RU2036931C1 - Способ получения твердого свободного от геля полипропилена с показателем разветвления меньше 1 - Google Patents

Способ получения твердого свободного от геля полипропилена с показателем разветвления меньше 1 Download PDF

Info

Publication number
RU2036931C1
RU2036931C1 SU904743214A SU4743214A RU2036931C1 RU 2036931 C1 RU2036931 C1 RU 2036931C1 SU 904743214 A SU904743214 A SU 904743214A SU 4743214 A SU4743214 A SU 4743214A RU 2036931 C1 RU2036931 C1 RU 2036931C1
Authority
RU
Russia
Prior art keywords
peroxide
polypropylene
temperature
minutes
linear
Prior art date
Application number
SU904743214A
Other languages
English (en)
Inventor
Дж.ДеНикола Энтони (младший)
Original Assignee
Хаймонт Инкорпорейтед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Хаймонт Инкорпорейтед filed Critical Хаймонт Инкорпорейтед
Application granted granted Critical
Publication of RU2036931C1 publication Critical patent/RU2036931C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/50Partial depolymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Artificial Filaments (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Materials For Medical Uses (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

Использование: получение разветвленного полипропилена, который с успехом может быть использован при переработке методом расплава. Сущность изобретения: получение твердого, свободного от геля полипропилена с показателем разветвления меньше 1, осуществляют обработкой в основном в отсутствии атмосферного кислорода линейного полипропилена, имеющего аморфную или кристаллическую структуру. Обработку осуществляют путем смешения полимера при 70 - 100°С перекисью с низкой температурой разложения, имеющей период полураспада 0,5 мин при 100°С и 20 мин при 70°С при концентрации перекиси 0,0079 - 0,0467 ммоль/г полимера в смесителе с последующим выдерживанием полученной смеси при 70 - 100°С в течение 10 - 120 мин до разложения перекиси, после чего осуществляют дополнительную обработку полипропилена путем подъема температуры до 140 - 150°С и выдержки при этой температуре в течение времени менее или равно 90 мин. В качестве перекиси с низкой температурой разложения используют ди(втор-бутил)пероксидикарбонат. Полипропилен перед добавлением перекиси можно нагреть и выдерживать в течение не менее 20 с. Обработку полипропилена можно осуществлять путем смешения полимера с двумя перекисями, одна из которых имеет высокую температуру разложения - 40 ч при 100°С и 30 мин при 150°С, вторая перекись является перекисью с низкой температурой разложения. Перекись с высокой температурой разложения - 2,5 диметил-2,5-бис(трет-бутилперокси)гексан. 4 з.п. ф-лы, 5 ил., 2 табл.

