TWI417923B - Field emission cathode structure and method for making same - Google Patents

Field emission cathode structure and method for making same Download PDF

Info

Publication number
TWI417923B
TWI417923B TW99146722A TW99146722A TWI417923B TW I417923 B TWI417923 B TW I417923B TW 99146722 A TW99146722 A TW 99146722A TW 99146722 A TW99146722 A TW 99146722A TW I417923 B TWI417923 B TW I417923B
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
carbon
field emission
nanotube structure
emission cathode
Prior art date
Application number
TW99146722A
Other languages
Chinese (zh)
Other versions
TW201227789A (en
Inventor
Peng Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW99146722A priority Critical patent/TWI417923B/en
Publication of TW201227789A publication Critical patent/TW201227789A/en
Application granted granted Critical
Publication of TWI417923B publication Critical patent/TWI417923B/en

Links

Description

場發射陰極結構及其製備方法 Field emission cathode structure and preparation method thereof

本發明涉及一種場發射陰極結構及其製備方法。 The invention relates to a field emission cathode structure and a preparation method thereof.

1991年,日本NEC公司研究人員意外發現奈米碳管,請參見:"Helical microtubules of graphitic carbon",S.Iijima,Nature,vol.354,p56(1991),因為奈米碳管的優異特性,其潛在的應用一直受到人們廣泛關注,尤其係在電子領域,由於奈米碳管的直徑極小,大約幾奈米至十幾奈米,在較小的電場作用下就可從其尖端發射電子,因而可用作場發射陰極。 In 1991, researchers from NEC Japan discovered the carbon nanotubes accidentally. See: "Helical microtubules of graphitic carbon", S.Iijima, Nature, vol. 354, p56 (1991). Because of the excellent properties of carbon nanotubes, Its potential applications have been widely concerned, especially in the field of electronics. Because the diameter of the carbon nanotubes is extremely small, about a few nanometers to a dozen nanometers, electrons can be emitted from its tip under the action of a small electric field. It can therefore be used as a field emission cathode.

近年來,人們在奈米材料及其應用領域進行各種研究,尤其係對奈米碳管的生長方法及其應用。例如,李康雨等人於2005年10月12日申請於2009年12月9日公告的公告號為CN100568436的中國大陸專利揭示了一種奈米碳管發射器件的製備方法,此發明利用PECVD(電漿增強化學氣相沈積)法在第一奈米碳管表面生長出垂直第一奈米碳管表面的第二奈米碳管,其包括下列步驟:先在形成有催化劑材料層的第一基底上生長複數第一奈米碳管,然後,從所述第一基底分離所述第一奈米碳管並將分離的奈米碳管浸入分散溶液,最後用所述分散溶液塗覆第二基底並且烘焙所述第 二基底,使所述第一奈米碳管固定於第二基底,然後從所述第一奈米碳管表面的催化劑顆粒上生長第二奈米碳管。所述第一奈米碳管及第二奈米碳管構成的結構可用於場發射陰極結構。 In recent years, various researches have been carried out on nanomaterials and their applications, especially on the growth methods and applications of carbon nanotubes. For example, the Chinese mainland patent published by Li Kangyu et al. on October 12, 2005, filed on Dec. 9, 2009, with the publication number CN100568436, discloses a method for preparing a carbon nanotube emitting device, which utilizes PECVD (plasma). The enhanced chemical vapor deposition method comprises growing a second carbon nanotube on the surface of the first carbon nanotube on the surface of the first carbon nanotube, comprising the steps of: firstly forming a first substrate on which the catalyst material layer is formed Growing a plurality of first carbon nanotubes, then separating the first carbon nanotube from the first substrate and immersing the separated carbon nanotubes in a dispersion solution, and finally coating the second substrate with the dispersion solution and Baking the first a second substrate, the first carbon nanotube is fixed to the second substrate, and then a second carbon nanotube is grown from the catalyst particles on the surface of the first carbon nanotube. The structure of the first carbon nanotube and the second carbon nanotube can be used for a field emission cathode structure.

然,通過上述方法製備的第一奈米碳管及第二奈米碳管構成的場發射陰極結構用於場發射時,由於第二奈米碳管中的奈米碳管的高度基本相同,因此相鄰的奈米碳管之間存在電子屏蔽效應,使得電子發射主要集中於第二奈米碳管的邊緣位置,從而產生邊緣增強效應,影響中間位置奈米碳管的電子發射,導致第二奈米碳管中電子發射的不均勻。 However, when the field emission cathode structure composed of the first carbon nanotube and the second carbon nanotube prepared by the above method is used for field emission, since the heights of the carbon nanotubes in the second carbon nanotube are substantially the same, Therefore, there is an electron shielding effect between adjacent carbon nanotubes, so that the electron emission is mainly concentrated on the edge position of the second carbon nanotube, thereby generating an edge enhancement effect, affecting the electron emission of the carbon nanotube in the intermediate position, resulting in the first Non-uniformity of electron emission in two carbon nanotubes.

有鑒於此,提供一種電子發射比較均勻的場發射陰極結構實為必要。 In view of this, it is necessary to provide a field emission cathode structure in which electron emission is relatively uniform.

一種場發射陰極結構,其包括:一第一奈米碳管結構及一第二奈米碳管結構設置於所述第一奈米碳管結構的表面,該第二奈米碳管結構包括複數第二奈米碳管,且所述第二奈米碳管基本垂直於第一奈米碳管結構表面排列,其中,所述第二奈米碳管結構在遠離所述第一奈米碳管結構表面的一端形成至少一尖端,所述第二奈米碳管結構中的複數第二奈米碳管的長度沿遠離所述尖端的頂端的方向逐漸縮短。 A field emission cathode structure comprising: a first carbon nanotube structure and a second carbon nanotube structure disposed on a surface of the first carbon nanotube structure, the second carbon nanotube structure including a plurality a second carbon nanotube, and the second carbon nanotube is arranged substantially perpendicular to a surface of the first carbon nanotube structure, wherein the second carbon nanotube structure is away from the first carbon nanotube One end of the structural surface forms at least one tip, and the length of the plurality of second carbon nanotubes in the second carbon nanotube structure gradually decreases in a direction away from the tip end of the tip.

一種場發射陰極結構的製備方法,其包括以下步驟:提供一懸空設置的第一奈米碳管結構;以所述懸空設置的第一奈米碳管結構作為基底,通過化學氣相沈積法在所述第一奈米碳管結構的表面生長第二奈米碳管,形成第二奈米碳管結構,其中,通過向所述 第一奈米碳管結構通入電流使所述第一奈米碳管結構的溫度升高達到第二奈米碳管的生長溫度;通電一段時間後,停止通電並停止通入氣體,得到所述場發射陰極結構。 A method for preparing a field emission cathode structure, comprising the steps of: providing a first carbon nanotube structure disposed in a suspended state; using the first carbon nanotube structure disposed in the suspended space as a substrate, by chemical vapor deposition Forming a second carbon nanotube on the surface of the first carbon nanotube structure to form a second carbon nanotube structure, wherein The first carbon nanotube structure is energized to increase the temperature of the first carbon nanotube structure to a growth temperature of the second carbon nanotube; after energization for a period of time, the energization is stopped and the gas is stopped, and the gas is obtained. The field emission cathode structure is described.

相較於先前技術,所述場發射陰極結構中所述第二奈米碳管結構具有一尖端,從而減小了奈米碳管之間的屏蔽效應,並使電子發射集中於尖端處的奈米碳管,因此可減小第二奈米碳管結構中的邊緣增強效應,提高電子發射密度的均勻性,並且製備方法簡單易行,適合在工業上批量生長。 Compared to the prior art, the second carbon nanotube structure in the field emission cathode structure has a tip end, thereby reducing the shielding effect between the carbon nanotubes and concentrating the electron emission at the tip end. The carbon nanotubes can reduce the edge enhancement effect in the second carbon nanotube structure, improve the uniformity of electron emission density, and the preparation method is simple and easy, and is suitable for industrial batch growth.

200,300‧‧‧場發射陰極結構 200,300‧‧‧ field emission cathode structure

212,312‧‧‧第一奈米碳管結構 212,312‧‧‧First carbon nanotube structure

212a,312a‧‧‧第一奈米碳管 212a, 312a‧‧‧ first carbon nanotube

213‧‧‧催化劑顆粒 213‧‧‧ catalyst particles

214,314‧‧‧第二奈米碳管結構 214,314‧‧‧Second carbon nanotube structure

214a,314a‧‧‧第二奈米碳管 214a, 314a‧‧‧ second carbon nanotube

214c,314c‧‧‧尖端 214c, 314c‧‧‧ cutting edge

220,320‧‧‧基底 220,320‧‧‧Base

221‧‧‧第一導電基體 221‧‧‧First conductive substrate

222‧‧‧第二導電基體 222‧‧‧Second conductive substrate

322‧‧‧導電基體 322‧‧‧Electrically conductive substrate

圖1 為本發明第一實施例提供的場發射陰極結構的結構示意圖。 FIG. 1 is a schematic structural view of a field emission cathode structure according to a first embodiment of the present invention.

圖2為圖1所示的場發射陰極結構沿Ⅱ-Ⅱ方向的剖面圖。 Figure 2 is a cross-sectional view of the field emission cathode structure shown in Figure 1 taken along the line II-II.

圖3為本發明第一實施例提供的場發射陰極結構中第一奈米碳管結構的掃描電鏡照片。 3 is a scanning electron micrograph of a first carbon nanotube structure in a field emission cathode structure according to a first embodiment of the present invention.

圖4為本發明第一實施例提供的場發射陰極結構中第一奈米碳管結構懸空設置在基底表面的結構示意圖。 4 is a schematic view showing the structure of a first carbon nanotube structure suspended on a surface of a substrate in a field emission cathode structure according to a first embodiment of the present invention.

圖5為本發明第一實施例提供的場發射陰極結構的製備方法的流程圖。 FIG. 5 is a flow chart of a method for fabricating a field emission cathode structure according to a first embodiment of the present invention.

圖6為本發明第一實施例提供的場發射陰極結構的製備裝置的示意圖。 FIG. 6 is a schematic diagram of a device for fabricating a field emission cathode structure according to a first embodiment of the present invention.

圖7為本發明第二實施例提供的場發射陰極結構的結構示意圖。 FIG. 7 is a schematic structural view of a field emission cathode structure according to a second embodiment of the present invention.

圖8為圖7所示的場發射陰極結構沿Ⅷ-Ⅷ方向的剖面圖。 Figure 8 is a cross-sectional view of the field emission cathode structure shown in Figure 7 taken along the line VIII-VIII.

圖9、圖10為本發明第二實施例提供的場發射陰極結構中第一奈米碳管結構為圖案化的結構示意圖。 9 and FIG. 10 are schematic diagrams showing the structure of a first carbon nanotube structure in a field emission cathode structure according to a second embodiment of the present invention.

