RU2716278C1 - Блок аккумуляторных батарей с улучшенным терморегулированием - Google Patents

Блок аккумуляторных батарей с улучшенным терморегулированием Download PDF

Info

Publication number
RU2716278C1
RU2716278C1 RU2019128054A RU2019128054A RU2716278C1 RU 2716278 C1 RU2716278 C1 RU 2716278C1 RU 2019128054 A RU2019128054 A RU 2019128054A RU 2019128054 A RU2019128054 A RU 2019128054A RU 2716278 C1 RU2716278 C1 RU 2716278C1
Authority
RU
Russia
Prior art keywords
alkenyl groups
polyorganosiloxane
battery pack
curing
optionally
Prior art date
Application number
RU2019128054A
Other languages
English (en)
Inventor
Вирджиния О'НИЛ
Джессика ХЕНЛИ
Мэттью КИХАРА
Лиэнн БРАУН
Майкл Джон УОТСОН
Мэттью Пол ТИММОНС
Original Assignee
ЭЛКЕМ СИЛИКОНС ЮЭсЭй КОРП.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ЭЛКЕМ СИЛИКОНС ЮЭсЭй КОРП. filed Critical ЭЛКЕМ СИЛИКОНС ЮЭсЭй КОРП.
Application granted granted Critical
Publication of RU2716278C1 publication Critical patent/RU2716278C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/32Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D77/00Packages formed by enclosing articles or materials in preformed containers, e.g. boxes, cartons, sacks or bags
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/28Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/14Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2330/00Thermal insulation material
    • C08G2330/50Evacuated open-celled polymer material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/022Foams characterised by the foaming process characterised by mechanical pre- or post-treatments premixing or pre-blending a part of the components of a foamable composition, e.g. premixing the polyol with the blowing agent, surfactant and catalyst and only adding the isocyanate at the time of foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • C08J2383/07Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • C08J2483/05Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • C08J2483/07Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

Изобретение относится к области электротехники, а именно, к блоку аккумуляторных батарей с улучшенным терморегулированием, который может найти применение для полностью электрического транспортного средства (электромобиля, EV), гибридного транспортного средства с подзарядкой от электросети (PHEV), гибридного транспортного средства (HEV), а также к способу его изготовления. Предложенный блок аккумуляторных батарей размещают в корпусе с крышкой, который заполняют синтактической пеной силиконового каучука, содержащей связующее из силиконового каучука и полые стеклянные шарики. Способ изготовления блока аккумуляторных батарей предусматривает обеспечение протекания отверждения с образованием синтактической пены силиконового каучука, содержащей связующее из силиконового каучука и полые стеклянные шарики, и закрывание корпуса аккумуляторного модуля крышкой. Повышение надежности работы блока аккумуляторных батарей за счет увеличения равномерности тепловых условий и снижения демпфирующих воздействий является техническим результатом изобретения. 2 н. и 15 з.п. ф-лы, 19 табл., 6 ил.

