TWI343901B - Method and apparatus for manufacturing carbon nanotube - Google Patents

Method and apparatus for manufacturing carbon nanotube Download PDF

Info

Publication number
TWI343901B
TWI343901B TW94126775A TW94126775A TWI343901B TW I343901 B TWI343901 B TW I343901B TW 94126775 A TW94126775 A TW 94126775A TW 94126775 A TW94126775 A TW 94126775A TW I343901 B TWI343901 B TW I343901B
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
substrate
array
catalyst
electrode
Prior art date
Application number
TW94126775A
Other languages
Chinese (zh)
Other versions
TW200706490A (en
Inventor
Bor Yuan Hsiao
Ching Chou Chang
Chi Chuang Ho
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW94126775A priority Critical patent/TWI343901B/en
Publication of TW200706490A publication Critical patent/TW200706490A/en
Application granted granted Critical
Publication of TWI343901B publication Critical patent/TWI343901B/en

Links

Description

1343901 .、 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種奈米碳管製備方法及裝置。 【先前技術】 奈米碳管係一種新型碳材料,由日本研究人員1丨〗丨腿於199丨年發現, 請參見"Helical microtubules of graphitic carbon", S Iijima, Nature, vol. 354,p56 (1991)。奈米碳管具有極優異之導電性能,且其具有幾乎接 近理論極限之尖端表面積(尖端表面積愈小,其局部電場愈集中),所以奈 米碳管係已知最好之場發射材料之一,它具有極低之場發射電壓,可傳輸 φ極大之電流密度,並且電流極穩定,因而非常適合做場發射顯示器之場發 射材料。 目前,%發射顯示器常用之奈米碳管係先由電紙放電法初步合成奈米 碳管後,再經過純化'硏磨,最後塗佈至導電玻璃上。 惟,該種方法製得之奈米碳管長度不一,從而導致奈米碳管的發射電 =之特性不一致。若將這種奈米碳管應用於場發射顯示器,將可能導致該 場發射顯示器之亮度均勻性不佳。 有鑒於此,有必要提供一種奈米碳管製備方法及裝置,其可達成獲取 長度均一奈米碳管之目的。 【發明内容】 鲁 下面將以具趙實施例說明一種奈米碳管製備方法及裝置,其實現具有 均一長度之奈米碳管之製備。 為實現上述内容,提供一種奈米碳管製備方法,其包括以下步驟: 提供一基底,其具有一表面; 於違基底表面上形成一催化劑顆粒陣列; 於該基底表面上之該催化劑顆粒陣列之相對位置形成一電極; 於該基底表©上形成-凹槽’該催化綱㈣列與電齡別位於該凹 槽之相對之兩側; 〜向«極上通人電流以產生磁場,於該催化綱粒陣列上生長奈米破 官’該奈米碳管將向電極方向成長。 6 優選的’違奈米碳官製備方法還進一步包括等距離切割該奈米碳管, 以獲取長度均一之奈米碳Ί*片段,進而提高奈米碳管之利用效率。 更優選的’所述奈米碳管之切割可藉由電子束直寫技術,聚焦離子束 直寫技術,或雷射直寫技術等完成。 優選的,所述催化劑顆粒陣列中之催化劑顆粒呈直線型排佈。 優選的,所述催化劑顆粒陣列之形成方法包括以下步驟:於該基底上 形成一催化劑奈米線,將該催化劑奈米線加熱至3〇〇°c~600°C,退火使該催 化劑奈米線轉變成催化劑顆粒陣列。 更優選的’所述催化劑奈米線之線寬為10nm〜1)jm。 所述凹槽之形成方法包括電漿蝕刻法及反應籬子蝕刻法。 優選的,所述磁場於該催化劑顆粒陣列位置之磁感應強度 S1T。 以及,提供一種奈米碳管製備裝置,其包括: 一基底,其具有一表面; 一位於該基底表面之凹槽; 一位於該凹槽之一側之該基底表面上之催化劑顆粒陣列;以及 一位於該凹槽之相對之另一側之該基底表面上之電極,該電極與該催 化劑顆粒陣列相對設置。 所述基底包括矽晶圓,及瓜-V族複合晶圓。 所述催化劑顆粒之材質包括鐵、鈷、鎳、或其合金。 相對於先前技術,本技術方案所提供之奈米碳管製備方法及裝置,其 於生長奈米碳管用催化劑顆粒陣列之相對位置設置一電極,並於該電極與 催化劑顆粒陣列之間的基底表面設置一凹槽,該催化劑顆粒陣列與電極分 別位於該凹槽之相對之兩側;向該電極通入電流可產生一磁場,該磁場於 奈米碳管生長過程中牽引奈米碳管向電極方向生長;其可獲取長度均一之 奈米碳管》 【實施方式】 下面結合附圖將對本發明實施例作進一步之詳細說明。 第一實施例 ^43901 參見第一圖至第四圖,本發明第一實施例提供一種奈米碳管製備方 决,其包括以下步驟: (1) 參見第一圖,提供一基底ίο,於該基底ίο上形成一催化劑顆粒陣 列20。該基底10可選用矽晶圓’ πΐ-v族複合晶圓等半導體材料。該催化 劑顆粒陣列20中之複數催化劑顆粒優選為’呈直線型排佈。當然,該催化 劑顇粒陣列2〇中複數催化劑顆粒之排佈可使得其與後續形成之電極之距離 基本相等均可。催化劑顆粒之材質可選用鐵、鈷、鎳,或其合金β該催化 劑顆板陣列20將作為後續奈米碳管生長之觸媒。其中,該催化劑顆粒陣列 20之形成方法可採用絲網印刷法;亦可採用如下方法:首先於基底1〇上形 • 成一催化劑奈米線,該奈米線之線寬可為l〇nm〜ίμιη ;然後將該形成有催^ 劑奈米線之基底加熱至30(TC〜60(TC,退火使該催化劑奈米線轉變為催化 劑顆粒陣列。 (2) 參見第二圖及第三圖,於基底1〇上,且於催化劑顆粒陣列之相 對之某一距離位置處形成一電極30 ;並於電極30與催化劑顆粒陣列2〇之 間的基底10表面形成一凹槽12。催化劑顆粒陣列20位於凹槽10之一側之 基底10表面上;電極30位於凹槽10之相對之另一側之基底1〇表面上。 該電極30之形狀與尺寸之設置,以確保催化劑顆粒陣列2〇中複數催化劑 顆粒到電極30之距離基本相等為佳。一般而言,化學氣相沈積法製備奈米 碳管之生長長度可為數奈米至數微米;因此,本實施例中電極3〇與催二劑 •顆粒陣列20之距離可設置為數奈米,甚至為數微米。本實施例令,'經由;^ 化劑顆粒陣列20及電極30之尺寸及形狀之設置,使得後續生長之奈米碳 管基本平行於基底1〇之表面;凹槽12之大小及形狀之設置能使奈米碳管 基本克服其與基底表面較大之凡德瓦爾作用力(Van der Waals f〇rce),而 能沿垂直磁場方向定向排列。一般而言,凹槽12之深度以其大於lwm為佳β 另外,電極30可採用沈積法配洽'一掩模形成。凹槽12之形成可選用'電聚 蝕刻法及反應離子蝕刻法等。 (3) 參見第四圖,向該電極30上通入電流以產生一磁場(圖未示),利 用化學氣相沈積法(如,熱絲法化學氣相沈積法、電漿辅助化學氣相沈積 法、微波電漿化學氣相沈積法等)於催化劑顆粒陣列2〇上生長奈米碳管4〇, 8 ⑧ 1343901 、該奈米碳管40將沿垂直於該磁場方向生長;亦即向電極3〇方向生。庄 趙描述為: c ώ/ί上述基底10置於一 CVD(ChemiCal VaP〇r DeP〇Siti〇n,化學氣相沈積) 反應器(圖未示)中,加熱該基底i〇至5〇(rc〜i〇〇(rc ;並向該CVD反應器中 通入碳源氣(如,乙稀、甲炫、乙块等)進行奈米碳管生長。當奈米碳管40 成長至電極30位置時,使其停止反應。 於奈米碳管生長開始時,向電極3〇通入直流或交變電流,其將於該電 極30之具有催化劑顆粒陣列2(H則產生一基本垂直於基底1〇表面之磁場。 該磁場方向之確定滿足右手螺旋法則;並且某一位置之磁感應強度大小隨 鑄其與電極3〇之距離增大而減小。為獲取有效的遠場,該磁場於催化劑顆粒 陣列30位置之磁感應強度B應不小於1〇-5丁(特斯拉);優選為10-5Τ$Β^1Τ。 ,由於凹槽12之設置,使得奈米碳管40與基底10表面之相互作用力對 奈米碳管40之取向基本無影響;於磁場吸引力作用下,奈米碳管將取向於 電極30方向生長,且由於催化劑顆粒陣列2〇中之複數催化劑顆粒與電極 30的距離基本相等;因此,其將可獲取定向排列且長度均一之複數奈米碳 管。 另,參見第五圖,為提高奈米碳管40之利用效率及獲取更具有均一長 度之奈米碳管;可等距離切割該奈米碳管4〇。其具趙步驟為:於距離基底 1〇—定位置處採用直寫技術沿切割線50等間距切割上述定向排列且長度均 修一之奈米碳管:進而獲取長度均一之奈米碳管片段。