Description

Изобретение относится к химии. Более конкретно, оно относится к химии, занимающейся синтетическими пластмассами на основе олефинов, в частности к способам получения синтетических смол, полученных полимеризацией чистого пропилена или пропилена в сочетании с другими альфа-олефинами.
Промышленный (коммерческий) полипропилен представляет собой обычно твердый, преимущественно изотактический, полукристаллический, термопластичный полимер, полученный полимеризацией пропилена на катализаторах Циглера-Натта. В указанном способе используют катализатор из неорганического соединения металлов групп I-III Периодической таблицы, например из алкила алюминия, и соединения переходного металла групп IV-VIII Периодической таблицы, например галогенида титана. Как правило, степень кристалличности полученного таким способом полипропилена, измеренная дифракцией рентгеновских лучей, составляет около 60% Использованный здесь термин "полукристаллический" обозначает степень кристалличности не менее около 5-10% (по данным дифракции рентгеновских лучей). Как правило, средневесовая мол.м. (Mw) обычно твердого промышленного полипропилена составляет 100000-4000000, а среднечисловая мол.м. как правило 40000 100000 (Mn). Кроме того, температура плавления обычно твердого промышленного полипропилена составляет около 162оС.
Хотя промышленный полипропилен обладает многочисленными полезными качествами и преимуществами, он не обладает прочностью расплава или деформационным упрочнением (увеличение сопротивляемости растяжению при растягивании расплавленного материала). Поэтому существуют различные недостатки в способах его переработки в расплавленном состоянии; эти недостатки включают в себя образование узорчатой кромки при получении покрытий на бумаге или других субстратах способом высокоскоростной экструзии, прогиб листа и локальное утоньшение при термическом формовании расплава, нестабильности потока при соэкструдировании тонкослойных структур. В результате использование полипропилена в таких областях, как, например, получение покрытий способом экструзии, формование выдуванием, формование экструдированием и термическое формование, является ограниченным.
На предшествующем уровне техники известен низкомолекулярный, аморфный (преимущественно атактический) полипропилен с разветвленным строением молекул. Указанный пропилен получают, используя катализаторы Циглера-Натта. Однако средневесовая мол. м. этого пропилена составляет не более 20000; указывается, что, как правило, вязкость полимера (при 20оС) лежит в пределах от вязкости легкого смазочного масла до вязкости тяжелого масла, или даже смол, имеющих пластическую или полужидкую природу. Известно, что этот полимер используют в качестве компонента смесей, а также для улучшения индекса вязкости смазочных масел.
Промышленный кристаллический полипропилен может иметь линейное строение. То есть, молекулы полимера представляют собой цепи, состоящие из пропиленовых звеньев, и не содержащие боковых цепей, состоящих из пропиленовых звеньев.
В данной области техники предпринимался ряд попыток исправить недостатки, связанные с отсутствием прочности расплава у промышленного полипропилена.
Известен способ, согласно которому, он состоит в смешении промышленного линейного полипропилена с полиэтиленом низкой плотности, который обладает требуемой прочностью расплава или деформационным упрочнением, или с указанным полиэтиленом и другими полимерными соединениями. Хотя этот способ приводит к некоторым улучшениям, он не является предпочтительным.
Другой способ улучшения характеристик расплава линейного полипропилена состоит в том, что линейный полипропилен разлагают, действуя на него в воздушной среде ионизирующим излучением с суммарной дозой от около 0,01 до около 3 Мрэд (что эквивалентно от около 0,012 до около 3,6 Мрад), причем эта доза должна быть меньше дозы, которая вызывает гелеобразование. В указанном способе раскрывается, что разрушенный воздействием излучения линейный полипропилен можно экструдировать и вытягивать со значительно более высокими линейными скоростями без резонанса при вытяжке экструдата и без колебаний подачи в экструдере. Однако образование шейки (сужения) в случае облученного в среде воздуха линейного полипропилена значительно сильнее, чем в случае необлученного линейного полипропилена.
Имеется ряд источников, в которых раскрывается обработка линейного полипропилена ионизирующим излучением. В основном в этих источниках получаемый в результате полимер описывается или как разрушенный (в результате разрыва цепей), или как сшитый (в результате сшивания линейных цепей фрагментами разрушенных цепей). В Европейской патентной заявке N 190899 (I) описывается высокомолекулярный длинноцепной разветвленный полипропилен, полученный облучением линейного полипропилена ионизирующим излучением с высокой энергией. Разветвленный полимер имеет боковые цепи со свободными концами, не содержит гель-фракции и обладает упрочнением продольной вязкости при деформации.
Аналогично имеется ряд источников, в которых раскрывается обработка линейного полипропилена перекисями. В этих источниках раскрывается или разрушение, или сшивка полипропилена при вызванном нагревом или УФ-излучением распаде перекиси. Как правило преобладающей реакцией является разрушение. Разрушение полипропилена термическим разложением перекисей является обычным способом, используемым для сужения молекулярномассового распределения линейного кристаллического полипропилена. Как правило, получаемый при этом продукт состоит из линейных цепей полипропилена и имеет как меньшую средневесовую, так и меньшую среднечисловую мол.м. Как правило реакцию проводят при температуре выше температуры плавления полипропилена, т.е. выше 162оС. Если сшивка инициируется УФ-излучением, можно использовать более низкие температуры. Однако снижение температуры приводит к уменьшению скорости распада перекисного инициатора, что приводит к снижению концентраций радикальных фрагментов полипропилена и уменьшает подвижность этих радикальных фрагментов, это затрудняет их рекомбинацию. Хотя не определен нижний предел температуры, низшая из приведенных температур дана для сшивки перекисями при облучении УФ-излучением и составляет 10оС, причем оптимальная температура для эффективной сшивки составляет 65-80оС.
Изобретение предлагает практический способ превращения обычно твердого, имеющего структуру от аморфной до преимущественно изотактической, полукристаллического линейного полипропилена в обычно твердый, не содержащий гельфракции, имеющий структуру от аморфной до преимущественно изотактической, полукристаллической полипропилен, молекулярные цепи которого содержат значительное количество длинных боковых цепей со свободными концами, состоящих из пропиленовых звеньев. Более конкретно оно включает в себя способ превращения обычно твердого, не содержащего гель-фракции, имеющего строение от аморфного до преимущественно изотактического, полукристаллического полипропилена в обычно твердый, не содержащий гель-фракции, имеющий строение от аморфного до преимущественно изотактического, полукристаллический полипропилен, имеющий показатель разветвленности менее 1 и обладающий значительным упрочнением продольной вязкости при деформации.
В более широком аспекте изобретение включает в себя способ превращения обычно твердого, высокомолекулярного, не содержащего гель-фракции пропиленового полимерного материала, в обычно твердый, высокомолекулярный, не содержащий гель-фракции пропиленовый полимерный материал, имеющий показатель разветвленности менее 1 и обладающий значительным упрочнением продольной вязкости при деформации.
Использованный здесь термин "пропиленовый полимерный материал" означает полимерный материал, выбранный из группы, которая состоит из (а) гомополимеров пропилена; (б) статистических сополимеров пропилена и олефина, выбранного из группы, состоящей из этилена и олефинов 1 с числом атомов углерода от 4 до 10, при условии, что, когда указанный олефин представляет собой этилен, максимальное содержание этилена в полимере составляет около 5 (предпочтительно около 4) мас. а когда указанный олефин представляет собой олефин-1 с числом атомов углерода 4-10, максимальное содержание этого олефина в полимере составляет около 20 (предпочтительно около 16) мас. и (в) статических терполимеров (тройных сополимеров) пропилена и олефинов-1, выбранных из группы, состоящей из этилена и олефинов-1 c числом атомов углерода 4-8, при условии, что максимальное содержание в полимере олефина-1 c числом атомов углерода 4-8 cоставляет около 20 (предпочтительно около 16) мас. и, что когда одним из указанных олефинов-1 является этилен, максимальное содержание этилена в полимере составляет около 5 (предпочтительно около 4) мас. Олефины-1 c числом атомов углерода 4-10 включают линейные и разветвленные олефины-1 с числом атомов углерода 4-10, также как, например, бутен-1, изобутилен, пентен-1, 3-метил-бутен-1, гексан-1, 3,4-диметиобутен-1, гептен-1, 3-метилгексен-1, и аналогичные. Использованный здесь термин "высокомолекулярный" обозначает средневесовую мол.м. не менее 100000.
Показатель разветвленности является количественной характеристикой уровня содержания длинных боковых цепей. В предпочтительных вариантах показатель разветвленности предпочтительности менее 0,9, более предпочтительно около 0,3-0,5. Он определяется из соотношения:
g′
Figure 00000001
где g' обозначает показатель разветвленности [ХВ]разв обозначает характеристическую вязкость разветвленного пропиленового полимерного материала, [ХВ] лин обозначает характеристическую вязкость обычно твердого, преимущественно изотактического, полукристаллического, линейного пропиленового полимерного материала, имеющего такую же средневесовую молекулярную массу, и, в случае сополимеров и термополимеров, такое же относительное содержание (относительные содержания) мономерных звеньев.
Характеристическая вязкость, называемая также предельным числом вязкости, в самом общем значении является мерой способности полимерной молекулы увеличивать вязкость раствора. Она зависит как от размера, так и от конфигурации растворенной полимерной молекулы. Таким образом, сравнение нелинейного полимера с линейным полимером, имеющим такую же среднечисловую молекулярную массу, характеризует конфигурацию нелинейной полимерной молекулы. Указанное соотношение характеристических вязкостей является мерой разветвленности нелинейного полимера. Способ определения характеристической вязкости пропиленового полимерного материала описан Еlliott et. all. J. App. Polу. Sci 14, стр. 2947-2963 (1970). В настоящем описании характеристическую вязкость в каждом случае определяют для полимера, растворенного в декалине, при 135оС.
Средневесовую молекулярную массу можно измерить различными способами. Способ, который предпочтительно использовали в настоящей заявке, представляет собой фотометрию рассеяния лазерного излучения под малыми углами, и описан Mc. Соnnell в Am. Lab. Май 1978, в статье под названием "Определение молекулярных масс полимеров и молекулярно-массового распределения методом рассеяния лазерного излучения под малыми углами".
Продольная вязкость представляет собой сопротивляемость жидкой или полужидкой среды растяжению (удлинению). Она является характеристикой расплава термопластического материала и может быть измерена с помощью прибора, измеряющего напряжение и может быть измерена с помощью прибора, измеряющего напряжение и деформацию образцов в расплавленном состоянии при их растяжении с постоянной скоростью. Один из таких приборов описан и изображен на рис.1 в Munstedt S. Pheolosу, 23, (4), 421-425, (1979). Доступным для покупки прибором аналогичной конструкции является Rheometrics RER-9000. Продольная вязкость расплавленного высокомолекулярного линейного пропиленового полимерного материала при его растягивании с постоянной скоростью от некоторой фиксированной точки имеет тенденцию возрастать до некоторого расстояния, зависящего от скорости удлинения, а затем быстро уменьшаться вплоть до утоньшения до нулевого сечения (так называемое пластическое разрушение, или разрушение посредством образования шейки). Напротив, расплавленный заявляемый пропиленовый полимерный материал, имеющий такую же средневесовую молекулярную массу, что и соответствующий расплавленный высокомолекулярный линейный пропиленовый полимерный материал, и при той же температуре проведения испытаний, имеет продольную вязкость, которая при растягивании этого материала от некоторой фиксированной точки с такой же скоростью имеет тенденцию увеличиваться до большего расстояния, после чего происходит разрушение путем разрыва (так называемое хрупкое или эластическое разрушение). Такое проведение характерно для деформационного упрочнения. Чем длиннее боковые цепи заявляемого пропиленового полимерного материала, тем сильнее тенденция продольной вязкости увеличиваться при растяжении материала вблизи точки разрушения. Указанная тенденция наиболее ярко проявляется, когда показатель разветвленности составляет менее около 0,8.
Заявляемый способ включает в себя:
(I) смешивание перекиси с низкой температурой начала разложения с линейным пропиленовым полимерным материалом, который имеет температуру от комнатной (около 23 до 120оС), в емкости смешения в основном при отсутствии атмосферного кислорода или его эквивалентов;