Description

Перекрестная ссылка на родственные заявки
Эта заявка является международной заявкой в соответствии с Договором о патентной кооперации, которая испрашивает приоритет по предварительной заявке США № 62/456,502, поданной 8 февраля 2017 г., содержание которой включено сюда посредством ссылки во всей своей полноте.
Область техники, к которой относится изобретение
Настоящее изобретение относится к новому блоку аккумуляторных батарей, в частности содержащих литий-ионные аккумуляторы, с улучшенным терморегулированием, что позволяет использовать его в расширенных условиях экстремальных температур. Более конкретно, изобретение относится к применению конкретного материала для теплоизоляции блока аккумуляторных батарей и дополнительной минимизации распространения тепловых отклонений внутри такого батарейного блока. Указанный блок аккумуляторных батарей можно применять в полностью электрическом транспортном средстве (электромобиле, EV), гибридном транспортном средстве с подзарядкой от электросети (PHEV), гибридном транспортном средстве (HEV) или в качестве аккумуляторных батарей для других транспортных средств.
Предпосылки изобретения
В широком смысле батареи можно классифицировать на первичные и вторичные. Первичные батареи, которые также называют одноразовыми батареями, предназначены для использования до полного истощения запасенной энергии, после чего они просто заменяются одной или более новыми батареями. Вторичные или, иначе говоря, аккумуляторные батареи, часто называемые перезаряжаемыми батареями, способны многократно перезаряжаться и использоваться повторно, что дает экономические и экологические преимущества, а также простоту в использовании по сравнению с одноразовой батареей. Примеры вторичных батарей могут включать никель-кадмиевые аккумуляторные батареи, никель-металлогидридные аккумуляторные батареи, никель-водородные аккумуляторные батареи, литиевые аккумуляторные батареи и т.д.
Вторичные батареи, в частности, литий-ионные аккумуляторные батареи, стали ключевой технологией аккумулирования энергии и в настоящее время являются основной технологией для приборов бытовой электроники, промышленных, транспортных и связанных с накоплением электрической энергии применений.
За счет своего высокого потенциала и своих высоких плотностей энергии и мощности, а также своего достаточно продолжительного срока службы вторичные батареи являются в настоящее время предпочтительной аккумуляторной технологией, в частности, в автомобильной промышленности, так как теперь стало возможным обеспечить достаточно большую дальность пробега и подходящее ускорение для транспортных средств на электрической тяге, таких как гибридные транспортные средства (HEV), аккумуляторные электрические транспортные средства (BEV) и гибридные транспортные средства с подзарядкой от электросети (PHEV). В современной автомобильной промышленности производятся литий-ионные аккумуляторы разных размеров и форм, которые впоследствии собираются в блоки различной конфигурации. Автомобильный блок аккумуляторных батарей, как правило, состоит из большого числа аккумуляторов, иногда нескольких сотен и даже тысяч, чтобы удовлетворить желательные потребности по мощности и емкости.
Однако этот переход в технологии силовых агрегатов не обходится без технологических препятствий, так как использование электродвигателя приводит к необходимости иметь недорогие батареи с высокими плотностями энергии, длительными сроками службы и способностью работать в широком диапазоне условий. Хотя аккумуляторы перезаряжаемых батарей обладают рядом преимуществ перед одноразовыми батареями, этот тип батареи не лишен недостатков. В общем, большинство связанных с перезаряжаемыми батареями недостатков связано с применяемым химическим составом батарей, так как эти химические составы, как правило, менее стабильны, чем те, которые используются в первичных гальванических элементах. Аккумуляторы перезаряжаемых батарей, такие как литий-ионные аккумуляторы, более склонны к проблемам терморегулирования, которые могут возникать тогда, когда повышенные температуры инициируют экзотермические реакции с выделением тепла, дополнительно повышая температуру и потенциально запуская более вредные реакции. Во время такого события быстро выделяется большое количество тепловой энергии, нагревая весь аккумулятор вплоть до температуры 850°C или выше. Из-за повышенной температуры аккумулятора, подвергающегося этому повышению температуры, температура соседних аккумуляторов в батарейном блоке будет также увеличиваться. Если позволить температуре этих соседних аккумуляторов увеличиваться беспрепятственно, они также могут перейти в недопустимое состояние с чрезмерно высокими температурами внутри аккумулятора, что приведет к каскадному эффекту, когда повышение температуры внутри одного аккумулятора распространяется по всему батарейному блоку. В результате питание от батарейного блока прерывается, и использующая этот батарейный блок система с большей вероятностью испытывает значительное побочное повреждение из-за масштаба повреждения и связанного с этим выделения тепловой энергии. В худшем случае количество выделяемого тепла может стать достаточно большим для того, чтобы привести к возгоранию батареи, а также материалов, находящихся рядом с батареей.
Кроме того, с учетом характеристик литий-ионных аккумуляторных батарей блок аккумуляторных батарей работает в диапазоне температур окружающей среды от -20°C до 60°C. Однако даже при работе в этом диапазоне температур блок аккумуляторных батарей может начать терять свою емкость или способность заряжаться или разряжаться, если температура окружающей среды опускается ниже 0°C. В зависимости от температуры окружающей среды, емкость на протяжении срока службы или способность батареи к заряду/разряду могут значительно уменьшаться в тех случаях, когда температура остается ниже 0°C. Тем не менее, может быть неизбежным использование литий-ионной батареи тогда, когда температура окружающей среды выходит за пределы оптимального диапазона температуры окружающей среды, который составляет от 20°C до 25°C. Эти факторы не только значительно сокращают дальность пробега транспортного средства, но и наносят существенный ущерб батарее. Снижение энергии и мощности, доступных при более низких температурах, объясняется уменьшением емкости и увеличением внутреннего сопротивления.
Ссылаясь на вышесказанное, в батарее или комплекте батарей с многочисленными аккумуляторами могут иметь место значительные колебания температуры от одного аккумулятора к другому, что отрицательно сказывается на рабочих характеристиках блока аккумуляторных батарей. Чтобы продлить срок службы всего батарейного блока, аккумуляторы должны быть ниже желаемой пороговой температуры. Чтобы способствовать работе блока, необходимо минимизировать разность температур между аккумуляторами в блоке аккумуляторных батарей. Однако в зависимости от теплового пути до окружающей среды различные аккумуляторы будут достигать разных температур. Кроме того, по тем же самым причинам различные аккумуляторы достигают разных температур во время процесса зарядки. Соответственно, если один аккумулятор находится при повышенной температуре по сравнению с другими аккумуляторами, эффективность его заряда или разряда будет иной, и поэтому он может заряжаться или разряжаться быстрее, чем другие аккумуляторы. Это приведет к снижению рабочих характеристик всего блока.
Для снижения риска возникновения тепловых проблем или уменьшения риска распространения тепла был использован ряд подходов. Их можно найти в патенте США № 8367233, в котором раскрыта система терморегулирования блока батарей, содержащая по меньшей мере один корпусной аварийный клапан, встроенный в по меньшей мере одну стенку корпуса блока батарей, причем корпусной(ые) аварийный(е) клапан(ы) остае(ю)тся закрытым(и) во время нормальной работы блока батарей и открывае(ю)тся во время теплового события в блоке батарей, тем самым обеспечивая путь течения для горячего газа, выделяемого во время теплового события, который должен выходить из корпуса блока батарей контролируемым образом.
Другой подход состоит в разработке новых химических составов аккумуляторов и/или модификации существующих химических составов аккумуляторов. Еще один подход состоит в том, чтобы обеспечить дополнительное экранирование на уровне аккумулятора, таким образом препятствуя распространению потока тепловой энергии от аккумулятора, подверженного проблемам терморегулирования, в соседние аккумуляторы. Еще один иной подход состоит в том, чтобы использовать узел разделителей для сохранения положения испытывающей тепловое событие батареи в своем заданном местоположении внутри батарейного блока, тем самым помогая свести к минимуму тепловые влияния на соседние аккумуляторы.
Была также описана теплоизоляция блока батарей для снижения риска тепловых отклонений или их распространений. Например, в документе US 2007/0259258 описана батарея с литиевыми аккумуляторами, в которой аккумуляторы уложены друг на друга стопкой, и эта стопка удерживается в положении, окруженном пенополиуретаном. Там также раскрыт вариант осуществления, в котором между двумя аккумуляторами вставлены ребра охлаждения.
В документе DE 202005010708 описана стартерная свинцово-кислотная аккумуляторная батарея и химический источник тока для промышленного применения, корпус которого содержит пенопласт, такой как полипропилен или поливинилхлорид, имеющий закрытые поры.
В документе US2012/0003508 описана батарея литиевых химических источников тока, включающая в себя корпус; множество заключенных в корпусе литиевых химических источников тока, каждый из которых включает в себя контейнер; жесткую огнестойкую пену с закрытой пористостью, образованную из электроизоляционного материала, заполняющего пространство между внутренней стенкой корпуса и свободной поверхностью боковой стенки контейнера каждого химического источника тока, причем эта пена покрывает свободную поверхность боковой стенки контейнера каждого химического источника тока на длине, составляющей по меньшей мере 25% от высоты контейнера. Согласно одному варианту осуществления пена состоит из материала, выбранного из группы, включающей полиуретан, эпоксидную смолу, полиэтилен, меламин, сложный полиэфир, формофенол, полистирол, силикон или их смесь, причем предпочтительными являются полиуретан и смесь полиуретана и эпоксидной смолы. Расширение полиуретановой смолы для пенообразования описано с использованием следующих путей получения пены:
а) химическим путем, то есть посредством реакции воды с изоцианатом с образованием СО2, который вызывает вспенивание полиуретана;
б) физическим путем, то есть посредством испарения жидкости с низкой температурой кипения под действием тепла, выделяемого при экзотермической реакции между изоцианатом и соединением-донором водорода, или
c) посредством вдувания воздуха.
Однако жесткие пены, которые обычно получают путем реагирования, например, полиизоцианата со способным реагировать с изоцианатом материалом, таким как полиол, в присутствии вспенивающего вещества, не демонстрируют требуемую высокую степень сжатия, когда пены используются для минимизации неблагоприятного воздействия от любого пожара и взрыва, связанного с тепловым событием.
В документе US-4418127 описана модульная литиевая батарея с множеством аккумуляторов, имеющая средства электрического соединения, соединяющие аккумуляторы с выходными клеммами, и средства вентиляции для выброса побочных продуктов разряда в химический скруббер. Корпуса аккумуляторов из нержавеющей стали залиты в алюминиевом модульном корпусе синтактической эпоксидной пеной, причем упомянутая пена является синтактической по своей природе для снижения веса и содержит введенные в нее пустотелые микрошарики, выполненные из композиций, выбранных из группы, состоящей из стекла и керамики, и добавок для уменьшения воспламеняемости.
Другая важная проблема в появляющейся области электрических транспортных средств связана с используемыми силовыми агрегатами, которые объединяют в себе двигатель, автоматическую механическую трансмиссию, валы и колеса с конечной передачей для того, чтобы управлять скоростью и создавать большой крутящий момент для приведения в движение транспортного средства. Основное различие по сравнению с традиционными транспортными средствами, потребляющими топливо, состоит в том, что в электрических транспортных средствах нет сцепления или гидропреобразователя крутящего момента, поэтому общая конфигурация системы менее гибкая по своей сути, так как двигатель и система передачи напрямую механически связаны. Эта конфигурация обладает небольшим эффектом пассивного демпфирования, который позволяет ослабить возмущающие воздействия и избежать колебаний, которые в основном заметны во время движения в диапазоне низких скоростей. Действительно, доминирующим звуком является магнитный шум, который создает завывающий шум на высоких частотах. Транспортное средство, работающее только с электродвигателем, будет также иметь меньше маскирующего звука на низких частотах. Это означает, что другие требования к шуму, например, к шуму компонентов, таких как жидкостное или воздушное охлаждение/обогрев для электрических батарей, должны быть изменены соответствующим образом. Важным является также шум, возникающий во время регенерации (зарядки батареи) при выбеге. Таким образом, из-за низкого демпфирования в электрическом транспортном средстве и отсутствия пассивного демпфирующего оборудования по сравнению с традиционным транспортным средством, необходима стратегия управления демпфированием для минимизации колебаний силового агрегата.
Несмотря на то, что был применен ряд подходов в попытке снизить риск тепловых очагов, а также распространения тепловой энергии по всему батарейному блоку, критически важно, чтобы в случае возникновения теплового события на уровне блока были минимизированы личные и имущественные риски. По мере увеличения числа аккумуляторов в батарее и увеличения размера аккумуляторов возрастает необходимость и выгода от обеспечения надлежащего терморегулирования.
Кроме того, все еще существует необходимость лучшей изоляции аккумуляторов, в частности, литий-ионных батарей, от неблагоприятных воздействий низкой температуры, которые встречаются в тех случаях, когда температура воздуха опускается до достаточно низких значений, которые могут достигать -20°C и даже ниже.
В этом контексте одна из основных задач настоящего изобретения состоит в том, чтобы предложить новый блок батарей, который обеспечит подходящее терморегулирование и минимизирует личные и имущественные риски из-за неконтролируемых тепловых событий, которые по-прежнему могут возникать.
Другая основная задача изобретения состоит в том, чтобы предложить новый блок батарей, который обеспечит управление демпфированием, чтобы минимизировать колебания силового агрегата и улучшить эффективность контроля за распространением шума, возникающего от электрических батарей во время их использования.
С помощью настоящего изобретения предполагается, что заявленный блок аккумуляторных батарей позволит решить упомянутые проблемы, связанные с неконтролируемыми тепловыми отклонениями, в частности, у литиевых батарей, обеспечит эффективные свойства низкотемпературной изоляции и обеспечит стратегию управления демпфированием для минимизирования колебаний силового агрегата.
Все эти задачи, помимо прочих, решаются с помощью настоящего изобретения, которое относится к блоку аккумуляторных батарей, содержащему:
- по меньшей мере один корпус 102 аккумуляторного модуля, в котором расположено множество аккумуляторов 103, которые электрически соединены друг с другом,
- синтактическую пену силиконового каучука, содержащую связующее из силиконового каучука и полые стеклянные шарики, и упомянутая синтактическая пена силиконового каучука заполняет частично или полностью открытое пространство упомянутого корпуса 102 аккумуляторного модуля и/или покрывает частично или полностью упомянутые аккумуляторы 103 и/или покрывает частично или полностью упомянутый корпус 102 модуля, и
- необязательно, крышку, закрывающую корпус 102 аккумуляторного модуля.
Для решения этой задачи заявитель продемонстрировал, к своей чести, совершенно удивительно и неожиданно, что выбор силиконового каучука в качестве связующего для синтактической пены, содержащей полые стеклянные шарики, позволяет преодолеть те проблемы, которые не были решены у аналогичных батарей, использующих синтактическую пену органического каучука.
Используемый здесь термин "силиконовый каучук" включает в себя сшитый продукт любой сшиваемой силиконовой композиции. Под термином "синтактическая пена силиконового каучука" подразумевается выполненная из силиконового каучука матрица, в которой распределены полые стеклянные шарики.
Кроме того, хорошо известно, что дальность пробега электрического транспортного средства между зарядками вычисляется при температуре окружающей среды. Водителей электрических транспортных средств предупреждают, что низкая температура сокращает доступный пробег. Эта потеря вызвана не только электрическим обогревом кабины, но и присущим батарее замедлением электрохимической реакции, которое приводит к снижению емкости в холодном состоянии. Поэтому выбор именно силиконового каучука в качестве связующего внутри упомянутой синтактической пены позволяет ей проявлять превосходную изоляцию по отношению к низкой температуре, близкой к точке замерзания или ниже нее.
Другое преимущество использования связующих из силиконового каучука по сравнению с органическими связующими из каучука для синтактической пены может быть продемонстрировано на примере точки охрупчивания (или потери пластичности), которая составляет от -20°C до -30°C для типичного органического связующего из каучука по сравнению с диапазоном от -60°C до -70°C для связующих по изобретению.
Другое преимущество также связано с физическими свойствами, такими как упругость, которые остаются действующими у связующего из силиконового каучука даже при температурах, при которых органические связующие из каучука становятся хрупкими.
Другое преимущество использования силиконовой синтактической пены по изобретению состоит в том, что она имеет очень низкое водопоглощение и, следовательно, отлично изолирует аккумуляторы от нежелательной воды для их оптимального использования. Действительно, в отличие от силиконовых синтактических пен, стандартная силиконовая пена содержит только надутые газом пузырьки и имеет полости, полностью или по меньшей мере частично соединенные друг с другом, и поэтому обладает способностью к поглощению и диффузии воды, а это свойство затрудняет ее использование в электрическом транспортном средстве, в котором блоки батарей чаще всего располагаются под транспортным средством или в полу транспортного средства, и поэтому при вождении в дождливых условиях могут возникать проблемы с такими материалами.
Так как разности температур влияют на сопротивление, скорость саморазряда, выход по току, а также на необратимую емкость и скорости падения мощности аккумуляторов в широком диапазоне химических составов, блок аккумуляторных батарей по изобретению позволяет обеспечить равномерные тепловые условия для всех аккумуляторов в блоке батарей или аккумуляторном модуле. Поэтому можно дополнительно минимизировать вероятность состояния аккумулятора с дисбалансом заряда и раннего выхода из строя исправных аккумуляторов.
Согласно предпочтительному варианту осуществления упомянутая синтактическая пена силиконового каучука используется в качестве заливочного материала, находящегося либо в упомянутом корпусе 102 аккумуляторного модуля, чтобы по меньшей мере частично герметизировать упомянутое множество аккумуляторов 103, и/или снаружи корпуса 102 аккумуляторного модуля с тем, чтобы по меньшей мере частично герметизировать упомянутый корпус 102 аккумуляторного модуля.
Действительно, синтактическая пена силиконового каучука заполняет частично или полностью открытое пространство упомянутого корпуса аккумуляторного модуля и/или закрывает частично или полностью упомянутые аккумуляторы. Связующее из силиконового каучука придает синтактической пене механическую гибкость и термическую стойкость в широком диапазоне температур (например, от -70°C до 200°C). Кроме того, разложение связующего из силиконового каучука при температурах перегрева (до 850°C) на диоксид кремния и оксид кремния вызывает поглощение большого количества тепла. Поэтому диффузию тепла (теплоотдачу) от единичного аккумулятора к соседним единичным аккумуляторам можно эффективно изолировать с помощью теплоизоляционного барьера, которым является упомянутая синтактическая пена силиконового каучука. Тепловые отклонения не распространяются по всему аккумуляторному модулю, а значит, в дальнейшем предотвращается угроза безопасности пользователя. В дополнение к этому, для некоторых аккумуляторных модулей, имеющих печатные платы управления, расположенные в корпусе аккумуляторного модуля, синтактическая пена силиконового каучука согласно раскрытию может быть расположена между аккумуляторами и печатной платой и между аккумуляторами и монтажной платой для уменьшения проблемы нагрева батареи, вызванной печатной платой и цепями.
Силиконовая композиция содержит полые стеклянные шарики, а в предпочтительном варианте осуществления упомянутые полые стеклянные шарики имеют точки плавления, аналогичные тепловым событиям, происходящим в батарее или группе батарей в блоке, поэтому нагревание приведет к размягчению и расплавлению стекла, уменьшающим теплоперенос и защищающим другие батареи вокруг перегретой батареи.
Согласно предпочтительному варианту осуществления упомянутые аккумуляторы 103 являются литий-ионными.
Согласно другому предпочтительному варианту осуществления блок аккумуляторных батарей по изобретению дополнительно содержит множество теплорассеивающих элементов, которые расположены на двух или более границах раздела между аккумуляторами, и по меньшей мере один теплообменный элемент, соединяющий между собой теплорассеивающие элементы в одно целое и установленный на одной стороне корпуса 102 аккумуляторного модуля, посредством чего тепло, выделяемое из аккумуляторов во время их зарядки и разрядки, отводится теплообменным элементом. Это позволяет охлаждать аккумуляторы с более высокой эффективностью, чем традиционные системы охлаждения, даже при отсутствии промежутков между аккумуляторами или с очень маленькими промежутками между аккумуляторами, тем самым максимизируя эффективность теплорассеяния блока аккумуляторных батарей и позволяя дополнительно ограничить свободное пространство в упомянутом блоке аккумуляторных батарей.
Согласно другому предпочтительному варианту осуществления теплорассеивающие элементы по изобретению выполнены из теплопроводного материала, обладающего высокой теплопроводностью, а теплообменный элемент снабжен одним или более каналами для охладителя, которые позволяют протекать по ним охладителю, такому как жидкость или газ.
Теплорассеивающие элементы по изобретению конкретно не ограничены при условии, что каждый из теплорассеивающих элементов выполнен из теплопроводного материала, такого как металлическая пластина, обладающая высокой теплопроводностью.
Предпочтительно, теплообменный элемент снабжен одним или более каналами для охладителя, которые позволяют охладителю протекать через них. Например, каналы для охладителя, позволяющие протекать через них жидкому охладителю, такому как вода, могут быть образованы в теплообменном элементе, тем самым обеспечивая превосходный эффект охлаждения с высокой надежностью по сравнению с традиционной конструкцией воздушного охлаждения.
Согласно другому предпочтительному варианту осуществления блок аккумуляторных батарей по изобретению дополнительно содержит впускной коллектор охладителя, выпускной коллектор охладителя и множество теплообменных трубок, служащих в качестве теплорассеивающих элементов и проходящих между впускным и выпускным коллекторами, причем упомянутые теплообменные трубки расположены на одной или более границах раздела между аккумуляторами и содержат проходящий через них охладитель для обмена теплом, выделяемым аккумуляторами во время заряда и разряда аккумуляторов.
Полые стеклянные шарики используются в синтактической пене по изобретению и служат для уменьшения плотности пены. Полые стеклянные шарики и, в частности, полые стеклянные микросферы хорошо подходят для этого применения, так как, помимо превосходной изотропной прочности на сжатие, они имеют самую низкую плотность по сравнению с любым наполнителем, который был бы пригоден в производстве синтактической пены с высокой прочностью на сжатие. Сочетание высокой прочности на сжатие и низкой плотности делает полые стеклянные микросферы наполнителем с многочисленными преимуществами согласно изобретению.
Согласно одному варианту осуществления полые стеклянные шарики представляют собой полые микросферы из боросиликатного стекла, также известные как стеклянные пузырьки или стеклянные микропузырьки.
Согласно другому варианту осуществления полые микросферы из боросиликатного стекла имеют значения истинной плотности в пределах от 0,10 грамма на один кубический сантиметр (г/см3) до 0,65 грамма на один кубический сантиметр (г/см3).
Термин "истинная плотность" означает частное, полученное при делении массы образца стеклянных пузырьков на истинный объем этой массы стеклянных пузырьков, измеренное газовым пикнометром. Термин "истинный объем" означает совокупный общий объем стеклянных пузырьков, а не насыпной объем.
Согласно другому варианту осуществления уровень полых стеклянных шариков составляет до 80% объемной загрузки в синтактической пене силиконового каучука или жидкой сшиваемой силиконовой композиции-прекурсора упомянутой синтактической пены силиконового каучука, как описано ниже, а наиболее предпочтительно составляет между 5% и 70% по объему синтактической пены силиконового каучука или жидкой сшиваемой силиконовой композиции-прекурсора упомянутой синтактической пены силиконового каучука, как описано ниже.
Согласно предпочтительному варианту осуществления полые стеклянные шарики выбраны из серии плавающих стеклянных пузырьков 3M™ (продукты стеклянных пузырьков A16/500, G18, A20/1000, H20/1000, D32/4500 и H50/10,000EPX) и серии стеклянных пузырьков 3M™ (таких как, но не ограничиваясь ими, продукты стеклянных пузырьков K1, K15, S15, S22, K20, K25, S32, S35, K37, XLD3000, S38, S38HS, S38XHS, K46, K42HS, S42XHS, S60, S60HS, iM16K, iM30K), продаваемых компанией 3M. Упомянутые стеклянные пузырьки проявляют различные значения прочности на раздавливание в пределах от 1,72 мегапаскаля (250 psi) до 186,15 мегапаскаля (27000 psi), при которой разрушается десять объемных процентов первого множества стеклянных пузырьков. Согласно изобретению можно также использовать и другие продаваемые компанией 3M стеклянные пузырьки, такие как стеклянные пузырьки 3M™ плавающей серии (Floated), стеклянные пузырьки 3M™ серии HGS и стеклянные пузырьки 3M™ с поверхностной обработкой.
Согласно предпочтительному варианту осуществления упомянутые стеклянные пузырьки выбраны среди тех, которые проявляют прочность на раздавливание в пределах от 1,72 мегапаскаля (250 psi) до 186,15 мегапаскаля (27000 psi), при которой разрушается десять объемных процентов первого множества стеклянных пузырьков.
Согласно наиболее предпочтительному варианту осуществления полые стеклянные шарики выбраны из стеклянных пузырьков 3M™ (3M™ Glass Bubbles) серии S15, K1, K25, iM16K, S32 и XLD3000.
Чтобы заполнить свободное пространство синтактической пены силиконового каучука по изобретению, можно:
a) либо использовать жидкую сшиваемую силиконовую композицию-прекурсор синтактической пены силиконового каучука, содержащую полые стеклянные шарики по изобретению, которая поступает после ее впрыскивания или свободного затекания с заполнением свободных пространств и отверждается посредством сшивания,
b) либо использовать механически обработанный или предварительно отлитый блок из синтактической пены силиконового каучука, содержащей полые стеклянные шарики, который вставляется в корпус во время сборки.
Использование в батарее жидкой сшиваемой силиконовой композиции-прекурсора синтактической пены силиконового каучука, содержащей полые стеклянные шарики, облегчает ее заполнение по сравнению со стандартным жидким сшиваемым силиконовым прекурсором силиконовой пены, так как процесс вспенивания стандартной пены создает надутые газом пузырьки и дает пустоты, полностью или по меньшей мере частично соединенные друг с другом, что приводит к многочисленным дефектам в полученной силиконовой пене и к проблемам заполнения.
Действительно, стандартные силиконовые пены получаются несколькими способами, например, путем добавления термически разлагаемого вспенивающего вещества или путем формования и отверждения с выделением побочного продукта – газообразного водорода. В способе добавления термически разлагаемого вспенивающего вещества токсичность и запах разлагающихся газов являются проблемами. Способ с использованием побочного продукта – газообразного водорода на этапе отверждения страдает от таких проблем, как потенциальный взрыв газообразного водорода и необходимость бережного обращения с неотвержденной композицией во время хранения на стеллажах. Кроме того, способ с выделением газа сталкивается с трудностями при формировании контролируемых единообразных элементов.
Использование расширяющейся синтактической пены силиконового каучука облегчает заполнение пустого пространства внутри блока батарей, так как давление набухания заталкивает пену во все полости и пустоты подлежащей заполнению геометрической формы. Кроме того, этот способ позволяет заполнить любую геометрическую форму, что невозможно с использованием заранее изготовленных блоков.
Силиконовый каучук, который используется в качестве связующего в синтактической пене по изобретению, часто называют силиконовым эластомером, который состоит из трех - четырех основных ингредиентов. Этими ингредиентами являются (1) один или более реакционноспособных силиконовых полимеров, (2) возможно, один или более наполнителей, (3) сшивающий агент и (4) катализатор. Как правило, существует два основных типа составов силиконового каучука, которые представляют собой силиконовый каучук высокотемпературной вулканизации (HTV) и вулканизирующийся при комнатной температуре (RTV) силиконовый каучук. Среди композиций силиконового каучука горячей вулканизации или высокотемпературной вулканизации (HTV) часто также различают твердую резину (HCR) или жидкий силиконовый каучук (LSR) в зависимости от вязкости неотвержденной композиции. Однако термин "композиции вулканизирующегося при комнатной температуре (RTV) силиконового каучука" может вводить в заблуждение, так как некоторым композициям RTV-каучука может потребоваться незначительное количество тепла для протекания реакции с приемлемой скоростью.
Связующее из силиконового каучука, в котором диспергированы полые стеклянные шарики, можно получить путем отверждения полиорганосилоксановой композиции присоединительного отверждения, полиорганосилоксановой композиции пероксидного отверждения или полиорганосилоксановой композиции конденсационного отверждения.
Такие силиконовые композиции хорошо известны специалистам в области техники, связанной с силиконом. Полиорганосилоксановую композицию присоединительного отверждения предпочтительно определяют как в основном содержащую (1) 100 массовых частей полиорганосилоксана, имеющего по меньшей мере две присоединенные к атомам кремния алкенильные группы в молекуле, (2) 0,1-50 массовых частей полиорганогидридсилоксана, имеющего по меньшей мере два, предпочтительно по меньшей мере три присоединенных к атомам кремния атома водорода (то есть группы SiH) в молекуле, и (3) каталитическое количество катализатора реакции присоединения. Полиорганосилоксановую композицию пероксидного отверждения предпочтительно определяют как в основном содержащую (1) 100 массовых частей полиорганосилоксана, имеющего по меньшей мере две присоединенные к атомам кремния алкенильные группы в молекуле, и (2) каталитическое количество органического пероксида. Полиорганосилоксановые композиции конденсационного отверждения, которые сшиваются посредством поликонденсации, как правило, включают в себя силиконовое масло, как правило, полидиметилсилоксан с гидроксильными концевыми группами, необязательно предварительно функционализированные силаном для того, чтобы иметь гидролизуемые и конденсируемые концы, и сшивающий агент, катализатор поликонденсации, обычно – соль олова или алкилтитанат.
