JP2024508616A - 医薬粉末の乾燥 - Google Patents

医薬粉末の乾燥 Download PDF

Info

Publication number
JP2024508616A
JP2024508616A JP2023544469A JP2023544469A JP2024508616A JP 2024508616 A JP2024508616 A JP 2024508616A JP 2023544469 A JP2023544469 A JP 2023544469A JP 2023544469 A JP2023544469 A JP 2023544469A JP 2024508616 A JP2024508616 A JP 2024508616A
Authority
JP
Japan
Prior art keywords
drying
gas
powder
product
permeable element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023544469A
Other languages
English (en)
Inventor
ヴァレンテ,ペドロ
サントス,ブルーノ
ガスパール,フィリペ
メンデス,アデリオ
リベイリーニャ,パウロ
ロシャ,フェルナンド
フェルナンデス,セリーナ
Original Assignee
ホビオネ サイエンティア リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ホビオネ サイエンティア リミテッド filed Critical ホビオネ サイエンティア リミテッド
Publication of JP2024508616A publication Critical patent/JP2024508616A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/02Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
    • F26B3/06Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply
    • F26B21/12Velocity of flow; Quantity of flow, e.g. by varying fan speed, by modifying cross flow area
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B9/00Machines or apparatus for drying solid materials or objects at rest or with only local agitation; Domestic airing cupboards
    • F26B9/06Machines or apparatus for drying solid materials or objects at rest or with only local agitation; Domestic airing cupboards in stationary drums or chambers
    • F26B9/063Machines or apparatus for drying solid materials or objects at rest or with only local agitation; Domestic airing cupboards in stationary drums or chambers for drying granular material in bulk, e.g. grain bins or silos with false floor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Drying Of Solid Materials (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

本発明は、医薬品又は粉末の残留溶媒内容物を乾燥させる方法に関する。本開示では、微細で凝集性のある医薬粉末の高速乾燥を可能にして、バッチ操作、半連続操作、及び連続操作に使用できるようにする方法について説明する。