圖11為本發明第二實施例提供的場發射陰極結構中第一奈米碳管結構懸空設置在基底表面的結構示意圖。 FIG. 11 is a schematic structural view showing a first carbon nanotube structure suspended in a surface of a substrate in a field emission cathode structure according to a second embodiment of the present invention.

圖12為本發明第二實施例提供的場發射陰極結構的製備裝置示意圖。 FIG. 12 is a schematic diagram of a device for preparing a field emission cathode structure according to a second embodiment of the present invention.

下面將結合附圖及具體實施例對本技術方案進行詳細說明。 The technical solution will be described in detail below with reference to the accompanying drawings and specific embodiments.

請參閱圖1至圖4,本發明第一實施例提供一種場發射陰極結構200,所述場發射陰極結構200包括一第一奈米碳管結構212及一第二奈米碳管結構214,所述第二奈米碳管結構214位於所述第一奈米碳管結構212的表面,並且與所述第一奈米碳管結構212相連。 Referring to FIG. 1 to FIG. 4, a first embodiment of the present invention provides a field emission cathode structure 200. The field emission cathode structure 200 includes a first carbon nanotube structure 212 and a second carbon nanotube structure 214. The second carbon nanotube structure 214 is located on a surface of the first carbon nanotube structure 212 and is coupled to the first carbon nanotube structure 212.

所述第一奈米碳管結構212為膜狀結構或線狀結構,其包括複數第一奈米碳管212a及分散於第一奈米碳管212a中的催化劑顆粒213。所述第一奈米碳管212a基本平行於所述第一奈米碳管結構212的表面,即所述第一奈米碳管212a的軸向基本平行於所述第一奈米碳管結構212的表面。所述催化劑顆粒213的材料為鐵(Fe)、鈷(Co)、鎳(Ni)或其任意組合的合金之一,所述催化劑顆粒213分散於第一奈米碳管212a表面或分散於相鄰的奈米碳管與奈米碳管的連接處。所述第一奈米碳管結構212未經過任何化學修飾或功能化處理,所述第一奈米碳管結構212中的複數第一 奈米碳管212a可無序排列或有序排列。所謂無序排列係指奈米碳管的排列方向無規則。所謂有序排列係指奈米碳管的排列方向有規則。具體地,當第一奈米碳管結構212包括無序排列的第一奈米碳管212a時,所述第一奈米碳管212a相互纏繞或者各向同性排列;當第一奈米碳管結構212包括有序排列的第一奈米碳管212a時,所述第一奈米碳管212a沿一方向或者複數方向擇優取向延伸。所謂“擇優取向”係指所述第一奈米碳管結構212中的大多數第一奈米碳管212a在一方向上具有較大的取向幾率;即,該第一奈米碳管結構212中的大多數第一奈米碳管212a的軸向基本沿同一方向延伸。 The first carbon nanotube structure 212 is a film structure or a linear structure, and includes a plurality of first carbon nanotubes 212a and catalyst particles 213 dispersed in the first carbon nanotubes 212a. The first carbon nanotube 212a is substantially parallel to the surface of the first carbon nanotube structure 212, that is, the axial direction of the first carbon nanotube 212a is substantially parallel to the first carbon nanotube structure. The surface of 212. The material of the catalyst particles 213 is one of iron (Fe), cobalt (Co), nickel (Ni) or any combination thereof, and the catalyst particles 213 are dispersed on the surface of the first carbon nanotube 212a or dispersed in the phase. The junction of the adjacent carbon nanotubes and the carbon nanotubes. The first carbon nanotube structure 212 is not subjected to any chemical modification or functional treatment, and the first number in the first carbon nanotube structure 212 is first The carbon nanotubes 212a may be arranged in an orderly or ordered manner. The so-called disordered arrangement means that the arrangement direction of the carbon nanotubes is irregular. The so-called ordered arrangement means that the arrangement direction of the carbon nanotubes is regular. Specifically, when the first carbon nanotube structure 212 includes the first carbon nanotubes 212a that are disorderly arranged, the first carbon nanotubes 212a are entangled or isotropically aligned; when the first carbon nanotubes are When the structure 212 includes the first carbon nanotubes 212a in an ordered arrangement, the first carbon nanotubes 212a extend in a preferred orientation in one direction or in a plurality of directions. By "preferred orientation" is meant that most of the first carbon nanotubes 212a of the first carbon nanotube structure 212 have a greater probability of orientation in one direction; that is, the first carbon nanotube structure 212 The axial direction of most of the first carbon nanotubes 212a extends substantially in the same direction.

具體地,所述第一奈米碳管結構212包括至少一奈米碳管膜、至少一奈米碳管線或至少一奈米碳管膜與至少一奈米碳管線的組合。所述奈米碳管膜或奈米碳管線為複數奈米碳管組成的自支撐結構,所述複數奈米碳管通過凡得瓦力(van der Waals force)相連。所述自支撐係指第一奈米碳管結構212不需要大面積的載體支撐,而只要相對兩邊提供支撐力即能整體上懸空而保持自身狀態,即將該第一奈米碳管結構212置於(或固定於)間隔一定距離設置的兩個支撐體上時,位於兩個支撐體之間的奈米碳管結構能夠懸空保持自身狀態。所述自支撐主要通過奈米碳管結構中存在連續的通過凡得瓦力相連延伸的奈米碳管而實現。 Specifically, the first carbon nanotube structure 212 includes at least one carbon nanotube film, at least one nano carbon line, or a combination of at least one carbon nanotube film and at least one nano carbon line. The carbon nanotube membrane or nanocarbon pipeline is a self-supporting structure composed of a plurality of carbon nanotubes connected by a van der Waals force. The self-supporting means that the first carbon nanotube structure 212 does not require a large-area carrier support, and the first carbon nanotube structure 212 is placed as long as the support force is provided on both sides to be suspended. When (or fixed to) two supports disposed at a distance apart, the carbon nanotube structure between the two supports can be suspended to maintain its own state. The self-supporting is mainly achieved by the presence of a continuous carbon nanotube extending through the van der Waals force in the carbon nanotube structure.

所述奈米碳管膜可為奈米碳管拉膜、奈米碳管碾壓膜和奈米碳管絮化膜,所述奈米碳管線可為一非扭轉的奈米碳管線或扭轉的奈米碳管線,本實施例中所述第一奈米碳管結構212為奈米碳管拉 膜。 The carbon nanotube membrane may be a carbon nanotube membrane, a carbon nanotube membrane and a carbon nanotube flocculation membrane, and the nanocarbon pipeline may be a non-twisted nanocarbon pipeline or twisted. The nano carbon pipeline, the first carbon nanotube structure 212 in the embodiment is a carbon nanotube membrane.

請參閱圖3,所述奈米碳管拉膜係由若干奈米碳管組成的自支撐結構。所述若干奈米碳管沿同一方向擇優取向延伸。該奈米碳管拉膜中大多數奈米碳管的整體延伸方向基本朝同一方向。而且,所述大多數奈米碳管的整體延伸方向基本平行於奈米碳管拉膜的表面。進一步地,所述奈米碳管拉膜中多數奈米碳管係通過凡得瓦力首尾相連。具體地,所述奈米碳管拉膜中基本朝同一方向延伸的大多數奈米碳管中每一奈米碳管與在延伸方向上相鄰的奈米碳管通過凡得瓦力首尾相連。當然,所述奈米碳管拉膜中存在少數隨機排列的奈米碳管,這些奈米碳管不會對奈米碳管拉膜中大多數奈米碳管的整體取向排列構成明顯影響。所述奈米碳管拉膜中基本朝同一方向延伸的多數奈米碳管,並非絕對的直線狀,可適當的彎曲;或者並非完全按照延伸方向上排列,可適當的偏離延伸方向。因此,不能排除奈米碳管拉膜的基本朝同一方向延伸的多數奈米碳管中並列的奈米碳管之間可能存在部份接觸。 Referring to FIG. 3, the carbon nanotube film is a self-supporting structure composed of a plurality of carbon nanotubes. The plurality of carbon nanotubes extend in a preferred orientation along the same direction. Most of the carbon nanotubes in the carbon nanotube film are oriented in the same direction. Moreover, the overall extension direction of the majority of the carbon nanotubes is substantially parallel to the surface of the carbon nanotube film. Further, most of the carbon nanotubes in the carbon nanotube film are connected end to end by van der Waals force. Specifically, each of the carbon nanotubes of the majority of the carbon nanotubes extending in the same direction in the carbon nanotube film is connected end to end with the carbon nanotubes adjacent in the extending direction by van der Waals force . Of course, there are a small number of randomly arranged carbon nanotubes in the carbon nanotube film, and these carbon nanotubes do not significantly affect the overall orientation of most of the carbon nanotubes in the carbon nanotube film. Most of the carbon nanotubes extending substantially in the same direction in the carbon nanotube film are not absolutely linear, and may be appropriately bent; or may not be completely aligned in the extending direction, and may be appropriately deviated from the extending direction. Therefore, it is not possible to exclude partial contact between the carbon nanotubes juxtaposed in the majority of the carbon nanotubes extending substantially in the same direction of the carbon nanotube film.

所述奈米碳管拉膜包括複數連續且定向排列的奈米碳管片段。該若干奈米碳管片段通過凡得瓦力首尾相連。每一奈米碳管片段包括複數相互平行的奈米碳管,該複數相互平行的奈米碳管通過凡得瓦力緊密結合。該奈米碳管片段具有任意的長度、厚度、均勻性及形狀。該奈米碳管拉膜中的奈米碳管沿同一方向擇優取向延伸。所述奈米碳管拉膜還包括複數催化劑顆粒,所述催化劑顆粒位於所述奈米碳管片段的一端。由於所述奈米碳管拉膜包括複數連續奈米碳管片段,且所述奈米碳管片段具有基本相同的長度, 因此,所述催化劑顆粒在奈米碳管拉膜中沿奈米碳管的延伸方向基本均勻分散,即所述催化劑顆粒分散於奈米碳管拉膜中兩個通過凡得瓦力首尾相連的奈米碳管之間的連接處。所述奈米碳管拉膜的結構及其製備方法請參見2010年5月26日公告的,公告號為CN101239712B的中國發明專利說明書。 The carbon nanotube film comprises a plurality of continuous and aligned carbon nanotube segments. The several carbon nanotube segments are connected end to end by van der Waals force. Each of the carbon nanotube segments includes a plurality of mutually parallel carbon nanotubes, and the plurality of parallel carbon nanotubes are tightly coupled by van der Waals force. The carbon nanotube segments have any length, thickness, uniformity, and shape. The carbon nanotubes in the carbon nanotube film are preferentially oriented in the same direction. The carbon nanotube film also includes a plurality of catalyst particles located at one end of the carbon nanotube segment. Since the carbon nanotube film comprises a plurality of continuous carbon nanotube segments, and the carbon nanotube segments have substantially the same length, Therefore, the catalyst particles are substantially uniformly dispersed in the carbon nanotube film in the extending direction of the carbon nanotubes, that is, the catalyst particles are dispersed in the carbon nanotube film and the two are connected end to end by the van der Waals force. The junction between the carbon nanotubes. For the structure of the carbon nanotube film and the preparation method thereof, please refer to the Chinese invention patent specification announced on May 26, 2010, the announcement number is CN101239712B.