Согласно предпочтительному варианту осуществления упомянутая синтактическая пена силиконового каучука получена отверждением полиорганосилоксановой композиции X присоединительного отверждения. Данный вариант осуществления имеет несколько преимуществ по сравнению с однокомпонентными системами (полиорганосилоксановыми композициями конденсационного отверждения), особенно в производственных условиях. Так как именно катализатор, а не влага, как в случае силикона конденсационного отверждения, вызывает отверждение, они не имеют проблем, связанных с толщиной сечения. Действительно, они преимущественно используются для таких приложений, как заливка, герметизация и большие отливки. Полиорганосилоксановые композиции присоединительного отверждения не выделяют побочные продукты реакции, поэтому они могут отверждаться в закрытых средах. Их отверждение можно также значительно ускорить за счет термического отверждения, однако отверждение можно также легко получить без нагревания при температуре окружающей среды 20°C (+/-5°C) путем регулировки уровня ингибитора и/или катализатора, что является большим преимуществом по сравнению с пероксидным отверждением, для которого требуется температура выше 90°C.
Согласно другому предпочтительному варианту осуществления полиорганосилоксановая композиция X присоединительного отверждения содержит:
a) по меньшей мере один полиорганосилоксан A, имеющий по меньшей мере две связанные с кремнием алкенильные группы в расчете на молекулу, причем каждая из упомянутых алкенильных групп содержит от 2 до 14 атомов углерода, предпочтительно упомянутые алкенильные группы выбраны из группы, состоящей из винила, аллила, гексенила, деценила и тетрадеценила, а наиболее предпочтительно упомянутые алкенильные группы представляют собой винильные группы,
b) по меньшей мере одно соединение B кремния, имеющее по меньшей мере два, а предпочтительно по меньшей мере три связанных с кремнием атома водорода в расчете на молекулу,
c) полые стеклянные шарики D, а предпочтительно полые микросферы из боросиликатного стекла,
d) катализатор C гидросилилирования,
e) необязательно, по меньшей мере один регулятор G скорости отверждения, который замедляет скорость отверждения силиконовой композиции,
f) необязательно, по меньшей мере один реакционноспособный разбавитель E, который вступает в реакцию гидросилилирования, и,
g) необязательно, по меньшей мере одну добавку H, такую как пигмент, краситель, глина, поверхностно-активное вещество, гидрогенизированное касторовое масло, волластонит, тригидрат алюминия, гидроксид магния, галлуазит, гантит гидромагнезит, вспениваемый графит, борат цинка, слюда или пирогенный диоксид кремния.
Согласно другому предпочтительному варианту осуществления полиорганосилоксановая композиция X присоединительного отверждения содержит:
a) по меньшей мере один полиорганосилоксан A следующей формулы:
Figure 00000001
в которой:
- R и Rʺ выбраны независимо друг от друга из группы, состоящей из углеводородного радикала C1-C30, а предпочтительно R и R представляют собой алкильную группу, выбранную из группы, состоящей из метила, этила, пропила, трифторпропила и фенила, и наиболее предпочтительно R представляет собой метильную группу,
- R' представляет собой алкенильный радикал C1-C20, а предпочтительно R' выбран из группы, состоящей из винила, аллила, гексенила, деценила и тетрадеценила, и наиболее предпочтительно R' представляет собой винильный радикал, и
- n представляет собой целое число, имеющее значение от 5 до 1000, а предпочтительно от 5 до 100,
b) по меньшей мере одно соединение B кремния, содержащее по меньшей мере два связанных с кремнием атома водорода в расчете на молекулу, а предпочтительно смесь двух соединений B кремния, одно из которых содержит два связанных с кремнием телехелатных атома водорода в расчете на молекулу, без связанных с кремнием боковых атомов водорода в расчете на молекулу, и другое содержит по меньшей мере три связанных с кремнием атома водорода в расчете на молекулу,
c) эффективное количество катализатора C гидросилилирования, а предпочтительно катализатора C гидросилилирования на основе платины,
d) полые стеклянные шарики D, а предпочтительно полые микросферы из боросиликатного стекла,
e) возможно и предпочтительно, по меньшей мере один реакционноспособный разбавитель E для снижения вязкости композиции, который реагирует посредством реакции гидросилилирования и выбран из группы, состоящей из:
- соединения кремния, содержащего одну группу гидрида кремния в расчете на молекулу, и
- органического соединения, содержащего одну этиленненасыщенную группу, предпочтительно упомянутое органическое соединение представляет собой органический α-олефин, содержащий от 3 до 20 атомов углерода, а наиболее предпочтительно выбран из группы, состоящей из додецена, тетрадецена, гексадецена, октадецена и их комбинации, и все они имеют концевую винильную группу,
- полиорганосилоксана, имеющего одну телехелатную алкенильную группу, а предпочтительно упомянутая телехелатная алкенильная группа выбрана из группы, состоящей из винила, аллила, гексенила, деценила и тетрадеценила, и наиболее предпочтительно представляет собой винильную группу,
f) необязательно, по меньшей мере одну из добавок H, таких как пигмент, краситель, глина, поверхностно-активное вещество, гидрогенизированное касторовое масло, волластонит, тригидрат алюминия, гидроксид магния, галлуазит, гантит гидромагнезит, вспениваемый графит, борат цинка, слюда или пирогенный диоксид кремния, и,
g) необязательно, по меньшей мере один регулятор G скорости отверждения, который замедляет скорость отверждения силиконовой композиции.
Согласно другому предпочтительному варианту осуществления реакционноспособный разбавитель E:
- выбран из группы, состоящей из додецена, тетрадецена, гексадецена, октадецена или их комбинации, и все они имеют концевую винильную группу, или
- представляет собой жидкий полиорганосилоксан с формулой I,
Figure 00000002
I,
в которой:
- R и R2 выбраны независимо друг от друга из углеводородного радикала C1-C30, а предпочтительно они выбраны из группы, состоящей из метила, этила, пропила, трифторпропила и фенила, и наиболее предпочтительно представляют собой метильные группы,
- R1 представляет собой алкенильный радикал C1-C20, а предпочтительно R1 выбран из группы, состоящей из винила, аллила, гексенила, деценила или тетрадеценила, и наиболее предпочтительно R1 представляет собой винил, и
- х составляет в пределах от 0 до 100 и выбран так, чтобы он понижал вязкость полиорганосилоксановой композиции X присоединительного отверждения по сравнению с такой же композицией без реакционноспособного разбавителя.
Согласно предпочтительному варианту осуществления полиорганосилоксан A выбран из группы диметилполисилоксанов, содержащих диметилвинилсилильные концевые группы.
Согласно другому предпочтительному варианту осуществления, в котором:
- вязкость при 25°C упомянутого полиорганосилоксана A составляет между 5 мПа·с и 60000 мПа·с, предпочтительно между 5 мПа·с и 5000 мПа·с, а наиболее предпочтительно между 5 мПа·с и 350 мПа·с,
- вязкость при 25°C упомянутого соединения B кремния, содержащего два связанных с кремнием телехелатных атома водорода в расчете на молекулу, без связанных с кремнием боковых атомов водорода в расчете на молекулу, составляет между 5 и 100 мПа·с, и
- вязкость при 25°C упомянутого соединения B кремния, содержащего по меньшей мере три связанных с кремнием атома водорода в расчете на молекулу, составляет между 5 и 2000 мПа·с.
Все значения вязкости, рассматриваемые в настоящем описании, соответствуют величине динамической вязкости, которая измерена известным способом при температуре 25°C с помощью прибора типа вискозиметра Брукфилда. Что касается жидкотекучих продуктов, то вязкость, рассматриваемая в настоящем описании, представляет собой динамическую вязкость при 25°C, известную как "ньютоновская" вязкость, то есть динамическая вязкость, которая измерена известным способом, при достаточно низком градиенте скорости сдвига, поэтому измеренная вязкость не зависит от градиента скорости.
Согласно предпочтительному варианту осуществления вязкости при 25°C упомянутого полиорганосилоксана A и упомянутого соединения B кремния, содержащего по меньшей мере два связанных с кремнием атома водорода в расчете на молекулу, выбирают так, чтобы вязкость при 25°C полиорганосилоксановой композиции X присоединительного отверждения составляла между 500 мПа·с и 300000 мПа·с, так чтобы ее можно было нагнетать в корпус 102 аккумуляторного модуля. Если выбран вариант заливки композиции внутрь корпуса 102 аккумуляторного модуля, то компоненты упомянутой полиорганосилоксановой композиции X присоединительного отверждения выбирают так, чтобы ее вязкость находилась между 500 мПа·с и 5000 мПа·с, а предпочтительно между 500 мПа·с и 2500 мПа·с.
Примерами катализаторов C гидросилилирования являются такие катализаторы гидросилилирования, как катализаторы Карстеда, описанные в патенте США № 3715334, или другие платиновые или родиевые катализаторы, известные в данной области техники, а также включая микрокапсулированные катализаторы гидросилилирования, например, известные в данной области техники и представленные в патенте США № 5009957. Однако относящиеся к этому изобретению катализаторы гидросилилирования могут содержать по меньшей мере один из следующих элементов: Pt, Rh, Ru, Pd, Ni, например, никель Ренея (Raney Nickel) и их комбинации. Катализатор необязательно связан с инертным или активным носителем. Примеры предпочтительных катализаторов, которые могут быть использованы, включают платиновые катализаторы, такие как хлороплатиновая кислота, спиртовые растворы хлороплатиновой кислоты, комплексы платины и олефинов, комплексы платины и 1,3-дивинил-1,1,3,3-тетраметилдисилоксана и порошки, на которые нанесена платина, и т.д. Платиновые катализаторы полностью описаны в литературе. В частности, можно упомянуть комплексы платины и органического продукта, описанные в патентах США №№ 3159601, 3159602 и 3220972, и в европейских патентных документах EP-A-057459, EP-188978 и EP-A-190530, а также комплексы платины и винилированного полиорганосилоксана, описанные, в частности, в патентах США №№ 3419593, 3715334, 3377432, 3814730 и 3750452. В частности, особенно желательны платиновые катализаторы.
Примеры регулятора G скорости отверждения, который также известен как ингибитор, предназначены для замедления отверждения составного силикона, если это требуется. Регуляторы скорости отверждения хорошо известны в данной области техники, и примеры таких материалов можно найти в патентах США. Патент США 3923705 относится к применению винилсодержащих циклических силоксанов. В патенте США 3445420 описано использование ацетиленовых спиртов. В патенте США 3188299 показана эффективность гетероциклических аминов. В патенте США 4256870 описаны алкилмалеаты, используемые для контроля отверждения. Можно также использовать олефиновые силоксаны, описываемые в патенте США 3989667. Кроме того, также использовались полидиорганосилоксаны, содержащие винильные радикалы, и их описание можно найти в патентах США 3498945, 4256870 и 4347346. Предпочтительные ингибиторы для этого состава представляют собой метилвинилциклосилоксаны, 3-метил-1-бутин-3-ол и 1-этинил-1-циклогексанол, причем наиболее предпочтительным является 1,3,5,7-тетраметил-1,3,5,7-тетравинилциклотетрасилоксан в количестве от 0,002% до 1,00% соединения кремния в зависимости от желаемой скорости отверждения.
Предпочтительный регулятор G скорости отверждения выбран среди:
- 1,3,5,7-тетраметил-1,3,5,7-тетравинилциклотетрасилоксана,
- 3-метил-1-бутин-3-ола и
- 1-этинил-1-циклогексанола.
Для того чтобы получить более длительное время работы или "жизнеспособность", количество регулятора G скорости отверждения регулируют для достижения желаемой "жизнеспособности". Концентрация ингибитора катализатора в настоящей силиконовой композиции является достаточной для замедления отверждения композиции при температуре окружающей среды без предотвращения или чрезмерного увеличения времени отверждения при повышенных температурах. Эта концентрация будет широко варьироваться в зависимости от конкретного используемого ингибитора, характера и концентрации катализатора гидросилилирования и характера полиорганогидридсилоксана. Концентрации ингибитора, составляющие всего один моль ингибитора на моль металла платиновой группы, в некоторых случаях дают удовлетворительные стабильность при хранении и скорость отверждения. В других случаях могут потребоваться концентрации ингибитора до 500 или более молей ингибитора на моль металла платиновой группы. Оптимальная концентрация конкретного ингибитора в данной силиконовой композиции может быть легко определена с помощью рутинных экспериментов.
Согласно предпочтительному варианту осуществления для упомянутой полиорганосилоксановой композиции X присоединительного отверждения массовые пропорции полиорганосилоксана A, реакционноспособного разбавителя E, если он присутствует, и соединения B кремния являются такими, чтобы общее молярное отношение связанных с кремнием атомов водорода ко всем связанным с кремнием алкенильным радикалам находилось в диапазоне от 0,35 до 10, а предпочтительно в диапазоне от 0,4 до 1,5.
Некоторые добавки H, такие как пигмент, краситель, глина, поверхностно-активное вещество (ПАВ), гидрогенизированное касторовое масло, волластонит или пирогенный диоксид кремния (которые модифицируют поток компаундированного силиконового продукта), могут быть также использованы в упомянутой полиорганосилоксановой композиции X присоединительного отверждения.
Под "красителем" подразумевается только окрашенное или флуоресцентное органическое вещество, которое придает цвет субстрату путем избирательного поглощения света. Под "пигментом" подразумеваются окрашенные, черные, белые или флуоресцентные органические или неорганические твердые вещества, которые обычно нерастворимы в и по существу физически и химически не подвержены воздействию среды-носителя или подложки, в которую они включены. Он изменяет внешний вид путем избирательного поглощения и/или рассеяния света. Пигмент обычно сохраняет кристаллическую или дисперсную структуру в течение всего процесса окрашивания. Пигменты и красители хорошо известны в данной области техники и не требуют подробного описания здесь.
Глины представляют собой продукты, которые по существу уже хорошо известны и описаны, например, в публикации "Mineralogie des argiles [Mineralogy of clays], S. Caillere, S. Henin, M. Rautureau, 2nd Edition 1982, Masson". Глинами являются силикаты, содержащие катион, который может быть выбран из катионов кальция, магния, алюминия, натрия, калия и лития и их смесей. Примеры таких продуктов, которые могут быть упомянуты в дальнейшем, включают глины семейства смектитов, такие как монтмориллониты, гекториты, бентониты, бейделлиты и сапониты, а также семейств вермикулитов, стевенситов и хлоритов. Эти глины могут быть природного или синтетического происхождения. Глина предпочтительно представляет собой бентонит или гекторит, и эти глины могут быть модифицированы химическим соединением, выбранным из четвертичных аминов, третичных аминов, аминацетатов, имидазолинов, аминовых мыл, жирных сульфатов, алкиларилсульфонатов и аминоксидов и их смесей. Глина, которая может использоваться по изобретению и состоит из синтетических гекторитов (известных также как лапониты), таких как продукты, продаваемые компанией Laporte под названием Laponite XLG, Laponite RD и Laponite RDS (эти продукты представляют собой силикаты натрия-магния и, в частности, силикаты натрия-магния-лития); бентонитов, таких как продукты, продаваемые компанией Rheox под названием Bentone HC; алюмосиликатов магния, в частности гидратированных, таких как продукт, продаваемый компанией R.T. Vanderbilt Company под названием Veegum Ultra, или силикатов кальция и, в частности, в синтетической форме, продаваемых компанией CELITE ET WALSH ASS под названием Micro-Cel C.
Доступны многие силиконовые полиэфирные поверхностно-активные вещества (ПАВ), но предпочтительным силиконовым полиэфиром для загущения соединения кремния по настоящему изобретению является SP 3300 от компании Elkem Silicones USA.
Другой предпочтительной добавкой H является модификатор реологии, такой как Thixcin R, гидрогенизированное касторовое масло от компании Elementis Specialties, Нью-Джерси, США.
Волластонит, также известный как метасиликат кальция, представляет собой встречающийся в природе минерал, который можно добавлять в качестве антипирена (добавляемые количества будут варьироваться в зависимости от применения и будут составлять от 1 массовой части до 15 массовых частей в расчете на 100 массовых частей полиорганосилоксановой композиции X присоединительного отверждения). Волластонит, который можно использовать в настоящем изобретении, относится к ископаемой разновидности, имеющей игольчатую морфологию, которая имеет игольчатую форму. Предпочтительные сорта волластонитов выбираются из материалов, поставляемых компанией NYCO® Minerals, Inc., Уиллсборо, Нью-Йорк, США.
Тригидрат алюминия (ATH) является широко распространенным антипиреновым наполнителем. Он разлагается при нагревании выше 180-200°C, после чего он поглощает тепло и выделяет воду, гася пламя. Гидроксид магния (MDH) обладает более высокой термостойкостью, чем ATH. Эндотермическое разложение (с поглощением тепла) начинается при 300°C, после чего выделяется вода, которая может действовать как антипирен.
Смеси гантита и гидромагнезита (Mg3Ca(CO3)4 / Mg5(CO3)4(OH)2·4H2O). В природе гантит и гидромагнезит встречаются почти всегда в виде смесей. Гидромагнезит начинает разлагаться при температурах между 220°C (на открытом воздухе) и 250°C (под давлением в экструдере), которые являются достаточно высокими для того, чтобы его можно было использовать в качестве антипирена. Гидромагнезит выделяет воду и поглощает тепло так же, как это делают ATH и MDH. Напротив, гантит разлагается выше 400°C, поглощая тепло, но выделяя углекислый газ.
Пирогенные диоксиды кремния можно также использовать в качестве добавки H для изменения реологии этих материалов. Пирогенные диоксиды кремния могут быть получены путем высокотемпературного пиролиза летучего соединения кремния в кислородно-водородном пламени с получением тонкодисперсного кремнезема. Этот процесс позволяет, в частности, получать гидрофильные кремнеземы, которые имеют большое число силанольных групп на своей поверхности, которые имеют тенденцию сгущать силиконовую композицию больше, чем кремнезем с низкими уровнями силанола. Такие гидрофильные кремнеземы продаются, например, под названиями Aerosil 130, Aerosil 200, Aerosil 255, Aerosil 300 и Aerosil 380 компанией Degussa и Cab-O-Sil HS-5, Cab-O-Sil EH-5, Cab-O-Sil LM-130, Cab-O-Sil MS-55 и Cab-O-Sil M-5 компанией Cabot. Можно химически модифицировать поверхность упомянутого кремнезема посредством химической реакции, которая приводит к уменьшению числа силанольных групп. В частности, можно заменить силанольные группы гидрофобными группами с дальнейшим получением гидрофобного кремнезема. Гидрофобными группами могут быть:
- триметилсилоксильные группы, которые получают, в частности, обработкой пирогенного диоксида кремния в присутствии гексаметилдисилазана. Обработанные таким образом диоксиды кремния известны как "силилат диоксида кремния" в соответствии с CTFA (6-е издание, 1995 г.). Они продаются, например, под наименованиями "Aerosil R812" компанией Degussa и Cab-O-Sil TS-530 компанией Cabot, или
- диметилсилилоксильные или полидиметилсилоксановые группы, которые получают, в частности, обработкой пирогенного диоксида кремния в присутствии полидиметилсилоксана или метилдихлорсилана.
Обработанные таким образом диоксиды кремния известны как "диметилсилилат диоксида кремния" в соответствии с CTFA (6-е издание, 1995). Они продаются, например, под наименованиями Aerosil R972 и Aerosil R974 компанией Degussa и Cab-O-Sil TS-610 и Cab-O-Sil TS-720 компанией Cabot. Пирогенный диоксид кремния предпочтительно имеет размер частиц от нанометрового до микрометрового, например, в пределах от примерно 5 до 200 нм.
Согласно другому предпочтительному варианту осуществления упомянутую полиорганосилоксановую композицию X присоединительного отверждения хранят перед использованием в виде многокомпонентного RTV, содержащего по меньшей мере две отдельных упаковки, которые предпочтительно являются воздухонепроницаемыми, тогда как катализатор C гидросилилирования отсутствует в той же упаковке с соединением B кремния или с реакционноспособным разбавителем E, если он присутствует и если он представляет собой соединение кремния, содержащее одну группу гидрида кремния в расчете на молекулу.
Согласно другому предпочтительному варианту осуществления упомянутую полиорганосилоксановую композицию X присоединительного отверждения хранят перед использованием в виде многокомпонентного RTV, содержащего по меньшей мере две отдельных упаковки, которые предпочтительно являются воздухонепроницаемыми, причем:
a) первая упаковка A1 содержит:
- 100 массовых частей по меньшей мере одного полиорганосилоксана по изобретению и как охарактеризовано выше,
- от 5 до 30 массовых частей полых стеклянных шариков D по изобретению и как охарактеризовано выше, и
- от 0 до 30 частей и предпочтительно от 5 до 30 массовых частей по меньшей мере одного реакционноспособного разбавителя E по изобретению и как охарактеризовано выше, и
- от 4 до 150 миллионных долей в расчете на металлическую платину катализатора C гидросилилирования на основе платины;
b) вторая упаковка A2 содержит:
- 100 массовых частей по меньшей мере одного полиорганосилоксана A по изобретению и как охарактеризовано выше,
- от 10 до 70 массовых частей соединения B кремния, содержащего два связанных с кремнием телехелатных атома водорода в расчете на молекулу, по изобретению и как охарактеризовано выше,
- от 5 до 25 массовых частей соединения B кремния, содержащего по меньшей мере три связанных с кремнием атома водорода в расчете на молекулу, по изобретению и как охарактеризовано выше,
- от 5 до 30 массовых частей полых стеклянных шариков D по изобретению и как охарактеризовано выше, и
- эффективное количество по меньшей мере одного регулятора G скорости отверждения, который замедляет скорость отверждения.
Другой объект изобретения относится к способу изготовления блока аккумуляторных батарей по изобретению и как описано выше, включающему в себя этапы, на которых:
a) приготавливают по меньшей мере один корпус 102 аккумуляторного модуля, в котором расположено множество аккумуляторов 103, которые электрически соединены друг с другом,
b) вводят в упомянутый корпус 102 аккумуляторного модуля полиорганосилоксановую композицию X присоединительного отверждения, охарактеризованную в пункте 3 или 11 формулы изобретения,
c) полностью или частично заполняют упомянутый корпус 102 аккумуляторного модуля и
d) обеспечивают протекание отверждения с образованием синтактической пены силиконового каучука, содержащей связующее из силиконового каучука и полые стеклянные шарики, и, необязательно,
e) закрывают корпус 102 аккумуляторного модуля крышкой.
Предпочтительный вариант осуществления вышеуказанного способа по изобретению относится к приготовлению полиорганосилоксановой композиции X присоединительного отверждения, содержащему этапы, на которых:
a) подают в линию подачи основы жидкую силиконовую основу MS1, содержащую:
i) по меньшей мере один полиорганосилоксан A, имеющий по меньшей мере две связанные с кремнием алкенильные группы в расчете на молекулу, причем каждая из упомянутых алкенильных групп содержит от 2 до 14 атомов углерода, предпочтительно упомянутые алкенильные группы выбраны из группы, состоящей из винила, аллила, гексенила, деценила и тетрадеценила, а наиболее предпочтительно упомянутые алкенильные группы представляют собой винильные группы,
ii) полые стеклянные шарики D, а предпочтительно полые микросферы D1 из боросиликатного стекла,
iii) по меньшей мере одно соединение B кремния, имеющее по меньшей мере два, а предпочтительно по меньшей мере три связанных с кремнием атома водорода в расчете на молекулу, и
iv) необязательно, регулятор G скорости отверждения, который замедляет скорость отверждения,
b) подают в линию подачи катализатора маточную смесь MC катализатора, содержащую:
i) по меньшей мере один катализатор C гидросилилирования; и
ii) необязательно, по меньшей мере один полиорганосилоксан A, имеющий по меньшей мере две связанные с кремнием алкенильные группы в расчете на молекулу, причем каждая из упомянутых алкенильных групп содержит от 2 до 14 атомов углерода, предпочтительно упомянутые алкенильные группы выбраны из группы, состоящей из винила, аллила, гексенила, деценила и тетрадеценила, а наиболее предпочтительно упомянутые алкенильные группы представляют собой винильные группы;
c) подают в линию подачи ингибитора маточную смесь MI ингибитора, содержащую:
i) регулятор G скорости отверждения, который замедляет скорость отверждения; и
ii) необязательно, по меньшей мере один полиорганосилоксан A, имеющий по меньшей мере две связанные с кремнием алкенильные группы в расчете на молекулу, причем каждая из упомянутых алкенильных групп содержит от 2 до 14 атомов углерода, предпочтительно упомянутые алкенильные группы выбраны из группы, состоящей из винила, аллила, гексенила, деценила и тетрадеценила, а наиболее предпочтительно упомянутые алкенильные группы представляют собой винильные группы; и
d) необязательно, подают в линию подачи добавки маточную смесь MA добавки, содержащую:
i) по меньшей мере одну добавку H, такую как пигмент, краситель, глина, поверхностно-активное вещество, гидрогенизированное касторовое масло, волластонит, тригидрат алюминия, гидроксид магния, галлуазит, гантит, гидромагнезит, вспениваемый графит, борат цинка, слюда или пирогенный диоксид кремния, и
ii) необязательно, по меньшей мере один полиорганосилоксан A, имеющий по меньшей мере две связанные с кремнием алкенильные группы в расчете на молекулу, причем каждая из упомянутых алкенильных групп содержит от 2 до 14 атомов углерода, предпочтительно упомянутые алкенильные группы выбраны из группы, состоящей из винила, аллила, гексенила, деценила и тетрадеценила, а наиболее предпочтительно упомянутые алкенильные группы представляют собой винильные группы; и
e) направляют упомянутую жидкую силиконовую основу MS1, упомянутую маточную смесь MC катализатора и упомянутую маточную смесь MI ингибитора и, необязательно, упомянутую маточную смесь MA добавки в бак для получения полиорганосилоксановой композиции X присоединительного отверждения.
Первое преимущество упомянутого предпочтительного варианта осуществления состоит в том, что скорость реакции сшивания полиорганосилоксановой композиции X присоединительного отверждения регулируют добавлением регулятора G скорости отверждения. Так как добавление этого существенного компонента осуществляют с помощью специальной линии подачи, оператор может легко изменить уровень ингибитора, что позволяет ему увеличить скорость отверждения или снизить температуру, при которой начнется быстрое отверждение. Это является ключевым преимуществом, поскольку конфигурация вновь разработанных блоков аккумуляторных батарей включает все более и более сложные формы, что предполагает осторожную регулировку скорости отверждения в каждом конкретном случае.
Второе главное преимущество состоит в том, что теперь можно снизить уровень ингибитора и, следовательно, уменьшить температуру, при которой начинается быстрое отверждение. Это может быть важным, если в батарейном блоке есть компоненты, в некоторой степени чувствительные к температуре.
Предпочтительный вариант осуществления вышеуказанного способа по изобретению относится к приготовлению полиорганосилоксановой композиции X присоединительного отверждения, содержащему этапы, на которых:
a) подают в линию подачи основы жидкую силиконовую основу MS2, содержащую:
i) по меньшей мере один полиорганосилоксан A, имеющий по меньшей мере две связанные с кремнием алкенильные группы в расчете на молекулу, причем каждая из упомянутых алкенильных групп содержит от 2 до 14 атомов углерода, предпочтительно упомянутые алкенильные группы выбраны из группы, состоящей из винила, аллила, гексенила, деценила и тетрадеценила, а наиболее предпочтительно упомянутые алкенильные группы представляют собой винильные группы, и
ii) по меньшей мере одно соединение B кремния, имеющее по меньшей мере два, а предпочтительно по меньшей мере три связанных с кремнием атома водорода в расчете на молекулу,
iii) необязательно, регулятор G скорости отверждения, который замедляет скорость отверждения,
b) подают в линию подачи катализатора маточную смесь MC катализатора, содержащую:
i) по меньшей мере один катализатор C гидросилилирования; и
ii) необязательно, по меньшей мере один полиорганосилоксан A, имеющий по меньшей мере две связанные с кремнием алкенильные группы в расчете на молекулу, причем каждая из упомянутых алкенильных групп содержит от 2 до 14 атомов углерода, предпочтительно упомянутые алкенильные группы выбраны из группы, состоящей из винила, аллила, гексенила, деценила и тетрадеценила, а наиболее предпочтительно упомянутые алкенильные группы представляют собой винильные группы;
c) подают в линию подачи ингибитора маточную смесь MI ингибитора, содержащую:
i) регулятор G скорости отверждения, который замедляет скорость отверждения; и
ii) необязательно, по меньшей мере один полиорганосилоксан A, имеющий по меньшей мере две связанные с кремнием алкенильные группы в расчете на молекулу, причем каждая из упомянутых алкенильных групп содержит от 2 до 14 атомов углерода, предпочтительно упомянутые алкенильные группы выбраны из группы, состоящей из винила, аллила, гексенила, деценила и тетрадеценила, а более предпочтительно упомянутые алкенильные группы представляют собой винильные группы; и
d) необязательно, подают в линию подачи добавки маточную смесь MA добавки, содержащую:
i) по меньшей мере одну добавку H, такую как пигмент, краситель, глина, поверхностно-активное вещество, гидрогенизированное касторовое масло, волластонит, тригидрат алюминия, гидроксид магния, галлуазит, гантит гидромагнезит, вспениваемый графит, борат цинка, слюда или пирогенный диоксид кремния, и
ii) необязательно, по меньшей мере один полиорганосилоксан A, имеющий по меньшей мере две связанные с кремнием алкенильные группы в расчете на молекулу, причем каждая из упомянутых алкенильных групп содержит от 2 до 14 атомов углерода, предпочтительно упомянутые алкенильные группы выбраны из группы, состоящей из винила, аллила, гексенила, деценила и тетрадеценила, а наиболее предпочтительно упомянутые алкенильные группы представляют собой винильные группы;
e) направляют упомянутую жидкую силиконовую основу MS2, упомянутую маточную смесь MC катализатора и упомянутую маточную смесь MI ингибитора и, необязательно, упомянутую маточную смесь MA добавки в бак для перемешивания; и
f) приводят в действие упомянутый бак для перемешивания, тем самым смешивая упомянутую жидкую силиконовую основу MS1, упомянутую маточную смесь MC катализатора и упомянутую маточную смесь MI ингибитора и, необязательно, упомянутую маточную смесь MA добавки, предпочтительно с использованием мешалки с малыми сдвиговыми усилиями и высоким расходом, и
g) добавляют полые стеклянные шарики D, а предпочтительно полые микросферы D1 из боросиликатного стекла, в упомянутый бак для перемешивания, предпочтительно используя выгрузку под действием силы тяжести или шнековый питатель, для получения полиорганосилоксановой композиции X присоединительного отверждения.
Все компоненты предпочтительных вариантов осуществления приготовления полиорганосилоксановой композиции X присоединительного отверждения были уже описаны выше.
Согласно предпочтительному варианту осуществления блок аккумуляторных батарей по изобретению расположен в транспортном средстве.
Понятно, что используемый здесь термин "транспортное средство" охватывает механические транспортные средства в целом, такие как легковые автомобили, включая спортивные, внедорожники, кроссоверы (SUV), автобусы, грузовые автомобили, различные коммерческие транспортные средства, водные суда, включая различные лодки и корабли, летательные аппараты и тому подобные, и включает в себя гибридные транспортные средства, электрические транспортные средства, гибридные электрические транспортные средства с подзарядкой от электросети, работающие на водороде транспортные средства и другие транспортные средства, работающие на альтернативном топливе (например, на топливе, полученном из отличных от нефти ресурсов). Как упомянуто здесь, гибридное транспортное средство представляет собой такое транспортное средство, которое имеет два или более источника энергии, например транспортные средства с бензиновым приводом и электрическим приводом.
В другом предпочтительном варианте осуществления блок аккумуляторных батарей по изобретению расположен в автомобильном механическом транспортном средстве.
В другом варианте осуществления блок аккумуляторных батарей по изобретению расположен в полностью электрическом транспортном средстве (электромобиле, EV), гибридном транспортном средстве с подзарядкой от электросети (PHEV), гибридном транспортном средстве (HEV).