Description

本発明の技術分野は、医薬粉末のバッチ及び連続乾燥に関する。
本発明は、医薬粉末を乾燥してプロセス溶媒の残留量を非常に少なくすることに関する。ヒトが消費するための医薬粉末中のプロセス溶媒の残留量は厳密に規制されており[1]、溶媒の毒性に応じて、数百百万分率(ppm)から0.5重量%までの範囲であり得る。しかしながら、確立された方法を使用した乾燥は、かなりの時間を要する遅いプロセスであり[2]、プロセスボトルネックとなることが多いので、全体的なプロセス生産性に直接関連する。これらの医薬粉末を乾燥させるための確立された技術は、ほとんどがバッチプロセスに基づいており、オーブン及びトレイ乾燥機、流動床乾燥機、シングルドラム乾燥機、真空乾燥機及び凍結乾燥機を含む[3]。これらの技術のほとんどは、必要とされる溶媒レベルを満たすのに要する乾燥時間が長い(典型的には6時間を超えて数日間まで)ため、連続操作に容易に組み込むことができない。更に、連続処理機器内の滞留時間は乾燥時間に直接関係し、滞留時間と処理量との積は機器内の生成物の総量に比例するので、連続機器とバッチ機器のフットプリントにはほとんど差がない。
流動床乾燥機は、最も効率的な乾燥機の1つであり、連続的に又はバッチで動作することができ、中粒及び粗粒の粒状材料のために産業でうまく使用されてきた[4]。しかしながら、これらの乾燥機は、微細で凝集性のある生成物、特に100ミクロンを下回る粒径の粒子に対しては、そのような粉末の不十分な流動化特性のためにあまり適していない。Geldartらは、流動化の質が悪く、安定した噴流層の形成が不十分であることから、これらの粉末をグループC及びDに含めている[10]。加えて、これらの微細な粒子は、ストークス数が低いために、ガスによって容易に引きずられ、粉塵制御システムを通して生成物損失を引き起こし、及び/又は最終的に目詰まりを引き起こす可能性がある。それらはまた、凝集して生成物の粒度分布を変化させ、乾燥速度を低下させ、結果として、生成物品質を不均一にする可能性がある。
真空接触乾燥は、乾燥材料を真空下で乾燥させて、急速乾燥に必要な温度を低下させるプロセスである[5]。この方法では、熱は、主に伝導によって伝達されるが、蒸気又は窒素若しくはアルゴンなどの不活性ガスを用いた対流によっても支持され得る[5][6]。医薬品を乾燥させるために、ダブルコーン乾燥機、スクリューミキサーを備えたコニカル乾燥機、パドル乾燥機、真空バンド乾燥機及びフィルタ乾燥機を含む様々なタイプの真空乾燥機が使用されている。医薬粉末の低い残留レベルに達するまでの乾燥時間は、典型的には長く、通常約12~48時間の範囲である[5]。これらの用途に関して、真空接触技術の連続バージョンは、必要な滞留時間を確保するための非常に大きなフットプリント要件のために不適切である。
乾燥時間を短縮し、最終的に連続処理を可能にするという課題は、以前に対処された。Walter Kuellingは、ガスと固体が密接に接触するように、垂直に上昇する流れの中で小さな固体粒子を懸濁又は流動化させるために高流量の乾燥ガスを使用した「Continuous fluid bed」(US Pat.No3475832A)を記載している。その後、Len.W.Hallenは、積極的な対流を伴う円錐スクリュー型ミキサー/乾燥機を開示した(US.Pat No5709036A)。本発明は、特に乾燥が困難な材料のために開発されたものであり、撹拌パン型乾燥機で乾燥させる材料の量を増加させる。これは、ノズルを通して高速で加圧乾燥ガスを乾燥機に送り込むことで、乾燥機内、特に生成物の表面に乱流を発生させることによって達成される。非晶質材料から残留溶媒を除去することが困難であることを認識していたD.Dobryらは、粒子を揮発性の可動性促進剤(mobility-enhancing agent)に曝露することを提案した(Pat.No EP2043610A1)。著者らは、医薬用の非晶質材料を水又はエタノールなどの薬剤に曝露すると、粒子のガラス転移温度(Tg)が低下し、その結果、残留溶媒の拡散速度が増加し、それにより、乾燥速度が速くなることを見出した。真空、撹拌、及びストリッピングガスを組み合わせることは、残留溶媒内容物が10重量%を下回る非晶質の乾燥時間を改善するためのプロセスとして、R.Rayらによって提案されている(CA2594694A1)。噴霧乾燥させた材料を更に乾燥させるために、流動床乾燥機の多くの他の解決策及び派生物が実施された。例えば、WO9513864では、振動流動床が噴霧乾燥ユニットの下流で使用される構成が提示されており、又はUS20030230004A1では、発明者らは、低バッチサイズに対する性能を改善するための流動床内部チャンバ設計の変更を主張している。
医薬品を、乾燥させた生成物中の必要とされる溶媒含有量まで乾燥させるために様々な方法が利用可能であるにもかかわらず、それらは依然として、簡便性、乾燥時間及び全体的な生産性に関して完全に満足のいくものではない。乾燥技術のより高い性能を追求する中で、マイクロ波の使用も出現した。J.Hradeckyらは、硬質ゼラチンカプセルの製造に要する時間を短縮し、カプセル内の最適な水分含量を達成するのに必要なエネルギーを低減することを目的とした「Microwave drying pharmaceutical gelatin capsules」のための機器を初めて開示した(Pat. No.US4720924A)。これまで、マイクロ波に基づく様々な乾燥機が開発され、新しい方法では代替エネルギー源としてマイクロ波が加追加された。より最近になって、L.Bohleらが、加熱源としてマイクロ波を使用する「Method and device for drying pharmaceutical granulates, pellets or similar」を開示した(WO Pat.No WO2003027590A3)。生成物は、回転駆動の透明パイプ内で乾燥され、そこでは、蒸発した水分が乾燥ガスによって排出される。また、I.Ghebre-Sellassieらは、加熱源として無線周波数又はマイクロ波を考慮した医薬品造粒生成物を製造するための方法及び装置を提示した(Pat.No WO2001089679A2)。マイクロ波乾燥技術に関しては、非常に高速で効率的な乾燥プロセスであるにもかかわらず、機器は十分に確立されておらず、その構造は決して単純ではない。加えて、乾燥操作におけるマイクロ波放射の使用は、従来の乾燥操作とは異なり、いくつかの制限をもたらす。放射源としてマイクロ波を使用する乾燥プロセスは、いくつかの重大な課題、すなわち、医薬品の品質及び安定性への影響、乾燥チャンバ内の不均等な放射分布、マイクロ波放射漏れを回避するために密封された格納容器が必要とされることに直面している。