當所述第一奈米碳管結構212包括複數奈米碳管膜時,該複數奈米碳管膜可層疊設置形成一體結構,相鄰兩層奈米碳管膜之間通過凡得瓦力緊密結合。優選的,當所述奈米碳管膜為拉膜時,所述相鄰兩層奈米碳管膜中奈米碳管的擇優取向延伸方向形成一夾角α,其中0°≦α≦90°。當α=0°時,所述相鄰兩層奈米碳管膜可稱之為彼此同向排列;當0°<α≦90°時,所述相鄰兩層奈米碳管膜可稱之為彼此交叉排列。所述複數層奈米碳管膜層疊設置可提高其強度,第一奈米碳管結構212工作過程中可更好的保持其形狀和結構。優選的,所述第一奈米碳管結構212包括複數交叉排列的複數層奈米碳管膜,可進一步增強其機械強度。本實施例中,所述第一奈米碳管結構212為一層奈米碳管拉膜。 When the first carbon nanotube structure 212 comprises a plurality of carbon nanotube membranes, the plurality of carbon nanotube membranes may be stacked to form an integral structure, and the adjacent two layers of carbon nanotube membranes pass through the van der Waals force Closely integrated. Preferably, when the carbon nanotube film is a tensile film, the preferred orientation direction of the carbon nanotubes in the adjacent two layers of carbon nanotube film forms an angle α, wherein 0°≦α≦90° . When α=0°, the adjacent two-layer carbon nanotube films may be said to be aligned with each other; when 0°<α≦90°, the adjacent two-layer carbon nanotube film may be called They are arranged to cross each other. The plurality of layers of carbon nanotube film stacking arrangement can increase the strength thereof, and the first carbon nanotube structure 212 can better maintain its shape and structure during operation. Preferably, the first carbon nanotube structure 212 comprises a plurality of cross-aligned layers of carbon nanotube membranes, which further enhances the mechanical strength. In this embodiment, the first carbon nanotube structure 212 is a layer of carbon nanotube film.

進一步的,所述第一奈米碳管結構212的表面可進一步沈積有若干催化劑顆粒,所述催化劑顆粒沈積在第一奈米碳管結構212遠離基底220的表面,具體的,所述催化劑顆粒在所述第一奈米碳管結構212表面均勻分散,並且主要分散於所述第一奈米碳管結構212中奈米碳管的表面,所述催化劑顆粒的材料可為鐵(Fe)、鈷(Co)、鎳(Ni)或其任意組合的合金之一。通過在第一奈米碳管結構212的表面沈積所述催化劑顆粒,可控制生長奈米碳 管的密度。 Further, the surface of the first carbon nanotube structure 212 may be further deposited with a plurality of catalyst particles deposited on a surface of the first carbon nanotube structure 212 away from the substrate 220. Specifically, the catalyst particles Dispersing uniformly on the surface of the first carbon nanotube structure 212, and mainly dispersed on the surface of the carbon nanotube in the first carbon nanotube structure 212, the material of the catalyst particles may be iron (Fe), One of alloys of cobalt (Co), nickel (Ni), or any combination thereof. The growth of nanocarbon can be controlled by depositing the catalyst particles on the surface of the first carbon nanotube structure 212 The density of the tube.

所述第二奈米碳管結構214位於所述第一奈米碳管結構212遠離所述基底220的表面,並且與所述第一奈米碳管結構212垂直相連。具體的,所述第二奈米碳管結構214包括複數第二奈米碳管214a,所述複數第二奈米碳管214a基本垂直於所述第一奈米碳管結構212的表面排列,並且每一第二奈米碳管214a的一端均與所述第一奈米碳管結構212的表面相連,另一端向遠離所述第一奈米碳管結構212的方向延伸。所述第二奈米碳管結構214中基本朝同一方向延伸的多數第二奈米碳管214a,並非絕對的直線狀,可適當的彎曲;或者並非完全垂直於所述第一奈米碳管結構212表面,可適當的偏離延伸方向。因此,不能排除第二奈米碳管結構214中的基本垂直於第一奈米碳管結構212的多數第二奈米碳管214a中並列的奈米碳管之間可能存在部份接觸。但整體上所述第二奈米碳管結構214中的第二奈米碳管214a垂直於所述第一奈米碳管結構212的表面。 The second carbon nanotube structure 214 is located on a surface of the first carbon nanotube structure 212 away from the substrate 220 and is vertically connected to the first carbon nanotube structure 212. Specifically, the second carbon nanotube structure 214 includes a plurality of second carbon nanotubes 214a arranged substantially perpendicular to a surface of the first carbon nanotube structure 212. And one end of each of the second carbon nanotubes 214a is connected to the surface of the first carbon nanotube structure 212, and the other end extends away from the first carbon nanotube structure 212. A plurality of second carbon nanotubes 214a extending substantially in the same direction in the second carbon nanotube structure 214 are not absolutely linear and may be appropriately bent; or are not completely perpendicular to the first carbon nanotube The surface of structure 212 can be appropriately offset from the direction of extension. Therefore, partial contact between the carbon nanotubes juxtaposed in the plurality of second carbon nanotubes 214a substantially perpendicular to the first carbon nanotube structure 212 in the second carbon nanotube structure 214 cannot be excluded. However, the second carbon nanotube 214a in the second carbon nanotube structure 214 is perpendicular to the surface of the first carbon nanotube structure 212.

所述第二奈米碳管結構214在遠離所述第一奈米碳管結構212的表面具有一尖端214c,所述尖端214c為向遠離所述第一奈米碳管結構212方向凸出的凸起結構。所述第二奈米碳管結構214中位於所述尖端214c的頂端位置的第二奈米碳管214a的長度,大於附近的第二奈米碳管214a的長度,並且在從頂端位置向附近延伸的一定範圍內,第二奈米碳管214a的長度遞減,形成尖端214c,所述長度最長的第二奈米碳管214a作為尖端214c的頂端。本實施例中,所述第二奈米碳管結構214具有一三角形結構的尖端214c,所述 三角形結構係指,所述第二奈米碳管結構214在沿第一奈米碳管結構212中第一奈米碳管212a的延伸方向上的剖面為一三角形。即相對於第一奈米碳管結構212的表面,所述第二奈米碳管結構214中的第二奈米碳管214a的高度對應所述三角形結構的形狀變化,所述三角形結構的第二奈米碳管結構214中頂端位置處的第二奈米碳管214a的長度最長,從而形成一尖端214c,由此頂端位置沿第一奈米碳管結構212中第一奈米碳管212a的分別向兩端延伸方向上,即在遠離尖端214c的頂端的方向上,第二奈米碳管214a的長度逐漸縮短,從而所述複數第二奈米碳管214a形成一頂端位置高、邊緣逐漸降低的三角形結構。由於所述第二奈米碳管結構214為具有一三角形結構的尖端214c,因此在發射電子的過程中,可有效的減小第二奈米碳管214a之間的屏蔽效應,進而減小第二奈米碳管結構214的邊緣增強效應,並相應的增強三角形結構頂端位置處奈米碳管的電子發射能力,使得整個第二奈米碳管結構214具有較均勻的電子發射密度。 The second carbon nanotube structure 214 has a tip 214c on a surface remote from the first carbon nanotube structure 212, the tip 214c being convex away from the first carbon nanotube structure 212. Raised structure. The length of the second carbon nanotube 214a at the top end of the tip end 214c in the second carbon nanotube structure 214 is greater than the length of the adjacent second carbon nanotube 214a, and is near to the top position Within a certain range of extension, the length of the second carbon nanotube 214a is reduced to form a tip end 214c, which is the tip end of the tip end 214c. In this embodiment, the second carbon nanotube structure 214 has a triangular shaped tip 214c, The triangular structure means that the second carbon nanotube structure 214 has a triangular cross section along the direction in which the first carbon nanotubes 212a extend in the first carbon nanotube structure 212. That is, with respect to the surface of the first carbon nanotube structure 212, the height of the second carbon nanotube 214a in the second carbon nanotube structure 214 corresponds to the shape change of the triangular structure, and the The second carbon nanotube 214a at the top end position of the second carbon nanotube structure 214 has the longest length, thereby forming a tip end 214c, whereby the tip end position is along the first carbon nanotube 212a in the first carbon nanotube structure 212. The length of the second carbon nanotube 214a is gradually shortened in the direction extending from both ends, that is, in the direction away from the tip end of the tip end 214c, so that the plurality of second carbon nanotubes 214a form a top position and a high edge. A gradually decreasing triangular structure. Since the second carbon nanotube structure 214 is a tip end 214c having a triangular structure, the shielding effect between the second carbon nanotubes 214a can be effectively reduced during electron emission, thereby reducing the number of The edge enhancement effect of the carbon nanotube structure 214, and correspondingly enhances the electron emission capability of the carbon nanotube at the top end of the triangular structure, so that the entire second carbon nanotube structure 214 has a relatively uniform electron emission density.

進一步的,所述第二奈米碳管結構214中的奈米碳管可呈規律性分佈,優選的,所述複數第二奈米碳管214a基本以等間距的方式排列。本實施例中,由於所述第一奈米碳管結構212為奈米碳管拉膜,因此所述催化劑顆粒213分散於第一奈米碳管結構212中通過凡得瓦力首尾相連的第一奈米碳管212a之間的連接處。所述第二奈米碳管結構214中的第二奈米碳管214a係生長於所述催化劑顆粒213上,通過催化劑顆粒213與所述第一奈米碳管結構212相連。具體地,所述第二奈米碳管214a的一端與所述催化劑顆粒相 連,所述第二奈米碳管214a的另一端垂直於所述第一奈米碳管結構212的表面向外延伸。因此第二奈米碳管結構214中的奈米碳管在沿拉膜的拉伸方向上基本以等間距排列,其間距的距離與拉膜中奈米碳管的長度基本相同。由於所述複數奈米碳管等間距排列,可進一步減小奈米碳管之間的屏蔽效應,進而減小第二奈米碳管結構214的邊緣增強效應,提高電子發射密度的均勻性。 Further, the carbon nanotubes in the second carbon nanotube structure 214 may be regularly distributed. Preferably, the plurality of second carbon nanotubes 214a are arranged substantially in an equally spaced manner. In this embodiment, since the first carbon nanotube structure 212 is a carbon nanotube film, the catalyst particles 213 are dispersed in the first carbon nanotube structure 212 and are connected end to end by the van der Waals force. The junction between a carbon nanotube 212a. The second carbon nanotube 214a in the second carbon nanotube structure 214 is grown on the catalyst particles 213 and is connected to the first carbon nanotube structure 212 by catalyst particles 213. Specifically, one end of the second carbon nanotube 214a is opposite to the catalyst particle The other end of the second carbon nanotube 214a extends outwardly perpendicular to the surface of the first carbon nanotube structure 212. Therefore, the carbon nanotubes in the second carbon nanotube structure 214 are arranged at substantially equal intervals in the stretching direction of the drawn film at a distance substantially the same as the length of the carbon nanotubes in the drawn film. Since the plurality of carbon nanotubes are equally spaced, the shielding effect between the carbon nanotubes can be further reduced, thereby reducing the edge enhancement effect of the second carbon nanotube structure 214 and improving the uniformity of the electron emission density.

