RU2611519C2 - Способ нанесения поглощающего покрытия на субстрат, основу и/или субстрат, покрытый основой - Google Patents

Способ нанесения поглощающего покрытия на субстрат, основу и/или субстрат, покрытый основой Download PDF

Info

Publication number
RU2611519C2
RU2611519C2 RU2014117818A RU2014117818A RU2611519C2 RU 2611519 C2 RU2611519 C2 RU 2611519C2 RU 2014117818 A RU2014117818 A RU 2014117818A RU 2014117818 A RU2014117818 A RU 2014117818A RU 2611519 C2 RU2611519 C2 RU 2611519C2
Authority
RU
Russia
Prior art keywords
substrate
absorber
poly
pei
coated
Prior art date
Application number
RU2014117818A
Other languages
English (en)
Other versions
RU2014117818A (ru
Inventor
Марк БЬЮЛОУ
Майкл ДЬЮРИЛЛА
Джон КАУФФМАН
Паскалине Харрисон ТРАН
Original Assignee
Басф Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Басф Корпорейшн filed Critical Басф Корпорейшн
Publication of RU2014117818A publication Critical patent/RU2014117818A/ru
Application granted granted Critical
Publication of RU2611519C2 publication Critical patent/RU2611519C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3238Inorganic material layers containing any type of zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3248Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such
    • B01J20/3251Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such comprising at least two different types of heteroatoms selected from nitrogen, oxygen or sulphur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3257Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/327Polymers obtained by reactions involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/3272Polymers obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/202Polymeric adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/25Coated, impregnated or composite adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/306Surface area, e.g. BET-specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/311Porosity, e.g. pore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/34Specific shapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

Изобретение относится к поглотителям газовых примесей. Способ нанесения поглощающего покрытия на субстрат, основу и/или субстрат, покрытый основой, включает:
(i) необязательно, получение субстрата, покрытого основой, путем предварительной обработки основы суспензией, которая содержит:
a. растворитель,
b. связующее,
c. основу и
d. необязательный диспергатор; и
(ii) обработку субстрата, основы и/или субстрата, покрытого основой, поглотителем. При этом субстрат представляет собой (а) монолитную или ячеистую структуру, выполненную из керамики, металла или пластмассы; (b) полиуретановую пену, полипропиленовую пену, полиэфирную пену, металлическую пену или керамическую пену; или (с) тканые или нетканые пластмассовые или целлюлозные волокна. Основа представляет собой оксид алюминия, диоксид кремния, алюмосиликат, оксид титана, оксид циркония, углерод, цеолит, металл-органический каркас (МОК) или их комбинации, причем основа имеет площадь поверхности от 150 м2/г до 250 м2/г и объем пористости от 0,7 см3/г до 1,5 см3/г. Поглотитель является полиэтиленимином (ПЭИ), поглощающим диоксид углерода, и присутствует в концентрации от 25 мас.% до 45 мас.% в перерасчете на массу ПЭИ, разделенную на массу из ПЭИ и основы. Изобретение обеспечивает получение эффективного поглотителя диоксида углерода. 7 н. и 50 з.п. ф-лы, 10 ил., 3 табл., 7 пр.