В другом варианте осуществления блок аккумуляторных батарей по изобретению расположен в летательном аппарате, судне, корабле, поезде или настенном устройстве.
Краткое описание чертежей
На фиг.1 показан вид сверху блока аккумуляторных батарей без крышки с батареями внутри блока;
на фиг.2 показан вид в перспективе блока аккумуляторных батарей с батареями внутри блока;
на фиг.3 показан вид сверху батарей в блоке аккумуляторных батарей с синтактической пеной силиконового каучука по изобретению, заполняющей пространство между батареями и остающееся пространство в блоке;
на фиг.4 показан вид сверху аккумуляторов в блоке аккумуляторных батарей, покрытых синтактической пеной силиконового каучука по изобретению, и с упомянутой пеной, заполняющей пространство между аккумуляторами и оставшееся пространство в блоке;
на фиг.5 и 6 показано схематичное представление двух предпочтительных вариантов осуществления способа получения полиорганосилоксановой композиции X присоединительного отверждения, в котором маточную смесь MI ингибитора и маточную смесь MC катализатора отдельно подают в другие компоненты с тем, чтобы контролировать скорость отверждения.
Подробное описание изобретения
На фиг.1 и 2 показано, что аккумуляторы 103 могут располагаться очень близко друг к другу в корпусе 102 аккумуляторного модуля. В одном варианте осуществления изобретения в корпус 102 аккумуляторного модуля после размещения и установки батарей (фиг.3, поз.104) заливают сшиваемую силиконовую композицию по изобретению и прекурсор легкой по весу синтактической пены силиконового каучука, содержащей связующее из силиконового каучука и полые стеклянные шарики и дающей при ее отверждении силиконовую синтактическую пену (фиг.4, поз.105).
На фиг.5 показан способ получения полиорганосилоксановой композиции X присоединительного отверждения по одному варианту осуществления изобретения, в котором упомянутую жидкую силиконовую основу MS1 хранят в баке 1 для хранения, упомянутую маточную смесь MC катализатора хранят в баке 20 для хранения, упомянутую маточную смесь MI ингибитора хранят в баке 50 для хранения, а упомянутую маточную смесь MA добавки хранят в баке 65 для хранения и подают их по отдельности в соответствующие им линии 200, 210, 220 и 230 подачи соответственно. Бак 1 для хранения жидкой силиконовой основы MS1 соединен с баком 80 для перемешивания через питающий насос 10, который может быть любым большим насосом вытеснения, и через необязательный регулятор 15 скорости подачи. Бак 20 для хранения маточной смеси MC катализатора соединен с баком 80 для перемешивания через питающий насос 25, который может быть любым маленьким поршневым насосом вытеснения, шестеренчатым насосом, инжекторным насосом для микроперемещений или другим насосом вытесняющего действия, и через необязательный регулятор 30 скорости подачи. Бак 50 для хранения маточной смеси MI ингибитора соединен с баком 80 для перемешивания через питающий насос 55, который может быть любым маленьким поршневым насосом вытеснения, шестеренчатым насосом, инжекторным насосом для микроперемещений или другим насосом вытесняющего действия, и через необязательный регулятор 60 скорости подачи. Бак 65 для хранения маточной смеси MA добавки соединен с баком 80 для перемешивания через питающий насос 70, который может быть любым маленьким поршневым насосом вытеснения, шестеренчатым насосом, инжекторным насосом для микроперемещений или другим насосом вытесняющего действия, и через необязательный регулятор 75 скорости подачи. Когда упомянутая жидкая силиконовая основа MS2, упомянутая маточная смесь MC катализатора и упомянутая маточная смесь MI ингибитора и, необязательно, упомянутая маточная смесь MA добавки направляются в упомянутый бак 80 для перемешивания, полученную смесь смешивают предпочтительно с использованием мешалки с малыми сдвиговыми усилиями и высоким расходом для получения полиорганосилоксановой композиции X присоединительного отверждения по изобретению. Упомянутая композиция теперь доступна для ее введения в упомянутый корпус 102 аккумуляторного модуля средством 100, которое позволяет ей свободно протекать либо через устройство нагнетания, либо через насос, заполняя свободные пространства внутри корпуса 102 аккумуляторного модуля, и отверждает посредством сшивания.
На фиг.6 показан способ получения полиорганосилоксановой композиции X присоединительного отверждения по другому варианту осуществления изобретения, в котором упомянутую жидкую силиконовую основу MS2 хранят в баке 1 для хранения, упомянутую маточную смесь MC катализатора хранят в баке 20 для хранения, упомянутую маточную смесь MI ингибитора хранят в баке 50 для хранения, а упомянутую маточную смесь MA добавки хранят в баке 65 для хранения и подают их по отдельности по соответствующим им линиям 200, 210, 220 и 230 подачи соответственно. Бак 1 для хранения жидкой силиконовой основы MS1 соединен с баком 80 для перемешивания через питающий насос 10, который может быть любым большим поршневым насосом вытеснения, и через необязательный регулятор 15 скорости подачи. Бак 20 для хранения маточной смеси MC катализатора соединен с баком 80 для перемешивания через питающий насос 25, который может быть любым маленьким поршневым насосом вытеснения, шестеренчатым насосом, инжекторным насосом для микроперемещений или другим насосом вытесняющего действия, и через необязательный регулятор 30 скорости подачи. Бак 50 для хранения маточной смеси MI ингибитора соединен с баком 80 для перемешивания через питающий насос 55, который может быть любым маленьким поршневым насосом вытеснения, шестеренчатым насосом, инжекторным насосом для микроперемещений или другим насосом вытесняющего действия, и через необязательный регулятор 60 скорости подачи. Бак 65 для хранения маточной смеси MA добавки соединен с баком 80 для перемешивания через питающий насос 70, который может быть любым маленьким поршневым насосом вытеснения, шестеренчатым насосом, инжекторным насосом для микроперемещений или другим насосом вытесняющего действия, и через необязательный регулятор 75 скорости подачи. Когда упомянутая жидкая силиконовая основа MS2, упомянутая маточная смесь MC катализатора и упомянутая маточная смесь MI ингибитора и, необязательно, упомянутая маточная смесь MA добавки направляются в упомянутый бак 80 для перемешивания, полученную смесь смешивают предпочтительно с использованием мешалки с малыми сдвиговыми усилиями и высоким расходом. К упомянутой полученной смеси полые стеклянные шарики D, а предпочтительно полые микросферы D1 из боросиликатного стекла, которые хранятся в баке 90 для хранения, который предпочтительно является бункером, перемещают в упомянутый бак 80 для перемешивания либо напрямую путем выгрузки под действием силы тяжести, либо посредством шнекового питателя 95 для получения полиорганосилоксановой композиции X присоединительного отверждения по изобретению. Теперь упомянутая композиция доступна для ее введения в упомянутый корпус 102 аккумуляторного модуля средством 100, которое позволяет ей свободно протекать либо через устройство нагнетания, либо через насос, заполняя свободные пространства внутри корпуса 102 аккумуляторного модуля, и отверждает посредством сшивания.
Другие преимущества, обеспечиваемые настоящим изобретением, станут очевидными из следующих иллюстративных примеров.
ПРИМЕРЫ
I) Определение компонентов
- Полиорганосилоксан A1 = полидиметилсилоксан с диметилвинилсилильными концевыми звеньями с вязкостью при 25°C в пределах от 80 мПа·с до 120 мПа·с;
- Полиорганосилоксан A2 = полидиметилсилоксан с диметилвинилсилильными концевыми звеньями с вязкостью при 25°C в пределах от 500 мПа·с до 650 мПа·с;
- Полиорганосилоксан B1 в качестве удлинителя цепи (CE) = полидиметилсилоксан с диметилсилилгидридными концевыми звеньями с вязкостью при 25°C в пределах от 7 мПа·с до 10 мПа·с и формулой: M'DxM',
где:
- D – это силоксильное звено формулы (CH3)2SiO2/2;
- M' – это силоксильное звено формулы (CH3)2(H)SiO1/2;
- и x – целое число в пределах от 8 до 11;
- Полиорганосилоксан B2 в качестве сшивателя (XL) с вязкостью при 25°C в диапазоне от 18 мПа·с до 26 мПа·с, при этом присутствует более 10 реакционноспособных групп SiH (в среднем от 16 до 18 реакционноспособных групп SiH): поли(метилводород)(диметил)силоксан с группами SiH в цепи и концевой цепи (α/ω),
- Полые стеклянные шарики D1: стеклянные пузырьки 3M™ серии S15, продаваемые компанией 3M, размер частиц (50%) в микронах по объему = 55 микрон, давление при испытании изостатической прочности на раздавливание равно 300 psi (2,07 МПа), истинная плотность = 0,15 г/см3.
- Полые стеклянные шарики D2: стеклянные пузырьки 3M™ серии K25, продаваемые компанией 3M, размер частиц (50%) в микронах по объему = 55 микрон, давление при испытании изостатической прочности на раздавливание равно 750 psi, истинная плотность = 0,25 г/см3.
- Полые стеклянные шарики D3: стеклянные пузырьки 3M™ iM16K, продаваемые компанией 3M, размер частиц (50%) в микронах по объему = 20 микрон, давление при испытании изостатической прочности на раздавливание 16000 psi, истинная плотность = 0,46 г/см3.
- Полые стеклянные шарики D4: полые стеклянные шарики 3M™ K1, продаваемые компанией 3M, размер частиц (50%) в микронах по объему = 65 микрон, давление при испытании изостатической прочности на раздавливание 250 psi, истинная плотность = 0,125 г/см3.
- Регулятор G1 скорости отверждения: 1,3,5,7-тетраметил-1,3,5,7-тетравинил-циклотетрасилоксан.
- Регулятор G2 скорости отверждения: 1-этинил-1-циклогексанол (ECH).
- Регулятор G3-MB скорости отверждения: 90 массовых % полиорганосилоксана A1 и 10 массовых % регулятора G2 скорости отверждения,
- Катализатор C: 10% платины в качестве катализатора Карстеда в диметилвинилдимере 350 сСт, продаваемый компанией Johnson Matthey.
- Катализатор C-MB: 98 массовых % полиорганосилоксана A1 и 2 массовых % катализатора C.
- Реакционноспособный разбавитель E = 1-тетрадецен.
II) Примеры: часть I
Часть A Массовые части
Полиорганосилоксан A1 81,88
Реакционноспособный разбавитель E 5,03
Катализатор C 0,037
Полые стеклянные шарики D1 13,05
Часть B
Полиорганосилоксан A1 81,88
Полиорганосилоксан B2 (XL) 8,6
Полиорганосилоксан B1 (CE) 53,41
Регулятор G1 скорости отверждения 0,01
Полые стеклянные шарики D1 13,05
Таблица 1. Двухкомпонентный состав-прекурсор 1 синтактической пены силиконового каучука по изобретению
Часть A Массовые части
Полиорганосилоксан A1 78,27
Реакционноспособный разбавитель E 8,62
Катализатор C 0,063
Полые стеклянные шарики D1 13,05
Часть B
Полиорганосилоксан A1 69,23
Полиорганосилоксан B2 (XL) 2,46
Полиорганосилоксан B1 (CE) 15,26
Регулятор G1 скорости отверждения 0,0029
Полые стеклянные шарики D1 13,05
Таблица 2. Двухкомпонентный состав-прекурсор 2 синтактической пены силиконового каучука по изобретению.
- Для двухкомпонентного состава 1 части A и B были объединены в массовом соотношении 6:1 (w/w) для приготовления композиций I перед отверждением;
- Для двухкомпонентного состава 2 части A и B были объединены в массовом соотношении 1:1 (w/w) для приготовления композиций II перед отверждением.
Каждый состав 1 и 2 заливали перед отверждением внутрь корпуса 102 аккумуляторного модуля, в котором было расположено множество аккумуляторов 103, которые были электрически соединены друг с другом. Отверждение происходило при комнатной температуре с получением синтактической пены силиконового каучука, содержащей связующее из силиконового каучука и полые стеклянные шарики, которая полностью заполняла свободное пространство упомянутого корпуса 102 аккумуляторного модуля и полностью закрывала упомянутые аккумуляторы 103.
III) Примеры: часть II
Приготовили следующие составы:
Часть A Массовый процент
Полиорганосилоксан A1 99,8%
Катализатор C 0,2%
Итого 100,0%
Часть B Массовый процент
Полиорганосилоксан A1 78,0749%
Полиорганосилоксан B1 (CE) 19,5550%
Полиорганосилоксан B2 (XL) 2,3689%
Регулятор G2 скорости отверждения 0,0012%
Итого 100,0000%
Таблица 3. Состав 3 – сравнительный
Часть A Массовый процент
Полиорганосилоксан A1 83,6900%
Катализатор C 0,0335%
Полые стеклянные шарики D2 16,2800%
Итого 100,0035%
Часть B Массовый процент
Полиорганосилоксан A1 65,21%
Полиорганосилоксан B1 (CE) 16,69%
Полиорганосилоксан B2 (XL) 1,82%
Полые стеклянные шарики D2 16,28%
Итого 100,00%
Таблица 4. Состав 4 – изобретение
Часть A Массовый процент
Полиорганосилоксан A1 80,0396%
Катализатор C 0,1604%
Полые стеклянные шарики D2 19,8000%
Итого 100,0000%
Часть B Массовый процент
Полиорганосилоксан A1 62,6161%
Полиорганосилоксан B1 (CE) 15,6831%
Полиорганосилоксан B2 (XL) 1,8999%
Регулятор G2 скорости отверждения 0,0010%
Полые стеклянные шарики D2 19,8000%
Итого 100,0000%
Таблица 5. Состав 5 – изобретение
Часть A Массовый процент
Полиорганосилоксан A1 80,8380%
Катализатор C 0,1620%
Полые стеклянные шарики D2 19,0000%
Итого 100,0000%
Часть B Массовый процент
Полиорганосилоксан A1 63,2407%
Полиорганосилоксан B1 (CE) 15,8396%
Полиорганосилоксан B2 (XL) 1,9188%
Регулятор G2 скорости отверждения 0,0010%
Полые стеклянные шарики D2 19,0000%
Итого 100,0000%
Таблица 6. Состав 6 – изобретение
Часть A Массовый процент
Полиорганосилоксан A1 79,8400%
Катализатор C 0,1600%
Полые стеклянные шарики D2 20,0000%
Итого 100,0000%
Часть B Массовый процент
Полиорганосилоксан A1 62,4599%
Полиорганосилоксан B1 (CE) 15,6440%
Полиорганосилоксан B2 (XL) 1,8951%
Регулятор G2 скорости отверждения 0,0010%
Полые стеклянные шарики D2 20,0000%
Итого 100,0000%
Таблица 7. Состав 7 – изобретение
Состав 8 изобретение Состав 9 изобретение Состав 10 изобретение
Часть A
Полиорганосилоксан A1 88,20% 86,24% 84,28%
Полые стеклянные шарики D3 10,00% 12,00% 14,00%
Катализатор C-MB 1,80% 1,76% 1,72%
Итого 100,00% 100,00% 100,00%
Часть B
Полиорганосилоксан A1 71,009% 69,431% 67,853%
Полые стеклянные шарики D3 10,000% 12,000% 14,000%
Полиорганосилоксан B1 (CE) 16,696% 16,325% 15,954%
Полиорганосилоксан B2 (XL) 2,158% 2,110% 2,062%
Регулятор G3-MB скорости отверждения 0,137% 0,134% 0,131%
Итого 100,00% 100,00% 100,00%
Таблица 8. Составы 8, 9 и 10 (изобретение) с молярным отношением (H в качестве SiH)/винил=0,72
Состав 11
изобретение
Состав 12
изобретение
Состав 13
изобретение
Часть A
Полиорганосилоксан A2 88,200% 86,2400% 84,2800%
Полые стеклянные шарики D4 10,000% 12,0000% 14,000%
Катализатор C-MB 1,800% 1,7600% 1,7200%
Итого 100,00% 100,00% 100,00%
Часть B
Полиорганосилоксан A2 82,300% 80,471% 78,642%
Полые стеклянные шарики D4 10,000% 12,000% 14,000%
Полиорганосилоксан B1 (CE) 6,945% 6,790% 6,636%
Полиорганосилоксан B2 (XL) 0,619% 0,605% 0,591%
Регулятор G3-MB скорости отверждения 0,137% 0,134% 0,131%
Итого 100,00% 100,00% 100,00%
Таблица 9. Составы 11, 12 и 13 (изобретение) - с молярным отношением (H в качестве SiH)/винил=0,72
Отношение смешивания 1:1 Состав 14
изобретение
Состав 15
изобретение
Состав 16
изобретение
Часть A
Полиорганосилоксан A1 88,20% 86,24% 84,28%
Полые стеклянные шарики D4 10,000% 12,000% 14,000%
Катализатор C-MB 1,80% 1,76% 1,72%
Итого 100,00% 100,00% 100,00%
Часть B
Полиорганосилоксан A1 71,009% 69,431% 67,853%
Полые стеклянные шарики D4 10,000% 12,000% 14,000%
Полиорганосилоксан B1 (CE) 16,696% 16,325% 15,954%
Полиорганосилоксан B2 (XL) 2,158% 2,110% 2,062%
Регулятор G3-MB скорости отверждения 0,137% 0,134% 0,131%
Итого 100,00% 100,00% 100,00%
Таблица 10. Составы 14, 15 и 16 (изобретение) - с молярным отношением (H в качестве SiH)/винил=0,72
- Состав 3 смешивали в массовом соотношении 1:1 и отверждали при комнатной температуре (25°C) с вечера на утро в течение 16 часов для получения отвержденного силиконового эластомера (синтактической пены силиконового каучука).
- Составы 4-16 смешивали в массовом отношении 1:1 и отверждали при комнатной температуре (25°C) с вечера до утра в течение 16 часов для получения синтактической пены силиконового каучука по изобретению.
- Состав 17 (сравнительный) приготовили смешиванием в массовом отношении 1:1 состоящего из двух частей компонента, продаваемого компанией Elkem Silicones под наименованием RTV-3040 (состоящий из двух частей компонент системы аддитивной полимеризации), и отверждали при комнатной температуре (25°C) с вечера на утро в течение 16 часов для получения отвержденного силиконового эластомера.
- Состав 18 (сравнительный) приготовили смешиванием в массовом отношении 1:1 состоящего из двух частей компонента, продаваемого компанией Elkem Silicones под наименованием BluesilTM ESA 7242 (который представляет собой двухкомпонентный термоотверждающийся жидкий силиконовый эластомер, который сшивается путем аддитивной полимеризации), и отверждали при комнатной температуре (25°C) с вечера до утра в течение 16 часов для получения отвержденного силиконового эластомера.
- Состав 19 приготовили на основе бетона Sakrete Concrete. Используемый бетон был приобретен в компании SAKRETE of North America, LLC, расположенной в г.Шарлотте, штат Северная Каролина, США. Продукт называется высокопрочной бетонной смесью SAKRETE (SAKRETE High Strength Concrete Mix). Образец бетона был приготовлен с использованием следующего процесса:
* Засыпают 1 кг высокопрочной бетонной смеси в емкость, образуя углубление в центре бетона.
* Добавляют достаточное количество воды для получения рабочей смеси (70 г).
* Материал выливают в литейную форму диаметром 51 мм.
* Материал вдавливают в пустоты и затем разглаживают металлическим шпателем.
* Материалу дают затвердеть до тех пор, пока в материале не останется отпечаток большого пальца.
* Используют металлический шпатель для получения желаемого состояния поверхности и плоскостности при затвердевании материала.
* Материал оставляют влажным и под пластиком в течение 7 дней, при этом он постоянно находился при комнатной температуре.
Отвержденные образцы Прочность при растяжении (psi) Удельный вес (г/см3), ASTM D792, 23°C Твердомер (твердость по Шору A) Температура желатинизации (время желатинизации) при 23°C (min)
Состав 5 (изобретение) 40,0 0,55 80 НД
Состав 7 (изобретение) 18,4 0,61 62 НД
Состав 4 (изобретение) 18,9 0,67 53 НД
Состав 6 (изобретение) 16,1 0,55 59 НД
Состав 8 (изобретение) НД 0,86 НД 15
Состав 9 (изобретение) НД 0,84 НД 1,92
Состав 10 (изобретение) НД 0,83 НД 2,08
Состав 11 (изобретение) НД 0,60 НД 13,67
Состав 12 (изобретение) НД 0,56 НД 16,83
Состав 13 (изобретение) НД 0,53 НД 20,67
Состав 14 (изобретение) НД 0,57 НД 4,25
Состав 15 (изобретение) НД 0,54 НД 4,25
Состав 16 (изобретение) НД 0,51 НД 4,17
Состав 3 (сравнительный) Гель Гель Гель НД
Состав 18 (сравнительный) 48,0 1,37 48 НД
Таблица 11. Физические свойства отвержденных продуктов (силиконовых синтактических пен), НД: "Нет данных"
Отвержденный образец Объемная удельная теплопроводность (Вт/м·К)
Состав 5 (изобретение) 0,13
Состав 7 (изобретение) 0,12
Состав 4 (изобретение) 0,13
Состав 6 (изобретение) 0,12
Состав 8 (изобретение) 0,17
Состав 9 (изобретение) 0,17
Состав 10 (изобретение) 0,17
Состав 11 (изобретение) 0,12
Состав 12 (изобретение) 0,11
Состав 13 (изобретение) 0,11
Состав 14 (изобретение) 0,11
Состав 15 (изобретение) 0,11
Состав 16 (изобретение) 0,10
Состав 3 (сравнительный) 0,18
Состав 17 (сравнительный) 0,23
Состав 18 (сравнительный) 0,43
Состав 19 (сравнительный) 1,92
Таблица 12. Измерение теплопроводности отвержденных образцов.
Теплопроводность измеряли с использованием измерительного прибора Thermtest Hot Disk TPS (с нестационарным плоским источником) 2500S, и результаты измерений представлены в таблице 12. В таблице 12 показано, что примерные составы по изобретению (составы 4-16) имеют более низкую удельную теплопроводность, чем сравнительные материалы: состав 17 (RTV 3040), состав 18 (ESA 7242), состав 19 (Sakrete Concrete) и состав 3 (ESA 7200).
Преимущество имеет теплоизоляционный материал. Если батарея или множественные батареи в блоке перегреваются, то окружающий батарею изоляционный материал поможет предотвратить проникновение чрезмерного тепла в кабину электрического транспортного средства (автомобиля, грузовика, судна, поезда, самолета и т.д.).
Другое преимущество отвержденных составов 4-16 по изобретению состоит в том, что они могут поглощать вибрацию. Упругость связана с вибрацией. Чем более упругий материал, тем он больше вибрации передается через материал. Используя склероскоп Shore® Model SRI, который обычно называют склероскопом Bayshore, можно быстро и точно измерить "Свойство каучука – упругость по вертикальному отскоку", как описано в ASTM D2632. Была измерена упругость примерного материала по изобретению и сравнительного материала, и результаты измерений представлены в таблице 13. Все составы смешивали в массовом отношении 1:1 и отверждали при комнатной температуре с вечера до утра в течение 16 часов. Груз падал на испытываемый образец и отскакивал над испытываемым образцом при ударении о него. Когда груз ударяется об образец и подпрыгивает достаточно высоко, это означает, что образец является более упругим. Когда груз не подпрыгивает столь высоко, это означает, что материал является менее упругим.
Отвержденный образец Упругость (число единиц)
Состав 5 (изобретение) 14
Состав 7 (изобретение) 10
Состав 4 (изобретение) 10
Состав 6 (изобретение) 13
Состав 8 (изобретение) 5
Состав 9 (изобретение) 8
Состав 10 (изобретение) 20
Состав 11 (изобретение) 0
Состав 12 (изобретение) 1
Состав 13 (изобретение) 1
Состав 14 (изобретение) 6
Состав 15 (изобретение) 8
Состав 16 (изобретение) 6
Состав 17 (сравнительный) 61
Состав 18 (сравнительный) 64
Таблица 13. Измерение упругости некоторых из отвержденных продуктов.
В таблице 13 показано, что сравнительный состав обладает более высокой упругостью и будет легче передавать вибрацию через материалы, тогда как отвержденные составы по изобретению имеют более низкую упругость.
"Tan delta" – сокращенная форма термина "тангенс дельта". Тангенс дельта количественно выражает свойство материала поглощать и рассеивать энергию. Он выражает сдвинутую по фазе временную зависимость между силой удара и результирующей силой, которая передается опорному телу. Тангенс дельта также известен как коэффициент потерь из-за этой потери энергии от силы удара за счет преобразования в безопасную форму энергии и ее рассеивания. Таким образом, тангенс дельта является, в конечном счете, показателем эффективности демпфирующих свойств материала. Чем выше тангенс дельта, тем выше коэффициент демпфирования, и тем более эффективным будет материал при фактическом осуществлении поглощения и рассеивания энергии. Тангенс дельта равен отношению модуля потерь к модулю накопления, или tan(delta)=G"/G', где G" - модуль потерь, а G' - модуль накопления. Более высокие значения соответствуют материалу, который демпфирует более эффективно, чем материал с более низкими значениями.
В представленной ниже таблице 14 показано, что примерные материалы по изобретению демпфируют лучше, чем сравнительные материалы.
Отвержденный образец Тангенс дельта,
число единиц
Состав 5 (изобретение) 18,2679
Состав 7 (изобретение) 17,7256
Состав 4 (изобретение) 24,1223
Состав 6 (изобретение) 22,9557
Состав 18 (сравнительный) 12,6070
Состав 19 (сравнительный) 8,7501
Таблица 14. Измерения тангенса дельта некоторых из отвержденных продуктов
Измерения тангенса дельта проводили с использованием реометра Anton Parr MCR 302 при 25°C. G" и G' измеряли при отвержденном материале. Тангенс дельта рассчитывали по этим двум значениям. Отвержденный образец силиконовых синтактических пен, приготовленных из полиорганосилоксановых композиций присоединительного отверждения в соответствии с предпочтительным вариантом осуществления изобретения, можно преимущественно использовать в качестве демпфирующего материала и решения поставленной целевой задачи в области электрических транспортных средств, в которых с нетерпением ищут стратегию управления демпфированием для минимизации колебаний силового агрегата.
Огнестойкость 3-х отвержденных материалов по изобретению была измерена и представлена в таблице 15. Все испытанные составы были самозатухающими.
Отвержденные образцы Время горения пламени после 10-ти секундного воздействия пламенем Время горения пламени после второго 10-ти секундного воздействия пламенем Время свечения после второго 10-ти секундного воздействия пламенем
секунды секунды секунды
Состав 7 (изобретение) 68,0 0,0 0,0
Состав 4 (изобретение) 46,0 0,0 0,0
Состав 6 (изобретение) 48,6 0,0 0,0
Таблица 15. Результаты испытаний на огнестойкость некоторых отвержденных материалов по изобретению.
IV) Примеры: часть III
Часть A Массовый процент
Полиорганосилоксан A1 84,1263%
Катализатор C 0,0337%
Полые стеклянные шарики D2 15,8400%
Итого 100,0000%
Часть B Массовый процент
Полиорганосилоксан A1 65,551%
Полиорганосилоксан B1 (CE) 16,778%
Полиорганосилоксан B2 (XL) 1,830%
Регулятор G1 скорости отверждения 0,001%
Полые стеклянные шарики D2 15,840%
Итого 100,000%
Таблица 16. Состав 20 – изобретение
Состав 20 (полиорганосилоксановая композиция присоединительного отверждения) используют для приготовления синтактической пены силиконового каучука и сравнивают с синтактической пеной силиконового каучука, приготовленной из состава 21 (продукт, полученный конденсационным отверждением с катализированием оловом). Ингредиенты описаны соответственно в таблицах 16 и 17.
Сравнительный состав 12, полученный конденсационным отверждением Массовый процент
* Диметилсиланол α,ω-полидиметилсилоксан с блокированными концами с вязкостью приблизительно 3500 мПа·с. 70,16%
Полые стеклянные шарики D2 15,84%
Hi Pro Green - катализатор отверждения на основе олова с алкоксисиланами для отверждения силанолового функционального силоксана. Продукт продается корпорацией Elkem Silicones USA округ Йорк, штат Южная Каролина, США. 5,00%
Итого 91,00%
Таблица 17. Состав 21 – полученная конденсационным отверждением синтактическая пена силиконового каучука
В блоках аккумуляторных батарей возможны большие расстояния, которые изолирующий материал (жидкий прекурсор, перед сшиванием, силиконовой синтактической пены по изобретению) должен проходить с наружной стороны при заполнении блока. Описанному выше сравнительному составу 21 требуется влага из воздуха для быстрого отверждения. Состав смешивали при 25°C и давали ему возможность отстояться при этой температуре до тех пор, пока он достаточно не отвердел для снятия начальных показаний твердомера. Кроме того, приготовили конденсационно отверждаемый сравнительный состав 21 и оставляли его таким же образом, как и состав 20 по изобретению. Оба образца приготовили и затем оставили в состоянии покоя после того, как их вылили в алюминиевую чашку, которая содержала материал толщиной 1 см и диаметром 5,2 см. Лицевая поверхность материала диаметром 5,2 см подвергалась воздействию воздуха, но воздух (или влага из воздуха) не могли проходить через дно или боковые стенки алюминиевой чашки. Эта конфигурация характерна для того, что может происходить в типичном блоке батарей. Воздух с влагой могут присутствовать на одной лицевой поверхности заливочного материала батареи, тогда как большая часть материала находится ниже этой поверхности, основываясь на миграции влаги через объем заливочного материала.
Что касается состава 20 по изобретению, потребовалось приблизительно 12 минут для того, чтобы твердомер смог измерять материал по шкале Шора А. Твердомер показал значение приблизительно 15 по шкале Шора А. Через один час твердомер показал значение 50 по шкале Шора А. Аналогичные составы в предыдущих примерах достигли значений приблизительно 52-54 по шкале Шора А. При проверке конденсационно отверждаемого состава 21 потребовалось 1 час 42 минуты, прежде чем можно было провести измерение с помощью твердомера, и значение составило 11,7 по шкале Шора А. При нажатии на образец рукой и затем разрывании второго образца (эквивалентного тому, который находится в чаше) было обнаружено, что нижняя половина образца остается все еще жидкой. Испытуемый образец был отвержден только в верхнем слое. Это показывает, что конденсационно отвержденный материал требует значительно более длительного времени на отверждение в типичной конфигурации испытания, чем состав по изобретению. Было бы полезно, если бы материал затвердевал быстрее, чтобы ускорить время изготовления при заливке блоков батарей.
Была испытана другая система отверждения - система отверждения пероксидом. Однако для отверждения пероксидами обычно требуется тепло, поэтому уже это является недостатком. Как показано выше, состав 11 по изобретению может быть сделан очень быстро отверждающимся, если это желательно, и он не требует тепла или энергии для нагрева.
Ниже сравнительный состав 22 пероксидного отверждения описан в таблице 18:
Часть A Массовый процент
Полые стеклянные шарики D2 15,84%
Полиорганосилоксан A2 84,16%
Итого 100,00%
Часть B Массовый процент
Полые стеклянные шарики D2 15,84%
Полиорганосилоксан A2 62,54%
Полиорганосилоксан A3 21,02%
DBPH* 0,61%
Итого 100,01%
Таблица 18. Состав 22 - отверждаемый пероксидом сравнительный состав 22 с отношением 1:1 смешивания массовых частей A и B
• *DBPH = Varox® = состоит из более чем 90 массовых % 2,5-диметил-2,5-ди(трет-бутилперокси)гексана и продается компанией R.T. Vanderbilt;
• Полиорганосилоксан A3: поли(метилвинил)(диметил)силоксан с диметилвинилсилильными концевыми звеньями с вязкостью при 25°C, равной 390 мПа·с;
Класс (Class) и Грассо (Grasso) предлагают отверждать силиконы с помощью катализатора DBPH при 177°C в течение одного часа (смотри Class, J. B.; Grasso, R. P., The Efficiency of Peroxides for Curing Silicone Elastomers, Rubber Chemistry and Technology, September 1993, Vol. 66, No. 4, pp. 605-622). Мы также последовали этому совету при отверждении нашего состава. Никакое последующее отверждение не выполнялось.
Использовали контейнер такого же типа для удержания материала во время отверждения (алюминиевая чашка, открытая с лицевой стороны, с диаметром 5,2 см и толщиной 1 см заливаемого материала). Мы сохраняли одну поверхность открытой, так как при выполнении заливки материал обычно выливают в контейнер и отверждают материал на открытом воздухе. Размещение крышки на контейнере для предотвращения попадания воздуха привело бы к дополнительным затратам в связи с приобретением крышки и дополнительным временем на ее установку в производственных условиях. После отверждения в течение одного часа при 177°C образец извлекали из печи. Обращенная к воздуху поверхность не была отверждена. Это – не необычное явление, но испытывалось на этих составах для того, чтобы выяснить, будут ли составы, аналогичные составу по изобретению, иметь проблемы, наблюдаемые в других отвержденных пероксидом силиконовых составах. После того как неотвержденный слой был удален, сравнительный состав 22 отвержденного пероксидом эластомера имел измеренную твердомером твердость 20 по шкале Шора А.
В промышленности обычно используются три способа устранения недостаточного отверждения границы раздела, содержащей кислород:
• удаление кислорода из зоны отверждения с использованием инертного газа, с использованием воска, который перемещается на поверхности и образуют барьер, или с использованием пленок, которые находятся в прямом контакте с покрытием;
• увеличение концентрации свободных радикалов путем увеличения уровня пероксида;
• использование химических веществ, которые вступают в реакцию с перекисными радикалами.
Все эти решения проблемы отсутствия отверждения могут работать. Однако нагрев образца будет все еще необходим, и для реализации растворов потребуются гораздо более сложные составы, которые изменяют отвержденный эластомер (т.е. воски, химические вещества, которые реагируют с перекисными радикалами, и т.д.) и более дорогие составы (т.е. больше пероксидов со свободными радикалами).
IV) Пример: часть III
Приготовили составы 23-27 в соответствии с таблицей 19. Измерили удельную теплопроводность (Вт/(м·К) и удельный вес (г/см3). Теплопроводность измеряли с использованием измерительного прибора Thermtest Hot Disk TPS (с нестационарным плоским источником) 2500S.
Массовое отношение 1:1 смешивания Состав 23 (изобретение) Состав 24 (изобретение) Состав 25 (изобретение) Состав 26 (изобретение) Состав 27 (изобретение)
Часть A
Полиорганосилоксан A2 89,09% 89,09% 89,09% 89,09% 89,09%
Полые стеклянные шарики D3 9,09% 9,09% 9,09% 9,09% 9,09%
Катализатор C-MB 1,82% 1,82% 1,82% 1,82% 1,82%
Итого 100,00% 100,00% 100,00% 100,00% 100,00%
Часть B
Полиорганосилоксан A2 83,131% 80,627% 78,124% 75,612% 74,097%
Полые стеклянные шарики D3 9,091% 9,091% 9,091% 9,091% 9,091%
Полиорганосилоксан B1 (CE) 7,015% 8,479% 9,943% 13,918% 13,640%
Реакционноспособный разбавитель E 0,000% 0,756% 1,818% 0,000% 1,818%
Полиорганосилоксан B2 (XL) 0,625% 0,756% 0,886% 1,241% 1,216%
Регулятор G3-MB скорости отверждения 0,138% 0,138% 0,138% 0,138% 0,138%
Итого 100,000% 100,000% 100,000% 100,000% 100,000%
Молярное отношение (H в качестве SiH)/винил 0,72 0,72 0,72 1,50 1,00
Форма при отверждении Вязкий гель Вязкий гель Вязкий гель Мягкий эластомер Гель/эластомер
Удельная теплопроводность
Вт/(м·К)
0,18 0,17 0,18 0,18 0,18
Удельный вес синтаксической пены по ASTM D 792, 23°C 0,87 0,87 0,87 0,87 0,87
Таблица 19. Составы 23, 24, 25, 26 и 27.

