carbon nanotubes that are mailed in the direction of extension are connected end to end by van der Waals force. 8 _ ^ The field emission cathode structure of the patent specification, wherein 'the first-nano obstruction structure includes a plurality of catalyst particles, and the plurality of catalyst particles are dispersed in two ends connected by van der Waals force The junction between the first carbon nanotubes. The field emission cathode structure of claim 8, wherein the plurality of catalyst particles are arranged at equal intervals along the extension of the first carbon nanotubes. The field emission cathode structure of claim 8 wherein the 'quantity of the second nanocarbon f fraction is over-complexed to be coupled to the first-carbon nanotube structure. The field emission cathode structure according to claim 1, wherein the field emission cathode structure further comprises a substrate, and the second carbon nanotube structure is disposed on the surface of the substrate, the plural A second carbon nanotube is disposed on a surface of the first carbon nanotube structure away from the substrate, and travels away from the substrate. The field emission cathode structure of claim U, wherein the field emission cathode structure further comprises at least two conductive substrates spaced apart from each other on the surface of the substrate, the first carbon nanotube The structure is suspended by the at least two conductive substrates. The field emission cathode structure according to claim 1, wherein the surface of the second carbon nanotube structure is formed with a plurality of tips which are spaced apart from each other. 14 . A method for preparing a field emission cathode structure, comprising the steps of: providing a first carbon nanotube structure with a suspended setting; 099146722 Form No. A0101 Page 29 of 42 0992080276-0 201227789 a first carbon nanotube structure is used as a substrate, and a second carbon nanotube is grown on the surface of the first carbon nanotube structure by chemical vapor deposition to form a second carbon nanotube structure, wherein The first carbon nanotube structure is introduced to increase the temperature of the first carbon nanotube structure to a growth temperature of the second carbon nanotube; after a period of energization, the energization is stopped and the gas is stopped to obtain The field emission cathode structure. The method for preparing a field emission cathode structure according to claim 14, wherein the method for preparing the first carbon nanotube structure comprises the steps of providing an array of carbon nanotubes; Obtaining at least one carbon nanotube film or at least one nano carbon line directly in the carbon tube array; and disposing the at least one carbon nanotube film or at least one nano carbon line as the first carbon nanotube structure. The method for preparing a field emission cathode structure according to claim 15, wherein the first carbon nanotube structure comprises a plurality of first carbon nanotubes, and the axis of the plurality of first carbon nanotubes Extend the preferred orientation along the same direction. The method of preparing a field emission cathode structure according to claim 16, wherein the direction of the current is the same as the direction in which the first carbon nanotubes extend in the first carbon nanotube structure. The method of producing a field emission cathode structure according to claim 16, wherein a temperature gradient along a direction in which the first carbon nanotube extends is formed on a surface of the first carbon nanotube structure. 099146722 Form No. A0101 Page 30 of 42 0992080276-0
TW99146722A 2010-12-29 2010-12-29 Field emission cathode structure and method for making same TWI417923B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99146722A TWI417923B (en) 2010-12-29 2010-12-29 Field emission cathode structure and method for making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99146722A TWI417923B (en) 2010-12-29 2010-12-29 Field emission cathode structure and method for making same

Publications (2)

Publication Number Publication Date
TW201227789A true TW201227789A (en) 2012-07-01
TWI417923B TWI417923B (en) 2013-12-01

Family

ID=46933402

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99146722A TWI417923B (en) 2010-12-29 2010-12-29 Field emission cathode structure and method for making same

Country Status (1)

Country Link
TW (1) TWI417923B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060032402A (en) * 2004-10-12 2006-04-17 삼성에스디아이 주식회사 Carbon nanotube emitter and manufacturing method thereof and field emission device and manufacturing method thereof
TWI281183B (en) * 2004-11-12 2007-05-11 Hon Hai Prec Ind Co Ltd Field emission cathode and field emission device using same
KR20070046602A (en) * 2005-10-31 2007-05-03 삼성에스디아이 주식회사 Electron emission device, electron emission display apparatus having the same, and method of manufacturing the same

Also Published As

Publication number Publication date
TWI417923B (en) 2013-12-01

Similar Documents

Publication Publication Date Title
TWI485099B (en) Carbon nanotube structure and method for making the same
US10337098B2 (en) Method for growing carbon nanotubes
TWI490032B (en) Reactor and a method for growing carbon nanotube
TWI462873B (en) Method for making carbon nanotube structure
TWI478595B (en) Thermoacoustic device
TWI608994B (en) Carbon fiber film
JP5746235B2 (en) Surface heat source
JP2009302057A (en) Planar heat source, and its manufacturing method
TWI406808B (en) Method for making carbon nanotube structure
CN102074429B (en) Field emission cathode structure and preparation method thereof
TWI476149B (en) Method for making carbon nanotube film
TWI581664B (en) Field emission device
TW201125816A (en) Carbon nanotube film and method for making the same
TW201227789A (en) Field emission cathode structure and method for making same
TWI458677B (en) Carbon nanotube composite structure and method for making same
TW201040105A (en) Carbon nanotube film precursor, carbon nanotube film, method for fabricating same, and light source having carbon nanotube film
JP5441545B2 (en) Surface heat source
TWI461352B (en) Carbon nanotube emitter
TWI427674B (en) Preparation of carbon nanotube structure
TWI343901B (en) Method and apparatus for manufacturing carbon nanotube
JP5059808B2 (en) Hollow heat source
TWI382782B (en) Method for making hollow heating source
TW201125809A (en) Method for making carbon nanotube structure
JP2010021148A (en) Hollow heat source
JP2010034047A (en) Hollow heat source