該間距之設置可依 所需奈米碳管片段之長度而定。優選的,該切割線50基本垂直於奈米碳管 40之軸向方向。其中,該直寫技術可選用電子束直寫技術、聚焦離子束直 寫技術及雷射直寫技術。 本實施例中之步驟(1)及(2)可形成一種奈米碳管製備裝置(如第三圖 所示)。該奈米碟管製備裝置包括一基底10,其具有一表面;一形成於該基 底10表面之凹槽12 ; —位於該凹槽12之一側之基底1〇表面上之催化劑顆粒 陣列20 ;以及一位於該凹槽12之相對之另一側之基底1〇表面上之電極3〇。 藉由本實施例中之步驟(3) ’可採用該奈米碳管製備裝置進行長度均一奈米 碳管之製備。 1343901 > 第二實施例 本發明第二實施例與第一實施例基本相同,其不同點在於對第一實施 例之步驟(1)及步驟(2)之變更。本實施例之奈米碳管之製備方法包括以下 步驟: (1) ¼供一基底,其具有一表面;於該基底表面形成一凹槽。_般而兮, 化學氣相沈積法製備奈米碳管之生長長度可為數奈米至數微米;因此,本 實施例中凹槽之寬度可設置為數奈米,甚至為數微米;其可視後續生長奈 米碳管之長度而定》—般而言,該凹槽之深度以其大於1(Jin為佳。 (2) 於上述凹槽之一側之基底表面上形成一催化劑顆粒陣列,並於該凹 φ槽之相對之另一側之基底表面上形成一電極。該、電極與催化劑顆粒陣列相 對設置。該催化劑顆粒陣列形狀,及電極之形狀與尺寸之設置,以確保催 化劑顆粒陣列中複數催化劑顆粒到電極之距離基本相等為佳β (3) 向該該電極上通入電流以產生一磁場,利用化學氣相沈積法(如, 熱絲法化學氣相沈積法、電漿輔助化學氣相沈積法、微波電漿化學氣相沈 積法等)於該催化劑顆粒陣列上生長奈米碳管,該奈米碳管將沿垂直於該磁 場方向生長;亦即向該電極方向生長。進而可獲取定向且長度均一之奈米 碳管。 不 另,為提高奈米碳管之利用效率及獲取更具均一長度之奈米碳管;可 等距離切割該奈米碳管,以形成長度均一之奈米碳管片段。 i 本實施例中之步驟(1)及(2)可形成一種奈米碳管製備裝置,該奈米碳 管製備裝置包括一基底,其具有一表面;一形成於該基底表面之凹槽;一 位於該凹槽之一側之基底表面上之催化劑顆粒陣列;以及一位於該凹槽之 相對之另一側之基底表面上之電極。藉由本實施例中之步驟(3),可採用該 奈米碳管製備裝置進行長度均一奈米碳管之製備。 另,本領域技術人員還可於本發明精神内做其他變化,如適當變更電 極及凹槽之形狀,催化劑顆粒陣列之形成方法,及催化劑顆粒陣列、電極、 凹槽之形成順序以用於本發明等設計。 综上所述,本發明確已符合發明專利要件,爰依法提出專利申請。惟, 以上所述者僅為本發明之較佳實施例,舉凡熟悉本案技藝之人士,於援依 10 ^439011343901 . IX. Description of the Invention: [Technical Field] The present invention relates to a method and an apparatus for preparing a carbon nanotube. [Prior Art] Nano carbon tube is a new type of carbon material, which was discovered by Japanese researchers in 丨 丨 丨 in 199 ,, see "Helical microtubules of graphitic carbon", S Iijima, Nature, vol. 354, p56 (1991). The carbon nanotubes have excellent electrical conductivity and have a tip surface area close to the theoretical limit (the smaller the tip surface area, the more concentrated the local electric field), so the carbon nanotubes are one of the best known field emission materials. It has a very low field emission voltage, can transmit φ extremely large current density, and is extremely stable in current, making it ideal for field emission materials for field emission displays. At present, the carbon nanotubes commonly used in %-emitting displays are initially synthesized by an electric paper discharge method, and then subjected to purification, honing, and finally coated on a conductive glass. However, the carbon nanotubes produced by this method have different lengths, resulting in inconsistent characteristics of the emission of the carbon nanotubes. Applying such a carbon nanotube to a field emission display may result in poor brightness uniformity of the field emission display. In view of the above, it is necessary to provide a method and a device for preparing a carbon nanotube, which can achieve the purpose of obtaining a uniform length of carbon nanotubes. SUMMARY OF THE INVENTION A method and apparatus for preparing a carbon nanotube according to a third embodiment will be described below, which realizes the preparation of a carbon nanotube having a uniform length. In order to achieve the above, a method for preparing a carbon nanotube is provided, which comprises the steps of: providing a substrate having a surface; forming an array of catalyst particles on the surface of the substrate; and array of the catalyst particles on the surface of the substrate Forming an electrode at a relative position; forming a groove on the substrate sheet © the column (4) and the electrode age are located on opposite sides of the groove; and the current is applied to the pole to generate a magnetic field. The growth of the nanoparticle on the array of granules will grow in the direction of the electrode. 