Claims (63)

1. Блок аккумуляторных батарей, содержащий:
- по меньшей мере один корпус (102) аккумуляторного модуля, в котором расположено множество аккумуляторов (103), которые электрически соединены друг с другом,
- синтактическую пену силиконового каучука, содержащую связующее из силиконового каучука и полые стеклянные шарики, причем упомянутая синтактическая пена силиконового каучука заполняет частично или полностью открытое пространство упомянутого корпуса (102) аккумуляторного модуля, и/или закрывает частично или полностью упомянутые аккумуляторы (103) и/или закрывает частично или полностью упомянутый корпус (102) модуля, и
- необязательно, крышку, закрывающую корпус (102) аккумуляторного модуля.
2. Блок аккумуляторных батарей по п. 1, в котором аккумуляторы (103) являются литий-ионными.
3. Блок аккумуляторных батарей по п. 1, в котором упомянутая синтактическая пена силиконового каучука получена отверждением полиорганосилоксановой композиции (X) присоединительного отверждения.
4. Блок аккумуляторных батарей по п. 1, дополнительно содержащий множество теплорассеивающих элементов, которые расположены на двух или более границах раздела между аккумуляторами, и по меньшей мере один теплообменный элемент, соединяющий между собой теплорассеивающие элементы в одно целое и установленный на одной стороне корпуса (102) аккумуляторного модуля, посредством чего тепло, выделяемое из аккумуляторов во время заряда и разряда аккумуляторов, отводится теплообменным элементом.
5. Блок аккумуляторных батарей по п. 4, в котором теплорассеивающие элементы выполнены из теплопроводного материала, обладающего высокой удельной теплопроводностью, а теплообменный элемент снабжен одним или более каналами для охладителя, позволяющими протекать по ним охладителю, такому как жидкость или газ.
6. Блок аккумуляторных батарей по п. 1, в котором полые стеклянные шарики представляют собой полые микросферы из боросиликатного стекла.
7. Блок аккумуляторных батарей по п. 6, в котором полые микросферы из боросиликатного стекла имеют истинную плотность в пределах от 0,10 грамма на один кубический сантиметр до 0,65 грамма на один кубический сантиметр.
8. Блок аккумуляторных батарей по п. 1, в котором уровень полых стеклянных шариков составляет до 80% объемной загрузки в синтактической пене силиконового каучука, а предпочтительно между 5% и 70% объемной загрузки синтактической пены силиконового каучука.
9. Блок аккумуляторных батарей по п. 1, в котором упомянутая синтактическая пена силиконового каучука используется в качестве заливочного материала, расположенного либо внутри упомянутого корпуса (102) аккумуляторного модуля для по меньшей мере частичной герметизации упомянутого множества аккумуляторов (103), и/или снаружи корпуса (102) аккумуляторного модуля для по меньшей мере частичной герметизации упомянутого корпуса (102) аккумуляторного модуля.
10. Блок аккумуляторных батарей по п. 3, в котором полиорганосилоксановая композиция (X) присоединительного отверждения содержит:
a) по меньшей мере один полиорганосилоксан (A), имеющий по меньшей мере две связанные с кремнием алкенильные группы в расчете на молекулу, причем каждая из упомянутых алкенильных групп содержит от 2 до 14 атомов углерода, предпочтительно упомянутые алкенильные группы выбраны из группы, состоящей из винила, аллила, гексенила, деценила и тетрадеценила, а наиболее предпочтительно упомянутые алкенильные группы представляют собой винильные группы,
b) по меньшей мере одно соединение (B) кремния, имеющее по меньшей мере два, а предпочтительно по меньшей мере три связанных с кремнием атома водорода в расчете на молекулу,
c) полые стеклянные шарики (D), а предпочтительно полые микросферы из боросиликатного стекла,
d) катализатор (C) гидросилилирования,
e) необязательно, по меньшей мере один регулятор (G) скорости отверждения, который замедляет скорость отверждения,
f) необязательно, по меньшей мере один реакционноспособный разбавитель (E), который вступает в реакцию гидросилилирования, и
g) необязательно, по меньшей мере одну добавку (H), такую как пигмент, краситель, глина, поверхностно-активное вещество, гидрогенизированное касторовое масло, волластонит, тригидрат алюминия, гидроксид магния, галлуазит, гантит, гидромагнезит, вспениваемый графит, борат цинка, слюда или пирогенный диоксид кремния.
11. Способ изготовления блока аккумуляторных батарей по п. 3 или 10, содержащий этапы, на которых:
a) приготавливают по меньшей мере один корпус (102) аккумуляторного модуля, в котором расположено множество аккумуляторов (103), которые электрически соединены друг с другом,
b) вводят в упомянутый корпус (102) аккумуляторного модуля полиорганосилоксановую композицию (X) присоединительного отверждения,
c) полностью или частично заполняют упомянутый корпус (102) аккумуляторного модуля и
d) обеспечивают протекание отверждение с образованием синтактической пены силиконового каучука, содержащей связующее из силиконового каучука и полые стеклянные шарики, и, необязательно,
e) закрывают корпус (102) аккумуляторного модуля крышкой.
12. Способ по п. 11, в котором приготовление полиорганосилоксановой композиции (X) присоединительного отверждения содержит этапы, на которых:
a) подают в линию подачи основы жидкую силиконовую основу (MS1), содержащую:
i) по меньшей мере один полиорганосилоксан (A), имеющий по меньшей мере две связанные с кремнием алкенильные группы в расчете на молекулу, причем каждая из упомянутых алкенильных групп содержит от 2 до 14 атомов углерода, предпочтительно упомянутые алкенильные группы выбраны из группы, состоящей из винила, аллила, гексенила, деценила и тетрадеценила, а наиболее предпочтительно упомянутые алкенильные группы представляют собой винильные группы,
ii) полые стеклянные шарики (D), а предпочтительно полые микросферы (D1) из боросиликатного стекла,
iii) по меньшей мере одно соединение (B) кремния, имеющее по меньшей мере два, а предпочтительно по меньшей мере три связанных с кремнием атома водорода в расчете на молекулу, и
iv) необязательно, регулятор (G) скорости отверждения, который замедляет скорость отверждения,
b) подают в линию подачи катализатора маточную смесь (MC) катализатора, содержащую:
i) по меньшей мере один катализатор (C) гидросилилирования; и
ii) необязательно, по меньшей мере один полиорганосилоксан (A), имеющий по меньшей мере две связанные с кремнием алкенильные группы в расчете на молекулу, причем каждая из упомянутых алкенильных групп содержит от 2 до 14 атомов углерода, предпочтительно упомянутые алкенильные группы выбраны из группы, состоящей из винила, аллила, гексенила, деценила и тетрадеценила, а наиболее предпочтительно упомянутые алкенильные группы представляют собой винильные группы;
c) подают в линию подачи ингибитора маточную смесь (MI) ингибитора, содержащую:
i) регулятор (G) скорости отверждения, который замедляет скорость отверждения; и
ii) необязательно, по меньшей мере один полиорганосилоксан (A), имеющий по меньшей мере две связанные с кремнием алкенильные группы в расчете на молекулу, причем каждая из упомянутых алкенильных групп содержит от 2 до 14 атомов углерода, предпочтительно упомянутые алкенильные группы выбраны из группы, состоящей из винила, аллила, гексенила, деценила и тетрадеценила, а наиболее предпочтительно упомянутые алкенильные группы представляют собой винильные группы; и
d) необязательно, подают в линию подачи добавки маточную смесь (MA) добавки, содержащую:
i) по меньшей мере одну добавку (H), такую как пигмент, краситель, глина, поверхностно-активное вещество, гидрогенизированное касторовое масло, волластонит, тригидрат алюминия, гидроксид магния, галлуазит, гантит, гидромагнезит, вспениваемый графит, борат цинка, слюда или пирогенный диоксид кремния, и
ii) необязательно, по меньшей мере один полиорганосилоксан (A), имеющий по меньшей мере две связанные с кремнием алкенильные группы в расчете на молекулу, причем каждая из упомянутых алкенильных групп содержит от 2 до 14 атомов углерода, предпочтительно упомянутые алкенильные группы выбраны из группы, состоящей из винила, аллила, гексенила, деценила и тетрадеценила, а наиболее предпочтительно упомянутые алкенильные группы представляют собой винильные группы; и
e) направляют упомянутую жидкую силиконовую основу (MS1), упомянутую маточную смесь (MC) катализатора и упомянутую маточную смесь (MI) ингибитора и, необязательно, упомянутую маточную смесь (MA) добавки в бак для получения полиорганосилоксановой композиции (X) присоединительного отверждения.
13. Способ по п. 11, в котором приготовление полиорганосилоксановой композиции (X) присоединительного отверждения содержит этапы, на которых:
a) подают в линию подачи основы жидкую силиконовую основу (MS2), содержащую:
i) по меньшей мере один полиорганосилоксан (A), имеющий по меньшей мере две связанные с кремнием алкенильные группы в расчете на молекулу, причем каждая из упомянутых алкенильных групп содержит от 2 до 14 атомов углерода, предпочтительно упомянутые алкенильные группы выбраны из группы, состоящей из винила, аллила, гексенила, деценила и тетрадеценила, а наиболее предпочтительно упомянутые алкенильные группы представляют собой винильные группы, и
ii) по меньшей мере одно соединение (B) кремния, имеющее по меньшей мере два, а предпочтительно по меньшей мере три связанных с кремнием атома водорода в расчете на молекулу,
iii) необязательно, регулятор (G) скорости отверждения, который замедляет скорость отверждения;
b) подают в линию подачи катализатора маточную смесь (MC) катализатора, содержащую:
i) по меньшей мере один катализатор (C) гидросилилирования; и
ii) необязательно, по меньшей мере один полиорганосилоксан (A), имеющий по меньшей мере две связанные с кремнием алкенильные группы в расчете на молекулу, причем каждая из упомянутых алкенильных групп содержит от 2 до 14 атомов углерода, предпочтительно упомянутые алкенильные группы выбраны из группы, состоящей из винила, аллила, гексенила, деценила и тетрадеценила, а наиболее предпочтительно упомянутые алкенильные группы представляют собой винильные группы;
c) подают в линию подачи ингибитора маточную смесь (MI) ингибитора, содержащую:
i) регулятор (G) скорости отверждения, который замедляет скорость отверждения; и
ii) необязательно, по меньшей мере один полиорганосилоксан (A), имеющий по меньшей мере две связанные с кремнием алкенильные группы в расчете на молекулу, причем каждая из упомянутых алкенильных групп содержит от 2 до 14 атомов углерода, предпочтительно упомянутые алкенильные группы выбраны из группы, состоящей из винила, аллила, гексенила, деценила и тетрадеценила, а наиболее предпочтительно упомянутые алкенильные группы представляют собой винильные группы; и
d) необязательно, подают в линию подачи добавки маточную смесь (MA) добавки, содержащую:
i) по меньшей мере одну добавку (H), такую как пигмент, краситель, глина, поверхностно-активное вещество, гидрогенизированное касторовое масло, волластонит, тригидрат алюминия, гидроксид магния, галлуазит, гантит, гидромагнезит, вспениваемый графит, борат цинка, слюда или пирогенный диоксид кремния, и
ii) необязательно, по меньшей мере один полиорганосилоксан (A), имеющий по меньшей мере две связанные с кремнием алкенильные группы в расчете на молекулу, причем каждая из упомянутых алкенильных групп содержит от 2 до 14 атомов углерода, предпочтительно упомянутые алкенильные группы выбраны из группы, состоящей из винила, аллила, гексенила, деценила и тетрадеценила, а наиболее предпочтительно упомянутые алкенильные группы представляют собой винильные группы;
e) направляют упомянутую жидкую силиконовую основу (MS2), упомянутую маточную смесь (MC) катализатора и упомянутую маточную смесь (MI) ингибитора и, необязательно, упомянутую маточную смесь (MA) добавки в бак для перемешивания; и
f) приводят в действие упомянутый бак для перемешивания, тем самым смешивая упомянутую жидкую силиконовую основу (MS1), упомянутую маточную смесь (MC) катализатора и упомянутую маточную смесь (MI) ингибитора и, необязательно, упомянутую маточную смесь (MA) добавки, предпочтительно с использованием мешалки с малыми сдвиговыми усилиями и высоким расходом, и
g) добавляют полые стеклянные шарики (D), а предпочтительно полые микросферы (D1) из боросиликатного стекла, в упомянутый бак для перемешивания, предпочтительно используя выгрузку под действием силы тяжести или шнековый питатель, для получения полиорганосилоксановой композиции (X) присоединительного отверждения.
14. Блок аккумуляторных батарей по п. 1, который находится в транспортном средстве.
15. Блок аккумуляторных батарей по п. 1, который находится в автомобильном механическом транспортном средстве.
16. Блок аккумуляторных батарей по п. 1, который находится в полностью электрическом транспортном средстве (электромобиле, EV), гибридном транспортном средстве с подзарядкой от электросети (PHEV), гибридном транспортном средстве (HEV).
17. Блок аккумуляторных батарей по п. 1, который находится в летательном аппарате, судне, корабле, поезде или настенном устройстве.
RU2019128054A 2017-02-08 2018-02-07 Блок аккумуляторных батарей с улучшенным терморегулированием RU2716278C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762456502P 2017-02-08 2017-02-08
US62/456,502 2017-02-08
PCT/US2018/017227 WO2018148282A1 (en) 2017-02-08 2018-02-07 Secondary battery pack with improved thermal management