請參閱圖4,進一步的,所述場發射陰極結構200包括一基底220,所述第一奈米碳管結構212設置於所述基底220的表面,所述第二奈米碳管結構214設置於所述第一奈米碳管結構212遠離基底220的表面,並且向遠離所述基底220的方向延伸,即所述第二奈米碳管結構214中的第二奈米碳管214a一端與所述第一奈米碳管結構212連接,另一端向遠離所述基底220的方向延伸。所述第一奈米碳管結構212可平鋪設置於所述基底220的表面,也可懸空設置於所述基底220的表面。 Referring to FIG. 4, further, the field emission cathode structure 200 includes a substrate 220. The first carbon nanotube structure 212 is disposed on a surface of the substrate 220, and the second carbon nanotube structure 214 is disposed. The first carbon nanotube structure 212 is away from the surface of the substrate 220 and extends away from the substrate 220, that is, the end of the second carbon nanotube 214a in the second carbon nanotube structure 214 The first carbon nanotube structure 212 is connected and the other end extends away from the substrate 220. The first carbon nanotube structure 212 may be laid flat on the surface of the substrate 220 or may be suspended on the surface of the substrate 220.

本實施例中,所述第一奈米碳管結構212懸空設置於所述基底220表面時,所述場發射陰極結構200可進一步包括間隔設置的兩支撐體,本實施例中所述兩支撐體可為第一導電基體221及第二導電基體222,所述第一導電基體221及第二導電基體222的材料可為如金屬單質、金屬合金、導電複合材料等,其形狀不限,只需確保第一導電基體221與第二導電基體222具有一平面,可使第一奈米碳管結構212的兩端分別平鋪黏附即可。本實施例中,所述第一導電基體221與第二導電基體222的形狀為一長方體。所述第一導電基體221與第二導電基體222之間的間距可根據實際需要設 置。 In this embodiment, when the first carbon nanotube structure 212 is suspended on the surface of the substrate 220, the field emission cathode structure 200 may further include two supporting bodies disposed at intervals, and the two supports in this embodiment The material may be a first conductive substrate 221 and a second conductive substrate 222. The materials of the first conductive substrate 221 and the second conductive substrate 222 may be, for example, a metal element, a metal alloy, a conductive composite material, etc., and the shape thereof is not limited. It is necessary to ensure that the first conductive substrate 221 and the second conductive substrate 222 have a plane, so that both ends of the first carbon nanotube structure 212 can be tiled and adhered respectively. In this embodiment, the shape of the first conductive substrate 221 and the second conductive substrate 222 is a rectangular parallelepiped. The spacing between the first conductive substrate 221 and the second conductive substrate 222 can be set according to actual needs. Set.

本實施例提供的場發射陰極結構應用於場發射領域時,一方面,由於所述第一奈米碳管結構212為自支撐結構,因此可無需基底支撐而直接懸空設置於電極之間,因此可更加方便的應用於場發射領域等;另一方面,由於所述第二奈米碳管結構214為三角形,因此可減小第二奈米碳管結構214中的邊緣增強效應,提高電子發射密度的均勻性;並且,由於邊緣位置的奈米碳管的高度較低,可避免與柵極電極相接觸,從而避免了短路現象的發生,提高的場發射顯示結構的安全性及壽命。進一步的,當所述場發射陰極結構用於熱場發射裝置時,可在第一奈米碳管結構212中通入電流,利用第一奈米碳管結構212產生熱量而給第二奈米碳管結構214加熱,從而去除吸附在第二奈米碳管結構214中奈米碳管表面的雜質如氣體分子等,因而使其電子發射更加的穩定。由於第一奈米碳管結構212具有極小的單位面積比熱容,因而具有非常小的加熱功耗及非常快的回應速度,因此使得所述場發射陰極結構可適用於回應速度快的場發射裝置中。 When the field emission cathode structure provided in this embodiment is applied to the field of field emission, on the one hand, since the first carbon nanotube structure 212 is a self-supporting structure, it can be directly suspended between the electrodes without using the substrate support. It can be more conveniently applied to the field emission field and the like; on the other hand, since the second carbon nanotube structure 214 is triangular, the edge enhancement effect in the second carbon nanotube structure 214 can be reduced, and electron emission can be improved. Uniformity of density; and, because the height of the carbon nanotube at the edge position is low, contact with the gate electrode can be avoided, thereby avoiding the occurrence of a short circuit phenomenon, and the improved field emission display structure safety and life. Further, when the field emission cathode structure is used in a thermal field emission device, an electric current can be introduced into the first carbon nanotube structure 212, and heat is generated by the first carbon nanotube structure 212 to the second nanometer. The carbon tube structure 214 is heated to remove impurities such as gas molecules and the like adsorbed on the surface of the carbon nanotubes in the second carbon nanotube structure 214, thereby making the electron emission more stable. Since the first carbon nanotube structure 212 has a very small specific heat capacity per unit area, it has very small heating power consumption and a very fast response speed, so that the field emission cathode structure can be applied to a field emission device with a fast response speed. .

請一併參照圖5及圖6,本發明第一實施例進一步提供一種所述場發射陰極結構200的製備方法,所述製備方法主要包括以下步驟:步驟S21,提供一懸空設置的第一奈米碳管結構212。 Referring to FIG. 5 and FIG. 6 together, the first embodiment of the present invention further provides a method for preparing the field emission cathode structure 200. The preparation method mainly includes the following steps: Step S21, providing a first set of suspended ceilings The carbon tube structure 212.

所述第一奈米碳管結構212可為至少一奈米碳管膜或至少一奈米碳管線,所述奈米碳管膜或奈米碳管線為由複數奈米碳管組成的 自支撐結構。所述奈米碳管膜可為奈米碳管拉膜、奈米碳管碾壓膜或奈米碳管絮化膜中的一種,所述奈米碳管線可為一非扭轉的奈米碳管線或扭轉的奈米碳管線。所述奈米碳管膜的尺寸不限,可根據實際情況進行選擇。本實施例中,所述第一奈米碳管結構212為奈米碳管拉膜。 The first carbon nanotube structure 212 may be at least one carbon nanotube film or at least one nano carbon pipeline, and the carbon nanotube membrane or the nano carbon pipeline is composed of a plurality of carbon nanotubes. Self-supporting structure. The carbon nanotube film may be one of a carbon nanotube film, a carbon nanotube film or a carbon nanotube film, and the nano carbon line may be a non-twisted nano carbon. Pipeline or twisted nanocarbon line. The size of the carbon nanotube film is not limited and can be selected according to actual conditions. In this embodiment, the first carbon nanotube structure 212 is a carbon nanotube film.

所述奈米碳管拉膜可通過從奈米碳管陣列直接拉取獲得。從奈米碳管陣列中拉取獲得所述奈米碳管拉膜的具體方法包括:(a)從所述奈米碳管陣列中選定一奈米碳管片段,本實施例優選為採用具有一定寬度的膠帶或黏性基條接觸該奈米碳管陣列以選定具有一定寬度的一奈米碳管片段;(b)通過移動該拉伸工具,以一定速度拉取該選定的奈米碳管片段,從而首尾相連的拉出若干奈米碳管片段,進而形成一連續的奈米碳管拉膜。該若干奈米碳管相互並排使該奈米碳管片段具有一定寬度。當該被選定的奈米碳管片段在拉力作用下沿拉取方向逐漸脫離奈米碳管陣列的生長基底的同時,由於凡得瓦力作用,與該選定的奈米碳管片段相鄰的其他奈米碳管片段首尾相連地相繼地被拉出,從而形成一連續、均勻且具有一定寬度和擇優取向的奈米碳管拉膜。 The carbon nanotube film can be obtained by directly drawing from a carbon nanotube array. The specific method for extracting the carbon nanotube film from the carbon nanotube array comprises: (a) selecting a carbon nanotube segment from the carbon nanotube array, and the embodiment preferably adopts a tape or viscous strip of a certain width contacting the array of carbon nanotubes to select a carbon nanotube segment having a width; (b) pulling the selected nanocarbon at a certain speed by moving the stretching tool The tube segments, thereby connecting a plurality of carbon nanotube segments end to end, form a continuous carbon nanotube film. The plurality of carbon nanotubes are arranged side by side such that the carbon nanotube segments have a certain width. When the selected carbon nanotube segment is gradually separated from the growth substrate of the carbon nanotube array in the pulling direction under the pulling force, adjacent to the selected carbon nanotube segment due to the effect of van der Waals force The other carbon nanotube segments are successively pulled out end to end to form a continuous, uniform carbon nanotube film having a certain width and a preferred orientation.

同時,在所述拉伸複數奈米碳管片斷形成一奈米碳管拉膜的過程中,基底上的催化劑顆粒213會吸附於所述碳每一奈米碳管片斷一端,從而從所述基底上分離,並分散在奈米碳管拉膜中,並且所述催化劑顆粒213基本分散於通過凡得瓦力首尾相連的兩根奈米碳管之間。由於通過上述方法製備的奈米碳管陣列中的奈米碳管具有基本相同的長度,從而所述奈米碳管片段的長度基本相同 ,因此,在拉伸過程中,催化劑顆粒213均勻分散於奈米碳管拉膜中,即,在沿奈米碳管延伸的方向上,所述催化劑顆粒213基本以相同的間隔分散於通過凡得瓦力首尾相連的奈米碳管與奈米碳管之間的連接處。 Meanwhile, in the process of forming a carbon nanotube film by stretching the plurality of carbon nanotube segments, the catalyst particles 213 on the substrate are adsorbed to one end of each carbon nanotube segment of the carbon, thereby The substrate is separated and dispersed in a carbon nanotube film, and the catalyst particles 213 are substantially dispersed between two carbon nanotubes connected end to end by a van der Waals force. Since the carbon nanotubes in the carbon nanotube array prepared by the above method have substantially the same length, the lengths of the carbon nanotube segments are substantially the same Therefore, during the stretching process, the catalyst particles 213 are uniformly dispersed in the carbon nanotube film, that is, in the direction in which the carbon nanotubes extend, the catalyst particles 213 are dispersed at substantially the same interval. The junction between the carbon nanotubes and the carbon nanotubes connected end to end.