(2) нагревание или поддержание полученной смеси в основном в отсутствии атмосферного кислорода или его эквивалента при температуре от комнатной (около 23 до 120оС) в течение времени, достаточного для разложения перекиси, образования значительного количества фрагментов линейного пропиленового полимерного материала и образования значительного количества длинных боковых цепей, но недостаточного для того, чтобы вызвать гелеоб- разование пропиленового полимерного материала;
(3) обработку пропиленового полимерного материала в основном в отсутствии атмосферного кислорода или его эквивалента с целью дезактивации практически всех свободных радикалов, присутствующих в указанном пропиленовом полимерном материале.
Линейный пропиленовый материал, обрабатываемый заявляемым способом, может представлять собой любой твердый в обычном состоянии полимер с аморфной изотактической, полукристаллиеской линейной структурой. Обработка перекисями с низкими температурами начала разложения, согласно заявляемому изобретению, как правило, дает требуемый сильно разветвленный пропиленовый полимерный материал, имеющий большую средневесовую молекулярную массу, чем исходный материал. Однако поскольку перекисные радикалы могут вызывать разрыв цепи, то несмотря на рекомбинацию фрагментов цепей, приводящую к восстановлению цепей и образованию разветвлений, может происходить уменьшение средневесовой молекулярной массы конечного продукта по сравнению с исходным пропиленовым полимерным материалом. Как правило, характеристическая вязкость исходного линейного пропиленового полимерного материала, характеризующая его молекулярную массу, должна составлять около 1-25, предпочтительно 2-6, давая конечный продукт с характеристической вязкостью 1-6, предпочтительно 2-4.
Результаты показали, что в полипропилене, обработанном согласно заявляемому способу, образование длинных боковых цепей со свободными концами происходит главным образом в аморфной части полукристаллического полипропилена. Эта часть включает в себя обычно твердый атактический полипропилен, а также обычно твердый кристаллизующийся, но не кристаллизованный, стереорегулярный полипропилен. Следовательно, линейный пропиленовый полимерный материал, обработанный согласно заявляемому способу в его широких вариантах, может представлять собой обычно твердый аморфный пропиленовый полимерный материал с низким содержанием или с отсутствием кристаллического пропиленового полимера.
Высокомолекулярный линейный пропиленовый полимерный материал, обрабатываемый согласно заявляемому способу в наиболее широком его варианте, может иметь любую физическую форму, например, в виде тонкодисперсных частиц, таблеток, пленок, пластин и т.п. Однако в предпочтительных вариантах заявляемого способа, линейный пропиленовый полимерный материал имеет форму тонкодисперсных частиц, причем удовлетворительные результаты получают при среднем размере частиц около 60 меш (стандарт США). В эти вариантах он представляет собой порошок, называемый в промышленности "чешуйками".
Содержание активного кислорода в среде, в которой осуществляют три указанные стадии способа, является существенным фактором. Использованное здесь выражение "активный кислород" обозначает кислород в форме, реагирует с полипропиленом, обрабатываемым перекисью. Оно включает в себя молекулярный кислород воздуха. Требуемое содержание активного кислорода можно получить, используя вакуум, или замещая часть воздуха или весь воздух инертным газом, таким как, например, азот или аргон.
Линейный полипропилен сразу же после того, как он получен, как правило, не содержит активного кислорода. Поэтому настоящее изобретение включает в себя вариант, при котором заявляемый способ осуществляют сразу же вслед за полимеризацией пропилена и первичной переработкой полимера (когда полимер не взаимодействовал с воздухом). Однако в большинстве случаев линейный полипропилен содержит активный кислород вследствие хранения на воздухе или по какой-либо иной причине. Следовательно в практически предпочтительным варианте заявляемого способа тонкодисперсный линейный полипропилен сначала обрабатывают для снижения содержания в нем активного кислорода. Предпочтительный способ для осуществления этого состоит во введении линейного полипропилена в слой, продуваемый азотом, содержание активного кислорода в котором не превосходит 0,004 об. Время пребывания линейного полипропилена в этом слое, как правило, должно составлять как минимум около 5 мин для того, чтобы произошло эффективное удаление активного кислорода из промежутков между частицами линейного полипропилена и предпочтительно быть достаточно большим для того, чтобы полипропилен достиг состояния равновесия с окружающей средой.
В промежутке между этой подготовительной стадией и стадией дезактивации или гашения, а также и на этой последней стадии подготовленный линейный полипропилен должен находиться в среде с концентрацией активного кислорода составляет менее 15% предпочтительно менее 5% более предпочтительно не более 0,004% в расчете на объем среды. Кроме того, температуру линейного полипропилена следует поддерживать на уровне выше температуры стеклования аморфной фракции полипропилена, если таковая присутствует; а поскольку обычно она присутствует, то как правило, на уровне менее 40оС и предпочтительно около 25оС (комнатная температура). В любом случае температура должна быть выше 0оС.
Начиная с указанной стадии, далее на стадии образования исходных свободных радикалов и вплоть до и на стадии дезактивации, концентрация активного кислорода в среде предпочтительно составляет менее 5 об. более предпочтительно менее 1 об. Наиболее предпочтительная концентрация активного кислорода составляет не более 0,004 об.
Количество используемой перекиси с низкой температурой начала разложения является существенным. Чем больше это количество, тем больше степень разветвления и тем больше увеличение молекулярной массы. Однако желательно также, чтобы вся используемая перекись с низкой температурой начала разложения израсходовалась, это позволяет избежать нежелательного разрушения при хранении. При использовании слишком малых количеств перекиси не достигается требуемая степень разветвленности. Количество перекиси с низкой температурой начала разложения должно составлять 0,005-0,05 ммоль/г исходного пропиленового полимерного материала, предпочтительно 0,01 около 0,05, наиболее предпочтительно 0,02-0,05.
На второй стадии заявляемого способа температура, при которой полученную смесь нагревают или поддерживают, должна быть достаточной для разложения перекиси с низкой температурой начала разложения и достаточно низкой с точки зрения благоприятности для протекания рекомбинации полимерных фрагментов. Как правило, для пропиленового полимерного материала температура может составлять от комнатной до 120оС, предпочтительно от 60 до 110оC, наиболее предпочтительно от около 70 до около 105оС. Если температура превышает 120оС, то получают продукт с низкой степенью разветвленности или с отсутствием разветвленности, т. е. по существу линейный полимер. Температуры ниже комнатной также не приводят к получению сколько-нибудь значительной степени разветвленности.
Скорость разложения используемой перекиси является существенной. Скорость разложения выражают в периодах полураспада перекисного инициатора при данной температуре. Период полураспада представляет собой время, которое при данной температуре требуется для уменьшения исходной концентрации вдвое. Как правило период полураспада измеряют в среде органического растворителя при концентрации, близкой к используемой в случае пропиленового полимера, с которым имеют дело. Требуемый период полураспада варьируют, меняя температуру на второй стадии способа. В интервале температур от около 90 до 120оС период полураспада перекиси должен не превышать 5 мин, предпочтительно не должен превышать 3 мин, наиболее предпочтительно не должен превышать 2 ин. В интервале температур от около 60 до около 90оС период полураспада не должен превышать 40 мин, предпочтительно не должен превышать 30 мин, наиболее предпочтительно не должен превышать 20 мин. В интервале температур от комнатной до около 60оС период полураспада не должен превышать 60 мин, предпочтительно не должен превышать 40 мин. Периоды полураспада, превосходящие указанные, приводят к получению продукта с незначительной разветвленностью или с отсутствием разветвленности, т.е. по существу к линейному полимеру.
Вторая стадия заявляемого способа должна осуществляться в течение периода времени, который зависит от периода полураспада используемой перекиси с низкой температурой начала разложения. Как правило время реакции на второй стадии составляет 5-15 периодов полураспада, предпочтительно 5-10 периодов полураспада, наиболее предпочтительно 5-8 периодов полураспада используемого перекисного инициатора с низкой температурой начала разложения; в общем, время реакции составляет от около 100 мин до 900 мин, предпочтительно от 100 до 600 мин, наиболее предпочтительно от 100 до 480 мин в интервале температур от комнатной температуры до 60оС, и от 10 мин до 600 мин, предпочтительно от 10 до 400 мин, наиболее предпочтительно от 10 до 160 мин в интервале от 60 до 90оС, и от 5 до 75 мин, предпочтительно от 5 до 45 мин, наиболее предпочтительно от 5 до 30 мин в интервале температур от 90 до 120оС.
Подходящие перекиси с низкой температурой начала разложения включают ди(втор-бутил)пероксидикарбонат, бис(2-этокси)пероксидикарбонат, дициклогексилпероксидикарбонат, ди-н-пропилперо- ксидикарбонат, ди-н-пероксидикарбонат, ди-втор-бутил-пероксидикарбонат, диизопропилпероксидикарбонат, трет-бутил-пероксинеодеканоат трет-амил-перокси- неодеканоат, и трет-бутил-пероксипивалат.
Подвод тепла можно осуществлять любым известным способом, или введением смеси перекись/пропиленовый полимерный материал в псевдоожиженную подложку, в которой средой, создающей псевдоожижение, служит, например, азот или другой инертный газ. Температуру подложки устанавливают и поддерживают в интервале температур от не менее комнатной до 120оС, причем время пребывания смеси в подложке зависит от температуры, но в общем, составляет от 10 до 900 мин. В любом случае время пребывания должно быть не менее 5 периодов полураспада используемого перекисного инициатора с низкой температурой начала разложения при температуре, равной температуре реакции.
Третью стадию способа дезактивацию или "гашение" свободных радикалов можно проводить нагреванием или добавлением соединений, действующих как ловушки свободных радикалов, например, метилмеркаптана.
В одном конкретном варианте осуществления способа третья стадия включает в себя нагревание обработанного перекисью пропиленового полимерного материала при температуре от около 130 до около 150оС. Подвод тепла можно осуществлять любым из известных способов, например, экструзией, или введением обработанного перекисью пропиленового материала в псевдоожиженную подложку, в которой псевдоожижающей средой является, например, азот или другой инертный газ. Температуру подложки устанавливают и поддерживают в интервале от не менее около 130 до около 150оС, причем время пребывания обработанного полипропилена в псевдоожиженной подложке составляет от 5 до около 120 мин; оптимальное значение составляет около 30 мин при условии, что используют только перекись с низкой температурой начала разложения. В общем случае полученному продукту дают остыть, выдерживая его при комнатной температуре, или переносят его каким-либо способом в другое место и дают ему остыть там, выдерживая при комнатной температуре.
В другом варианте осуществления способа можно использовать два или несколько перекисных активаторов, имеющих разные температуры начала разложения, если увеличение сдвиговой вязкости расплава, являющееся результатом обработки пропиленового полимера перекисью с низкой температурой начала разложения в соответствии с заявляемым изобретением, не является желаемой целью. В таких случаях перекисный активатор представляет собой сочетание перекиси с низкой температурой начала разложения, или менее устойчивой перекиси, т.е. перекиси, период полураспада которой не превышает 5 мин при температурах от около 90 до 120оС, или не превышает 40 мин при температурах от около 60 до около 90оС, или не превышает 60 мин при температура от комнатной до около 60оС, с перекисью с высокой температурой начала разложения, или более устойчивой перекисью, т. е. перекисью, период полураспада которой составляет не менее 20 мин при 120оС, но не превышает 60 мин при температуре от около 130 до 150оС. Использование такого сочетания перекисных активаторов (комбинированного перекисного активатора) позволяет контролировать и сдвиговую вязкость расплава, и степень разветвленности. Распад менее устойчивой перекиси или перекиси с низкой температурой начала разложения, происходит на второй стадии и дает длинноцепное разветвление. Распад перекиси с высокой температурой начала разложения и разрушение разветвленного пропиленового полимерного материала, образовавшегося на второй стадии, происходит на третьей стадии (если используют указанную комбинацию перекисей). Промежуток времени, в течение которого полученный на второй стадии разветвленный пропиленовый полимерный материал нагревают на третьей стадии, должен быть достаточным для дезактивации любых свободных радикалов, оставшихся от распада перекиси с низкой температурой начала разложения, и для распада перекиси с высокой температурой начала разложения, а также достаточным для дезактивации любых свободных радикалов, образовавшихся из перекиси с высокой температурой начала разложения, после того, как достигнут требуемый уровень разрушения, но недостаточным для того, чтобы привести к гелеобразованию в разветвленном пропиленовом полимерном материале. Как правило, этот промежуток времени составляет от 10 до около 300 мин, предпочтительно от около 20 до около 120 мин, наиболее предпочтительно около 90 мин.