Publications (1)

Publication Number Publication Date
RU2716278C1 true RU2716278C1 (ru) 2020-03-11

Family

ID=61274345

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019128054A RU2716278C1 (ru) 2017-02-08 2018-02-07 Блок аккумуляторных батарей с улучшенным терморегулированием

Country Status (14)

Country Link
US (5) US10501597B2 (ru)
EP (2) EP3580790B1 (ru)
JP (3) JP6845343B2 (ru)
KR (2) KR102318181B1 (ru)
CN (2) CN110462875B (ru)
AU (2) AU2018219251B2 (ru)
BR (1) BR112019016360A2 (ru)
CA (1) CA3049130A1 (ru)
DE (1) DE202018006837U1 (ru)
HR (1) HRP20240504T1 (ru)
MX (1) MX2019009423A (ru)
RU (1) RU2716278C1 (ru)
TW (1) TWI670889B (ru)
WO (1) WO2018148282A1 (ru)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2018219251B2 (en) 2017-02-08 2023-09-21 Elkem Silicones USA Corp. Secondary battery pack with improved thermal management
WO2019161292A1 (en) * 2018-02-16 2019-08-22 H.B. Fuller Company Electric cell potting compound and method of making
CN112566983B (zh) * 2018-08-15 2023-01-10 3M创新有限公司 有机硅密封剂组合物
GB2578738B (en) * 2018-11-05 2020-12-09 Xerotech Ltd Thermal management system for a battery
US20210119193A1 (en) * 2019-10-21 2021-04-22 Ford Global Technologies, Llc Battery pack structures made of expandable polymer foams
KR20210061829A (ko) * 2019-11-20 2021-05-28 주식회사 엘지에너지솔루션 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 자동차
EP4097190A1 (en) * 2020-01-30 2022-12-07 Elkem Silicones USA Corp. Article useful for circular economy and comprising a silicone elastomer with peelable and clean-releasing properties
US11629253B1 (en) * 2020-02-17 2023-04-18 Dow Silicones Corporation Elastomeric silicone materials and their applications
CN115087705A (zh) * 2020-02-17 2022-09-20 美国陶氏有机硅公司 弹性体硅酮材料及其应用
KR20210112161A (ko) * 2020-03-04 2021-09-14 주식회사 엘지에너지솔루션 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 랙 및 이러한 배터리 랙을 포함하는 전력 저장 장치
WO2021181199A1 (en) * 2020-03-10 2021-09-16 Poynting Antennas (Pty) Limited Battery assembly
EP4135980A4 (en) * 2020-04-14 2024-05-01 Saint-Gobain Performance Plastics Corporation COMPOSITE FILM
DE102020113951B3 (de) * 2020-05-25 2021-05-27 Audi Aktiengesellschaft Batteriemodul für eine Batterie und Kraftfahrzeug mit Batterie sowie entsprechendes Herstellungsverfahren hierzu
CN111534275A (zh) * 2020-05-26 2020-08-14 黄振星 一种用于新能源动力电池模组的低密度隔热灌封胶
US11909020B2 (en) 2020-05-28 2024-02-20 Cummins Inc. Battery packs with reduced weight and improved thermal performance
US11349147B2 (en) * 2020-06-26 2022-05-31 Cadenza Innovation, Inc. Battery systems
KR20220001225A (ko) 2020-06-29 2022-01-05 주식회사 엘지에너지솔루션 연쇄발화를 방지하는 전지 모듈 제조방법
JP7041793B1 (ja) * 2020-07-02 2022-03-24 富士高分子工業株式会社 シリコーンゲル組成物及びシリコーンゲルシート
DE102020005872A1 (de) * 2020-09-25 2022-03-31 Voltabox Ag Elektrobatterie für ein elektrisch oder teilelektrisch angetriebenes Kraftfahrzeug, verfahrbares oder stationäres Aggregat
US11251497B1 (en) 2020-09-30 2022-02-15 Inventus Power, Inc. Conformal wearable battery
US11477885B2 (en) 2020-09-30 2022-10-18 Inventus Power, Inc. Redundant trace fuse for a conformal wearable battery
US11349174B2 (en) 2020-09-30 2022-05-31 Inventus Power, Inc. Flexible battery matrix for a conformal wearable battery
US20230187717A1 (en) * 2020-10-12 2023-06-15 Lg Energy Solution, Ltd. Battery module, battery pack, and vehicle
KR20220049410A (ko) * 2020-10-14 2022-04-21 주식회사 엘지에너지솔루션 폼 키트 조립체를 구비하는 배터리 팩 및 그 제조 방법
KR20220053268A (ko) 2020-10-22 2022-04-29 주식회사 엘지에너지솔루션 배터리 팩 및 이의 제조방법
KR20220053269A (ko) * 2020-10-22 2022-04-29 주식회사 엘지에너지솔루션 배터리 팩 및 이의 제조방법
WO2022141035A1 (en) * 2020-12-29 2022-07-07 Dow Silicones Corporation Thermal insulation for battery modules
DE102021202429A1 (de) * 2021-03-12 2022-09-15 Mahle International Gmbh Positioniervorrichtung zur Lagepositionierung von Energiespeicherzellen
US11394077B1 (en) 2021-03-15 2022-07-19 Inventus Power, Inc. Conformal wearable battery
WO2022224468A1 (ja) 2021-04-22 2022-10-27 富士高分子工業株式会社 シリコーン積層体
JP7024148B1 (ja) 2021-04-22 2022-02-22 富士高分子工業株式会社 シリコーン積層体
IT202100013880A1 (it) 2021-05-27 2022-11-27 Permabond Eng Adhesives Ltd Matrice di resina sintetica, in particolare per i pacchi di batterie ricaricabili dei veicoli ad alimentazione elettrica e pacco di batterie realizzato con questa matrice
EP4098436A1 (en) 2021-06-02 2022-12-07 h.k.o. Isolier- und Textiltechnik GmbH Multi-layer protective element of a battery
CN113698910A (zh) * 2021-07-26 2021-11-26 深圳市希顺有机硅科技有限公司 新能源电池低比重防爆燃灌封胶及其制备方法
EP4385086A2 (en) 2021-08-13 2024-06-19 Elkem Silicones USA Corp. Secondary battery pack with improved thermal management
US11799162B2 (en) * 2021-08-18 2023-10-24 Rolls-Royce Singapore Pte. Ltd. Light weight thermal runaway and explosion resistant aerospace battery
WO2023037271A1 (en) * 2021-09-08 2023-03-16 3M Innovative Properties Company Firm silicone rubber foam thermal insulation
DE102021124581A1 (de) 2021-09-22 2023-03-23 iinovis GmbH Elektrische energiespeichereinrichtung, verfahren zu deren herstellung und kraftfahrzeug mit einer solchen energiespeichereinrichtung
US11581607B1 (en) * 2021-09-30 2023-02-14 Inventus Power, Inc. Thermal management for a conformal wearable battery
US20230113945A1 (en) * 2021-10-12 2023-04-13 Lg Energy Solution, Ltd. Battery pack and vehicle including the same
CN114197219B (zh) * 2021-11-23 2023-05-09 上海交通大学 一种复合式锂电池防火材料及其制备方法和应用
DE102021131307A1 (de) * 2021-11-29 2023-06-01 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg, Stiftung des bürgerlichen Rechts Propagationsbarriere mit variabler Kompressibilität durch Strukturierung
CN114497870B (zh) 2022-04-07 2022-11-08 嘉兴模度新能源有限公司 一种电池组均衡加压设备、电池组制备方法及电池模组
WO2023205050A1 (en) * 2022-04-20 2023-10-26 Elkem Silicones USA Corp. New silicone foam which is air foamed and syntactic and article such as a secondary battery pack comprising said foam
KR20230151127A (ko) * 2022-04-22 2023-11-01 코스본 주식회사 화재 방지 전지팩
WO2023216072A1 (en) * 2022-05-09 2023-11-16 Dow Silicones Corporation Battery module with polyorganosiloxane foam barrier
FR3136116A1 (fr) 2022-05-24 2023-12-01 Psa Automobiles Sa Pack batterie avec dispositif de retardement de propagation d’incendie
CN217426902U (zh) * 2022-06-14 2022-09-13 宁德时代新能源科技股份有限公司 电池及用电装置
WO2024000118A1 (en) * 2022-06-27 2024-01-04 Dow Silicones Corporation Battery module with polyorganosiloxane foam barrier
CN115044210A (zh) * 2022-06-28 2022-09-13 杭州师范大学 一种耐烧蚀高效隔热室温硫化硅橡胶泡沫及其制备方法
WO2024026459A1 (en) 2022-07-28 2024-02-01 Elkem Silicones USA Corp. Implants comprising a silicone foam
WO2024055287A1 (en) * 2022-09-16 2024-03-21 Dow Silicones Corporation A silicone-based fire protection sheet, its production process, and battery package having the sheet
WO2024136004A1 (ko) * 2022-12-22 2024-06-27 주식회사 엘지에너지솔루션 배터리 모듈, 이를 포함하는 배터리 팩 및 자동차

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626982A (en) * 1993-07-19 1997-05-06 Kanegafuchi Chemical Industry Co., Ltd. Heat insulating pad material, particularly for use in battery shield and manufacture of the same
US20070259258A1 (en) * 2006-05-04 2007-11-08 Derrick Scott Buck Battery assembly with temperature control device
JP2013089308A (ja) * 2011-10-13 2013-05-13 Kawaken Fine Chem Co Ltd 非水電解液電池用セパレータおよびリチウムイオン二次電池
CN103456984A (zh) * 2013-09-13 2013-12-18 四川川为电子有限公司 一种无机固体电解质膜的制造方法
RU2529883C1 (ru) * 2010-11-18 2014-10-10 Ниссан Мотор Ко., Лтд. Стационарная электроэнергетическая система и способ изготовления стационарной электроэнергетической системы