各乾燥方法の上述の利点及び欠点の結果として、噴霧乾燥によって製造される非晶質固体などの微細で凝集性のある生成物について、二次乾燥ステップは、通常、真空(典型的には0.1バール未満)のある乾燥機、例えば、トレイ乾燥機、バイコニカル乾燥機又は撹拌式コニカル乾燥機において実施される。これらの技術の現在の最先端技術は、長い乾燥期間の必要性を克服しておらず、これは、一方では、乾燥プロセス全体のボトルネックになり、他方では、半連続的又は連続的な製造への転換を妨げる。
噴霧乾燥プロセスから生じるものなど、微細で凝集性のある医薬粉末について観察される乾燥時間の延長は、主に、乾燥の後期段階で観察される非常に遅い乾燥速度論(典型的には、1~3%w/wからの低下)によるものであり、「減率(falling-rate)」又は「妨害された(hindered)」乾燥と呼ばれることが多い[7]。乾燥の終わりに乾燥速度が遅いことは、粒子内質量及び熱伝達によって制御される乾燥段階に正当化されることが多く[7、8、9]、従って、強化された対流のような最も一般的な手段によって加速することは困難である。粒子内熱伝達を加速する方法としては、とりわけ、マイクロ波及び他の形態のエネルギーの使用が挙げられ、一方、粒子内物質移動は、本発明者らが試験したように、任意の単一粒子の多孔性ネットワーク内で起こる拡散に対流を加えることによって、圧力バルク変動によって加速され得る。
乾燥速度論をかなり加速する代替の乾燥方法を探す努力の中で、本発明者らは、驚くべきことに、乾燥させる粉末材料の床を横切って高速(高対流)で乾燥ガス流を適用することにより、目標溶媒レベルに達するのに必要とされる時間を有意に短縮させることができることを見出した。これは、最初に、多孔質膜によって粉末の床を支持しながら乾燥ガスを下方に適用することによって試験された。フィルタ/膜などの孔径の小さい透過性要素によって乾燥機内の粉末の床を支持することにより、粉末の損失も優先的な流路の発生もなしに、高い乾燥ガス流量を使用することができる。高い流量は、乾燥時間を劇的に短縮するだけでなく、凝集がないか又はわずかであり、損失が最小限であり、そしてフィルタ/膜の目詰まりがない均一な生成物を生成した。更に乾燥ガスの流量を変えることで、乾燥時間をある程度操作することができることが見出された。乾燥時間の短縮は、半連続的及び連続的製造への変換を可能にし得るので,有利である。
先行技術の方法とは対照的に、本開示は、微細で凝集性のある医薬粉末の高速乾燥を可能にして、バッチ操作、半連続操作、及び連続操作に使用できるようにする方法を説明する。
[本発明の目的]
本発明の目的は、対流乾燥に基づいて、微細で凝集性のある医薬粉末を必要な溶媒レベルまで乾燥させるのに適したバッチ式、半連続,又は連続乾燥方法を提供することである。
本発明の別の目的は、国際規格に従った生成物の安全性及び品質を保証するために、医薬品に許容される仕限界まで残留溶媒を低減するためのより高速の乾燥プロセスを提供することである。
本発明の別の目的は、高流量の乾燥ガスを使用し、生成物の損失を引き起こさない、バッチ式、半連続又は連続対流乾燥操作を提供することである。
本発明の別の目的は、均質性が改善された粉末の形態の医薬品の残留溶媒内容物を乾燥させるための方法を提供することである。
本発明は、例えば、噴霧乾燥ユニット又は別の既知の乾燥技法によって生成され、国際ガイドライン[1]に従って許容できない溶媒含量を含むもののような、微細で凝集性のある医薬粉末(DV50<100μm、低いかさ密度<0.6g/ml)を乾燥させるための方法を開示する。
本発明は、微細で凝集性のある医薬粉末の残留溶媒内容物を許容可能なレベルまで乾燥させる方法であって、透過性要素によって支持される乾燥チャンバ内の粉末床を横切ってガス流を、生成物を保持するガス流に適用することを含む方法を開示する。
乾燥ガスの流量及び温度を増加させることによって残留溶媒の除去速度が改善することが見出された。乾燥ガスを固定床を通して下方に供給すると、流動床構成よりも良好な結果を示すことが見出された。フィルタ/膜などの孔径の小さい透過性要素上に粉末を支持することにより、流動床で起こるように粒子を乾燥機から引きずり出すことなく、高い乾燥ガス流量を使用することができる。更に、様々な実験を通して、乾燥させた粉末の不均一性のような、優先的な流路の典型的症状は観察されなかったことが見出された。
好ましくは、フィルタ又は膜などの透過性要素は、乾燥チャンバの底部において焼結多孔質プレート上に支持され、装置内に乾燥生成物を保持したまま乾燥ガスが装置から出ることを可能にした。膜は、多孔質で、機械的に耐性があり、乾燥生成物に対してほとんど/全く親和性を有さなくてもよい。透過性要素は、粒子を所定の位置に固定するのに役立ち、それによって、高い乾燥ガス流量を使用することが可能になり、これにより、ガス流と粒子との間の速度が上昇し、結果、乾燥が速くなる。
目標乾燥温度まで予め加熱された乾燥ガスが、乾燥チャンバ内で下方に供給された。乾燥チャンバの表面も目標乾燥温度まで加熱されることが好ましい。
加えて、装置を振動又は撹拌するために、振動システムを乾燥装置に組み込むことができる。振動を加えることにより、乾燥機内部での粉末の凝集物の形成を回避することができ、容器の壁から生成物を分離することができる。
本発明の一態様では、乾燥させた生成物/粉末の均質性もまた、乾燥機内の粉末床に振動、撹拌、又は他の同等の方法を適用することによって改善し得る。また、振動、撹拌、又は他の同等の方法を粉末床に適用することによって、透過性要素内の粒子の目詰まりも緩和され得る。
本開示における実験の発見は、乾燥時間の実質的な短縮を可能にする主な差別化要因が、透過性要素によって支持された粉末床を横切るガス流を有することであり、これがガスと粉末粒子との間の相対速度を増加させたということである。そのような高い相対速度は、流動床乾燥機などの一般的に使用される対流乾燥機では発生しない。なぜなら、それを超えると粒子がガス流によって空気輸送される限界があるからである。従って、本方法は、透過性膜によって支持される粉末床を横切るより高速のガス流を提供する。高速を考慮すると、100ミクロン未満のような微細な粒子は、流動床を横切るガス流間の高速を支持しない流動床乾燥機とは異なり、はるかに速く乾燥させることができる。
好ましくは、乾燥ガス流は、透過性要素に対して実質的に垂直である。
本発明の一態様では、ガス流は、下方に向けられるが、粒子が、ガスと粉末粒子との間の高い相対ガス速度を可能にする透過性要素によって所定の位置に保持される限り、乾燥方法は、上方又は半径方向の流れを用いて適用することもできる。例えば、透過性要素が上部にあり、底部からガス流を供給することによる上方の流れの方法では、流速が十分に高いことで、乾燥操作の開始時に、粒子に対する空気力学的抗力が重力よりも大きくなり、従って、粒子が透過性要素及び粉末床内に引きずり込まれ、そこで所定の位置に保持されるようになり、利益を得ることができる。