6 The preferred method of preparing the carbon nanotubes further comprises equally cutting the carbon nanotubes to obtain a nanocarbon Ί* fragment of uniform length, thereby improving the utilization efficiency of the carbon nanotubes. More preferably, the cutting of the carbon nanotubes can be accomplished by electron beam direct writing, focused ion beam direct writing, or laser direct writing. Preferably, the catalyst particles in the array of catalyst particles are arranged in a straight line. Preferably, the method for forming the array of catalyst particles comprises the steps of: forming a catalyst nanowire on the substrate, heating the catalyst nanowire to 3 ° C ~ 600 ° C, annealing to make the catalyst nano The line is converted into an array of catalyst particles. More preferably, the catalyst nanowire has a line width of 10 nm to 1) jm. The method of forming the groove includes a plasma etching method and a reaction fence etching method. Preferably, the magnetic field has a magnetic induction intensity S1T at the position of the array of catalyst particles. And, a carbon nanotube preparing apparatus comprising: a substrate having a surface; a groove on a surface of the substrate; an array of catalyst particles on a surface of the substrate on one side of the groove; An electrode on the surface of the substrate on the opposite side of the recess, the electrode being disposed opposite the array of catalyst particles. The substrate includes a germanium wafer, and a melon-V composite wafer. The material of the catalyst particles includes iron, cobalt, nickel, or an alloy thereof. Compared with the prior art, the carbon nanotube preparation method and device provided by the technical solution provide an electrode at a position opposite to the array of catalyst particles for growing carbon nanotubes, and a substrate surface between the electrode and the catalyst particle array. Providing a groove, the catalyst particle array and the electrode are respectively located on opposite sides of the groove; the current flowing into the electrode generates a magnetic field, and the magnetic field is pulled to the electrode during the growth of the carbon nanotube Directional growth; it can obtain a carbon nanotube of uniform length. [Embodiment] Hereinafter, embodiments of the present invention will be further described in detail with reference to the accompanying drawings. First Embodiment ^43901 Referring to the first to fourth figures, a first embodiment of the present invention provides a carbon nanotube preparation method comprising the following steps: (1) Referring to the first figure, a substrate is provided, An array of catalyst particles 20 is formed on the substrate. The substrate 10 can be selected from a semiconductor material such as a wafer π ΐ-v family composite wafer. The plurality of catalyst particles in the array of catalyst particles 20 are preferably 'in a straight line arrangement. Of course, the arrangement of the plurality of catalyst particles in the catalyst particle array 2 can be made substantially equal to the distance of the subsequently formed electrode. The material of the catalyst particles may be iron, cobalt, nickel, or alloy β thereof. The catalyst particle array 20 will serve as a catalyst for the growth of the subsequent carbon nanotubes. Wherein, the method for forming the catalyst particle array 20 can adopt a screen printing method; or the following method: firstly, forming a catalyst nanowire on the substrate 1 ,, the line width of the nanowire can be l〇nm~ Ίμιη ; The substrate on which the catalyst nanowire is formed is then heated to 30 (TC~60 (TC, annealed to convert the catalyst nanowire into an array of catalyst particles. (2) See second and third figures, An electrode 30 is formed on the substrate 1 at a distance from the array of catalyst particles; and a groove 12 is formed on the surface of the substrate 10 between the electrode 30 and the array of catalyst particles 2. The array of catalyst particles 20 Located on the surface of the substrate 10 on one side of the recess 10; the electrode 30 is located on the surface of the substrate 1 on the opposite side of the recess 10. The shape and size of the electrode 30 are arranged to ensure the array of catalyst particles The distance between the plurality of catalyst particles and the