Family Cites Families (252)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB942744A (en) 1958-11-24 1963-11-27 Minnesota Mining & Mfg Improved structural foams
US3159602A (en) 1962-06-07 1964-12-01 Olin Mathieson Preparation of polymeric phosphates
US3159601A (en) 1962-07-02 1964-12-01 Gen Electric Platinum-olefin complex catalyzed addition of hydrogen- and alkenyl-substituted siloxanes
US3220972A (en) 1962-07-02 1965-11-30 Gen Electric Organosilicon process using a chloroplatinic acid reaction product as the catalyst
US3188299A (en) 1963-02-28 1965-06-08 Gen Electric Preparation of stable mixtures of organosilicon compositions in the presence of a nitrogen-containing ligand
NL133821C (ru) 1964-07-31
NL131800C (ru) 1965-05-17
NL129346C (ru) 1966-06-23
FR1561922A (ru) 1966-08-16 1969-04-04
US3814730A (en) 1970-08-06 1974-06-04 Gen Electric Platinum complexes of unsaturated siloxanes and platinum containing organopolysiloxanes
US3715334A (en) 1970-11-27 1973-02-06 Gen Electric Platinum-vinylsiloxanes
US3775452A (en) 1971-04-28 1973-11-27 Gen Electric Platinum complexes of unsaturated siloxanes and platinum containing organopolysiloxanes
JPS5128308B2 (ru) 1973-05-15 1976-08-18
US3933712A (en) 1974-04-29 1976-01-20 Burr-Brown Research Corporation Novel encapsulating material and method
US3923705A (en) 1974-10-30 1975-12-02 Dow Corning Method of preparing fire retardant siloxane foams and foams prepared therefrom
US3989667A (en) 1974-12-02 1976-11-02 Dow Corning Corporation Olefinic siloxanes as platinum inhibitors
US4026842A (en) 1975-07-14 1977-05-31 Dow Corning Corporation Method of preparing fire retardant open-cell siloxane foams and foams prepared therefrom
US4024091A (en) 1975-07-14 1977-05-17 Dow Corning Corporation Spongeable silicone gum stock
JPS5214654A (en) 1975-07-24 1977-02-03 Shin Etsu Chem Co Ltd An organopolysiloxane composition
JPS5224258A (en) 1975-08-19 1977-02-23 Toray Silicone Co Ltd Curable organopolysiloxane composition
US4053691A (en) * 1976-10-01 1977-10-11 P. R. Mallory & Co., Inc. Porous light weight battery filler
JPS5826376B2 (ja) 1977-09-26 1983-06-02 東芝シリコ−ン株式会社 ゴム状に硬化しうるオルガノポリシロキサン組成物
JPS6043871B2 (ja) 1977-12-29 1985-09-30 ト−レ・シリコ−ン株式会社 硬化性オルガノポリシロキサン組成物
JPS55120658A (en) 1979-03-13 1980-09-17 Toray Silicone Co Ltd Silicone composition forming ceramic at high temperature
US4364809A (en) 1979-03-19 1982-12-21 Shin-Etsu Chemical Co., Ltd. Method for preparing cured rubbery products of organopoly-siloxanes
US4256870A (en) 1979-05-17 1981-03-17 General Electric Company Solventless release compositions, methods and articles of manufacture
JPS5695923A (en) 1979-11-30 1981-08-03 Shin Etsu Chem Co Ltd Cold curing organopolysloxane composition
US4394317A (en) 1981-02-02 1983-07-19 Sws Silicones Corporation Platinum-styrene complexes which promote hydrosilation reactions
US4347346A (en) 1981-04-02 1982-08-31 General Electric Company Silicone release coatings and inhibitors
US4418127A (en) 1981-11-23 1983-11-29 The United States Of America As Represented By The Secretary Of The Air Force Battery cell module
JPS58171442A (ja) 1981-12-07 1983-10-08 Toray Silicone Co Ltd シリコ−ンゴム成形体とその製造方法
JPS5968333A (ja) 1982-10-12 1984-04-18 Toray Silicone Co Ltd 線状オルガノポリシロキサンブロツクを含有するポリマもしくはポリマ組成物の球状硬化物およびその製造方法
JPS6096456A (ja) 1983-11-01 1985-05-30 住友ベークライト株式会社 軟質塩化ビニル系樹脂−シリコ−ン複合成形物及びその製造方法
US4686124A (en) 1983-12-12 1987-08-11 Sumitomo Bakelite Company Ltd. Thermoplastic resin-silicone rubber composite shaped article
FR2575085B1 (fr) 1984-12-20 1987-02-20 Rhone Poulenc Spec Chim Complexe platine-triene comme catalyseur de reaction d'hydrosilylation et son procede de preparation
FR2575086B1 (fr) 1984-12-20 1987-02-20 Rhone Poulenc Spec Chim Complexe platine-alcenylcyclohexene comme catalyseur de reaction d'hydrosilylation et son procede de preparation
JPS62240361A (ja) 1986-04-11 1987-10-21 Toray Silicone Co Ltd 硬化性オルガノポリシロキサン組成物
JPH0633288B2 (ja) 1986-10-06 1994-05-02 東レ・ダウコ−ニング・シリコ−ン株式会社 付加反応方法
JPS63218763A (ja) 1987-03-06 1988-09-12 Shin Etsu Chem Co Ltd 硬化性オルガノポリシロキサン組成物
JPS63251466A (ja) 1987-04-06 1988-10-18 Shin Etsu Chem Co Ltd 熱伝導性液状シリコ−ンゴム組成物
US4766192A (en) 1987-07-10 1988-08-23 Dow Corning Corporation Silicone polymer termination
US5009957A (en) 1987-07-20 1991-04-23 Dow Corning Corporation Microencapsulated platinum-group metals and compounds thereof
JPS6433156A (en) 1987-07-29 1989-02-03 Shinetsu Chemical Co Silicone composition for mold release
JPH0772249B2 (ja) 1987-08-11 1995-08-02 信越化学工業株式会社 電線被覆材
US5266321A (en) 1988-03-31 1993-11-30 Kobayashi Kose Co., Ltd. Oily make-up cosmetic comprising oil base and silicone gel composition
JPH0655897B2 (ja) 1988-04-22 1994-07-27 信越化学工業株式会社 シリコーン組成物の製造方法
JPH07767B2 (ja) 1989-01-31 1995-01-11 信越化学工業株式会社 艶出し剤
JPH0660286B2 (ja) 1989-02-15 1994-08-10 信越化学工業株式会社 油性ペースト組成物
JPH0657797B2 (ja) 1989-02-20 1994-08-03 信越化学工業株式会社 オルガノポリシロキサン組成物
US5061481A (en) 1989-03-20 1991-10-29 Kobayashi Kose Co., Ltd. Cosmetic composition having acryl-silicone graft copolymer
US5219560A (en) 1989-03-20 1993-06-15 Kobayashi Kose Co., Ltd. Cosmetic composition
JPH0660284B2 (ja) 1989-07-21 1994-08-10 信越化学工業株式会社 硬化性シリコーンゴム組成物
JPH0672207B2 (ja) 1989-09-29 1994-09-14 信越化学工業株式会社 剥離紙用シリコーン組成物
US5206328A (en) 1990-02-08 1993-04-27 Shin-Etsu Chemical Co., Ltd. Process for the production of an organopolysiloxane
DE4013268A1 (de) * 1990-04-26 1991-10-31 Abb Patent Gmbh Hochtemperaturspeicherbatterie
JP2631772B2 (ja) 1991-02-27 1997-07-16 信越化学工業株式会社 新規なシリコーン重合体及びそれを用いた水分散能を有するペースト状シリコーン組成物
GB9106809D0 (en) * 1991-04-02 1991-05-22 Dow Corning Sa Silicone foams
EP0545002A1 (en) 1991-11-21 1993-06-09 Kose Corporation Silicone polymer, paste-like composition and water-in-oil type cosmetic composition comprising the same
JPH05271548A (ja) 1992-03-27 1993-10-19 Shin Etsu Chem Co Ltd オルガノポリシロキサン組成物及びその硬化物の形成方法
JP3003736B2 (ja) * 1992-06-04 2000-01-31 株式会社クボタ 高温型電池の保温構造
US5645941A (en) 1992-11-19 1997-07-08 Shin-Etsu Chemical Co., Ltd. Silicone resin/silicone rubber composite material
JP2864944B2 (ja) 1993-04-30 1999-03-08 信越化学工業株式会社 難燃性シリコーン組成物
US5494750A (en) 1993-05-10 1996-02-27 Shin-Etsu Chemical Co., Ltd. Heat-curable silicone elastomer composition
TW343218B (en) 1994-03-25 1998-10-21 Shinetsu Chem Ind Co Integral composite consisted of polysiloxane rubber and epoxy resin and process for producing the same
JP2907000B2 (ja) * 1994-04-27 1999-06-21 信越化学工業株式会社 導電性シリコーンゴム発泡組成物及び導電性スポンジロール
FR2719598B1 (fr) 1994-05-03 1996-07-26 Rhone Poulenc Chimie Composition élastomère silicone et ses applications, notamment pour l'enduction de sac gonflable, destiné à la protection d'un occupant de véhicule.
US5536803A (en) 1994-06-06 1996-07-16 Shin-Etsu Chemical Co., Ltd. Adhesive silicone compositions
FR2720752B1 (fr) 1994-06-07 1996-10-31 Rhone Poulenc Chimie Composition silicone réticulable ou réticulée, antiadhérente et imprimable.
JP3060869B2 (ja) 1994-12-12 2000-07-10 信越化学工業株式会社 シリコーン熱収縮チューブ及びその製造方法
US5666626A (en) 1995-03-10 1997-09-09 Bridgestone Corporation Apparatus for developing electrostatic latent images using developing roller having specific ionization potential
JP3201940B2 (ja) 1995-09-12 2001-08-27 信越化学工業株式会社 硬化性シリコーンエラストマー組成物及びその製造方法
JP3272929B2 (ja) 1995-11-30 2002-04-08 信越化学工業株式会社 硬化性オルガノポリシロキサン組成物
FR2742763B1 (fr) 1995-12-22 1998-03-06 Rhone Poulenc Chimie Elastomere silicone a haute conductibilite thermique
JPH09174901A (ja) 1995-12-27 1997-07-08 Alps Electric Co Ltd 熱転写プリンタ
JP3920944B2 (ja) 1996-04-22 2007-05-30 大日本印刷株式会社 パターン形成用ペーストおよびパターン形成方法
FR2751980B1 (fr) 1996-08-02 1999-02-05 Rhone Poulenc Chimie Composition silicone pour l'enduction de substrats en matiere textile
JP3389797B2 (ja) 1996-11-07 2003-03-24 信越化学工業株式会社 高疲労耐久性液状シリコーンゴム組成物の製造方法
EP0947561B1 (en) 1996-12-20 2002-04-10 Three Bond Co., Ltd. Organopolysiloxane composition
FR2760981B1 (fr) 1997-03-21 1999-06-04 Rhodia Chimie Sa Procede et dispositif d'enduction d'un support en vue de lui conferer des proprietes anti-adherentes, au moyen d'une composition silicone reticulable
US6805912B2 (en) 1997-03-21 2004-10-19 Jean-Paul Benayoun Process and device for coating a support using a crosslinkable silicone composition
US6395338B1 (en) 1999-03-19 2002-05-28 Rhodia Chimie Process and device for coating a support using a crosslinkable silicone composition
FR2765884B1 (fr) 1997-07-09 2001-07-27 Rhodia Chimie Sa Composition silicone pour l'enduction de substrats en matiere souple, notamment textile
JP3511127B2 (ja) 1997-11-05 2004-03-29 信越化学工業株式会社 接着性シリコーン組成物
FR2771927B1 (fr) 1997-12-05 2001-12-07 Oreal Composition cosmetique ou dermatologique comprenant un polymere filmogene et une emulsion aqueuse de silicone
US20030149166A1 (en) 1997-12-31 2003-08-07 Sean Duffy Aqueous silicone emulsion, of use as base for preparing a water-repellent and anti-adhesive paper coating, process for preparing an emulsion of this type and anti-adhesive coatings
FR2773166B1 (fr) 1997-12-31 2000-03-24 Rhodia Chimie Sa Emulsion silicone aqueuse, utile comme base de preparation de revetement hydrofuge et antiadherent pour papier, procede de preparation d'une emulsion de ce type et de revetements antiadherents
FR2775481B1 (fr) 1998-02-27 2003-10-24 Rhodia Chimie Sa Composition silicone adhesive reticulable et utilisation de cette composition pour le collage de substrats divers
US6143812A (en) 1998-08-25 2000-11-07 Wacker Silicones Corporation Asphalt release agents and use thereof
JP4176884B2 (ja) 1998-10-08 2008-11-05 ポリマテック株式会社 電気自動車のバッテリ格納構造および格納方法
FR2787803B1 (fr) 1998-12-23 2001-03-16 Rhodia Chimie Sa Composition silicone pour l'enduction de substrats en matiere textile
FR2791996B1 (fr) 1999-04-09 2001-06-01 Rhodia Chimie Sa Materiau elastomere silicone hydrophile utilisable notamment pour la prise d'empreintes dentaires
JP2000336272A (ja) 1999-05-28 2000-12-05 Shin Etsu Chem Co Ltd 定着ロール用液状付加硬化型シリコーンゴム組成物及び定着ロール
JP2001223034A (ja) 2000-02-08 2001-08-17 Kubota Corp 電池の保温構造
FR2804963B1 (fr) 2000-02-15 2004-01-30 Rhodia Chimie Sa Utilisation de (co)polymeres hydrophiles comme additifs dans des emulsions silicone aqueuses, reticulables en revetements hydrofuges et anti-adherents pour supports souples
JP3580358B2 (ja) 2000-06-23 2004-10-20 信越化学工業株式会社 熱伝導性シリコーン組成物及び半導体装置
FR2813608B1 (fr) 2000-09-01 2004-08-27 Rhodia Chimie Sa Procede de lutte contre l'apparition de brouillard lors de l'enduction de supports flexibles avec une composition silicone liquide reticulable, dans un dispositif a cylindres
JP3580366B2 (ja) 2001-05-01 2004-10-20 信越化学工業株式会社 熱伝導性シリコーン組成物及び半導体装置
FR2826013B1 (fr) 2001-06-14 2005-10-28 Rhodia Chimie Sa Materiau elastomere silicone hydrophile utilisable notamment pour la prise d'empreints dentaires
JP2003031028A (ja) * 2001-07-17 2003-01-31 Shin Etsu Chem Co Ltd 導電性組成物
FR2831548B1 (fr) 2001-10-31 2004-01-30 Rhodia Chimie Sa Composition silicone adhesive reticulable comprenant comme agent thixotropant un compose a fonction amine cyclique portee par une chaine siloxanique
US20050165194A1 (en) 2001-11-20 2005-07-28 Rhodia Chimie Crosslinking agent for a silicone composition which can be crosslinked at low temperature based on a hydrogenated silicone oil comprising Si-H units at the chain end and in the chain
FR2833963B1 (fr) 2001-12-21 2004-03-12 Rhodia Chimie Sa RETICULANT POUR UNE COMPOSITION SILICONE RETICULABLE AVEC DE BAS TAUX DE PLATINE, A BASE D'UNE HUILE SILICONE HYDROGENEE COMPORTANT DES MOTIFS Si-H EN BOUT DE CHAINE ET DANS LA CHAINE
FR2835855B1 (fr) 2002-02-08 2005-11-11 Rhodia Chimie Sa Utilisation d'une emulsion inverse a base de silicone reticulable pour la realisation de revetements "imper-respirants"
JP4130091B2 (ja) 2002-04-10 2008-08-06 信越化学工業株式会社 放熱用シリコーングリース組成物
FR2840910B1 (fr) 2002-06-17 2004-08-27 Rhodia Chimie Sa Composition silicone pour la realisation d'un ensemble comprenant plusieurs elements en silicone reticules par polyaddition adherant fermement les uns aux autres
FR2840826B1 (fr) 2002-06-17 2005-04-15 Rhodia Chimie Sa Procede de traitement de surface d'un article comportant du silicone reticule par polyaddition
FR2840911B1 (fr) 2002-06-18 2005-09-30 Rhodia Chimie Sa Composition silicone utile notamment pour la realisation de vernis anti-friction, procede d'application de ce vernis sur un support et support ainsi traite
JP4217869B2 (ja) * 2002-06-21 2009-02-04 信越化学工業株式会社 シリコーンゴム組成物
JP2004043814A (ja) 2002-07-15 2004-02-12 Dow Corning Toray Silicone Co Ltd シリコーン系接着性シート、半導体チップと該チップ取付部の接着方法、および半導体装置
FR2843119B1 (fr) 2002-07-30 2006-10-06 Rhodia Chimie Sa Composition d'huiles silicone reticulables en elastomeres pour le traitement par impregnation de materiaux fibreux
FR2843134B1 (fr) 2002-07-30 2006-09-22 Ferrari S Tissage & Enduct Sa Procede de traitement par impregnation de textiles architecturaux par une composition silicone reticulable en elastomere et textile architectural ainsi revetu
JP3912523B2 (ja) 2002-11-29 2007-05-09 信越化学工業株式会社 難燃性シリコーン組成物、及びシリコーンゴム硬化物又はシリコーンゲル硬化物の難燃性向上方法
FR2848215B1 (fr) 2002-12-04 2006-08-04 Rhodia Chimie Sa Composition elastomere silicone, adhesive, monocomposante et reticulable par polyaddition
FR2856072B1 (fr) 2003-06-16 2005-08-05 Rhodia Chimie Sa Composition silicone reticulable en gel adhesif.
US20050059140A1 (en) 2003-09-12 2005-03-17 Andrea Liebmann-Vinson Methods of surface modification to enhance cell adhesion
US7198855B2 (en) 2003-09-12 2007-04-03 Becton, Dickinson And Company Methods of surface modification of a flexible substrate to enhance cell adhesion
JP4551074B2 (ja) 2003-10-07 2010-09-22 信越化学工業株式会社 硬化性オルガノポリシロキサン組成物および半導体装置
US8257797B2 (en) 2003-11-03 2012-09-04 Bluestar Silicones France Silicone composition and process that is useful for improving the tear strength and the combing strength of an inflatable bag for protecting an occupant of a vehicle
US20050205829A1 (en) 2003-12-01 2005-09-22 Rhodia Chimie Silicone composition and process useful for improving the coefficient of friction of an airbag, for protecting an occupant of a vehicle
JP2005255863A (ja) 2004-03-12 2005-09-22 Shin Etsu Chem Co Ltd 難燃性シリコーンゴム組成物
JP4557136B2 (ja) 2004-05-13 2010-10-06 信越化学工業株式会社 熱伝導性シリコーンゴム組成物及び成型品
US7611998B2 (en) 2004-06-16 2009-11-03 Bluestar Silicones France Sas Enhanced elastomer coated, protective barrier fabric and process for producing same
FR2879612B1 (fr) 2004-12-21 2007-05-04 Rhodia Chimie Sa Composition elastomere silicone, adhesive, monocomposante et reticulable par polyaddition
FR2880029B1 (fr) 2004-12-23 2007-02-16 Rhodia Chimie Sa Composition silicone non jaunissante
JP5166677B2 (ja) 2005-03-15 2013-03-21 東レ・ダウコーニング株式会社 硬化性シリコーン組成物および電子部品
DE202005010708U1 (de) 2005-07-06 2005-09-08 FRÖTEK Kunststofftechnik GmbH Gehäuse für Akkumulatorbatterien
JP4634891B2 (ja) 2005-08-18 2011-02-16 信越化学工業株式会社 熱伝導性シリコーングリース組成物およびその硬化物
JP2007063389A (ja) * 2005-08-31 2007-03-15 Dow Corning Toray Co Ltd 加熱硬化性低比重液状シリコーンゴム組成物および低比重シリコーンゴム成形物
DE102005045184B4 (de) * 2005-09-21 2010-12-30 Carl Freudenberg Kg Verwendung eines vernetzten Elastomerblends als Material für eine Brennstoffzelle
US7479522B2 (en) 2005-11-09 2009-01-20 Momentive Performance Materials Inc. Silicone elastomer composition
FR2894589B1 (fr) 2005-12-09 2008-03-21 Rhodia Recherches & Tech Procede de lutte contre l'apparition de brouillard lors de l'enduction de supports flexibles avec une composition silicone liquide reticulable, dans un dispositif a cylindres
FR2894591A1 (fr) 2005-12-09 2007-06-15 Rhodia Recherches & Tech Vernis silicone polyaddition anti-salissures, application de ce vernis sur un support et support ainsi traite
FR2894590B1 (fr) 2005-12-09 2008-03-14 Rhodia Recherches & Tech Procede de lutte contre l'apparition de brouillard lors de l'enduction de supports flexibles avec une composition silicone liquide reticulable, dans un dispositif a cylindres
JP5207591B2 (ja) 2006-02-23 2013-06-12 東レ・ダウコーニング株式会社 半導体装置の製造方法および半導体装置
FR2901800B1 (fr) 2006-05-31 2008-08-29 Rhodia Recherches & Tech Composition silicone reticulable pour la realisation de revetements anti-adherents pour films polymeres
FR2902107A1 (fr) 2006-06-07 2007-12-14 Rhodia Recherches & Tech Composition organopolysiloxane pour mousse elastomere
FR2903112A1 (fr) 2006-06-29 2008-01-04 Rhodia Recherches & Tech Composition silicone reticulable pour la realisation de revetements anti-adherents pour supports souples et additif promoteur d'accrochage contenu dans cette composition
EP1878767A1 (en) 2006-07-12 2008-01-16 Shin-Etsu Chemical Co., Ltd. Heat conductive silicone grease composition and cured product thereof
JP5207626B2 (ja) 2006-12-26 2013-06-12 東レ・ダウコーニング株式会社 シリコーンゴム層と異種ゴム層からなるゴム積層体用加熱硬化性シリコーンゴム組成物、ゴム積層体およびその製造方法
US8431647B2 (en) 2006-12-27 2013-04-30 Bluestar Silicones France Sas Adhesive silicone compositions and adhesive bonding/seaming therewith
EP2121818B1 (en) * 2007-02-09 2012-08-29 Dow Corning Corporation Method of recycling plastic
FR2913239A1 (fr) 2007-03-02 2008-09-05 Bluestar Silicones France Soc Procede de fabrication d'un support en matiere textile et ledit support en matiere textile
FR2914657A1 (fr) 2007-04-03 2008-10-10 Bluestar Silicones France Soc Procede d'obtention d'un composite materiau fibreux/silicone et ledit composite materiau fibreux/silicone
TWI434890B (zh) 2007-04-06 2014-04-21 Shinetsu Chemical Co 加成可硬化聚矽氧樹脂組成物及使用彼之聚矽氧鏡片
US7790806B2 (en) 2007-05-29 2010-09-07 Dow Corning Corporation Fluorine-containing resin composition inhibiting corrosiveness
US8685499B2 (en) 2007-06-21 2014-04-01 Bluestar Silicones France Sas Process for combating the appearance of haze during the coating of flexible supports with a crosslinkable liquid silicone composition, in a roll device
JP2009043712A (ja) 2007-07-18 2009-02-26 Toray Ind Inc 膜電極複合体の製造方法
US20090171010A1 (en) 2007-12-31 2009-07-02 John Kilgour Low temperature cure silicone release coatings containing branched silylhydrides
US20090171055A1 (en) 2007-12-31 2009-07-02 John Kilgour Low temperature hydrosilylation catalyst and silicone release coatings
JP5233325B2 (ja) 2008-02-29 2013-07-10 信越化学工業株式会社 熱伝導性硬化物及びその製造方法
JP2009301877A (ja) * 2008-06-13 2009-12-24 Toyoda Gosei Co Ltd 組電池装置
US8044121B2 (en) 2008-06-25 2011-10-25 Shin-Etsu Chemical Co., Ltd. Cement mold-making silicone rubber composition
EP2310458B1 (fr) 2008-07-30 2016-08-17 Bluestar Silicones France SAS Composition silicone d'enduction d'un support flexible destine a former un revetement reticule ayant un accrochage, une resistance mecanique et une reactivite accrus
WO2010014722A1 (en) * 2008-07-30 2010-02-04 Bluestar Silicones Usa Corp. Method for producing molded silicone rubber products using liquid silicone rubber
JP2010062093A (ja) 2008-09-05 2010-03-18 Panasonic Corp 電池パック
CN101367952B (zh) 2008-09-27 2010-12-01 南京工业大学 一种操作时间可控的端乙烯基硅橡胶室温固化方法
JP5388329B2 (ja) 2008-11-26 2014-01-15 株式会社デンソー 放熱用シリコーングリース組成物
JP2010155946A (ja) 2008-12-29 2010-07-15 Dow Corning Toray Co Ltd 硬化性オルガノポリシロキサン組成物および多孔質オルガノポリシロキサン硬化物
US8729170B2 (en) 2008-12-30 2014-05-20 Bluestar Silicones France Sas Coating compositions and textile fabrics coated therewith
US8277965B2 (en) 2009-04-22 2012-10-02 Tesla Motors, Inc. Battery pack enclosure with controlled thermal runaway release system
DE102009002828A1 (de) 2009-05-05 2010-11-11 Wacker Chemie Ag Zusammensetzungen für Textilbeschichtungen
FR2946365A1 (fr) 2009-06-05 2010-12-10 Bluestar Silicones France Procede d'enduction d'un support textile
JP4905736B2 (ja) 2009-07-16 2012-03-28 信越化学工業株式会社 シリコーン組成物の製造方法
JP5586202B2 (ja) 2009-10-06 2014-09-10 株式会社東芝 二次電池モジュール
FR2957604A1 (fr) 2010-03-22 2011-09-23 Bluestar Silicones France Composition silicone reticulable pour la realisation de revetements anti-adherents pour supports souples et additif promoteur d'accrochage contenu dans cette composition
FR2962261B1 (fr) 2010-07-02 2013-08-02 Saft Groupe Sa Batterie de generateurs electrochimiques comprenant une mousse comme materiau de remplissage entre generateurs
US8609980B2 (en) * 2010-07-30 2013-12-17 E I Du Pont De Nemours And Company Cross-linkable ionomeric encapsulants for photovoltaic cells
ES2533593T3 (es) 2010-09-06 2015-04-13 Bluestar Silicones France Composición de silicona para espuma elastomérica
JP5553006B2 (ja) 2010-11-12 2014-07-16 信越化学工業株式会社 熱伝導性シリコーングリース組成物
GB201020005D0 (en) 2010-11-25 2011-01-12 Smith & Nephew Composition 1-1
ES2603152T3 (es) 2010-11-25 2017-02-23 Smith & Nephew Plc Composición I-II y productos y usos de la misma
CN103339203B (zh) 2010-12-13 2015-06-03 蓝星有机硅法国公司 尤其可用于获取牙科印模的有机硅弹性体材料
CN103298857B (zh) 2010-12-27 2016-09-14 道康宁东丽株式会社 含有液体有机聚硅氧烷的化妆品
JP2012149131A (ja) 2011-01-17 2012-08-09 Shin-Etsu Chemical Co Ltd シリコーン樹脂組成物及び当該組成物を使用した光半導体装置
JP5640945B2 (ja) 2011-10-11 2014-12-17 信越化学工業株式会社 硬化性オルガノポリシロキサン組成物及び半導体装置
JP5648619B2 (ja) 2011-10-26 2015-01-07 信越化学工業株式会社 熱伝導性シリコーン組成物
US20150159066A1 (en) 2011-11-25 2015-06-11 Smith & Nephew Plc Composition, apparatus, kit and method and uses thereof
JP5950432B2 (ja) 2011-11-30 2016-07-13 信越ポリマー株式会社 加圧ローラ、加圧ローラの製造方法、定着装置及び画像形成装置
JP5812837B2 (ja) 2011-12-09 2015-11-17 キヤノン株式会社 導電性部材、プロセスカートリッジ、および電子写真装置
CN104114656B (zh) 2011-12-14 2017-08-25 道康宁公司 树脂‑线性有机硅氧烷嵌段共聚物的固化性组合物
JP5783128B2 (ja) 2012-04-24 2015-09-24 信越化学工業株式会社 加熱硬化型熱伝導性シリコーングリース組成物
CN103827277B (zh) 2012-05-11 2016-07-06 信越化学工业株式会社 导热性硅脂组合物
CN104395406A (zh) 2012-06-22 2015-03-04 迈图高新材料日本合同公司 双组分型固化性聚有机硅氧烷组合物及其使用
JP2014086330A (ja) * 2012-10-25 2014-05-12 Fujitsu Ltd 小型電源モジュール及び半導体モジュール
FR3000069B1 (fr) 2012-12-21 2015-02-06 Bluestar Silicones France Procede d'hydrosilylation d'un siloxane photocatalyse par un compose polyoxometallate
TWI616477B (zh) 2012-12-28 2018-03-01 道康寧公司 用於轉換器之可固化有機聚矽氧烷組合物及該可固化聚矽氧組合物於轉換器之應用
KR102108902B1 (ko) 2013-01-22 2020-05-11 신에쓰 가가꾸 고교 가부시끼가이샤 열전도성 실리콘 조성물, 열전도성 층 및 반도체 장치
CN104968749B (zh) 2013-02-11 2017-03-29 道康宁公司 稳定性热自由基可固化有机硅粘合剂组合物
US20160120706A1 (en) 2013-03-15 2016-05-05 Smith & Nephew Plc Wound dressing sealant and use thereof
WO2014168190A1 (ja) * 2013-04-10 2014-10-16 旭硝子株式会社 赤外線遮蔽フィルタ、固体撮像素子、および撮像・表示装置
JP6362300B2 (ja) * 2013-04-24 2018-07-25 株式会社ドクター中松創研 熱暴走防止リチウムイオンバッテリ装置
JP5843368B2 (ja) 2013-05-07 2016-01-13 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物
CN103265813B (zh) 2013-05-30 2015-04-01 成都拓利化工实业有限公司 发泡型灌封硅胶组合物
WO2014208423A1 (ja) * 2013-06-26 2014-12-31 三菱瓦斯化学株式会社 難燃性シートまたはフィルム、及びそれを用いた製品及びその製造方法
JP6233196B2 (ja) * 2013-08-30 2017-11-22 信越化学工業株式会社 太陽電池モジュールの製造方法
US10347894B2 (en) * 2017-01-20 2019-07-09 Tesla, Inc. Energy storage system
JP6427314B2 (ja) * 2013-11-05 2018-11-21 東洋ゴム工業株式会社 中空磁性粒子を用いた熱伝導率可変材料
CN103655212B (zh) 2013-11-11 2016-03-02 江西绿泰科技有限公司 应用于初次印模室温加成硅橡胶腻子型口腔印模材料
KR102277649B1 (ko) 2014-01-31 2021-07-16 신에쓰 가가꾸 고교 가부시끼가이샤 오가노폴리실록세인 화합물 및 그 제조 방법, 그리고 부가 경화형 실리콘 조성물
US9761919B2 (en) * 2014-02-25 2017-09-12 Tesla, Inc. Energy storage system with heat pipe thermal management
CN103872276B (zh) * 2014-03-25 2016-05-18 深圳市振华新材料股份有限公司 锂离子电池灌装聚合物组合物,灌装方法及锂电池和应用
JP6149831B2 (ja) 2014-09-04 2017-06-21 信越化学工業株式会社 シリコーン組成物
US9397376B2 (en) * 2014-09-25 2016-07-19 Atieva, Inc. Battery pack with segmented, electrically isolated heat sink
US20170283677A1 (en) 2014-09-25 2017-10-05 Shin-Etsu Chemical Co., Ltd. Uv-thickening thermally conductive silicone grease composition
CN104312531A (zh) * 2014-10-09 2015-01-28 广东新展化工新材料有限公司 一种加成型液体硅橡胶及其制备方法
JP6390361B2 (ja) 2014-11-11 2018-09-19 信越化学工業株式会社 紫外線増粘型熱伝導性シリコーングリース組成物
TWI688609B (zh) 2014-11-13 2020-03-21 美商道康寧公司 含硫聚有機矽氧烷組成物及相關態樣
JP6260519B2 (ja) 2014-11-25 2018-01-17 信越化学工業株式会社 一液付加硬化型シリコーン組成物の保存方法及び硬化方法
CN107406678B (zh) 2015-03-02 2020-08-04 信越化学工业株式会社 热传导性硅酮组合物
WO2016175001A1 (ja) 2015-04-30 2016-11-03 信越化学工業株式会社 熱伝導性シリコーングリース組成物
US11332582B2 (en) 2015-09-25 2022-05-17 Elkem Silicones France Sas Crosslinkable silicone composition for the production of non-stick coatings for flexible substrates and an attachment-promoting additive contained in this composition
EP3150672B1 (en) 2015-10-02 2018-05-09 Shin-Etsu Chemical Co., Ltd. Thermal conductive silicone composition and semiconductor device
JP6524879B2 (ja) 2015-10-13 2019-06-05 信越化学工業株式会社 付加一液硬化型熱伝導性シリコーングリース組成物
US11254849B2 (en) 2015-11-05 2022-02-22 Momentive Performance Materials Japan Llc Method for producing a thermally conductive polysiloxane composition
CN105238061B (zh) 2015-11-25 2018-06-15 泸州北方化学工业有限公司 发泡硅橡胶胶料、低密度硅橡胶海绵及其制备方法
JP6642145B2 (ja) 2016-03-14 2020-02-05 信越化学工業株式会社 付加一液加熱硬化型熱伝導性シリコーングリース組成物の硬化物の製造方法
CN108603033B (zh) 2016-03-18 2021-02-19 信越化学工业株式会社 热传导性硅酮组合物和半导体装置
FR3052784A1 (fr) 2016-06-21 2017-12-22 Bluestar Silicones France Procede de lutte contre l'apparition de brouillard dans un dispositif a cylindres lors de l'enduction de supports flexibles avec une composition silicone liquide reticulable
CN109563294B (zh) 2016-06-30 2021-07-06 信越化学工业株式会社 混炼型硅橡胶组合物、混炼型硅橡胶海绵以及所述海绵的制造方法
US11214651B2 (en) 2016-08-03 2022-01-04 Shin-Etsu Chemical Co., Ltd. Thermally conductive silicone composition
MY187529A (en) 2016-10-26 2021-09-27 Shinetsu Chemical Co Thermally-conductive silicone composition
JP6607166B2 (ja) 2016-10-31 2019-11-20 信越化学工業株式会社 熱伝導性シリコーン組成物及び半導体装置
FR3060977B1 (fr) 2016-12-22 2019-05-24 L'oreal Emulsion huile-dans-eau et son utilisation en cosmetique
JP6874366B2 (ja) 2016-12-28 2021-05-19 信越化学工業株式会社 シリコーン組成物およびその硬化物
KR102255081B1 (ko) 2016-12-30 2021-05-21 엘켐 실리콘즈 상하이 컴퍼니 리미티드 경화성 실리콘 조성물
US10531949B2 (en) 2016-12-30 2020-01-14 Ethicon, Inc. Silicone foam compositions rapidly cross-linkable at ambient temperatures and methods of making and using same
US10829609B2 (en) 2017-02-08 2020-11-10 Elkem Silicones USA Corp. Silicone rubber syntactic foam
AU2018219251B2 (en) 2017-02-08 2023-09-21 Elkem Silicones USA Corp. Secondary battery pack with improved thermal management
JP6699583B2 (ja) 2017-02-14 2020-05-27 信越化学工業株式会社 付加硬化型シリコーン組成物
EP3604449B1 (en) 2017-03-27 2023-11-22 Shin-Etsu Chemical Co., Ltd. Addition-curable silicone composition
EP3630294B1 (en) 2017-05-31 2023-11-15 L'oreal Composition for conditioning hair
KR102458746B1 (ko) 2017-12-28 2022-10-24 엘켐 실리콘즈 상하이 컴퍼니 리미티드 낮은 tvoc 방출 실리콘 복합 시트
JP2019151566A (ja) 2018-03-01 2019-09-12 ロレアル 噴霧可能な組成物
JP7476793B2 (ja) 2018-10-12 2024-05-01 信越化学工業株式会社 付加硬化型シリコーン組成物及びその製造方法
CN109401725A (zh) 2018-11-28 2019-03-01 东莞兆舜有机硅科技股份有限公司 一种新能源汽车用高导热灌封硅橡胶
US20220049122A1 (en) 2018-12-20 2022-02-17 Elkem Silicones France Sas Method for the prevention of mist formation in a device comprising rolls during the coating of flexible supports with a cross-linkable liquid silicone composition
WO2020129555A1 (ja) 2018-12-21 2020-06-25 信越化学工業株式会社 熱伝導性シリコーン組成物及び半導体装置
JP7001071B2 (ja) 2019-01-10 2022-01-19 信越化学工業株式会社 熱伝導性シリコーン組成物
KR20200091284A (ko) 2019-01-22 2020-07-30 삼성에스디아이 주식회사 태양전지 전극 형성용 조성물, 이로부터 제조된 전극 및 태양 전지
US20220119677A1 (en) 2019-01-31 2022-04-21 Elkem Silicones Shanghai Co., Ltd. Curable silicone composition with a good flame resistance
JP7076400B2 (ja) 2019-05-27 2022-05-27 信越化学工業株式会社 熱伝導性シリコーン組成物、半導体装置及びその製造方法
EP3990561A1 (en) 2019-06-27 2022-05-04 Dow Silicones Corporation Silicone elastomeric coating
CN110684358A (zh) 2019-10-14 2020-01-14 东莞市跨越电子有限公司 新能源动力电池的填充发泡灌封硅胶、制备方法及应用
JP7435618B2 (ja) 2019-11-06 2024-02-21 信越化学工業株式会社 熱伝導性シリコーンポッティング組成物およびその硬化物
CN110964325A (zh) 2019-12-12 2020-04-07 苏州然创新材料科技有限公司 制备阻燃液体硅胶泡棉的组合物及阻燃液体硅胶泡棉
CN110819119A (zh) 2019-12-12 2020-02-21 苏州然创新材料科技有限公司 组合物及阻燃液体导热硅胶泡棉
CN111138865A (zh) 2019-12-30 2020-05-12 佛山职业技术学院 一种新型新能源汽车用液体发泡硅胶的制备方法
WO2022141035A1 (en) 2020-12-29 2022-07-07 Dow Silicones Corporation Thermal insulation for battery modules
JP7179398B1 (ja) 2021-02-26 2022-11-29 積水ポリマテック株式会社 熱伝導性組成物、熱伝導性部材、バッテリモジュール
US20220298305A1 (en) 2021-03-17 2022-09-22 Sandisk Technologies Llc Thermally Conductive Non-Oil Bleed Liquid Thermal Interface Materials
JP7467017B2 (ja) 2021-05-25 2024-04-15 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物
IT202100013880A1 (it) 2021-05-27 2022-11-27 Permabond Eng Adhesives Ltd Matrice di resina sintetica, in particolare per i pacchi di batterie ricaricabili dei veicoli ad alimentazione elettrica e pacco di batterie realizzato con questa matrice