Перекиси с низкой температурой начала разложения и с высокой температурой начала разложения можно добавлять в виде смеси, раздельно (параллельно или последовательно) до того, как начат подвод какого бы то ни было тепла, во время подвода тепла, или после того, как пропиленовый полимерный материал нагрели до температуры второй стадии. С другой стороны перекись с низкой температурой начала разложения можно добавлять до подвода тепла, во время подвода тепла или после нагрева пропиленового полимерного материала до температуры второй стадии, а перекись с высокой температурой начала разложения до начала подвода тепла, во время подвода тепла или после того, как пропиленовый полимерный материал нагрели до температуры третьей стадии.
Перекись с низкой температурой начала разложения, или перекись с высокой температурой начала разложения, или обе перекиси можно вводить в чистом виде или в виде раствора в полностью инертном жидком растворителе, например ксилоле или минеральных спиртах. Как правило, концентрация перекиси в жидкой среде составляет от 10 до 99% причем используемое количество рассчитывают по активному веществу. Предпочтительно перекись с низкой температурой начала разложения, или комбинацию этой перекиси с перекисью с высокой температурой начала разложения, добавляют к пропиленовому материалу после того, как указанный материал доводят до и поддерживают при температуре, используемой на второй стадии, в течение как минимум 20 с.
Одновременное использование перекисей с низкой и с высокой температурой начала разложения приводит к уменьшению молекулярной массы без потери полученных длинных боковых цепей. Существенно, что перекись с высокой температурой начала разложения следует использовать в таком количестве, чтобы эта перекись по существу полностью разложилась, и что свободные радикалы, образующиеся при разложении этой перекиси, дезактивируются на третьей стадии. Таким образом, концентрация более устойчивого перекисного компонента является существенной, причем величина этой концентрации составляет 0,002-0,1 моль/г исходного пропиленового полимерного материала, предпочтительно 0,008-0,08, наиболее предпочтительно 0,01-0,05 ммоль/г. При использовании смеси перекиси с низкой температурой начала разложения с перекисью с высокой температурой начала разложения время реакции на третьей стадии составляет, как правило, 3-20 периодов полураспада, предпочтительно 10-15 периодов полураспада перекиси с высокой температурой начала разложения.
Подходящие перекиси с высокой температурой начала разложения включают 2,5-диметил-2,5-бис(трет-бутилперокси)гексан, бис(трет-бутилпероксиизопропил)бензол, перекись дикумила, 4,4-ди-трет-бутилперокси-н-бутилвалерат, трет-амилпероксибензоат, трет-бутил-пероксибензоат, 2,2-ди- трет-бутилпероксибутан, трет-бутилперокси-3,5,5-триметилгексаноат, трет-бутилпероксиизопропилкарбонат и 1,1-ди-трет- бутилпероксициклогексан.
Полученный таким образом продукт представляет собой твердый в обычном состоянии, не содержащий гель-фракции пропиленовый полимерный материал с молекулярной массой больше, чем молекулярная масса исходного пропиленового полимерного материала, и характеризующийся деформационным упрочнением, особенно, если для получения пропиленового полимерного продукта использовали только перекись с низкой температурой начала разложения. При использовании комбинации перекиси с низкой температурой начала разложения и перекиси с высокой температурой начала разложения можно получить твердый в обычном состоянии, не содержащий гель-фракции пропиленовый полимерный материал, характеризующийся деформационным упрочнением и имеющий молекулярную массу и большую, или несколько меньшую молекулярной массы исходного пропиленового полимерного материала.
Хотя заявляемый способ можно осуществлять в статических условиях, предпочтительным является осуществление непрерывного процесса.
Вторая и третья стадии могут быть осуществлены с использованием ступенчатой системы псевдоожиженных слоев (подложек).
После дезактивации свободных радикалов полученный пропиленовый полимерный материал приводят в контакт с атмосфе- рой.
Еще одна отличительная особенность изобретения включает в себя использование течения с растяжением заявляемого деформационно упрочняющего пропиленового полимерного материала. Течение с растяжением возникает, когда пропиленовый полимерный материал в расплавленном состоянии растягивают в одном или нескольких направлениях со скоростью, превосходящей скорость нормального течения в этих направлениях. Оно имеет место при нанесении покрытий экструзионным способом, когда расплавленный материал покрытия экструдируют на поверхность субстрата, например, на движущийся лист бумаги или движущуюся металлическую пластину, причем экструдер или субстрат движутся со скоростью, большей скорости экструдирования. Оно также имеет место при получении пленок, когда расплавленный пленкообразующий материал экструдируют, а затем растягивают до нужной толщины. Оно реализуется в процессах термического формования, в которых лист из расплавленного материала зажимают над пресс-формой, проводят вакуумирование, лист вталкивается в форму. Оно также имеет место при получении вспененных изделий, когда расплавленный пропиленовый полимерный материал увеличивают в объеме с помощью вспенивающего агента. Заявляемый деформационно упрочняющийся пропиленовый полимерный материал особенно ценен в качестве части (например, в количестве от 0,5 до 95 мас.), или особенно в случае деформационно упрочняющегося, преимущественно изотактического, полукристаллического пропиленового материала, в качестве всего расплавленного пластического материала, используемого в этих и других способах расплавленной технологии (например, профильная экструзия, как в случае вытягивания волокна из расплава и выдувания волокна из расплава), для получения полезных изделий. В случае заявляемого деформационно упрочняющегося аморфного пропиленового полимерного материала, он особенно ценен в смеси с обычно твердым, преимущественно изотактическим, полукристаллическим линейным пропиленовым полимерным материалом для использования в способах расплавной технологии и в других способах получения полезных изделий.
П р и м е р 1. I стадия. В данном примере 5 г тонкодисперсного промышленного полипропилена со стандартным содержанием антиоксиданта фенольного типа (около 0,001 мас.), характеризующегося номинальной скоростью течения расплава (дг/мин, AsТМ Способ D 1238, Условия L), равной 2,5, и плотностью (г/см3, ASТМ Способ D 792А-3), равной 0,902, помещают в емкость, снабженную мешалкой. Емкость герметизируют и при перемешивании продувают аргоном до тех пор, пока остаточное содержание кислорода не составит менее 100 ррm. По окончании продувки в емкость вводят 0,0079 ммолей ди(втор-бутил)пероксидикарбоната, имеющего период полураспада 0,5 мин при 100оС. Полипропилен и перекись перемешивают до тех пор, пока не образуется гомогенная смесь (примерно 10 мин).
II стадия. Затем емкость помещают в баню с постоянной температурой 100оС, и выдерживают при этой температуре в течение 10 мин, продолжая перемешивание.
III стадия. Затем емкость переносят в другую баню, имеющую постоянную температуру 150оС, и выдерживают при этой температуре в течение 30 мин, продолжая перемешивание. На всем протяжении реакции уровень содержания кислорода в реакторе поддерживают ниже 100 ррm. Затем емкость удаляют из бани и после охлаждения до комнатной температуры извлекают из нее полученный продукт.
Свойства конечного продукта примера 1, а также свойства контроля (линейного промышленного полипропилена) приведены в табл.1.
П р и м е р ы 2-6. Используют методику примера 1 за исключением того, что количество перекиси, температуры и времена таковы, как указано для этих примеров в табл.1. Свойства получаемых продуктов (примеры 2-6) также приведены в табл.1.
П р и м е р ы 7-9. Следующие примеры иллюстрируют еще один ряд вариантов заявляемого нелинейного пропиленового полимера и другой вариант способа его получения.
Используют методику примера 1, за исключением того, что применяют комбинация ди(втор-бутил)пероксидикарбоната и 2,5-диметил-2,5- бис(трет-бутилперокси)гексана (чистота 98% ); последний имеет период полураспада 40 ч при 100оС и 30 мин при 150оС. Использование количества двух указанных перекисей, температуры и времена приведены в табл.1. Свойства получаемых продуктов также приведены в табл.1, примеры 7-9.
Нижеследующий пример иллюстрирует еще один вариант получения нелинейного пропиленового полимера согласно заявляемому изобретению.
П р и м е р ы 10-13. I стадия. Полипропилен, использованный в примере 1 (200 г), вводят в стеклянный реактор, снабженный мешалкой. Реактор герметизируют и продувают при перемешивании азотом до те пор, пока остаточное содержание кислорода не составит менее 10 ррm. При перемешивании реактор помещают в баню с постоянной температурой 70оС. При нагревании полимера его температуру измеряют. Полимер выдерживают при 70оС в течение 15 мин, продолжая перемешивать, затем в реактор вводят 0,0349 ммоль/г полимера (по активному веществу) ди(втор-бутил)пероксидикарбоната (30%-ный раствор в ксилоле), имеющего период полураспада 20 мин при 70оС, и смешивают с полимером.
II стадия. Смесь полимера и перекиси выдерживают при 70оС в течение 2 ч, продолжая перемешивать. Содержание кислорода в реакторе в течение всего периода реакции поддерживают на уровне ниже 10 ppm.
III стадия. Затем реактор продувают потоком горячего азота, поднимая температуру содержимого реактора до 140оС в течение примерно 40 мин. Эту температуру поддерживают при продолжающемся перемешивании в течение 30 мин. Затем реактор продувают потоком азота, имеющего комнатную температуру, чтобы уменьшить температуру продукта до менее 60оС. Реактор вскрывают и извлекают 196,4 г продукта.
Свойства полученного в данном примере продукта, а также свойства контроля (промышленного линейного полипропилена) приведены в табл.2.
Пример 11 иллюстрирует еще один вариант заявляемого нелинейного пропиленового полимера. Примеры 12 и 13 являются сравнительными, в которых была использована методика примера 10, за исключением того, что тип перекиси, количество перекиси, температура и времена таковы, как приведено в табл.2. Ди(втор-бутил)пероксидикарбонат имеет период полураспада 0,5 мин при 100оС; трет-бутилпероктоат (50% -ный раствор в минеральных спиртах) имеет период полураспада 20 мин при 100оС и 0,5 мин при 135оС. Свойства получаемых продуктов также приведены в табл.2.
Поведение контрольного образца и образцов, полученных в примерах 10-13, при растяжении, проиллюстрированы фиг. 1-5. Более конкретно, фиг. 1-5 представляют собой графики зависимостей продольной вязкости (η, П) от времени (с) при указанных скоростях растяжения (с-1). Эти данные были получены на образцах контроля примеров 10-13 с использованием прибора RER-9000 (Rheometries extennenal rheometer). При получении зависимостей, приведенных на фиг. 1-5, образцы растягивали до разрушения в расплавленном состоянии при 180оС.
Из фиг. 1 следует, что в случае линейного полипропилена (контроль) при растяжении (удлинении) расплавленного материала продольная вязкость возрастает с течением времени, однако вблизи точки разрушения происходит ее уменьшение до такого значения, которое свидетельствует о наличии пластического разрушения.
С другой стороны, из фиг.2 и 3 следует, что в случае заявляемых материалов при их растяжении наблюдается увеличение продольной вязкости с течением времени и вблизи точки разрушения возрастание продолжается.
При высокой температуре реакции или при использовании перекиси с большим периодом полураспада, или при сочетании этих факторов, деформационного упрочнения не наблюдается, и продольной вязкости линейного полипропилена (контроля). Это обстоятельство проиллюстрировано фиг.4 и 5 для сравнительных примеров 12 и 13, в которых использовали трет-бутилпероктоат, известный также как трет-бутилперокси-2-этилгексаноат.
Полученные пропиленовые полимеры можно с успехом использовать во всех способах расплавной переработки, где требуется пропиленовый полимерный материал, обладающий повышенной прочностью расплава.
Другие признаки, преимущества и варианты раскрываемого изобретения также очевидны для специалистов в данной области техники после ознакомления с описанием изобретения. Поскольку специфические варианты изобретения описаны подробно, модификации и изменения этих вариантов могут быть осуществлены в рамках существа и объема описанного заявляемого изобретения.