可理解,通過將若干奈米碳管拉膜平行層疊鋪設,可製備不同面積與厚度的奈米碳管膜。所述奈米碳管拉膜的厚度可為0.5奈米~100微米。當奈米碳管膜包括複數層疊設置的奈米碳管拉膜時,所述複數層奈米碳管拉膜彼此層疊設置形成一體結構,相鄰兩層奈米碳管拉膜之間通過凡得瓦力緊密結合,相鄰的奈米碳管拉膜中的奈米碳管的延伸方向形成一夾角α,0°≦α≦90°。所述複數層奈米碳管拉膜層疊設置可提高其強度,在後續的處理過程中可更好的保持其形狀和結構。本實施例中奈米碳管拉膜的層數為10層,並且相鄰兩層奈米碳管拉膜彼此交叉排列。 It can be understood that the carbon nanotube film of different area and thickness can be prepared by laminating a plurality of carbon nanotube film in parallel. The carbon nanotube film may have a thickness of 0.5 nm to 100 μm. When the carbon nanotube film comprises a plurality of stacked carbon nanotube film, the plurality of layers of carbon nanotube film are laminated on each other to form an integrated structure, and the adjacent two layers of carbon nanotube film are passed between The wattage is tightly coupled, and the direction of extension of the carbon nanotubes in the adjacent carbon nanotube film forms an angle α, 0° ≦ α ≦ 90°. The stacking of the plurality of layers of carbon nanotubes can increase the strength thereof, and can better maintain its shape and structure in the subsequent processing. In this embodiment, the number of layers of the carbon nanotube film is 10 layers, and the adjacent two layers of carbon nanotube film are arranged to cross each other.

另外,當所述奈米碳管拉膜中的催化劑顆粒較少時,可在所述第一奈米碳管結構212的表面進一步沈積催化劑顆粒。所述催化劑顆粒可通過電子束蒸發、濺射、電漿體沈積、電沈積或者催化劑溶液塗覆等方法沈積於所述第一奈米碳管結構212的表面。 In addition, when the catalyst particles in the carbon nanotube film are less, catalyst particles may be further deposited on the surface of the first carbon nanotube structure 212. The catalyst particles may be deposited on the surface of the first carbon nanotube structure 212 by electron beam evaporation, sputtering, plasma deposition, electrodeposition, or catalyst solution coating.

所述懸空設置可通過以下步驟實現:步驟S211,提供一基底220。 The dangling setting can be achieved by the following steps: Step S211, providing a substrate 220.

所述基底220可選用矽基底,或選用形成有氧化層的矽基底,也可選用其他耐高溫且不易發生反應的材料,如石英等。所述基底220的大小、形狀不限,可根據實際需求製備,本實施例優選為 矩形矽基底。 The substrate 220 may be selected from a germanium substrate, or a germanium substrate formed with an oxide layer, or other materials that are resistant to high temperatures and are not susceptible to reaction, such as quartz. The size and shape of the substrate 220 are not limited, and can be prepared according to actual needs. This embodiment is preferably Rectangular 矽 base.

步驟S212,將所述第一奈米碳管結構212懸空設置於所述基底220表面,主要包括:首先,提供一第一導電基體221與第二導電基體222,所述第一導電基體221與第二導電基體222間隔設置於所述基底220表面,其間隔距離可根據實際需求設置。所述第一導電基體221與第二導電基體222之間保持一定的距離,且相互絕緣。 Step S212, the first carbon nanotube structure 212 is suspended on the surface of the substrate 220, and the method includes: firstly, providing a first conductive substrate 221 and a second conductive substrate 222, the first conductive substrate 221 and The second conductive substrate 222 is spaced apart from the surface of the substrate 220, and the separation distance can be set according to actual needs. The first conductive substrate 221 and the second conductive substrate 222 are kept at a certain distance and are insulated from each other.

所述第一導電基體221與第二導電基體222相互保持一定距離間隔設置於基底220上,該第一導電基體221與第二導電基體222均由導電材料製成,如金屬單質、金屬合金、導電複合材料等,所述金屬單質可為銅、鎢、金、鉬或鉑等,所述金屬合金可為銅錫合金等,所述導電複合材料可為ITO玻璃及導電漿料等。該第一導電基體221與第二導電基體222的形狀不限,只需確保第一導電基體221與第二導電基體222具有一平面,可使第一奈米碳管結構212的兩端分別平鋪黏附即可。本實施例中,所述第一導電基體221與第二導電基體222的形狀為一長方體。所述第一導電基體221與第二導電基體222的間隔距離可根據實際需要設置,第一導電基體221與第二導電基體222之間的距離可為2毫米~2厘米。本實施例中,所述第一導電基體221與第二導電基體222之間的距離優選為1厘米。 The first conductive substrate 221 and the second conductive substrate 222 are disposed on the substrate 220 at a distance from each other. The first conductive substrate 221 and the second conductive substrate 222 are made of a conductive material, such as a metal element, a metal alloy, The conductive composite material may be copper, tungsten, gold, molybdenum or platinum. The metal alloy may be a copper-tin alloy or the like, and the conductive composite material may be ITO glass, a conductive paste or the like. The shapes of the first conductive substrate 221 and the second conductive substrate 222 are not limited, and it is only necessary to ensure that the first conductive substrate 221 and the second conductive substrate 222 have a plane, so that the two ends of the first carbon nanotube structure 212 are respectively flat. Stick and stick. In this embodiment, the shape of the first conductive substrate 221 and the second conductive substrate 222 is a rectangular parallelepiped. The distance between the first conductive substrate 221 and the second conductive substrate 222 may be set according to actual needs. The distance between the first conductive substrate 221 and the second conductive substrate 222 may be 2 mm to 2 cm. In this embodiment, the distance between the first conductive substrate 221 and the second conductive substrate 222 is preferably 1 cm.

其次,將所述第一奈米碳管結構212懸空設置於基底220一表面。所述懸空設置可通過將所述第一奈米碳管結構212沿其拉伸方向 的一端平鋪黏附於第一導電基體221上且與第一導電基體221電連接;將所述第一奈米碳管結構212的另一端沿其拉伸方向平鋪黏附於第二導電基體222上且與第二導電基體222電連接,並使第一奈米碳管結構212中間懸空並處於拉伸狀態,從而使得兩導電基體間的電流沿所述第一奈米碳管結構212中第一奈米碳管212a的延伸方向傳輸。即所述第一奈米碳管結構212兩端分別固定於第一導電基體221與第二導電基體222上,而中間與基底220間隔設置。由於所述第一奈米碳管結構212本身具有一定的黏性,因此可將第一奈米碳管結構212兩端分別直接黏附於第一導電基體221和第二導電基體222,也可通過導電膠如銀膠等將第一奈米碳管結構212的兩端分別黏附於第一導電基體221和第二導電基體222。 Next, the first carbon nanotube structure 212 is suspended on a surface of the substrate 220. The dangling arrangement can be performed by stretching the first carbon nanotube structure 212 along its direction of stretching One end of the first carbon nanotube structure 212 is tilingly adhered to the first conductive substrate 221 and electrically connected to the first conductive substrate 221; the other end of the first carbon nanotube structure 212 is tiled and adhered to the second conductive substrate 222 along the stretching direction thereof. And electrically connected to the second conductive substrate 222, and the first carbon nanotube structure 212 is suspended and stretched in the middle, so that the current between the two conductive substrates is along the first carbon nanotube structure 212. The carbon nanotubes 212a are transported in the extending direction. That is, the two ends of the first carbon nanotube structure 212 are respectively fixed on the first conductive substrate 221 and the second conductive substrate 222, and the middle portion is spaced apart from the substrate 220. Since the first carbon nanotube structure 212 itself has a certain viscosity, the two ends of the first carbon nanotube structure 212 can be directly adhered to the first conductive substrate 221 and the second conductive substrate 222, respectively. A conductive adhesive such as silver glue or the like adheres both ends of the first carbon nanotube structure 212 to the first conductive substrate 221 and the second conductive substrate 222, respectively.

步驟S22,以所述懸空設置的第一奈米碳管結構212作為基底,通過化學氣相沈積法在所述第一奈米碳管結構212的表面生長第二奈米碳管214a,形成第二奈米碳管結構214。 Step S22, forming a second carbon nanotube 214a on the surface of the first carbon nanotube structure 212 by chemical vapor deposition using the first carbon nanotube structure 212 disposed in the suspended space as a base. Two carbon nanotube structure 214.

所述化學氣相沈積法主要包括以下步驟:首先,將所述基底220置入反應室中,並通入保護氣體及碳源氣體。所述保護氣體為氮氣、氬氣或其他惰性氣體中的一種或複數種,本實施例中保護氣體優選的為氬氣。所述碳源氣體可為甲烷、乙烷、乙炔及乙烯中的一種或複數種的混合物,本實施例優選的為甲烷。 The chemical vapor deposition method mainly comprises the following steps: First, the substrate 220 is placed in a reaction chamber, and a shielding gas and a carbon source gas are introduced. The shielding gas is one or a plurality of nitrogen, argon or other inert gas, and the shielding gas in the embodiment is preferably argon. The carbon source gas may be one or a mixture of methane, ethane, acetylene and ethylene, and methane is preferred in this embodiment.

其次,在第一導電基體221與第二導電基體222之間施加一電壓, 從而在第一奈米碳管結構212中通入電流,加熱所述第一奈米碳管結構212,使所述第一奈米碳管結構212的溫度達到奈米碳管的生長溫度,在所述第一奈米碳管結構212的表面生長奈米碳管。第一導電基體221與第二導電基體222之間施加的電壓與兩導電基體之間的距離及第一奈米碳管結構212中奈米碳管的直徑相關。本實施例中,第一奈米碳管結構212中的奈米碳管的直徑為5微米,在第一導電基體221與第二導電基體222之間施加一40伏特的直流電壓。第一奈米碳管結構212在焦耳熱的作用下加熱到溫度為500℃至900℃,反應時間為30~60分鐘,在第一奈米碳管結構212的表面生長第二奈米碳管214a。 Second, a voltage is applied between the first conductive substrate 221 and the second conductive substrate 222. Thereby, an electric current is passed through the first carbon nanotube structure 212, and the first carbon nanotube structure 212 is heated to bring the temperature of the first carbon nanotube structure 212 to the growth temperature of the carbon nanotube. The surface of the first carbon nanotube structure 212 grows a carbon nanotube. The voltage applied between the first conductive substrate 221 and the second conductive substrate 222 is related to the distance between the two conductive substrates and the diameter of the carbon nanotubes in the first nanotube structure 212. In this embodiment, the diameter of the carbon nanotubes in the first carbon nanotube structure 212 is 5 micrometers, and a direct current voltage of 40 volts is applied between the first conductive substrate 221 and the second conductive substrate 222. The first carbon nanotube structure 212 is heated to a temperature of 500 ° C to 900 ° C under the action of Joule heat, and the reaction time is 30 to 60 minutes, and a second carbon nanotube is grown on the surface of the first carbon nanotube structure 212 214a.