Description

[0001] Данная заявка испрашивает приоритет на основании предварительной заявки на патент США №61/543999, поданной 06.10.2011, которая полностью включена в настоящую заявку посредством ссылки.
ОБЛАСТЬ ТЕХНИКИ
[0002] В данной заявке описан способ нанесения поглощающего покрытия на основу, субстрат и/или субстрат, покрытый основой, как описано в настоящем документе. Поглотители, относящиеся к способам, описанным в этом документе, способны поглощать такие газы, как диоксид углерода. Диоксид углерода можно поглощать из воздуха или из точечных источников загрязнения диоксидом углерода, например, из отходящих газов, из специально получаемого диоксида углерода или из их смеси. Поглотители, описываемые в данной заявке, можно использовать при очистке или разделении газов.
УРОВЕНЬ ТЕХНИКИ
[0003] В патенте США 7378561 описан способ получения метанола и диметилового эфира с использованием в качестве единственного источника указанных материалов воздуха. Данный способ относится к разделению воды (т.е. влаги, содержащейся в воздухе) и диоксида углерода, содержащегося в атмосферном воздухе, для использования в последующем получении в качестве продуктов метанола, диметилового эфира и производных синтетических углеводородов. Данный способ включает преобразование диоксида углерода и воды в условиях, необходимых для получения метанола и/или диметилового эфира. Диоксид углерода улавливается подходящим поглотителем, который предпочтительно представляет собой полиэтиленимин, нанесенный на наноструктурированный высокодисперсный оксид кремния.
[0004] В заявке W02008/021700 предложен восстанавливающийся наносимый на основу аминовый поглотитель, который содержит аминную или амин/полиоловую композицию, наносимый на наноструктурированную основу, такую как нанодиоксид кремния.
[0005] В заявке JP 61-227821 предложен способ извлечения газообразного диоксида углерода путем поглощения посредством твердого аминового поглотителя.
[0006] В журнале Journal of Polymer Materials, в статье «Полимерные твердые амины для поглощения диоксида углерода из влажного воздуха, нанесенные гелевым способом» под авторством Чен и др. (Chen et al., Gel-coated polymeric solid amine for sorption of carbon dioxide from humid air, Journal of Polymer Materials (2002), 19(4), 381-387), предложен процесс поглощения диоксида углерода из влажного воздуха с использование полиэтиленимина.
[0007] В заявке W02009/149292 предложен способ поглощения диоксида углерода из потока воздуха, который включает воздействие на одну или несколько поверхностей осаждения, выполненных из твердого поглощающего материала, причем твердый поглощающий материал поглощает диоксид углерода из потока воздуха.
[0008] В публикации заявки на патент США 2008/0289495 представлена система для извлечения диоксида углерода из атмосферы для снижения эффекта глобального потепления, которая может увеличивать доступность возобновляемой энергии или нетопливных продуктов, таких как удобрения и конструкционные материалы, включающая в себя систему вытяжки воздуха, в которой собирается диоксид углерода из атмосферы, проходящей через среду, и извлекается диоксид углерода из среды; систему сбора, где изолируется извлеченный диоксид углерода в месте по меньшей мере одного цикла извлечения, хранения и получения возобновляемого углеродного топлива или нетопливных видов продукции, таких как удобрения и конструкционные материалы; а также один или несколько источников энергии, от которых поступает технологическое тепло к системе вытяжки воздуха для извлечения диоксида углерода из среды,и в которых может осуществляться его восстановление для продолжающегося использования.
[0009] В публикации заявки на патент США 2007/0149398 представлена конструкция для поглощения диоксида углерода, которая содержит структуру с развитой площадью поверхности, содержащую множество пор в структуре с развитой площадью поверхности, где каждая пора имеет внутреннюю поверхность, причем по меньшей мере внутренняя поверхность каждой поры содержит гидроксильную группу на поверхности; а также гиперразветвленный полимер, ковалентно связанный с внутренней поверхностью поры через кислород гидроксильной группы на внутренней поверхности поры.
[00010] Таким образом, во всем мире отмечается возросшая потребность в ограничении высвобождения диоксида углерода.
[00011] Как следует из некоторых вышеотмеченных ссылочных материалов, при разработке высокопроизводительных и экономически эффективных технологий поглощения/отделения диоксида углерода разработчики сталкивались с некоторыми затруднениями.
[00012] Таким образом, на сегодняшний день все еще сохраняется промышленная потребность в разработке технологий, которые обеспечат высокопроизводительное и экономически эффективное протекание процесса поглощения диоксида углерода и/или других газов.
КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
[00013] Согласно одному из вариантов реализации изобретения предложен способ нанесения поглощающего покрытия на субстрат, основу и/или субстрат, покрытый основой. Данный способ включает: (i) необязательно, получение субстрата, покрытого основой путем предварительной обработки основы суспензией, причем суспензия содержит: а. растворитель, b. связующее, с. основу и d. необязательные диспергаторы; и (ii) обработку субстрата, основы и/или субстрата, покрытого основой, поглотителем; причем субстрат представляет собой (а) монолитную или ячеистую структуру, выполненную из керамики, металла или пластмассы; (b) полиуретановую пену, полипропиленовую пену, полиэфирную пену, металлическую пену или керамическую пену; или (с) тканое или нетканое пластмассовое или целлюлозное волокно, причем основа представляет собой оксид алюминия, диоксид кремния, алюмосиликат, оксид титана, оксид циркония, углерод, цеолит, металл-органический каркас (МОК) или их комбинации, и причем поглотитель поглощает диоксид углерода и поглотитель выбирают из группы, состоящей из аминов; моноэтаноламина; диэталонамина; полиэтиленимина (ПЭИ); аминопропилтриметоксисилана; полиэтиленимин-триметоксисилана; амид или амин содержащих полимеров, включая нейлон, полиуретан, поливиниламид или меламин; а также их комбинацию.
[00014] Согласно другому варианту реализации изобретения раскрывается способ нанесения поглощающего покрытия на субстрат, основу и/или субстрат, покрытый основой. Способ включает: (i) обработку субстрата, основы и/или субстрата, покрытого основой, суспензией, содержащей: а. растворитель, b. связующее и с. Поглотитель, где субстрат представляет собой (а) монолитную или ячеистую структуру, выполненную из керамики, металла или пластмассы; (b) полиуретановую пену, полипропиленовую пену, полиэфирную пену, металлическую пену или керамическую пену; или (с) тканое или нетканое пластмассовое или целлюлозное волокно, где основа представляет собой оксид алюминия, диоксид кремния, алюмосиликат, оксид титана, оксид циркония, углерод, цеолит, металл-органический каркас (МОК) или их комбинации, и где поглотитель поглощает диоксид углерода и поглотитель выбирают из группы, состоящей из аминов; моноэтаноламина; диэталонамина; полиэтиленимина (ПЭИ); аминопропилтриметоксисилана; полиэтиленимин-триметоксисилана; амид или амин содержащих полимеров, включая нейлон, полиуретан, поливиниламид или меламин; а также их комбинацию.
[00015] Согласно другим вариантам реализации изобретения предложены субстрат, покрытый поглотителем, основа, покрытая поглотителем, и субстрат, покрытый поглотителем в соответствии с вышеописанными способами.
[00016] Согласно другим вариантам реализации изобретения описываются поглощающие покрытия в соответствии с вышеописанными способами.
[00017] Согласно одному из вариантов реализации, представленных в данном описании, поглотители в описываемых способах могут поглощать такие газы, как диоксид углерода.
[00018] Согласно одному из вариантов реализации изобретения описана основа из оксида алюминия, содержащая поглощающее покрытие, где поглотитель поглощает диоксид углерода и поглотитель выбран из группы, состоящей из аминов; моноэтаноламина, диэтаноламина; полиэтиленимина (ПЭИ); аминопропилтриметоксисилана; полиэтилениминтриметоксисилана; амид или амин содержащих полимеров, включая нейлон, полиуретан, поливиниламин или меламин; и их комбинацию, и где субстрат из оксида алюминия имеет площадь поверхности приблизительно от 150 м2/г до 250 м2/г и пористость приблизительно от 0,7 см3/г до 1,5 см3/г.
КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ ЧЕРТЕЖЕЙ
[00019] ФИГ. 1 представляет собой изображение монолитной структуры с покрытием и ячеистой структуры внутри монолитной структуры с покрытием и включает схематическое изображение пористого покрытия, содержащего сильно развитую поверхность Al2O3 (оксид алюминия) и тонкий слой полиэтилимина (ПЭИ).
[00020] ФИГ. 2 представляет собой схематическое графическое представление циклов поглощения и отдачи поглощенного материала.
[00021] ФИГ. 3 представляет собой сводную таблицу свойств оксидов алюминия А-К, которые использовались в качестве основы для испытания поглотителя, такого как ПЭИ, включая характеристику оксидов алюминия А-К в зависимости от процесса поглощения СО2.
[00022] ФИГ. 4А и 4В представляют собой таблицы, в которых сведены результаты поглощения и отдачи поглощенных оксидов алюминия А-К.
[00023] ФИГ. 5 является графическим представлением количества поглощенного СО2, приведенного к общей массе покрытия в качестве функции содержания ПЭИ.
[00024] ФИГ. 6 является графическим представлением количества поглощенного СО2, приведенного к массе ПЭИ в качестве функции содержания ПЭИ.
[00025] ФИГ. 7 является графическим представлением количества поглощенного СО2, приведенного к массе ПЭИ, показанного для оксидов алюминия В и С.
[00026] ФИГ. 8 является графическим представлением сравнения между поглощением СО2 диэтаноламином (ДЭА) и ПЭИ.
[00027] ФИГ. 9 является графическим представлением, отображающем, как молекулярная масса ПЭИ влияет на поглощение СО2.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
[00028] Термины «около» или «приблизительно», применяемые в данном документе с числовыми значениями, обозначают отклонение в отношении числовых значений, к которым они относятся, плюс или минус 10%; предпочтительно - плюс или минус 5%; более предпочтительно - плюс или минус 2%; абсолютно предпочтительно - плюс или минус 1%.
Способ двойного окунания
[00029] В соответствии с одним вариантом реализации изобретения раскрывается способ нанесения поглощающего покрытия на субстрат, основу и/или субстрат, покрытый основой. Способ включает в себя следующее:
(i) необязательно, получение субстрата, покрытого основой путем предварительной обработки основы суспензией, причем суспензия содержит: а. растворитель, b. связующее, с. основу, а также d. необязательно, диспергатор; и
(ii) обработку субстрата, основы и/или субстрата, покрытого основой, поглотителем.
[00030] Диспергатор может быть анионным, катионным или неионогенным, выбранным из группы, состоящей из полиакрилатов, алкоксилатов, карбоксилатов, фосфатных эфиров, полиэфирных полимеров, сульфонатов, сульфосукцинатов, стеаратов, лауреатов, аминов, амидов, имидазолинов, додецилбензолсульфоната натрия, диоктилсульфосукцината натрия, полимера полиоксипропилен-полиоксиэтилена, алкилфенилэтоксилатов, а также их смесей. Предпочтительные диспергаторы включают полимеры полиакриловой кислоты и полиэфиры.
[00031] Поглотитель представляет собой (а) монолитную или ячеистую структуру, выполненную из керамики, металла или пластмассы; (b) полиуретановую пену, полипропиленовую пену, полиэфирную пену, металлическую пену или керамическую пену; или (с) тканые или нетканые пластмассовые или целлюлозные волокна природного или искусственного происхождения.
[00032] Основа представляет собой оксид алюминия, диоксид кремния, алюмосиликат, оксид титана, оксид циркония, углерод, цеолит, металл-органический каркас (МОК) или их комбинации.
[00033] Основа может содержать такие промоторы, как лантан, оксид церия или барий, для стабилизации основы и/или повышения эффективности поглотителя.
[00034] Поглотитель поглощает диоксид углерода, и поглотитель выбран из группы, состоящей из аминов; моноэтаноламина; диэталонамина; полиэтиленимина (ПЭИ); аминопропилтриметоксисилана; полиэтиленимин-триметоксисилана; амид или амин содержащих полимеров, включая нейлон, полиуретан, поливиниламид или меламин, а также их комбинацию.
[00035] Термин «поглотитель», описываемый в данной заявке, включает один поглотитель или смесь поглотителей, выполненные отдельно или в виде покрытия субстрата, основы и/или субстрата, покрытого основой.
[00036] Поглощающее покрытие субстрата, основы и/или субстрата, покрытого основой, можно использовать для поглощения диоксида углерода из воздуха или из точечных источников загрязнения диоксидом углерода, например, из отходящих газов, из специально получаемого диоксида углерода или из их смеси. Полученный данным способом диоксид углерода можно использовать для последующего хранения и/или в нескольких областях применения, например, для повышения эффективности извлечения нефти, газирования напитков углекислым газом, для обработки/охлаждения/заморозки пищевых продуктов, в качестве реагента при производстве химикатов, как сырье для водорослей, а также в качестве среды для тушения пожаров.