Claims (5)

1. СПОСОБ ПОЛУЧЕНИЯ ТВЕРДОГО СВОБОДНОГО ОТ ГЕЛЯ ПОЛИПРОПИЛЕНА С ПОКАЗАТЕЛЕМ РАЗВЕТВЛЕНИЯ МЕНЬШЕ 1 путем обработки, в основном, в отсутствии атмосферного кислорода линейного полипропилена, имеющего аморфную или кристаллическую структуру, отличающийся тем, что обработку полипропилена осуществляют путем смешения его при 70 100oС с пероксидом с низкой температурой разложения, имеющего период полураспада 0,5 мин при 100oС и 20 мин при 70oС при концентрации пероксида 0,0079 0,0467 ммоль/г полимера в смесителе с последующим выдерживанием полученной смеси при 70 - 100oС в течение 10 120 мин до разложения пероксида, после чего осуществляют дополнительную обработку полипропилена путем подъема температуры до 140 150oС и выдержки при этой температуре не более 90 мин.
2. Способ по п.1, отличающийся тем, что в качестве пероксида с низкой температурой разложения используют ди(втор-бутил)-пероксидикарбонат.
3. Способ по п. 1, отличающийся тем, что полипропилен нагревают и выдерживают перед добавлением пероксида не менее 20 с.
4. Способ по п. 1, отличающийся тем, что обработку полипропилена осуществляют путем смешения его с двумя пероксидами, один из которых имеет высокую температуру разложения при 100oС 40 ч и при 150oС 30 мин.
5. Способ по п.1, отличающийся тем, что в качестве пероксида с высокой температурой разложения используют 2,5-диметил-2,5-бис(трет-бутилперокси)гексан.
SU904743214A 1989-02-17 1990-02-16 Способ получения твердого свободного от геля полипропилена с показателем разветвления меньше 1 RU2036931C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US313274 1989-02-21
US07/313,274 US5047485A (en) 1989-02-21 1989-02-21 Process for making a propylene polymer with free-end long chain branching and use thereof

Publications (1)

Publication Number Publication Date
RU2036931C1 true RU2036931C1 (ru) 1995-06-09

Family

ID=23215065

Family Applications (1)

Application Number Title Priority Date Filing Date
SU904743214A RU2036931C1 (ru) 1989-02-17 1990-02-16 Способ получения твердого свободного от геля полипропилена с показателем разветвления меньше 1

Country Status (17)

Country Link
US (1) US5047485A (ru)
EP (1) EP0384431B1 (ru)
JP (1) JP2744317B2 (ru)
KR (1) KR0145323B1 (ru)
CN (1) CN1030457C (ru)
AT (1) ATE114677T1 (ru)
AU (1) AU616103B2 (ru)
BR (1) BR9000791A (ru)
CA (1) CA1339476C (ru)
DE (1) DE69014348T2 (ru)
DK (1) DK0384431T3 (ru)
ES (1) ES2064503T3 (ru)
FI (1) FI900836A0 (ru)
NO (1) NO900738L (ru)
PT (1) PT93206A (ru)
RU (1) RU2036931C1 (ru)
ZA (1) ZA90911B (ru)