従って、本発明は、医薬粉末などの微細で凝集性のある生成物を乾燥させる改善された方法を提供し、本方法は、以下のステップを含む:
i)医薬粉末を乾燥チャンバに供給又は投入するステップ;
ii)乾燥チャンバ内の粉末床を横切ってガス流を供給するステップ;
iii)粉末床を支持するための透過性要素を提供するステップ。乾燥ガスは、ガス流と粉末粒子との間の相対速度を最大にするために粉末が高流量で透過性要素に押し付けられるように、乾燥チャンバ内に供給される前に加熱され得る。
次いで、乾燥させた粉末粒子又は生成物が乾燥機から排出される。
粉末床は、乾燥チャンバに供給又は投入された粉末が膜/焼結プレート上に沈降するにつれて形成され得る。乾燥させる粉末もまた、乾燥ガスと共に乾燥チャンバ内に導入され得る。乾燥ガスは、乾燥させる粉末を引きずり、粉末床を形成し得る。
好ましくは、乾燥ガス流は、粉末床及び透過性要素を通って、下方に、上方に、又は半径方向に流れる。
ガス流を乾燥チャンバに供給する前に、目標乾燥温度まで加熱し得る。好ましくは、特に初期段階中の熱損失を回避するために、乾燥チャンバの表面が加熱される。好ましくは、初期温度は、電気ヒーターを使用して40℃~70℃の範囲、好ましくは40℃、50℃、52℃、55℃及び70℃に設定された。
ガスの温度は、室温と、材料の溶融温度又はガラス転移温度との間で変化し得る。好ましくは、温度は、典型的には、生成物の品質を損なうことなく、すなわち、不純物の形成、多形プロファイルの変化、かさ密度などを回避しながら、可能な限り最大になるように選択される。
ガス流は、ガスと粉末粒子との間の相対速度を最大にするために粉末床が透過性要素に対して押し付けられるのに十分な流量で供給され得る。
好ましくは、ガスの流量は、約0.06kg/h~約3.3kg/hの範囲である。好ましくは、ガスの流量は、0.06kg/h、0.17kg/h、0.28kg/h、0.5kg/h又は3.3kg/hである。
本発明の乾燥プロセスでは、乾燥ガスの流量と生成物質量との間の比は、少なくとも生成物1kg当たりガス0.4kg/hであり得る。好ましくは、乾燥ガスの流量と生成物質量との間の比は、生成物1kg当たりガス約0.4~約36kg/hの範囲である。
ガスと粉末との間の相対速度は、使用される生成物及びガスの流量に応じて変化し得る。好ましくは、粒子の相対速度は、少なくとも0.05cm/sであり得る。好ましくは、ガスと粉末との間の相対速度は、約0.05~0.25cm/sの範囲である。
本明細書で説明されるプロセスは、単一のユニットを使用するバッチプロセスで操作され得る。
本明細書で説明されるプロセスは、いくつかの乾燥ユニットを組み合わせることによって半連続モードで操作され得る。例えば、半連続プロセスは、並列に動作する少なくとも2つの乾燥機を組み合わせることによって作成することができ、一方が上流プロセスから投入している間に、他方は生成物を乾燥させる。
本明細書で説明されるプロセスは、スクリューフィーダー(又は同等の技術)を使用して湿潤粉末を連続的に添加することによって、及びスクリューユニットを使用して乾燥粉末を連続的に排出することによって、完全連続モードで操作され得る。このような供給及び排出ユニットは、乾燥チャンバの境界に配置される。更に、そのような乾燥機を噴霧乾燥などの上流の連続乾燥ステップと組み合わせることによって、完全に連続した統合プロセスを作り出すことができる。
本発明のこれら及び他の特徴は、好ましい実施形態の以下の説明及び図面からより明らかになるであろう。
以下の図は、説明を例示するために好ましい実施形態を提供するが、本発明の範囲を限定するものではない。
バッチプロセスにおいて医薬粉末生成物を乾燥させるための装置の簡略化された概略図を示す。 2つの同心状に焼結された管を有する、バッチプロセスにおいて医薬粉末生成物を乾燥させるための装置の簡略化された概略図を示す。
本発明は、低密度(<0.6g/ml)で、微細で凝集性のある医薬粉末生成物(DV50<100μm)のためのバッチ式、半連続又は連続乾燥を可能にする方法を開示する。
開示された方法は、生成物中の溶媒含有量が医薬品の国際勧告[1]によって規定された限度を超える、噴霧乾燥ユニット又は類似の技術から生じるものなどの医薬品及び中間体の乾燥のために開発された。医薬品は、噴霧乾燥又は同様の技術によって製造される非晶質材料であってもよい。医薬品は、ナノ結晶であってもよい。本発明者らによって行われた実験では、乾燥ガスの流量及び温度を上げることによって、生成物からの溶媒の除去速度が改善されることが実証された。乾燥ガスと粒子との間の上昇した相対速度はまた、質量及び熱輸送を改善する。
本発明の一態様では、乾燥ガスの流量と生成物質量との間の比は、少なくとも0.4(kggas/h)/kgproduct)(約0.4~約0.38(kggas/h)/kgproduct)で変化する)であった。好ましくは、乾燥ガスの流量と生成物質量との間の比は、4(kg/h)gas/kgpowder)である。0.4(kggas/h)/kgproductを上回る乾燥ガスの流量と生成物質量との間の比が、0.25cm/sを上回るガス速度に対応することが見出された。
加えて、好ましくは、1μm以下の多孔質直径を有し、機械的に耐性があり、乾燥される生成物に対してほとんど親和性を有さない透過性要素又は多孔質膜を使用することにより、粉末の床を効果的に支持し、目詰まり問題を回避することができることが見出された。透過性要素又は多孔質膜は、より高い機械的安定性を有する焼結金属又はポリマープレート又は支持体によって更に支持又は置換され得る。
透過性要素の気孔率(porosity)は、粒子を保持しつつも、ガスが流れることを可能にするようなものでなければならない。
透過性要素は、乾燥される生成物又は粉末中の溶媒とのそれらの化学的適合性及びそれらの物理的特性(最大動作温度及び疎水性)を考慮して選択することができる。透過性要素の気孔率は、乾燥される生成物又は医薬粉末の粒径を考慮して選択することができる。
好ましくは、多孔質膜又はフィルタなどの透過性要素は、2μm以下、又は1μm以下の孔径又は直径を有する。好ましくは、透過性要素の気孔率は、0.02~2μm又は0.02~1μmの範囲であり得る。
好ましくは、多孔質膜又はフィルタなどの透過性要素は、機械的耐性を有し、乾燥される生成物に対してほとんど親和性を有さない、テフロン(登録商標)、PP、PVDF、PCTE又はそれらの混合物のような材料から作製される。
粒子から乾燥ガスへの溶媒物質移動を促進するためには、温度は、可能な限り高くなければならないが、最終生成物の物理化学的特性を損なうことはない。