[00037] Поглощающее покрытие субстрата, основы и/или субстрата, покрытого основой, также можно использовать для очистки или отделения газов. Например, поглотитель можно использовать для очистки природного газа и/или для очистки воздуха для дыхания, например, для очистки воздуха внутри подводного судна, обработки воздуха в устройствах кондиционирования или для очистки воздуха, применяемого в медицине. Поглотитель может поглощать диоксид углерода с целью очистки природного газа, атмосферного воздуха, газа или других загрязненных газовых смесей, содержащих диоксид углерода.
[00038] При сгорании метана образуется диоксид углерода, что является примером специального получения диоксида углерода.
[00039] В соответствии с вариантом реализации изобретения на ФИГ. 1 представлено изображение монолитной структуры с покрытием и ячеистой структуры внутри монолитной структуры с покрытием, где включено схематическое изображение пористого покрытия, содержащего сильно развитую поверхность Al2O3 (оксид алюминия) и тонкий слой полиэтилимина (ПЭИ).
[00040] Стадия (i) вышеописанного способа двойного окунания может дополнительно включать:
a. покрывание основы суспензией;
b. удаление излишка растворителя с покрытой основы; и
c. обжиг связующего элемента и основы, нанесенного на субстрат.
[00041] Обжиг может протекать в температурном диапазоне от 200°C до 550°C, температуре от 425°C до 475°C, и более предпочтительно - при температуре 450°C.
[00042] Связующее на стадии (i) способа двойного окунания может представлять собой алюмозоль, оксогидроксид алюминия, золь кремниевой кислоты, золь оксида титана, ацетат циркония, силикон или их комбинацию.
[00043] Суспензия, содержащая основу и/или связующее, может быть измельчена до размера частиц D50 в диапазоне размеров от 1 мкм до 10 мкм и более предпочтительно до размера частиц D50 в диапазоне размеров от 3 мкм до 6 мкм.
[00044] Кроме всего прочего, способ двойного окунания может включать:
(iii) после стадии (ii) высушивание обработанного субстрата для удаления избыточных количеств поглотителя и для удаления избыточного растворителя с получением субстрата, покрытого поглотителем, и/или субстрата, покрытого основой, покрытой поглотителем.
[00045] Высушивание на стадии (iii) может происходить на воздухе при температурном диапазоне от 30°C до 70°C, более предпочтительно - при температурном диапазоне от 40°C до 60°C и абсолютно предпочтительно - при температуре 50°C. Альтернативно, высушивание может проводиться в бескислородной среде при температуре до 110°C.
[00046] Как описано выше, суспензия содержит: а. растворитель, b. связующее и с. основу, а также d. необязательно, диспергатор. Связующее, как правило, добавляется в количестве около от 0 до 10% по массе относительно общей массы основы, более предпочтительно в количестве приблизительно от 3 до 7% от общей массы основы и наиболее предпочтительно в количестве приблизительно 6,5% от общей массы основы.
[00047] В некоторых вариантах реализации изобретения общее количество твердых частиц (основа + связующее), как правило, приблизительно составляет от 15 до 50% от общей массы суспензии. В некоторых вариантах реализации изобретения в суспензию для улучшения дисперсии основы можно добавлять поверхностно-активное вещество или смесь поверхностно-активных веществ (например, оксид алюминия). Поверхностно-активное вещество или смесь поверхностно-активных веществ можно добавлять в количестве приблизительно до 10% от общей массы основы.
[00048] В некоторых вариантах реализации изобретения, поглотитель (например, ПЭИ), как правило, добавляется в количестве приблизительно от 25 до 100% от общей массы основы, а более предпочтительно - в количестве приблизительно от 40 до 70% от общей массы основы.
[00049] Количество ПЭИ, образующего покрытие, в виде процентной доли от общей массы покрытия (ПЭИ + оксид алюминия) приблизительно составляет от 20% до 50%, при этом более предпочтительный диапазон составляет от 30 до 40%. Покрытие представляет собой общее количество нерастворяющихся материалов, нанесенных на субстрат, которые остаются после высушивания. Наконец, оно содержит основу и поглотитель и/или связующее.
[00050] Процесс двойного нанесения покрытия включает следующие стадии. Получение первичной суспензии посредством перемешивания ингредиентов в растворителе. Типовые ингредиенты приведены ниже. Общие массовые % твердых частиц в суспензии, как правило, составляют от 20% по массе до 50% по массе. Суспензию наносят на субстрат различными способами, такими как нанесение окунанием или распылением. Покрытый субстрат сушат частично или полностью с удалением избыточной влаги. Затем изделие обжигают для активации связующего. В случае ячеистой структуры субстрата количество покрытия, находящегося на детали, как правило, составляет от 0,5 г/куб. дюйм до 2,0 г/куб. дюйм, а предпочтительно от 1,0 до 1,7 г/куб. дюйм.
Figure 00000001
[00051] Состав второго слоя покрытия получают посредством перемешивания органического поглотителя в растворителе (например, ПЭИ в воде). Также состав может содержать диспергатор, который способствует увлажнению поверхности основы. Общий % по массе твердых частиц в суспензии, как правило, составляет от 20% по массе до 50% по массе. Данный состав наносится на субстрат различными способами, такими как нанесение покрытия окунанием или распылением. Покрытый субстрат высушивают частично или полностью с удалением избыточной влаги. Как правило, по меньшей мере 50% растворителя по массе удаляется в ходе высушивания. Высушивание проводят в условиях, при которых не снижается органическая активность, характеризующая способность к поглощению CO2 (низкая температура и/или низкое содержание кислорода).
Figure 00000002
Способ одинарного окунания
[00052] В соответствии с другим вариантом реализации изобретения раскрывается способ нанесения поглощающего покрытия на субстрат, основу и/или субстрат, покрытый основой. Данный способ включает:
(i) обработку субстрата, основы и/или субстрата, покрытого основой, суспензией, содержащей: а. растворитель, b. связующее и с. поглотитель; где субстрат представляет собой (а) монолитную или ячеистую структуру, выполненную из керамики, металла или пластмассы; (b) полиуретановую пену, полипропиленовую пену, полиэфирную пену, металлическую пену или керамическую пену; или (с) тканые или нетканые пластмассовые или целлюлозные волокна.
[00053] Как указано выше, основа представляет собой оксид алюминия, диоксид кремния, алюмосиликат, оксид титана, оксид циркония, углерод, цеолит, металл-органический каркас (МОК) или их комбинации.
[00054] Основы могут содержать такие промоторы, как лантан, оксид церия или барий для стабилизации основы и/или повышения эффективности поглотителя.
[00055] Как далее отмечено выше, поглотитель поглощает диоксид углерода, и поглотитель выбирают из группы, состоящей из аминов; моноэтаноламина; диэталонамина; полиэтиленимина (ПЭИ); аминопропилтриметоксисилана; полиэтиленимин-триметоксисилана; амид или амин содержащих полимеров, включая нейлон, полиуретан, поливиниламид или меламин; а также их комбинации.
[00056] Кроме всего прочего, способ одинарного окунания может включать:
(ii) после стадии (i) высушивание обработанного суспензией субстрата, основы и/или субстрата, покрытого основой; и затем (iii) удаление избыточных количеств поглотителя и растворителя при температуре, не приводящей к разложению связующего или поглотителя с получением субстрата, покрытого поглотителем, основы, покрытой поглотителем, и/или субстрата, покрытого основой, покрытой поглотителем.
[00057] Высушивание на стадии (ii) в соответствии со способом одинарного окунания может происходить при температурном диапазоне от 50°C до 150°C, более предпочтительно, при температурном диапазоне от 70°C до 110°C.
[00058] Связующее на стадии (i) могут выбирать из группы, состоящей из полиэтилена, полипропилена, сополимеров полиолефина, полиизопрена, полибутадиена, полибутадиеновых сополимеров, хлорированного каучука; нитрильного каучука, полихлоропрена, этиленпропилендиеновых эластомеров, полистирола, полиакрилата, полиметакрилата, полиакрилонитрила, поли(виниловых эфиров), поли(винилгалогенидов), полиамидов, целлюлозных полимеров, полиимидов, акрилов, винилакрилов и стирольных акрилов, поливинилового спирта, термопластичных полиэфиров, термореактивных полиэфиров, поли(фениленоксидов), поли(фениленсульфидов), фторированных полимеров, таких как поли(тетрафторэтилен), поливинилиденфторид, поли(винилфторид) и хлор/фтор сополимеры, такие как сополимер этиленхлортрифтор-этилена, полиамида, фенольных смол и эпоксидных смол, полиуретана, полимеров силикона, а также их комбинации.
[00059] Связующее может добавляться в количестве приблизительно от 6 до 25% от массы основы, более предпочтительно в количестве приблизительно от 8 до 16% от массы основы и наиболее предпочтительно в количестве приблизительно от 10 до 14% от массы основы.
[00060] Процесс одинарного нанесения покрытия включает следующие стадии. Получение суспензии посредством перемешивания ингредиентов в растворителе. Типовые ингредиенты приведены ниже. Общие массовые % твердых частиц в суспензии, как правило, составляют от 20% по массе до 50% по массе. Суспензию наносят на субстрат различными способами, такими как нанесение окунанием или распылением. Покрытый субстрат высушивается частично или полностью с удалением избыточной влаги и активации связующего. Высушивание проводят в условиях, при которых не снижается органическая активность, характеризующая способность к поглощению СО2 (низкая температура и/или низкое содержание кислорода). В случае ячеистой структуры субстрата количество покрытия, находящегося на изделии, как правило, составляет от 1,0 г/куб. дюйм до 4,0 г/куб. дюйм, а предпочтительно - от 2,0 до 3,4 г/куб. дюйм.
Figure 00000003
Способы двойного и одинарного окунания
[00061] Керамический субстрат в способе (способах) двойного и одинарного окунания может выбираться из группы, состоящей из кордиерита, оксида алюминия, кордиерита-α-оксида алюминия, нитрида кремния, муллита циркона, сподумена, оксида магния-оксида алюминия-диоксида кремния, силиката циркона, силиманита, силикатов магния, циркона, петалита, алюмосиликатов и их комбинаций.
[00062] Более предпочтительно керамический субстрат представляет собой кордиерит, оксид алюминия или их комбинацию.
[00063] Металлический субстрат в способе (способах) двойного и/или одинарного окунания может представлять собой алюминий, титан, нержавеющую сталь, сплав Fe-Cr или сплав Cr-Al-Fe в форме листа, сетки, фольги, стружки, порошка, проволоки, стержня или их комбинацией.
[00064] Более предпочтительно металлический субстрат может представлять собой алюминий, нержавеющую сталь, сплав Cr-Al-Fe или их комбинации в форме листа, сетки или фольги.
[00065] Пластмассовый субстрат в способе (способах) двойного и/или одинарного окунания может представлять собой полимер или сополимер полиолефина(ов), полиэфира(ов), полиуретана(ов), поликарбоната(ов), полиэфирэфиркетона(ов), оксида(ов) полифенилена, полиэфирсульфона(ов), меламина(ов), полиамида(ов), полиакрилатов, полистиролов, полиакрилонитрилов, полиимидов, полифурфурилового спирта, фенолфурфурилового спирта, меламинформальдегидов, резорцинформальдегидов, крезолформальдегидов, фенолформальдегидов, диальдегида поливинилового спирта, полициануратов, полиакриламидов, различные эпоксидные смолы, агар, агароза или комбинации.
[00066] Более предпочтительно пластмассовый субстрат может являться полимером и/или сополимером полиолефина, полиэфира, полиуретана, меламина, полипропилена или полиамида.
[00067] Монолитная структура (субстрат) может быть выполнена из целлюлозных волокон (т.е. бумаги).
[00068] Субстрат может быть выполнен из керамических гранул или углеродных гранул.
[00069] Примеры, приведенные в данном описании, относятся к использованию керамических ячеистых структур. Однако выбор конкретного субстрата может быть осуществлен на основании уникальных свойств каждого из них и их конечного влияния на промышленную конструкцию системы. Например, в сферах применения, где снижение массы системы является критическим или где перепад давления при прохождении через ячеистую структуру является критическим, ячеистая структура, выполненная из металлического или целлюлозного волокна, может иметь преимущества перед ячеистой структурой, выполненной из керамики. В сферах применения, где является критической эффективность теплопередачи, металлические ячеистые структуры имеют преимущество перед керамическими. В сферах применения, где может потребоваться применение нескольких поглотителей, керамические ячеистые структуры имеют преимущество перед ячеистыми структурами всех остальных типов.
[00070] Полиолефин может представлять собой этиленвинилацетат, этиленметилакрилат, полиэтилен, полипропилен, этиленпропиленовый каучук, этиленпропилендиеновые каучуки, поли(1-бутен), полистирол, поли(2-бутен), поли(1-пентен), поли(2-пентен), поли(3-метил-1-пентен), поли(4-метил-1-пентен), 1,2 поли-1,3-бутадиен, 1,4-поли-1,3-бутадиен, полиизопрен, полихлоропрен, поли(винилацетат), поли(винилиденхлорид), поли(винилиденфторид), поли(тетрафторэтилен) или их смесь.