在加熱過程中,由於焦耳熱的作用使第一奈米碳管結構212及周圍的溫度逐漸升高,同時第一奈米碳管結構212內部產生的熱量通過第一奈米碳管結構212本身分別向第一導電基體221或第二導電基體222的方向傳導及向周圍輻射。由於導電基體具有良好的熱傳導作用,並且第一奈米碳管結構212的中間位置離第一導電基體221或第二導電基體222的距離最遠,因此該處的溫度最高,由此向第一導電基體221、第二導電基體222延伸的方向上的溫度逐漸降低,導電基體位置處的溫度最低,從而在第一奈米碳管結構212表面形成一中間溫度高,沿中間位置到分別向兩導電基體延伸的方向上,溫度逐漸降低的溫度梯度。 During the heating process, the temperature of the first carbon nanotube structure 212 and the surrounding temperature gradually increase due to the action of Joule heat, and the heat generated inside the first carbon nanotube structure 212 passes through the first carbon nanotube structure 212 itself. Conducted in the direction of the first conductive substrate 221 or the second conductive substrate 222 and radiated to the surroundings, respectively. Since the conductive substrate has a good heat conduction effect, and the intermediate position of the first carbon nanotube structure 212 is the farthest from the first conductive substrate 221 or the second conductive substrate 222, the temperature at the place is the highest, thereby being the first The temperature in the direction in which the conductive substrate 221 and the second conductive substrate 222 extend gradually decreases, and the temperature at the position of the conductive substrate is the lowest, so that an intermediate temperature is formed on the surface of the first carbon nanotube structure 212, and the intermediate position is two to two. A temperature gradient in which the temperature gradually decreases in the direction in which the conductive substrate extends.

經過一定時間後,在第一奈米碳管結構212的表面上生長出複數第二奈米碳管214a,所述複數第二奈米碳管214a形成第二奈米碳管結構214。由於位於兩個導電基體之間中間位置處的第一奈米 碳管結構212的溫度最高,因此,在其他生長條件相同的情況下,在形成第二奈米碳管結構214的過程中,此中間位置處的催化劑顆粒上的奈米碳管生長速度最快,第二奈米碳管214a的長度最長,作為第二奈米碳管結構214的頂端。相應的,由此中間位置分別向兩導電基體延伸的方向上,也即第一奈米碳管結構212中第一奈米碳管212a的延伸方向上,第二奈米碳管結構214中奈米碳管的生長速度逐漸降低,因此形成一頂端奈米碳管長、邊緣奈米碳管短的三角形結構。因此,通過控制設置兩個導電基體的位置,即控制向所述第一奈米碳管結構212通電的方向與位置,即可控制所述第二奈米碳管結構214形成尖端214c的數量與位置。 After a certain period of time, a plurality of second carbon nanotubes 214a are formed on the surface of the first carbon nanotube structure 212, and the plurality of second carbon nanotubes 214a form a second carbon nanotube structure 214. Due to the first nanometer located at an intermediate position between the two conductive substrates The carbon tube structure 212 has the highest temperature, and therefore, in the case where the other growth conditions are the same, the carbon nanotubes on the catalyst particles at the intermediate position grow fastest during the formation of the second carbon nanotube structure 214. The second carbon nanotube 214a has the longest length as the top end of the second carbon nanotube structure 214. Correspondingly, in the direction in which the intermediate positions respectively extend toward the two conductive substrates, that is, in the extending direction of the first carbon nanotubes 212a in the first carbon nanotube structure 212, the second carbon nanotube structure 214 The growth rate of the carbon nanotubes is gradually reduced, thereby forming a triangular structure in which the top carbon nanotubes are long and the edge carbon nanotubes are short. Therefore, by controlling the position of the two conductive substrates, that is, controlling the direction and position of energization of the first carbon nanotube structure 212, the number of tips 214c formed by the second carbon nanotube structure 214 can be controlled. position.

進一步的,在所述第一奈米碳管結構212通入電流加熱的過程中,可通過一加熱裝置(圖未示)對所述反應室進行加熱以提高第二奈米碳管結構214中第二奈米碳管214a的生長速度,所述加熱的溫度不高於所述第一奈米碳管結構212產生的最低溫度。由於所述加熱溫度低於所述第一奈米碳管結構212結構的最低溫度,因此並不影響第一奈米碳管結構212表面的溫度梯度,而且通過採用加熱裝置進一步對反應室進行加熱,可進一步提高第二奈米碳管結構214中第二奈米碳管214a的生長速度。 Further, during the heating of the first carbon nanotube structure 212 to the current, the reaction chamber may be heated by a heating device (not shown) to increase the second carbon nanotube structure 214. The growth rate of the second carbon nanotube 214a, the temperature of the heating is not higher than the lowest temperature generated by the first carbon nanotube structure 212. Since the heating temperature is lower than the lowest temperature of the structure of the first carbon nanotube structure 212, the temperature gradient of the surface of the first carbon nanotube structure 212 is not affected, and the reaction chamber is further heated by using a heating device. The growth rate of the second carbon nanotube 214a in the second carbon nanotube structure 214 can be further increased.

步驟S23,對第一奈米碳管結構212通入電流一定時間後,停止通電,然後停止通入氣體,得到所述場發射陰極結構200。 In step S23, after the current is applied to the first carbon nanotube structure 212 for a certain period of time, the energization is stopped, and then the gas is stopped to obtain the field emission cathode structure 200.

本發明提供的所述場發射陰極結構的製備方法,通過將第一奈米碳管結構懸空設置於基底上,然後再通入電流的方式加熱,因此在第一奈米碳管結構表面形成溫度梯度,進而得到三角形的第二 奈米碳管結構,製備方法簡單易行,適合在工業上批量生長。 The method for preparing the field emission cathode structure provided by the invention provides a temperature on the surface of the first carbon nanotube structure by disposing the first carbon nanotube structure on the substrate and then heating the current. Gradient, which in turn gives the second of the triangle The carbon nanotube structure is simple and easy to prepare, and is suitable for industrial batch growth.

請參閱圖7及圖8,本發明第二實施例提供一種場發射陰極結構300,所述場發射陰極結構300包括一第一奈米碳管結構312及第二奈米碳管結構314,所述場發射陰極結構300與第一實施例中所述場發射陰極結構200的結構基本相同,其不同在於,所述第二奈米碳管結構314遠離所述第一奈米碳管結構312的表面形成有複數尖端314c。 Referring to FIG. 7 and FIG. 8, a second embodiment of the present invention provides a field emission cathode structure 300. The field emission cathode structure 300 includes a first carbon nanotube structure 312 and a second carbon nanotube structure 314. The field emission cathode structure 300 is substantially identical in structure to the field emission cathode structure 200 of the first embodiment, except that the second carbon nanotube structure 314 is away from the first carbon nanotube structure 312. The surface is formed with a plurality of tips 314c.

所述第一奈米碳管結構312包括複數平行於所述第一奈米碳管結構312表面的第一奈米碳管312a,及分散於第一奈米碳管結構312中的複數催化劑顆粒。優選的,所述第一奈米碳管結構312為奈米碳管拉膜,所述奈米碳管拉膜的奈米碳管沿同一方向擇優取向排列,並通過凡得瓦力首尾相連。所述第二奈米碳管結構314位於所述第一奈米碳管結構312的表面,並且與所述第一奈米碳管結構312垂直相連。具體的,所述第二奈米碳管結構314包括複數第二奈米碳管314a,所述複數第二奈米碳管314a基本垂直於所述第一奈米碳管結構312的表面,並且每一第二奈米碳管314a的一端均與所述第一奈米碳管結構312的表面相連。所述第二奈米碳管結構314的每一尖端314c與第一實施例中尖端214c結構相同。所述複數尖端314c可連續設置或相互間隔設置。所述複數尖端314c可按照一定的規則排列,如可排列成直線,或者,如圖9、圖10所示,所述複數尖端314c可排列成具有一定圖形的陣列。可理解,所述複數尖端314c還可形成其他的圖案,可依據所述場發射陰極結構300的實際應用進行選擇。 The first carbon nanotube structure 312 includes a plurality of first carbon nanotubes 312a parallel to the surface of the first carbon nanotube structure 312, and a plurality of catalyst particles dispersed in the first carbon nanotube structure 312. . Preferably, the first carbon nanotube structure 312 is a carbon nanotube film, and the carbon nanotubes of the carbon nanotube film are arranged in a preferred orientation in the same direction, and are connected end to end by van der Waals force. The second carbon nanotube structure 314 is located on a surface of the first carbon nanotube structure 312 and is vertically connected to the first carbon nanotube structure 312. Specifically, the second carbon nanotube structure 314 includes a plurality of second carbon nanotubes 314a substantially perpendicular to a surface of the first carbon nanotube structure 312, and One end of each of the second carbon nanotubes 314a is connected to the surface of the first carbon nanotube structure 312. Each tip 314c of the second carbon nanotube structure 314 is identical in construction to the tip 214c of the first embodiment. The plurality of tips 314c may be disposed continuously or spaced apart from one another. The plurality of tips 314c may be arranged according to certain rules, such as may be arranged in a straight line, or, as shown in Figures 9 and 10, the plurality of tips 314c may be arranged in an array having a certain pattern. It will be appreciated that the plurality of tips 314c may also form other patterns that may be selected depending on the actual application of the field emission cathode structure 300.

請參閱圖10,進一步的,所述場發射陰極結構300包括一基底320,所述第一奈米碳管結構312設置於所述基底320的表面,所述第二奈米碳管結構214設置於所述第一奈米碳管結構312遠離基底320的表面,並且向遠離所述基底320的方向延伸,即所述第二奈米碳管結構314中的第二奈米碳管314a一端與所述第一奈米碳管結構312連接,另一端向遠離所述基底320的方向延伸。所述第一奈米碳管結構312可平鋪設置於所述基底320的表面,也可懸空設置於所述基底320的表面。 Referring to FIG. 10, further, the field emission cathode structure 300 includes a substrate 320. The first carbon nanotube structure 312 is disposed on a surface of the substrate 320, and the second carbon nanotube structure 214 is disposed. The first carbon nanotube structure 312 is away from the surface of the substrate 320 and extends away from the substrate 320, that is, the second carbon nanotube 314a in the second carbon nanotube structure 314 is The first carbon nanotube structure 312 is connected and the other end extends away from the substrate 320. The first carbon nanotube structure 312 may be laid flat on the surface of the substrate 320 or may be suspended on the surface of the substrate 320.

所述第一奈米碳管結構312懸空設置於所述基底320表面時,所述場發射陰極結構300可進一步包括間隔設置的複數支撐體,本實施例中所述支撐體可為導電基體322,所述導電基體322的材料可為如金屬單質、金屬合金、導電複合材料等,其形狀不限,只需確保導電基體322具有一平面,可使第一奈米碳管結構312的兩端分別平鋪黏附即可。本實施例中,所述導電基體322的形狀為一長方體。所述導電基體322之間的間距可根據實際需要設置。 When the first carbon nanotube structure 312 is suspended on the surface of the substrate 320, the field emission cathode structure 300 may further include a plurality of spacers disposed at intervals. In the embodiment, the support may be a conductive substrate 322. The material of the conductive substrate 322 may be, for example, a metal element, a metal alloy, a conductive composite material, or the like, and the shape thereof is not limited. It is only necessary to ensure that the conductive substrate 322 has a plane, and the two ends of the first carbon nanotube structure 312 can be Tile and stick separately. In this embodiment, the conductive substrate 322 has a rectangular parallelepiped shape. The spacing between the conductive substrates 322 can be set according to actual needs.