electrode 30 is substantially equal. Generally, the growth length of the carbon nanotube prepared by the chemical vapor deposition method may be several nanometers to several micrometers; therefore, the electrode 3〇 and the second electrode in this embodiment Agent The distance between the arrays 20 can be set to several nanometers or even several micrometers. In this embodiment, the size and shape of the array of catalyst particles 20 and electrodes 30 are set such that the subsequently grown carbon nanotubes are substantially parallel to the substrate. The surface of the groove 12; the size and shape of the groove 12 enable the carbon nanotube to substantially overcome the Van der Waals f〇rce with the surface of the substrate, and can be oriented in the direction of the vertical magnetic field. Generally, the depth of the groove 12 is preferably greater than lwm. In addition, the electrode 30 can be formed by a deposition method. The formation of the groove 12 can be selected by electroforming etching and reactive ion etching. (3) Referring to the fourth figure, a current is applied to the electrode 30 to generate a magnetic field (not shown) by chemical vapor deposition (eg, hot wire chemical vapor deposition, plasma assisted). The chemical vapor deposition method, the microwave plasma chemical vapor deposition method, etc.) grows a carbon nanotube 4〇 on the catalyst particle array 2, 8 8 1343901, and the carbon nanotube 40 will grow in a direction perpendicular to the magnetic field; That is, to the direction of the electrode 3〇. For example: c ώ / ί The substrate 10 is placed in a CVD (ChemiCal VaP〇r DeP〇Siti〇n, chemical vapor deposition) reactor (not shown), and the substrate is heated to 5 〇 (rc~i) 〇〇 (rc; and carbon source gas (for example, ethylene, methyl sulphide, b block, etc.) is introduced into the CVD reactor for carbon nanotube growth. When the carbon nanotube 40 is grown to the electrode 30 position, Stopping the reaction. At the beginning of the growth of the carbon nanotubes, a direct current or alternating current is supplied to the electrode 3, which will have the catalyst particle array 2 at the electrode 30 (H produces a surface substantially perpendicular to the substrate 1). The magnetic field direction determines the right-handed spiral rule; and the magnitude of the magnetic induction at a certain position decreases as the distance between the cast and the electrode 3〇 increases. In order to obtain an effective far field, the magnetic induction B of the magnetic field at the position of the catalyst particle array 30 should be not less than 1 〇 -5 □ (Tesla); preferably 10 - 5 Τ $ Β ^ 1 Τ. Due to the arrangement of the grooves 12, the interaction force between the carbon nanotubes 40 and the surface of the substrate 10 has substantially no effect on the orientation of the carbon nanotubes 40; under the action of the magnetic field attraction, the carbon nanotubes will be oriented to the electrodes 30. The direction is grown, and since the plurality of catalyst particles in the array of catalyst particles 2 are substantially equal in distance from the electrode 30; therefore, it will be possible to obtain a plurality of carbon nanotubes which are aligned and uniform in length. In addition, referring to the fifth figure, in order to improve the utilization efficiency of the carbon nanotube 40 and obtain a carbon nanotube having a more uniform length, the carbon nanotube can be cut equidistantly. The step of Zhao is as follows: using the direct writing technique to cut the above-mentioned aligned carbon nanotubes with equal lengths along the cutting line 50 at a distance from the substrate to the fixed position: thereby obtaining a uniform length of the carbon nanotube segments. The spacing can be set depending on the length of the desired carbon nanotube segments. Preferably, the cutting line 50 is substantially perpendicular to the axial direction of the carbon