Families Citing this family (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4000695C2 (de) * 1990-01-12 1997-07-03 Huels Chemische Werke Ag Weitgehend amorphe Polyalphaolefine mit enger Molekulargewichtsverteilung, Verfahren zu deren Herstellung und Verwendung für Teppichschwerbeschichtungsmassen oder Schmelzklebstoffe
US5198506A (en) * 1991-05-10 1993-03-30 Phillips Petroleum Company High organic peroxide content polypropylene
US5508319A (en) * 1991-06-21 1996-04-16 Montell North America Inc. High melt strength, ethylene polymer, process for making it, and use thereof
EP0656911B1 (en) * 1992-08-27 1996-09-11 Akzo Nobel N.V. Process for the modification of alpha-olefin (co)polymers
IT1255364B (it) * 1992-09-15 1995-10-31 Himont Inc Processo per la preparazione di manufatti in polipropilene espanso mediante produzione di granuli pre-espansi e termoformatura per sinterizzazione degli stessi
US5416169A (en) * 1992-11-26 1995-05-16 Chisso Corporation Polypropylene having a high melt-tensile strength, a process for producing the same and a molded product from the same
JP2582745B2 (ja) * 1993-01-11 1997-02-19 池田物産株式会社 ポリプロピレン発泡体および内装材
US5368919A (en) * 1993-05-20 1994-11-29 Himont Incorporated Propylene polymer compositions containing high melt strength propylene polymer material
AT403581B (de) * 1993-06-07 1998-03-25 Danubia Petrochem Polymere Verfahren zur herstellung von neuen polypropylenen durch chemische degradierung
US5508318A (en) * 1993-07-15 1996-04-16 Montell North America Inc. Compositions of irradiated and non-irradiated olefin polymer materials with reduced gloss
US5414027A (en) * 1993-07-15 1995-05-09 Himont Incorporated High melt strength, propylene polymer, process for making it, and use thereof
JP3171422B2 (ja) * 1994-04-20 2001-05-28 日本原子力研究所 改質ポリプロピレンを製造する方法および成形品
BE1008959A4 (fr) 1994-12-19 1996-10-01 Solvay Polymere du propylene, procede pour son obtention et utilisation.
IT1274503B (it) * 1995-05-15 1997-07-17 Montell North America Inc Fibre poliolefiniche ad elevata tenacita'
US5670595A (en) * 1995-08-28 1997-09-23 Exxon Chemical Patents Inc. Diene modified polymers
DE19544858C2 (de) * 1995-10-02 1998-09-10 Silver Plastics Gmbh & Co Kg Verfahren zum Herstellen einer thermogeformten Verpackung
CA2226916A1 (en) 1995-10-18 1997-02-24 Hitoshi Sato Olefin (co-)polymer compositions and method for producing the same and catalyst for olefin (c0-)polymerization and method for producing the same
AU7710896A (en) 1995-12-01 1997-06-27 Chisso Corporation Molded resin articles
DE59710063D1 (de) 1996-02-01 2003-06-18 Borealis Gmbh Schwechat Mannsw Strukturisomere Poly(alkylethylene)
TW341579B (en) * 1996-06-24 1998-10-01 Akzo Nobel Nv Process for enhancing the melt strength of polypropylene (co)polymers
US6083585A (en) * 1996-09-23 2000-07-04 Bp Amoco Corporation Oxygen scavenging condensation copolymers for bottles and packaging articles
ES2277381T5 (es) 1997-02-07 2014-02-06 Exxonmobil Chemical Patents Inc. Preparación de macrómeros que contienen vinilo
WO1998034970A1 (en) 1997-02-07 1998-08-13 Exxon Chemical Patents Inc. Thermoplastic elastomer compositions from branched olefin copolymers
TW425414B (en) * 1997-02-18 2001-03-11 Chisso Corp Preactivated catalyst for olefin (co)polymerization, catalyst for olefin (co)polymerization and olefin (co)polymer composition and their manufacturing method
EP0972800A4 (en) 1997-04-02 2004-06-16 Chisso Corp MODIFIED OLEFIN (CO) POLYMER COMPOSITION, METHOD FOR THE PRODUCTION THEREOF AND MODIFIED OLEFIN (CO) POLYMER MOLD
US6303696B1 (en) 1997-04-11 2001-10-16 Chisso Corporation Propylene (co)polymer composition using metallocene catalyst
US6218023B1 (en) 1997-04-21 2001-04-17 Montell North America, Inc. Co-extruded laminate comprising at least one propylene graft copolymer layer
DE19722579B4 (de) * 1997-05-30 2004-02-12 Borealis Gmbh Fasern und Garne hoher Festigkeit und Dehnung, Verfahren zu deren Herstellung und Verwendung
US6103833A (en) * 1997-06-12 2000-08-15 Akzo Nobel N.V. Process for enhancing the melt strength of polypropylene (co)polymers
DE19730629C2 (de) * 1997-07-17 2001-06-13 Borealis Gmbh Schwechat Mannsw Modifizierte, Methylensequenzen enthaltende Polymere, Verfahren zur Herstellung und Verwendung
DE19732266A1 (de) * 1997-07-26 1999-01-28 Danubia Petrochem Deutschland Verwendung von Olefin- Copolymeren mit verbesserter Stabilität gegenüber ionisierender Strahlung
TW504515B (en) 1997-08-07 2002-10-01 Chisso Corp Olefin (co)polymer composition
JPH1160834A (ja) * 1997-08-08 1999-03-05 Tosoh Corp プロピレン系樹脂組成物
FI973816A0 (fi) * 1997-09-26 1997-09-26 Borealis As Polypropen med hoeg smaeltstyrka
UA60351C2 (ru) 1997-11-21 2003-10-15 Акцо Нобель Н.В. Экструзионный процесс для улучшения прочности при плавлении полипропилена
US6184327B1 (en) 1997-12-10 2001-02-06 Exxon Chemical Patents, Inc. Elastomeric propylene polymers
US6197910B1 (en) 1997-12-10 2001-03-06 Exxon Chemical Patents, Inc. Propylene polymers incorporating macromers
US6951904B1 (en) 1998-01-19 2005-10-04 Polymers Australia Pty Limited Process for increasing the melt strength of polypropylene
JP4389388B2 (ja) 1998-04-24 2009-12-24 チッソ株式会社 難燃性ポリオレフィン組成物
BE1012068A3 (fr) * 1998-07-10 2000-04-04 Solvay Corps creux biorientes a base de terpolymeres statistiques du propylene et procede pour la fabrication de ces corps creux.
CN1167718C (zh) 1998-08-26 2004-09-22 埃克森美孚化学专利公司 支化聚丙烯组合物
DE69938061D1 (de) * 1998-12-21 2008-03-13 Exxonmobil Chem Patents Inc Verfahren zur herstellung von verzweigten ethylen-propylen copolymeren
US6143825A (en) * 1999-05-14 2000-11-07 Montell Technology Company Bv Adhesive propylene polymer compositions suitable for coating substrates
US6489019B1 (en) 1999-05-19 2002-12-03 Basell Poliolefine Italia S.P.A. High surface gloss, co-extruded sheets from olefin polymer materials
US6306518B1 (en) 1999-05-19 2001-10-23 Montell Technology Company Bv High surface gloss, co-extruded sheets from propylene polymer materials
AU774753B2 (en) * 1999-07-29 2004-07-08 Dow Global Technologies Inc. Improved silane functionalized olefin interpolymers and derivatives thereof
CN1407995A (zh) 1999-12-10 2003-04-02 埃克森化学专利公司 丙烯-二烯共聚的聚合物
US6977287B2 (en) * 1999-12-10 2005-12-20 Exxonmobil Chemical Patents Inc. Propylene diene copolymers
US6809168B2 (en) * 1999-12-10 2004-10-26 Exxonmobil Chemical Patents Inc. Articles formed from propylene diene copolymers
US6624099B1 (en) 1999-12-17 2003-09-23 Basell Poliolefine Italia S.P.A. Glass-reinforced multi-layer sheets from olefin polymer materials
JP2001316510A (ja) 2000-02-29 2001-11-16 Chisso Corp 発泡用のポリプロピレン系樹脂組成物、該組成物を用いた発泡体、同発泡体の製造方法および同発泡体を用いた発泡成形体
WO2002014383A1 (en) * 2000-08-15 2002-02-21 Akzo Nobel N.V. Use of trixepans in the process to modify (co) polymers
MY131000A (en) 2001-03-16 2007-07-31 Dow Global Technologies Inc High melt strength polymers and method of making same
DE10212654B4 (de) 2001-03-30 2012-06-14 Jnc Corporation Propylenpolymerzusammensetzung und geschäumte Formlinge daraus
TWI295963B (ru) * 2001-05-11 2008-04-21 Toray Industries
EP1260529A1 (en) 2001-05-21 2002-11-27 Borealis Technology OY Propylene polymers with improved properties
EP1260547A1 (en) 2001-05-21 2002-11-27 Borealis Technology OY Polyolefin coated steel pipes
EP1260528A1 (en) 2001-05-21 2002-11-27 Borealis Technology OY Propylene polymer pipes for pipelines
EP1260545A1 (en) 2001-05-21 2002-11-27 Borealis Technology OY Industrial polyolefin piping system
JP4031622B2 (ja) * 2001-05-30 2008-01-09 バセル ポリオレフィン イタリア エス.アール.エル. ポリプロピレン系樹脂組成物
EP1397396B1 (en) * 2001-05-30 2005-03-23 Basell Poliolefine Italia S.p.A. Polypropylene resin composition
US6716309B2 (en) * 2001-12-21 2004-04-06 Kimberly-Clark Worldwide, Inc. Method for the application of viscous compositions to the surface of a paper web and products made therefrom
US6913056B2 (en) 2002-01-31 2005-07-05 Baxter International Inc. Apparatus and method for connecting and disconnecting flexible tubing
DE60318044T2 (de) 2002-05-24 2008-12-04 Baxter Healthcare S.A. Dialysesystem mit anzeige, webbrowser und webserver
US7087036B2 (en) 2002-05-24 2006-08-08 Baxter International Inc. Fail safe system for operating medical fluid valves
US6764761B2 (en) 2002-05-24 2004-07-20 Baxter International Inc. Membrane material for automated dialysis system
JP4468801B2 (ja) 2002-05-24 2010-05-26 バクスター・インターナショナル・インコーポレイテッド 自動化された透析装置のためのハードウエアシステム、方法及び装置
AU2003234608A1 (en) 2002-05-24 2003-12-12 Baxter Healthcare S.A. Automated dialysis system
CN100575405C (zh) * 2002-06-04 2009-12-30 联合碳化化学及塑料技术有限责任公司 聚合物组合物和由其制作管子的方法
US7238164B2 (en) 2002-07-19 2007-07-03 Baxter International Inc. Systems, methods and apparatuses for pumping cassette-based therapies
US7700707B2 (en) 2002-10-15 2010-04-20 Exxonmobil Chemical Patents Inc. Polyolefin adhesive compositions and articles made therefrom
US7550528B2 (en) 2002-10-15 2009-06-23 Exxonmobil Chemical Patents Inc. Functionalized olefin polymers
US7294681B2 (en) 2002-10-15 2007-11-13 Exxonmobil Chemical Patents Inc. Mutliple catalyst system for olefin polymerization and polymers produced therefrom
US6887940B2 (en) 2002-11-27 2005-05-03 Basell Poliolefine Italia S.P.A. Compatibilizing agent for engineering thermoplastic/polyolefin blend
DE60231728D1 (de) * 2002-12-12 2009-05-07 Borealis Tech Oy Koaxialkabel, welches ein dielektrisches Material enthält
BRPI0413551A (pt) * 2003-08-12 2006-10-17 Basell Poliolefine Srl composições de polìmero de buteno-1 irradiado
US8617467B2 (en) 2003-09-22 2013-12-31 Baxter International Inc. High-pressure sterilization to terminally sterilize pharmaceutical preparations and medical products
US20050085785A1 (en) * 2003-10-17 2005-04-21 Sherwin Shang High impact strength film and non-pvc containing container and pouch and overpouch
CA2555202A1 (en) * 2004-02-18 2005-09-01 Jean-Pierre Ibar Process for incorporating substances into polymeric materials in a controllable manner
US20050186377A1 (en) * 2004-02-19 2005-08-25 Hurst William S. Solventless plastic bonding of medical devices and container components through infrared heating
CA2772028C (en) * 2004-04-22 2013-05-28 Toray Industries, Inc. Microporous polypropylene film and manufacturing method for same
US20090198031A1 (en) * 2004-07-01 2009-08-06 The Penn State Research Foundation One-pot process and reagents for preparing long chain branched polymers
US7511105B2 (en) * 2004-07-01 2009-03-31 The Penn State Research Foundation One-pot process and reagents for preparing long chain branched polymers
EP1825036A1 (en) * 2004-12-13 2007-08-29 Basell Poliolefine Italia S.r.l. Polyolefin composition, fibres and nonwoven fabrics
WO2006067214A1 (en) * 2004-12-23 2006-06-29 Basell Poliolefine Italia S.R.L. Fibres having elastic properties
EP1683631A1 (en) * 2005-01-25 2006-07-26 Borealis Technology OY Multilayer structures
DE602006010027D1 (de) 2005-02-03 2009-12-10 Basell Poliolefine Srl Propylen-polymer-zusammensetzung zum spritzgiessen
US8076416B2 (en) 2005-02-04 2011-12-13 Exxonmobil Chemical Patents Inc. Thermoplastic vulcanizates and their use
JP2008539290A (ja) * 2005-04-28 2008-11-13 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ 熱成形用プロピレンポリマー組成物
JP5227165B2 (ja) * 2005-05-12 2013-07-03 サンアロマー株式会社 プロピレン/エチレンコポリマー及びその製造方法
BRPI0615488B1 (pt) * 2005-07-01 2017-07-04 Basell Poliolefine Italia S.R.L Polymers of propylene having a large distribution of molecular weight
US20070004861A1 (en) * 2005-07-01 2007-01-04 Kevin Cai High melt strength polypropylene resins and method for making same
EP1913076A1 (en) * 2005-08-08 2008-04-23 Basell Poliolefine Italia S.r.l. Process for the nucleation of polypropylene resins
US7750086B2 (en) * 2006-02-27 2010-07-06 Equistar Chemicals, Lp Solid state modification of propylene polymers
EP1847555A1 (en) * 2006-04-18 2007-10-24 Borealis Technology Oy Multi-branched Polypropylene
DE602006011873D1 (de) * 2006-07-10 2010-03-11 Borealis Tech Oy Kabelschicht auf der Basis von Polypropylen mit hoher elektrischer Ausfall-Spannungsfestigkeit
DE602006004987D1 (de) 2006-07-10 2009-03-12 Borealis Tech Oy Elektrischer Isolierfilm
EP2208749B1 (en) 2006-07-10 2015-12-16 Borealis Technology Oy Biaxially oriented polypropylene films
EP1967547A1 (en) 2006-08-25 2008-09-10 Borealis Technology OY Extrusion coated substrate
DE602006006061D1 (de) 2006-08-25 2009-05-14 Borealis Tech Oy Polypropylenschaumstoff
EP1894715B8 (de) 2006-08-31 2010-11-10 Treofan Germany GmbH & Co.KG Biaxial orientierte Elektroisolierfolie
EP1894716B1 (de) 2006-08-31 2010-11-10 Treofan Germany GmbH & Co.KG Biaxial orientierte Elektroisolierfolie
ATE462189T1 (de) 2006-09-25 2010-04-15 Borealis Tech Oy Koaxiales kabel
ATE424424T1 (de) 2006-12-28 2009-03-15 Borealis Tech Oy Verfahren zur herstellung von verzweigtem polypropylen
US20090163666A1 (en) * 2007-12-21 2009-06-25 David John Lohse Polymer compositions exhibiting enhanced flow-induced crystallization
EP2460640B1 (en) * 2008-05-05 2014-08-27 A. Schulman, Inc. Multilayer clear over color polyolefin sheets and layered backing structure
JP5141467B2 (ja) * 2008-09-22 2013-02-13 株式会社トッパン・コスモ 化粧シート
KR100996420B1 (ko) * 2008-12-26 2010-11-24 호남석유화학 주식회사 용융장력이 우수한 폴리프로필렌 수지 조성물 및 그 제조방법
US7935740B2 (en) 2008-12-30 2011-05-03 Basell Poliolefine Italia S.R.L. Process for producing high melt strength polypropylene
JP2010265449A (ja) 2009-04-14 2010-11-25 Tosoh Corp プロピレン重合体樹脂組成物
US8220226B2 (en) 2009-08-04 2012-07-17 E-Beam Services, Inc. Electron beam irradiation of bulk material solids
JP2013539812A (ja) 2010-10-14 2013-10-28 リライアンス、インダストリーズ、リミテッド 高溶融強度プロピレン系重合体の調製プロセス
US8575252B2 (en) 2011-02-09 2013-11-05 Equistar Chemicals, Lp Controlled rheology formulations containing high melt strength polypropylene for extrusion coating
US8389632B2 (en) 2011-02-09 2013-03-05 Equistar Chemicals, Lp Co-continuous heterophase polymer compositions containing high melt strength polypropylene for extrusion coating
US8546504B2 (en) 2011-02-09 2013-10-01 Equistar Chemicals, Lp Extrusion processes using high melt strength polypropylene
CN103987778A (zh) * 2011-10-11 2014-08-13 布拉斯科姆股份有限公司 用于生产热成型制品大、深、复杂和/或厚的制品的聚丙烯,将改性聚丙烯热成型为大、深、复杂和/或厚的制品的方法以及聚丙烯的用途
WO2014085878A1 (pt) 2012-12-04 2014-06-12 Braskem S.A. Método de compatibilização de blendas de polipropileno, blenda de polipropileno e seu uso, produto e agente iniciador de compatibilização de blenda de polipropileno
EP3037443A4 (en) 2013-08-23 2017-08-02 Braskem S.A. Process for producing modified poly(propene), the modified poly(propene) and the use thereof, and the polymer blend
JP6213180B2 (ja) * 2013-11-20 2017-10-18 日本ポリプロ株式会社 押出しラミネート用ポリプロピレン系樹脂組成物および積層体
US9982099B2 (en) 2014-04-16 2018-05-29 Costas Tzoganakis Method for modifying polyolefin to increase long chain branching
EP2995641B1 (en) 2014-09-11 2019-12-25 Borealis AG Polypropylene composition for capacitor film
EP3234007B1 (en) * 2014-12-19 2021-05-26 SABIC Global Technologies B.V. Process for the preparation of a heterophasic propylene copolymer
WO2016126429A1 (en) 2015-02-04 2016-08-11 Exxonmobil Chemical Patents Inc. Polypropylenes having balanced strain hardening, melt strength, and shear thinning
US10457789B2 (en) 2015-04-10 2019-10-29 Exxonmobil Chemical Patents Inc. Extrusion of polypropylenes with organic peroxides
US10442879B2 (en) 2015-04-28 2019-10-15 Exxonmobil Chemical Patents Inc. Propylene-based impact copolymers
EP3387048A1 (en) * 2015-12-11 2018-10-17 SABIC Global Technologies B.V. Process for enhancing the melt strength of propylene-based polymer compositions
JP6747020B2 (ja) * 2016-04-01 2020-08-26 Mcppイノベーション合同会社 積層体及び延伸積層体
EP3469020B1 (en) 2016-06-10 2020-06-03 E-Beam Services, Inc. Thermal treatment of irradiated material solids using a heat transfer liquid
US11559937B2 (en) 2016-08-30 2023-01-24 Lummus Novolen Technology Gmbh Polypropylene for additive manufacturing (3D printing)
CN111918920A (zh) 2018-04-10 2020-11-10 埃克森美孚化学专利公司 热塑性硫化橡胶组合物
WO2020109870A2 (en) 2018-06-28 2020-06-04 Exxonmobil Chemical Patents Inc. Polyethylene compositions, wires and cables, and methods for making the same
CN112997033B (zh) 2018-09-14 2023-07-25 国际人造丝公司 热塑性硫化橡胶组合物、其制备和在柔性管状管道中的用途
EP3898237B1 (en) 2018-12-20 2024-04-17 Borealis AG Biaxially oriented polypropylene film with improved surface properties
US20220177684A1 (en) 2019-06-13 2022-06-09 Exxonmobill Chemical Patents Inc. Automotive Weather Seals Formed with Thermoplastic Vulcanizate Compositions
WO2020257630A1 (en) 2019-06-21 2020-12-24 Exxonmobil Chemical Patents Inc. Thermoplastic vulcanizate compositions
WO2022122722A1 (en) 2020-12-08 2022-06-16 Sabic Global Technologies B.V. Melt-blown web made of polypropylene
EP4086299B1 (en) 2021-05-03 2024-07-03 Borealis AG Thermally treated biaxially oriented polypropylene film