相對於第一實施例,本實施提供的場發射陰極結構300包括複數第二奈米碳管結構,在大面積場發射顯示裝置領域具有較好的應用前景。 Compared with the first embodiment, the field emission cathode structure 300 provided by the present embodiment includes a plurality of second carbon nanotube structures, and has a good application prospect in the field of large-area field emission display devices.

請參照圖11,所述場發射陰極結構300的製備方法與第一實施例中所述場發射陰極結構的製備方法基本相同,其不同在於,在所述基底320上設置複數導電基體322,所述複數導電基體322相互間隔排列且相互絕緣,優選的,所述複數導電基體322等間距設置。具體的,所述製備方法主要包括以下步驟: 步驟S31,提供一懸空設置的第一奈米碳管結構312。 Referring to FIG. 11, the method for preparing the field emission cathode structure 300 is substantially the same as the method for preparing the field emission cathode structure in the first embodiment, except that a plurality of conductive substrates 322 are disposed on the substrate 320. The plurality of conductive substrates 322 are spaced apart from each other and insulated from each other. Preferably, the plurality of conductive substrates 322 are equally spaced. Specifically, the preparation method mainly includes the following steps: Step S31, providing a first carbon nanotube structure 312 that is suspended.

所述懸空設置可通過以下方法實現:首先,提供一基底320;其次,提供複數導電基體322,所述複數導電基體322間隔設置於所述基底320之一表面,其間隔距離可根據實際需求設置。 The dangling arrangement can be achieved by: firstly providing a substrate 320; secondly, providing a plurality of conductive substrates 322 spaced apart from one surface of the substrate 320, the spacing distance of which can be set according to actual needs. .

所述複數導電基體之間保持一定的距離,且相互絕緣,所述複數導電基體可沿第一奈米碳管312a的延伸方向呈一直線排列,也可形成一陣列的方式排列。該複數導電基體322的形狀不限,只需確保複數導電基體322具有一平面可使第一奈米碳管結構312的部份表面分別平鋪黏附即可。本實施例中所述複數導電基體322的形狀為一長方體,所述複數導電基體322呈一直線排列。所述相鄰兩導電基體322之間的間隔距離可根據實際需要設置。 The plurality of conductive substrates are spaced apart from each other and insulated from each other. The plurality of conductive substrates may be arranged in a line along the extending direction of the first carbon nanotubes 312a, or may be arranged in an array. The shape of the plurality of conductive substrates 322 is not limited, and it is only necessary to ensure that the plurality of conductive substrates 322 have a plane to allow a part of the surface of the first carbon nanotube structure 312 to be tiled and adhered, respectively. In the embodiment, the shape of the plurality of conductive substrates 322 is a rectangular parallelepiped, and the plurality of conductive substrates 322 are arranged in a line. The spacing between the adjacent two conductive substrates 322 can be set according to actual needs.

再次,將所述一第一奈米碳管結構312懸空設置於基底220一表面。所述懸空設置可通過將一第一奈米碳管結構312整體鋪設於所述複數導電基體322上,所述第一奈米碳管結構312的部份表面分別對應貼附在所述導電基體322的平面上與之電連接。所述懸空設置也可通過在相鄰的兩導電基體322上逐一平鋪黏附所述第一奈米碳管結構312,進而形成一通過第一奈米碳管結構312及導電基體322電連接的整體結構。無論採取何種方式,所述相鄰兩導電基體322之間的部份第一奈米碳管結構312中間懸空並處於拉伸狀態。即所述相鄰兩導電基體322之間的第一奈米碳管結構312兩端分別固定於所述相鄰兩導電基體322上,而中間與基底320間隔 設置。所述每一導電基體322上可進一步包括一固定元件(圖未示),所述固定元件用於將所述第一奈米碳管結構312更加牢固的貼附於所述複數導電基體322上。 Again, the first carbon nanotube structure 312 is suspended from a surface of the substrate 220. The floating arrangement may be performed by integrally depositing a first carbon nanotube structure 312 on the plurality of conductive substrates 322, and a part of the surface of the first carbon nanotube structure 312 is respectively attached to the conductive substrate. The plane of 322 is electrically connected to it. The floating arrangement can also be electrically connected to the first carbon nanotube structure 312 and the conductive substrate 322 by tiling the first carbon nanotube structure 312 one by one on the adjacent two conductive substrates 322. the whole frame. Regardless of the manner, a portion of the first carbon nanotube structure 312 between the adjacent two conductive substrates 322 is suspended and in a stretched state. That is, the two ends of the first carbon nanotube structure 312 between the adjacent two conductive substrates 322 are respectively fixed on the adjacent two conductive substrates 322, and the middle is spaced apart from the substrate 320. Settings. Each of the conductive substrates 322 may further include a fixing component (not shown) for attaching the first carbon nanotube structure 312 to the plurality of conductive substrates 322 more firmly. .

步驟S32,以所述懸空設置的第一奈米碳管結構312作為基底,通過化學氣相沈積法在所述第一奈米碳管結構312的表面生長第二奈米碳管314a,形成第二奈米碳管結構314。 Step S32, using the first carbon nanotube structure 312 disposed in the suspended space as a base, and growing a second carbon nanotube 314a on the surface of the first carbon nanotube structure 312 by chemical vapor deposition to form a first Two carbon nanotube structure 314.

在所述化學氣相沈積法生長第二奈米碳管314a長的過程中,通過向第一奈米碳管結構312通入電流的方式使所述第一奈米碳管結構312的溫度升高,達到第二奈米碳管314a的所生長溫度。由於所述複數導電基體322沿第一奈米碳管312a的延伸方向呈一直線排列,因此,在通電過程中,每相鄰的兩個導電基體322之間中間位置處的溫度最高,奈米碳管的生長速度最快,而遠離此中間位置分別嚮導電基體322延伸的方向上,溫度逐漸降低,奈米碳管的生長速度逐漸減小,從而在沿第一奈米碳管312a的延伸方向上形成一三角形結構的尖端314c,長度最長的奈米碳管為所述尖端314c的頂端。 In the process of growing the second carbon nanotube 314a by the chemical vapor deposition method, the temperature of the first carbon nanotube structure 312 is raised by introducing an electric current to the first carbon nanotube structure 312. High to reach the growth temperature of the second carbon nanotube 314a. Since the plurality of conductive substrates 322 are arranged in a line along the extending direction of the first carbon nanotubes 312a, the temperature at the intermediate position between each adjacent two conductive substrates 322 is the highest during the energization process, and the carbon is nanocarbon. The growth rate of the tube is the fastest, and the temperature gradually decreases in the direction away from the intermediate position to the conductive substrate 322, and the growth rate of the carbon nanotubes gradually decreases, thereby extending along the first carbon nanotube 312a. A tip end portion 314c of a triangular structure is formed, and the longest length of the carbon nanotube is the tip end of the tip end 314c.

進一步的,當所述複數導電基體322呈陣列排列時,在通電的過程中,可選擇的在所述第一奈米碳管結構312的部份表面通入電流,即可選擇的在相鄰的導電基體322之間施加一電壓,從而在該相鄰的導電基體322之間生長第二奈米碳管314a,形成一尖端314c。通過選擇性的在部份相鄰的導電基體322之間施加電壓,生長第二奈米碳管314a,可形成複數尖端314c,並且該複數尖端314c可按一定規律排列,如形成陣列,或排列呈三角形、四邊形 等圖案。 Further, when the plurality of conductive substrates 322 are arranged in an array, during the energization process, a current may be selectively applied to a part of the surface of the first carbon nanotube structure 312, and the adjacent ones may be selected adjacent to each other. A voltage is applied between the conductive substrates 322 to grow a second carbon nanotube 314a between the adjacent conductive substrates 322 to form a tip 314c. By selectively applying a voltage between a portion of adjacent conductive substrates 322 to grow a second carbon nanotube 314a, a plurality of tips 314c can be formed, and the plurality of tips 314c can be arranged in a regular pattern, such as forming an array, or arranging Triangular, quadrangular And other patterns.

步驟S33,對第一奈米碳管結構312通電一段時間後停止通電加熱,然後停止通入氣體,得到所述場發射陰極結構300。 In step S33, after the first carbon nanotube structure 312 is energized for a period of time, the energization heating is stopped, and then the gas is stopped to obtain the field emission cathode structure 300.

本發明提供的場發射陰極結構的製備方法,直接採用懸空設置的奈米碳管拉膜作為基底生長奈米碳管,製備方法簡單,適用於工業化生產,並且由於奈米碳管拉膜中的催化劑顆粒分散比較均勻,從而在其表面生長的奈米碳管呈規律性排列,能夠減小奈米碳管的電子屏蔽效應,提高場發射陰極結構發射電子的均勻性,因此可更好地應用於場發射領域。另一方面,採用直接在奈米碳管膜中通入電流的方式加熱生長奈米碳管,減少了加熱設備的設置,優化了製備工藝。 The preparation method of the field emission cathode structure provided by the invention directly adopts a carbon nanotube film which is suspended and arranged as a base growth carbon nanotube, and the preparation method is simple, and is suitable for industrial production, and is in the film of the carbon nanotube film. The catalyst particles are relatively uniformly dispersed, so that the carbon nanotubes grown on the surface thereof are regularly arranged, which can reduce the electron shielding effect of the carbon nanotubes and improve the uniformity of electron emission of the field emission cathode structure, so that the catalyst can be better applied. In the field of field launching. On the other hand, the growth of the carbon nanotubes is carried out by directly introducing current into the carbon nanotube membrane, which reduces the setting of the heating device and optimizes the preparation process.

綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之申請專利範圍。舉凡習知本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。 In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.