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626982A (en) * 1993-07-19 1997-05-06 Kanegafuchi Chemical Industry Co., Ltd. Heat insulating pad material, particularly for use in battery shield and manufacture of the same
US20070259258A1 (en) * 2006-05-04 2007-11-08 Derrick Scott Buck Battery assembly with temperature control device
RU2529883C1 (ru) * 2010-11-18 2014-10-10 Ниссан Мотор Ко., Лтд. Стационарная электроэнергетическая система и способ изготовления стационарной электроэнергетической системы
JP2013089308A (ja) * 2011-10-13 2013-05-13 Kawaken Fine Chem Co Ltd 非水電解液電池用セパレータおよびリチウムイオン二次電池
CN103456984A (zh) * 2013-09-13 2013-12-18 四川川为电子有限公司 一种无机固体电解质膜的制造方法

Also Published As

Publication number Publication date
US20200062920A1 (en) 2020-02-27
US20220081529A1 (en) 2022-03-17
EP4243143A3 (en) 2023-11-01
JP2023119058A (ja) 2023-08-25
CA3049130A1 (en) 2018-08-16
DE202018006837U1 (de) 2023-08-02
KR102318181B1 (ko) 2021-10-27
CN110462875A (zh) 2019-11-15
US20230203265A1 (en) 2023-06-29
AU2018219251A1 (en) 2019-08-08
MX2019009423A (es) 2019-09-26
KR20190132631A (ko) 2019-11-28
WO2018148282A1 (en) 2018-08-16
US20180223070A1 (en) 2018-08-09
CN110462875B (zh) 2023-04-18
AU2023219996A1 (en) 2023-09-14
EP3580790A1 (en) 2019-12-18
KR20210130834A (ko) 2021-11-01
TWI670889B (zh) 2019-09-01
JP2020507194A (ja) 2020-03-05
US10501597B2 (en) 2019-12-10
US11905385B2 (en) 2024-02-20
US11261309B2 (en) 2022-03-01
KR102394963B1 (ko) 2022-05-04
HRP20240504T1 (hr) 2024-07-05
EP3580790B1 (en) 2024-01-24
EP4243143A2 (en) 2023-09-13
BR112019016360A2 (pt) 2020-04-07
JP2021082600A (ja) 2021-05-27
JP7507106B2 (ja) 2024-06-27
US20230399483A1 (en) 2023-12-14
TW201834297A (zh) 2018-09-16
JP6845343B2 (ja) 2021-03-17
AU2018219251B2 (en) 2023-09-21
US11780983B2 (en) 2023-10-10
CN116284946A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
RU2716278C1 (ru) Блок аккумуляторных батарей с улучшенным терморегулированием
TWI753101B (zh) 聚矽氧橡膠複合發泡體
BR122024005859A2 (pt) Bloco de bateria secundária e processo para preparação de um bloco de bateria secundária