乾燥ガスの性質も、溶媒の除去速度に影響を与える可能性がある。生成物との望ましくない反応を促進しない任意の適切な乾燥ガス又は他のガス若しくはガス混合物が使用され得る。好ましくは、乾燥ガスは、N2、CO2、空気、及びそれらの組み合わせ又は混合物からなる群から選択される。好ましくは、乾燥ガスは二酸化炭素である。さらなる研究において、本発明者らは、二酸化炭素を使用することが有利であることが証明されたことを見出した。二酸化炭素を用いた乾燥実験は、窒素と比較して、最終生成物中の溶媒含有量の減少を示した。二酸化炭素は、窒素と比べて、より高い熱容量を有し、場合によっては、粒子の表面に対してより高い親和性を有するので、溶媒をより容易に置換することができる。
本発明の一態様では、乾燥プロセスは、図1に示すような、円筒形状の装置内で実施されるバッチ式プロセスである。この装置は、円筒形状の乾燥機(1)と、電気加熱システム(2)と、上部カバー(3)と、乾燥ガス入口用のバルブ(4)と、重力供給用のバルブ(5)と、底部カバー(6)と、多孔質焼結金属板上の透過性要素(7)と、乾燥ガス出口用のバルブ(8)と、振動ユニット(9)と、底部カバー開放機構(10)と、試料バルブ(11)と、温度及び/又は圧力測定点(12)とを含む。乾燥させる粉末又は生成物は、粉末の乾燥特性に応じた所定の量に達するまで、投入口(5)を通して上部から装置に投入される。粉末は、焼結プレートによって支持される透過性要素上に沈降し、これは、支持体として作用し、小さい粒子が引きずり出されるのを回避する。乾燥プロセスは、装置全体の周りに分配された電気ヒーター(2)をオンにし、乾燥ガス(4)を導入することから開始する。温度は、所定の加熱勾配に従って、乾燥時間に沿って連続的に上昇した。温度を制御するための正確な読み取り値を得るために、いくつかの熱電対(12)が装置に沿って配置されている。予め加熱された乾燥ガスが装置に下方に供給される。乾燥ガスの流量と生成物質量との間の比は、約0.4~約38(kggas/h)/kgproduct)の範囲、好ましくは、4(kggas/h)/kgproduct)超であり得る。乾燥が完了すると、底部カバー(10)は、透過性膜及び焼結プレートが存在する場合にはそれを伴って完全に開き、乾燥させた生成物が重力によって容器内に落下する。振動ユニット(9)は、乾燥機の壁から粉末を除去するのを助けるために装置に振動を加えるように操作することができ、乾燥機内での粉末の凝集物の形成を回避するのに役立つ。
好ましくは、ガスの圧力は、真空から最大10バールまで、好ましくは2~4バールの間で周期的に変化する。本開示の装置は、2~4バールの間で60秒の圧力サイクルで操作され得る。
本発明の別の態様では、乾燥プロセスは半連続プロセスである。半連続プロセスでは、装置は、2つの乾燥ユニットを含み、一方のユニットに、上流の乾燥技術(噴霧乾燥機など)によって製造された生成物が投入されている間、他方のユニットは乾燥を行っている。投入及び乾燥プロセスは、第1のユニットの投入ステップが終了するとすぐに、第2のユニットの乾燥ステップも終了するように同期され、第1のユニットは乾燥ステップに進み、第2のユニットは受容器(16)に取り出された後に投入ステップを開始する。
本発明の別の態様では、乾燥プロセスは、図2に示すような、2つの同心焼結管(20、21)を有する円筒形状の装置内で実施されるバッチ式プロセスである。この装置は、円筒形状の乾燥機(1)と、電気加熱システム(2)と、上部カバー(3)と、乾燥ガス入口用のバルブ(4)と、底部カバー(6)と、膜(20)で覆われた外側焼結管及び膜(21)で覆われた内側焼結管と、乾燥ガス出口用のバルブ(8)と、回転ユニット(22)と、いくつかの温度及び/又は圧力測定点(12)とを含む。
粉末は、粉末の乾燥特性に応じた所定の量に達するまで、2つの同心焼結管(20、21)の間にある装置に投入される。
乾燥プロセスは、装置全体の周りに分配された電気ヒーター(2)をオンにし、乾燥ガス(4)を導入することから開始する。温度を制御し、正確な測定値を得るために、いくつかの熱電対(12)が装置に沿って配置されている。予め加熱された乾燥ガスが装置に供給される。ガスの方向は半径方向であり、内向きの方向をとることができる。好ましくは、乾燥ガスの流量と生成物質量との間の比は、約1~約10(kggas/h)/kgpowderの範囲である。回転(9)は、xx軸及びyy軸の両方に導入することができ、これにより、粉末床に沿ってより均一な乾燥が可能になる。好ましくは、乾燥機は、乾燥ガスが内向きに流れるように動作する。乾燥ガスの方向を時折反転させて、高速乾燥プロセス中の凝集物の形成を回避することができる。
本発明の別の態様では、医薬品の残留溶媒内容物を業界標準に従って許容可能なレベルまで乾燥させるための乾燥機内で医薬品の粉末床を支持するために、乾燥チャンバにおいて、本明細書で上述したようなフィルタ又は多孔質膜などの透過性要素を使用することが提供される。
本発明の別の態様では、乾燥ガス流が適用される粉末床を支持する透過性要素を組み込むことによって、医薬品の残留溶媒内容物を業界標準に従って許容可能なレベルまで乾燥させるための、噴霧乾燥機、フィルタ乾燥機、真空乾燥機又は任意の他の既知の乾燥機と組み合わせて使用され得る既知の乾燥装置を使用することが提供される。
本発明の別の態様では、本明細書で説明される乾燥方法によって得られる粒子又は医薬品が提供される。
実施例1
図1に示す乾燥ユニットを、約5重量%の溶媒(エタノール)含有量を有するコポビドン(製薬産業において、特に噴霧乾燥された分散物において一般的に使用されるポリマー)を使用して試験した。その目的は、定められたガイドライン[1]に従って数時間以内に残留エタノールの許容可能なレベル(すなわち、5000ppm未満)まで生成物を乾燥させることであった。100gのコポビドン質量を、重力供給バルブ(5)を通して導入し、粉末を、膜/焼結プレート(7)上に沈降させた。膜は、孔径0.2μmのテフロン(登録商標)フィルムであった。シリンダー壁(12)に近くの熱電対によって提供される温度情報を用いてPID制御によって制御される電気ヒーター(2)を使用して、温度を50℃に設定した。0.28kg/hのガスの流量を下方に導入した(この場合はCO2)。システムは、2~4バールの間で60秒の圧力サイクルで作動した。乾燥粉末の試料を1時間毎に収集して乾燥プロセスを評価し、ヘッドスペースガスクロマトグラフィーによって試料を分析した。このプロセスを、真空(50mbar)下で2h-1の空気再生を伴う50℃でのトレイ乾燥と比較した(表1)。上記の試験を70℃で繰り返した(表1)。
Figure 2024508616000002
結果は、本方法(本発明)を使用したエタノール含有量が、CO2を乾燥ガスとして使用して3時間乾燥した後、基準トレイ乾燥機よりも5倍低いことを示している。