200‧‧‧場發射陰極結構 200‧‧ ‧ field emission cathode structure

212‧‧‧第一奈米碳管結構 212‧‧‧First carbon nanotube structure

212a‧‧‧第一奈米碳管 212a‧‧‧First carbon nanotube

213‧‧‧催化劑顆粒 213‧‧‧ catalyst particles

214‧‧‧第二奈米碳管結構 214‧‧‧Second carbon nanotube structure

214a‧‧‧第二奈米碳管 214a‧‧‧Second carbon nanotube

214c‧‧‧尖端 214c‧‧‧ cutting-edge

Claims (17)

一種場發射陰極結構,其包括:一第一奈米碳管結構及一第二奈米碳管結構設置於所述第一奈米碳管結構的表面,該第二奈米碳管結構包括複數第二奈米碳管,且所述第二奈米碳管基本垂直於第一奈米碳管結構表面排列,其改良在於,所述第二奈米碳管結構在遠離所述第一奈米碳管結構表面的一端形成至少一尖端,所述第二奈米碳管結構中的複數第二奈米碳管的長度沿遠離所述尖端的頂端的方向逐漸縮短,所述第一奈米碳管結構為複數第一奈米碳管組成的一自支撐結構。 A field emission cathode structure comprising: a first carbon nanotube structure and a second carbon nanotube structure disposed on a surface of the first carbon nanotube structure, the second carbon nanotube structure including a plurality a second carbon nanotube, and the second carbon nanotube is arranged substantially perpendicular to a surface of the first carbon nanotube structure, the improvement being that the second carbon nanotube structure is away from the first nanometer One end of the surface of the carbon tube structure forms at least one tip, and a length of the plurality of second carbon nanotubes in the second carbon nanotube structure is gradually shortened in a direction away from a tip end of the tip, the first nanocarbon The tube structure is a self-supporting structure composed of a plurality of first carbon nanotubes. 如請求項第1項所述之場發射陰極結構,其中,所述第二奈米碳管結構中,對應所述尖端頂端位置的第二奈米碳管的長度大於其他位置處第二奈米碳管的長度。 The field emission cathode structure according to claim 1, wherein in the second carbon nanotube structure, the length of the second carbon nanotube corresponding to the tip end position is greater than the second nanometer at other positions The length of the carbon tube. 如請求項第1項所述之場發射陰極結構,其中,所述第一奈米碳管結構包括至少一奈米碳管膜或至少一奈米碳管線。 The field emission cathode structure of claim 1, wherein the first carbon nanotube structure comprises at least one carbon nanotube film or at least one nano carbon line. 如請求項第1項所述之場發射陰極結構,其中,所述第一奈米碳管結構包括複數第一奈米碳管,該複數第一奈米碳管基本平行於所述第一奈米碳管結構的表面,所述第二奈米碳管垂直於所述第一奈米碳管。 The field emission cathode structure of claim 1, wherein the first carbon nanotube structure comprises a plurality of first carbon nanotubes, the plurality of first carbon nanotubes being substantially parallel to the first naphthalene a surface of the carbon nanotube structure, the second carbon nanotube being perpendicular to the first carbon nanotube. 如請求項第4項所述的場發射陰極結構,其中,所述複數第一奈米碳管沿同一方向擇優取向延伸。 The field emission cathode structure of claim 4, wherein the plurality of first carbon nanotubes extend in a preferred orientation in the same direction. 如請求項第5項所述的場發射陰極結構,其中,所述複數第一奈米碳管中每一第一奈米碳管與在延伸方向上相鄰的第一奈米碳管 通過凡得瓦力首尾相連。 The field emission cathode structure of claim 5, wherein each of the plurality of first carbon nanotubes and the first carbon nanotube adjacent to the extending direction Connected by van der Waals. 如請求項第6項所述的場發射陰極結構,其中,所述第一奈米碳管結構中包括複數催化劑顆粒,所述複數催化劑顆粒分散於兩個通過凡得瓦力首尾相連的第一奈米碳管之間的連接處。 The field emission cathode structure of claim 6, wherein the first carbon nanotube structure comprises a plurality of catalyst particles dispersed in two first ends connected by van der Waals The junction between the carbon nanotubes. 如請求項第7項所述的場發射陰極結構,其中,所述複數催化劑顆粒在沿第一奈米碳管的延伸方向上等間距排列。 The field emission cathode structure according to claim 7, wherein the plurality of catalyst particles are arranged at equal intervals along an extending direction of the first carbon nanotubes. 如請求項第7項所述的場發射陰極結構,其中,所述複數第二奈米碳管分別通過複數催化劑顆粒與所述第一奈米碳管結構相連。 The field emission cathode structure of claim 7, wherein the plurality of second carbon nanotubes are connected to the first carbon nanotube structure by a plurality of catalyst particles, respectively. 如請求項第1項所述之場發射陰極結構,其中,所述場發射陰極結構進一步包括一基底,所述第一奈米碳管結構設置在所述基底表面,所述複數第二奈米碳管設置在所述第一奈米碳管結構遠離基底的表面,並向遠離所述基底的方向延伸。 The field emission cathode structure of claim 1, wherein the field emission cathode structure further comprises a substrate, the first carbon nanotube structure is disposed on the surface of the substrate, and the plurality of second nanoparticles A carbon tube is disposed on a surface of the first carbon nanotube structure away from the substrate and extends away from the substrate. 如請求項第10項所述的場發射陰極結構,其中,所述場發射陰極結構進一步包括至少兩個導電基體相互間隔設置在所述基底表面,所述第一奈米碳管結構通過所述至少兩個導電基體懸空設置。 The field emission cathode structure of claim 10, wherein the field emission cathode structure further comprises at least two conductive substrates spaced apart from each other on the surface of the substrate, the first carbon nanotube structure passing through At least two conductive substrates are suspended. 如請求項第1項所述之場發射陰極結構,其中,所述第二奈米碳管結構的表面形成有複數尖端,該複數尖端相互間隔設置。 The field emission cathode structure of claim 1, wherein the surface of the second carbon nanotube structure is formed with a plurality of tips, the plurality of tips being spaced apart from each other. 一種場發射陰極結構的製備方法,其包括以下步驟:提供一懸空設置的第一奈米碳管結構;以所述懸空設置的第一奈米碳管結構作為基底,通過化學氣相沈積法在所述第一奈米碳管結構的表面生長第二奈米碳管,形成第二奈米碳管結構,其中,通過向所述第一奈米碳管結構通入電流使所述第一奈米碳管結構的溫度升高達到第二奈米碳管的生長溫度; 通電一段時間後,停止通電並停止通入氣體,得到所述場發射陰極結構。 A method for preparing a field emission cathode structure, comprising the steps of: providing a first carbon nanotube structure disposed in a suspended state; using the first carbon nanotube structure disposed in the suspended space as a substrate, by chemical vapor deposition Forming a second carbon nanotube on the surface of the first carbon nanotube structure to form a second carbon nanotube structure, wherein the first naphthalene is passed by introducing a current into the first carbon nanotube structure The temperature of the carbon nanotube structure rises to reach the growth temperature of the second carbon nanotube; After a period of energization, the energization is stopped and the gas is stopped to obtain the field emission cathode structure. 如請求項第13項所述的場發射陰極結構的製備方法,其中,所述第一奈米碳管結構的製備方法包括以下步驟:提供一奈米碳管陣列;從所述奈米碳管陣列中直接抽取獲得至少一奈米碳管膜或至少一奈米碳管線;將所述至少一奈米碳管膜或至少一奈米碳管線懸空設置作為所述第一奈米碳管結構。 The method for preparing a field emission cathode structure according to claim 13, wherein the method for preparing the first carbon nanotube structure comprises the steps of: providing a carbon nanotube array; and the carbon nanotube At least one carbon nanotube film or at least one nano carbon line is directly extracted from the array; and the at least one carbon nanotube film or at least one nano carbon line is suspended as the first carbon nanotube structure. 如請求項第14項所述之場發射陰極結構的製備方法,其中,所述第一奈米碳管結構包括複數第一奈米碳管,該複數第一奈米碳管的軸向沿同一方向擇優取向延伸。 The method for preparing a field emission cathode structure according to claim 14, wherein the first carbon nanotube structure comprises a plurality of first carbon nanotubes, and the plurality of first carbon nanotubes have the same axial direction The direction of the preferred orientation extends. 如請求項第15項所述之場發射陰極結構的製備方法,其中,通入電流的方向與所述第一奈米碳管結構中第一奈米碳管的延伸方向相同。 The method for preparing a field emission cathode structure according to claim 15, wherein the direction of the current is the same as the direction in which the first carbon nanotubes extend in the first carbon nanotube structure. 如請求項第15項所述之場發射陰極結構的製備方法,其中,在所述第一奈米碳管結構表面形成沿所述第一奈米碳管延伸方向的溫度梯度。 The method for producing a field emission cathode structure according to claim 15, wherein a temperature gradient along a direction in which the first carbon nanotube extends is formed on a surface of the first carbon nanotube structure.
TW99146722A 2010-12-29 2010-12-29 Field emission cathode structure and method for making same TWI417923B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99146722A TWI417923B (en) 2010-12-29 2010-12-29 Field emission cathode structure and method for making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99146722A TWI417923B (en) 2010-12-29 2010-12-29 Field emission cathode structure and method for making same

Publications (2)

Publication Number Publication Date
TW201227789A TW201227789A (en) 2012-07-01
TWI417923B true TWI417923B (en) 2013-12-01

Family

ID=46933402

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99146722A TWI417923B (en) 2010-12-29 2010-12-29 Field emission cathode structure and method for making same

Country Status (1)

Country Link
TW (1) TWI417923B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200616000A (en) * 2004-11-12 2006-05-16 Hon Hai Prec Ind Co Ltd Field emission cathode and field emission device using same
US20060192475A1 (en) * 2004-10-12 2006-08-31 Lee Hang-Woo Carbon nanotube emitter and its fabrication method and field emission device (FED) using the carbon nanotube emitter and its fabrication method
US20080018228A1 (en) * 2005-10-31 2008-01-24 Samsung Sdi Co., Ltd. Electronic emission device, electron emission display device having the same, and method of manufacturing the electron emission device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060192475A1 (en) * 2004-10-12 2006-08-31 Lee Hang-Woo Carbon nanotube emitter and its fabrication method and field emission device (FED) using the carbon nanotube emitter and its fabrication method
TW200616000A (en) * 2004-11-12 2006-05-16 Hon Hai Prec Ind Co Ltd Field emission cathode and field emission device using same
US20080018228A1 (en) * 2005-10-31 2008-01-24 Samsung Sdi Co., Ltd. Electronic emission device, electron emission display device having the same, and method of manufacturing the electron emission device

Also Published As

Publication number Publication date
TW201227789A (en) 2012-07-01

Similar Documents

Publication Publication Date Title
US11312102B2 (en) Carbon nanotube structure
TWI462873B (en) Method for making carbon nanotube structure
US9840771B2 (en) Method of growing carbon nanotube using reactor
US10337098B2 (en) Method for growing carbon nanotubes
US9567218B2 (en) Reactor and method for growing carbon nanotube using the same
US20120164375A1 (en) Composite carbon nanotube structure and method for fabricating the same
CN102074429B (en) Field emission cathode structure and preparation method thereof
TWI406808B (en) Method for making carbon nanotube structure
US8803410B2 (en) Field emission device having entangled carbon nanotubes between a carbon nanotube layer and carbon nanotube array
TWI417923B (en) Field emission cathode structure and method for making same
TWI386971B (en) Field emitter and method for making the same
TWI381990B (en) Carbon nanotube film precursor, carbon nanotube film, method for fabricating same, and light source having carbon nanotube film
TWI458677B (en) Carbon nanotube composite structure and method for making same
TWI461352B (en) Carbon nanotube emitter
TWI343901B (en) Method and apparatus for manufacturing carbon nanotube
TW201327624A (en) Preparation of carbon nanotube structure