nanotube 40. Among them, the direct writing technology can use electron beam direct writing technology, focused ion beam direct writing technology and laser direct writing technology. Steps (1) and (2) in this embodiment form a carbon nanotube preparation apparatus (as shown in the third figure). The nanotube preparation device comprises a substrate 10 having a surface; a groove 12 formed on the surface of the substrate 10; an array of catalyst particles 20 on the surface of the substrate 1 on one side of the groove 12; And an electrode 3〇 on the surface of the substrate 1 on the opposite side of the recess 12. The carbon nanotube preparation apparatus can be used to prepare a length-uniform carbon nanotube by the step (3)' in the present embodiment. 1343901 > SECOND EMBODIMENT The second embodiment of the present invention is basically the same as the first embodiment, and differs in the steps (1) and (2) of the first embodiment. The method for preparing a carbon nanotube of the present embodiment comprises the steps of: (1) providing a substrate having a surface; and forming a groove on the surface of the substrate. _ Generally, the growth length of the carbon nanotubes prepared by chemical vapor deposition may be several nanometers to several micrometers; therefore, the width of the grooves in the embodiment may be set to several nanometers or even several micrometers; Depending on the length of the carbon nanotubes, the depth of the groove is generally greater than 1 (Jin is preferred. (2) An array of catalyst particles is formed on the surface of the substrate on one side of the groove, and An electrode is formed on the surface of the opposite side of the concave φ groove. The electrode is disposed opposite to the array of catalyst particles. The shape of the catalyst particle array, and the shape and size of the electrode are arranged to ensure plural numbers in the catalyst particle array. The distance between the catalyst particles and the electrode is substantially equal. (3) A current is applied to the electrode to generate a magnetic field by chemical vapor deposition (for example, hot-wire chemical vapor deposition, plasma-assisted chemical gas). a phase deposition method, a microwave plasma chemical vapor deposition method, or the like) growing a carbon nanotube on the array of catalyst particles, the carbon nanotube will grow in a direction perpendicular to the magnetic field; that is, toward the electrode Further, a carbon nanotube having a uniform orientation and a uniform length can be obtained. Further, in order to improve the utilization efficiency of the carbon nanotube and obtain a carbon nanotube having a more uniform length, the carbon nanotube can be cut at an equal distance to Forming a carbon nanotube segment of uniform length. i Steps (1) and (2) in this embodiment may form a carbon nanotube preparation device, the carbon nanotube preparation device comprising a substrate having a surface; a groove formed on a surface of the substrate; an array of catalyst particles on a surface of the substrate on one side of the groove; and an electrode on a surface of the substrate on the opposite side of the groove. In the step (3), the carbon nanotube preparation device can be used to prepare the length-uniform carbon nanotubes. Further, those skilled in the art can also make other changes within the spirit of the invention, such as appropriately changing the electrodes and the grooves. The shape, the formation method of the catalyst particle array, and the order of formation of the catalyst particle array, the electrode, and the groove are used in the design of the present invention, etc. In summary, the present invention has indeed met the requirements of the invention patent, and Patent application. However, the above embodiments are merely preferred embodiments of the present invention, the case that whenever person familiar with the art, according to aid 10 ^ 43901