実施例2
実験計画法(DOE)を使用して、乾燥生成物質量と、温度と、流量との間の関係を調べた。DOEでは、3レベルのパラメータの完全な階乗(中心点を有する)を考慮し、乾燥ガスとして窒素を使用した。従って、図1に示したものと同様の乾燥ユニットにおいて、3つの温度(40℃、55℃及び70℃)、3つの流量(0.06kg/h、0.17kg/h、0.50kg/h)及び3つのコポビドン質量(13.3g、40g及び120g)を考慮し、全て初期溶媒(エタノール)含有量を約5重量%として実験を行った。表2に、実験条件と得られた主な結果を開示する。
Figure 2024508616000003
結果は、生成物の量が多い場合、流量が乾燥プロセスに影響を与え、それを有意に改善することができることを示している。更に、生成物の量の増加は、ガスの流量を増加させることによってほぼ直線的に補償することができ、この観察は、研究した全ての温度について有効であった。また、乾燥速度に対する温度の影響は大きいことが観察された。この場合、質量と温度との間の関係は、研究中の範囲においてほぼ線形であった。
更に、特定の流量対質量比を超えると、乾燥速度は大きく変化せず、プラトーに達することが観察された。
実施された実験から、全体的な乾燥速度は、あるレベルまでのガス速度の上昇に直接応答することが観察された。その後、乾燥速度が安定し、内部抵抗が残りの乾燥プロセス全体を制御することを示しており、これは温度を上昇させることによって改善することができる。
実施例3
異なる気孔率を有する異なるタイプの膜の乾燥プロセスに対する効果を、前述の乾燥ユニット(図1)を使用して評価した。これらの試験により、膜及び焼結プレートにおける圧力低下及び目詰まり現象を理解することもできた。膜は、溶媒とのそれらの化学的適合性及びそれらの物理的特性(最大動作温度及び疎水性)を考慮して選択された。選択された膜は、PTFE、PCTE、PP及びPVDFであった。膜の気孔率は、0.2μm及び1μmであった。これらの気孔率は、2.5μm~63μmの範囲であるコポビドンの粒径が、約20μmの一般的な粒径であることを考慮して選択された。実験は、120gのコポビドンを使用して、55℃、N流量0.5kg/hで行われた(表3)。
乾燥プロセス中のエタノール含有量は、膜のタイプに影響されなかった。観察された差は小さく、サンプリング及び試料曝露プロセスに起因するものであり得る。
Figure 2024508616000004
加えて、膜/焼結プレートにおける圧力低下を、実験前、実験中、実験後に測定した(表4)。結果は、0.2μmの孔径の膜は、1μmを有する膜よりも、試験前の圧力低下が大きいだけでなく、乾燥試験中の圧力低下の増加も大きいことを示している。とはいえ、いくつかの乾燥サイクルの間、試験した膜のいずれについても有意な閉塞は観察されなかった。試験された膜の実験結果及び物理化学的特性を考慮すると、気孔率1μmのラミネートされていないPTFEは、この特定の用途により適している。
Figure 2024508616000005
実施例4
前述の乾燥ユニット(図1)を使用して、カラム高さが、乾燥プロセス、粉末圧縮、及び圧力低下に与える影響を評価した(表5)。4つのコポビドン質量(100g、200g、300g、400g)及び3つの流量/質量比(1、2、及び4(kg/h)gas/kgpowder)を考慮して、Nを用いて55℃で実験を行った。この粉末を予め180μmの篩いにかけて塊を除去した。表5に、実験条件と得られた主な結果を開示する。試験後の篩いにかけられた粉末は、31%の平均圧縮レベルを示し、流量及び初期高さへの有意な依存性は見られなかった。予想通り、圧力低下は、流量及び質量/高さと共に増加する。とはいえ、いずれの実験においても、乾燥中の閉塞や漸進的な圧力上昇は観察されず、この方法の実現可能性を裏付けた。加えて、乾燥結果は、重量と流量との間の関係を確認した。同じ乾燥ガス流量対質量比の場合、100gを用いた乾燥の結果は、400gを用いた結果と同様であった。
Figure 2024508616000006
実施例5
図2に示す乾燥ユニットを、約5重量%の溶媒(エタノール)含有量を有するコポビドンを用いて試験した。890gのコポビドン質量を垂直位置のデバイスに導入し、2つの濃縮焼結管の間に沈降させた。投入して閉じた後、デバイスを水平に配置した。デバイスは、(両方向に)270度未満回転するアクチュエータを有する。シリンダー壁(12)近くの熱電対によって提供される温度情報を用いてPID制御によって制御される電気ヒーター(2)を使用して、温度を52℃に設定した。3.3kg/hのガス流量を内向きに供給した。試験中の圧力低下は約0.71バールであった(0.08バールのみが粉末によって引き起こされた)。乾燥粉末の試料を3時間後に3つの異なる点で収集し、乾燥プロセスを評価し、ヘッドスペースガスクロマトグラフィーによって試料を分析した。表6に示す結果は、3時間で5000ppmに達することが可能であり、3つのサンプリング点を比較しても大きな不均一性が観察されなかったことを示している。更に、実験中、閉塞や圧力上昇は観察されず、この方法の実現可能性を裏付けた。
Figure 2024508616000007
参考文献
特許文献
US3475832A-Continuous fluid bed dryer、1986年11月
US5709036A-Aggressive convective drying in a conical screw type mixer/dryer、1998年1月
EP2043610A1-Drying of drug-containing particles、2007年3月
US4720924A-Microwave drying of pharmaceutical gelatin capsules、1988年1月
CA2594694A1-Drying of drug-containing particles、2006年1月
WO9513864-A Process and a Spray Drying Apparatus for Producing An Agglomerated Powder
US20030230004A1-Batch Fluid Bed Processor
WO2001089679A2-Continuous production of pharmaceutical granulates、2001年11月
WO2003027590A3-Method and device for drying pharmaceutical granulates, pellets or similar、2003年4月
その他の文献
Figure 2024508616000008