[00071] Полиэфир может представлять собой полиэтилентерефталат (ПЭТ), полибутилентерефталат (ПБТ), полиэтиленнафталат (ПЭН), сополимеры ПЭТ, сополимеры ПБТ и сополимеры ПЭН.
[00072] Монолитная структура в способе (способах) двойного или одинарного окунания может иметь каналы с приблизительно от 50 до 900 ячеек на квадратный дюйм.
[00073] Каналы могут иметь прямоугольное, треугольное или синусоидальное поперечное сечение.
[00074] Каналы могут иметь прямую, зигзагообразную, ассиметричную или шевронную форму.
[00075] Каналы могут иметь перфорированные или решетчатые стенки.
[00076] Керамическая или пластмассовая монолитная структура в способе (способах) двойного или одинарного окунания может быть выполнена посредством экструзии.
[00077] Металлическая или пластмассовая монолитная структура в способе (способах) двойного или одинарного окунания может быть выполнена посредством наслоения гофрированной металлической фольги или гофрированных пластмассовых листов.
[00078] Растворитель в способе (способах) двойного или одинарного окунания может выбираться из группы, состоящей из воды, метанола, этанола, толуола, изопропанола, 2-метоксиэтилового эфира и их смесей.
Основа из оксида алюминия
[00079] В соответствии с вариантом реализации изобретения описана основа из оксида алюминия содержит поглощающее покрытие. Как указано выше, поглотитель поглощает диоксид углерода и поглотитель выбран из группы, состоящей из аминов; моноэтаноламина, диэтаноламина; полиэтиленимина (ПЭИ); аминопропилтриметоксисилана; полиэтилениминтриметоксисилана; амид или амин содержащих полимеров, включая нейлон, полиуретан, поливиниламин или меламин; и их комбинацию. В некоторых предпочтительных вариантах реализации изобретения поглотитель представляет собой полиэтиленимин (ПЭИ).
[00080] Основа из оксида алюминия имеет площадь поверхности приблизительно от 150 м2/г до 250 м2/г и пористость приблизительно от 0,7 см3/г до 1,5 см3/г. В некоторых предпочтительных вариантах реализации изобретения основа из оксида алюминия имеет площадь поверхности приблизительно от 170 м2/г до 180 м2/г и пористость приблизительно от 0,9 см3/г до 1,2 см3/г. В наиболее предпочтительных вариантах реализации изобретения основа из оксида алюминия имеет площадь поверхности приблизительно 175 м2/г и объемную пористость приблизительно 1,1 см3/г.
Циклы поглощения и отдачи
[00081] На ФИГ. 2 схематически представлено графическое отображение циклов поглощения и отдачи поглощенного материала. Как представлено на ФИГ. 2, во время цикла поглощения монолитный поглотитель поглощает диоксид углерода при относительно низкой температуре, например, около 20°C, после чего воздух и диоксид углерода прогоняют через монолитный поглотитель с использованием вентилятора. Затем, как представлено на ФИГ. 2, во время цикла отдачи поглощенного материала монолитный поглотитель помещается в восстановительный узел, где монолитный поглотитель подвергается воздействию газового потока при повышенной температуре для восстановления поглотителя и концентрации содержания СО2 в потоке. Данный газовый поток может быть в виде пара или инертного газа, такого как азот, при температуре приблизительно от 90°C до 110°C. Поток, содержащий диоксид углерода, восстанавливается с монолитного поглотителя, а затем концентрированный диоксид углерода может восстанавливаться с применением сепаратора. При использовании данного способа возможно получение диоксида углерода с концентрацией 95%.
[00082] Для специалистов в данной области техники будет очевидно, что в данном описании представлен новый, удобный в применении и неочевидный способ нанесения поглощающего покрытия на субстрат, основу и/или субстрат, покрытый основой, который раскрыт в данной заявке. Кроме того, для специалистов в данной области техники будет очевидно, что для различных аспектов, раскрытых в вышеприведенном подробном описании изобретения, существуют многочисленные модификации, вариации, замены и аналоги. Таким образом, предполагается, что все такие модификации, вариации, замены и аналоги находятся в пределах сущности и объема данного изобретения, как определено прилагаемыми пунктами формулы изобретения.
ПРИМЕРЫ
Пример 1
[00083] Суспензию получали посредством смешивания 45,22 г оксида алюминия и 4,52 г оксогидроксида алюминия 169,48 г воды. Указанную суспензию наносили на ячеистую структуру из кордиерита с нанесением покрытия из оксида алюминия в 1,15 г/куб. дюйм. Данная ячеистая структура, покрытая оксидом алюминия, после этого была пропитана полиэтиленимином (ПЭИ) посредством погружения в водный раствор с концентрацией ПЭИ 20%. Полученная таким образом сердцевина была испытана на способность к поглощению СО2 (описание приводится ниже в примере 3 - Испытание на поглощающую способность), причем был получен результат по поглощению СО2 с показателем 4,20 ммоль/г.
Пример 2
Процедура испытания на поглощающую способность
[00084] Направить воздушный поток, содержащий 400 мг/м3 CO2 и 1% воды через ячеистую структуру, покрытую поглотителем, при температуре 35°C со скоростью 2,5 м/с до насыщения образца CO2. Провести десорбцию поглощенного СО2 посредством пропускания через сердцевину потока азота с содержанием 1% воды при 110°C. Провести поглощения CO2 снова при тех же условиях, которые приведены выше. Более подробная процедура на испытание способности к поглощению CO2.
[00085] Перед проведением замеров по поглощению каждый образец подвергается обработке, при которой на него направляли воздушный поток, содержащий 400 мг/м3 CO2 и 1% воды при температуре 35°C со скоростью 2,5 м/с до насыщения образца CO2. В образце поглотитель нанесен посредством погружения на основу, нанесенную на субстрат: например, ПЭИ на основе из оксида алюминия, нанесенной на керамическую ячеистую структуру. После этого образец подвергается очистке от CO2 посредством пропускания через него потока азота с содержанием 1% воды со скоростью 2,5 м/с и температуре 110°C до прекращения высвобождения СО2. Затем проводится измерение поглощения с направлением воздушного потока, содержащего 400 мг/м3 CO2 и 1% воды при температуре 35°C со скоростью 2,5 м/с до насыщения образца CO2.
Пример 3
[00086] Образцы получены способом нанесения покрытия двойным окунанием. Первый слой выполнен с применением суспензии на водном субстрате с наличием на керамической ячеистой структуре композиции, описанной выше. Каждый образец выполнен с использованием оксида алюминия различных типов (оксид алюминия А-К), с различной площадью поверхности и различной пористой структурой.
[00087] Состав первого покрытия, %:
а. Оксид алюминия 92
b. Связующее (алюмозоль) 6с.
Диспергатор 2
[00088] Для обеспечения адгезии покрытия проводился обжиг. Масса данного первичного покрытия составляет приблизительно 1,2 г/м3 ячеистой структуры.
[00089] Полиэтиленимин применялся для второго окунания из водного раствора, которое дает органическую часть от 26% до 39% общего покрытия (смотрите таблицу), (органическая фракция, представляющая собой вес ПЭИ (вес алюминия и связующего), разделенный на вес диспергатора, не учитывается, потому что он удаляется на стадии обжига).
[00090] Фиг. 3 иллюстрирует таблицу, суммирующую свойства оксидов алюминия А-К, которые применялись для в качестве основы для испытания поглотителей, например, ПЭИ, включая свойства оксидов алюминия А-К относительно СО2, захваченного на грамм покрытия (покрытие представляет собой комбинацию ПЭИ, оксида алюминия и связующего, которое наносится на керамическую ячеистую структуру). Как видно на Фиг. 8, оксид алюминия В имеет наибольшее количество захваченного СО2 и имеет предпочтительную комбинацию площади поверхности и объема пор. Указанный алюминий В обладает чрезмерно высокой общей пористостью, определенной с помощью заполнения ртутью.
[00091] Фиг. 4А и 4В иллюстрируют таблицы, содержащие данные по адсорбции и десорбции оксидов алюминия А-К. Данные в этих двух таблицах показывают, что адсорбция возрастает с ростом объема пористости. Эти данные также показывают, что адсорбция возрастает с ростом общей пористости. Эти данные дополнительно показывают, что адсорбция уменьшается с уменьшением объемного веса.
Пример 4
[00092] Эти примеры получены тем же способом, что и пример 3 (двойное окунание с помощью перечня тех же материалов), за исключением количества нанесенного ПЭИ, которое варьируется в различных примерах. Органическая фракция в каждом из примеров приведена в таблице.
[00093] Фиг. 5 графически иллюстрирует количество поглощенного CO2, нормализованное по общей массе покрытия (колонка под названием «Адсорбированный CO2 на грамм общей нагрузки (Основа и поглотитель)») как функция содержания ПЭИ (колонка под названием «Органическая нагрузка»), приведенная в таблице на Фиг. 4А. Колонка под названием «Органическая загрузка» на Фиг. 4А и 4В (т.е. содержание ПЭИ) представляет собой массу ПЭИ, разделенную на массу суммы (ПЭИ + оксид алюминия).
[00094] Эта масса покрытия включает как массу оксида алюминия, так и массу полиэтиленимина (ПЭИ). Как видно на Фиг. 5, увеличение количества ПЭИ приводит к увеличению количества CO2, захваченного ПЭИ, нанесенном на оксид алюминия В до точки в диапазоне около 30-40% концентрации ПЭИ, в которой количество захваченного CO2 уменьшается с ростом содержания ПЭИ. Полагают, что уменьшение захвата CO2 является результатом заполнения пористой структуры основы из оксида алюминия. Фиг. 5 также иллюстрирует свойства оксида алюминия С и показывает, что оксид алюминия С является не столь эффективным для улавливания CO2, как оксид алюминия В. Полагают, что пористая структура алюминия влияет на возможность нанесения ПЭИ на оксид алюминия и эффективное улавливание CO2. Оксид алюминия С не обладает оптимальной комбинацией площади поверхности к объему пористости по сравнению с оксидом алюминия В.
[00095] Фиг. 6 графически иллюстрирует количество поглощенного CO2, нормализованное по общей массе ПЭИ (колонка под названием «Адсорбированный CO2 на грамм нагрузки поглотителя (только поглотитель)») как функции содержания ПЭИ (колонка под названием «Органическая загрузка»), которая приведена на таблице на Фиг. 4А. Этот график главным образом представляет данные об эффективности использования ПЭИ. Можно видеть, что чем больше ПЭИ добавляется к покрытию из оксида алюминия, тем менее эффективно ПЭИ поглощает СО2. Здесь также приведены оксиды алюминия В, С и К, которые показывают, что способность ПЭИ улавливать СО2 зависит от свойств оксида алюминия. Как показано на Фиг. 6, алюминий В является наиболее эффективным среди оксидов алюминия В, С и К.
[00096] Фиг. 7 аналогична Фиг. 6, обсуждаемой выше с данными, полученными и описанными аналогичным образом. Количество СО2, нормально поглощенное по весу ПЭИ, изображено для оксидов алюминия В и С с разной площадью поверхности и объемами пористости, что свидетельствует о том, что оксид алюминия В с большей площадью и объемной пористостью лучше других улавливает СО2. Напомним, что Фиг. 3 иллюстрирует, что оксид алюминия В имеет площадь поверхности 175,3 м2/г и объемную пористости 1,077 см3/г, а оксид алюминия имеет площадь поверхности 128 м2/г и объемную пористости 0,422 см3/г.
Пример 5
[00097] Фиг. 8 графически иллюстрирует сравнение диэтаноламина (ДЭА), который иногда используется для улавливания СО2 в дымовых газах энергоустановок, и ПЭИ (оба вещества были введены в оксид алюминия) после обработки образца азотом с 1% содержания воды со скоростью 2,5 м/с и при температуре 110°C. Эффективность улавливания СО2 изменяется больше, чем образец ПЭИ после термической обработки. Измерение эффективности СО2 проводилось аналогичным образом, как было описано выше.
Пример 6
[00098] Фиг. 9 графически иллюстрирует, как молекулярная масса ПЭИ влияет на эффективность, если при наименьшей молекулярной массе ПЭИ (ММ=800) наблюдается наибольшая способность к поглощению СO2. Фиг. 9 иллюстрирует так называемый Lupasol («Лупазол»). Стоит заметить, что Lupasol® («Лупазол») является зарегистрированным товарным знаком для полиэтилениминов (ПЭИ), которые являются многофункциональными нетоксичными катионными полимерами, доступными в продаже компании BASF. Lupasol® SK, Lupasol® P, Lupasol® G20 и Lupasol® FG представляют собой ПЭИ с различными свойствами, доступные в продаже от компании BASF. Lupasol® SK имеет молекулярную массу, равную 2000000, Lupasol® P имеет молекулярную массу, равную 750000, Lupasol® G20 имеет молекулярную массу, равную 1200, и Lupasol® FG имеет молекулярную массу, равную 800.
Пример 7
[00099] Образец был получен с помощью способа из Примера 3, приведенного в настоящем документе и имеющего общую нагрузку покрытия 2,1 г/дюйм3 с 29% покрытия ПЭИ. Способность образца поглощать CO2 была оценена с помощью потока газа, содержащего 4000 ppm CO2, 12% кислорода, 1% воды и азот в качестве остального компонента, со скоростью потока 2,5 м/с до насыщения CO2. Было обнаружено, что образец поглощает 3,88 ммоль CO2 на грамм ПЭИ.
[000100] Настоящее изобретение было описано с помощью вышеуказанных примеров выполнения вариантов изобретения, которые не имеют ограничивающего характера. Специалисты в области техники могут вносить изменения и модификации, которые не выходят за объем настоящего изобретения, определяемый формулой изобретения, которая приведена ниже.