本發料—實施例基底上形成有催化劑難_之示音圖。 意圖本發明第—實施例於催化劑顆粒陣列相對位置形成有電極之示 _ I二圖係.本發明第—實施例於電極與催化綱粒陣列之間形四槽之 不思圖。 第四圖係本發明第一實施例於催化劑顆粒陣列上生長奈米碳管之示意 圖。 _ 第五輯本翻第―實關沿—爛料間痛贿米碳管之示意圖。 【主要元件符號說明】 基底 催化劑顆粒陣列 奈米碳管 10 20 40 凹槽 電極 切割線 12 30 50 ⑧丨 ΠThe present invention—the sound emission diagram of the catalyst is formed on the substrate of the embodiment. It is intended that the first embodiment of the present invention has an electrode formed at the opposite position of the array of catalyst particles. The second embodiment of the present invention is in the form of a four-slot between the electrode and the catalytic array. The fourth figure is a schematic view showing the growth of a carbon nanotube on the array of catalyst particles in the first embodiment of the present invention. _ The fifth series of this turn the first - the real customs along the rotten material between the bribes and carbon pipes. [Explanation of main component symbols] Substrate Catalyst particle array Carbon nanotube 10 20 40 Groove electrode Cutting line 12 30 50 8丨 Π

Claims (1)