Claims (19)

  1. 粉末の形態の医薬品の残留溶媒内容物を乾燥させるための方法であって、
    i)前記医薬粉末を乾燥チャンバに供給するステップと、
    ii)前記乾燥チャンバ内の粉末床を横切ってガス流を供給するステップと、
    iii)前記粉末床を支持するための透過性要素を提供するステップと
    を含む方法。
  2. 前記ガス流は、前記粉末床及び前記透過性要素を通って、下方に、上方に、又は半径方向に流れる、請求項1に記載の方法。
  3. 前記透過性要素は、フィルタ又は多孔質膜を含む、請求項1又は2に記載の方法。
  4. 前記ガス流を前記乾燥チャンバに供給する前に加熱する、請求項1から3のいずれか一項に記載の方法。
  5. 前記乾燥チャンバの表面は、前記目標乾燥温度まで加熱される、請求項1から4のいずれか一項に記載の方法。
  6. 前記ガス流は、前記ガスと前記粉末との間の相対速度を最大にするために前記粉末床が前記透過性要素に対して押し付けられるのに十分な流量で供給される、請求項1から5のいずれか一項に記載の方法。
  7. 前記ガスの流量と生成物質量との間の比は、少なくとも生成物1kg当たりガス0.4kg/hである、請求項6に記載の方法。
  8. 前記ガスの流量と生成物質量との間の比は、生成物1kg当たりガス約0.4kg/h~約36kg/hの範囲である、請求項6に記載の方法。
  9. 前記ガスと前記粉末との間の前記相対速度は、少なくとも0.05cm/sであり、任意選択的に、前記ガスと前記粉末との間の前記相対速度は、約0.05~0.25cm/sの範囲である、請求項1から8のいずれか一項に記載の方法。
  10. 前記医薬品は、噴霧乾燥又は任意の既知の乾燥技術によって製造された非晶質材料である、請求項1から9のいずれか一項に記載の方法。
  11. 前記ガス流の前記温度は、前記室温と前記医薬品の溶融温度又はガラス転移温度との間である、請求項1から10のいずれか一項に記載の方法。
  12. 前記ガスは、窒素(N2)、二酸化炭素(CO2)、空気、及びそれらの混合物からなる群から選択される、請求項1から11のいずれか一項に記載の方法。
  13. 前記透過性要素内の前記粉末の目詰まりを緩和するために、前記乾燥チャンバを振動又は撹拌することを更に含む、請求項1から12のいずれか一項に記載の方法。
  14. 前記ガスの圧力は、真空から最大10バールまで周期的に変化する、請求項1から13のいずれか一項に記載の方法。
  15. 前記透過性要素は、PTFE(テフロン(登録商標))、PP、PVDF、PCTE、及びそれらの組み合わせからなる群から選択される材料で作製される、請求項1から14のいずれか一項に記載の方法。
  16. 前記透過性要素は、約0.2μm~約2μm又は0.2μm~約1μmの範囲の気孔率を有する、請求項1から15のいずれか一項に記載の方法。
  17. 前記透過性要素は、焼結金属又はポリマープレートによって支持又は置換される、請求項1から16のいずれか一項に記載の方法。
  18. 前記方法は、単一のユニットを使用するバッチプロセス、少なくとも2つのユニットを並行して組み合わせることによる半連続プロセス、又は完全連続プロセスである、請求項1から17のいずれか一項に記載の方法。
  19. 医薬品の残留溶媒内容物を乾燥させるための乾燥機内で、粉末の形態の医薬品の粉末床を支持するための、乾燥チャンバ内の透過性要素の使用。
JP2023544469A 2021-01-25 2022-01-18 医薬粉末の乾燥 Pending JP2024508616A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PT117030A PT117030B (pt) 2021-01-25 2021-01-25 Método de secagem de pós farmacêuticos
PT117030 2021-01-25
PCT/EP2022/050961 WO2022157135A1 (en) 2021-01-25 2022-01-18 Drying of pharmaceutical powders