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3144436A (en) * 1961-01-04 1964-08-11 Du Pont Process for degrading stereoregular polymers
JPS5148196B2 (ru) * 1972-03-11 1976-12-18
US4451589A (en) * 1981-06-15 1984-05-29 Kimberly-Clark Corporation Method of improving processability of polymers and resulting polymer compositions
FR2508047B1 (fr) * 1981-06-22 1985-10-11 Bp Chimie Sa Procede de traitement de polyethylene de basse densite lineaire par des peroxydes organiques, generateurs de radicaux libres
US4378451A (en) * 1981-09-14 1983-03-29 Eastman Kodak Company High flow rate polyolefin extrusion coating compositions
FR2562546B1 (fr) * 1984-04-09 1987-01-23 Bp Chimie Sa Procede de traitement de polyethylene de basse densite lineaire destine a la fabrication par extrusion de corps creux, tubes et gaines
US4578430A (en) * 1984-12-19 1986-03-25 Shell Oil Company Controlled degradation or cracking of alpha-olefin polymers
US4707524A (en) * 1986-05-06 1987-11-17 Aristech Chemical Corporation Controlled-rheology polypropylene
GB8620502D0 (en) * 1986-08-22 1986-10-01 Du Pont Canada Modification of crystalline propylene polymers
FR2613722B1 (fr) * 1987-04-07 1990-11-23 Bp Chimie Sa Procede de fabrication de granules d'homopolymere ou de copolymere de propylene
FI92071C (fi) * 1987-12-14 1994-09-26 Akzo Nv Menetelmä (seka)polymeerien modifioimiseksi orgaanisia peroksideja käyttäen
WO1991000301A1 (en) * 1989-06-28 1991-01-10 Akzo N.V. (CO)POLYMER MODIFICATION EMPLOYING UNSATURATED t-ALKYL PEROXYALKENYL CARBONATES