1343901 十、申請專利範圍: L種奈米碳管製備方法,其包括以下步驟: ^供一基底’其具有一表面: 於該基底表面上形成一催化劑顆粒陣列; 於該基底表面上之該催化劑顆粒陣列之相對位置形成—電極; 於該基底表面形成-凹槽,該催化劑顆粒陣列與電極分別位於該凹样 之相對之兩側; s 2該電極上通人電流以產生磁場’於該催化獅粒陣列上生長奈米碳 管’該奈米碳管將向電極方向成長。1343901 X. Patent Application Range: L-type carbon nanotube preparation method, comprising the following steps: ^ for a substrate having a surface: forming an array of catalyst particles on the surface of the substrate; the catalyst on the surface of the substrate The relative positions of the particle arrays form an electrode; a groove is formed on the surface of the substrate, and the array of catalyst particles and the electrodes are respectively located on opposite sides of the concave sample; s 2 the current is applied to the electrode to generate a magnetic field' Growing a carbon nanotube on the lion particle array' The carbon nanotube will grow toward the electrode. 2.如申凊專概㈣丨項所述之奈米辟製備方法,其巾,還進—步包括 步驟:等距離切割該奈米碳管,以獲取長度均一之奈米碳管片段。 .如申請專麵H第1項所述之絲碳管製備方法,其中,所述催化劑顆粒 陣列中之催化劑顆粒呈直線型排佈。 4. 如申請專利範圍第丨項所述之奈米碳管製備方法,其中,所述催化劑顆 粒陣列之職方法包括以下步驟1該基底上形成—催化劑奈米線; 將該催化劑奈米線加熱至300t~60(rc,退火使該催化劑奈米線轉變成 催化劑顆粒陣列。 5. 如申請專觀圍第4項所述之奈米碳管製财法,其中,所述催化劑奈 米線之線寬為1〇ηιη~1μπι。 6·如申請專利範圍第丨項所述之奈米碳管製備方法,其中,所述凹槽之形 成方法包括電漿蝕刻及反應離子蝕刻。 7·如申請專·圍第丨項所述之奈米碳管製備方法,其中,所述奈米礙管 之生長方法為化學氣相沈積法。 8. 如申請專利範圍第7項所述之奈米碳管製備方法,其中,所述化學氣相 沈積法包括熱絲法化學氣相沈積法、電萊輔助化學氣相沈積法及微波 電漿化學氣相沈積法》 9. 如申請專利範圍第丨項所述之奈米碳管製備方法,其中,所述磁場於該 摧化劑顆粒陣列位置之磁感應強度B為1〇_5τ$β$1τ。 10. 如申μ專利範圍第2項所述之奈米碳管製備方法,其巾,所述奈米破管 之=割係藉由電子束直寫技術,聚焦離子束直寫技術 ,或雷射直寫技 術穿.志。 12 ⑧ 1343901 ' u· 一種奈米碳管製備方法,其包括以下步驟: 提供一基底,其具有一表面; 於該基底表面形成一凹槽; 於該凹槽之一側之該基底表面上形成一催化劑顆粒|5車列: 於該凹槽之相對之另-側之該基底表面上形成一電極,該電極盘該催 化劑顆粒陣列相對設置; ’、 向該電極人磁場,於該催化^^顆粒陣 管,該奈来碳管將向電極方向成長。 ^ 12·如申請專利範圍第u項所述之奈米碳管製備方法,其中,還進一步包 括步驟.等距離切割該奈米碳管,以獲取長度均一之奈米碳管片段。 13. 如申請專利範圍第u項所述之奈米碳管製備方法,其中,所述磁場於 該催化劑顆粒陣列位置之磁感應強度B為1(Γ5Τ$Β$1Τ。 14. 如,申請專利範圍第12項所述之奈米碳管製備方法,其中,所述奈米碳 官之切割係藉由電子束直寫技術,聚焦離子束直寫技術 ,或雷射直寫 技術完成》 15. —種奈米碳管製備裝置,其包括: 基底’其具有一表面; 一位於該基底表面之凹槽; 一位於該凹槽之一側之該基底表面上之催化劑顆粒陣列;以及 • 一位於該凹槽之相對之另一側之該基底表面上之電極,該電極與該催 化劑顆粒陣列相對設置。 16. 如申請專利範圍第15項所述之奈米碳管製備裝置,其中,所述基底包括 矽晶圓,及ιπ_ν族複合晶圓。 Π.如申請專利範圍第15項所述之奈米碳管製備裝置,其中,所述催化劑 顆粒之材質包括鐵、鈷、鎳、或其合金。 13 ⑧2. The method for preparing nanochip according to the application specification (4), the towel, further comprises the steps of: cutting the carbon nanotubes equidistantly to obtain a carbon nanotube segment of uniform length. The method for producing a carbon nanotube according to the above item H, wherein the catalyst particles in the array of catalyst particles are arranged in a straight line. 4. The method for preparing a carbon nanotube according to claim 2, wherein the method for preparing the catalyst particle array comprises the following step 1: forming a catalyst nanowire on the substrate; heating the catalyst nanowire Up to 300t~60 (rc, annealing to convert the catalyst nanowire into an array of catalyst particles. 5. Applying the nanocarbon control method described in item 4 of the special consideration, wherein the catalyst nanowire The method for preparing a carbon nanotube according to the above aspect of the invention, wherein the method for forming the groove comprises plasma etching and reactive ion etching. The method for preparing a carbon nanotube according to the above, wherein the method for growing the nano tube is a chemical vapor deposition method. 8. The carbon nanotube according to claim 7 a preparation method, wherein the chemical vapor deposition method comprises a hot wire chemical vapor deposition method, a electric auxiliary chemical vapor deposition method, and a microwave plasma chemical vapor deposition method. The method for preparing a carbon nanotube, Wherein, the magnetic induction intensity B of the magnetic field at the position of the array of the catalyzing agent particles is 1〇_5τ$β$1τ. 10. The method for preparing a carbon nanotube according to item 2 of the patent application scope, the towel, The nanotube breaking=cutting system is by electron beam direct writing technology, focused ion beam direct writing technology, or laser direct writing technology. 志. 12 8 1343901 'u· A nano carbon tube preparation method, The method includes the following steps: providing a substrate having a surface; forming a groove on the surface of the substrate; forming a catalyst particle on the surface of the substrate on one side of the groove|5: a row opposite to the groove On the other side of the substrate, an electrode is formed on the surface of the substrate, and the array of catalyst particles is oppositely disposed; ', a magnetic field is applied to the electrode, and the carbon nanotube is grown in the direction of the electrode. The method for preparing a carbon nanotube according to claim 5, further comprising the step of equally cutting the carbon nanotube to obtain a uniform length carbon nanotube segment. Applying for the patent scope The carbon tube preparation method, wherein the magnetic field intensity B of the magnetic field at the position of the catalyst particle array is 1 (Γ5Τ$Β$1Τ. 14. The method for preparing a carbon nanotube according to claim 12, wherein The nano carbon official cutting is performed by electron beam direct writing technology, focused ion beam direct writing technology, or laser direct writing technology. 15. A carbon nanotube preparation device comprising: a substrate Having a surface; a groove on the surface of the substrate; an array of catalyst particles on the surface of the substrate on one side of the groove; and a surface on the substrate on the opposite side of the groove An electrode disposed opposite the array of catalyst particles. 16. The carbon nanotube preparation apparatus according to claim 15, wherein the substrate comprises a tantalum wafer, and an ιπ_ν family composite wafer. The carbon nanotube preparation apparatus according to claim 15, wherein the material of the catalyst particles comprises iron, cobalt, nickel, or an alloy thereof. 13 8
TW94126775A 2005-08-08 2005-08-08 Method and apparatus for manufacturing carbon nanotube TWI343901B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94126775A TWI343901B (en) 2005-08-08 2005-08-08 Method and apparatus for manufacturing carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94126775A TWI343901B (en) 2005-08-08 2005-08-08 Method and apparatus for manufacturing carbon nanotube