Publications (1)

Publication Number Publication Date
JP2024508616A true JP2024508616A (ja) 2024-02-28

Family

ID=80050937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023544469A Pending JP2024508616A (ja) 2021-01-25 2022-01-18 医薬粉末の乾燥

Country Status (8)

Country Link
EP (1) EP4275007A1 (ja)
JP (1) JP2024508616A (ja)
CN (1) CN116888421A (ja)
AU (1) AU2022211583A1 (ja)
CA (1) CA3205314A1 (ja)
IL (1) IL304655A (ja)
PT (1) PT117030B (ja)
WO (1) WO2022157135A1 (ja)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3475832A (en) 1967-08-04 1969-11-04 Process Equipment Eng Co Continuous fluid bed dryer
DE3204690C2 (de) * 1982-02-11 1983-12-08 Glatt GmbH, 7851 Binzen Trocknungsvorrichtung für pulveriges oder körniges pharmazeutisches Gut
US4720924A (en) 1986-11-03 1988-01-26 R & J Engineering Corporation Microwave drying of pharmaceutical gelatin capsules
GB9226394D0 (en) * 1992-12-18 1993-02-10 Gore W L & Ass Uk Dryer
AU682162B2 (en) 1993-11-17 1997-09-25 Niro Holding A/S A process and a spray drying apparatus for producing an agglomerated powder
US5544424A (en) 1995-05-17 1996-08-13 Mallinckrodt Medical, Inc. Aggressive convective drying in a conical screw type mixer/dryer
US6499984B1 (en) 2000-05-22 2002-12-31 Warner-Lambert Company Continuous production of pharmaceutical granulation
AU2002243760A1 (en) * 2001-01-30 2002-08-12 Board Of Regents University Of Texas System Process for production of nanoparticles and microparticles by spray freezing into liquid
DE10142764A1 (de) 2001-08-31 2003-03-27 Bohle L B Pharmatech Gmbh Verfahren und Vorrichtung zum Trocknen von pharmazeutischen Granulaten, Pellets od.dgl.
US20030230004A1 (en) 2002-06-17 2003-12-18 Boehringer Ingelheim Pharmaceuticals, Inc. Batch fluid bed processor
JP4113746B2 (ja) * 2002-08-27 2008-07-09 Tdk株式会社 噴霧乾燥・造粒方法及び装置
WO2006079921A2 (en) 2005-01-28 2006-08-03 Pfizer Products Inc. Drying of drug-containing particles
WO2008012617A1 (en) 2006-07-21 2008-01-31 Pfizer Products Inc. Drying of drug-containing particles
JP2016123912A (ja) * 2014-12-26 2016-07-11 株式会社パウレック 粉粒体の処理装置

Also Published As

Publication number Publication date
EP4275007A1 (en) 2023-11-15
PT117030A (pt) 2023-01-09
IL304655A (en) 2023-09-01
PT117030B (pt) 2024-03-08
AU2022211583A1 (en) 2023-08-10
CN116888421A (zh) 2023-10-13
CA3205314A1 (en) 2022-07-28
WO2022157135A1 (en) 2022-07-28

Similar Documents

Publication Publication Date Title
JP4829229B2 (ja) 無菌凍結、乾燥、保存、分析及び充填方法(sfd−saf法)(非経口生物薬剤用のペレット凍結乾燥法)
RU2709570C2 (ru) Способ и устройство для получения вспученного гранулята
Sousa et al. Drying of pasty and granular materials in mechanically and conventional spouted beds
Ekatpure et al. Experimental investigation of a gas–solid rotating bed reactor with static geometry
TW200406245A (en) Method and device for spray drying granulation
US6197369B1 (en) Method of particle coating
Dobry et al. Spray drying and scale-up
Zhang et al. Dynamics of heat-sensitive pharmaceutical granules dried in a horizontal fluidized bed combined with a screw conveyor
Wang et al. A critical review on granulation of pharmaceuticals and excipients: Principle, analysis and typical applications
JPS6047210B2 (ja) ガラスバッチの予熱方法及び装置
JP2024508616A (ja) 医薬粉末の乾燥
RU2307004C2 (ru) Способ металлизации порошков и микросфер из газовой фазы и устройство для его осуществления
JP2009249359A (ja) 錠剤の製造方法と顆粒の製造方法及び顆粒の製造装置
JP6219529B2 (ja) 粒状ポリシリコンの製造方法
RU2648320C1 (ru) Способ десублимации твердых веществ и устройство для его осуществления
JPS6226887B2 (ja)
CN110494200B (zh) 用于分离和/或制备颗粒的装置和方法
WO2023203974A1 (ja) 粉粒体の乾燥方法、乾燥装置及び製造方法
Saikh et al. Thermo-Mechanical Dry Coating as Dry Coating Process is for Pharmaceuticals
Zaelani et al. PROCESS OF FLUID BED GRANULATOR PARAMETERS AT THE TIME OF SCALE UP IN GRANUL PRODUCTION
Jain et al. Co-processed excipients developed by spray drying: A review
Beigi et al. Drying of calcium carbonate in a batch spouted bed dryer: optimization and kinetics modeling
WO2018138569A1 (en) New design for double cone blender dryer used to produce pharmaceutical ready-to-press granules
Alli et al. Thermo-Mechanical Dry Coating as Dry Coating Process is for Pharmaceuticals
WO2024079741A1 (en) A spinning disc atomization apparatus for producing micro-particles and a method thereof

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A529

Effective date: 20230906