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Европейская заявка N 190887, кл. C 08F 8/50, опублик.1986. *

Also Published As

Publication number Publication date
ZA90911B (en) 1990-12-28
NO900738D0 (no) 1990-02-15
US5047485A (en) 1991-09-10
CN1045107A (zh) 1990-09-05
ATE114677T1 (de) 1994-12-15
FI900836A0 (fi) 1990-02-20
AU616103B2 (en) 1991-10-17
EP0384431A2 (en) 1990-08-29
NO900738L (no) 1990-08-22
DK0384431T3 (da) 1995-01-16
JP2744317B2 (ja) 1998-04-28
AU4994390A (en) 1990-08-30
CA1339476C (en) 1997-09-23
KR900012963A (ko) 1990-09-03
BR9000791A (pt) 1991-01-22
KR0145323B1 (ko) 1998-07-15
EP0384431A3 (en) 1991-10-09
PT93206A (pt) 1990-08-31
DE69014348T2 (de) 1995-04-20
JPH02298536A (ja) 1990-12-10
DE69014348D1 (de) 1995-01-12
ES2064503T3 (es) 1995-02-01
EP0384431B1 (en) 1994-11-30
CN1030457C (zh) 1995-12-06

Similar Documents

Publication Publication Date Title
RU2036931C1 (ru) Способ получения твердого свободного от геля полипропилена с показателем разветвления меньше 1
EP0072750B1 (en) Improved polyethylene composition
EP0678527B1 (en) A process for producing a modified polypropylene and a molded product
US5241014A (en) Process for the production of largely amorphous polyalphaolefins with a narrow molecular weight distribution
RU2629120C2 (ru) Бимодальные полиэтиленовые смолы высокой плотности и композиции с улучшенными свойствами, а также способы их получения и применения
EP0611801B1 (en) Olefin polymer films
JPH0446983B2 (ru)
US20060258815A1 (en) Impact strength polypropylene
JP3188272B2 (ja) α−オレフィン(コ)ポリマーの改質方法
AU731608B2 (en) Retarding depolymerization of poly(methyl methacrylate) grafted onto a propylene polymer
JP2582733B2 (ja) エチレンポリマー組成物と、その製造方法
EP1315763A1 (en) Controlled rheology polypropylene heterophasic copolymers
EP1353996A2 (en) Polypropylene materials with high melt flow rate and good molding characteristics and methods of making
US4489195A (en) Process for producing thermoplastic olefinic elastomer
JPH0693033A (ja) 高溶融強度のエチレンポリマー、その製造法、及びその用途
JPH0113486B2 (ru)
US7750086B2 (en) Solid state modification of propylene polymers
EP0100247A2 (fr) Compositions polymères réticulées de l'éthylène et d'au moins une alpha-oléfine, un procédé pour leur préparation et leur application à la fabrication de câbles pour le transport du courant électrique
US20060178484A1 (en) Polyolefin grafted poly(vinyl alcohol) and process fro producing same
JP2844299B2 (ja) ポリプロピレン組成物
JPS58189250A (ja) 変性ブロツク共重合体の製造方法
JPH08208898A (ja) インフレーションフィルム成形用ポリエチレン樹脂組成物の製造方法
JPS6195051A (ja) 透明性の改良されたポリエチレン組成物