Claims (84)

1. Способ нанесения поглощающего покрытия на субстрат, основу и/или субстрат, покрытый основой, который включает:
(i) необязательно, получение субстрата, покрытого основой путем предварительной обработки основы суспензией, причем суспензия содержит:
a. растворитель,
b. связующее,
c. основу и
d. необязательный диспергатор; и
(ii) обработку субстрата, основы и/или субстрата, покрытого основой, покрытой поглотителем,
причем субстрат представляет собой (а) монолитную или ячеистую структуру, выполненную из керамики, металла или пластмассы; (b) полиуретановую пену, полипропиленовую пену, полиэфирную пену, металлическую пену или керамическую пену; или (с) тканые или нетканые пластмассовые или целлюлозные волокна,
причем основа представляет собой оксид алюминия, диоксид кремния, алюмосиликат, оксид титана, оксид циркония, углерод, цеолит, металл-органический каркас (МОК) или их комбинации, причем основа имеет площадь поверхности от 150 м2/г до 250 м2/г и объем пористости от 0,7 см3/г до 1, 5 см3/г,
причем поглотитель поглощает диоксид углерода и поглотитель является полиэтиленимином (ПЭИ); и
причем ПЭИ присутствует в концентрации от 25 мас.% до 45 мас.% в перерасчете на массу из ПЭИ, разделенную на массу из ПЭИ и основы.
2. Способ по п. 1, отличающийся тем, что керамический субстрат выбирают из группы, состоящей из кордиерита, оксида алюминия, кордиерита-α оксида алюминия, нитрида кремния, муллита циркона, сподумена, оксида магния-оксида алюминия-диоксида кремния, силиката циркона, силиманита, силикатов магния, циркона, петалита, алюмосиликатов и их комбинаций.
3. Способ по п. 2, отличающийся тем, что керамический субстрат представляет собой кордиерит, оксид алюминия или их комбинацию.
4. Способ по п. 1, отличающийся тем, что металлический субстрат представляет собой алюминий, титан, нержавеющую сталь, сплав Fe-Cr или сплав Cr-Al-Fe в форме листа, сетки, фольги, стружки, порошка, проволоки, стержня или их комбинации.
5. Способ по п. 4, отличающийся тем, что металлический субстрат представляет собой алюминий, нержавеющую сталь, сплав Cr-Al-Fe или их комбинации в форме листа, сетки или фольги.
6. Способ по п. 1, отличающийся тем, что пластмассовый субстрат представляет собой полимер или сополимер полиолефина(ов), полиэфира(ов), полиуретана(ов), поликарбоната(ов), полиэфирэфиркетона(ов), оксида(ов) полифенилена, полиэфирсульфона(ов), меламина(ов), полиамида(ов), полиакрилатов, полистиролов, полиакрилонитрилов, полиимидов, полифурфурилового спирта, фенолфурфурилового спирта, меламинформальдегидов, резорцинформальдегидов, крезолформальдегидов, фенолформальдегидов, диальдегида поливинилового спирта, полициануратов, полиакриламидов, различные эпоксидные смолы, агар, агарозу или комбинации.
7. Способ по п. 6, отличающийся тем, что пластмассовый субстрат является полимером и/или сополимером полиолефина, полиэфира, полиуретана, меламина, полипропилена или полиамида.
8. Способ по п. 1, отличающийся тем, что монолитная структура содержит каналы, содержащие с приблизительно от 50 до 900 клеток на квадратный дюйм.
9. Способ по п. 8, отличающийся тем, что каналы имеют квадратное, треугольное или синусоидальное сечение.
10. Способ по п. 9, отличающийся тем, что каналы имеют прямую, зигзагообразную, асимметричную или шевронную форму.
11. Способ по п. 9, отличающийся тем, что каналы имеют перфорированные или решетчатые стенки.
12. Способ по п. 1, отличающийся тем, что керамическая или пластмассовая монолитная структура получена с помощью экструзии.
13. Способ по п. 1, отличающийся тем, что металлическая или пластмассовая монолитная структура получена путем наслоения гофрированной металлической фольги или гофрированных пластмассовых листов.
14. Способ по п. 1, отличающийся тем, что стадия (i) дополнительно включает:
a. покрытие субстрата суспензией;
b. удаление избыточного растворителя с покрытого субстрата и
c. обжиг связующего и основы на субстрате.
15. Способ по п. 14, отличающийся тем, что обжиг происходит при температурах от 200°С до 550°С.
16. Способ по п. 15, отличающийся тем, что обжиг происходит при температурах от 425°С до 475°С.
17. Способ по п. 16, отличающийся тем, что обжиг происходит при температуре 450°С.
18. Способ по п. 1, отличающийся тем, что связующее на стадии (i) представляет собой алюмозоль, оксогидроксид алюминия, золь кремниевой кислоты, золь оксида титана, ацетат циркония, силикон или их комбинацию.
19. Способ по п. 18, отличающийся тем, что алюмозоль измельчен до размера частиц D50 в диапазоне от 1 до 10 мкм.
20. Способ по п. 19, отличающийся тем, что алюмозоль измельчен до размера частиц D50 в диапазоне от 3 до 6 мкм.
21. Способ по п. 1, дополнительно включающий
(iii) после стадии (ii) высушивание обработанного субстрата для удаления избыточных количеств поглотителя и для удаления избыточного растворителя с получением субстрата, покрытого поглотителем, и/или субстрата, покрытого основой, покрытой поглотителем.
22. Способ по п. 21, отличающийся тем, что высушивание происходит при температуре от 30°С до 70°С.
23. Способ по п. 22, отличающийся тем, что высушивание происходит при температуре от 40°С до 60°С.
24. Способ по п. 23, отличающийся тем, что высушивание происходит при температуре 50°С.
25. Способ по п. 1, отличающийся тем, что растворитель выбирают из группы, состоящей из воды, метанола, этанола, толуола, изопропанола, 2-метоксиэтилового эфира и их смесей.
26. Способ нанесения поглощающего покрытия на субстрат, основу и/или субстрат, покрытый основой, который включает:
(i) обработку субстрата, основы и/или субстрата, покрытого основой, суспензией, которая содержит:
a. растворитель,
b. связующее и
c. поглотитель,
причем субстрат представляет собой (а) монолитную или ячеистую структуру, выполненную из керамики, металла или пластмассы; (b) полиуретановую пену, полипропиленовую пену, полиэфирную пену, металлическую пену или керамическую пену; или (с) тканое или нетканое пластмассовое или целлюлозное волокно,
причем основа представляет собой оксид алюминия, диоксид кремния, алюмосиликат, оксид титана, оксид циркония, углерод, цеолит, металл-органический каркас (МОК) или их комбинации, причем основа имеет площадь поверхности от 150 м2/г до 250 м2/г и объем пористости от 0,7 см3/г до 1,5 см3/г,
причем поглотитель поглощает диоксид углерода и поглотитель является полиэтиленимином (ПЭИ); и
причем ПЭИ присутствует в концентрации от 25 мас.% до 45 мас.% в перерасчете на массу ПЭИ, разделенную на массу из ПЭИ и основы.
27. Способ по п. 26, дополнительно включающий:
(ii) после стадии (i) высушивание субстрата, обработанного суспензией, основы и/или субстрата, покрытого основой, и затем
(iii) удаление избыточного поглотителя и растворителя при определенной температуре для предотвращения разложения связующего или поглотителя с получением субстрата, покрытого поглотителем, основы, покрытой поглотителем, и/или субстрата, покрытого основой, покрытой поглотителем.
28. Способ по п. 26, отличающийся тем, что керамический субстрат выбирают из группы, состоящей из кордиерита, оксида алюминия, кордиерита-α оксида алюминия, нитрида кремния, муллита циркона, сподумена, оксида магния-оксида алюминия-диоксида кремния, силиката циркона, силиманита, силикатов магния, циркона, петалита, алюмосиликатов и их комбинаций.
29. Способ по п. 28, отличающийся тем, что керамический субстрат представляет собой кордиерит, оксид алюминия или их комбинацию.
30. Способ по п. 26, отличающийся тем, что металлический субстрат представляет собой алюминий, титан, нержавеющую сталь, сплав Fe-Cr или сплав Cr-Al-Fe в форме листа, сетки, фольги, стружки, порошка, проволоки, стержня или их комбинации.
31. Способ по п. 30, отличающийся тем, что металлический субстрат представляет собой алюминий, нержавеющую сталь, сплав Cr-Al-Fe или их комбинации в форме листа, сетки или фольги.
32. Способ по п. 26, отличающийся тем, что пластмассовый субстрат представляет собой полимер или сополимер полиолефина(ов), полиэфира(ов), полиуретана(ов), поликарбоната(ов), полиэфирэфиркетона(ов), оксида(ов) полифенилена, полиэфирсульфона(ов), меламина(ов), полиамида(ов), полиакрилатов, полистиролов, полиакрилонитрилов, полиимидов, полифурфурилового спирта, фенолфурфурилового спирта, меламинформальдегидов, резорцинформальдегидов, крезолформальдегидов, фенолформальдегидов, диальдегида поливинилового спирта, полициануратов, полиакриламидов, различные эпоксидные смолы, агар, агарозу или комбинации.
33. Способ по п. 32, отличающийся тем, что пластмассовый субстрат является полимером и/или сополимером полиолефина, полиэфира, полиуретана, меламина, полипропилена или полиамида.
34. Способ по п. 33, отличающийся тем, что полиолефин представляет собой этиленвинилацетат, этиленметилакрилат, полиэтилен, полипропилен, этиленпропиленовый каучук, этиленпропилендиеновые каучуки, поли(1-бутен), полистирол, поли(2-бутен), поли(1-пентен), поли(2-пентен), поли(3-метил-1-пентен), поли(4-метил-1-пентен), 1,2 поли-1,3-бутадиен, 1,4-поли-1,3-бутадиен, полиизопрен, полихлоропрен, поли(винилацетат), поли(винилиденхлорид), поли(винилиденфторид), поли(тетрафторэтилен) или их смесь.
35. Способ по п. 33, отличающийся тем, что полиэфир представляет собой полиэтилентерефталат (ПЭТ), полибутилентерефталат (ПБТ), полиэтиленнафталат (ПЭН), сополимеры ПЭТ, сополимеры ПБТ и сополимеры ПЭН.
36. Способ по п. 26, отличающийся тем, что монолитная структура содержит каналы, содержащие с приблизительно от 50 до 900 ячеек на квадратный дюйм.
37. Способ по п. 36, отличающийся тем, что каналы имеют квадратное, треугольное или синусоидальное сечение.
38. Способ по п. 36, отличающийся тем, что каналы имеют прямую, зигзагообразную, асимметричную или шевронную форму.
39. Способ по п. 36, отличающийся тем, что каналы имеют перфорированные или решетчатые стенки.
40. Способ по п. 26, отличающийся тем, что керамическая или пластмассовая монолитная структура получена с помощью экструзии.
41. Способ по п. 26, отличающийся тем, что металлическая или пластмассовая монолитная структура получена путем наслоения гофрированной металлической фольги или гофрированных пластмассовых листов.
42. Способ по п. 26, отличающийся тем, что связующее на стадии (i) выбирают из группы, состоящей из полиэтилена, полипропилена, сополимеров полиолефина, полиизопрена, полибутадиена, полибутадиеновых сополимеров, хлорированного каучука; нитрильного каучука, полихлоропрена, этиленпропилендиеновьгх эластомеров, полистирола, полиакрилата, полиметакрилата, полиакрилонитрила, поли(виниловых эфиров), поли(винилгалогенидов), полиамидов, целлюлозных полимеров, полиимидов, акрилов, винилакрилов и стирольных акрилов, поливинилового спирта, термопластичных полиэфиров, термореактивных полиэфиров, поли(фениленоксидов), поли(фениленсульфидов), фторированных полимеров, таких как поли(тетрафторэтилен), поливинилиденфторид, поли(винилфторид) и хлор/фтор сополимеры, такие как сополимер этиленхлортрифтор-этилена, полиамида, фенольных смол и эпоксидных смол, полиуретана, полимеров силикона, а также их комбинаций.
43. Способ по п. 27, отличающийся тем, что высушивание происходит в диапазоне температур от 50°С до 150°С.
44. Способ по п. 43, отличающийся тем, что высушивание происходит в диапазоне температур от 70°С до 110°С.
45. Способ по п. 44, отличающийся тем, что высушивание происходит при температуре 110°С.
46. Способ по п. 26, отличающийся тем, что растворитель выбирают из группы, состоящей из воды, метанола, этанола, толуола, изопропанола, 2-метоксиэтилового эфира и их смесей.
47. Субстрат, покрытый поглотителем, основа, покрытая поглотителем, и субстрат, покрытый поглотителем с основой по п. 21.
48. Субстрат, покрытый поглотителем, основа, покрытая поглотителем, и субстрат, покрытый поглотителем с основой по п. 27.
49. Поглощающее покрытие по п. 1.
50. Поглощающее покрытие по п. 26.
51. Основа из оксида алюминия, которая содержит поглощающее покрытие,
причем поглотитель поглощает диоксид углерода, и поглотитель является полиэтиленимином (ПЭИ); и причем ПЭИ присутствует в концентрации от 25 мас.% до 45 мас.% в перерасчете на массу ПЭИ, разделенную на массу из ПЭИ и основы,
причем основа из оксида алюминия имеет площадь поверхности от 150 м2/г до 250 м2/г и объем пористости от 0,7 см3/г до 1, 5 см3/г.
52. Основа из оксида алюминия по п. 51, отличающаяся тем, что
основа из оксида алюминия имеет площадь поверхности от около 170 м2/г до 180 м2/г и объем пористости от около 0,9 см3/г до 1,2 см3/г.
53. Основа из оксида алюминия по п. 52, отличающаяся тем, что площадь поверхности основы из оксида алюминия составляет около 175 м2/г, и объем пористости составляет около 1,1 см3/г.
54. Способ по п. 1, отличающийся тем, что поглотитель поглощает диоксид углерода из воздуха, из отработанных газов, специально полученного диоксида углерода или их смесей.
55. Способ по п. 54, отличающийся тем, что поглощенный диоксид углерода хранят и/или применяют для повышения эффективности извлечения нефти, газирования напитков углекислым газом, для обработки/охлаждения/заморозки пищевых продуктов, в качестве реагента при производстве химикатов, как сырье для водорослей, а также в качестве среды для тушения пожаров.
56. Способ по п. 1, отличающийся тем, что поглотитель очищает или отделяет газы.
57. Способ по п. 1, отличающийся тем, что поглотитель поглощает диоксид углерода для очистки природного газа, окружающего воздуха, дымового газа или других загрязненных газовых смесей, содержащих диоксид углерода.
RU2014117818A 2011-10-06 2012-10-04 Способ нанесения поглощающего покрытия на субстрат, основу и/или субстрат, покрытый основой RU2611519C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161543999P 2011-10-06 2011-10-06
US61/543,999 2011-10-06
PCT/US2012/058710 WO2013052637A2 (en) 2011-10-06 2012-10-04 Methods of applying a sorbent coating on a substrate, a support, and/or a substrate coated with a support

Publications (2)

Publication Number Publication Date
RU2014117818A RU2014117818A (ru) 2015-11-20
RU2611519C2 true RU2611519C2 (ru) 2017-02-27

Family

ID=48044392

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014117818A RU2611519C2 (ru) 2011-10-06 2012-10-04 Способ нанесения поглощающего покрытия на субстрат, основу и/или субстрат, покрытый основой

Country Status (13)

Country Link
US (1) US9457340B2 (ru)
EP (1) EP2763782A4 (ru)
JP (1) JP2014533195A (ru)
KR (1) KR20140076598A (ru)
CN (1) CN103958027A (ru)
BR (1) BR112014008242A2 (ru)
CA (1) CA2850943A1 (ru)
IN (1) IN2014CN03261A (ru)
MX (1) MX2014004107A (ru)
RU (1) RU2611519C2 (ru)
SG (1) SG11201401255QA (ru)
WO (1) WO2013052637A2 (ru)
ZA (1) ZA201403187B (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2807778C1 (ru) * 2023-04-17 2023-11-21 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ОРГАНИЧЕСКОЙ ХИМИИ им. Н.Д. ЗЕЛИНСКОГО РОССИЙСКОЙ АКАДЕМИИ НАУК (ИОХ РАН) Способ получения бактерицидных материалов для средств защиты органов дыхания

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130207034A1 (en) * 2012-02-09 2013-08-15 Corning Incorporated Substrates for carbon dioxide capture and methods for making same
US8974577B2 (en) * 2013-04-23 2015-03-10 Corning Incorporated Sorbent compositions, sorbent articles, methods for preparing sorbent articles, and methods for capturing target gases using the sorbent articles
CN103285827A (zh) * 2013-05-09 2013-09-11 中国科学院宁波材料技术与工程研究所 一种二氧化碳捕获材料及其制备方法和用途
ES2528062B1 (es) * 2013-07-31 2016-02-10 Diego LÓPEZ SÁNCHEZ Revestimiento continuo de altas prestaciones para la construcción, perfeccionado
JP2017512637A (ja) * 2014-03-18 2017-05-25 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 微小孔性金属−有機骨格の秩序化超格子を含むメゾスコピック材料
EP3151945B1 (en) * 2014-06-04 2021-08-25 Haldor Topsøe A/S Gas treatment monolith article and use thereof
DE102014012566A1 (de) * 2014-08-29 2016-03-03 Instraction Gmbh Sorbens zur Bindung von Metallen und dessen Herstellung
CN104226271A (zh) * 2014-09-28 2014-12-24 陕西华陆化工环保有限公司 用于水中重金属离子的吸附剂的制备方法
US10307749B2 (en) 2014-11-11 2019-06-04 Exxonmobil Upstream Research Company High capacity structures and monoliths via paste imprinting
JP2018500158A (ja) * 2014-12-17 2018-01-11 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. フィルタエレメントおよびフィルタエレメントを含むガス浄化装置
JP5795423B1 (ja) * 2014-12-19 2015-10-14 株式会社西部技研 吸収式除去・濃縮装置
US9744521B2 (en) 2014-12-23 2017-08-29 Exxonmobil Upstream Research Company Structured adsorbent beds, methods of producing the same and uses thereof
KR20180100734A (ko) 2015-02-13 2018-09-11 엔테그리스, 아이엔씨. 기판 제품 및 장치의 특성 및 성능을 향상시키기 위한 코팅
CN104645782B (zh) * 2015-03-16 2017-05-31 上海锅炉厂有限公司 用于燃烧后捕集的二氧化碳吸收剂
MX2017012247A (es) * 2015-03-23 2018-01-09 Basf Corp Sorbentes de dioxido de carbono para el control de calidad del aire interior.
DE102015003939A1 (de) 2015-03-26 2016-09-29 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Kohlendioxid aus einem Kohlendioxid enthaltenden Gasgemisch
US10723635B2 (en) 2015-04-11 2020-07-28 Northwestern University Metal-organic frameworks for adsorption of liquid phase compounds
WO2016188606A1 (de) * 2015-05-22 2016-12-01 Merck Patent Gmbh Vorrichtung für die stofftrennung
WO2016191150A1 (en) * 2015-05-26 2016-12-01 Corning Incorporated Methods for regenerating a carbon dioxide capture article
EP3313570B1 (en) 2015-06-29 2021-06-02 Corning Incorporated Porous ceramic body to reduce emissions
US20180296961A1 (en) * 2015-10-16 2018-10-18 Corning Incorporated Articles for carbon dioxide capture and methods of making the same
AU2016357289A1 (en) 2015-11-16 2018-06-14 Exxonmobil Upstream Research Company Adsorbent materials and methods of adsorbing carbon dioxide
JP2018538137A (ja) * 2015-11-30 2018-12-27 コーニング インコーポレイテッド 二酸化炭素回収物品およびその製造方法
US10550010B2 (en) * 2015-12-11 2020-02-04 Uchicago Argonne, Llc Oleophilic foams for oil spill mitigation
JP2019507674A (ja) 2016-02-12 2019-03-22 ビーエーエスエフ コーポレーション 大気質管理のための二酸化炭素吸着剤
CN108883358B (zh) 2016-03-18 2021-06-08 埃克森美孚上游研究公司 用于与其相关的变吸附工艺的装置和***
CN109219476A (zh) 2016-05-31 2019-01-15 埃克森美孚上游研究公司 用于变吸附方法的装置和***
CN109195685A (zh) 2016-05-31 2019-01-11 埃克森美孚上游研究公司 用于变吸附方法的装置和***
WO2018009882A1 (en) * 2016-07-08 2018-01-11 Uchicago Argonne, Llc Functionalized foams
CN109642094B (zh) * 2016-08-23 2021-09-14 巴斯夫欧洲公司 复合材料
US10434458B2 (en) 2016-08-31 2019-10-08 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
WO2018044501A1 (en) 2016-09-01 2018-03-08 Exxonmobil Upstream Research Company Swing adsorption processes for removing water using 3a zeolite structures
CN108203514B (zh) * 2016-12-16 2022-11-22 漂莱特(中国)有限公司 使用超疏水膜通过振动喷射生产均匀的聚合物珠粒的方法
AU2017379685B2 (en) 2016-12-21 2020-03-12 Exxonmobil Upstream Research Company Self-supporting structures having foam-geometry structure and active materials
EP3558487A1 (en) 2016-12-21 2019-10-30 ExxonMobil Upstream Research Company Self-supporting structures having active materials
BR112019018160B1 (pt) * 2017-03-13 2023-05-02 Basf Se Fibra revestida para reforço de polímero, compósito, e, método para produção de uma fibra revestida
SE540847C2 (en) * 2017-05-03 2018-11-27 Svenska Aerogel Ab A sorbent and a filter for capture of ethylene gas
JP2018187574A (ja) * 2017-05-09 2018-11-29 川崎重工業株式会社 二酸化炭素吸収剤及びその製造方法、並びに、二酸化炭素分離システム
RU2656490C1 (ru) * 2017-06-19 2018-06-05 Открытое Акционерное Общество "Корпорация "Росхимзащита" Способ получения регенерируемого поглотителя диоксида углерода
CN109201112A (zh) * 2017-06-29 2019-01-15 深圳光启高等理工研究院 一种复合载体及其制备方法和应用
US11896935B2 (en) 2017-08-17 2024-02-13 Uchicago Argonne, Llc Filtration membranes
KR102117864B1 (ko) * 2017-11-07 2020-06-09 한국생산기술연구원 내유성 및 응집효과를 위한 유수분리 필터의 제조방법
US10883947B2 (en) 2017-11-01 2021-01-05 Palo Alto Research Center Incorporated Sorbent based gas concentration monitor
JP2019088499A (ja) * 2017-11-15 2019-06-13 大原パラヂウム化学株式会社 生活臭用消臭剤
US11331620B2 (en) 2018-01-24 2022-05-17 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
WO2019168628A1 (en) 2018-02-28 2019-09-06 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US11074899B2 (en) 2018-03-15 2021-07-27 International Business Machines Corporation VOC sequestering acoustic foam
US12012559B2 (en) 2018-05-11 2024-06-18 Uchicago Argonne, Llc Janus membranes via atomic layer deposition
US11590456B2 (en) 2018-05-31 2023-02-28 Uchicago Argonne, Llc Systems and methods for oleophobic composite membranes
KR20210044879A (ko) * 2018-08-27 2021-04-23 일렉트릭 파워 리서치 인스티튜트, 인크. 다중 액상 화합물의 제거를 위한 금속-유기 프레임워크 및 이를 사용하고 제조하는 방법
JP7205866B2 (ja) * 2018-08-28 2023-01-17 株式会社西部技研 ハニカム吸着体及びそれを用いた除湿空調装置
US11351478B2 (en) 2018-09-06 2022-06-07 Uchicago Argonne, Llc Oil skimmer with oleophilic coating
AU2019391604A1 (en) * 2018-12-07 2021-05-20 Commonwealth Scientific And Industrial Research Organisation Adsorption and desorption apparatus
CN109763334A (zh) * 2018-12-14 2019-05-17 北京化工大学 一种基于织物载体修饰有机金属骨架化合物mof的制备方法
WO2020131496A1 (en) 2018-12-21 2020-06-25 Exxonmobil Upstream Research Company Flow modulation systems, apparatus, and methods for cyclical swing adsorption
KR102053664B1 (ko) * 2019-03-21 2019-12-10 한국화학연구원 극독성 유기인계 화합물의 제독을 위한 반응필터 및 이를 이용한 제독방법
CN109925871A (zh) * 2019-03-21 2019-06-25 艾易西(中国)环保科技有限公司 一种除酸材料及其制备方法
US20200324246A1 (en) * 2019-04-12 2020-10-15 Hamilton Sundstrand Corporation Filtration structure for carbon dioxide scrubber
US11548798B2 (en) 2019-04-23 2023-01-10 Uchicago Argonne, Llc Compressible foam electrode
US20200338497A1 (en) * 2019-04-29 2020-10-29 Claude Steven McDaniel Devices, facilities, methods and compositions for carbon dioxide capture, sequestration and utilization
US11376545B2 (en) 2019-04-30 2022-07-05 Exxonmobil Upstream Research Company Rapid cycle adsorbent bed
CN113874106A (zh) * 2019-05-21 2021-12-31 国立大学法人九州大学 气体吸收材料、气体吸收体、气体分离材料、过滤器及气体分离装置
US20220258127A1 (en) * 2019-09-04 2022-08-18 Electric Power Research Institute, Inc. Metal-Organic Frameworks for Removal of Iodine Oxy-Anion
WO2021071755A1 (en) 2019-10-07 2021-04-15 Exxonmobil Upstream Research Company Adsorption processes and systems utilizing step lift control of hydraulically actuated poppet valves
US11433346B2 (en) 2019-10-16 2022-09-06 Exxonmobil Upstream Research Company Dehydration processes utilizing cationic zeolite RHO
KR102114868B1 (ko) * 2019-10-18 2020-05-26 한국생산기술연구원 이산화탄소 흡착 및 초발수 코팅법 및 이를 이용한 필터여재
CN112691644B (zh) * 2019-10-23 2023-10-31 中国石油化工股份有限公司 一种双金属MOFs负载氧化铝小球的制备方法与应用
CN110937589B (zh) * 2019-12-11 2022-10-25 福州大学 一种制备和调控高氮掺杂多孔碳的高内相乳液模板法
CN111437683A (zh) * 2020-02-14 2020-07-24 辽宁工程技术大学 一种工业废气的处理方法
US11420150B2 (en) 2020-02-21 2022-08-23 King Fahd University Of Petroleum And Minerals Aminated magnesium oxide adsorbent and a method of capturing carbon dioxide
CN115349050A (zh) 2020-03-27 2022-11-15 英格维蒂南卡罗来纳有限责任公司 低排放吸附剂和罐***
CN111715031B (zh) * 2020-06-24 2022-08-05 江西师范大学 一种二氧化碳吸收介质及其优化工艺
KR102441369B1 (ko) * 2020-12-07 2022-09-06 희성촉매 주식회사 배기가스 정화용 촉매의 워시코트
CN113304316A (zh) * 2021-05-27 2021-08-27 南京医科大学附属口腔医院 一种氧化锆种植体表面促成骨活化处理方法
WO2023287630A1 (en) 2021-07-12 2023-01-19 Decarbontek LLC Modular adsorbent devices and applications
JPWO2023063050A1 (ru) 2021-10-15 2023-04-20
WO2023068651A1 (ko) * 2021-10-22 2023-04-27 한국과학기술원 전기화된 파이버 흡착제의 제조방법 및 전기 및 전자기 스윙 흡착 공정
DE102022103174A1 (de) 2022-02-10 2023-08-10 Volkswagen Aktiengesellschaft Funktionalisierte Aktivkohle als Adsorptionsmittel für die Abscheidung von CO2 aus der Atmosphärenluft
GB202202072D0 (en) * 2022-02-16 2022-03-30 Puraffinity Ltd Functionalised alumina adsorbent materials for removal of contaminants from water
WO2023178059A1 (en) 2022-03-16 2023-09-21 Engi-Mat Co. Multilayered wire mesh-supported membranes for separation applications
CN114574045A (zh) * 2022-03-18 2022-06-03 上海泽耀环保科技有限公司 一种水媒介二氧化碳捕获表层涂料的制备方法
DE102022110652A1 (de) 2022-05-02 2023-11-02 Volkswagen Aktiengesellschaft Adsorptionstextil zur Adsorption von Kohlendioxid, System sowie Verwendung eines solchen
WO2023215875A1 (en) * 2022-05-06 2023-11-09 Global Thermostat Operations, Llc. Phenol containing sorbents, systems including sorbents, and methods using the sorbents
CN114904512A (zh) * 2022-05-07 2022-08-16 南开大学深圳研究院 莫来石型负载的蜂窝陶瓷催化剂表面活性涂层及其制备方法
CN114950390A (zh) * 2022-06-16 2022-08-30 四川大学 一种整型式co2吸附剂及其制备方法与应用
WO2024137851A1 (en) * 2022-12-20 2024-06-27 Battelle Memorial Institute Fibrous amine-functionalized matrix (fam) for contaminant removal from gaseous and liquid sources, methods of making and use
US11904297B1 (en) 2023-01-11 2024-02-20 Iliad Ip Company, Llc Process for manufacturing lithium selective adsorption/separation media
US12043792B1 (en) 2023-01-27 2024-07-23 Saudi Arabian Oil Company Carbon dioxide capturing polymeric system for water shutoff applications

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6547854B1 (en) * 2001-09-25 2003-04-15 The United States Of America As Represented By The United States Department Of Energy Amine enriched solid sorbents for carbon dioxide capture
US20060165574A1 (en) * 2002-12-18 2006-07-27 Abdelhamid Sayari Modified adsorbent for dry scrubbing and use thereof
US20070107599A1 (en) * 2005-11-17 2007-05-17 Hoke Jeffrey B Hydrocarbon adsorption slurry washcoat formulation for use at low temperature
US20100154636A1 (en) * 2008-09-05 2010-06-24 Alstom Technology Ltd Novel solid materials and method for co2 removal from gas stream
RU2420352C1 (ru) * 2009-10-29 2011-06-10 Общество с ограниченной ответственностью "ЭНВАЙРОКЕТ" Адсорбент для улавливания, концентрирования и хранения co2

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1283822A (en) * 1969-08-20 1972-08-02 Mine Safety Appliances Co Regenerable carbon dioxide sorbent
US4593148A (en) * 1985-03-25 1986-06-03 Phillips Petroleum Company Process for removal of arsine impurities from gases containing arsine and hydrogen sulfide
JPH04200742A (ja) * 1990-11-30 1992-07-21 Kuraray Chem Corp 炭酸ガス吸着剤
JP3816662B2 (ja) * 1998-03-18 2006-08-30 株式会社東芝 炭酸ガス吸収部材
US6190627B1 (en) * 1999-11-30 2001-02-20 Engelhard Corporation Method and device for cleaning the atmosphere
WO2003004438A2 (en) 2001-07-06 2003-01-16 3M Innovative Properties Company Inorganic fiber substrates for exhaust systems and methods of making same
DE60214197T2 (de) * 2001-06-08 2007-07-19 Donaldson Co., Inc., Minneapolis Adsorptionselement und -verfahren
EP2214814A4 (en) 2007-11-08 2011-04-27 Univ Akron AMINABSORBER FOR SUSPENSION OF CARBON DIOXIDE AND METHOD FOR THE PRODUCTION AND USE THEREOF
EP2680939A1 (en) * 2011-02-28 2014-01-08 Corning Incorporated Article for carbon dioxide capture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6547854B1 (en) * 2001-09-25 2003-04-15 The United States Of America As Represented By The United States Department Of Energy Amine enriched solid sorbents for carbon dioxide capture
US20060165574A1 (en) * 2002-12-18 2006-07-27 Abdelhamid Sayari Modified adsorbent for dry scrubbing and use thereof
US20070107599A1 (en) * 2005-11-17 2007-05-17 Hoke Jeffrey B Hydrocarbon adsorption slurry washcoat formulation for use at low temperature
US20100154636A1 (en) * 2008-09-05 2010-06-24 Alstom Technology Ltd Novel solid materials and method for co2 removal from gas stream
RU2420352C1 (ru) * 2009-10-29 2011-06-10 Общество с ограниченной ответственностью "ЭНВАЙРОКЕТ" Адсорбент для улавливания, концентрирования и хранения co2

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Jian-Rong Li, Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks, Coordination Chemistry Reviews, 255, 2011, 1791-1823. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2807778C1 (ru) * 2023-04-17 2023-11-21 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ОРГАНИЧЕСКОЙ ХИМИИ им. Н.Д. ЗЕЛИНСКОГО РОССИЙСКОЙ АКАДЕМИИ НАУК (ИОХ РАН) Способ получения бактерицидных материалов для средств защиты органов дыхания

Also Published As

Publication number Publication date
MX2014004107A (es) 2014-07-11
BR112014008242A2 (pt) 2017-06-13
RU2014117818A (ru) 2015-11-20
US9457340B2 (en) 2016-10-04
JP2014533195A (ja) 2014-12-11
US20130095996A1 (en) 2013-04-18
CN103958027A (zh) 2014-07-30
KR20140076598A (ko) 2014-06-20
EP2763782A2 (en) 2014-08-13
CA2850943A1 (en) 2013-04-11
IN2014CN03261A (ru) 2015-07-31
EP2763782A4 (en) 2015-08-05
WO2013052637A2 (en) 2013-04-11
ZA201403187B (en) 2015-12-23
WO2013052637A3 (en) 2013-06-06
SG11201401255QA (en) 2014-05-29

Similar Documents

Publication Publication Date Title
RU2611519C2 (ru) Способ нанесения поглощающего покрытия на субстрат, основу и/или субстрат, покрытый основой
US20210138437A1 (en) Methods or producing carbon dioxide sorbents for indoor air quality control
US9533250B2 (en) Sorbents for carbon dioxide reduction from indoor air
CN107876043B (zh) 一种用于烟气净化的陶瓷催化滤芯及烟气一体化脱硫脱硝除尘方法
US20120135214A1 (en) Sorbent For Removal Of A Contaminant From A Fluid
WO2020086525A1 (en) Catalyst-adsorbent filter for air purification
CN107903666A (zh) 一种滤材用除醛防霉涂料及制备方法
WO2023212547A1 (en) Phenyl containing sorbents, bicarbonate containing sorbents, systems including sorbents, and methods using the sorbents
US20180141023A1 (en) A chemical formaldehyde filter
WO2023196800A2 (en) Epoxide-modified-sorbents, systems including epoxide-modified-sorbents, and methods using the epoxide-modified-sorbents
US11247190B2 (en) Composite material, its manufacture and use in gas purification
JP6575993B2 (ja) アンモニアガス、二酸化硫黄ガス及び二酸化窒素ガス除去フィルター
CN1772340A (zh) 一种基于吸附剂-聚合物复合材料的烟道气处理技术
KR20210126576A (ko) 질소산화물 분리용 필터 매체
JP4774573B2 (ja) 排ガス処理方法及びその装置
JPH04503326A (ja) 有機物質吸収用の気泡体の製造方法
US20180296961A1 (en) Articles for carbon dioxide capture and methods of making the same
US20240165584A1 (en) Regenerable rotor and method of manufacture
KR101957980B1 (ko) 알칼리 금속 염을 이용한 이산화탄소 흡수제의 제조방법 및 이로부터 제조된 흡수제를 포함하는 이산화탄소 포집모듈
WO2024124198A1 (en) Glycidyl ether modified amine sorbents, systems including sorbents, and methods using the sorbents
Verma et al. Green Composite Membranes in Air Purification
WO2023215875A1 (en) Phenol containing sorbents, systems including sorbents, and methods using the sorbents
TR2021011708A2 (tr) Yüksek co2 adsorpsi̇yonu sağlayan mi̇kro deli̇kli̇, yekpare, akti̇f karbon eleman üreti̇m yöntemi̇

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20171005