Publications (2)

Publication Number Publication Date
TW200706490A TW200706490A (en) 2007-02-16
TWI343901B true TWI343901B (en) 2011-06-21

Family

ID=45074906

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94126775A TWI343901B (en) 2005-08-08 2005-08-08 Method and apparatus for manufacturing carbon nanotube

Country Status (1)

Country Link
TW (1) TWI343901B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI419834B (en) * 2011-01-10 2013-12-21 Nat Univ Kaohsiung Semiconductor device having circuit of embedded induced magnetic field used as carbon nanotube switch

Also Published As

Publication number Publication date
TW200706490A (en) 2007-02-16

Similar Documents

Publication Publication Date Title
TWI490032B (en) Reactor and a method for growing carbon nanotube
JP5139457B2 (en) Method for producing carbon nanotube structure
US10337098B2 (en) Method for growing carbon nanotubes
JP5175313B2 (en) Carbon nanotube-nanoparticle composite material and method for producing the same
US20040036403A1 (en) Fabrication method of carbon nanotubes
CN100482582C (en) Carbon nano-tube preparation method and apparatus
TWI386511B (en) Apparatus and method for producing aligned carbon nanotube arrays
CN103730302B (en) Field emitting electronic source and field emission apparatus
TWI406808B (en) Method for making carbon nanotube structure
Cole et al. Engineered carbon nanotube field emission devices
CN102074429A (en) Field emission cathode structure and preparation method thereof
CN103730305A (en) Preparing method for field emission electron source
TWI343901B (en) Method and apparatus for manufacturing carbon nanotube
TW201416318A (en) Method for making carbon nanotube film
KR100669394B1 (en) Carbon nano tube comprising magnet metal rod and method of preparing same
JP3524542B2 (en) Manufacturing method of carbon nanotube
Zheng et al. Vertically Aligned Boron-Doped Diamond Hollow Nanoneedle Arrays for Enhanced Field Emission
TWI309055B (en) Method for making emission source having carbon nanotube
TWI458677B (en) Carbon nanotube composite structure and method for making same
CN103730303A (en) Field emission electron source array and field emission device
TWI417923B (en) Field emission cathode structure and method for making same
JP2006045008A (en) Diamond film-carbon thread composite material and its manufacturing method
TWI494268B (en) Method of manufacturing aligned carbon nanotubes
TWI353616B (en) Thermionic source
US20170335446A1 (en) Carbon fiber film and method for making the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees