RU2307004C2 - Способ металлизации порошков и микросфер из газовой фазы и устройство для его осуществления - Google Patents

Способ металлизации порошков и микросфер из газовой фазы и устройство для его осуществления Download PDF

Info

Publication number
RU2307004C2
RU2307004C2 RU2005131339/02A RU2005131339A RU2307004C2 RU 2307004 C2 RU2307004 C2 RU 2307004C2 RU 2005131339/02 A RU2005131339/02 A RU 2005131339/02A RU 2005131339 A RU2005131339 A RU 2005131339A RU 2307004 C2 RU2307004 C2 RU 2307004C2
Authority
RU
Russia
Prior art keywords
powder
chamber
reactor
pipelines
gas phase
Prior art date
Application number
RU2005131339/02A
Other languages
English (en)
Other versions
RU2005131339A (ru
Inventor
Василий Иванович Михайлюк (RU)
Василий Иванович Михайлюк
Лили Николаевна Кислинска (RU)
Лилия Николаевна Кислинская
Игорь Валентинович Пикулин (RU)
Игорь Валентинович Пикулин
Александр Николаевич Ховрин (RU)
Александр Николаевич Ховрин
Николай Иванович Белоусов (RU)
Николай Иванович Белоусов
Валерий Станиславович Дрожжин (RU)
Валерий Станиславович Дрожжин
Original Assignee
Российская Федерация, от имени которой выступает Государственный заказчик - Федеральное агентство по атомной энергии
Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр-Всероссийский научно-исследовательский институт экспериментальной физики" - ФГУП "РФЯЦ-ВНИИЭФ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает Государственный заказчик - Федеральное агентство по атомной энергии, Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр-Всероссийский научно-исследовательский институт экспериментальной физики" - ФГУП "РФЯЦ-ВНИИЭФ" filed Critical Российская Федерация, от имени которой выступает Государственный заказчик - Федеральное агентство по атомной энергии
Priority to RU2005131339/02A priority Critical patent/RU2307004C2/ru
Publication of RU2005131339A publication Critical patent/RU2005131339A/ru
Application granted granted Critical
Publication of RU2307004C2 publication Critical patent/RU2307004C2/ru

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

Изобретения относятся к порошковой металлургии, в частности к способу и устройству для металлизации порошков и микросфер из газовой фазы, например, разложением металлоорганических соединений. Сущность изобретения: способ включает засыпку покрываемого порошка в одну из камер реактора (1). Порошок разогревается до температуры разложения легколетучего соединения металла. Реактор (1) поворачивают на 180° вокруг оси вращения, и порошок пересыпается из одной камеры реактора в другую через реакционную зону. Процесс пересыпания порошка из одной камеры в другую осуществляют с принудительным ворошением объема порошка на выходе из камеры. После этого порошок рассеивают в реакционной зоне. Камеры соединены между собой переходной вставкой (2), которая установлена на опорных валах с возможностью вращения. Каждая камера выполнена в виде усеченного конуса и соединена с переходной вставкой (2) меньшим основанием конуса. Переходная вставка (2) выполнена в виде рассекателя с конусной поверхностью. Сечение рассекателя увеличивается к месту соединения с трубопроводами (5). Трубопроводы (5) для ввода и вывода паров газовой фазы являются одновременно опорными валами. На выходе из камеры установлен ворошитель (7). Каждая камера имеет свой нагреватель (3). Трубопровод (4) для ввода газовых легколетучих соединений выполнен воздухоохлаждаемым. Технический результат заключается в получении равномерного и однородного покрытия порошковых материалов и микросфер из газовой фазы. 2 н. и 2 з.п. ф-лы, 1 ил.

Description

Изобретение относится к области порошковой металлургии, в частности для металлизации порошков и микросфер из газовой фазы, например, разложением металлоорганических соединений.
Известен способ металлизации порошков из газовой фазы, например, разложением легколетучих карбонилов металлов по книге "Применение металлоорганических соединений для получения неорганических покрытий и материалов". / Ответственный редактор академик Г.А.Разуваев. М.: "Наука", 1986, стр.214 в вертикальной колонке, выполненной из стекла. В нижней части колонки имеется пористая стеклянная пластинка, через которую пропускают газ с легколетучими карбонильными материалами. Нагрев гранул порошка осуществляется высокочастотным индукционным нагревателем до температуры, необходимой для разложения легколетучих карбонильных материалов. "Кипящий слой" создается с помощью сухого азота. Порошковый материал засыпается в вертикальную колонку и находится над пористой стеклянной пластинкой. Металлизация порошков во взвешенном состоянии не обеспечивает однородности получающегося покрытия. Это связано с тем, что более тяжелые металлизированные частицы осаждаются в нижней части реактора и практически не подвергаются дальнейшему интенсивному перемешиванию. Кроме того, скорость металлизации очень низкая.
Известен способ металлизации порошков из газовой фазы, например, разложением легколетучих карбонилов металлов по АС №774798, МПК6 B22F 1/02, опубликованный в БИ №40 31.10.80, включающий засыпку порошкового материала, нагрев его до оптимальной температуры, поворот реактора на 180°, ссыпание обрабатываемого порошка из верхней части реактора в нижнюю по перфорированной вставке. После того как порошок из верхней камеры поступил в нижнюю, осуществляется поворот реактора на 180°. В процессе многократного поступления порошка из верхней камеры нижнюю происходит металлизация порошка. Недостатком этого способа является низкая производительность (за счет большого числа поворотных циклов). Объясняется это тем, что мелкодисперсные порошки при объемной загрузке слипаются (конгломерируются) в крупные образования, препятствующие равномерному покрытию каждой частицы. Для устранения этого эффекта требуется длительное время на повторение циклов пересыпания порошков из верхней части реактора в нижнюю.
Известно устройство для металлизации порошков из газовой фазы по АС №494223, МПК6 B22F 1/00, опубликованное в БИ №45 03.03.76, включающее нагреватель и реактор, установленный на опорных валках и снабженный приводом вращения, трубопроводы для ввода паров легколетучих соединений металлов и удаления отходящих газов, систему газоснабжения, в которой реактор выполнен в виде двух герметичных камер, соединенных между собой перфорированной переходной вставкой, водоохлаждаемый трубопровод для ввода паров легколетучих соединений снабжен распределительной гребенкой, установленной на переходной вставке, а трубопроводы для удаления отходящих газов соединены с верхней частью герметичных камер и снабжены запорными клапанами. При этом герметичные камеры выполнены с конической внутренней поверхностью, а привод вращения выполнен с возможностью полупериодного вращения. Герметичные камеры размещены внутри одного нагревателя. Применение данной установки не обеспечивает необходимой равномерности и однородности покрытия из-за недостаточно интенсивного перемешивания порошка при вращении реактора и склонности мелкодисперсных частиц к агломерации в процессе перемещения по стенкам реактора.
Известно устройство для металлизации порошков из газовой фазы по книге "Применение металлоорганических соединений для получения неорганических покрытий и материалов". / Ответственный редактор академик Г.А.Разуваев. М.: "Наука", 1986, стр.215, 216 рис.5, включающее колбу, имеющую ребра, которые способствуют более интенсивному перемешиванию покрываемого порошка. В колбе имеется также отверстие, через которое проходит наконечник для подачи паров газовой фазы к порошку. Колба помещается в откачиваемую реакционную камеру. Нагрев порошка осуществляется током высокой частоты с помощью индукционной катушки. Чтобы избежать осаждения покрываемого материала на стенках реакционной камеры, на нее надевается водяная рубашка. Газообразные продукты реакции выводятся через отверстие. Пары металлоорганической смеси в токе газа-носителя подаются в колбу к нагретому порошку из испарителя. Применение данного устройства не обеспечивает необходимой равномерности и однородности покрытия из-за недостаточно интенсивного перемешивания порошка при вращении колбы реактора и склонности мелкодисперсных частиц к агломерации в процессе перемещения по стенкам колбы.
В качестве прототипа взято устройство по АС №774798, МПК6 B22F 1/02, опубликованное в БИ №40 31.10.80. Устройство снабжено приводом вращения, включает нагреватель и реактор, установленные на опорных валах, водоохлаждаемые трубопроводы для ввода паров легколетучих соединений металлов и удаления отходящих газов и систему газоснабжения. Реактор выполнен в виде двух герметичных камер, соединенных между собой перфорированной переходной вставкой. Трубопровод для ввода паров снабжен распределительной гребенкой, установленной на переходной вставке, а трубопроводы для удаления отходящих газов соединены с верхней частью герметичных камер, которые выполнены с конической внутренней поверхностью. Водоохлаждаемый трубопровод для подвода паров и коллектор для удаления отходящих газов являются в то же время и опорными валами для вращения реактора. Применение данного устройства не обеспечивает необходимой равномерности покрытия из-за недостаточно интенсивного перемешивания порошка при вращении реактора и склонности мелкодисперсных частиц к агломерации в процессе перемещения по стенкам реактора. При этом в узком сечении емкости происходит запирание сечения, и эффективность подачи порошка в зону реакции резко уменьшается.
Задачей изобретения является обеспечение однородности покрытия и повышения интенсивности металлизации при высоком уровне равномерности осаждения металла на частицах порошков.
Технический результат, достигнутый при создании предлагаемого изобретения: повышена производительность труда, улучшена равномерность покрытия и его однородность.
Для достижения поставленной задачи предложен способ металлизации порошков из газовой фазы, включающий засыпку покрываемого порошка в одну из камер реактора, разогрев порошка до температуры разложения легколетучего соединения металла, поворот реактора на 180° вокруг оси вращения, пересыпание порошка из одной камеры реактора в другую через реакционную зону. Предлагаемый процесс пересыпания порошка из одной камеры в другую осуществляется с принудительным ворошением объема порошка на выходе из камеры с последующим рассеиванием в реакционной зоне. Для реализации способа металлизации порошков предложено устройство, содержащее реактор, выполненный в виде двух герметичных камер, соединенных между собой переходной вставкой и установленный на опорных валах с возможностью вращения на опорных валах, а также нагреватель, воздухоохлаждаемые трубопроводы для ввода газовых легколетучих соединений, при этом камера выполнена в виде усеченного конуса и соединена с переходной вставкой меньшим основанием конуса, переходная вставка выполнена в виде рассекателя с конусной поверхностью и корпуса с конической поверхностью, увеличивающейся к месту соединения с трубопроводами, причем трубопроводы для ввода и вывода паров газовой фазы являются одновременно опорными валами. Трубопровод для ввода газовых летучих соединений выполнен воздухоохлаждаемым. Каждая камера снабжена своим нагревателем и ворошителем, установленным на выходе из камеры. При металлизации порошков из газовой фазы разложением легколетучих карбонилов металлов для интенсификации процесса металлизации приходится массу порошка пропускать через зону реакции несколько раз. Наиболее эффективным способом, не требующим каких-либо механизмов и устройств, является пересыпание из одной емкости в другую через зону реакции. Для этого наиболее эффективной формой емкостей является усеченный конус, подсоединенный к зоне реакции узким сечением. Мелкодисперсные порошки при пересыпании имеют свойство конгломерироваться. При этом в узком сечении емкости происходит запирание сечения, и эффективность подачи порошка без дополнительного ворошения резко уменьшается. Поэтому применение принудительного ворошения в виде устройства, введенного в узкое сечение конической емкости, устраняет это негативное явление, повышая эффективность металлизации порошков, а последующее рассеивание в реакционной зоне увеличивает эффективность, равномерность и большую скорость металлизации. На параметры металлизации влияют и геометрические характеристики зоны, где происходит реакция разложения легколетучих соединений. Цилиндрические камеры не обеспечивают эффективного взаимодействия порошков с газовой фазой, так как частицы порошка движутся почти параллельно и склонны к конгломерации. Кроме того, пары газовой фазы имеют по всему сечению одинаковую скорость и степень расширения, что также способствует процессу прилипания частиц к стенкам реакционной зоны. При выполнении переходной вставки с конической поверхностью наблюдается изменение степени расширения газовой фазы и ее скорости по сечению переходной вставки. Это способствует оптимизации параметров, влияющих на покрытие. Кроме того, после конического рассекателя частицы движутся по траекториям, не параллельным стенкам переходной вставки. Это уменьшает эффект прилипания частиц порошка к стенкам. При применении общего нагревателя для обеих камер неэффективно используется энергия обмоток, так как прогревается весь объем реактора. Это вынуждает отдельные зоны (переходную вставку и подводящий трубопровод) интенсивно охлаждать, чтобы предотвратить осаждение металла из газовой фазы на стенках камеры и трубопровода. При раздельном обеспечении каждой камеры своим нагревателем достигается уменьшение эффекта осаждения на стенках и ослабления интенсивности охлаждения. Это позволяет трубопровод для подвода газовых легколетучих соединений выполнить воздухоохлаждаемым. А это упрощает конструкцию охлаждающей системы, уменьшает затраты на ее изготовление и эксплуатацию по сравнению с водоохлаждаемой. Раздельные нагреватели позволяют более эффективно использовать тепловую энергию, необходимую для прогрева порошковых материалов.
Ниже приведен предпочтительный вариант выполнения предложенного устройства.
На чертеже представлена принципиальная схема установки. Устройство для металлизации порошков из газовой фазы содержит реактор 1, выполненный из двух герметичных камер, соединенных между собой переходной вставкой 2. Внутренняя поверхность каждой из камер представляет собой двойной конус. Каждая герметичная камера реактора 1 имеет свой нагреватель 3, позволяющий экономно и эффективно использовать энергию нагревательных элементов. Подвод паров легколетучей смеси в рабочую зону переходной вставки 2 осуществляется через воздухоохлаждаемый трубопровод 4. Отвод газов из рабочей зоны осуществляется через устройство, выполненное в виде трубопроводов 5, соединенных с переходной вставкой 2. Воздухоохлаждаемый трубопровод 4 и трубопровод 5 являются одновременно и опорными валами для вращения реактора 1. Маховичок 6 обеспечивает полупериодное вращение реактора. В узкой части горловины конической камеры реактора 1 установлены ворошители 7, имеющие внешний привод для равномерного распределения мелкодисперсных частиц по объему переходной вставки 2. Под каждым ворошителем 7 установлен рассеивающий конус 8.
Предлагаемое устройство для металлизации порошков из газовой фазы работает следующим образом. Исходный порошок загружается в верхнюю камеру реактора 1. С помощью маховичка 6 реактор совершает поворот на 180°. Обрабатываемый порошок начинает ссыпаться из верхней камеры в нижнюю по переходной вставке 2. Для предотвращения агломерации мелкодисперсных частиц вращается ворошитель 7, с которого порошок ссыпается на рассеивающий конус 8 и в реакционную зону 2 реактора. Разложение паров легколетучего соединения происходит на разогретых частицах порошка, ссыпающегося из верхней камеры в нижнюю. Нагрев порошка в реакторе до температуры разложения легколетучего соединения металла осуществляется нагревателями 3. Для предотвращения разложения соединения и осаждения металла на внутренних стенках газоподводящего трубопровода 4 и переходной вставки 2 трубопровод делается воздухоохлаждаемым. Отвод продуктов реакции и несущего газа из реакционной зоны осуществляется по трубопроводу 5. После того как порошок из верхней камеры пересыпался в нижнюю камеру с помощью маховичка 6, реактор поворачивается на 180°. В процессе многократного поступления порошка из верхней камеры в нижнюю происходит оптимальная металлизация частиц порошка. После окончания процесса металлизации обработанный порошок выгружается из нижней камеры реактора.
Таким образом, получен способ металлизации порошков и микросфер из газовой фазы и устройство для его осуществления, обеспечивающее равномерность покрытия порошков, увеличивающее производительность труда, интенсивность нанесения покрытия и его однородность.

Claims (4)

1. Способ металлизации порошков из газовой фазы, включающий засыпку покрываемого порошка в одну из камер реактора, разогрев порошка до температуры разложения легколетучего соединения металла, поворот реактора на 180° вокруг оси вращения, пересыпание порошка из одной камеры реактора в другую через реакционную зону, отличающийся тем, что процесс пересыпания порошка из одной камеры в другую осуществляют с принудительным ворошением объема порошка на выходе из камеры с последующим рассеиванием в реакционной зоне.
2. Устройство для металлизации порошков из газовой фазы, содержащее реактор, выполненный в виде двух герметичных камер, соединенных между собой переходной вставкой, и установленный на опорных валах с возможностью вращения, нагреватель и трубопроводы для ввода газовых легколетучих соединений и отвода продуктов реакции и несущего газа из реакционной зоны, при этом каждая камера выполнена в виде усеченного конуса и соединена с переходной вставкой меньшим основанием конуса, отличающееся тем, что каждая камера дополнительно снабжена ворошителем, установленным на выходе из камеры, переходная вставка соединена с трубопроводами и выполнена в виде рассекателя с конусной поверхностью и сечением, увеличивающимся к месту соединения с трубопроводами, причем трубопроводы для ввода газовых легколетучих соединений и отвода продуктов реакции и несущего газа из реакционной зоны являются одновременно опорными валами.
3. Устройство по п.1, отличающееся тем, что каждая камера снабжена нагревателем.
4. Устройство по п.1, отличающееся тем, что трубопровод для ввода газовых легколетучих соединений выполнен воздухоохлаждаемым.
RU2005131339/02A 2005-10-10 2005-10-10 Способ металлизации порошков и микросфер из газовой фазы и устройство для его осуществления RU2307004C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2005131339/02A RU2307004C2 (ru) 2005-10-10 2005-10-10 Способ металлизации порошков и микросфер из газовой фазы и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2005131339/02A RU2307004C2 (ru) 2005-10-10 2005-10-10 Способ металлизации порошков и микросфер из газовой фазы и устройство для его осуществления

Publications (2)

Publication Number Publication Date
RU2005131339A RU2005131339A (ru) 2007-04-20
RU2307004C2 true RU2307004C2 (ru) 2007-09-27

Family

ID=38036579

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005131339/02A RU2307004C2 (ru) 2005-10-10 2005-10-10 Способ металлизации порошков и микросфер из газовой фазы и устройство для его осуществления

Country Status (1)

Country Link
RU (1) RU2307004C2 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2507307C1 (ru) * 2012-06-29 2014-02-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Устройство для нанесения покрытий на малогабаритные изделия
RU2572007C1 (ru) * 2014-07-21 2015-12-27 Валерий Никитич Гринавцев Установка для нанесения металлического покрытия на полые микросферы
RU2642596C2 (ru) * 2015-10-26 2018-01-25 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ нанесения металлосодержащих покрытий на микросферы
RU2747204C1 (ru) * 2020-05-28 2021-04-29 Общество с ограниченной ответственностью "Имхотеп" Установка для нанесения металлических покрытий на порошковые материалы
RU2768644C1 (ru) * 2021-03-16 2022-03-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Устройство для плакирования порошкового магнитного материала

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2507307C1 (ru) * 2012-06-29 2014-02-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Устройство для нанесения покрытий на малогабаритные изделия
RU2572007C1 (ru) * 2014-07-21 2015-12-27 Валерий Никитич Гринавцев Установка для нанесения металлического покрытия на полые микросферы
RU2642596C2 (ru) * 2015-10-26 2018-01-25 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ нанесения металлосодержащих покрытий на микросферы
RU2747204C1 (ru) * 2020-05-28 2021-04-29 Общество с ограниченной ответственностью "Имхотеп" Установка для нанесения металлических покрытий на порошковые материалы
RU2768644C1 (ru) * 2021-03-16 2022-03-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Устройство для плакирования порошкового магнитного материала

Also Published As

Publication number Publication date
RU2005131339A (ru) 2007-04-20

Similar Documents

Publication Publication Date Title
KR870000861B1 (ko) 조립 코팅장치
RU2307004C2 (ru) Способ металлизации порошков и микросфер из газовой фазы и устройство для его осуществления
US4606941A (en) Deposition metalizing bulk material by chemical vapor
US20050274037A1 (en) Heating and drying apparatus for particulate material
JPH1028891A (ja) 懸濁液を処理するための装置
CN102086240B (zh) 一种均粒离子交换树脂聚合物珠体生产设备及方法
KR101792562B1 (ko) 실리콘의 제조를 위한 반응기 및 방법
JP2003522637A (ja) 供給および集合機構を備える軸回り回転面式反応装置
JPS6094170A (ja) 転動流動による連続コ−テイング法及びその装置
EP1742002A1 (en) Method and device for pulse heat treatment of bulk materials
US4439932A (en) Method and apparatus for thermal treatment, especially drying, of finely comminuted bulk material
TWI579419B (zh) 製備顆粒狀多晶矽的反應器和方法
RU2409711C1 (ru) Способ получения наноструктурированных углеродных волокон и устройство для его осуществления
US2978316A (en) Production of elements and compounds by continuous vapor plating of particles
JP2010126405A (ja) 炭素ナノチューブの合成装置
JP2000288409A (ja) 触媒および触媒担体物質の連続式処理方法および連続式処理装置
NO116829B (ru)
CN213135050U (zh) 一种制备铜合金粉的雾化设备
CN211689230U (zh) 一种超薄液膜旋离式汽化装置
US3632974A (en) Heat transfer apparatus
CN110965046B (zh) 超薄液膜旋离式汽化装置
JP2024508616A (ja) 医薬粉末の乾燥
RU2767099C1 (ru) Устройство для нанесения покрытий на порошковые материалы
WO2023203974A1 (ja) 粉粒体の乾燥方法、乾燥装置及び製造方法
RU2327090C1 (ru) Установка для сушки суспензий в кипящем слое инертных тел