KR20130091763A - 간섭 디스플레이 장치에서의 전하 중성 전극의 작동 및 교정 - Google Patents

간섭 디스플레이 장치에서의 전하 중성 전극의 작동 및 교정 Download PDF

Info

Publication number
KR20130091763A
KR20130091763A KR1020137006578A KR20137006578A KR20130091763A KR 20130091763 A KR20130091763 A KR 20130091763A KR 1020137006578 A KR1020137006578 A KR 1020137006578A KR 20137006578 A KR20137006578 A KR 20137006578A KR 20130091763 A KR20130091763 A KR 20130091763A
Authority
KR
South Korea
Prior art keywords
electrode
charge
intermediate electrode
voltage
electric field
Prior art date
Application number
KR1020137006578A
Other languages
English (en)
Inventor
존 에이치. 홍
총 유. 리
Original Assignee
퀄컴 엠이엠에스 테크놀로지스, 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 퀄컴 엠이엠에스 테크놀로지스, 인크. filed Critical 퀄컴 엠이엠에스 테크놀로지스, 인크.
Publication of KR20130091763A publication Critical patent/KR20130091763A/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/3466Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on interferometric effect
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/001Optical devices or arrangements for the control of light using movable or deformable optical elements based on interference in an adjustable optical cavity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0841Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting element being moved or deformed by electrostatic means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0252Improving the response speed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0693Calibration of display systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Micromachines (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

본 발명은 간섭 장치들 내의 이동 가능 전극을 작동시키고, 대전시키며, 이동 가능 전극 상의 전하를 교정하기 위한 시스템들, 방법들 및 장치들을 제공한다. 간섭 장치는 제1 전극(1002), 갭에 의해 제1 전극으로부터 이격된 제2 전극(1010), 상보형 전극, 적어도 하나의 전기 접촉부(2132), 및 제1 전극과 제2 전극 사이에 배치된 이동 가능 제3 전극(1006)을 포함할 수 있다. 일 구현에서, EMS 장치의 이동 가능 전극 상의 전하를 교정하는 방법은 상보형 전극을 제1 전극에 접속하여 복합 전극을 형성하고, 복합 전극 및 제2 전극에 걸쳐 교정 전압을 인가하여 갭 내에 균일한 전기장을 생성하는 단계를 포함한다. 전기장 하에서, 제3 전극은 적어도 하나의 전기 접촉부와 접촉할 때까지 제1 전극을 향해 이동한다. 전기 접촉부와 접촉하면, 제3 전극이 제2 위치에 있을 때, 제3 전극 상의 전하가 변경 및 교정될 수 있다. 이어서, 제3 전극 상의 기계적 복원력이 제3 전극 상의 균일한 전기장의 전기력을 초과할 때, 제3 전극은 제3 위치로 이동한다.

Description

간섭 디스플레이 장치에서의 전하 중성 전극의 작동 및 교정{ACTUATION AND CALIBRATION OF A CHARGE NEUTRAL ELECTRODE IN AN INTERFEROMETRIC DISPLAY DEVICE}
<관련 출원의 상호 참조>
본 발명은 2010년 8월 17일자로 "ELECTROSTATIC ACTUATION AND CALIBRATION OF CHARGE NEUTRAL ELECTRODE"라는 제목으로 출원되고 본 발명의 양수인에게 양도된 미국 특허 가출원 제61/374,569호에 대해 우선권을 주장한다. 이 선출원의 개시 내용은 본 발명의 일부로 간주되고, 본 명세서에 참고로 포함된다.
<기술 분야>
본 발명은 전기 기계 시스템에서의 전극의 작동에 관한 것이다.
전기 기계 시스템들(EMS)은 전기 및 기계 요소들, 액추에이터들, 트랜스듀서들, 센서들, 광학 컴포넌트들(예컨대, 미러들) 및 전자 장치들을 갖는 장치들을 포함한다. 전기 기계 시스템들은 마이크로스케일들 및 나노스케일들을 포함하지만 이에 한정되지 않는 다양한 스케일로 제조될 수 있다. 예를 들어, 마이크로 전기 기계 시스템(MEMS) 장치들은 약 1 ㎛ 내지 수백 ㎛ 또는 그 이상의 범위에 걸치는 크기들을 갖는 구조들을 포함할 수 있다. 나노 전기 기계 시스템(NEMS) 장치들은 예를 들어 수백 나노미터보다 작은 크기들을 포함하는 1 ㎛보다 작은 크기들을 갖는 구조들을 포함할 수 있다. 전기 기계 요소들은 피착, 에칭, 리소그라피, 및/또는 기판들 및/또는 피착된 재료층들의 부분들을 에칭하여 제거하거나 층들을 추가하여 전기 및 전기 기계 장치들을 형성하는 다른 마이크로머시닝 프로세스들을 이용하여 생성될 수 있다.
일 타입의 전기 기계 시스템 장치는 간섭 변조기(IMOD)라고 한다. 본 명세서에서 사용될 때, 간섭 변조기 또는 간섭 광 변조기라는 용어는 광 간섭의 원리들을 이용하여 광을 선택적으로 흡수 및/또는 반사하는 장치를 지칭한다. 일부 구현들에서, 간섭 변조기는 한 쌍의 도전성 플레이트들을 포함할 수 있으며, 이들 중 하나 또는 양자는 완전히 또는 부분적으로 투명 및/또는 반사할 수 있고, 적절한 전기 신호의 인가시에 상대적 운동을 할 수 있다. 일 구현에서, 하나의 플레이트는 기판 상에 피착된 정지 층을 포함할 수 있고, 다른 플레이트는 에어 갭에 의해 정지 층으로부터 분리된 반사 멤브레인을 포함할 수 있다. 하나의 플레이트의 다른 플레이트에 대한 위치는 간섭 변조기에 입사하는 광의 광 간섭을 변화시킬 수 있다. 간섭 변조기 장치들은 광범위한 응용들을 가지며, 기존의 제품들을 개선하고, 새로운 제품들, 특히 디스플레이 능력을 갖는 제품들을 생성하는 데 사용될 것으로 기대된다.
일부 간섭 변조기들은 2개의 상태, 즉 완화 상태 및 작동 상태를 갖는 쌍안정 디스플레이 요소들을 포함한다. 이와 달리, 아날로그 간섭 변조기들은 한 범위의 컬러들을 반사할 수 있다. 예를 들어, 아날로그 간섭 변조기의 일 구현에서는 단일 간섭 변조기가 적색, 녹색, 청색, 흑색 및 백색을 반사할 수 있다. 일부 구현들에서는 아날로그 변조기가 주어진 파장들의 범위 내의 임의의 컬러를 반사할 수 있다.
본 발명의 시스템들, 방법들 및 장치들 각각은 여러 개의 혁신적인 양태를 가지며, 이들 중 어느 단일 양태도 본 명세서에서 개시되는 바람직한 속성들을 단독으로는 책임지지 않는다.
본 명세서에서 설명되는 본 발명의 하나의 혁신적인 양태는 디스플레이 요소를 포함하는, 광을 변조하기 위한 장치에서 구현될 수 있다. 디스플레이 요소는 제1 전극 및 갭에 의해 제1 전극으로부터 이격된 제2 전극을 포함한다. 디스플레이 요소는 제1 전극과 제2 전극 사이에 배치된 이동 가능 제3 전극 및 적어도 하나의 전기 접촉부도 포함한다. 제1 전극 및 제2 전극은 제1 전극 및 제2 전극에 걸쳐 전압이 인가될 때 이동 가능 제3 전극이 전기적으로 격리되고 전하 중성일 때 이동 가능 제3 전극을 이동시킬 수 있는 전기장을 그들 사이에 생성하도록 구성된다. 제3 전극은 갭 내에서 전기적으로 격리된 제1 위치, 전기적으로 접속된 제2 위치 및 전기적으로 격리된 제3 위치 사이에서 이동하도록 구성된다. 제3 전극은 전기적으로 접속된 제2 위치에서 적어도 하나의 전기 접촉부와 전기적으로 통한다. 전기 접촉부는 제3 전극이 전기적으로 접속된 제2 위치에 있을 때 제3 전극 상의 전하를 변화시키도록 구성된다. 제3 전극은 또한 제3 전극 상의 전하가 변한 후에 제3 위치로 이동하도록 구성된다.
다른 구현은 디스플레이 요소를 포함하는, 광을 변조하기 위한 장치이다. 장치는 불균일한 전기장을 생성하기 위한 수단을 포함한다. 장치는 사이에 갭이 형성된 제1 전극과 제2 전극 사이에 배치된 이동 가능 전극도 포함하며, 이동 가능 전극은 갭 내에서 전기적으로 격리된 제1 위치, 제2 위치 및 전기적으로 격리된 제3 위치 사이에서 이동하도록 구성된다. 장치는 이동 가능 전극이 제2 위치에 있을 때 이동 가능 전극 상의 전하를 변화시키기 위한 수단도 포함한다.
또 다른 구현은 광을 변조하기 위한 장치를 작동시키는 방법을 포함한다. 이 방법은 제1 전극 및 제2 전극에 걸쳐 대전 작동 전압(charging actuation voltage)을 인가하여, 제1 전극과 제2 전극 사이의 갭 내에 전기장을 생성함으로써, 갭 내에 배치된 전기적으로 격리된 전하 중성 제3 전극을 제1 전극을 향해 제1 위치로부터 제2 위치로 이동시키는 단계를 포함한다. 이 방법은 또한 제3 전극이 제2 위치에 있을 때 제3 전극을 전기 접촉부와 전기적으로 접속시키는 단계를 포함한다. 이 방법은 제3 전극이 제2 위치에 있을 때 제3 전극 상의 기계적 복원력이 제3 전극 상의 전기장의 전기력을 초과할 때까지 제3 전극 상의 전하를 변화시키는 단계를 더 포함한다.
또 다른 구현은 디스플레이 내의 아날로그 간섭 변조기를 교정하는 방법이다. 이 방법은 제1 전극 및 제2 전극에 걸쳐 교정 전압을 인가하여, 제1 전극과 제2 전극 사이의 갭 내에 전기장을 생성함으로써, 갭 내에 배치된 제3 전극을 제1 전극을 향해 전기적으로 격리된 제1 위치로부터 전기적으로 접속된 제2 위치로 이동시키는 단계를 포함하고, 제3 전극은 기계적 복원력을 받는다. 이 방법은 제3 전극을 제1 전극에 전기적으로 접속된 하나 이상의 도전성 포스트(post)에 전기적으로 접속시켜, 제3 전극이 제2 위치에 있을 때 제3 전극 상의 기계적 복원력이 제3 전극 상의 전기장 힘을 초과할 때까지 제3 전극 상의 전하를 변화시킴으로써, 제3 전극을 전기적으로 격리된 제3 위치로 이동시키는 단계를 더 포함하며, 제3 위치는 제2 위치보다 제1 전극으로부터 더 멀다. 일부 구현들에서, 제1 전극은 상부 전극 및 상부 전극에 대해 측방으로 정렬된 상보형 전극을 포함하며, 이 방법은 또한 상보형 전극을 상부 전극에 전기적으로 접속시켜 복합 전극을 형성하는 단계를 포함한다. 이어서, 교정 전압이 복합 전극 및 제2 전극에 걸쳐 인가될 수 있다.
또 다른 구현은 디스플레이 요소를 포함하는, 광을 변조하기 위한 장치이다. 디스플레이 요소는 제1 전극 및 갭에 의해 제1 전극으로부터 이격된 제2 전극을 포함하며, 제1 전극 및 제2 전극은 작동 절차 동안 제1 전극 및 제2 전극에 걸쳐 작동 전압이 인가될 때 그들 사이에 불균일한 전기장을 생성하도록 구성된다. 디스플레이 요소는 제1 전극에 대해 측방으로 정렬된 상보형 전극을 더 포함하며, 상보형 전극은 작동 절차 동안 제1 전극으로부터 전기적으로 격리되고, 교정 절차 동안 제1 전극에 전기적으로 접속되어 복합 전극을 형성하도록 구성되며, 복합 전극 및 제2 전극은 교정 절차 동안 복합 전극 및 제2 전극에 걸쳐 교정 전압이 인가될 때 그들 사이에 균일한 전기장을 생성하도록 구성된다. 디스플레이 요소는 또한 상보형 전극 상에 배치된 적어도 하나의 전기 접촉부 및 제1 전극과 제2 전극 사이에 배치된 이동 가능 제3 전극을 포함하고, 제3 전극은 갭 내에서 전기적으로 격리된 제1 위치, 적어도 하나의 전기 접촉부와 전기적으로 통하는 제2 위치 및 전기적으로 격리된 제3 위치 사이에서 이동하도록 구성된다. 전기 접촉부는 제3 전극이 제2 위치에 있을 때 제3 전극 상의 전하를 변화시키도록 구성되며, 제3 전극은 제3 전극 상의 전하가 변한 후에 제3 위치로 이동하도록 구성된다.
또 다른 구현은 디스플레이 요소를 포함하는, 광을 변조하기 위한 장치를 포함한다. 디스플레이 요소는 불균일한 전기장을 생성하기 위한 수단 및 균일한 전기장을 생성하기 위한 수단을 포함한다. 디스플레이 요소는 사이에 갭이 형성된 제1 전극과 제2 전극 사이에 배치된 이동 가능 전극을 더 포함하고, 이동 가능 전극은 갭 내에서 전기적으로 격리된 제1 위치, 제2 위치 및 전기적으로 격리된 제3 위치 사이에서 이동하도록 구성된다. 디스플레이 요소는 또한 이동 가능 전극이 제2 위치에 있을 때 이동 가능 전극 상의 전하를 변화시키기 위한 수단을 포함한다. 일부 구현들에서, 불균일한 전기장을 생성하기 위한 수단은 제1 전극 및 제2 전극을 포함한다. 제1 전극 및 제2 전극은 상이한 표면적을 갖는다. 일부 구현들에서, 균일한 전기장을 생성하기 위한 수단은 제1 전극 및 제2 전극을 포함하고, 제1 전극은 상부 전극을 포함하고, 상부 전극은 상부 전극에 대해 측방으로 정렬된 상보형 전극에 전기적으로 접속된다.
본 명세서에서 설명되는 본 발명의 하나 이상의 구현들의 상세들은 첨부 도면들 및 아래의 설명에서 제공된다. 다른 특징들, 양태들 및 이점들은 명세서, 도면 및 청구범위로부터 명백해질 것이다. 아래의 도면들의 상대적 치수들은 축척으로 그려지지 않을 수 있다는 점에 유의한다.
도 1은 간섭 변조기(IMOD) 디스플레이 장치의 픽셀들의 시리즈 내의 2개의 인접 픽셀을 도시하는 등축도의 일례를 나타낸다.
도 2는 3x3 간섭 변조기 디스플레이를 포함하는 전자 장치를 도시하는 시스템 블록도의 일례를 나타낸다.
도 3은 도 1의 간섭 변조기의 인가 전압 대 이동 가능 반사층 위치를 도시하는 도면의 일례를 나타낸다.
도 4는 다양한 공통 및 세그먼트 전압들이 인가될 때의 간섭 변조기의 다양한 상태들을 나타내는 도표의 일례를 나타낸다.
도 5a는 도 2의 3x3 간섭 변조기 디스플레이 내의 디스플레이 데이터의 프레임을 도시하는 도면의 일례를 나타낸다.
도 5b는 도 5a에 도시된 디스플레이 데이터의 프레임을 기록하는 데 사용될 수 있는 공통 및 세그먼트 신호들에 대한 타이밍 도면의 일례를 나타낸다.
도 6a는 도 1의 간섭 변조기 디스플레이의 부분 단면도의 일례를 나타낸다.
도 6b-6e는 간섭 변조기들의 다양한 구현들의 단면도들의 예들을 나타낸다.
도 7은 간섭 변조기의 제조 프로세스를 도시하는 흐름도의 일례를 나타낸다.
도 8a-8e는 간섭 변조기를 제조하는 방법에서의 다양한 단계들의 개략 단면도들의 예들을 나타낸다.
도 9는 아날로그 간섭 변조기의 전하 중성 전극을 작동 및 교정하기 위한 한 가지 방법을 나타내는 흐름도의 일례를 도시한다.
도 10은 3개 층 또는 전극 설계를 갖는 간섭 변조기의 단면의 일례를 나타낸다.
도 11a는 제어 회로를 갖는 다른 아날로그 간섭 변조기의 단면도의 일례를 나타낸다.
도 11b는 간섭 변조기의 전극 상에 전하를 배치하기 위한 전하 펌프 회로의 개략도의 일례를 나타낸다.
도 12는 2개의 대전된 전극 사이에서 이동할 수 있는 중간 전극을 포함하는 아날로그 간섭 변조기의 사시도의 일례를 나타낸다.
도 13은 도 12에 도시된 아날로그 간섭 변조기의 등가 회로의 일례를 나타낸다.
도 14는 도 12의 아날로그 간섭 변조기의 중간 전극 상에 작용하는 순수 상향 전기력이 상부 전극과 중간 전극 간의 거리에 따라 어떻게 변하는지를 보여주는 그래프의 일례를 나타낸다.
도 15a는 2개의 대전된 전극 사이에서 이동할 수 있는 중간 전극을 포함하는 아날로그 간섭 변조기의 단면 개략도의 일례를 나타낸다.
도 15b는 복합 전극이 형성된 후의 도 15a의 아날로그 간섭 변조기의 일례를 나타낸다.
도 16은 도 15a에 도시된 아날로그 간섭 변조기 구성을 등가 회로로서 특성화하는 개략도의 일례를 나타낸다.
도 17은 도 12 및 15a의 아날로그 간섭 변조기들 내의 중간 전극들 상에 작용하는 순수 상향 힘의 크기를 나타내는 그래프의 일례를 도시한다.
도 18은 도 15a에 도시된 상보형 전극 및 상부 전극의 평면도의 일례를 나타낸다.
도 19는 다른 전극 구성의 평면도의 일례를 나타낸다.
도 20은 또 다른 전극 구성의 평면도의 일례를 나타낸다.
도 21은 2개의 대전된 전극 사이에서 이동할 수 있는 중간 전극을 포함하는 또 다른 아날로그 간섭 변조기의 단면도의 일례를 나타낸다.
도 22는 도 21의 아날로그 간섭 변조기의 중간 전극 상에 전하를 제공하기 위한 한 가지 방법을 나타내는 흐름도의 일례를 도시한다.
도 23은 제2 위치의 중간 전극을 나타내는 도 21의 아날로그 간섭 변조기의 단면도의 일례를 나타낸다.
도 24는 2개의 대전된 전극 사이에서 이동할 수 있는 중간 전극을 포함하는 또 다른 아날로그 간섭 변조기의 단면 개략도의 일례를 나타낸다.
도 25는 제2 위치의 중간 전극을 나타내는 도 24의 아날로그 간섭 변조기의 단면 개략도의 일례를 나타낸다.
도 26은 교정될 수 있는 중간 전극을 포함하는 아날로그 간섭 변조기의 단면 개략도의 일례를 나타낸다.
도 27은 제1 위치의 중간 전극을 나타내는 도 26의 아날로그 간섭 변조기의 단면 개략도의 일례를 나타낸다.
도 28은 중간 전극이 제2 위치를 향해 작동된 후의 도 26의 아날로그 간섭 변조기의 단면 개략도의 일례를 나타낸다.
도 29는 제2 위치의 중간 전극을 나타내는 도 26의 아날로그 간섭 변조기의 단면 개략도의 일례를 나타낸다.
도 30은 제3 위치의 중간 전극을 나타내는 도 26의 아날로그 간섭 변조기의 단면 개략도의 일례를 나타낸다.
도 31은 도 26의 아날로그 간섭 변조기의 중간 전극 상의 전하를 교정하기 위한 한 가지 방법을 나타내는 흐름도의 일례를 도시한다.
도 32는 교정 절차 동안 제2 위치의 중간 전극을 나타내는 도 26의 아날로그 간섭 변조기의 단면 개략도의 일례를 나타낸다.
도 33은 교정 절차 후의 제3 위치의 중간 전극을 나타내는 도 26의 아날로그 간섭 변조기의 단면 개략도의 일례를 나타낸다.
도 33a는 중간 전극을 지지하는 스프링들의 강도와 관련된 교정된 전하를 갖는 중간 전극을 구비하는 아날로그 간섭 변조기의 단면 개략도의 일례를 나타낸다.
도 34는 교정될 수 있는 중간 전극을 포함하는 또 다른 아날로그 간섭 변조기의 단면 개략도의 일례를 나타낸다.
도 35는 제1 위치의 중간 전극을 나타내는 도 34의 아날로그 간섭 변조기의 단면 개략도의 일례를 나타낸다.
도 36은 중간 전극이 제2 위치를 향해 작동된 후의 도 34의 아날로그 간섭 변조기의 개략 단면도의 일례를 나타낸다.
도 37은 제2 위치의 중간 전극을 나타내는 도 34의 아날로그 간섭 변조기의 단면 개략도의 일례를 나타낸다.
도 38은 제3 위치의 중간 전극을 나타내는 도 34의 아날로그 간섭 변조기의 단면 개략도의 일례를 나타낸다.
도 39는 도 34의 아날로그 간섭 변조기의 중간 전극 상의 전하를 교정하기 위한 한 가지 방법을 나타내는 흐름도의 일례를 도시한다.
도 40은 교정 절차 동안 제2 위치의 중간 전극을 나타내는 도 34의 아날로그 간섭 변조기의 단면 개략도의 일례를 나타낸다.
도 41은 교정 절차 후의 제3 위치의 중간 전극을 나타내는 도 34의 아날로그 간섭 변조기의 단면 개략도의 일례를 나타낸다.
도 42a 및 42b는 복수의 간섭 변조기를 포함하는 디스플레이 장치를 나타내는 시스템 블록도들의 예들을 도시한다.
다양한 도면들에서 동일한 참조 번호들 및 명칭들은 동일 요소들을 지시한다.
아래의 상세한 설명은 혁신적인 양태들을 설명하는 목적을 위해 소정의 구현들과 관련된다. 그러나, 본 발명의 가르침은 다수의 상이한 방식으로 이용될 수 있다. 설명되는 구현들은 동적(예를 들어, 비디오) 또는 정적(예를 들어, 정지 이미지)인지에 관계없이 그리고 텍스트, 그래픽 또는 그림인지에 관계없이 이미지를 표시하도록 구성되는 임의의 장치에서 구현될 수 있다. 구체적으로, 구현들은 이동 전화, 멀티미디어 인터넷 인에이블드 셀룰러 전화, 이동 텔레비전 수신기, 무선 장치, 스마트폰, 블루투스 장치, 개인용 휴대 단말기(PDA), 무선 전자 메일 수신기, 핸드헬드 또는 휴대용 컴퓨터, 넷북, 노트북, 스마트북, 태블릿, 프린터, 복사기, 스캐너, 팩시밀리 장치, GPS 수신기/내비게이터, 카메라, MP3 플레이어, 캠코더, 게임 콘솔, 손목 시계, 클럭, 계산기, 텔레비전 모니터, 평판 디스플레이, 전자 판독 장치(e-판독기), 컴퓨터 모니터, 오토 디스플레이(예로서, 주행계 디스플레이 등), 조종실 컨트롤 및/또는 디스플레이, 카메라 뷰 디스플레이(예로서, 차량 내의 후방 관찰 카메라의 디스플레이), 전자 사진, 전자 빌보드 또는 사인, 프로젝터, 건축 구조물, 마이크로웨이브, 냉장고, 스테레오 시스템, 카세트 레코더 또는 플레이어, DVD 플레이어, CD 플레이어, VCR, 라디오, 휴대용 메모리 칩, 세탁기, 건조기, 세탁기/건조기, 주차 계기, 패키징(예로서, 전기 기계 시스템(EMS), MEMS 및 논-MEMS 응용들), 미적 구조물(예로서, 보석 상의 이미지들의 디스플레이) 및 다양한 전기 기계 시스템 장치와 같은, 그러나 이에 한정되지 않는 다양한 전자 장치에서 구현되거나 이들과 관련될 수 있는 것으로 간주된다. 본 발명의 가르침은 전자 스위칭 장치, 무선 주파수 필터, 센서, 가속도계, 자이로스코프, 운동 감지 장치, 자기계, 소비자 전자 장치의 관성 컴포넌트, 소비자 전자 제품의 부품, 버랙터, 액정 장치, 전기 영동 장치, 구동 스킴, 제조 프로세스 및 전자 테스트 장비와 같은, 그러나 이에 한정되지 않는 논-디스플레이 응용들에서도 이용될 수 있다. 따라서, 본 가르침은 도면들에만 도시된 구현들로 한정되는 것을 의도하는 것이 아니라, 이 분야의 통상의 기술자에게 자명한 바와 같은 광범위한 이용 가능성을 갖는다.
아날로그 간섭 변조기들 내의 이동 가능 전극들을 작동, 대전 및 교정하기 위한 방법들 및 장치들이 본 명세서에서 설명된다. 예를 들어, 2개의 대전된 전극 사이의 갭 내에 배치된 전하 중성이고 전기적으로 격리된 전극("중간 전극")이 작동하고, 대전된 전극들 중 하나를 향해 이동하도록, 전하 중성 전극을 작동시키기 위한 다양한 방법들 및 장치들이 제공된다. 일 구현에서, 적어도 2개의 대전된 전극은 대전된 전극들에 걸쳐 전압 V가 인가될 때 전기적으로 격리된 전하 중성 중간 전극을 이동시킬 수 있는 전기장을 그들 사이에 생성하도록 구성된다. 그러한 구현들에서는, 상이한 치수들 및/또는 표면적들을 갖는 적어도 2개의 대전된 전극이 존재할 수 있다. 중간 전극은 그러한 전극들 사이에 배치될 수 있다. 다른 구현에서, 전하 중성이고 전기적으로 격리된 중간 전극은 상이한 표면적들을 갖는 대전된 전극들 사이에 전기장을 인가함으로써 작동되며, 대전된 전극들 중 하나에 대해 측방으로 상보형 전극이 정렬된다.
아날로그 간섭 변조기들 내의 이동 가능 전극들 상에 전하를 제공하기 위한 방법들 및 장치들도 본 명세서에서 설명된다. 예를 들어, 다양한 방법들 및 장치들은 전하 중성이고 전기적으로 격리된 중간 전극이 작동하거나, 대전된 전극을 향해 이동한 후에, 중간 전극에 전하를 제공할 수 있다. 일 구현에서는, 중간 전극이 대전된 전극을 향해 이동하고, 대전된 전극 상의 도전성 포스트들과 직접 전기적으로 접촉할 때, 중간 전극 상에 전하가 배치된다. 중간 전극은 중간 전극 상에 작용하는 전기력이 중간 전극 상에 작용하는 대향하는 기계적 스프링 힘에 의해 극복될 때까지 순수 전하를 발생시킨다. 이어서, 중간 전극은 대전된 전극으로부터 멀어지게 이동하여, 전기적 접촉을 중단하고, 중간 전극 상에 배치된 전하를 전기적으로 격리시킨다. 다른 구현에서, 중간 전극이 대전된 전극을 향해 이동하고, 대전된 전극에 대해 측방으로 정렬된 상보형 전극 상의 도전성 포스트들과 전기적으로 접촉할 때, 중간 전극은 유도적으로 대전되며, 상보형 전극은 대전된 전극으로부터 전기적으로 격리되고, 전기 접지에 접속된다.
아날로그 간섭 변조기 내의 이동 가능 전극에 제공되는 전하를 교정하기 위한 방법들 및 장치들도 본 명세서에서 설명된다. "스위치" 구성을 이용하는 일 구현에서, 상보형 전극과 대전된 전극을 전기적으로 접속하여 복합 전극을 형성하기 위해 하나 이상의 스위치가 닫힌다. 교정 전압이 복합 전극과 대향하는 대전된 전극 사이에 인가되어, 대전된 중간 전극으로 하여금 복합 전극을 향해 이동하고, 예컨대 복합 전극 상의 적어도 하나의 도전성 구조(예컨대, 도전성 포스트들)와 접촉함으로써 그의 전하를 변경하게 한다. 일 구현에서, 전기적 접촉은 중간 전극 상에 작용하는 전기력이 중간 전극 상에 작용하는 대향하는 기계 스프링 힘에 의해 극복될 때까지 중간 전극 상의 전하가 변경되게 한다. 이어서, 중간 전극은 복합 전극으로부터 멀어지게 이동하여, 전기적 접촉을 중단하고 중간 전극 상에 남은 전하를 전기적으로 격리시킨다. 릴리스 시에, 중간 전극 상의 전하의 양은 중간 전극 상에 작용하는 기계적 스프링 힘과 관련된다. 중간 전극을 유지하고 기계적 스프링 힘을 제공하는 구조는 예를 들어 다양한 구성의 스프링들 또는 전극의 변형에 반대하는 중간 전극 자체의 구조일 수 있다. 개시의 명료화를 위해, 중간 전극 상에 기계적 스프링 힘을 제공하는 구조는 그러한 힘이 전극 재료 자체에 의해 제공되는지 또는 중간 전극에 접속된 구조에 의해 제공되는지에 관계없이 본 명세서에서 "스프링"으로서 참조된다.
다른 구현은 "스위치 없는" 구성을 이용하여, 이동 가능 전극 상에 배치된 전하를 교정한다. 교정 전압이 상이한 표면적들을 갖는 2개의 대전된 전극 사이에 인가된다. 대전된 중간 전극은 더 작은 표면적을 갖는 대전된 전극을 향해 이동하고, 대전된 전극에 전기적으로 접속된 도전성 포스트들과 전기적으로 접촉한다. 전기적 접촉은 중간 전극 상에 작용하는 전기력이 중간 전극 상에 작용하는 대향하는 기계 스프링 힘에 의해 극복될 때까지 중간 전극 상의 전하가 변경되게 한다. 이어서, 중간 전극은 대전된 전극으로부터 멀어지게 이동하여, 전기적 접촉을 중단하고 중간 전극 상에 남은 전하를 전기적으로 격리시킨다. 릴리스 시에, 중간 전극 상의 전하의 양은 중간 전극을 유지하는 스프링들의 강도와 관련된다.
본 명세서에서 설명되는 본 발명의 특정 구현들은 아래의 가능한 이점들 중 하나 이상을 실현하도록 구현될 수 있다. 3-단자 전기 기계 장치(예를 들어, 간섭 변조기)는 2개의 전극, 예컨대 상부 전극과 하부 전극 사이의 갭 내에 배치된 이동 가능 중간 전극을 포함할 수 있다. 본 명세서에서 설명되는 장치들 및 방법들의 구현들은 0의 순수 전하를 갖는 전기적으로 격리된 중간 전극을 이동시킬 수 있으며, 따라서 중간 전극은 상부(또는 하부) 전극과 접촉과 접촉한다. 중간 전극은 이러한 접촉을 통해 대전될 수 있으며, 따라서 통상의 3-단자 장치들과 관련된 단점들이 해결된다. 중간 전극이 상부(또는 하부) 전극과 접촉할 때 중간 전극을 대전하기 위한 장치들 및 방법들이 개시된다. 전하가 중간 전극에 제공되면, 중간 전극은 접촉 전극으로부터 릴리스될 수 있으며, 이는 전극 상의 전하를 격리시킨다. 이어서, 중간 전극 상의 전하는 중간 전극 상에 작용하는 특정한 기계적 스프링 힘을 해결하기 위해 교정될 수 있다. 중간 전극 상에 배치된 전하를 교정하기 위한 방법들 및 시스템들이 예를 들어 도 31-33 및 39-41을 참조하여 설명된다. 원하는 양의 전하를 갖는 3 단자 장치들의 어레이에 걸쳐 중간 전극들 각각을 교정하는 것은 모든 장치들에 걸쳐 동일 전압을 인가할 때 모든 중간 전극들의 동일 위치로의 이동을 가능하게 할 수 있다. 교정 후에, 어레이 내의 복수의 교정된 변조기들은 동작 준비 상태에 있을 수 있다. 게다가, 본 명세서에서 설명되는 작동, 대전 및 교정 절차들은 유용할 경우에 반복되고, 장치의 수명 동안 중간 전극들로부터의 전하 누설률의 변동을 해결하기 위해 조절될 수 있다.
설명되는 구현들을 적용할 수 있는 적절한 EMS 또는 MEMS 장치의 일례는 반사형 디스플레이 장치이다. 반사형 디스플레이 장치들은 그 위에 입사하는 광을 광 간섭의 원리들을 이용하여 선택적으로 흡수 및/또는 반사하기 위한 간섭 변조기들(IMOD)을 포함할 수 있다. IMOD들은 흡수기, 흡수기에 대해 이동 가능한 반사기, 및 흡수기와 반사기 사이에 정의되는 광 공진 공동을 포함할 수 있다. 반사기는 둘 이상의 상이한 위치로 이동될 수 있으며, 이는 광 공진 공동의 크기를 변경할 수 있으며, 따라서 간섭 변조기의 반사율에 영향을 미칠 수 있다. IMOD들의 반사 스펙트럼들은 상이한 컬러들을 생성하기 위해 가시 파장들에 걸쳐 시프트될 수 있는 매우 넓은 스펙트럼 대역들을 생성할 수 있다. 스펙트럼 대역의 위치는 광 공진 공동의 두께를 변경함으로써, 즉 반사기의 위치를 변경함으로써 조절될 수 있다.
도 1은 간섭 변조기(IMOD) 디스플레이 장치의 픽셀들의 시리즈 내의 2개의 인접 픽셀을 도시하는 등축도의 일례를 나타낸다. IMOD 디스플레이 장치는 하나 이상의 간섭 MEMS 디스플레이 요소를 포함한다. 이러한 장치들에서, MEMS 디스플레이 요소들의 픽셀들은 밝거나 어두운 상태에 있을 수 있다. 밝은("완화", "개방" 또는 "온") 상태에서, 디스플레이 요소는 입사 가시광의 대부분을 예를 들어 사용자에게 반사한다. 이와 달리, 어두운("작동", "폐쇄" 또는 "오프") 상태에서, 디스플레이 요소는 입사 가시광을 거의 반사하지 않는다. 일부 구현들에서는, 온 및 오프 상태들의 광 반사율 특성들이 바뀔 수 있다. MEMS 픽셀들은 주로 특정 파장들에서 반사하도록 구성되어, 흑백에 더하여 컬러 디스플레이를 제공할 수 있다.
IMOD 디스플레이 장치는 IMOD들의 행/열 어레이를 포함할 수 있다. 각각의 IMOD는 (광 갭 또는 공동이라고도 하는) 에어 갭을 형성하도록 서로로부터 가변적이고 제어 가능한 거리에 배치되는 한 쌍의 반사층, 즉 이동 가능 반사층 및 고정 부분 반사층을 포함할 수 있다. 이동 가능 반사층은 적어도 2개의 위치 사이에서 이동될 수 있다. 제1 위치, 즉 완화된 위치에서, 이동 가능 반사층은 고정 부분 반사층으로부터 비교적 먼 거리에 위치할 수 있다. 제2 위치, 즉 작동 위치에서, 이동 가능 반사층은 부분 반사층에 더 가까이 위치할 수 있다. 2개의 층으로부터 반사되는 입사광은 이동 가능 반사층의 위치에 따라 보강 또는 상쇄 간섭할 수 있어서, 각각의 픽셀에 대해 전체 반사 또는 비반사 상태를 생성할 수 있다. 일부 구현들에서, IMOD는 작동시에 반사 상태에 있을 수 있어서, 가시 스펙트럼 내의 광을 반사할 수 있으며, 비작동시에 어두운 상태에 있을 수 있어서, 가시 범위 내의 광을 흡수 및/또는 상쇄 간섭할 수 있다. 그러나, 일부 다른 구현들에서, IMOD는 비작동시에 어두운 상태에 있을 수 있고, 작동시에 반사 상태에 있을 수 있다. 일부 구현들에서, 인가 전압의 도입은 상태들을 변경하도록 픽셀들을 구동할 수 있다. 일부 다른 구현들에서는, 인가 전하가 상태들을 변경하도록 픽셀들을 구동할 수 있다.
도 1에 도시된 픽셀 어레이의 부분은 2개의 인접하는 간섭 변조기(12)를 포함한다. (도시된 바와 같은) 좌측의 IMOD(12)에서, 이동 가능 반사층(14)은 부분 반사층을 포함하는 광 스택(16)으로부터 소정 거리에 완화 위치에 도시되어 있다. 좌측의 IMOD(12)에 걸쳐 인가되는 전압 V0는 이동 가능 반사층(14)을 작동시키기에는 부족하다. 우측의 IMOD(12)에서, 이동 가능 반사층(14)은 광 스택(16) 근처에 또는 그에 인접하여 작동 위치에 도시되어 있다. 우측의 IMOD(12)에 걸쳐 인가되는 전압 Vbias는 이동 가능 반사층(14)을 작동 위치에 유지하기에 충분하다.
도 1에서, 픽셀들(12)의 반사 특성들은 일반적으로 픽셀들(12)에 입사하는 광을 지시하는 화살표들(13) 및 좌측의 픽셀(12)로부터 반사하는 광(15)으로 도시된다. 상세히 도시되지는 않았지만, 이 분야의 기술자는 픽셀들(12)에 입사하는 광(13)의 대부분이 투명 기판(20)을 통해 광 스택(16)을 향해 투과될 것이라는 것을 이해할 것이다. 광 스택(16)에 입사하는 광의 일부는 광 스택(16)의 부분 반사층을 통해 투과될 것이고, 일부는 투명 기판(20)을 통해 다시 반사될 것이다. 광 스택(16)을 통해 투과되는 광(13)의 일부는 이동 가능 반사층(14)에서 투명 기판(20)을 향해(그리고 통해) 다시 반사될 것이다. 광 스택(16)의 부분 반사층으로부터 반사된 광과 이동 가능 반사층(14)으로부터 반사된 광 사이의 (보강 또는 상쇄) 간섭은 픽셀(12)로부터 반사되는 광(15)의 파장(들)을 결정할 것이다.
광 스택(16)은 단일 층 또는 여러 층을 포함할 수 있다. 층(들)은 전극층, 부분 반사 및 부분 투과층 및 투명 유전체 층 중 하나 이상을 포함할 수 있다. 일부 구현들에서, 광 스택(16)은 전기적으로 도전성이고, 부분적으로 투명하고, 부분적으로 반사하며, 예를 들어 전술한 층들 중 하나 이상을 투명 기판(20) 상에 피착함으로써 제조될 수 있다. 전극층은 다양한 재료, 예를 들어 다양한 금속, 예로서 인듐 주석 산화물(ITO)로 형성될 수 있다. 부분 반사층은 부분적으로 반사하는 다양한 재료, 예를 들어 다양한 금속, 예로서 크롬(Cr), 반도체 및 유전체로 형성될 수 있다. 부분 반사층은 하나 이상의 재료층으로 형성될 수 있으며, 각각의 층은 단일 재료 또는 재료들의 조합으로 형성될 수 있다. 일부 구현들에서, 광 스택(16)은 광 흡수기 및 전기 도체 양자로서 기능하는 금속 또는 반도체의 단일 반투명 두께를 포함할 수 있는 반면, (예로서, 광 스택(16)의 또는 IMOD의 다른 구조들의) 상이한, 전기적으로 더 큰 도전성의 층들 또는 부분들은 IMOD 픽셀들 사이에 신호들을 버싱(bussing)하는 데 사용될 수 있다. 광 스택(16)은 또한 하나 이상의 도전층 또는 전기적 도전성/광 흡수 층을 커버하는 하나 이상의 절연 또는 유전체 층을 포함할 수 있다.
일부 구현들에서, 광 스택(16)의 층(들)은 평행한 스트립들로 패터닝될 수 있고, 아래에 더 설명되는 바와 같이 디스플레이 장치 내의 행 전극들을 형성할 수 있다. 이 분야의 통상의 기술자가 이해하듯이, 본 명세서에서 "패터닝"이라는 용어는 마스킹은 물론 에칭 프로세스를 지칭하는 데 사용된다. 일부 구현들에서는, 높은 도전성 및 반사성의 재료, 예를 들어 알루미늄(Al)이 이동 가능 반사층(14)에 사용될 수 있으며, 이러한 스트립들은 디스플레이 장치 내의 열 전극들을 형성할 수 있다. 이동 가능 반사층(14)은 포스트들(18)의 상부에 피착된 열들 및 포스트들(18) 사이에 피착된 개재하는 희생 재료를 형성하기 위해 (광 스택(16)의 행 전극들에 직교하는) 피착된 금속 층 또는 층들의 평행 스트립들의 시리즈로서 형성될 수 있다. 희생 재료가 에칭 제거될 때, 정의된 갭(19) 또는 광 공동이 이동 가능 반사층(14)과 광 스택(16) 사이에 형성될 수 있다. 일부 구현들에서, 포스트들(18) 사이의 간격은 약 1-1000 ㎛일 수 있고, 갭(19)은 10,000 옹스트롬(Å) 미만일 수 있다.
일부 구현들에서, IMOD의 각각의 픽셀은 작동 상태에 있는지 또는 완화 상태에 있는지에 관계없이 본질적으로는 고정 및 이동 가능 반사층들에 의해 형성되는 커패시터이다. 전압이 인가되지 않을 때, 이동 가능 반사층(14)은 도 1의 좌측의 픽셀(12)에 의해 도시된 바와 같이 이동 가능 반사층(14)과 광 스택(16) 사이에 갭(19)을 갖는 기계적으로 완화된 상태로 유지된다. 그러나, 전위차, 즉 전압이 선택된 행 및 열 중 적어도 하나에 인가될 때, 대응하는 픽셀에서 행 및 열 전극들의 교점에 형성되는 커패시터가 충전되며, 정전기력이 전극들을 함께 당긴다. 인가 전압이 임계치를 초과하는 경우, 이동 가능 반사층(14)은 변형되어, 광 스택(16) 근처 또는 그를 향해 이동할 수 있다. 광 스택(16) 내의 유전체 층(도시되지 않음)은 단락을 방지하고, 도 1의 우측의 작동 픽셀(12)에 의해 도시된 바와 같이 층들(14, 16) 간의 분리 거리를 제어할 수 있다. 이러한 거동은 인가 전위차의 극성에 관계없이 동일하다. 일부 예들에서는 어레이 내의 픽셀들의 시리즈가 "행들" 또는 "열들"로서 참조될 수 있지만, 이 분야의 기술자는 하나의 방향을 "행"으로서 그리고 다른 방향을 "열"로서 참조하는 것은 임의적이라는 것을 쉽게 이해할 것이다. 즉, 일부 배향들에서, 행들은 열들로서 간주될 수 있고, 열들은 행들로서 간주될 수 있다. 더구나, 디스플레이 요소들은 직교하는 행들 및 열들("어레이")로 균일하게 배열될 수 있거나, 예를 들어 서로에 대해 소정의 위치 오프셋들을 갖는 비선형 구조들("모자이크")로 배열될 수 있다. "어레이" 및 "모자이크"라는 용어는 어느 하나의 구조를 지칭할 수 있다. 따라서, 디스플레이는 "어레이" 또는 "모자이크"를 포함하는 것으로 참조되지만, 요소들 자체는 어떠한 경우에도 서로 직교하도록 배열되거나 균일한 분포로 배치될 필요는 없으며, 비대칭 형상들 및 불균일하게 분포된 요소들을 갖는 배열들을 포함할 수 있다.
도 2는 3x3 간섭 변조기 디스플레이를 포함하는 전자 장치를 도시하는 시스템 블록도의 일례를 나타낸다. 전자 장치는 하나 이상의 소프트웨어 모듈을 실행하도록 구성될 수 있는 프로세서(21)를 포함한다. 프로세서(21)는 운영 체제를 실행하는 것에 더하여, 웹 브라우저, 전화 애플리케이션, 이메일 프로그램 또는 임의의 다른 소프트웨어 애플리케이션을 포함하는 하나 이상의 소프트웨어 애플리케이션을 실행하도록 구성될 수 있다.
프로세서(21)는 어레이 구동기(22)와 통신하도록 구성될 수 있다. 어레이 구동기(22)는 예를 들어 디스플레이 어레이 또는 패널(30)에 신호들을 제공하는 행 구동기 회로(24) 및 열 구동기 회로(26)를 포함할 수 있다. 도 1에 도시된 IMOD 디스플레이 장치의 단면도는 도 2의 라인 1-1에 의해 도시된다. 도 2는 명료화를 위해 IMOD들의 3x3 어레이를 도시하지만, 디스플레이 어레이(30)는 매우 많은 수의 IMOD를 포함할 수 있고, 열들에서보다 행들에서 상이한 수의 IMOD들을 가질 수 있으며, 그 반대도 마찬가지이다.
도 3은 도 1의 간섭 변조기의 인가 전압 대 이동 가능 반사층 위치를 도시하는 도면의 일례를 나타낸다. MEMS 간섭 변조기들에 대해, 행/열(즉, 공통/세그먼트) 기록 절차는 도 3에 도시된 바와 같은 이러한 장치들의 히스테리시스 특성을 이용할 수 있다. 간섭 변조기는 하나의 예시적인 구현에서 이동 가능 반사층 또는 미러가 완화 상태로부터 작동 상태로 바뀌게 하기 위해 약 10 볼트의 전위차를 사용할 수 있다. 전압이 그 값으로부터 감소할 때, 이동 가능 반사층은 전압이 이 예에서 10 볼트 아래로 떨어짐에 따라 그의 상태를 유지하지만, 이동 가능 반사층은 전압이 2 볼트 아래로 떨어질 때까지는 완전히 완화되지 않는다. 따라서, 도 3에 도시된 바와 같이, 이 예에서 약 3 내지 7 볼트의 전압 범위가 존재하고, 이 범위에는 장치가 완화 또는 작동 상태에서 안정되는 인가 전압의 윈도가 존재한다. 이것은 본 명세서에서 "히스테리시스 윈도" 또는 "안정성 윈도"로서 참조된다. 도 3의 히스테리시스 특성을 갖는 디스플레이 어레이(30)의 경우, 행/열 기록 절차는 한 번에 하나 이상의 행을 어드레스하도록 설계될 수 있으며, 따라서 주어진 행의 어드레싱 동안, 작동될 어드레스되는 행 내의 픽셀들은 이 예에서 약 10 볼트의 전압차에 노출되고, 완화될 픽셀들은 0 볼트에 가까운 전압차에 노출된다. 어드레싱 후, 픽셀들은 정상 상태 또는 이 예에서 약 5 볼트의 바이어스 전압차에 노출될 수 있으며, 따라서 이들은 이전의 스트로빙 상태로 유지된다. 이 예에서, 각각의 픽셀은 어드레스된 후에 약 3-7 볼트의 "안정성 윈도" 내의 전위차를 겪는다. 이러한 히스테리시스 특성 특징은 픽셀 설계, 예를 들어 도 1에 도시된 픽셀 설계가 동일한 인가 전압 조건들 하에서 작동 또는 완화 기존 상태에서 안정되게 유지되는 것을 가능하게 한다. 각각의 IMOD 픽셀은 작동 상태 또는 완화 상태에 있는지에 관계없이 본질적으로는 고정 및 이동 반사층들에 의해 형성된 커패시터이므로, 이러한 안정 상태는 전력을 크게 소비하거나 손실 없이 히스테리시스 윈도 내의 정상 전압에서 유지될 수 있다. 더욱이, 인가 전압 전위가 실질적으로 일정하게 유지되는 경우에 본질적으로 IMOD 픽셀 내로 전류가 거의 또는 전혀 흐르지 않는다.
일부 구현들에서는, 주어진 행 내의 픽셀들의 상태에 대한 원하는 변화(존재할 경우)에 따라 열 전극들의 세트를 따라 "세그먼트" 전압들의 형태의 데이터 신호들을 인가함으로써 이미지의 프레임이 생성될 수 있다. 어레이의 각각의 행은 번갈아 어드레스될 수 있으며, 따라서 프레임은 한 번에 한 행씩 기록된다. 제1 행 내의 픽셀들에 원하는 데이터를 기록하기 위하여, 제1 행 내의 픽셀들의 원하는 상태에 대응하는 세그먼트 전압들이 열 전극들에 인가될 수 있으며, 특정 "공통" 전압 또는 신호의 형태의 제1 행 펄스가 제1 행 전극에 인가될 수 있다. 이어서, 세그먼트 전압들의 세트는 제2 행 내의 픽셀들의 상태에 대한 원하는 변화(존재할 경우)에 대응하도록 변경될 수 있으며, 제2 공통 전압이 제2 행 전극에 인가될 수 있다. 일부 구현들에서, 제1 행 내의 픽셀들은 열 전극들을 따라 인가되는 세그먼트 전압들의 변화에 의해 영향을 받지 않으며, 제1 공통 전압 행 펄스 동안 이들이 설정된 상태로 유지된다. 이러한 프로세스는 행들 또는 대안으로서 열들의 전체 시리즈에 대해 순차적인 방식으로 반복되어, 이미지 프레임을 생성할 수 있다. 프레임들은 초당 소정의 원하는 수의 프레임들에서 이러한 프로세스를 계속 반복함으로써 새로운 이미지 데이터로 리프레시 및/또는 갱신될 수 있다.
각각의 픽셀에 걸쳐 인가되는 세그먼트 및 공통 신호들의 조합(즉, 각각의 픽셀에 걸친 전위차)은 각 픽셀의 결과적인 상태를 결정한다. 도 4는 다양한 공통 및 세그먼트 전압들이 인가될 때의 간섭 변조기의 다양한 상태를 도시하는 도표의 일례를 나타낸다. 이 분야의 통상의 기술자가 이해하듯이, "세그먼트" 전압들은 열 전극들 또는 행 전극들에 인가될 수 있으며, "공통" 전극들은 열 전극들 또는 행 전극들 중 나머지에 인가될 수 있다.
도 4에(또한, 도 5b에 도시된 타이밍 도에) 도시된 바와 같이, 릴리스 전압(VCREL)이 공통 라인을 따라 인가될 때, 공통 라인을 따르는 모든 간섭 변조기 요소들은 세그먼트 라인들을 따라 인가되는 전압, 즉 높은 세그먼트 전압(VSH) 및 낮은 세그먼트 전압(VSL)에 관계없이, 대안으로서 릴리스 또는 비작동 상태로서 참조되는 완화 상태에 놓일 것이다. 구체적으로, 릴리스 전압(VCREL)이 공통 라인을 따라 인가될 때, 변조기 픽셀들에 걸친 (대안으로서 픽셀 전압으로 참조되는) 전위 전압은 높은 세그먼트 전압(VSH) 및 낮은 세그먼트 전압(VSL)이 해당 픽셀에 대한 대응 세그먼트 라인을 따라 인가될 때 (도 3을 참조하면, 릴리스 윈도로도 참조되는) 완화 윈도 내에 있다.
유지 전압, 예를 들어 높은 유지 전압(VCHOLD_H) 또는 낮은 유지 전압(VCHOLD_L)이 공통 라인 상에 인가될 때, 간섭 변조기의 상태는 일정하게 유지될 것이다. 예를 들어, 완화 IMOD가 완화 위치에서 유지되며, 작동 IMOD가 작동 위치에서 유지될 것이다. 유지 전압들은 높은 세그먼트 전압(VSH) 및 낮은 세그먼트 전압(VSL)이 대응 세그먼트 라인을 따라 인가될 때 픽셀 전압이 안정성 윈도 내로 유지되도록 선택될 수 있다. 따라서, 세그먼트 전압 스윙, 즉 높은 VSH 및 낮은 세그먼트 전압(VSL) 사이의 차이는 포지티브 또는 네거티브 안정성 윈도의 폭보다 작다.
어드레싱 또는 작동 전압, 예를 들어 높은 어드레싱 전압(VCADD_H) 또는 낮은 어드레싱 전압(VCADD_L)이 공통 라인에 인가될 때, 각각의 세그먼트 라인을 따르는 세그먼트 전압들의 인가에 의해 그 공통 라인을 따르는 변조기들에 데이터가 선택적으로 기록될 수 있다. 세그먼트 전압들은 작동이 인가되는 세그먼트 전압에 의존하도록 선택될 수 있다. 어드레싱 전압이 공통 라인을 따라 인가될 때, 하나의 세그먼트 전압의 인가는 픽셀 전압이 안정성 윈도 내에 있게 함으로써 픽셀을 비작동 상태로 유지할 것이다. 이와 달리, 다른 세그먼트 전압의 인가는 픽셀 전압이 안정성 윈도를 초과하게 하여 픽셀의 작동을 유발할 것이다. 작동을 유발하는 특정 세그먼트 전압은 어떠한 어드레싱 전압이 사용되는지에 따라 변할 수 있다. 일부 구현들에서, 높은 어드레싱 전압(VCADD _H)이 공통 라인을 따라 인가될 때, 높은 세그먼트 전압(VSH)의 인가는 변조기가 그의 현재 위치에 유지되게 할 수 있는 반면, 낮은 세그먼트 전압(VSL)의 인가는 변조기의 작동을 유발할 수 있다. 결과적으로, 세그먼트 전압들의 효과는 낮은 어드레싱 전압(VCADD _L)이 인가될 때 반대일 수 있으며, 이 경우에 높은 세그먼트 전압(VSH)은 변조기의 작동을 유발하고, 낮은 세그먼트 전압(VSL)은 변조기의 상태에 영향을 미치지 않는다(즉, 안정되게 유지한다).
일부 구현들에서는, 변조기들에 걸친 동일 극성 전위차를 생성하는 유지 전압들, 어드레스 전압들 및 세그먼트 전압들이 사용될 수 있다. 일부 다른 구현들에서는, 때때로 변조기들의 전위차의 극성을 교대시키는 신호들이 사용될 수 있다. 변조기들에 걸친 극성의 교대(즉, 기록 절차들의 극성의 교대)는 단일 극성의 반복적인 기록 동작들 후에 발생할 수 있는 전하 축적을 줄이거나 막을 수 있다.
도 5a는 도 2의 3x3 간섭 변조기 디스플레이에서의 디스플레이 데이터의 프레임을 도시하는 도면의 일례를 나타낸다. 도 5b는 도 5a에 도시된 디스플레이 데이터의 프레임을 기록하는 데 사용될 수 있는 공통 및 세그먼트 신호들에 대한 타이밍 도의 일례를 나타낸다. 신호들은 도 2의 어레이와 유사한 3x3 어레이에 인가될 수 있으며, 이는 결국에 도 5a에 도시된 라인 시간 60e 디스플레이 배열을 유발할 것이다. 도 5a의 작동 변조기들은 어두운 상태, 즉 반사광의 상당한 부분이 가시 스펙트럼 밖에 있어서 예를 들어 관찰자에게 어둡게 보이는 상태에 있다. 도 5a에 도시된 프레임을 기록하기 전에, 픽셀들은 임의의 상태에 있을 수 있지만, 도 5b의 타이밍 도에 도시된 기록 절차는 각각의 변조기가 릴리스되었고 제1 라인 시간(60a) 전에 비작동 상태에 있는 것으로 가정한다.
제1 라인 시간(60a) 동안, 릴리스 전압(70)이 공통 라인 1에 인가되고; 공통 라인 2에 인가되는 전압은 높은 유지 전압(72)에서 시작되어 릴리스 전압(70)으로 이동하며; 낮은 유지 전압(76)이 공통 라인 3을 따라 인가된다. 따라서, 공통 라인 1을 따르는 변조기들(공통 1, 세그먼트 1), (1,2) 및 (1,3)은 제1 라인 시간(60a)의 지속 기간 동안 완화 또는 비작동 상태로 유지되고, 공통 라인 2를 따르는 변조기들 (2,1), (2,2) 및 (2,3)은 완화 상태로 이동하며, 공통 라인 3을 따르는 변조기들 (3,1), (3,2) 및 (3,3)은 이들의 이전 상태로 유지될 것이다. 도 4를 참조하면, 세그먼트 라인들 1, 2 및 3을 따라 인가되는 세그먼트 전압들은 간섭 변조기들의 상태에 영향을 미치지 않는데, 그 이유는 공통 라인들 1, 2 또는 3 중 어느 것도 라인 시간 60a 동안 작동을 유발하는 전압 레벨들에 노출되지 않기 때문이다(즉, VCREL - 완화 및 VCHOLD_L - 안정).
제2 라인 시간(60b) 동안, 공통 라인 1 상의 전압은 높은 유지 전압(72)으로 이동하고, 공통 라인 1을 따르는 모든 변조기들은 인가되는 세그먼트 전압에 관계없이 완화 상태로 유지되는데, 그 이유는 공통 라인 1 상에 어드레싱 또는 작동 전압이 인가되지 않았기 때문이다. 공통 라인 2를 따르는 변조기들은 릴리스 전압(70)의 인가로 인해 완화 상태로 유지되며, 공통 라인 3을 따르는 변조기들 (3,1), (3,2) 및 (3,3)은 공통 라인 3을 따르는 전압이 릴리스 전압(70)으로 이동할 때 완화될 것이다.
제3 라인 시간(60c) 동안, 공통 라인 1에 높은 어드레스 전압(74)을 인가함으로써 공통 라인 1이 어드레스된다. 이러한 어드레스 전압의 인가 동안에 세그먼트 라인 1 및 2를 따라 낮은 세그먼트 전압(64)이 인가되므로, 변조기들 (1,1) 및 (1,2)에 걸쳐 픽셀 전압은 변조기들의 포지티브 안정성 윈도의 높은 단부보다 크며(즉, 전압차가 소정 임계치를 초과하였다), 변조기들 (1,1) 및 (1,2)이 작동된다. 이와 달리, 세그먼트 라인 3을 따라 높은 세그먼트 전압(62)이 인가되므로, 변조기 (1,3)에 걸친 픽셀 전압은 변조기들 (1,1) 및 (1,2)의 픽셀 전압보다 낮고, 변조기의 포지티브 안정성 윈도 내로 유지되며, 따라서 변조기 (1,3)는 완화 상태로 유지된다. 또한, 라인 시간 60c 동안, 공통 라인 2를 따르는 전압은 낮은 유지 전압(76)으로 감소하고, 공통 라인 3을 따르는 전압은 릴리스 전압(70)으로 유지되어, 공통 라인 2 및 3을 따르는 변조기들을 완화 위치에 있게 한다.
제4 라인 시간(60d) 동안, 공통 라인 1 상의 전압은 높은 유지 전압(72)으로 복귀하여, 공통 라인 1을 다른 변조기들을 그들 각각의 어드레스된 상태들에 있게 한다. 공통 라인 2 상의 전압은 낮은 어드레스 전압(78)으로 감소한다. 세그먼트 라인 2를 따라 높은 세그먼트 전압(62)이 인가되므로, 변조기 (2,2)에 걸친 픽셀 전압은 변조기의 네거티브 안정성 윈도의 낮은 단부 아래여서, 변조기 (2,2)를 작동시킨다. 이와 달리, 세그먼트 라인 1 및 3을 따라 낮은 세그먼트 전압(64)이 인가되므로, 변조기들 (2,1) 및 (2,3)은 완화 위치에 유지된다. 공통 라인 3 상의 전압은 높은 유지 전압(72)으로 증가하여, 공통 라인 3을 따르는 변조기들을 완화 상태에 있게 한다.
마지막으로, 제5 라인 시간(60e) 동안, 공통 라인 1 상의 전압은 높은 유지 전압(72)으로 유지되며, 공통 라인 2 상의 전압은 낮은 유지 전압(76)으로 유지되어, 공통 라인 1 및 2를 따르는 변조기들을 그들 각각의 어드레스된 상태에 있게 한다. 공통 라인 3 상의 전압은 높은 어드레스 전압(74)으로 증가하여, 공통 라인 3을 따르는 변조기들을 어드레스한다. 세그먼트 라인 2 및 3 상에 낮은 세그먼트 전압(64)이 인가됨에 따라, 변조기들 (3,2) 및 (3,3)이 작동하며, 세그먼트 라인 1을 따라 인가되는 높은 세그먼트 전압(62)은 변조기 (3,1)를 완화 위치에 유지한다. 따라서, 제5 라인 시간(60e)의 종료시에, 3x3 픽셀 어레이는 도 5a에 도시된 상태에 있으며, 다른 공통 라인들을 따르는 변조기들(도시되지 않음)이 어드레스되고 있을 때 발생할 수 있는 세그먼트 전압의 변화에 관계없이 공통 라인들을 따라 유지 전압들이 인가되는 한은 그 상태로 유지될 것이다.
도 5b의 타이밍 도에서, 주어진 기록 절차(즉, 라인 시간들 60a-60e)는 높은 유지 및 어드레스 전압들 또는 낮은 유지 및 어드레스 전압들의 사용을 포함할 수 있다. 기록 절차가 주어진 공통 라인에 대해 완료되면(그리고 공통 전압이 작동 전압과 동일한 극성을 갖는 유지 전압으로 설정되면), 픽셀 전압은 주어진 안정성 윈도 내로 유지되고, 그 공통 라인 상에 릴리스 전압이 인가될 때까지 완화 윈도를 통과하지 않는다. 더구나, 각각의 변조기가 변조기의 어드레스 전에 기록 절차의 일부로서 릴리스될 때, 변조기의 릴리스 시간이 아니라 작동 시간은 라인 시간을 결정할 수 있다. 특히, 변조기의 릴리스 시간이 작동 시간보다 큰 구현들에서, 릴리스 전압은 도 5b에 도시된 바와 같이 단일 라인 시간보다 오랫동안 인가될 수 있다. 일부 다른 구현들에서, 공통 라인들 또는 세그먼트 라인들을 따라 인가되는 전압들은 상이한 변조기들, 예를 들어 상이한 컬러들의 변조기들의 작동 및 릴리스 전압들의 변화를 해결하기 위해 변할 수 있다.
전술한 원리들에 따라 동작하는 간섭 변조기들의 구조의 상세들은 크게 변할 수 있다. 예를 들어, 도 6a-6e는 이동 가능 반사층(14) 및 그의 지지 구조들을 포함하는 간섭 변조기들의 다양한 구현들의 단면들의 예들을 나타낸다. 도 6a는 도 1의 간섭 변조기 디스플레이의 부분 단면도의 일례를 나타내며, 여기서는 금속 재료의 스트립, 즉 이동 가능 반사층(14)이 기판(20)으로부터 수직으로 연장하는 지지대들(18) 상에 피착된다. 도 6b에서, 각각의 IMOD의 이동 가능 반사층(14)은 일반적으로 정사각형 또는 직사각형이며, 연결부들(32)을 통해 코너들에서 또는 그 근처에서 지지대들에 부착된다. 도 6c에서, 이동 가능 반사층(14)은 일반적으로 정사각형 또는 직사각형이며, 유연한 금속을 포함할 수 있는 변형 가능 층(34)에 매달려 있다. 변형 가능 층(34)은 이동 가능 반사층(14)의 둘레 주위에서 기판(20)에 직접 또는 간접 접속될 수 있다. 이러한 접속들은 본 명세서에서 지지 포스트들로서 참조된다. 도 6c에 도시된 구현은 이동 가능 반사층(14)의 광학적 기능들의, 변형 가능 층(34)에 의해 수행되는 그의 기계적 기능들로부터의 분리로부터 도출되는 추가적인 이익들을 갖는다. 이러한 분리는 반사층(14)에 사용되는 구조적 설계 및 재료들 및 변형 가능 층(34)에 사용되는 구조적 설계 및 재료들이 서로 무관하게 최적화될 수 있게 한다.
도 6d는 이동 가능 반사층(14)이 반사 부분층(14a)을 포함하는 IMOD의 다른 예를 나타낸다. 이동 가능 반사층(14)은 지지 구조, 예를 들어 지지 포스트들(18)에 얹혀 있다. 지지 포스트들(18)은 하부 정지 전극(즉, 도시된 IMOD 내의 광 스택(16)의 일부)으로부터의 이동 가능 반사층(14)의 분리를 제공하며, 따라서 예를 들어 이동 가능 반사층(14)이 완화 위치에 있을 때 이동 가능 반사층(14)과 광 스택(16) 사이에 갭(19)이 형성된다. 이동 가능 반사층(14)은 또한 전극으로 사용되도록 구성될 수 있는 도전성 층(14c), 및 지지 층(14b)을 포함할 수 있다. 이 예에서, 도전성 층(14c)은 기판(20)으로부터 먼, 지지 층(14b)의 일측에 배치되며, 반사 부분층(14a)은 기판(20)으로부터 가까운, 지지 층(14b)의 타측에 배치된다. 일부 구현들에서, 반사 부분층(14a)은 도전성일 수 있으며, 지지층(14b)과 광 스택(16) 사이에 배치될 수 있다. 지지층(14b)은 유전체 재료, 예를 들어 실리콘 산질화물(SiON) 또는 실리콘 이산화물(SiO2)의 하나 이상의 층을 포함할 수 있다. 일부 구현들에서, 지지층(14b)은 층들의 스택, 예를 들어 SiO2/SiON/SiO2 3층 스택일 수 있다. 반사 부분층(14a) 및 도전성 층(14c) 중 하나 또는 양자는 예를 들어 약 0.5%의 구리(Cu)를 갖는 알루미늄(Al) 합금 또는 다른 반사성 금속 재료를 포함할 수 있다. 유전체 지지층(14b) 위 및 아래에서의 도전성 층들(14a, 14c)의 사용은 스트레스들을 균형화할 수 있고, 향상된 전도를 제공할 수 있다. 일부 구현들에서, 반사 부분층(14a) 및 도전성 층(14c)은 다양한 설계 목적, 예를 들어 이동 가능 반사층(14) 내의 특정 스트레스 프로파일들을 달성하는 목적을 위해 상이한 재료들로 형성될 수 있다.
도 6d에 도시된 바와 같이, 일부 구현들은 또한 블랙 마스크 구조(23)를 포함할 수 있다. 블랙 마스크 구조(23)는 (예를 들어, 픽셀들 사이에 또는 포스트들(18) 아래에) 광학적 비활성 영역들 내에 형성되어 주변광 또는 산란광을 흡수할 수 있다. 블랙 마스크 구조(23)는 또한 광이 디스플레이의 비활성 부분들로부터 반사되거나 그들을 통해 투과되는 것을 방지하여 콘트라스트 비를 증가시킴으로써 디스플레이 장치의 광학적 특성들을 개선할 수 있다. 게다가, 블랙 마스크 구조(23)는 도전성일 수 있으며, 전기 버싱 층으로 기능하도록 구성될 수 있다. 일부 구현들에서, 행 전극들은 블랙 마스크 구조(23)에 접속되어, 접속된 행 전극의 저항이 감소할 수 있다. 블랙 마스크 구조(23)는 피착 및 패터닝 기술을 포함하는 다양한 방법을 이용하여 형성될 수 있다. 블랙 마스크 구조(23)는 하나 이상의 층을 포함할 수 있다. 예를 들어, 일부 구현들에서, 블랙 마스크 구조(23)는 광 흡수기로서 사용되는 몰리브덴-크롬(MoCr) 층, 층 및 반사기 및 버싱 층으로 사용되는 알루미늄 합금을 포함하며, 이들은 각각 약 30-80Å, 500-1000Å 및 500-6000Å 범위 내의 두께를 갖는다. 하나 이상의 층은 포토리소그라피, 및 예를 들어 MoCr 및 SiO2 층들에 대해 탄소 테트라플루오라이드(CF4) 및/또는 산소(O2) 그리고 알루미늄 합금층에 대해 염소(Cl2) 및/또는 붕소 삼염화물(BCl3)을 포함하는 드라이 에칭을 포함하는 다양한 기술을 이용하여 패터닝될 수 있다. 일부 구현들에서, 블랙 마스크(23)는 에탈론 또는 간섭 스택 구조일 수 있다. 그러한 간섭 스택 블랙 마스크 구조(23)에서는, 도전성 흡수기들을 사용하여, 각각의 행 또는 열의 광 스택(16) 내의 하부 정지 전극들 사이에 신호들을 전송 또는 버싱할 수 있다. 일부 구현들에서, 블랙 마스크(23) 내의 도전성 층들로부터 흡수기 층(16a)을 일반적으로 전기적으로 격리하기 위해 스페이서 층(35)이 사용될 수 있다.
도 6e는 이동 가능 반사층(14)이 자기를 지지하고 있는 IMOD의 다른 예를 도시한다. 도 6d와 달리, 도 6e의 구현은 지지 포스트들(18)을 포함하지 않는다. 대신에, 이동 가능 반사층(14)이 다수의 위치에서 하부의 광 스택(16)과 접촉하며, 이동 가능 반사층(14)의 만곡은 간섭 변조기에 걸친 전압이 작동을 유발하기에 불충분할 때 이동 가능 반사층(14)이 도 6e의 비작동 위치로 복귀하는 충분한 지지를 제공한다. 복수의 여러 상이한 층을 포함할 수 있는 광 스택(16)은 본 명세서에서 명료화를 위해 광 흡수기(16a) 및 유전체(16b)를 포함하는 것으로 도시된다. 일부 구현들에서, 광 흡수기(16a)는 고정 전극으로서 그리고 부분 반사층으로서 사용될 수 있다.
도 6a-6e에 도시된 것들과 같은 구현들에서, IMOD들은 투명 기판(20)의 정면, 즉 변조기가 형성된 면에 대향하는 면으로부터 이미지들이 관찰되는 직접 뷰 장치들로서 기능한다. 이러한 구현들에서, 장치의 후방 부분들(즉, 예를 들어 도 6c에 도시된 변형 가능 층(34)을 포함하는, 이동 가능 반사층(14) 뒤의 디스플레이 장치의 임의 부분)은, 반사층(14)이 장치의 그 부분들을 광학적으로 차폐하기 때문에, 디스플레이 장치의 이미지 품질에 악영향 또는 부정적인 영향 없이 구성 및 동작될 수 있다. 예를 들어, 일부 구현들에서는, 변조기의 전기 기계 특성들, 예를 들어 전압 어드레싱 및 그러한 어드레싱으로부터 발생하는 이동으로부터 변조기의 광학적 특성들을 분리하는 능력을 제공하는 버스 구조(도시되지 않음)가 이동 가능 반사층(14) 뒤에 포함될 수 있다. 게다가, 도 6a-6e의 구현들은 처리, 예를 들어 패터닝을 간소화할 수 있다.
도 7은 간섭 변조기에 대한 제조 프로세스(80)를 도시하는 흐름도의 일례를 나타내며, 도 8a-8e는 그러한 제조 프로세스(80)의 대응 단계들의 개략 단면도들의 예들을 나타낸다. 일부 구현들에서, 제조 프로세스(80)는 전기 기계 시스템 장치, 예를 들어 도 1 및 6에 도시된 일반 타입의 간섭 변조기들을 제조하도록 구현될 수 있다. 전기 기계 시스템 장치의 제조는 또한 도 7에 도시되지 않은 다른 블록들도 포함할 수 있다. 도 1, 6 및 7을 참조하면, 프로세스(80)는 기판(20) 위에 광 스택(16)을 형성하는 블록 82에서 시작한다. 도 8a는 기판(20) 위에 형성된 그러한 광 스택(16)을 도시한다. 기판(20)은 투명 기판, 예를 들어 유리 또는 플라스틱일 수 있고, 유연하거나, 비교적 단단하고 굽지 않을 수 있으며, 광 스택(16)의 효율적인 형성을 도모하기 위해 사전 준비 처리, 예컨대 세정되었을 수 있다. 전술한 바와 같이, 광 스택(16)은 전기적으로 도전성이고, 부분적으로 투명하고, 부분적으로 반사성일 수 있으며, 예를 들어 투명 기판(20) 상에 원하는 특성을 갖는 하나 이상의 층을 피착함으로써 제조될 수 있다. 도 8a에서, 광 스택(16)은 부분층들(16a, 16b)을 갖는 다층 구조를 포함하지만, 일부 다른 구현들에서는 더 많거나 적은 부분층이 포함될 수 있다. 일부 구현들에서, 부분층들(16a, 16b) 중 하나, 예를 들어 결합된 도체/흡수기 부분층(16a)은 광학적 흡수성 및 도전성을 갖도록 구성될 수 있다. 게다가, 부분층들(16a, 16b)중 하나 이상은 평행한 스트립들로 패터닝될 수 있으며, 디스플레이 장치 내의 행 전극들을 형성할 수 있다. 그러한 패터닝은 마스킹 및 에칭 프로세스 또는 이 분야에 공지된 다른 적절한 프로세스에 의해 수행될 수 있다. 일부 구현들에서, 부분층들(16a, 16b) 중 하나, 예를 들어 하나 이상의 금속층(예를 들어, 하나 이상의 반사 및/또는 도전성 층) 위에 피착된 부분층(16b)은 절연성 또는 유전체 층일 수 있다. 게다가, 광 스택(16)은 디스플레이의 행들을 형성하는 개별적이고 평행한 스트립들로 패터닝될 수 있다. 도 8a-8e는 축척으로 도시되지 않을 수도 있다는 점에 유의한다. 예를 들어, 일부 구현들에서, 부분층들(16a, 16b)이 도 8a-8e에서 다소 두껍게 도시되지만, 광 스택의 부분층들 중 하나인 광 흡수층은 매우 얇을 수 있다.
프로세스(80)는 광 스택(16) 위에 희생층(25)을 형성하는 블록 84에서 계속된다. 희생층(25)은 공동(19)을 형성하기 위해 나중에 (예를 들어, 블록 90에서) 제거되며, 따라서 희생층(25)은 도 1에 도시된 결과적인 간섭 변조기들(12) 내에 도시되지 않는다. 도 8b는 광 스택(16) 위에 형성된 희생층(25)을 포함하는 부분 제조된 장치를 나타낸다. 광 스택(16) 위의 희생층(25)의 형성은 후속적인 제거 후에 원하는 크기를 갖는 갭 또는 공동(19)(도 1 및 8e 참조)을 제공하도록 선택된 두께로의 크세논 이불화물(XeF2) 에칭 가능 재료, 예를 들어 몰리브덴(Mo) 또는 비정질 실리콘(a-Si)의 피착을 포함할 수 있다. 희생층의 피착은 피착 기술들, 예를 들어 물리 기상 증착(PVD, 예를 들어 스퍼터링), 플라즈마 강화 화학 기상 증착(PECVD), 열화학 기상 증착(열 CVD) 또는 스핀 코팅을 이용하여 수행될 수 있다.
프로세스(80)는 지지 구조, 예를 들어 도 1, 6 및 8c에 도시된 포스트(18)를 형성하는 블록 86에서 계속된다. 포스트(18)의 형성은 희생층(25)을 패터닝하여 지지 구조 개구를 형성한 후에 피착 방법, 예를 들어 PVD, PECVD, 열 CVD 또는 스핀 코팅을 이용하여 개구 내에 재료(예를 들어, 폴리머 또는 무기 재료, 예를 들어 실리콘 산화물)를 피착하여 포스트(18)를 형성하는 것을 포함할 수 있다. 일부 구현들에서, 희생층 내에 형성된 지지 구조 개구는 희생층(25) 및 광 스택(16)을 통해 하부 기판(20)으로 연장할 수 있으며, 따라서 도 6a에 도시된 바와 같이 포스트(18)의 하단부는 기판(20)과 접촉한다. 대안으로서, 도 8c에 도시된 바와 같이, 희생층(25) 내에 형성된 개구는 희생층(25)을 통해 연장할 수 있지만, 광 스택(16)을 통해서는 연장하지 않는다. 예를 들어, 도 8e는 광 스택(16)의 상면과 접촉하는 지지 포스트들(18)의 하단부들을 나타낸다. 포스트(18) 또는 다른 지지 구조들은 희생층(25) 위에 지지 구조 재료의 층을 피착하고 희생층(25) 내의 개구들로부터 멀리 위치한 지지 구조 재료의 부분들을 패터닝함으로써 형성될 수 있다. 지지 구조들은 도 8c에 도시된 바와 같이 개구들 내에 위치할 수 있지만, 적어도 부분적으로는 희생층(25)의 일부 위로 연장할 수도 있다. 전술한 바와 같이, 희생층(25) 및/또는 지지 포스트들(18)의 패터닝은 패터닝 및 에칭 프로세스에 의해 수행될 수 있지만, 대안적인 에칭 방법들에 의해서도 수행될 수 있다.
프로세스(80)는 이동 가능 반사층 또는 멤브레인, 예를 들어 도 1, 6 및 8d에 도시된 이동 가능 반사층(14)을 형성하는 블록 88에서 계속된다. 이동 가능 반사층(14)은 예를 들어 반사층(예를 들어, 알루미늄, 알루미늄 합금, 또는 다른 반사층) 피착을 포함하는 하나 이상의 피착 단계와 하나 이상의 패터닝, 마스킹 및/또는 에칭 단계를 함께 이용하여 형성될 수 있다. 이동 가능 반사층(14)은 전기적으로 도전성일 수 있으며, 전기적 도전성 층으로 참조될 수 있다. 일부 구현들에서, 이동 가능 반사층(14)은 도 8d에 도시된 바와 같이 복수의 부분층(14a, 14b, 14c)을 포함할 수 있다. 일부 구현들에서, 부분층들 중 하나 이상, 예를 들어 부분층들(14a, 14c)은 이들의 광학적 특성들을 위해 선택된 고반사 부분층들을 포함할 수 있으며, 다른 부분층(14b)은 그의 기계적 특성들을 위해 선택된 기계적 부분층을 포함할 수 있다. 희생층(25)은 블록 88에서 형성된 부분 제조 간섭 변조기 내에 여전히 존재하므로, 이동 가능 반사층(14)은 통상적으로 이 단계에서 이동 가능하지 않다. 희생층(25)을 포함하는 부분 제조 IMOD는 본 명세서에서 "릴리스되지 않은" IMOD로도 참조될 수 있다. 도 1과 관련하여 전술한 바와 같이, 이동 가능 반사층(14)은 디스플레이의 열들을 형성하는 개별적이고 평행한 스트립들로 패터닝될 수 있다.
프로세스(80)는 공동, 예를 들어 도 1, 6 및 8e에 도시된 공동(19)을 형성하는 블록 90에서 계속된다. 공동(19)은 (블록 84에서 피착된) 희생 재료(25)를 에천트에 노출시킴으로써 형성될 수 있다. 예를 들어, 에칭 가능한 희생 재료, 예를 들어 Mo 또는 비정질 Si가 건식 화학 에칭에 의해, 예를 들어 통상적으로 공동(19)을 둘러싸는 구조들에 대해 선택적으로 제거되는 원하는 양의 재료를 제거하는 데 효과적인 기간 동안 가스 또는 증기 에천트, 예를 들어 고체 XeF2로부터 얻은 증기에 희생층(25)을 노출시킴으로써 제거될 수 있다. 다른 에칭 방법들, 예를 들어 습식 에칭 및/또는 플라즈마 에칭도 이용될 수 있다. 희생층(25)이 블록 90 동안 제거되므로, 이동 가능 반사층(14)은 통상적으로 이 단계 후에 이동 가능하다. 희생 재료(25)의 제거 후에, 완전히 또는 부분적으로 제조된 결과적인 IMOD는 본 명세서에서 "릴리스된" IMOD로서 참조될 수 있다.
전술한 간섭 변조기들은 2개의 상태, 즉 완화 상태 및 작동 상태를 갖는 쌍안정 디스플레이 요소들이다. 아래의 설명은 아날로그 간섭 변조기들과 관련된다. 예를 들어, 아날로그 간섭 변조기의 일 구현에서는, 단일 간섭 변조기가 적색, 녹색, 청색, 흑색 및 백색을 반사할 수 있다. 일부 구현들에서는, 아날로그 간섭 변조기가 인가 전압에 따라 소정의 광 파장들의 범위 내의 임의의 컬러를 반사할 수 있다. 또한, 아날로그 간섭 변조기의 광 스택은 전술한 쌍안정 디스플레이 요소들과 다를 수 있다. 이러한 차이들은 상이한 광학적 결과들을 생성할 수 있다. 예를 들어, 전술한 쌍안정 요소들의 일부 구현들에서, 폐쇄(작동) 상태는 쌍안정 요소에 어두운(예를 들어, 흑색) 반사 상태를 제공한다. 일부 구현들에서, 아날로그 간섭 변조기는 전극들이 쌍안정 요소의 폐쇄 상태와 유사한 위치에 있을 때 백색을 반사한다.
3 단자 전기 기계 장치(예를 들어, 간섭 변조기)는 상부 및 하부 전극들 사이의 갭 내에 배치된 이동 가능 중간 전극을 포함할 수 있다. 한 가지 접근법에서, 3 단자 장치는 스위치 또는 직렬 커패시터를 사용하여 중간 전극 상에 전하를 제공할 수 있다. 이어서, 상부 및 하부 전극들에 걸쳐 전압이 인가될 수 있고, 대전된 중간 전극은 상부 및 하부 전극들 사이에 생성된 결과적인 전기장과 상호작용할 수 있다. 결과적으로, 대전된 중간 전극은 인가 전압에 의해 생성된 전기장에 기초하여 이동되거나 위치가 변경될 수 있다. 그러나, 이러한 방식으로 스위치들 및 커패시터를 사용하여 중간 전극 상에 전하를 제공하는 것은 중간 전극의 기생 부하를 유발할 수 있다. 어떠한 외부 회로에도 전기적으로 접속되지 않아서 전기적으로 격리된 전하 중성 중간 전극 상에 전하를 제공하는 것이 유용할 수 있지만, 전하 중성 중간 전극은 대개는 상부 및 하부 전극들 사이에 인가된 전기장에 응답하지 않을 것이다. 따라서, 0의 순수 전하를 갖는 전기적으로 격리된 중간 전극을 이동시켜 전기 접촉부(또는 전극)와 접촉시킴으로써 중간 전극에 전하를 제공하기 위한 장치들 및 방법들이 유용할 수 있다. 중간 전극이 전하를 수신한 후에 중간 전극을 릴리스하기 위한 장치들 및 방법들도 유용할 수 있다.
도 9는 아날로그 간섭 변조기의 전하 중성 전극을 작동시키고 교정하기 위한 한 가지 방법을 나타내는 흐름도의 일례를 도시한다. 방법(900)은 블록 951에서 시작되며, 여기서 전기적으로 격리된 전하 중성 중간 전극이 제공된다. 전기적으로 격리된 중간 전극은 예를 들어 대전 및/또는 교정되기 전에, 장치가 처음 파워 온될 때, 또는 누설 또는 고의적인 방전 절차의 결과로서 전하가 고갈된 후에 전하 중성일 수 있다. 방법은 블록 952에서 계속되며, 여기서 중간 전극이 작동되고, 전기력을 이용하여 중간 전극을 다른 전극을 향해 이동시킨다. 중간 전극이 전하 중성일 때 중간 전극을 작동시키기 위한 장치들 및 방법들이 예를 들어 도 12-20을 참조하여 아래에 설명된다. 방법(900)은 블록 953에서 계속되며, 여기서 중간 전극에 전하가 제공된다. 도 21-25는 그러한 중간 전극 상에 전하를 배치하기 위한 시스템들 및 방법들의 일부 일반 구현들을 설명한다. 구체적으로, 상부 전극과의 접촉에 의해 중간 전극을 대전하기 위한 장치 및 방법들이 도 21-23을 참조하여 설명되고, 격리되고 접지된 상보형 전극과의 접촉에 의해 중간 전극을 대전하기 위한 장치들 및 방법이 도 22 및 24-25를 참조하여 설명된다. 일부 구현들에서 전하 중성 중간 전극은 도 26-30을 참조하여 설명되는 바와 같이 스위치 구성을 이용하여 대전될 수 있는 반면, 다른 구현들에서 중간 전극은 도 34-38을 참조하여 설명되는 바와 같이 스위치 없는 구성을 이용하여 대전될 수 있다.
방법(900)은 중간 전극 상에 배치된 전하가 중간 전극 상에 작용하는 특정한 기계적 스프링 힘을 해결하기 위해 교정되는 블록 954를 포함한다. 스위치 구성을 이용하여 전하를 교정하기 위한 소정 장치들 및 방법들이 도 31-33을 참조하여 설명된다. 또한, 스위치 없는 구성을 이용하여 전하를 교정하기 위한 장치들 및 방법들의 일부 구현들이 도 39-41을 참조하여 설명된다. 3 단자 장치들의 어레이에 걸쳐 중간 전극들 각각을 원하는 양의 전하를 갖도록 교정하는 것은 선택된 전압을 모든 장치들에 걸쳐 인가할 때 모든 중간 전극들의 동일 위치로의 신뢰성 있는 이동을 가능하게 할 수 있다. 이것은 아날로그 간섭 변조기 디스플레이에 표시되는 컬러의 정밀도를 향상시키는 것을 도울 수 있다.
방법(900)은 블록 955에서 계속되며, 여기서 교정된 중간 전극을 갖는 아날로그 간섭 변조기들의 어레이를 포함하는 디스플레이를 동작시킨다. 일부 양태들에서, 디스플레이를 동작시키는 것은 이미지를 표시하기 위해 상부 전극(1002) 및 하부 전극(1010)(도 10 참조)에 의해 형성된 갭 내의 다양한 위치들로 중간 전극을 작동 또는 이동시키는 것을 포함한다. 중간 전극의 위치는 아날로그 간섭 변조기 픽셀의 반사되어 표시된 컬러를 결정하는 데 도움이 된다. 방법(900)은 옵션으로서 블록 956에서 계속되며, 여기서 블록 952-955가 반복된다. 일부 구현들에서는, 블록 952로 돌아가기 전에, 중간 전극이 전하 중성으로 된다. 일부 구현들에서, 중간 전극은 블록 952에서 작동될 때 약간의 전하를 유지한다.
도 10은 3개 층 또는 전극 설계를 갖는 아날로그 간섭 변조기(1000)의 단면도의 일례를 나타낸다. 변조기(1000)는 상부 또는 제1 전극(1002)을 포함한다. 일 구현에서, 전극(1002)은 금속으로 제조된 플레이트이다. 상부 전극(1002)은 보강 층(1003)을 이용하여 보강될 수 있다. 일 구현에서, 보강 층(1003)은 유전체이다. 보강 층(1003)은 상부 전극(1002)을 단단하고 실질적으로 편평하게 유지하는 데 사용될 수 있다. 변조기(1000)는 하부 또는 제2 전극(1010) 및 중간 또는 제3 전극(1006)도 포함하며, 이들도 금속을 포함할 수 있다. 3개의 전극은 절연 포스트들(1004)에 의해 전기적으로 절연된다. 절연 포스트들(1004)은 전기력이 존재하지 않을 때 전극들(1002, 1010) 사이의 중간 전극(1006)을 평형 위치에 유지하는 것도 돕는다. 중간 전극(1006)은 그 위에 배치된 보강 층(1008)을 갖는다. 일 구현에서, 보강 층(1008)은 실리콘 산질화물을 포함한다.
중간 전극(1006)은 상부 전극(1002)과 하부 전극(1010) 사이의 영역 또는 갭 내에서 이동하도록 구성된다. 보강 층(1008)은 중간 전극(1006)이 전극들(1002, 1010) 사이에서 이동할 때 그의 일부를 비교적 단단하고 편평하게 유지하는 것을 돕는다. 일 구현에서, 보강 층(1008)은 중간 전극(1006)의 중심부 상에 배치된다. 이러한 구현에서, 중간 전극(1006)의 측부들은 중간 전극(1006)이 이동함에 따라 휠 수 있다. 도 10에서, 중간 전극(1006)은 전극이 실질적으로 편평한 평형 위치에 도시되어 있다. 중간 전극(1006)이 이 평형 위치로부터 멀어짐에 따라 중간 전극(1006)의 측부들은 변형되거나 휠 것이다. 중간 전극(1006)의 측부들은 중간 전극(1006)을 다시 평형 위치로 이동시키기 위한 힘을 인가하는 탄성 스프링 힘을 구현한다(예를 들어, 도 26-33의 스프링들(2634) 및 도 34-41의 스프링들(3434)을 참조한다).
중간 전극(1006)은 기판(1012)을 통해 구조에 입사되는 광을 반사하기 위한 미러의 역할도 한다. 일부 구현들에서, 기판(1012)은 유리로 제조된다. 일 구현에서, 하부 전극(1010)은 흡수성 크롬 또는 크롬 함유 층이다. 적어도 부분적으로 투명하게 유지하기 위하여, 이 흡수층은 전술한 바와 같이 비교적 얇게 제조될 수 있다. 하부 전극(1010)은 그 위에 배치된 패시베이션 층(1014)(이제 개별 층으로서 구체적으로 도시됨)을 갖는다. 일 구현에서, 패시베이션 층(1014)은 얇은 유전층이다. 다른 구현에서, 상부 전극(1002)은 그 위에 배치된 패시베이션 층을 갖는다. 일부 구현들에서, 패시베이션 층은 얇은 유전층이다.
도 11a는 제어 회로(1120)를 갖는 아날로그 간섭 변조기(1100)의 단면도의 일례를 나타낸다. 아날로그 간섭 변조기(1100)는 변조기(1000) 또는 다른 유사한 아날로그 간섭 변조기 설계일 수 있다. 변조기(1100)는 상부 전극(1102), 중간 전극(1106) 및 하부 전극(1110)을 포함한다. 변조기(1100)는 전극들(1102, 1106, 1110)을 다른 구조들로부터 절연시키는 절연성 포스트들(1104)을 더 포함한다. 변조기(1100)는 상부 전극(1102) 상에 배치된 저항성 요소들(1116)을 더 포함한다. 상부 전극(1102)은 그 위에 배치된 보강 층(1103)을 갖는다. 일 구현에서, 상부 전극(1102)은 금속이고, 보강 층(1103)은 유전체이다. 변조기(1100)는 하부 전극(1110) 상에 배치된 얇은 유전성 패시베이션 층(1114)도 포함하며, 유전성 패시베이션 층(1114)은 하부 전극(1110)과 중간 전극(1106) 사이에 배치된다. 하부 전극(1110)은 기판(1112) 상에 배치된다. 저항성 요소들(1116)은 상부 전극(1102)과 중간 전극(1106) 사이의 분리기를 제공한다. 중간 전극(1106)이 상부 전극(1102)을 향해 이동할 때, 저항성 요소들(1116)은 중간 전극(1106)이 상부 전극(1102)과 접촉하는 것을 방지한다. 일 구현에서, 중간 전극(1106)은 중간 전극(1106)의 하부에 배치된 절연층(도시되지 않음)을 포함한다.
아날로그 간섭 변조기(1100)는 제어 회로(1120)도 포함한다. 제어 회로(1120)는 상부 전극(1102) 및 하부 전극(1110)에 걸친 전압을 인가하도록 구성된다. 전하 펌프 회로(1118)가 중간 전극(1106)에 전하를 선택적으로 인가하도록 구성된다. 제어 전압(1120) 및 전하 펌프 회로(1118)를 이용하여 중간 전극(1106)의 작동이 달성된다. 전하 펌프 회로(1118)는 중간 전극(1106)에 전하를 제공하는 데 사용된다. 이어서, 대전된 중간 전극(1106)은 상부 전극(1102)과 하부 전극(1110) 사이에 제어 회로(1120)에 의해 생성된 전기장과 상호작용한다. 대전된 중간 전극(1106)과 전기장의 상호작용은 중간 전극(1106)이 전극들(1102, 1110) 사이에서 이동하게 한다.
IMOD 상에 정확한 양의 전하를 배치하기 위한 전하 펌프 회로(1118)로서 구현될 수 있는 전하 주입 회로의 일례가 도 11b의 개략도들에 도시되어 있다. 이 개략도들에서, IMOD는 가변 커패시터로서 도시된다. IMOD 리셋(좌측) 개략도는 IMOD를 리셋하기 위한 예시적인 회로 구성을 나타낸다. 이러한 구성에서는, 스위치(S3)가 닫혀 IMOD를 단락시킴으로써 IMOD 상의 전하를 방전시킨다. 스위치들(S1, S2)은 "개방"되어 전압원(Vin) 및 커패시터(Cin)를 서로 그리고 IMOD로부터 격리시킨다. 사전 충전(Cin)(중앙) 개략도는 스위치(S1)가 닫혀 전압원(Vin)을 커패시터(Cin)에 접속시킴으로써 커패시터(Cin)를 충전하는 예시적인 회로 구성을 나타낸다. 스위치(S2)는 "개방"되어 커패시터(Cin)를 IMOD로부터 격리시키며, 스위치(S3)는 개방되어 IMOD는 더 이상 단락되지 않는다. 전하 샘플링 및 IMOD 상으로의 운반(우측) 개략도에서, 스위치(S1)는 개방되어, 전압원(Vin)을 회로의 나머지로부터 격리시키며, 스위치(S2)는 닫혀, IMOD 단자 1(좌측 단자)에 접속된 상태로 유지되는 연산 증폭기의 가상 접지 입력에 커패시터(Cin)를 접속시킨다. 연산 증폭기 출력은 IMOD의 단자 2에 피드백으로 접속된다. 이것은 입력 커패시터(Cin)로부터 피드백 경로, 이 예에서는 IMOD 내의 커패시터로 전하를 정밀하게 운반하는 공지된 스위치식 커패시터 회로이다. 불완전한 전하 운반을 유발하는 다른 접근법들이 연산 증폭기 없이 스위치들을 이용하여 구현될 수 있다.
중간 전극(1106)은 제어 회로(1120)에 의해 인가되는 전압을 변화시킴으로써 전극들(1102, 1110) 사이의 다양한 위치들로 이동될 수 있다. 예를 들어, 제어 회로(1120)에 의해 인가되는 양의 전압(Vc)은 하부 전극(1110)이 상부 전극(1102)에 대해 양의 전위로 구동되게 하며, 이는 중간 전극(1106)이 양으로 대전되는 경우에 그리고 양으로 대전될 때 중간 전극을 밀어낸다. 따라서, 양의 전압(Vc)은 중간 전극(1106)이 상부 전극(1102)을 향해 이동하게 한다. 제어 회로(1120)에 의한 음의 전압(Vc)의 인가는 하부 전극(1110)이 상부 전극(1102)에 대해 음의 전위로 구동되게 하며, 이는 중간 전극(1106)이 양으로 대전될 때 중간 전극을 끌어당긴다. 따라서, 음의 전압(Vc)은 중간 전극(1106)이 하부 전극(1110)을 향해 이동하게 한다.
스위치(1122)는 중간 전극(1106)을 전하 펌프 회로(1118)에 선택적으로 접속 또는 분리하는 데 사용될 수 있다. 스위치 외에도 이 분야에 공지된 다른 방법들, 예를 들어 박막 트랜지스터, 퓨즈, 안티퓨즈 등이 중간 전극(1106)을 전하 펌프 회로(1118)에 선택적으로 접속 또는 분리하는 데 사용될 수 있다.
아날로그 간섭 변조기(1100)는 중간 전극(1106)이 상부 전극(1102) 및 하부 전극(1110)에 걸쳐 인가되는 전압에 선형적으로 비례하여 응답하도록 구성될 수 있다. 따라서, 중간 전극(1106)의 이동을 제어하는 데 사용되는 전압과 전극들(1102, 1110) 간의 중간 전극(1106)의 위치 사이에는 선형 관계가 존재한다.
스위치(1122)를 사용하여 중간 전극(1106)에 전하를 제공하는 것은 중간 전극(1106)의 기생 부하를 유발할 수 있다. 예를 들어, 중간 전극(1106)이 전기적으로 완전히 격리되지 않는 경우, 중간 전극(1106) 상에 저장된 전하(Q)는 전극들(1102, 1110) 간의 그의 위치에 따라 변할 수 있다. 이러한 Q의 변화는 전하에 대한 중간 전극(1106)의 응답에 영향을 미칠 수 있다. 중간 전극(1106)이 전기적으로 완전히 격리되지 않을 때, 그로부터 상부 전극(1102) 및 하부 전극(1110) 각각으로 부가되는 기생 용량들이 존재한다. 게다가, 저장된 전하(Q))의 일부가 시간이 지남에 따라 중간 전극(1106)으로부터 스위치(1122)를 통해 누설될 수 있다.
다양한 시스템들 및 방법들, 예컨대 "Analog Interferometric Modulator"라는 제목으로 2011년 8월 2일자로 허여된 미국 특허 제7,990,604호에 설명된 것들이 기생 용량들을 설명하는 데 사용될 수 있다. 예를 들어, 변조기(1100)는 중간 전극(1106)과 직렬로 그리고 기생 용량들(1140, 1142)과 병렬로 접속된 커패시터를 포함함으로써 기생 용량들을 해결하도록 구성될 수 있다. 따라서, 중간 전극(1106)으로부터 스위치 또는 직렬 커패시터로의 전기적 접속 없이 중간 전극(1106) 상에 전하를 제공한 후에 전하를 격리시킨다면 유리할 것이다. 이러한 전기적으로 격리된 전극은 기생 부하 또는 전하 누설 문제를 줄일 수 있다.
전기적으로 격리된 중성 전극의 작동
도 12는 중간 전극에 전기적으로 접속된 스위치 또는 직렬 커패시터의 사용 없이 2개의 대전된 전극 사이에서 이동 또는 작동될 수 있는 중간 전극을 포함하는 아날로그 간섭 변조기(1200)의 사시도의 일례를 나타낸다. 도 21-23을 참조하여 아래에 더 상세히 설명되는 바와 같이, 중간 전극에 전기적으로 접속된 스위치 또는 직렬 커패시터의 사용 없이 중간 전극 상에 전하를 제공하기 위해 중간 전극이 어느 하나의 대전된 전극을 향해 이동될 수 있다.
변조기(1200)는 상부 전극(1202) 및 상부 전극(1202)으로부터 일정한 갭(g)에 의해 이격된 하부 전극(1210)을 포함한다. 이동 가능한 중간 전극 또는 플레이트(1206)가 갭(g) 내에 배치되며, 상부 전극(1202)으로부터 거리 d2만큼 그리고 하부 전극(1210)으로부터 거리 d1만큼 이격될 수 있다. 중간 전극(1206)은 금속 반사기 또는 미러일 수 있다. 중간 전극(1206)은 전기적으로 격리될 수 있는데, 즉 중간 전극(1206)이 갭(g) 내에 배치될 때 그것은 외부 컴포넌트, 예를 들어 스위치에 전기적으로 접속되지 않는다. 중간 전극(1206)은 또한 전하 중성이며, 음 전하들과 동일한 총 수의 양 전하들을 갖는다. 일부 구현들에서, 전극들(1202, 1206, 1210)은 박막 전극들이다. 일부 양태들에서, 예를 들어, 박막 상부 전극(1202)의 측방 치수는 D이고, 박막 상부 전극(1202)의 두께는 측방 치수의 1/10 이하(D/10 이하)이다. 일부 구현들에서, 3개 전극 각각은 분리 거리들(d1, d2)에 비해 얇은 두께를 갖는다. 예를 들어, 3개의 전극 각각의 두께는 분리 거리들(d1, d2)보다 한 자릿수 이상 얇을 수 있다.
중간 전극(1206)은 구조들 또는 컴포넌트들(도 12에 도시되지 않음)에 기계적으로 접속되고 그리고/또는 그들에 의해 지지될 수 있다. 그러나, 그러한 구조(또는 컴포넌트들)는 중간 전극(1206)이 전기적으로 격리된 상태로 유지되도록 구성될 수 있다(예를 들어, 구조는 중간 전극(1206)을 전기적으로 격리시키는 데 도움이 되는 재료로 형성될 수 있다). 도 21, 26 및 34를 참조하여 아래에 더 상세히 설명되는 바와 같이, 그러한 구조들은 중간 전극(1206)을 갭(g) 내의 특정 위치로 복원하기 위해 중간 전극(1206) 상에 복원 기계력을 가하는 스프링들을 포함할 수 있다.
대전되지 않은, 전기적으로 격리된 중간 전극(1206)은 상부 전극(1202)과 하부 전극(1210) 사이의 전기장의 인가시에 상부 전극(1202) 또는 하부 전극(1210)을 향해 작동 또는 이동될 수 있다. 일 구현에서, 이것은 상부 전극(1202) 및 하부 전극(1210) 중 하나를 다른 하나와 다른 크기를 갖도록 구성함으로써 달성된다. 예를 들어, 도 12에 도시된 구현에서, 상부 전극(1202)은 표면적 A2를 갖는 반면, 하부 전극(1210)은 A2보다 큰 표면적 A1을 갖는다. 다른 양태들에서, 하부 전극(1210)은 상부 전극(1202)의 표면적 A2보다 작은 표면적 A1을 가질 수 있다. 중간 전극(1206)은 하부 전극(1210)의 표면적보다 작거나 대략 동일한 표면적을 가질 수 있다.
상부 전극(1202) 및 하부 전극(1210)에 걸쳐 전압(V)을 인가하는 것은 두 전극 사이에 불균일한 전기장을 생성한다. 변조기(1200)의 구현들은 상부 전극(1202) 및 하부 전극(1210)에 걸쳐 전압(V)을 인가하여 불균일한 전기장을 생성하도록 구성된 제어 회로를 포함할 수 있다.
도 13은 도 12에 도시된 아날로그 간섭 변조기 구성의 등가 회로의 일례를 나타낸다. C1은 하부 전극(1210)과 중간 전극(1206) 사이의 용량을 나타내고, C2는 상부 전극(1202)과 중간 전극(1206) 사이의 용량을 나타낸다. ΔV1은 하부 전극(1210)과 중간 전극(1206) 사이의 전위차를 나타내고, 아래의 식에 의해 주어진다.
Figure pct00001
ΔV2은 상부 전극(1202)과 중간 전극(1206) 사이의 전위차를 나타내고, 아래의 식에 의해 주어진다.
Figure pct00002
상부 전극(1202) 및 하부 전극(1210)에 전압(V)을 인가하는 것은 상부 전극(1202) 및 하부 전극(1210)에 동일 크기를 갖는 전하를 제공한다. 이러한 대전된 전극들 중 어느 하나에 의해 중간 전극(1206) 상에 가해지는 전기력은 대전된 전극의 표면적에 역비례한다. 그러나, 이 예에서는 상부 전극(1202)의 표면적이 하부 전극(1210)의 표면적보다 작으므로, 상부 전극(1202)은 하부 전극(1210)보다 중간 전극(1206) 상에 더 큰 전기력을 가한다. 하부 전극(1210)의 표면적이 상부 전극(1202)의 표면적보다 작은 구현들에서, 하부 전극(1210)은 상부 전극(1202)보다 중간 전극(1206) 상에 더 큰 전기력을 가할 것이다.
중간 전극(1206) 상에 작용하는 순수 힘은 용량들(C1, C2)에 대한 평행 플레이트 근사화를 이용하여 결정될 수 있다. 상부 전극(1202) 및 하부 전극(1210)은 정지해 있으므로, 중간 전극(1206) 상의 순수 전기력은 다음과 같이 근사화될 수 있다.
Figure pct00003
여기서, ε0는 진공의 유전율이고, A1은 하부 전극(1210)의 표면적을 나타내고, A2는 상부 전극(1202)의 유효 표면적을 나타내고, ΔV1은 하부 전극(1210)과 중간 전극(1206) 사이의 전위차를 나타내고, ΔV2은 상부 전극(1202)과 중간 전극(1206) 사이의 전위차를 나타내고, d1은 중간 전극(1206)과 하부 전극(1210) 사이의 거리를 나타내고, d2는 중간 전극(1206)과 상부 전극(1202) 사이의 거리를 나타낸다. A1 = A이고, A2 = αA이라고 하고, 여기서 α는 면적 팩터이다. 그러면, 힘 방정식은 다음과 같이 단순화된다.
Figure pct00004
따라서, 상부 전극(1202)의 표면적이 하부 전극(1210)의 표면적보다 작은 구현들에서는 상이한 면적들을 갖는 전극들에 걸친 전기장의 인가는 전기적으로 격리된 전하 중성 중간 플레이트(1206) 상에 순수 상향 힘을 유발하여, 중간 전극이 상부 전극(1202)을 향해 위로 이동하게 한다. 중간 전극(1206)은 상부 전극(1202)과, 또는 상부 전극(1202) 상의 및/또는 상부 전극과 전기적으로 통하는 접촉부들(예컨대, 저항성 접촉부들)과 접촉하기 위해 위로 이동하도록 구성된다. 도 23 및 25를 참조하여 아래에 더 상세히 설명되는 바와 같이, 중간 전극(1206)과 상부 전극(1202) 사이의 접촉은 중간 전극(1206) 상의 전하를 변화시킬 수 있다.
도 14는 도 12의 아날로그 간섭 변조기 구성에서 중간 전극(1206) 상에 작용하는 순수 상향 전기력이 상부 전극(1202)과 중간 전극(1206) 사이의 거리(d2)에 따라 어떻게 변하는지를 나타내는 그래프의 일례를 도시한다. 이 예에서, 상부 전극(1202)과 하부 전극(1210) 사이에 인가되는 전압(V)은 100 볼트이고, 면적 팩터 α는 0.25이고, 총 갭 거리 g는 1000 nm이고, 픽셀 크기는 53 μm로서 이 구성에서 2809 μm2의 면적(A)을 제공한다.
일부 구현들에서, 하부 전극(1210)은 상부 전극(1202)의 표면적(A1)보다 작은 표면적(A2)을 가질 수 있다. 이러한 예들에서, 상부 전극(1202)과 하부 전극(1210) 사이의 전압의 인가는 불균일한 전기장 및 중간 전극(1206) 상의 순수 하향 힘을 발생시킬 것이며, 이는 중간 전극(1206)을 이동시켜 하부 전극(1210)과 접촉시킬 수 있다. 다른 곳에서 설명되는 바와 같이, 이것은 하부 전극(1210)과의 물리적 접촉에 의해 중간 전극(1206)을 대전하는 데 이용될 수 있다.
상부 전극(1202) 및 하부 전극(1210)은 상부 전극(1202) 및 하부 전극(1210) 에 걸쳐 전압(V)이 인가될 때 전기적으로 격리된 전하 중성 중간 전극(1206)을 이동시킬 수 있는 그들 간의 전기장을 생성하도록 구성될 수 있다. 2개의 커패시터, 즉 상부 전극과 중간 전극 사이의 용량인 Ctop 및 중간 전극과 하부 전극 사이의 용량인 Cbot의 직렬 결합은 다음 식에 의해 주어진다.
Figure pct00005
여기서, ε0는 자유 공간의 유전율이고, εtop는 상부 전극과 중간 전극 사이의 상부 갭을 채우는 상대 유전율이고, A1은 상부 전극의 표면적이고, εbot는 하부 전극과 중간 전극 사이의 하부 갭을 채우는 상대 유전율이고, d2는 상부 및 중간 전극들 사이의 갭이고, g는 상부 및 하부 전극들 사이의 총 거리이고, A는 나머지 하부 및 중간 전극들의 표면적이다. 전극 면적들 및 충전 유전율들이 상부 및 하부 용량성 섹션들 양자에 대해 동일한 경우, 총 용량 값은 상부 및 하부 전극들 사이의 갭(예를 들어, 거리 d2)에 관계없이 일정하다. 전극 크기들 및/또는 갭 충전 매질들의 유전율들의 불균형이 존재하는 경우, 총 용량은 중간 전극이 상부 및 하부 전극들 사이에 배치되는 장소의 함수가 된다. 전기 시스템은 중간 전극을 위 또는 아래로 단조롭게 이동시킴으로써 용량을 증가시키려고 시도할 것이며, 이러한 증가하는 용량(갭 거리에 따라 증가)의 불균형은 격리되고 대전되지 않은 중간 전극 상에 작용하는 힘일 수 있다.
도 12를 참조하여 전술한 일 구현에서, 2개의 상이한 표면적을 갖는 상부 전극(1202) 및 하부 전극(1210)은 전기적으로 격리된 전하 중성 중간 전극(1206)을 이동시킬 수 있는 그들 간의 전기장을 생성하도록 구성된다. 전술한 바와 같이, 총 용량은 중간 전극(1206)이 상부 전극(1202)과 하부 전극(1210) 사이에 배치되는 장소의 함수이다. 상부 전극(1202) 및 하부 전극(1210)에 걸친 전압(V)의 인가는 상부 전극(1202) 또는 하부 전극(1210)을 향해 이동하도록 중간 전극(1206)에 영향을 미칠 수 있는 불균일한 전기장을 생성한다. 다른 예에서, 전기적으로 격리된 전하 중성 중간 전극(1206)은 상이한 형상들을 갖는 상부 및 하부 전극들 사이에 생성되는 전기장에 의해 이동될 수 있다. 일 구현에서, 상이한 형상들을 갖는 상부 및 하부 전극들은 동일하거나 실질적으로 동일한 표면적을 갖는다. 다른 구현에서, 상이한 형상들을 갖는 상부 및 하부 전극들은 상이한 표면적들을 갖는다. 이러한 구현들은 상부 및 하부 전극들 사이의 소정 영역들에서 더 많은 전기장 라인을 생성하여 그러한 영역들에서 전기장의 선속을 증가시킬 수 있다. 도 15a를 참조하여 후술하는 다른 예에서, 상부 전극과 하부 전극 사이에 인가되는 전압은 상부 전극 근처의 접지된 상보형 전극과 더불어 상부 전극을 향해 이동하도록 전기적으로 격리된 전하 중성 중간 전극에 영향을 미칠 수 있는 전기장을 생성할 수 있다. 또 다른 구현에서는, 평행 플레이트 전극 구성으로서 근사화될 수 없는 하부 및 상부 전극 구성이 전기적으로 격리된 전하 중성 중간 전극을 이동시킬 수 있는 전기장을 생성할 수 있다. 또 다른 구현에서는, 상부 전극(1202)과 중간 전극(1206) 사이의 상부 갭 또는 하부 전극(1210)과 중간 전극(1206) 사이의 하부 갭이 유전성 유체 또는 가스로 채워질 수 있거나, 상부 갭 및 하부 갭 양자가 유전성 유체 또는 가스로 채워질 수 있다. 상부 갭의 변화에 따른 용량의 변화율은 하부 갭의 변화에 따른 용량의 변화율과 달라서, 상부 전극(1202) 및 하부 전극(1210) 에 걸쳐 전압(V)의 인가시에 중간 전극(1206)이 상부 전극(1202) 또는 하부 전극(1210)을 향해 이동하게 한다. 소정 구현들은 불균일한 전기장 및/또는 소정의 용량 특성들과 관련되는 것으로 설명될 수 있지만, 이 분야의 통상의 기술자는 그러한 구현들의 전기 및 물리적 특성들을 특징화하고 기술하기 위한 다른 방법들이 존재할 수 있고, 포함된 설명들은 한정을 의도하지 않는다는 것을 이해할 것이다.
복합 전극 구성
도 15a는 이동 가능 중간 전극(1506), 상부 전극(1502) 및 일정한 갭(g)에 의해 상부 전극(1502)으로부터 이격된 하부 전극(1510)을 포함하는 아날로그 간섭 변조기(1500)의 단면도의 일례를 도시한다. 완화(또는 비작동) 위치에서, 중간 전극(1506)은 전기적으로 격리되고 갭(g) 내에 위치한다. 중간 전극(1506)은 이 구현에서 0의 순수 전하를 가질 수 있다.
변조기(1500)는 상부 전극(1502)에 대해 측방으로 정렬된 상보형 전극(1524)도 포함한다. 도시된 구현에서, 상보형 전극(1524)은 전기적 접지에 접속되고, 상부 전극(1502)으로부터 전기적으로 격리되며, 따라서 상보형 전극(1524) 및 상부 전극(1502)은 2개의 전기적으로 분리된 전극이다.
그러나, 도 15b에 도시되고 도 32를 참조하여 아래에 더 상세히 설명되는 바와 같이, 상부 전극(1502) 및 상보형 전극(1524)은 "복합" 전극(1526)을 형성하기 위한 교정 절차 동안 전기적으로 접속되도록 구성될 수 있다. 도 15b는 복합 전극(1526)이 형성된 후의 아날로그 간섭 변조기(1500)의 일례를 나타낸다. 본 명세서에서 지칭될 때, "복합 전극"은 전기적으로 접속된 상태에서 복합 전극 내에 포함되는 2개의 전극을 지칭한다. 복합 전극(1526)은 일부 구현들에서 하부 전극(1510)의 표면적(A1)과 동일하거나 실질적으로 동일한 표면적(A2)을 갖는다. 일 구현에서, 상보형 전극(1524)이 복합 전극(1526)을 형성하기 위해 상부 전극(1502)에 전기적으로 접속될 때, 복합 전극(1526)은 평행 플레이트로서 구성되며, 따라서 복합 전극(1526) 및 하부 전극(1510)에 걸쳐 전압을 인가하는 것은 대체로 균일한 전기장을 생성한다. 이러한 균일한 전기장은 정상 IMOD 동작들 동안에 예를 들어 중간 전극(1506)을 다양한 위치들로 이동시켜 다양한 컬러를 반사하게 하는 데 사용될 수 있다. 게다가, 도 26-33을 참조하여 설명되는 작동 및 교정 절차들 동안, 상보형 전극(1524)은 후술하는 바와 같이 중간 전극(1506)의 작동 및 교정을 도울 수 있다.
일부 구현들에서, 상보형 전극(1524)은 중간 전극(1506) 아래에 배치되고, 하부 전극(1510)에 대해 측방으로 정렬될 수 있으며, 따라서 하부 전극(1510)과 상보형 전극(1524)은 복합 전극(1526)을 형성할 수 있다.
상보형 전극(1524)이 전기적 접지에 접속되고 상부 전극(1502)으로부터 전기적으로 격리되는 도 15a를 다시 참조하면, 도 15a에 도시된 전극 구성은 주어진 인가 전압(V)에 대해 중간 전극(1506) 상에 작용하는 상향 전기력을 증가시킬 수 있다. 상보형 전극(1524)은 중간 전극(1506)의 우측 및 좌측 단부들에서 그의 상측(1528)에 양 전하를 유도할 수 있다. 중간 전극(1506)은 순수 전하 중성이고 전기적으로 격리되므로, 하부 전극(1510)은 도 12에 도시된 구성에서보다 중간 전극(1506)의 하측(1530)에 더 적은 양 전하를 유도한다. 결과적으로, 중간 전극(1506) 상에 작용하는 상향 힘의 크기는 상이한 면적들을 갖는 상부 및 하부 전극들을 통해서만 전기장 불균일이 달성되는 도 12에 도시된 구성에 비해 증가된다.
도 16은 도 15a에 도시된 아날로그 간섭 변조기 구성을 등가 회로로서 특성화하는 개략도의 일례를 나타낸다. 이제, 중간 전극(1506) 상에 작용하는 힘들이 도 16을 참조하여 더 상세히 설명된다. 이 구현에서, 하부 전극(1510)의 표면적은 A이고, 상부 전극(1502)의 표면적은 αA이고, 접지된 상보형 전극(1524)의 표면적은 (1-α)A이다. 상부 전극(1502)과 중간 전극(1506) 간의 전위차는 다음 식에 의해 주어진다.
Figure pct00006
하부 전극(1510)과 중간 전극(1506) 간의 전위차는 다음 식에 의해 주어진다.
Figure pct00007
중간 전극(1506) 상에 작용하는 순수 힘은 상향이며(예를 들어, 상부 전극(1502)을 향하며), 다음 식에 의해 주어진다.
Figure pct00008
식 8을 위의 식 4와 비교하면, 도 15a에 도시된 구현에 대응하는 식 8에 나타난 순수 힘의 크기는 도 12에 도시된 구현에서 중간 전극(1206) 상에 작용하는 순수 힘의 크기보다 큰 것이 명백하다.
도 17은 도 12의 구성에서의 중간 전극(1206) 및 도 15a의 구성에서의 중간 전극(1506) 상에 작용하는 순수 상향 힘들의 크기를 상부 전극(1202, 1502)과 중간 전극(1206, 1506) 간의 거리(d2)의 함수로서 로그 스케일로 나타내는 그래프의 일례를 도시한다. 양 구현에서, 상부 전극들(1202, 1502)과 하부 전극들(1210, 1510) 사이에 인가되는 전압(V)은 100 볼트이고, 면적 팩터(α)는 0.25이다. 도 17은 상보형 전극(1524)이 전기적 접지에 접속되고 상부 전극(1502)으로부터 전기적으로 격리되는 도 15a의 구성에서 중간 전극(1506) 상에 작용하는 순수 힘(F)의 크기가 단일 상부 전극(1202) 구성에 대해 중간 전극(1206) 상에 작용하는 순수 힘(F)의 크기보다 크다는 것을 보여주고 있으며, 여기서 d2는 700 nm 미만이다. 따라서, 도 15a에 도시된 전극 구성은 주어진 전압(V)에 대해 중간 전극(1506) 상에 작용하는 상향 전기력을 증가시킬 수 있다.
도 18-20은 전기적으로 격리되고 그리고/또는 복합 전극을 형성하도록 접속될 수 있는 상부 전극과 상보형 전극을 포함하는 다양한 전극 구성들을 도시한다. 도 18은 도 15a에 도시된 상보형 전극(1524) 및 상부 전극(1502)의 평면도의 일례를 나타낸다. 이 구현에서는, 원형 상부 전극(1502)이 링 형상의 상보형 전극(1524)에 전기적으로 접속될 때 링 구성의 복합 전극이 형성될 수 있다. 상보형 전극(1524)은 상부 전극(1502)에 대해 측방으로 정렬된다. 이 구성에서, 상부 전극(1502)은 링 형상의 상보형 전극(1524) 내에 측방으로 배치된다.
본 명세서에서 설명되는 복합 전극들의 구현들은 원형 또는 링 형상으로 한정되지 않는다. 예컨대, 도 19는 전기적으로 격리되고 그리고/또는 정사각형 프레임 형상의 상보형 전극(1924)에 접속된 정사각형 상부 전극(1902)을 포함하는 다른 전극 구성의 일례를 나타낸다. 상부 전극(1902)은 정사각형 상보형 전극(1924) 내에 측방으로 배치된다. 상부 전극(1902)과 상보형 전극(1924)은 전기적으로 접속될 때 하부 전극(1910)의 표면적과 실질적으로 동일한 표면적을 갖는 복합 전극을 형성할 수 있다.
도 20은 상보형 전극(2024)이 상부 전극(2002)에 대해 측방으로 정렬되는 인터록킹 구성의 일례를 나타낸다. 전극들(2002, 2024)은 서로 전기적으로 접속될 때 하부 전극(2010)의 표면적과 동일하거나 실질적으로 동일한 표면적을 갖는 복합 전극을 형성할 수 있다. 이 분야의 기술자는 복합 전극들에 대한 다른 형상들 및 구성들도 가능하다는 것을 이해할 것이다.
전극 상의 전하 배치
전술한 아날로그 간섭 변조기들의 구현들은 불균일한 전기장의 존재시에 중간 전극이 상부 또는 하부 전극을 향해 이동하도록 전기적으로 격리된 전하 중성 중간 전극을 작동시킬 수 있다. 이제, 중간 전극의 이동을 유발한 후에 중간 전극에 전하를 제공하는 방법이 도 21-25를 참조하여 설명된다.
전극의 직접 대전
도 21은 중간 전극(2106), 상부 전극(2102) 및 하부 전극(2110)을 포함하는 아날로그 간섭 변조기(2100)의 단면도의 일례를 나타낸다. 이 구현에서, 상부 전극(2102)은 중간 전극(2106) 및 하부 전극(2110)의 표면적보다 작은 표면적을 갖는다. 중간 전극(2106)은 상부 전극(2102)과 하부 전극(2110) 사이의 불균일한 전기장의 존재하에 작동되기 전에 도시된다. 작동 전에, 중간 전극(2106)은 상부 전극(2102)과 하부 전극(2110) 사이의 갭(g) 내의 제1 위치에 배치된다. 중간 전극(2106)은 도 12를 참조하여 위에서 상세히 설명된 바와 같이 제1 위치에서 전기적으로 격리된다. 작동 전에, 중간 전극(2106)은 순수 중성 전하를 갖는다. 변조기(2100)는 또한 하나 이상의 전기 접촉부, 예를 들어 상부 전극(2102) 상에 배치된 하나 이상의 도전성 포스트(2132)를 포함할 수 있다.
도 22는 도 21의 변조기(2100)의 중간 전극 상에 전하를 제공하기 위한 한 가지 방법(2200)을 나타내는 흐름도의 일례를 도시한다. 방법(2200)은 블록 2202에서 시작되며, 여기서 상부(또는 제1) 전극(2102)과 하부(또는 제2) 전극(2110) 사이에 불균일한 전기장을 생성하기 위해 대전 작동 전압(Vcharge)이 인가된다. 전압(Vcharge)은 일부 구현들에서 100 볼트 미만일 수 있다. 전압(Vcharge)은 다른 구현들에서 약 10 볼트와 약 20 볼트 사이일 수 있다. 일부 예들에서, 전압(Vcharge)은 약 20 볼트 미만이다. 위에서 더 상세히 설명된 바와 같이, 중간 전극(2106)은 상이한 면적들을 갖는 전극들(2102, 2110) 사이의 불균일한 전기장의 영향하에 상부 전극(2102) 또는 하부 전극(2110)을 향해 작동 및 이동될 수 있다.
블록 2204에서, 대전 작동 전압의 인가시에, 중간 전극(2106)은 갭(g) 내에서 제1 또는 제2 전극을 향해 이동한다. 도 22의 설명의 나머지는 상부(제1) 전극과 관련된 프로세스를 설명하지만, 방법(2200)은 인가되는 적절한 극성의 대전 작동 전압을 이용하여 하부 전극을 이용하여 구현될 수도 있다는 것을 이해한다. 중간 전극(2106)이 상부 전극(2102)을 향해 이동하는 구현들에서, 중간 전극(2106)은 불균일한 전기장의 영향하에 상부 전극(2102)을 향해 상향으로 이동한다. 즉, 중간 전극(2106)은 갭(g) 내의 제1 위치로부터 멀어져 상부 전극(2102)에 더 가까운 제2 위치로 이동한다. 블록 2206에서, 중간 전극(2106)은 갭(g) 내의 제2 위치로 이동하고, 상부 전극(2102)에 전기적으로 접속된 도전성 구조(예컨대, 도전성 포스트들(2132))와 접촉한다. 중간 전극(2106)이 갭(g) 내의 제2 위치에 있는 일례가 도 23에 도시되어 있다.
도 23은 중간 전극(2106)이 상부 전극(2102) 상의 도전성 포스트들(2132)과 접촉한 후에 제2 위치에 있는 중간 전극(2106)을 나타내는 변조기(2100)의 단면도의 일례를 도시한다. 중간 전극(2106)은 제2 위치로 이동될 때 도전성 포스트들(2132)과 접촉하며, 중간 전극(2106)은 (도전성 포스트들(2132)을 통해) 상부 전극(2102)에 전기적으로 접속되고, 더 이상 전기적으로 격리되지 않는다.
도 22를 다시 참조하면, 이어서 블록 2208에서, 중간 전극(2106) 상의 전하가 변경된다. 전기 접촉이 이루어진 후에, 중간 전극(2106)은 그의 전하의 방전 또는 "누설"에 의해 도전성 포스트들(2132)을 통해 그의 음 전하의 일부를 잃기 시작한다. 따라서, 중간 전극(2106)은 제2 위치에서 전하 중성이 아니며, 누설이 계속됨에 따라 점점 더 양으로 대전된다. 일부 구현들에서, 도전성 포스트들(2132)은 중간 전극(2106) 상의 전하의 변화율을 줄이기 위한 저항을 제공하는 저항성 포스트들이다. 일부 구현들에서는, 도전성 포스트들(2106)과 접지 사이의 경로에 저항기가 존재한다.
중간 전극(2106)과 상부 전극(2102) 사이의 접촉이 감지될 수 있으며, 따라서 중간 전극(2106)으로부터 전하가 누설되기 시작하는 시점이 측정될 수 있다. 일 구현에서, 블록 2208에서 중간 전극(2106) 상의 전하가 변하기 시작하면, 대전 작동 전압(Vcharge)은 선택된 교정 전압(Vcal)으로 감소된다. 정의되는 교정 전압(Vcal)을 결정하기 위한 방법들이 도 31의 블록 3104를 참조하여 아래에 더 상세히 설명된다.
중간 전극(2106)으로부터 음 전하가 방전되는 속도도 결정될 수 있다. (도 37을 참조하여 더 상세히 설명되는) 일 구현에서, 방전 속도는 중간 전극(2106)과 상부 전극(2102) 간의 도전성 경로의 저항을 증가시킴으로써 감소될 수 있다. 예를 들어, 저항은 도전성 포스트들(2132)을 저항기를 통해 상부 전극(2102)에 접속시킴으로써 증가될 수 있다. 대안으로서, 도전성 포스트들(2132)은 고저항성 물질로 제조될 수 있다.
중간 전극(2106)이 순수 양 전하를 갖게 됨에 따라, 중간 전극(2106) 상에 작용하는 순수 상향 전기력이 감소한다. 중간 전극(2106)은 결국 중간 전극(2106) 상에 작용하는 상향 전기력이 중간 전극(2106) 상에 작용하는 기계적 스프링 힘에 의해 중간 전극(2106) 상에 가해지는 하향 기계적 힘과 더 이상 균형을 맞추지 못할 정도로만 충분한 순수 양 전하를 갖게 된다.
블록 2210에서, 중간 전극(2106)은 도전성 포스트들(2132)과의 접촉을 해제하고, 상부 전극(2102)으로부터 멀어져 갭(g) 내의 제3 위치를 향해 하향 이동한다. 일 구현에서, 중간 전극(2106)은 접촉 해제 후에 도전성 포스트들(2132) 바로 아래의 제3 위치로 이동한다. 본 명세서에서 사용될 때, 도전성 포스트(2132) "바로 아래에" 배치되는 중간 전극(2106)은 도전성 포스트(2132)와 물리적으로 접촉하지 않는다. 일 구현에서, 중간 전극(2106)은 중간 전극(2106)이 도전성 포스트(2132) 바로 아래의 제3 위치로 이동할 때 도전성 포스트들(2132) 아래 약 10 나노미터의 거리까지 이동한다. 중간 전극(2106)은 도전성 포스트들(2132)과의 전기적 접촉을 해제한 후에 전기적으로 격리된다. 제1 위치에서의 순수 중성 중간 전극(2106)과 달리, 중간 전극(2106)은 제3 위치에서 양으로 대전된다.
이어서, 방법(2200)은 블록 2212로 이동하고, 여기서 중간 전극(2106) 상의 전하가 교정된다. 중간 전극(2106) 상의 전하를 교정하기 위한 장치들 및 방법들이 도 39-41을 참조하여 아래에 설명된다.
중간 전극(2106)이 블록 2210에서 제3 위치로 이동할 때, 중간 전극(2106) 상의 양 전하의 양은 중간 전극(2106)을 유지하는 스프링 힘의 세기(예를 들어, 스프링들의 강도)와 관련된다. 스프링 힘이 강할수록, 중간 전극(2106)은 도전성 포스트들(2132)과의 접촉을 더 빨리 해제하며, 따라서 중간 전극(2106)은 더 오래 접속되는 경우보다 적은 양 전하를 갖게 된다. 일 구현에서, 예를 들어, 제1 중간 전극(A)을 지지하는 스프링들은 제2 중간 전극(B)을 지지하는 스프링들보다 상대적으로 더 강하다. 결과적으로, 상대적으로 더 강한 스프링 기계력이 상부 전극(2102)으로부터 멀어지게 제1 중간 전극(A)을 아래로 이동시키도록 작용하기 전에, 제1 중간 전극(A)으로부터 더 적은 음 전하가 누설된다(그리고 결과적으로 제1 중간 전극(A)에 더 적은 양 전하가 제공된다). 이와 달리, 상대적으로 더 약한 스프링들에 의해 제공되는 기계력이 제2 중간 전극(B) 상에 작용하는 상향 전기력을 극복하기 전에, 제2 중간 전극(B)으로부터 더 많은 음 전하가 누설된다(그리고 제2 중간 전극(B)에 더 많은 양 전하가 제공된다).
전극의 유도성 대전
도 24는 전기적으로 격리된 전하 중성 중간 전극 상에 전하를 제공할 수 있는 아날로그 간섭 변조기(2400)의 단면도의 일례를 나타낸다. 변조기(2400)는 도 21에 도시된 변조기(2100)와 유사하며, 중간 전극(2406), 상부 전극(2402) 및 하부 전극(2410)을 포함한다. 이 구현에서, 변조기(2400)는 상부 전극(2402)에 대해 측방으로 정렬된 상보형 전극(2424)을 포함한다. 도 15b에 도시된 복합 전극(1526)과 관련하여 전술한 바와 같이, 상보형 전극(2424) 및 상부 전극(2402)은 전기적으로 접속되어 복합 전극을 형성할 수 있다. 그러나, 도 24에 도시된 구현에서, 상보형 전극(2424)은 상부 전극(2402)으로부터 전기적으로 격리되며, 전기적 접지에 접속된다.
도시된 바와 같이, 중간 전극(2406)은 작동 전에 상부 전극(2402)과 하부 전극(2410) 사이의 갭 내의 제1 위치에 배치된다. 중간 전극(2406)은 제1 위치에서 전기적으로 격리된다. 작동 전에, 중간 전극(2406)은 순수 중성 전하를 갖는다. 변조기(2400)는 하나 이상의 전기 접촉부도 포함할 수 있다. 예를 들어, 하나 이상의 도전성 포스트(2432)가 상보형 전극(2424) 상에 배치된다.
아날로그 변조기(2400)의 구현들은 도 22에 도시된 방법(2200)에 따라 유도를 통해 중간 전극(2406)에 전하를 제공할 수 있다. 예컨대, 상부 또는 제1 전극(2402)과 하부 또는 제2 전극(2410) 사이에 불균일한 전기장을 생성하기 위해 대전 작동 전압(Vcharge)이 인가된다. 블록 2204에서, 중간 전극(2406)은 불균일한 전기장의 영향하에 갭 내에서 상부 전극(2402)을 향해 상향 이동한다. 중간 전극(2406)은 갭 내의 제1 위치로부터 멀어져 상부 전극(2402)에 더 가까운 제2 위치를 향해 이동한다. 블록 2206에서, 중간 전극(2406)은 갭 내의 제2 위치로 이동하고, 상보형 전극(2424) 상의 도전성 포스트들(2432)과 접촉하며, 중간 전극(2406)은 전하를 수신한다.
도 25는 중간 전극(2406)이 상보형 전극(2424) 상의 도전성 포스트들(2432)과 접촉한 후에 제2 위치에 있는 중간 전극(2406)을 나타내는 변조기(2400)의 단면도의 일례를 도시한다. 중간 전극(2406)이 도전성 포스트들(2432)과 접촉할 때, 중간 전극(2406)은 더 이상 전기적으로 격리되지 않으며, 제2 위치에서 (도전성 포스트들(2432)을 통해) 상보형 전극(2424)에 직접 전기적으로 접속된다. 이러한 중간 전극(2406)과 상보형 전극(2424) 간의 접촉은 접지로의 경로를 제공하며, 이는 중간 전극(2406)의 유도성 대전을 제공한다.
도 22의 블록 2208에서, 중간 전극(2406) 상의 전하가 변경된다. 전기적 접촉이 이루어진 후, 중간 전극(2406) 상의 양 전하들은 도전성 포스트들(2432)을 통해 방전(또는 누설)되기 시작한다. 따라서, 중간 전극(2406)은 제2 위치에서 전하 중성이 아니며, 누설이 진행됨에 따라 점점 더 음으로 대전된다. 중간 전극(2406) 상의 전하가 방전되는 속도는 제어될 수 있다. 예를 들어, 도 29를 참조하여 설명되는 일 구현에서, 방전 속도는 상보형 전극(2424) 및 도전성 포스트들(2432)을 접지에 접속시키는 저항기(도 24-25에 도시되지 않음)를 이용하여 감소된다.
블록 2208에서 방전이 시작되면, 대전 작동 전압(Vcharge)은 선택된 교정 전압(Vcal)으로 감소될 수 있다. 방전이 계속되고, 중간 전극(2406)이 순수 음 전하를 가질 때, 상부 전극(2402)과 중간 전극(2406) 사이의 인력이 감소한다. 중간 전극(2406)은 결국 중간 전극(2406) 상에 작용하는 상향 전기력이 갭 내에 중간 전극(2406)을 배치하는 중간 전극(2406) 상에 가해지는 하향 기계적 힘과 더 이상 균형을 맞추지 못할 정도로만 충분한 순수 음 전하를 갖게 된다.
도 22를 다시 참조하면, 도 25에 도시된 바와 같은 접촉 후에, 블록 2210에서, 중간 전극(2406)은 도전성 포스트들(2432)과의 접촉을 해제하고, 상부 전극(2402)으로부터 멀어져 갭 내의 제3 위치로 하향 이동한다. 중간 전극(2406)이 블록 2210에서 릴리스될 때, 중간 전극(2406) 상의 양 전하의 양은 위에서 더 상세히 설명된 바와 같이 중간 전극(2406)을 유지하는 스프링들의 강도와 관련된다.
도전성 포스트들(2432)과의 전기적 접촉을 해제하고 제3 위치로 이동한 후, 중간 전극(2406)은 다시 전기적으로 격리되지만, 이제는 음으로 대전된다. 따라서, 아날로그 간섭 변조기들(2400)의 구현들은 중간 전극에 불균일한 전기장을 인가하고 중간 전극을 대전된 플레이트, 예컨대 전술한 구현들에서 상보형 전극(2424)과 전기적으로 접촉하도록 이동시킴으로써 전기적으로 격리된 전하 중성 중간 전극을 유도적으로 대전할 수 있다.
이어서, 방법(2200)은 블록 2212로 이동하고, 여기서 중간 전극(2406) 상의 전하가 교정된다. 중간 전극(2406) 상의 전하를 교정하기 위한 장치들 및 방법들이 도 31-33을 참조하여 아래에 설명된다.
이 분야의 통상의 기술자는 본 명세서에서 설명되는 작동 및 대전 방법들 및 장치들이 전압을 인가받는 상부 전극(2402)으로 한정되지 않는다는 것을 이해할 것이다. 예를 들어, 일 구현에서, 상부 전극(2402)은 접지에 접속되며, 대전 작동 전압이 상보형 전극(2424)과 하부 전극(2410) 사이에 인가되어 불균일한 전기장을 생성한다. 도전성 포스트들(2432)은 그러한 구현에서 상부 전극(2402) 상에 배치될 수 있다.
전극 상의 전하의 교정
전극을 작동시키고 전극 상에 전하를 제공하는 것에 더하여, 본 명세서에서 설명되는 아날로그 간섭 변조기들의 구현들은 전극 상에 배치된 전하를 교정할 수 있다. 간섭 변조기들의 어레이 내의 중간 전극들 상의 전하의 교정은 중간 전극들을 유지하는 기계 구조들의 스프링 상수들의 변동을 보상할 수 있다. 아래에 상세히 설명되는 교정 절차 후에, 양 또는 음으로 대전되고 전기적으로 격리된 중간 전극들의 시리즈가 그들 각각의 상부 및 하부 전극들 사이에 매달린다. 각각의 교정된 중간 전극 상의 양(또는 음) 전하는 그 전극을 유지하는 특정 스프링들의 강도의 함수이다.
예를 들어, 본 명세서에서 설명되는 교정 절차들 후에, 비교적 약한 스프링들에 의해 지지되는 중간 전극(E1)은 비교적 더 강한 스프링들에 의해 지지되는 중간 전극(E2)보다 적은 양 전하를 가질 것이다. 하나의 전역 전압, 예를 들어 1 볼트가 E1 및 E2와 관련된 상부 및 하부 전극들에 걸쳐 인가되는 경우, 인가된 전기장으로부터 E1 및 E2 상에 작용하는 결과적인 전기력은 E1 및 E2 상의 전하에 비례할 것이다. 더 많은 양 전하를 갖는 E2 상에 작용하는 힘은 더 적은 양 전하를 갖는 E1 상에 작용하는 힘보다 클 것이다. E2 상에 작용하는 더 큰 전기력은 그의 더 강한 스프링들에 의해 가해지는 더 큰 기계력을 보상할 수 있으며, 따라서 E2는 동일한 인가 전압으로 E1과 동일한 위치로 이동할 것이다. 따라서, 중간 전극들의 시리즈 상의 전하의 교정은 전극들의 관련된 스프링 상수들의 변동들에도 불구하고 전극들을 동일 위치로 이동시키는 데 사용될 수 있다.
전극의 유도성 대전 및 교정
이제, 도 26-33을 참조하여, 전하 중성이고 전기적으로 격리된 전극을 유도적으로 대전하고 교정하기 위한 시스템들 및 방법들이 상세히 설명된다.
도 26은 전하 중성이고 전기적으로 격리된 전극 상에 전하를 제공할 수 있고 그 후 전극 상에 작용하는 특정한 기계적 스프링 힘을 해결하기 위해 그 전하를 교정할 수 있는 아날로그 간섭 변조기(2600)의 단면도의 일례를 나타낸다. 변조기(2600)는 하부 또는 제2 전극(2610)으로부터 갭(g)에 의해 분리된 상부 또는 제1 전극(2602)을 포함한다. 변조기(2600)는 또한 상부 전극(2602)에 대해 측방으로 정렬된 상보형 전극(2624)을 포함한다. 변조기(2600)는 또한 상보형 전극(2624)이 상부 전극(2602)에 전기적으로 접속되게 하는 스위치들(2638)을 포함하거나, 대안으로서 스위치들(2638)은 상보형 전극(2624)이 접지에 접속되게 한다.
변조기(2600)는 또한 갭(g) 내에 매달리고 스프링들(2634)에 의해 지지되는 중간 전극(2606)을 포함한다. 중간 전극(2606)이 도 26에 도시된 바와 같이 갭(g) 내에 제1 위치에 매달릴 때, 중간 전극(2606)은 전기적으로 격리된다. 중간 전극은 또한 제1 위치에서 전하 중성이다. 중간 전극(2606)이 제1 위치로부터 멀어지게 이동할 때, 스프링들(2634)에 의해 중간 전극(2606)에 가해지는 기계적 복원력들은 중간 전극(2606)을 제1 위치로 복원하도록 작용한다.
상보형 전극(2624)은 하나 이상의 도전성 포스트(2632)를 포함한다. 일부 구현들에서, 상보형 전극(2624)은 처음에 상부 전극(2602)으로부터 전기적으로 격리되며, 저항 컴포넌트(2636)를 통해 전기 접지에 접속된다. 일 구현에서, 저항 컴포넌트(2636)는 도전성 포스트들(2632)을 통한 전류 흐름을 줄이도록 구성되는 저항기이다. 도 32와 관련하여 후술하는 바와 같이, 상보형 전극(2624)과 상부 전극(2602)은 복합 전극(2626)을 형성하도록 전기적으로 접속될 수 있다.
도 27은 상부 전극(2602)과 하부 전극(2610) 사이의 갭(g) 내의 제1 위치에 배치된 중간 전극(2606)을 나타내는 변조기(2600)의 단면도의 일례를 나타낸다. 도 15 및 24와 관련하여 위에서 더 상세히 설명된 바와 같이, 상부 전극(2602)과 하부 전극(2610)에 대전 작동 전압(Vcharge)을 인가하여 그들 사이에 불균일한 전기장을 생성한다.
도 28은 중간 전극(2606)이 불균일한 전기장의 영향하에 작동된 후의 변조기(2600)의 단면도의 일례를 나타낸다. 이 도면에서, 중간 전극(2606)은 제1 위치로부터 멀어져서 상부 전극(2602)을 향해 위로 이동하였지만, 중간 전극(2606)은 여전히 전기적으로 격리되고, 음 전하들과 동일한 수의 양 전하들을 갖는 전하 중성이다.
도 29는 중간 전극(2606)이 상보형 전극(2624) 상의 도전성 포스트들(2632)과 전기적으로 접촉한 후의 제2 위치에서의 중간 전극(2606)의 단면도의 일례를 나타낸다. 도 25와 관련하여 더 상세히 설명된 바와 같이, 중간 전극(2606) 상의 음 전하들은 상부 전극(2602) 상의 양 전하들에 의해 속박되는 반면, 중간 전극(2606)과 상보형 전극(2624) 간의 전기적 접촉은 중간 전극(2606) 상의 양 전하들을 중성화한다. 스프링들(2634)에 의해 중간 전극(2606) 상에 가해지는 기계적 복원력은 상부 전극(2602)과 하부 전극(2610) 간의 전기장에 의해 가해지는 전기력보다 작다. 중간 전극(2606) 상의 양 전하가 도전성 포스트들(2632)과의 전기적 접촉을 통해 계속 방전됨에 따라, 중간 전극(2606)은 점점 음으로 대전된다. 본 명세서에서 위의 설명 및 다른 곳에서의 설명은 하부 전극(2610)과 상부 전극(2602) 사이에 양의 전압이 인가되는 것으로 가정한다. 그러나, 인가되는 대전 작동 전압이 음인 구현들에서는, 중간 전극(2606) 상의 음 전하가 방전될 것이며, 따라서 중간 전극(2606)은 점점 양으로 대전될 것이다.
중간 전극 상의 전하의 방전 속도가 제어될 수 있다. 예를 들어, 일 구현에서, 방전 속도는 도전성 포스트들(2632) 및 상보형 전극(2624)을 저항기(2636)를 통해 전기 접지에 접속함으로써 제어 및/또는 감소된다. 방전 속도는 특정 또는 원하는 저항을 갖는 저항기(2636)를 선택하여 도전성 포스트들(2632) 및 상보형 전극(2624)을 전기 접지에 접속함으로써 감소될 수 있다.
도 30은 복원 스프링 힘이 중간 전극(2606) 상에 작용하는 전기력을 극복하고 중간 전극(2606)을 상부 전극(2602)으로부터 멀어지게 아래로 당긴 후의 제3 위치에서의 중간 전극(2606)의 단면도의 일례를 나타낸다. 중간 전극은 다시 전기적으로 격리되지만, 이제는 음으로 대전된다. 중간 전극(2606) 상의 음 전하는 중간 전극(2606)을 지지하는 스프링들(2634)의 강도와 관련된다.
중간 전극(2606)을 작동시키고 전하를 제공하는 방법들이 도 26-30과 관련하여 설명되었다. 이제, 중간 전극(2606) 상에 배치된 전하를 교정하기 위한 방법들 및 시스템들이 도 31-33과 관련하여 설명된다.
도 31은 예를 들어 도 26의 변조기(2600)를 이용하여 중간 전극 상의 전하의 양을 교정하기 위한 한 가지 방법(3100)을 나타내는 흐름도의 일례를 도시한다. 아래의 개시에서는, 도 32 및 33에 도시된 특징들도 참조되는데, 그 이유는 이들이 도 31에 도시된 방법(3100) 내의 블록들과 관련되기 때문이다. 방법(3100)은 블록 3102에서 시작하고, 여기서 상보형 전극(2624)이 상부 전극(2602)에 전기적으로 접속되어 복합 전극(2626)을 형성한다. 일 구현에서, 전극들(2624, 2602)은 전극들(2624, 2602)을 격리하거나 접속하도록 구성되는 하나 이상의 스위치(2638)에 의해 서로 접속된다. 일부 양태들에서, 각각의 변조기(2600)는 픽셀당 2개의 스위치를 포함한다. 다른 구현에서, 스위치들(2638)은 복합 전극(2626)을 형성하도록 닫히거나 복합 전극(2626)을 2개의 개별 전극, 즉 상보형 전극(2624) 및 상부 전극(2602)으로 분리하도록 열릴 수 있는 트랜지스터들을 포함한다.
도 32는 상보형 전극(2624) 및 상부 전극(2602)을 포함하는 복합 전극(2626)을 형성하도록 하나 이상의 스위치(2638)가 닫힌 후의 변조기(2600)의 단면도의 일례를 나타낸다. 상보형 전극(2624)은 상부 전극(2602)으로부터 더 이상 전기적으로 격리되지 않고, 저항기(2636)를 통해 상부 전극에 전기적으로 접속된다. 이제, 상보형 전극(2624) 및 상부 전극(2602) 양자는 접지로부터 전기적으로 격리된다. 하나 이상의 스위치(2638)가 닫힌 후에, 복합 전극(2626)의 표면적은 하부 전극(2610)의 표면적과 동일하거나 실질적으로 동일하다.
도 26-30과 관련하여 전술한 바와 같이, 중간 전극(2606)이 작동되고 대전된 후에, 중간 전극(2606)은 복합 전극(2626)과 하부 전극(2610) 간의 갭 내의 제3 위치에 유지된다. 일부 구현들에서, 교정 절차의 개시시의 중간 전극(2606)의 위치는 "제1" 위치로서 참조된다. 이 분야의 통상의 기술자는 중간 전극(2606)이 대전 절차의 종료시에 "제3" 위치에 또는 교정 절차의 개시시에 "제1" 위치에 있는 것으로 설명되는 것에 관계없이 갭(g) 내의 동일 위치에 있다는 것을 이해할 것이다.
도 31을 다시 참조하면, 블록 3104에서, 선택된 교정 전압(Vcal)과 동일한 전압이 하부 전극(2610)과 복합 전극(2626) 사이에 인가된다. 중간 전극(2606) 상에 전하를 배치하기 위한 전술한 대전 작동 전압과 달리, 하부 전극(2610)과 복합 전극(2626) 사이에 인가되는 전압(Vcal)은 전극들(2610, 2626) 사이에 균일한 또는 실질적으로 균일한 전기장을 생성하도록 구성된다. 전압(Vcal)은 일부 양태들에서 100 볼트 미만일 수 있다. 전압(Vcal)은 다른 양태들에서 약 10 볼트와 약 20 볼트 사이일 수 있다. 일부 예들에서, 전압(Vcal)은 약 20 볼트 미만이다. 제어기가 교정 절차 동안 복합 전극(2626) 및 하부 전극(2610)에 걸쳐 교정 전압을 인가하도록 구성될 수 있다.
일부 구현들에서, 교정 전압(Vcal)은 변조기(2600) 또는 변조기들(2600)의 어레이의 제조시에 결정된다. 예를 들어, 변조기들의 어레이 내의 각각의 변조기(2600) 내의 중간 전극(2606) 상에 작용하는 기계적 스프링 힘을 먼저 추정하여, 어레이 내의 기계적 스프링 힘들의 범위를 결정할 수 있다. 이어서, 변조기들(2600)의 어레이의 예상 수명 동안의 노화, 환경 요인들 및 기타 영향들로 인한 기계적 스프링 힘들의 예상되는 변화들을 해결하기 위해 이 범위를 조절할 수 있다. 이어서, 이러한 정보에 기초하여, 어레이 내의 각각의 변조기(2600)에 인가될 단일 교정 전압(Vcal)이 선택될 수 있다. 일 구현에서, Vcal은 어레이 내의 가장 강한 기계적 스프링 힘을 갖는 변조기(2600)가 복합 전극(2626)과 전기적으로 접촉하는 제2 위치를 향해 위로 이동하는 것을 보증하도록 선택된다. 다른 구현에서, Vcal은 어레이 내의 각각의 변조기(2600) 내의 중간 전극(2606)이 어레이에 걸쳐 각각의 변조기(2600)에 Vcal이 인가될 때 복합 전극(2626)과 전기적으로 접촉하는 제2 위치를 향해 위로 이동하는 것을 보증하도록 선택된다.
이어서, 방법은 블록 3106으로 이동하여, 여기서 음으로 대전된 중간 전극은 하부 및 복합 전극들(2610, 2626) 사이의 균일한 전기장의 영향하에 복합 전극(2626)을 향해 위로 이동한다. 따라서, 전기장에 의해 중간 전극(2606)에 가해지는 전기력은 중간 전극(2606)이 제1 위치로부터 멀어져서 복합 전극(2626)과 전기적으로 접촉하는 제2 위치를 향해 이동하게 한다. 이어서, 블록 3108에서, 중간 전극(2606)은 제2 위치에 도달하고, 상보형 전극(2624) 상의 하나 이상의 도전성 포스트(2632)를 통해 복합 전극(2626)에 전기적으로 접속된다.
도 32는 제2 위치에 있고 도전성 포스트들(2632)과 접촉하는 중간 전극(2606)을 나타내는 변조기(2600)의 단면도의 일례를 도시한다. 중간 전극(2606)은 더 이상 전기적으로 격리되지 않고, 제2 위치에서 (도전성 포스트들(2632)을 통해) 복합 전극(2626)에 직접 전기적으로 접속된다.
도 31을 다시 참조하면, 블록 3110에서, 중간 전극(2606) 상의 전하가 변경된다. 중간 전극(2606)이 복합 전극(2626)과 접촉한 후, 중간 전극(2606)이 스프링들(2634)의 기계적 복원력에 더 이상 저항할 수 없을 때까지 중간 전극(2606) 상의 전하의 일부가 중성화된다.
이어서, 블록 3112로 이동하며, 중간 전극(2606)은 기계 복원력이 제3 전극(2606)에 가해지는 전기력을 초과할 때 갭(g) 내의 제3 위치로 하향 이동한다. 교정 절차에서의 제3 위치, 예를 들어 도 31의 블록 3112에서 참조되는 제3 위치는 작동 절차에서의 제3 위치, 예를 들어 도 22의 블록 2210에서 참조되는 제3 위치와 동일할 수 있지만, 반드시 그런 것은 아니다. 도 33은 중간 전극이 도전성 포스트들(2632)로부터 분리되고 제3 위치로 이동하여 중간 전극(2606) 상에 남은 음 전하들이 격리된 후의 변조기(2600)의 단면도의 일례를 나타낸다. 중간 전극(2606)이 블록 3112에서 릴리스될 때, 중간 전극(2606) 상의 음 전하의 양은 중간 전극(2606)을 유지하는 스프링들의 강도와 관련된다. 변조기(2600)는 이제 교정되고, 동작 범위 또는 동작 준비 상태에 있다.
도 33a는 교정된 전하(Qc)를 갖는 중간 전극(2606)을 구비하는 아날로그 간섭 변조기의 단면 개략도의 일례를 나타낸다. 교정된 전하(Qc)는 중간 전극(2606)을 지지하는 스프링들(2634)의 강도와 관련된다. 일 구현에서, 중간 전극(2606) 상의 교정된 전하(Qc)와 중간 전극(2606)을 지지하는 스프링들(2634)의 강도 사이의 관계는 다음 식으로 나타난다.
Figure pct00009
여기서, ε0는 진공의 유전율을 나타내고, A는 중간 전극(2606)의 표면적을 나타내고, Vc는 상부 전극(2602)을 대전하는 전압을 나타내고, xc는 정지(완화) 위치에서의 중간 전극(2606)의 위치로부터 도전성 포스트(2632)까지의 거리를 나타내고, K는 스프링 상수를 나타내고, d0는 갭(g)의 거리를 나타낸다.
도 31을 참조하여 설명된 교정 절차는 어레이 내의 변조기들(2600)의 시리즈에 적용될 수 있다. 도 31에 설명된 교정 절차 후에, 음으로 대전되고 전기적으로 격리된 복수의 중간 전극이 그들 각각의 상부 및 하부 전극들 사이에 매달린다. 각각의 교정된 중간 전극 상의 음 전하는 그 전극을 유지하는 특정 스프링들의 강도의 함수이다. 각각의 교정된 중간 전극 상의 음 전하의 양은 또한 중간 전극들 모두에 걸쳐 동일 전압이 인가될 때 중간 전극들 각각이 동일 위치로 신뢰성 있게 그리고 일관되게 이동하는 것을 보증하기에 충분하다. 따라서, 중간 전극들의 시리즈 상의 전하의 교정은 그들과 관련된 스프링 상수들의 변동에도 불구하고 전극들을 동일 위치로 이동시키는 데 사용될 수 있다.
본 명세서에서 설명되는 교정 절차는 디스플레이 내의 변조기들(2600)을 교정하는 데 사용될 수 있다. 일 구현에서, 디스플레이는 어레이 내에 배열된 복수의 아날로그 간섭 변조기(2600)를 포함한다. 구동 전압들이 어레이 내의 복수의 변조기(2600)에 걸쳐 인가되어, 디스플레이를 동작시키고 데이터를 표시할 수 있다. 디스플레이의 동작은 이미지 및/또는 데이터를 표시하기 위해 어레이 내의 변조기들의 중간 전극(2606)을 상부 전극들(2602)과 하부 전극들(2610)에 의해 형성된 갭 내의 다양한 위치들로 작동 또는 이동시키는 것을 포함할 수 있다. 갭 내의 중간 전극(2606)의 위치는 아날로그 간섭 변조기 픽셀의 반사 및 표시되는 컬러를 결정하는 것을 돕는다. 디스플레이의 동작 및 구동은 복수의 변조기(2600) 각각 내의 중간 전극(2606)으로부터 전하가 방전되게 할 수 있다. 일부 구현들에서, 중간 전극들(2606)은 디스플레이가 동작된 후에 전하 중성이 된다. 다른 구현들에서는, 디스플레이가 동작된 후에 중간 전극(2606) 상에 전하가 남는다. 일부 구현들에서는, 중간 전극(2606)으로부터 모든 전하를 방전시키기 위해 중간 전극(2606)이 도전성 포스트(2632)와 접촉하게 하도록 방전 전압(dissipation voltage)이 인가될 수 있다.
이어서, 도 26-33을 참조하여 설명된 작동, 대전 및 교정 절차들은 디스플레이 상에 데이터를 표시하기 위한 준비로서 다시 수행될 수 있다. 변조기들(2600) 각각 내의 상보형 전극(2624)은 상부 전극(2602)으로부터 전기적으로 격리되고, 전기적 접지에 접속될 수 있다. 이어서, 도 27-28을 참조하여 전술한 작동 절차가 수행될 수 있다. 예를 들어, 변조기들(2600) 각각의 상부 전극(2602) 및 하부 전극(2610)에 걸쳐 대전 작동 전압을 인가하여 상부 전극(2602)과 하부 전극(2610) 사이의 갭 내에 불균일한 전기장을 생성할 수 있다. 대전 작동 전압은 구동 전압과 동일하거나 실질적으로 동일할 수 있다. 도 27-28을 참조하여 설명된 바와 같이, 변조기들(2600) 각각 내의 중간 전극(2606)은 상부 전극(2602)을 향해 작동 또는 이동될 것이다.
이어서, 도 29-30을 참조하여 설명된 대전 절차가 어레이 내의 모든 변조기들(2600)에 걸쳐 수행될 수 있다. 이어서, 도 31-33을 참조하여 설명된 바와 같이, 각각의 변조기(2600)에 대해 교정 절차를 수행하여, 각각의 중간 전극(2606) 상에 배치된 전하를 교정할 수 있다. 일 구현에서, 교정 절차 동안에 중간 전극들(2606)을 작동시키는 데 사용되는 교정 전압은 대전 작동 전압보다 작다. 교정 절차 후에, 변조기들(2600)은 동작 준비 상태에 있게 된다. 구동 전압들이 다시 복수의 변조기에 걸쳐 인가되어, 디스플레이를 동작시켜 데이터를 표시하고, 사이클을 다시 시작할 수 있다. 일부 구현들에서, 사이클이 다시 시작되기 전에, 전술한 바와 같이, 중간 전극(2606)을 전하 중성 상태로 복귀시키기 위해 방전 전압이 인가될 수 있거나, 중간 전극(2606)은 더 대전된 후에 교정될 때 소정의 전하를 계속 유지할 수 있다. 전술한 동작(예컨대, 데이터 표시), 작동, 대전 및 교정 사이클은 유용할 경우에 반복되고, 장치의 수명 동안 중간 전극(2606)으로부터의 전하 누설률의 변동을 해결하기 위해 조정될 수 있다는 것을 이해할 것이다.
전극의 스위치 없는 대전 및 교정
이제, 스위치의 사용 없이 전기적으로 격리된 전하 중성 전극을 대전 및 교정하기 위한 시스템들 및 방법들이 도 34-41을 참조하여 상세히 설명된다.
도 34는 전기적으로 격리된 전하 중성 전극 상에 전하를 제공한 후에 전극 상에 작용하는 특정한 기계적 스프링 힘을 해결하기 위하여 그 전하를 스위치 없는 교정 구조를 이용하여 교정할 수 있는 아날로그 간섭 변조기(3400)의 단면도의 일례를 나타낸다. 변조기(3400)는 갭(g)에 의해 하부 또는 제2 전극(3410)으로부터 분리된 상부 또는 제1 전극(3402)을 포함한다. 변조기(3400)는 갭(g) 내에 매달리고 스프링들(3434)에 의해 지지되는 중간 전극(3406)도 포함한다.
중간 전극(3406)이 도 34에 도시된 바와 같이 갭(g) 내에 제1 위치에 매달릴 때, 중간 전극(3406)은 전기적으로 격리된다. 중간 전극은 또한 제1 위치에서 전하 중성이다. 중간 전극(3406)이 제1 위치로부터 멀어지게 이동할 때, 스프링들(3434)에 의해 중간 전극(3406)에 인가되는 기계적 복원력들이 중간 전극(3406)을 제1 위치로 복원하도록 작용한다.
변조기(3400)는 상부 전극(3402)에 대해 측방으로 정렬된 하나 이상의 도전성 접촉부 또는 포스트(3432)를 포함한다. 도전성 포스트들(3432)은 저항성 컴포넌트(3436)를 통해 상부 전극(3402)에 전기적으로 접속된다. 일 구현에서, 저항성 컴포넌트(3436)는 도전성 포스트들(3432)을 통한 전류 흐름을 줄이도록 구성된 저항기이다.
도 35는 작동 및 교정 절차의 개시시의 변조기(3400)의 단면도의 일례를 나타낸다. 도 35에 도시된 바와 같이, 중간 전극(3406)은 처음에 전하 중성이다. (도 12 및 23을 참조하여 위에서 더 상세히 설명된 바와 같이) 대전 작동 전압(Vcharge)이 인가되어, 상부 전극(3402)과 하부 전극(3410) 사이에 불균일한 전기장을 생성한다. 이 구현에서, 인가된 전압(Vcharge)의 결과로서, (서로에 대해) 상부 전극(3402)은 양 전하를 가지며, 하부 전극(3410)은 음 전하를 갖는다.
도 36은 도 23을 참조하여 더 상세히 설명된 바와 같이 불균일한 전기장의 영향하에 중간 전극(3406)이 작동된 후의 변조기(3400)의 단면도의 일례를 나타낸다. 이 도면에서, 중간 전극(3406)은 제1 위치로부터 멀어져서 상부 전극(3402)을 향해 위로 이동하였지만, 여전히 전기적으로 격리되고 전하 중성이다.
도 37은 중간 전극(3406)이 도전성 포스트들(3432)과 접촉한 후의 제2 위치에 있는 중간 전극(3406)을 나타내는 변조기(3400)의 단면도의 일례를 도시한다. 도 23을 참조하여 더 상세히 설명된 바와 같이, 중간 전극(3406)과 도전성 포스트들(3432) 간의 전기적 접촉은 중간 전극(3406) 상의 음 전하들을 줄인다. 일 구현에서, 중간 전극(3406) 상의 전하를 변경하는 속도는 도전성 포스트들(3432)을 저항기(3436)를 통해 상부 전극(3402)에 접속시킴으로써 제어 및/또는 감소된다. 예를 들어, 중간 전극(3406) 상의 전하를 변경하는 속도는 도전성 포스트들(3432)과 상부 전극(3402)을 접속하기 위한 특정 또는 원하는 저항을 갖는 저항기(3436)를 선택함으로써 제어 및/또는 감소될 수 있다.
따라서, 중간 전극(3406)은 도전성 포스트들(3432)과의 직접 접촉에 의해 대전된다. 스프링들(3434)에 의해 중간 전극(3406) 상에 가해지는 기계적 복원 스프링 힘은 상부 및 하부 전극들(3402, 3410) 사이의 전기장에 의해 가해지는 전기력보다 작다. 중간 전극(3406) 상의 음 전하가 도전성 포스트들(3432)과의 전기적 접촉을 통해 방전됨에 따라, 중간 전극(3406)은 점점 양으로 대전된다.
도 38은 복원 스프링 힘이 중간 전극(3406) 상에 작용하는 전기력을 극복하고 중간 전극(3406)을 도전성 포스트들(3432)로부터 멀어지게 아래로 당긴 후의 제3 위치에 있는 중간 전극(3406)을 나타내는 변조기(3400)의 단면도의 일례를 도시한다. 중간 전극은 다시 전기적으로 격리되지만, 이제는 양으로 대전된다. 중간 전극(3406) 상의 양 전하는 중간 전극(3406)을 지지하는 스프링들(3434)의 강도와 관련된다. 중간 전극(3406)은 이제 전하를 가지며, 전하를 교정하기 위한 교정 절차 전에 갭(g) 내의 전기적으로 격리된 위치로 돌아간다.
중간 전극(3406)을 작동시키고 중간 전극 상에 전하를 직접 제공하기 위한 방법들이 도 34-38을 참조하여 설명되었다. 이제, 중간 전극(3406) 상에 배치된 전하를 교정하기 위한 방법들 및 시스템들이 도 39-41을 참조하여 설명된다.
도 34-38을 참조하여 전술한 작동 및 대전 절차의 종료시에, 중간 전극(3406)은 상부 전극(3402)과 하부 전극(3410) 사이의 갭(g) 내의 제3 위치에 유지된다. 일부 구현들에서, 교정 절차의 개시시의 중간 전극(3406)의 위치는 "제1" 위치로서 참조된다.
도 39는 도 34의 변조기(3400)를 이용하여 중간 전극 상의 전하를 교정하기 위한 한 가지 방법(3900)을 나타내는 흐름도의 일례를 도시한다. 방법(3900)은 블록 3902에서 시작되며, 여기서 상부 전극(3402)과 하부 전극 사이에 인가되는 전압이 선택된 교정 전압(Vcal)으로 설정된다. Vcal을 결정하기 위한 방법들이 도 31의 블록 3104와 관련하여 위에서 더 상세히 설명되었다. 일부 구현들에서는, 인가되는 전압의 극성이 바뀌며, 따라서 음 전압이 상부 전극(3402)에 인가되고, 양 전압이 하부 전극(3410)에 인가된다.
블록 3904에서, 양으로 대전된 중간 전극은 상부 및 하부 전극들(3402, 3410) 사이의 전기장의 영향하에 도전성 포스트들(3432)을 향해 위로 이동한다. 전기장에 의해 중간 전극(3406)에 인가되는 힘은 중간 전극(3406)이 제1 위치로부터 멀어져서 도전성 포스트들(3432)과 전기적으로 접촉하는 제2 위치를 향해 이동하게 한다.
이어서, 블록 3906에서, 중간 전극(3406)은 제2 위치로 이동하고, 도전성 포스트들(3432)에 전기적으로 접속된다.
도 40은 제2 위치에 있고 도전성 포스트들(3432)과 접촉하는 중간 전극(3406)을 나타내는 변조기(3400)의 단면도의 일례를 나타낸다. 중간 전극(3406)은 더 이상 전기적으로 격리되지 않으며, 제2 위치에서 도전성 포스트들(3432)에 직접 전기적으로 접속된다.
이어서, 블록 3908에서, 중간 전극(3406) 상의 전하가 변경된다. 도 40에 도시된 바와 같이, 중간 전극(3406)과 도전성 포스트들(3432) 사이에 전기적 접촉이 형성된 후, 중간 전극(3406)이 더 이상 스프링들(3434)의 기계적 복원력에 저항하지 못할 때까지, 중간 전극(3406) 상의 양 전하 중 일부가 방전된다.
이어서, 블록 3910으로 이동하여, 중간 전극(3406)은 기계적 복원 스프링 힘이 중간 전극(3406)에 인가되는 힘을 초과할 때 갭(g) 내의 제3 위치로 하향 이동한다. 도 41은 중간 전극이 도전성 포스트들(3432)로부터 분리되고 제3 위치로 이동하여 중간 전극(3406) 상에 남은 양 전하들이 격리된 후의 변조기(3400)의 단면도의 일례를 나타낸다. 중간 전극(3406)이 블록 3910에서 릴리스될 때, 중간 전극(3406) 상의 양 전하의 양은 위에서 더 상세히 설명된 바와 같이 중간 전극(3406)을 유지하는 스프링들의 강도와 관련된다. 변조기(3400)는 이제 교정되고, 동작 범위 또는 동작 준비 상태에 있다.
도 39를 참조하여 설명된 교정 절차는 어레이 내의 변조기들(3400)의 시리즈에 인가될 수 있다. 도 39에서 설명된 교정 절차 후에, 양으로 대전되고 전기적으로 격리된 중간 전극들의 시리즈가 그들 각각의 상부 및 하부 전극들 사이에 매달린다. 각각의 교정된 중간 전극 상의 양 전하는 그 전극을 유지하는 특정 스프링들의 강도의 함수이다. 중간 전극들의 시리즈 상의 전하의 교정은 그들과 관련된 스프링 상수들의 변동에도 불구하고 주어진 인가 전압에 대해 전극들을 동일 위치로 이동시키는 데 사용될 수 있다.
도 39를 참조하여 설명된 교정 절차는 디스플레이 내의 변조기들(3400)을 교정하는 데 사용될 수 있다. 일 구현에서, 디스플레이는 어레이 내에 배열된 복수의 아날로그 간섭 변조기(3400)를 포함한다. 구동 전압들이 어레이 내의 복수의 변조기(3400)에 걸쳐 인가되어, 디스플레이를 동작시키고 데이터를 표시할 수 있다. 디스플레이의 동작은 이미지 및/또는 데이터를 표시하기 위해 어레이 내의 변조기들의 중간 전극(3406)을 상부 전극들(3402)과 하부 전극들(3410)에 의해 형성된 갭 내의 다양한 위치들로 작동 또는 이동시키는 것을 포함할 수 있다. 디스플레이의 동작은 복수의 변조기(3400) 각각 내의 중간 전극(3406)으로부터 전하가 방전되게 할 수 있다. 일부 구현들에서, 디스플레이의 동작은 복수의 변조기(3400) 각각 내의 중간 전극(3406)으로부터 전하가 방전되어 중간 전극들(3406)이 교정되지 않은 전하를 갖게 할 수 있다. 일부 구현들에서, 전하는 방전 전압을 인가함으로써 중간 전극(3406)으로부터 고의로 방전된다.
이어서, 도 34-41을 참조하여 설명된 작동, 대전 및 교정 절차들은 디스플레이 상에 데이터를 표시하기 위한 준비로서 다시 수행될 수 있다. 먼저, 도 35-36을 참조하여 전술한 작동 절차가 수행될 수 있다. 예컨대, 대전 작동 전압이 변조기들(3400) 각각의 상부 전극(3402) 및 하부 전극(3410)에 걸쳐 인가되어, 상부 전극(3402)과 하부 전극(3410) 사이의 갭 내에 불균일한 전기장을 생성할 수 있다. 대전 작동 전압은 구동 전압과 동일하거나 실질적으로 동일할 수 있다. 도 35-36을 참조하여 설명된 바와 같이, 변조기들(3400) 각각 내의 중간 전극들(3406)은 상부 전극(3402)을 향해 작동 또는 이동될 것이다.
이어서, 도 37-38을 참조하여 설명된 대전 절차가 어레이 내의 모든 변조기들(3400)에 걸쳐 수행될 수 있다. 이어서, 도 39-41을 참조하여 설명된 바와 같이, 교정 절차가 각각의 변조기(3400)에 대해 수행되어, 각각의 중간 전극(3406) 상에 배치된 전하를 교정할 수 있다. 일 구현에서, 교정 절차 동안에 중간 전극(3406)을 작동시키는 데 사용되는 교정 전압은 대전 작동 전압보다 작다. 교정 절차 후에, 변조기들(3400)은 동작 준비 상태에 있다. 구동 전압들이 다시 복수의 변조기에 걸쳐 인가되어, 디스플레이를 동작시켜 데이터를 표시하고, 다시 사이클을 시작할 수 있다. 일부 구현들에서, 다수의 구동 전압이 임의의 주어진 변조기에 대해 인가되어, 변조기가 다시 한 번 작동, 대전 및 교정되기 전에 상이한 시점들에서 상이한 컬러들을 표시한다. 일부 구현들에서, 사이클이 다시 시작되기 전에, 전술한 바와 같이, 중간 전극(3406)을 전하 중성 상태로 복귀시키기 위해 방전 전압이 인가될 수 있거나, 중간 전극(3406)은 더 대전된 후에 교정될 때 소정 전하를 여전히 유지할 수 있다. 전술한, 동작(예를 들어, 데이터 표시), 작동, 대전 및 교정 사이클은 유용한 경우에 반복되고, 장치의 수명 동안 중간 전극들(3406)로부터의 전하 누설률의 변동을 해결하도록 조정될 수 있다.
도 34에 도시된 "스위치 없는" 구현에서 중간 전극 상의 전하를 교정하기 위해 중간 전극을 작동시키기 위한 전압은 도 26에 도시된 구현에서 교정을 위해 중간 전극을 작동시키기 위한 전압보다 클 것이다. 도 34에 도시된 "스위치 없는" 구현에서의 상부 전극(3402)은 도 32에 도시된 구현에서의 복합 전극(2626)보다 작은 표면적을 갖는다. 도 17을 참조하여 전술한 바와 같이, 도 34에 도시된 "스위치 없는" 구현에서 더 작은 상부 전극(3402)에 의해 가해지는 힘은 일반적으로 도 32에 도시된 구현에서 복합 전극(2626)에 의해 가해지는 힘보다 작으며, 따라서 일반적으로 더 높은 전압이 중간 전극을 작동시키는 데 사용될 것이다. 또한, 도 34에 도시된 구현에서 상부 전극(3402)과 하부 전극(3410) 사이의 용량은 상수가 아니라, 중간 전극(3406)의 위치의 함수라는 것을 이해할 것이다. 결과적으로, 상부 전극(3402)과 하부 전극(3410) 사이의 용량은 중간 전극(3406)의 변위의 비선형 함수이다. 비선형성의 정도는 상부 전극(3402), 중간 전극(3406) 및 하부 전극(3410) 사이의 면적의 차이에 의해 지배된다.
본 명세서에서 설명되는 작동, 대전 및 교정 방법들 및 시스템들은 전기 기계 시스템 장치들 또는 MEMS 장치들로 한정되지 않는다. 본 명세서에서 설명되는 방법들 및 시스템들은 전극들의 작동, 전극들 상의 전하 배치 또는 전하 교정을 수반하는 임의의 디스플레이 장치, 예를 들어 OLED 또는 LCD 장치들에서 사용될 수 있다. 본 명세서에서 설명되는 장치들, 방법들 및 시스템들은 비틀림 미러들 또는 전극들을 갖는 장치들에서도 구현될 수 있다. 예를 들어, 불균일한 전기장의 영향하에 회전 이동하도록, 전기적으로 격리된 전하 중성 비틀림 미러 또는 전극이 작동될 수 있다.
도 42a 및 42b는 복수의 간섭 변조기를 포함하는 디스플레이 장치(40)를 도시하는 시스템 블록도들의 예들을 나타낸다. 디스플레이 장치(40)는 예를 들어 스마트폰 또는 셀룰러 또는 이동 전화일 수 있다. 그러나, 디스플레이 장치(40)의 동일 컴포넌트들 또는 그의 사소한 변형들은 또한 다양한 타입의 디스플레이 장치들, 예를 들어 텔레비전, 전자 판독기, 핸드헬드 장치 및 휴대용 미디어 플레이어를 예시한다.
디스플레이 장치(40)는 하우징(41), 디스플레이(30), 안테나(43), 스피커(45), 입력 장치(48) 및 마이크(46)를 포함한다. 하우징(41)은 사출 성형 및 진공 형성을 포함하는 임의의 다양한 제조 프로세스로부터 형성될 수 있다. 게다가, 하우징(41)은 플라스틱, 금속, 유리, 고무 및 세라믹 또는 이들의 조합을 포함하지만 이에 한정되지 않는 임의의 다양한 재료로 형성될 수 있다. 하우징(41)은 상이한 컬러의 또는 상이한 로고, 사진 또는 심벌을 포함하는 다른 제거 가능 부분들로 교체될 수 있는 교체 가능 부분들(도시되지 않음)을 포함할 수 있다.
디스플레이(30)는 본 명세서에서 설명되는 바와 같은 쌍안정 또는 아날로그 디스플레이를 포함하는 임의의 다양한 디스플레이일 수 있다. 디스플레이(30)는 또한 평판 디스플레이, 예를 들어 플라즈마, EL, OLED, STN LCD 또는 TFT LCD, 또는 비평판 디스플레이, 예를 들어 CRT 또는 다른 튜브 장치를 포함하도록 구성될 수 있다. 게다가, 디스플레이(30)는 본 명세서에서 설명되는 바와 같은 간섭 변조기 디스플레이를 포함할 수 있다. 예를 들어, 디스플레이는 본 명세서에서 설명되는 방법들을 이용하여 동작, 작동, 대전 및/또는 교정되는 아날로그 간섭 변조기 픽셀들을 포함할 수 있다.
디스플레이 장치(40)의 컴포넌트들은 도 42b에 개략적으로 도시된다. 디스플레이 장치(40)는 하우징(41)을 포함하며, 그 안에 적어도 부분적으로 봉입된 추가적인 컴포넌트들을 포함할 수 있다. 예를 들어, 디스플레이 장치(40)는 송수신기(47)에 결합되는 안테나(43)를 포함하는 네트워크 인터페이스(27)를 포함한다. 송수신기(47)는 컨디셔닝 하드웨어(52)에 접속되는 프로세서(21)에 접속된다. 컨디셔닝 하드웨어(52)는 신호를 조절(예를 들어, 필터링)하도록 구성될 수 있다. 컨디셔닝 하드웨어(52)는 스피커(45) 및 마이크(46)에 접속된다. 프로세서(21)는 또한 입력 장치(48) 및 구동기 제어기(29)에 접속된다. 구동기 제어기(29)는 프레임 버퍼(28)에 그리고 어레이 구동기(22)에 결합되며, 이 어레이 구동기는 또한 디스플레이 어레이(30)에 결합된다. 전원(50)은 특정 디스플레이 장치(40) 설계에 의해 요구되는 모든 컴포넌트들에 대한 전력을 공급할 수 있다.
네트워크 인터페이스(27)는 안테나(43) 및 송수신기(47)를 포함하며, 따라서 디스플레이 장치(40)는 네트워크를 통해 하나 이상의 장치와 통신할 수 있다. 네트워크 인터페이스(27)는 또한 예를 들어 프로세서(21)의 데이터 처리 요구들을 완화하기 위하여 소정의 처리 능력들을 가질 수 있다. 안테나(43)는 신호들을 송신 및 수신할 수 있다. 일부 구현들에서, 안테나(43)는 IEEE 16.11(a), (b) 또는 (g)를 포함하는 IEEE 16.11 표준 또는 IEEE 802.11a, b, g 또는 n을 포함하는 IEEE 802.11 표준에 따라 RF 신호들을 송신 및 수신한다. 일부 다른 구현들에서, 안테나(43)는 블루투스 표준에 따라 RF 신호들을 송신 및 수신한다. 셀룰러 전화의 경우, 안테나(43)는 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), GSM(Global System for Mobile communications), GSM/GPRS(General Packet Radio Service), EDGE(Enhanced Data GSM Environment), TETRA(Terrestrial Trunked Radio), W-CDMA(Wideband-CDMA), EV-DO(Evolution Data Optimized), lxEV-DO, EV-DO Rev A, EV-DO Rev B, HSPA(High Speed Packet Access), HSDPA(High Speed Downlink Packet Access), HSUPA(High Speed Uplink Packet Access), HSPA+(Evolved High Speed Packet Access), LTE(Long Term Evolution), AMPS, 또는 무선 네트워크, 예를 들어 3G 또는 4G 기술을 이용하는 시스템 내에서 통신하는 데 사용되는 다른 공지 신호들을 수신하도록 설계된다. 송수신기(47)는 안테나(43)로부터 수신되는 신호들을 사전 처리할 수 있으며, 따라서 이들은 프로세서(21)에 의해 수신되고 그에 의해 더 조작될 수 있다. 송수신기(47)는 또한 프로세서(21)로부터 수신되는 신호들을 처리할 수 있으며, 따라서 이들은 디스플레이 장치(40)로부터 안테나(43)를 통해 전송될 수 있다.
일부 구현들에서, 송수신기(47)는 수신기로 대체될 수 있다. 게다가, 일부 구현들에서, 네트워크 인터페이스(27)는 프로세서(21)로 전송될 이미지 데이터를 저장 또는 생성할 수 있는 이미지 소스로 대체될 수 있다. 프로세서(21)는 디스플레이 장치(40)의 전체 동작을 제어할 수 있다. 프로세서(21)는 데이터, 예를 들어 네트워크 인터페이스(27) 또는 이미지 소스로부터 압축된 이미지 데이터를 수신하고, 데이터를 원시 이미지 데이터로 또는 원시 이미지 데이터로 쉽게 처리되는 포맷으로 처리한다. 프로세서(21)는 처리된 데이터를 구동기 제어기(29)로 또는 저장을 위해 프레임 버퍼(28)로 전송할 수 있다. 원시 데이터는 통상적으로 이미지 내의 각각의 위치에서의 이미지 특성을 식별하는 정보를 지칭한다. 예를 들어, 그러한 이미지 특성들은 컬러, 채도 및 계조 레벨을 포함할 수 있다.
프로세서(21)는 디스플레이 장치(40)의 동작을 제어하기 위한 마이크로컨트롤러, CPU 또는 논리 유닛을 포함할 수 있다. 컨디셔닝 하드웨어(52)는 신호들을 스피커(45)로 전송하고 마이크(46)로부터 신호들을 수신하기 위한 증폭기들 및 필터들을 포함할 수 있다. 컨디셔닝 하드웨어(52)는 디스플레이 장치(40) 내의 개별 컴포넌트들일 수 있거나, 프로세서(21) 또는 다른 컴포넌트들 내에 포함될 수 있다.
구동기 제어기(29)는 프로세서(21)에 의해 생성된 원시 이미지 데이터를 프로세서(21)로부터 직접 또는 프레임 버퍼(28)로부터 취할 수 있으며, 어레이 구동기(22)로의 고속 전송을 위해 원시 이미지 데이터를 적절히 리포맷할 수 있다. 일부 구현들에서, 구동기 제어기(29)는 디스플레이 어레이(30)를 가로지르는 스캐닝에 적합한 시간 순서를 갖도록 원시 이미지 데이터를 래스터와 같은 포맷을 갖는 데이터 흐름으로 리포맷할 수 있다. 이어서, 구동기 제어기(29)는 포맷된 정보를 어레이 구동기(22)로 전송한다. 구동기 제어기(29), 예를 들어 LCD 제어기가 종종 독립형 집적 회로(IC)로서 시스템 프로세서(21)와 관련되지만, 그러한 제어기들은 다양한 방식으로 구현될 수 있다. 예를 들어, 제어기들은 하드웨어로서 프로세서(21) 내에 내장되거나, 소프트웨어로서 프로세서(21) 내에 내장되거나, 어레이 구동기(22)와 함께 하드웨어 내에 완전히 통합될 수 있다.
어레이 구동기(22)는 구동기 제어기(29)로부터 포맷된 정보를 수신할 수 있고, 비디오 데이터를, 디스플레이의 픽셀들의 x-y 행렬로부터 나오는 수백, 때로는 수천(또는 그 이상) 개의 리드들에 초당 여러 번 인가되는 파형들의 병렬 세트로 리포맷할 수 있다.
일부 구현들에서, 구동기 제어기(29), 어레이 구동기(22) 및 디스플레이 어레이(30)는 본 명세서에서 설명되는 임의 타입의 디스플레이에 적합하다. 예를 들어, 구동기 제어기(29)는 전통적인 디스플레이 제어기 또는 쌍안정 디스플레이 제어기(예를 들어, IMOD 제어기)일 수 있다. 게다가, 어레이 구동기(22)는 전통적인 구동기 또는 쌍안정 디스플레이 구동기(예를 들어, IMOD 디스플레이 구동기)일 수 있다. 더욱이, 디스플레이 어레이(30)는 전통적인 디스플레이 어레이 또는 쌍안정 디스플레이 어레이(예를 들어, IMOD들의 어레이를 포함하는 디스플레이)일 수 있다. 일부 구현들에서, 구동기 제어기(29)는 어레이 구동기(22)와 통합될 수 있다. 그러한 구현은 셀룰러 전화, 시계 및 다른 소면적 디스플레이를 포함하는 고도로 통합된 시스템들에서 유용할 수 있다.
일부 구현들에서, 입력 장치(48)는 예를 들어 사용자가 디스플레이 장치(40)의 동작을 제어하는 것을 가능하게 하도록 구성될 수 있다. 입력 장치(48)는 QWERTY 키보드 또는 전화 키패드와 같은 키패드, 버튼, 스위치, 로커, 터지 감지 스크린, 또는 압력 또는 열 감지 멤브레인을 포함할 수 있다. 마이크(46)는 디스플레이 장치(40)에 대한 입력 장치로서 구성될 수 있다. 일부 구현들에서, 마이크(46)를 통한 음성 명령들이 디스플레이 장치(40)의 동작을 제어하는 데 사용될 수 있다.
전원(50)은 다양한 에너지 저장 장치를 포함할 수 있다. 예를 들어, 전원(50)은 재충전 가능 배터리, 니켈-카드뮴 배터리 또는 리튬-이온 배터리일 수 있다. 재충전 가능 배터리를 사용하는 구현들에서, 재충전 가능 배터리는 예를 들어 벽 소켓 또는 광기전력 장치 또는 어레이로부터 오는 전력을 이용하여 충전될 수 있다. 대안으로서, 재충전 가능 배터리는 무선으로 충전될 수 있다. 전원(50)은 또한 재생 가능 에너지 소스, 커패시터, 또는 플라스틱 태양 전지 또는 태양 전지 페인트를 포함하는 태양 전지일 수 있다. 전원(50)은 또한 벽 콘센트로부터 전력을 수신하도록 구성될 수 있다.
일부 구현들에서, 전자 디스플레이 시스템 내의 여러 곳에 위치할 수 있는 제어 프로그램 가능성이 구동기 제어기(29) 내에 존재한다. 일부 다른 구현들에서, 제어 프로그램 가능성은 어레이 구동기(22) 내에 존재한다. 전술한 최적화는 임의 수의 하드웨어 및/또는 소프트웨어 컴포넌트들에서 그리고 다양한 구성으로 구현될 수 있다.
본 명세서에 개시되는 구현들과 관련하여 설명되는 다양한 예시적인 논리들, 논리 블록들, 모듈들, 회로들 및 알고리즘 단계들은 전자 하드웨어, 컴퓨터 소프트웨어 또는 이 둘의 조합으로서 구현될 수 있다. 하드웨어와 소프트웨어의 교환 가능성은 기능과 관련하여 일반적으로 설명되었으며, 전술한 다양한 예시적인 컴포넌트들, 블록들, 모듈들, 회로들 및 단계들에서 예시되었다. 그러한 기능이 하드웨어로 구현되는지 또는 소프트웨어로 구현되는지는 특정 응용 및 전체 시스템에 부과되는 설계 제한들에 의존한다.
본 명세서에 개시되는 양태들과 관련하여 설명되는 다양한 예시적인 논리들, 논리 블록들, 모듈들 및 회로들을 구현하는 데 사용되는 하드웨어 및 데이터 처리 장치는 본 명세서에서 설명되는 기능들을 수행하도록 설계된 범용 단일 또는 다중 칩 프로세서, 디지털 신호 프로세서(DSP), 주문형 집적 회로(ASIC), 필드 프로그래머블 게이트 어레이(FPGA) 또는 다른 프로그래머블 논리 장치, 개별 게이트 또는 트랜지스터 논리, 개별 하드웨어 컴포넌트들, 또는 이들의 임의 조합을 이용하여 구현되거나 수행될 수 있다. 범용 프로세서는 마이크로프로세서, 또는 임의의 전통적인 프로세서, 제어기, 마이크로컨트롤러, 또는 상태 기계일 수 있다. 프로세서는 또한 컴퓨팅 장치들의 조합, 예를 들어 DSP와 마이크로프로세서의 조합, 복수의 마이크로프로세서, DSP 코어와 관련된 하나 이상의 마이크로프로세서, 또는 임의의 다른 그러한 구성으로서 구현될 수 있다. 일부 구현들에서, 특정 단계들 및 방법들은 주어진 기능에 고유한 회로에 의해 수행될 수 있다.
하나 이상의 양태에서, 설명되는 기능들은 하드웨어, 디지털 전자 회로, 컴퓨터 소프트웨어, 본 명세서에 개시되는 구조들 및 이들의 구조적 균등물들을 포함하는 펌웨어, 또는 이들의 임의 조합으로 구현될 수 있다. 본 명세서에서 설명되는 본 발명의 구현들은 또한 하나 이상의 컴퓨터 프로그램, 즉 데이터 처리 장치에 의한 실행을 위해 또는 그의 동작을 제어하기 위해 컴퓨터 저장 매체 상에 인코딩된 컴퓨터 프로그램 명령어들의 하나 이상의 모듈로서 구현될 수 있다.
본 명세서에서 설명되는 구현들에 대한 다양한 변경들이 이 분야의 기술자들에게 자명할 수 있으며, 본 명세서에서 정의되는 일반 원리들은 본 발명의 사상 및 범위로부터 벗어나지 않고 다른 구현들에 적용될 수 있다. 따라서, 청구범위는 본 명세서에 설명되는 구현들로 한정되는 것을 의도하는 것이 아니라, 본 명세서에 개시되는 본 발명, 원리들 및 새로운 특징들에 따르는 가장 넓은 범위를 부여받아야 한다. "예시적인"이라는 단어는 본 명세서에서 "일례, 보기 또는 예시로서 사용된다"는 것을 의미하기 위해서만 사용된다. 본 명세서에서 "예시적인" 것으로 설명되는 임의의 구현은 반드시 다른 가능성들 또는 구현들보다 바람직하거나 유리한 것으로서 해석되어야 하는 것은 아니다. 게다가, 이 분야의 통상의 기술자는 "상부" 및 "하부"라는 용어가 때로는 도면들의 설명의 편의를 위해 사용되고, 적절히 배향된 페이지 상에서 도면의 배향에 대응하는 상대적 위치들을 지시하며, 구현되는 바와 같은 IMOD의 적절한 배향을 반영하지 않을 수 있다는 것을 쉽게 인식할 것이다.
개별 구현들과 관련하여 본 명세서에서 설명되는 소정 특징들은 단일 구현에서 결합하여 구현될 수도 있다. 역으로, 단일 구현과 관련하여 설명되는 다양한 특징들은 다수의 구현에서 개별적으로 또는 임의의 적절한 부분 조합으로 구현될 수도 있다. 더욱이, 특징들은 소정 조합들에서 작용하는 것으로 그리고 심지어 초기에 그 자체로 청구되는 것으로 위에서 설명될 수 있지만, 청구되는 조합으로부터의 하나 이상의 특징들은 일부 예들에서 조합으로부터 제외될 수 있으며, 청구되는 조합은 부분 조합 또는 부분 조합의 변형과 관련될 수 있다.
유사하게, 동작들은 도면들에서 특정 순서로 도시되지만, 이것은 그러한 동작들이 도시된 특정 순서로 또는 순차적으로 수행되거나, 바람직한 결과들을 달성하기 위해 모든 도시된 동작들이 수행되는 것을 요구하는 것으로 이해되지 않아야 한다. 또한, 도면들은 하나 이상의 예시적인 프로세스를 흐름도의 형태로 개략 도시할 수 있다. 그러나, 도시되지 않은 다른 동작들이 개략적으로 도시되는 예시적인 프로세스들에 포함될 수 있다. 예를 들어, 하나 이상의 추가적인 동작들이 임의의 도시된 동작 전에, 후에, 동시에 또는 그 사이에 수행될 수 있다. 소정 상황들에서는, 멀티태스킹 및 병렬 처리가 유리할 수 있다. 더욱이, 전술한 구현들 내의 다양한 시스템 컴포넌트들의 분리는 모든 구현들에서 그러한 분리를 필요로 하는 것으로 이해되지 않아야 하며, 설명되는 프로그램 컴포넌트들 및 시스템들은 일반적으로 단일 소프트웨어 제품 내에 함께 통합되거나, 다수의 소프트웨어 제품 내에 패키징될 수 있다는 것을 이해해야 한다. 게다가, 아래의 청구항들의 범위 내에는 다른 구현들이 존재한다. 일부 예들에서, 청구항들에 기재된 액션들은 상이한 순서로 수행될 수 있으며, 여전히 바람직한 결과들을 달성할 수 있다.

Claims (33)

  1. 디스플레이 내의 아날로그 간섭 변조기를 교정하는 방법으로서,
    제1 전극 및 제2 전극에 걸쳐 교정 전압을 인가하여, 상기 제1 전극과 상기 제2 전극 사이의 갭 내에 전기장을 생성하여, 상기 갭 내에 배치된 제3 전극을 상기 제1 전극을 향해 전기적으로 격리된 제1 위치로부터 전기적으로 접속된 제2 위치로 이동시키는 단계 - 상기 제3 전극은 기계적 복원력을 받음 -; 및
    상기 제3 전극이 상기 제2 위치에 있을 때, 상기 제3 전극을 상기 제1 전극에 전기적으로 접속된 하나 이상의 도전성 포스트에 전기적으로 접속하여, 상기 제3 전극이 전기적으로 격리된 제3 위치로 이동하도록 상기 제3 전극 상의 상기 기계적 복원력이 상기 제3 전극 상의 전기장 힘을 초과할 때까지 상기 제3 전극 상의 전하를 변화시키는 단계 - 상기 제3 위치는 상기 제2 위치보다 상기 제1 전극으로부터 더 멀리 떨어짐 -
    를 포함하는 방법.
  2. 제1항에 있어서,
    상기 제1 전극은 상부 전극 및 상기 상부 전극에 대해 측방으로 정렬된 상보형 전극을 포함하고,
    상기 방법은 복합 전극을 형성하기 위해 상기 상보형 전극을 상기 상부 전극에 전기적으로 접속하는 단계를 더 포함하고,
    상기 교정 전압을 인가하는 단계는, 상기 복합 전극 및 상기 제2 전극에 걸쳐 교정 전압을 인가하는 단계를 포함하는 방법.
  3. 제2항에 있어서,
    상기 상보형 전극을 상기 상부 전극에 전기적으로 접속하는 단계는, 상기 상보형 전극을 상기 상부 전극에 접속하기 위해 하나 이상의 스위치를 닫는 단계를 포함하는 방법.
  4. 제2항에 있어서,
    상기 복합 전극 및 상기 제2 전극은 실질적으로 동일한 표면적을 가지며, 상기 복합 전극과 상기 제2 전극 사이에 생성되는 상기 전기장은 균일한 방법.
  5. 제2항에 있어서,
    상기 상보형 전극은 상기 상부 전극에 전기적으로 접속되기 전에 접지되는 방법.
  6. 제2항에 있어서,
    상기 전하를 변화시키는 단계는, 상기 제3 전극이 상기 제2 위치에 있을 때 상기 제3 전극 상의 전하를 상기 하나 이상의 도전성 포스트를 통해 방전시키는 단계를 포함하는 방법.
  7. 제2항에 있어서,
    상기 디스플레이 내의 상기 아날로그 간섭 변조기의 어레이 내에 배열된 복수의 상기 아날로그 간섭 변조기를 교정하는 단계를 더 포함하는 방법.
  8. 제7항에 있어서,
    상기 어레이 내의 상기 복수의 아날로그 간섭 변조기에 걸쳐 방전 전압을 인가하여, 상기 어레이 내의 상기 복수의 아날로그 간섭 변조기 각각 내의 상기 제3 전극으로부터 전하를 방전시켜, 상기 제3 전극을 전하 중성이 되게 하는 단계를 더 포함하는 방법.
  9. 제8항에 있어서,
    상기 상부 전극으로부터 상기 상보형 전극을 전기적으로 격리시키는 단계, 상기 복수의 아날로그 간섭 변조기 각각에서 상기 상보형 전극을 접지에 접속하는 단계, 및 상기 복수의 아날로그 간섭 변조기 각각의 상기 상부 전극 및 상기 제2 전극에 걸쳐 대전 작동 전압(charging actuation voltage)을 인가하는 단계를 더 포함하는 방법.
  10. 제1항에 있어서,
    상기 제3 전극 상의 상기 전하를 변화시키는 단계는, 상기 제3 전극이 상기 제2 위치에 있을 때 상기 제3 전극 상의 전하를 상기 하나 이상의 도전성 포스트를 통해 방전시키는 단계를 포함하고, 상기 하나 이상의 도전성 포스트는 상기 하나 이상의 도전성 포스트를 통한 전류 흐름을 줄이도록 구성된 저항성 컴포넌트를 통해 상기 제1 전극에 전기적으로 접속되는 방법.
  11. 제1항에 있어서,
    상기 제2 전극은 상기 제1 전극보다 큰 표면적을 가지며, 상기 제1 전극과 상기 제2 전극 사이에 생성되는 상기 전기장은 불균일한 방법.
  12. 제1항에 있어서,
    상기 디스플레이 내의 상기 아날로그 간섭 변조기의 어레이 내에 배열된 복수의 상기 아날로그 간섭 변조기를 교정하는 단계를 더 포함하는 방법.
  13. 제12항에 있어서,
    상기 어레이 내의 상기 복수의 아날로그 간섭 변조기에 걸쳐 방전 전압을 인가하여, 상기 어레이 내의 상기 복수의 아날로그 간섭 변조기 각각 내의 상기 제3 전극으로부터 전하를 방전시켜, 상기 제3 전극을 전하 중성이 되게 하는 단계를 더 포함하는 방법.
  14. 제12항에 있어서,
    상기 복수의 아날로그 간섭 변조기 각각의 상기 제1 전극 및 상기 제2 전극 에 걸쳐 대전 작동 전압을 인가하여, 상기 제1 전극과 상기 제2 전극 사이의 갭 내에 불균일한 전기장을 생성하는 단계를 더 포함하고, 상기 교정 전압은 상기 대전 작동 전압보다 작은 방법.
  15. 광을 변조하기 위한 장치로서,
    디스플레이 요소를 포함하고,
    상기 디스플레이 요소는
    제1 전극;
    갭에 의해 상기 제1 전극으로부터 이격된 제2 전극 - 상기 제1 전극 및 상기 제2 전극은 작동 절차 동안 상기 제1 전극 및 상기 제2 전극에 걸쳐 작동 전압이 인가될 때 그들 사이에 불균일한 전기장을 생성하도록 구성됨 -;
    상기 제1 전극에 대해 측방으로 정렬된 상보형 전극 - 상기 상보형 전극은 상기 작동 절차 동안 상기 제1 전극으로부터 전기적으로 격리되고, 교정 절차 동안 상기 제1 전극에 전기적으로 접속되어 복합 전극을 형성하도록 구성되며, 상기 복합 전극 및 상기 제2 전극은 상기 교정 절차 동안 상기 복합 전극 및 상기 제2 전극에 걸쳐 교정 전압이 인가될 때 그들 사이에 균일한 전기장을 생성하도록 구성됨 -;
    상기 상보형 전극 상에 배치된 적어도 하나의 전기 접촉부; 및
    상기 제1 전극과 상기 제2 전극 사이에 배치된 이동 가능 제3 전극을 포함하고,
    상기 제3 전극은 상기 갭 내에서 전기적으로 격리된 제1 위치, 상기 적어도 하나의 전기 접촉부와 전기적으로 통하는 제2 위치 및 전기적으로 격리된 제3 위치 사이에서 이동하도록 구성되고,
    상기 전기 접촉부는 상기 제3 전극이 상기 제2 위치에 있을 때 상기 제3 전극 상의 전하를 변화시키도록 구성되며, 상기 제3 전극은 상기 제3 전극 상의 전하가 변한 후에 상기 제3 위치로 이동하도록 구성되는 장치.
  16. 제15항에 있어서,
    상기 적어도 하나의 전기 접촉부는 상기 상보형 전극에 전기적으로 접속된 하나 이상의 도전성 포스트를 포함하는 장치.
  17. 제15항에 있어서,
    상기 제3 전극은 상기 작동 절차 동안에 상기 불균일한 전기장에 응답하여 상기 제2 위치로 이동하도록 구성되는 장치.
  18. 제15항에 있어서,
    상기 제3 전극은 상기 교정 절차 동안에 상기 균일한 전기장에 응답하여 상기 제2 위치로 이동하도록 구성되는 장치.
  19. 제15항에 있어서,
    상기 제3 전극은 상기 작동 절차 동안에 상기 제1 위치로부터 상기 제2 위치로 그리고 상기 제2 위치로부터 상기 제3 위치로 이동하도록 구성되는 장치.
  20. 제15항에 있어서,
    상기 제3 전극은 상기 교정 절차 동안에 상기 제3 위치로부터 상기 제2 위치로 그리고 상기 제2 위치로부터 상기 제3 위치로 이동하도록 구성되는 장치.
  21. 제15항에 있어서,
    상기 제3 전극이 상기 제1 위치에 있을 때 상기 제3 전극은 순수 중성 전하(net neutral charge)를 갖도록 구성되는 장치.
  22. 제15항에 있어서,
    상기 상보형 전극은 상기 작동 절차 동안에 상기 제1 전극으로부터 전기적으로 격리될 때 전기적 접지에 접속되고, 상기 상보형 전극은 상기 교정 절차 동안에 스위치를 통해 상기 제1 전극에 전기적으로 접속되는 장치.
  23. 제15항에 있어서,
    복수의 상기 디스플레이 요소를 포함하는 디스플레이;
    상기 디스플레이와 통신하도록 구성되는 프로세서 - 상기 프로세서는 이미지 데이터를 처리하도록 구성됨 -; 및
    상기 프로세스와 통신하도록 구성되는 메모리 장치
    를 더 포함하는 장치.
  24. 제23항에 있어서,
    적어도 하나의 신호를 상기 디스플레이로 전송하도록 구성되는 구동기 회로를 더 포함하는 장치.
  25. 제24항에 있어서,
    상기 이미지 데이터의 적어도 일부를 상기 구동기 회로로 전송하도록 구성되는 제어기를 더 포함하는 장치.
  26. 제25항에 있어서,
    상기 제어기는 상기 교정 절차 동안에 상기 복합 전극 및 상기 제2 전극에 걸쳐 상기 교정 전압을 인가하도록 구성되는 장치.
  27. 제23항에 있어서,
    상기 이미지 데이터를 상기 프로세서로 전송하도록 구성되는 이미지 소스 모듈을 더 포함하는 장치.
  28. 제27항에 있어서,
    상기 이미지 소스 모듈은 수신기, 송수신기 및 송신기 중 적어도 하나를 포함하는 장치.
  29. 제23항에 있어서,
    입력 데이터를 수신하고 상기 입력 데이터를 상기 프로세서로 전송하도록 구성되는 입력 장치를 더 포함하는 장치.
  30. 광을 변조하기 위한 장치로서,
    디스플레이 요소를 포함하고,
    상기 디스플레이 요소는
    불균일한 전기장을 생성하기 위한 수단;
    균일한 전기장을 생성하기 위한 수단;
    사이에 갭을 형성하는 제1 전극과 제2 전극 사이에 배치된 이동 가능 전극 - 상기 이동 가능 전극은 상기 갭 내에서 전기적으로 격리된 제1 위치, 제2 위치 및 전기적으로 격리된 제3 위치 사이에서 이동하도록 구성됨 -; 및
    상기 이동 가능 전극이 상기 제2 위치에 있을 때 상기 이동 가능 전극 상의 전하를 변화시키기 위한 수단
    을 포함하는 장치.
  31. 제30항에 있어서,
    상기 불균일한 전기장을 생성하기 위한 수단은 상기 제1 전극 및 상기 제2 전극을 포함하고, 상기 제1 전극 및 상기 제2 전극은 상이한 표면적을 갖는 장치.
  32. 제30항에 있어서,
    상기 균일한 전기장을 생성하기 위한 수단은 상기 제1 전극 및 상기 제2 전극을 포함하고, 상기 제1 전극은 상부 전극을 포함하고, 상기 상부 전극은 상기 상부 전극에 대해 측방으로 정렬된 상보형 전극에 전기적으로 접속되는 장치.
  33. 제30항에 있어서,
    상기 전하를 변화시키기 위한 수단은 적어도 하나의 전기 접촉부를 포함하는 장치.
KR1020137006578A 2010-08-17 2011-08-15 간섭 디스플레이 장치에서의 전하 중성 전극의 작동 및 교정 KR20130091763A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US37456910P 2010-08-17 2010-08-17
US61/374,569 2010-08-17
PCT/US2011/047790 WO2012024238A1 (en) 2010-08-17 2011-08-15 Actuation and calibration of a charge neutral electrode in an interferometric display device

Publications (1)

Publication Number Publication Date
KR20130091763A true KR20130091763A (ko) 2013-08-19

Family

ID=44504293

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137006578A KR20130091763A (ko) 2010-08-17 2011-08-15 간섭 디스플레이 장치에서의 전하 중성 전극의 작동 및 교정

Country Status (7)

Country Link
US (1) US8797632B2 (ko)
EP (1) EP2606485A1 (ko)
JP (1) JP2013544370A (ko)
KR (1) KR20130091763A (ko)
CN (1) CN103109315A (ko)
TW (1) TW201214002A (ko)
WO (1) WO2012024238A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7990604B2 (en) * 2009-06-15 2011-08-02 Qualcomm Mems Technologies, Inc. Analog interferometric modulator
US9035934B2 (en) * 2012-05-02 2015-05-19 Qualcomm Mems Technologies, Inc. Voltage biased pull analog interferometric modulator with charge injection control
US9305497B2 (en) 2012-08-31 2016-04-05 Qualcomm Mems Technologies, Inc. Systems, devices, and methods for driving an analog interferometric modulator
JP5987573B2 (ja) * 2012-09-12 2016-09-07 セイコーエプソン株式会社 光学モジュール、電子機器、及び駆動方法
US20140267443A1 (en) * 2013-03-14 2014-09-18 Qualcomm Mems Technologies, Inc. Electromechanical systems device with segmented electrodes
US20160091708A1 (en) * 2014-09-30 2016-03-31 Sharp Kabushiki Kaisha Reflective display device
DE102019206758A1 (de) * 2019-05-10 2020-11-12 Robert Bosch Gmbh Spiegeleinrichtung für eine Interferometereinrichtung, Interferometereinrichtung und Verfahren zum Herstellen einer Spiegeleinrichtung

Family Cites Families (325)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2590906A (en) 1946-11-22 1952-04-01 Farrand Optical Co Inc Reflection interference filter
US2677714A (en) 1951-09-21 1954-05-04 Alois Vogt Dr Optical-electrical conversion device comprising a light-permeable metal electrode
US3247392A (en) 1961-05-17 1966-04-19 Optical Coating Laboratory Inc Optical coating and assembly used as a band pass interference filter reflecting in the ultraviolet and infrared
US3728030A (en) 1970-06-22 1973-04-17 Cary Instruments Polarization interferometer
US3679313A (en) 1970-10-23 1972-07-25 Bell Telephone Labor Inc Dispersive element for optical pulse compression
JPS4946974A (ko) 1972-09-11 1974-05-07
US3886310A (en) 1973-08-22 1975-05-27 Westinghouse Electric Corp Electrostatically deflectable light valve with improved diffraction properties
NL8001281A (nl) 1980-03-04 1981-10-01 Philips Nv Weergeefinrichting.
DE3109653A1 (de) 1980-03-31 1982-01-28 Jenoptik Jena Gmbh, Ddr 6900 Jena "resonanzabsorber"
US4421381A (en) 1980-04-04 1983-12-20 Yokogawa Hokushin Electric Corp. Mechanical vibrating element
US4441791A (en) 1980-09-02 1984-04-10 Texas Instruments Incorporated Deformable mirror light modulator
US4497974A (en) 1982-11-22 1985-02-05 Exxon Research & Engineering Co. Realization of a thin film solar cell with a detached reflector
US4498953A (en) 1983-07-27 1985-02-12 At&T Bell Laboratories Etching techniques
US5096279A (en) 1984-08-31 1992-03-17 Texas Instruments Incorporated Spatial light modulator and method
US4560435A (en) 1984-10-01 1985-12-24 International Business Machines Corporation Composite back-etch/lift-off stencil for proximity effect minimization
US4655554A (en) 1985-03-06 1987-04-07 The United States Of America As Represented By The Secretary Of The Air Force Spatial light modulator having a capacitively coupled photoconductor
GB2186708B (en) 1985-11-26 1990-07-11 Sharp Kk A variable interferometric device and a process for the production of the same
US4705361A (en) 1985-11-27 1987-11-10 Texas Instruments Incorporated Spatial light modulator
GB8621438D0 (en) 1986-09-05 1986-10-15 Secr Defence Electro-optic device
US4786128A (en) 1986-12-02 1988-11-22 Quantum Diagnostics, Ltd. Device for modulating and reflecting electromagnetic radiation employing electro-optic layer having a variable index of refraction
US4822993A (en) 1987-02-17 1989-04-18 Optron Systems, Inc. Low-cost, substantially cross-talk free high spatial resolution 2-D bistable light modulator
ATE71718T1 (de) 1987-06-04 1992-02-15 Walter Lukosz Optisches modulations- und mess-verfahren.
US4956619A (en) 1988-02-19 1990-09-11 Texas Instruments Incorporated Spatial light modulator
US5028939A (en) 1988-08-23 1991-07-02 Texas Instruments Incorporated Spatial light modulator system
US4925259A (en) 1988-10-20 1990-05-15 The United States Of America As Represented By The United States Department Of Energy Multilayer optical dielectric coating
JPH0623782B2 (ja) * 1988-11-15 1994-03-30 株式会社日立製作所 静電容量式加速度センサ及び半導体圧力センサ
US4973131A (en) 1989-02-03 1990-11-27 Mcdonnell Douglas Corporation Modulator mirror
US5022745A (en) 1989-09-07 1991-06-11 Massachusetts Institute Of Technology Electrostatically deformable single crystal dielectrically coated mirror
US4954789A (en) 1989-09-28 1990-09-04 Texas Instruments Incorporated Spatial light modulator
US5083857A (en) 1990-06-29 1992-01-28 Texas Instruments Incorporated Multi-level deformable mirror device
US5062689A (en) 1990-08-21 1991-11-05 Koehler Dale R Electrostatically actuatable light modulating device
US5287215A (en) 1991-07-17 1994-02-15 Optron Systems, Inc. Membrane light modulation systems
US5170283A (en) 1991-07-24 1992-12-08 Northrop Corporation Silicon spatial light modulator
US5240818A (en) 1991-07-31 1993-08-31 Texas Instruments Incorporated Method for manufacturing a color filter for deformable mirror device
US5315370A (en) 1991-10-23 1994-05-24 Bulow Jeffrey A Interferometric modulator for optical signal processing
US6381022B1 (en) 1992-01-22 2002-04-30 Northeastern University Light modulating device
TW245772B (ko) 1992-05-19 1995-04-21 Akzo Nv
US5818095A (en) 1992-08-11 1998-10-06 Texas Instruments Incorporated High-yield spatial light modulator with light blocking layer
FI96450C (fi) 1993-01-13 1996-06-25 Vaisala Oy Yksikanavainen kaasun pitoisuuden mittausmenetelmä ja -laitteisto
JP3402642B2 (ja) 1993-01-26 2003-05-06 松下電工株式会社 静電駆動型リレー
US7830587B2 (en) 1993-03-17 2010-11-09 Qualcomm Mems Technologies, Inc. Method and device for modulating light with semiconductor substrate
US6674562B1 (en) 1994-05-05 2004-01-06 Iridigm Display Corporation Interferometric modulation of radiation
US5559358A (en) 1993-05-25 1996-09-24 Honeywell Inc. Opto-electro-mechanical device or filter, process for making, and sensors made therefrom
US5526172A (en) 1993-07-27 1996-06-11 Texas Instruments Incorporated Microminiature, monolithic, variable electrical signal processor and apparatus including same
FI94804C (fi) 1994-02-17 1995-10-25 Vaisala Oy Sähköisesti säädettävä pintamikromekaaninen Fabry-Perot-interferometri käytettäväksi optisessa materiaalianalyysissä
US5665997A (en) 1994-03-31 1997-09-09 Texas Instruments Incorporated Grated landing area to eliminate sticking of micro-mechanical devices
US7460291B2 (en) 1994-05-05 2008-12-02 Idc, Llc Separable modulator
US8081369B2 (en) 1994-05-05 2011-12-20 Qualcomm Mems Technologies, Inc. System and method for a MEMS device
US7550794B2 (en) 2002-09-20 2009-06-23 Idc, Llc Micromechanical systems device comprising a displaceable electrode and a charge-trapping layer
US6710908B2 (en) 1994-05-05 2004-03-23 Iridigm Display Corporation Controlling micro-electro-mechanical cavities
US6680792B2 (en) 1994-05-05 2004-01-20 Iridigm Display Corporation Interferometric modulation of radiation
US20010003487A1 (en) 1996-11-05 2001-06-14 Mark W. Miles Visible spectrum modulator arrays
US7808694B2 (en) 1994-05-05 2010-10-05 Qualcomm Mems Technologies, Inc. Method and device for modulating light
US7123216B1 (en) 1994-05-05 2006-10-17 Idc, Llc Photonic MEMS and structures
US6040937A (en) 1994-05-05 2000-03-21 Etalon, Inc. Interferometric modulation
US7826120B2 (en) 1994-05-05 2010-11-02 Qualcomm Mems Technologies, Inc. Method and device for multi-color interferometric modulation
US7852545B2 (en) 1994-05-05 2010-12-14 Qualcomm Mems Technologies, Inc. Method and device for modulating light
US7738157B2 (en) 1994-05-05 2010-06-15 Qualcomm Mems Technologies, Inc. System and method for a MEMS device
US5920418A (en) 1994-06-21 1999-07-06 Matsushita Electric Industrial Co., Ltd. Diffractive optical modulator and method for producing the same, infrared sensor including such a diffractive optical modulator and method for producing the same, and display device including such a diffractive optical modulator
US5636052A (en) 1994-07-29 1997-06-03 Lucent Technologies Inc. Direct view display based on a micromechanical modulation
US5485304A (en) 1994-07-29 1996-01-16 Texas Instruments, Inc. Support posts for micro-mechanical devices
FR2726960B1 (fr) 1994-11-10 1996-12-13 Thomson Csf Procede de realisation de transducteurs magnetoresistifs
JPH08153700A (ja) 1994-11-25 1996-06-11 Semiconductor Energy Lab Co Ltd 導電性被膜の異方性エッチング方法
US5550373A (en) 1994-12-30 1996-08-27 Honeywell Inc. Fabry-Perot micro filter-detector
US7898722B2 (en) 1995-05-01 2011-03-01 Qualcomm Mems Technologies, Inc. Microelectromechanical device with restoring electrode
US5661592A (en) 1995-06-07 1997-08-26 Silicon Light Machines Method of making and an apparatus for a flat diffraction grating light valve
US6046840A (en) 1995-06-19 2000-04-04 Reflectivity, Inc. Double substrate reflective spatial light modulator with self-limiting micro-mechanical elements
US6849471B2 (en) 2003-03-28 2005-02-01 Reflectivity, Inc. Barrier layers for microelectromechanical systems
US6124851A (en) 1995-07-20 2000-09-26 E Ink Corporation Electronic book with multiple page displays
KR100213026B1 (ko) 1995-07-27 1999-08-02 윤종용 디엠디 및 그 제조공정
US6324192B1 (en) 1995-09-29 2001-11-27 Coretek, Inc. Electrically tunable fabry-perot structure utilizing a deformable multi-layer mirror and method of making the same
JPH09127551A (ja) 1995-10-31 1997-05-16 Sharp Corp 半導体装置およびアクティブマトリクス基板
US5999306A (en) 1995-12-01 1999-12-07 Seiko Epson Corporation Method of manufacturing spatial light modulator and electronic device employing it
US5825528A (en) 1995-12-26 1998-10-20 Lucent Technologies Inc. Phase-mismatched fabry-perot cavity micromechanical modulator
US5751469A (en) 1996-02-01 1998-05-12 Lucent Technologies Inc. Method and apparatus for an improved micromechanical modulator
US6114862A (en) 1996-02-14 2000-09-05 Stmicroelectronics, Inc. Capacitive distance sensor
US5710656A (en) 1996-07-30 1998-01-20 Lucent Technologies Inc. Micromechanical optical modulator having a reduced-mass composite membrane
US5838484A (en) 1996-08-19 1998-11-17 Lucent Technologies Inc. Micromechanical optical modulator with linear operating characteristic
GB9619781D0 (en) 1996-09-23 1996-11-06 Secr Defence Multi layer interference coatings
US5771116A (en) 1996-10-21 1998-06-23 Texas Instruments Incorporated Multiple bias level reset waveform for enhanced DMD control
US7830588B2 (en) 1996-12-19 2010-11-09 Qualcomm Mems Technologies, Inc. Method of making a light modulating display device and associated transistor circuitry and structures thereof
US6028689A (en) 1997-01-24 2000-02-22 The United States Of America As Represented By The Secretary Of The Air Force Multi-motion micromirror
US5786927A (en) 1997-03-12 1998-07-28 Lucent Technologies Inc. Gas-damped micromechanical structure
US6384952B1 (en) 1997-03-27 2002-05-07 Mems Optical Inc. Vertical comb drive actuated deformable mirror device and method
EP0879991A3 (en) 1997-05-13 1999-04-21 Matsushita Electric Industrial Co., Ltd. Illuminating system
US5870221A (en) 1997-07-25 1999-02-09 Lucent Technologies, Inc. Micromechanical modulator having enhanced performance
US5867302A (en) 1997-08-07 1999-02-02 Sandia Corporation Bistable microelectromechanical actuator
US6031653A (en) 1997-08-28 2000-02-29 California Institute Of Technology Low-cost thin-metal-film interference filters
DE69830153T2 (de) 1998-01-20 2005-10-13 Seiko Epson Corp. Optische schaltvorrichtung und bildanzeigevorrichtung
US5914804A (en) 1998-01-28 1999-06-22 Lucent Technologies Inc Double-cavity micromechanical optical modulator with plural multilayer mirrors
US6100861A (en) 1998-02-17 2000-08-08 Rainbow Displays, Inc. Tiled flat panel display with improved color gamut
US6262697B1 (en) 1998-03-20 2001-07-17 Eastman Kodak Company Display having viewable and conductive images
US8928967B2 (en) 1998-04-08 2015-01-06 Qualcomm Mems Technologies, Inc. Method and device for modulating light
US7532377B2 (en) 1998-04-08 2009-05-12 Idc, Llc Movable micro-electromechanical device
WO1999052006A2 (en) 1998-04-08 1999-10-14 Etalon, Inc. Interferometric modulation of radiation
US6046659A (en) 1998-05-15 2000-04-04 Hughes Electronics Corporation Design and fabrication of broadband surface-micromachined micro-electro-mechanical switches for microwave and millimeter-wave applications
US6242989B1 (en) 1998-09-12 2001-06-05 Agere Systems Guardian Corp. Article comprising a multi-port variable capacitor
US6323834B1 (en) 1998-10-08 2001-11-27 International Business Machines Corporation Micromechanical displays and fabrication method
JP3919954B2 (ja) 1998-10-16 2007-05-30 富士フイルム株式会社 アレイ型光変調素子及び平面ディスプレイの駆動方法
JP2000147262A (ja) 1998-11-11 2000-05-26 Nobuyuki Higuchi 集光装置及びこれを利用した太陽光発電システム
US6188519B1 (en) 1999-01-05 2001-02-13 Kenneth Carlisle Johnson Bigrating light valve
US6242932B1 (en) 1999-02-19 2001-06-05 Micron Technology, Inc. Interposer for semiconductor components having contact balls
US6323987B1 (en) 1999-05-14 2001-11-27 Agere Systems Optoelectronics Guardian Corp. Controlled multi-wavelength etalon
US6335235B1 (en) 1999-08-17 2002-01-01 Advanced Micro Devices, Inc. Simplified method of patterning field dielectric regions in a semiconductor device
WO2003007049A1 (en) 1999-10-05 2003-01-23 Iridigm Display Corporation Photonic mems and structures
US6351329B1 (en) 1999-10-08 2002-02-26 Lucent Technologies Inc. Optical attenuator
US6960305B2 (en) 1999-10-26 2005-11-01 Reflectivity, Inc Methods for forming and releasing microelectromechanical structures
US6519073B1 (en) 2000-01-10 2003-02-11 Lucent Technologies Inc. Micromechanical modulator and methods for fabricating the same
DK1849621T3 (da) 2000-01-21 2014-05-26 Jds Uniphase Corp Optisk variable sikkerhedsanordninger
US6307663B1 (en) 2000-01-26 2001-10-23 Eastman Kodak Company Spatial light modulator with conformal grating device
JP2001221913A (ja) 2000-02-08 2001-08-17 Yokogawa Electric Corp ファブリペローフィルタ及び赤外線ガス分析計
GB2359636B (en) 2000-02-22 2002-05-01 Marconi Comm Ltd Wavelength selective optical filter
JP2003524215A (ja) 2000-02-24 2003-08-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 光導波路を具える表示装置
US6836366B1 (en) 2000-03-03 2004-12-28 Axsun Technologies, Inc. Integrated tunable fabry-perot filter and method of making same
US6747775B2 (en) 2000-03-20 2004-06-08 Np Photonics, Inc. Detunable Fabry-Perot interferometer and an add/drop multiplexer using the same
US6698295B1 (en) 2000-03-31 2004-03-02 Shipley Company, L.L.C. Microstructures comprising silicon nitride layer and thin conductive polysilicon layer
US6400738B1 (en) 2000-04-14 2002-06-04 Agilent Technologies, Inc. Tunable Fabry-Perot filters and lasers
FR2811139B1 (fr) 2000-06-29 2003-10-17 Centre Nat Rech Scient Dispositif optoelectronique a filtrage de longueur d'onde integre
US6940631B2 (en) 2000-07-03 2005-09-06 Sony Corporation Optical multilayer structure, optical switching device, and image display
JP2002062490A (ja) 2000-08-14 2002-02-28 Canon Inc 干渉性変調素子
US6466354B1 (en) 2000-09-19 2002-10-15 Silicon Light Machines Method and apparatus for interferometric modulation of light
US6714565B1 (en) 2000-11-01 2004-03-30 Agilent Technologies, Inc. Optically tunable Fabry Perot microelectromechanical resonator
US6556338B2 (en) 2000-11-03 2003-04-29 Intpax, Inc. MEMS based variable optical attenuator (MBVOA)
US6433917B1 (en) * 2000-11-22 2002-08-13 Ball Semiconductor, Inc. Light modulation device and system
US6906847B2 (en) 2000-12-07 2005-06-14 Reflectivity, Inc Spatial light modulators with light blocking/absorbing areas
US6614576B2 (en) 2000-12-15 2003-09-02 Texas Instruments Incorporated Surface micro-planarization for enhanced optical efficiency and pixel performance in SLM devices
US20020149834A1 (en) 2000-12-22 2002-10-17 Ball Semiconductor, Inc. Light modulation device and system
DE10064616C2 (de) 2000-12-22 2003-02-06 Ovd Kinegram Ag Zug Dekorfolie und Verfahren zum Beschriften der Dekorfolie
JP2002221678A (ja) 2001-01-25 2002-08-09 Seiko Epson Corp 光スイッチングデバイス、その製造方法および画像表示装置
US6912078B2 (en) 2001-03-16 2005-06-28 Corning Incorporated Electrostatically actuated micro-electro-mechanical devices and method of manufacture
US6661561B2 (en) 2001-03-26 2003-12-09 Creo Inc. High frequency deformable mirror device
US6600587B2 (en) 2001-04-23 2003-07-29 Memx, Inc. Surface micromachined optical system with reinforced mirror microstructure
US6657832B2 (en) 2001-04-26 2003-12-02 Texas Instruments Incorporated Mechanically assisted restoring force support for micromachined membranes
WO2002095800A2 (en) 2001-05-22 2002-11-28 Reflectivity, Inc. A method for making a micromechanical device by removing a sacrificial layer with multiple sequential etchants
JP3740444B2 (ja) 2001-07-11 2006-02-01 キヤノン株式会社 光偏向器、それを用いた光学機器、ねじれ揺動体
JP4032216B2 (ja) 2001-07-12 2008-01-16 ソニー株式会社 光学多層構造体およびその製造方法、並びに光スイッチング素子および画像表示装置
US6594059B2 (en) 2001-07-16 2003-07-15 Axsun Technologies, Inc. Tilt mirror fabry-perot filter system, fabrication process therefor, and method of operation thereof
US6632698B2 (en) 2001-08-07 2003-10-14 Hewlett-Packard Development Company, L.P. Microelectromechanical device having a stiffened support beam, and methods of forming stiffened support beams in MEMS
US6661562B2 (en) 2001-08-17 2003-12-09 Lucent Technologies Inc. Optical modulator and method of manufacture thereof
US7015457B2 (en) 2002-03-18 2006-03-21 Honeywell International Inc. Spectrally tunable detector
US20030053078A1 (en) 2001-09-17 2003-03-20 Mark Missey Microelectromechanical tunable fabry-perot wavelength monitor with thermal actuators
WO2003042721A2 (en) 2001-11-09 2003-05-22 Coventor, Incorporated Trilayered beam mems device and related methods
TWI234157B (en) 2001-12-07 2005-06-11 Matsushita Electric Ind Co Ltd Information recording medium and method for producing the same
JP2003177336A (ja) 2001-12-11 2003-06-27 Fuji Photo Film Co Ltd 光変調素子及び光変調素子アレイ並びにそれを用いた露光装置
US6791735B2 (en) * 2002-01-09 2004-09-14 The Regents Of The University Of California Differentially-driven MEMS spatial light modulator
US6608268B1 (en) 2002-02-05 2003-08-19 Memtronics, A Division Of Cogent Solutions, Inc. Proximity micro-electro-mechanical system
US6794119B2 (en) 2002-02-12 2004-09-21 Iridigm Display Corporation Method for fabricating a structure for a microelectromechanical systems (MEMS) device
US6574033B1 (en) 2002-02-27 2003-06-03 Iridigm Display Corporation Microelectromechanical systems device and method for fabricating same
AU2003211809A1 (en) 2002-03-01 2003-09-16 Sharp Kabushiki Kaisha Light emitting device and display unit using the light emitting device and reading device
US7145143B2 (en) 2002-03-18 2006-12-05 Honeywell International Inc. Tunable sensor
US6768555B2 (en) 2002-03-21 2004-07-27 Industrial Technology Research Institute Fabry-Perot filter apparatus with enhanced optical discrimination
US6965468B2 (en) 2003-07-03 2005-11-15 Reflectivity, Inc Micromirror array having reduced gap between adjacent micromirrors of the micromirror array
US6954297B2 (en) 2002-04-30 2005-10-11 Hewlett-Packard Development Company, L.P. Micro-mirror device including dielectrophoretic liquid
US6972882B2 (en) 2002-04-30 2005-12-06 Hewlett-Packard Development Company, L.P. Micro-mirror device with light angle amplification
JP2003340795A (ja) 2002-05-20 2003-12-02 Sony Corp 静電駆動型mems素子とその製造方法、光学mems素子、光変調素子、glvデバイス及びレーザディスプレイ
JP3801099B2 (ja) 2002-06-04 2006-07-26 株式会社デンソー チューナブルフィルタ、その製造方法、及びそれを使用した光スイッチング装置
US6813059B2 (en) 2002-06-28 2004-11-02 Silicon Light Machines, Inc. Reduced formation of asperities in contact micro-structures
US6738194B1 (en) 2002-07-22 2004-05-18 The United States Of America As Represented By The Secretary Of The Navy Resonance tunable optical filter
US6822798B2 (en) 2002-08-09 2004-11-23 Optron Systems, Inc. Tunable optical filter
JP4057871B2 (ja) 2002-09-19 2008-03-05 東芝松下ディスプレイテクノロジー株式会社 液晶表示装置
AU2003260825A1 (en) 2002-09-19 2004-04-08 Koninklijke Philips Electronics N.V. Switchable optical element
KR100512960B1 (ko) 2002-09-26 2005-09-07 삼성전자주식회사 플렉서블 mems 트랜스듀서와 그 제조방법 및 이를채용한 플렉서블 mems 무선 마이크로폰
US7085121B2 (en) 2002-10-21 2006-08-01 Hrl Laboratories, Llc Variable capacitance membrane actuator for wide band tuning of microstrip resonators and filters
FR2846318B1 (fr) 2002-10-24 2005-01-07 Commissariat Energie Atomique Microstructure electromecanique integree comportant des moyens de reglage de la pression dans une cavite scellee et procede de reglage de la pression
US7370185B2 (en) 2003-04-30 2008-05-06 Hewlett-Packard Development Company, L.P. Self-packaged optical interference display device having anti-stiction bumps, integral micro-lens, and reflection-absorbing layers
US6844959B2 (en) 2002-11-26 2005-01-18 Reflectivity, Inc Spatial light modulators with light absorbing areas
US6958846B2 (en) 2002-11-26 2005-10-25 Reflectivity, Inc Spatial light modulators with light absorbing areas
US6813060B1 (en) 2002-12-09 2004-11-02 Sandia Corporation Electrical latching of microelectromechanical devices
TWI289708B (en) 2002-12-25 2007-11-11 Qualcomm Mems Technologies Inc Optical interference type color display
JP2004212680A (ja) 2002-12-27 2004-07-29 Fuji Photo Film Co Ltd 光変調素子アレイ及びその製造方法
TW594155B (en) 2002-12-27 2004-06-21 Prime View Int Corp Ltd Optical interference type color display and optical interference modulator
JP2004212638A (ja) 2002-12-27 2004-07-29 Fuji Photo Film Co Ltd 光変調素子及び平面表示素子
JP2004219843A (ja) 2003-01-16 2004-08-05 Seiko Epson Corp 光変調器、表示装置及びその製造方法
TW200413810A (en) 2003-01-29 2004-08-01 Prime View Int Co Ltd Light interference display panel and its manufacturing method
TW557395B (en) 2003-01-29 2003-10-11 Yen Sun Technology Corp Optical interference type reflection panel and the manufacturing method thereof
US7459402B2 (en) 2003-02-12 2008-12-02 Texas Instruments Incorporated Protection layers in micromirror array devices
US7436573B2 (en) 2003-02-12 2008-10-14 Texas Instruments Incorporated Electrical connections in microelectromechanical devices
TW200417806A (en) 2003-03-05 2004-09-16 Prime View Int Corp Ltd A structure of a light-incidence electrode of an optical interference display plate
US6913942B2 (en) 2003-03-28 2005-07-05 Reflectvity, Inc Sacrificial layers for use in fabrications of microelectromechanical devices
TW567355B (en) 2003-04-21 2003-12-21 Prime View Int Co Ltd An interference display cell and fabrication method thereof
TW594360B (en) 2003-04-21 2004-06-21 Prime View Int Corp Ltd A method for fabricating an interference display cell
TWI224235B (en) 2003-04-21 2004-11-21 Prime View Int Co Ltd A method for fabricating an interference display cell
TWI226504B (en) 2003-04-21 2005-01-11 Prime View Int Co Ltd A structure of an interference display cell
US7447891B2 (en) * 2003-04-30 2008-11-04 Hewlett-Packard Development Company, L.P. Light modulator with concentric control-electrode structure
US7072093B2 (en) 2003-04-30 2006-07-04 Hewlett-Packard Development Company, L.P. Optical interference pixel display with charge control
US6940630B2 (en) 2003-05-01 2005-09-06 University Of Florida Research Foundation, Inc. Vertical displacement device
JP4075678B2 (ja) 2003-05-06 2008-04-16 ソニー株式会社 固体撮像素子
TW591716B (en) 2003-05-26 2004-06-11 Prime View Int Co Ltd A structure of a structure release and manufacturing the same
TW570896B (en) 2003-05-26 2004-01-11 Prime View Int Co Ltd A method for fabricating an interference display cell
TWI223855B (en) 2003-06-09 2004-11-11 Taiwan Semiconductor Mfg Method for manufacturing reflective spatial light modulator mirror devices
JP2007027150A (ja) 2003-06-23 2007-02-01 Hitachi Chem Co Ltd 集光型光発電システム
US7221495B2 (en) 2003-06-24 2007-05-22 Idc Llc Thin film precursor stack for MEMS manufacturing
US6862127B1 (en) 2003-11-01 2005-03-01 Fusao Ishii High performance micromirror arrays and methods of manufacturing the same
JP3786106B2 (ja) 2003-08-11 2006-06-14 セイコーエプソン株式会社 波長可変光フィルタ及びその製造方法
TWI251712B (en) 2003-08-15 2006-03-21 Prime View Int Corp Ltd Interference display plate
TW200506479A (en) 2003-08-15 2005-02-16 Prime View Int Co Ltd Color changeable pixel for an interference display
TWI231865B (en) 2003-08-26 2005-05-01 Prime View Int Co Ltd An interference display cell and fabrication method thereof
JP3979982B2 (ja) 2003-08-29 2007-09-19 シャープ株式会社 干渉性変調器および表示装置
TWI230801B (en) 2003-08-29 2005-04-11 Prime View Int Co Ltd Reflective display unit using interferometric modulation and manufacturing method thereof
TWI232333B (en) 2003-09-03 2005-05-11 Prime View Int Co Ltd Display unit using interferometric modulation and manufacturing method thereof
US6982820B2 (en) 2003-09-26 2006-01-03 Prime View International Co., Ltd. Color changeable pixel
US7027204B2 (en) 2003-09-26 2006-04-11 Silicon Light Machines Corporation High-density spatial light modulator
TW593126B (en) 2003-09-30 2004-06-21 Prime View Int Co Ltd A structure of a micro electro mechanical system and manufacturing the same
JP2005121906A (ja) 2003-10-16 2005-05-12 Fuji Photo Film Co Ltd 反射型光変調アレイ素子及び露光装置
US7782523B2 (en) 2003-11-01 2010-08-24 Fusao Ishii Analog micromirror devices with continuous intermediate states
TW200524236A (en) 2003-12-01 2005-07-16 Nl Nanosemiconductor Gmbh Optoelectronic device incorporating an interference filter
ATE552521T1 (de) 2003-12-19 2012-04-15 Barco Nv Breitbandige reflektive anzeigevorrichtung
WO2005089098A2 (en) 2004-01-14 2005-09-29 The Regents Of The University Of California Ultra broadband mirror using subwavelength grating
TWI235345B (en) 2004-01-20 2005-07-01 Prime View Int Co Ltd A structure of an optical interference display unit
JP2005235403A (ja) 2004-02-17 2005-09-02 Hitachi Displays Ltd 有機・el表示装置
TWI256941B (en) 2004-02-18 2006-06-21 Qualcomm Mems Technologies Inc A micro electro mechanical system display cell and method for fabricating thereof
US7119945B2 (en) 2004-03-03 2006-10-10 Idc, Llc Altering temporal response of microelectromechanical elements
TW200530669A (en) 2004-03-05 2005-09-16 Prime View Int Co Ltd Interference display plate and manufacturing method thereof
TWI261683B (en) 2004-03-10 2006-09-11 Qualcomm Mems Technologies Inc Interference reflective element and repairing method thereof
JP4581453B2 (ja) 2004-03-29 2010-11-17 ソニー株式会社 Mems素子、光学mems素子、回折型光学mems素子、並びにレーザディスプレイ
JP2005308871A (ja) 2004-04-19 2005-11-04 Aterio Design Kk 干渉カラーフィルター
US7245285B2 (en) 2004-04-28 2007-07-17 Hewlett-Packard Development Company, L.P. Pixel device
US7476327B2 (en) 2004-05-04 2009-01-13 Idc, Llc Method of manufacture for microelectromechanical devices
US7787170B2 (en) 2004-06-15 2010-08-31 Texas Instruments Incorporated Micromirror array assembly with in-array pillars
TWI233916B (en) 2004-07-09 2005-06-11 Prime View Int Co Ltd A structure of a micro electro mechanical system
US7872790B2 (en) 2004-07-09 2011-01-18 University Of Cincinnati Display capable electrowetting light valve
TWI270722B (en) 2004-07-23 2007-01-11 Au Optronics Corp Dual-side display panel
KR101354520B1 (ko) 2004-07-29 2014-01-21 퀄컴 엠이엠에스 테크놀로지스, 인크. 간섭 변조기의 미소기전 동작을 위한 시스템 및 방법
US7372348B2 (en) 2004-08-20 2008-05-13 Palo Alto Research Center Incorporated Stressed material and shape memory material MEMS devices and methods for manufacturing
US7446927B2 (en) * 2004-09-27 2008-11-04 Idc, Llc MEMS switch with set and latch electrodes
BRPI0509575A (pt) * 2004-09-27 2007-10-09 Idc Llc método e dispositivo para modulação de luz interferométrica de multi-estados
US7302157B2 (en) 2004-09-27 2007-11-27 Idc, Llc System and method for multi-level brightness in interferometric modulation
US7527995B2 (en) 2004-09-27 2009-05-05 Qualcomm Mems Technologies, Inc. Method of making prestructure for MEMS systems
US7184202B2 (en) 2004-09-27 2007-02-27 Idc, Llc Method and system for packaging a MEMS device
US7130104B2 (en) 2004-09-27 2006-10-31 Idc, Llc Methods and devices for inhibiting tilting of a mirror in an interferometric modulator
US7630119B2 (en) 2004-09-27 2009-12-08 Qualcomm Mems Technologies, Inc. Apparatus and method for reducing slippage between structures in an interferometric modulator
US7372613B2 (en) 2004-09-27 2008-05-13 Idc, Llc Method and device for multistate interferometric light modulation
US7310179B2 (en) 2004-09-27 2007-12-18 Idc, Llc Method and device for selective adjustment of hysteresis window
US7893919B2 (en) 2004-09-27 2011-02-22 Qualcomm Mems Technologies, Inc. Display region architectures
US7321456B2 (en) 2004-09-27 2008-01-22 Idc, Llc Method and device for corner interferometric modulation
US7327510B2 (en) 2004-09-27 2008-02-05 Idc, Llc Process for modifying offset voltage characteristics of an interferometric modulator
US7289259B2 (en) 2004-09-27 2007-10-30 Idc, Llc Conductive bus structure for interferometric modulator array
US7304784B2 (en) 2004-09-27 2007-12-04 Idc, Llc Reflective display device having viewable display on both sides
CN100547453C (zh) * 2004-09-27 2009-10-07 Idc公司 两侧均具有可观看显示器的反射性显示装置
US7944599B2 (en) 2004-09-27 2011-05-17 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US7936497B2 (en) 2004-09-27 2011-05-03 Qualcomm Mems Technologies, Inc. MEMS device having deformable membrane characterized by mechanical persistence
US8102407B2 (en) 2004-09-27 2012-01-24 Qualcomm Mems Technologies, Inc. Method and device for manipulating color in a display
US7719500B2 (en) 2004-09-27 2010-05-18 Qualcomm Mems Technologies, Inc. Reflective display pixels arranged in non-rectangular arrays
US7564612B2 (en) 2004-09-27 2009-07-21 Idc, Llc Photonic MEMS and structures
US7420725B2 (en) 2004-09-27 2008-09-02 Idc, Llc Device having a conductive light absorbing mask and method for fabricating same
US7349136B2 (en) * 2004-09-27 2008-03-25 Idc, Llc Method and device for a display having transparent components integrated therein
US7554714B2 (en) 2004-09-27 2009-06-30 Idc, Llc Device and method for manipulation of thermal response in a modulator
US7612932B2 (en) 2004-09-27 2009-11-03 Idc, Llc Microelectromechanical device with optical function separated from mechanical and electrical function
US8008736B2 (en) 2004-09-27 2011-08-30 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device
JP4384005B2 (ja) 2004-10-15 2009-12-16 株式会社東芝 表示装置
WO2006046193A1 (en) 2004-10-27 2006-05-04 Koninklijke Philips Electronics N. V. Electronic device
US20080068697A1 (en) 2004-10-29 2008-03-20 Haluzak Charles C Micro-Displays and Their Manufacture
US20060132927A1 (en) 2004-11-30 2006-06-22 Yoon Frank C Electrowetting chromatophore
US7521666B2 (en) 2005-02-17 2009-04-21 Capella Microsystems Inc. Multi-cavity Fabry-Perot ambient light filter apparatus
US7675665B2 (en) 2005-02-23 2010-03-09 Pixtronix, Incorporated Methods and apparatus for actuating displays
US8310442B2 (en) 2005-02-23 2012-11-13 Pixtronix, Inc. Circuits for controlling display apparatus
US7405852B2 (en) 2005-02-23 2008-07-29 Pixtronix, Inc. Display apparatus and methods for manufacture thereof
US7884989B2 (en) 2005-05-27 2011-02-08 Qualcomm Mems Technologies, Inc. White interferometric modulators and methods for forming the same
US7460292B2 (en) 2005-06-03 2008-12-02 Qualcomm Mems Technologies, Inc. Interferometric modulator with internal polarization and drive method
US7184195B2 (en) 2005-06-15 2007-02-27 Miradia Inc. Method and structure reducing parasitic influences of deflection devices in an integrated spatial light modulator
US7733553B2 (en) 2005-09-21 2010-06-08 Hewlett-Packard Development Company, L.P. Light modulator with tunable optical state
US8574823B2 (en) 2005-10-05 2013-11-05 Hewlett-Packard Development Company, L.P. Multi-level layer
US7513327B1 (en) 2005-10-13 2009-04-07 Kent Peterson System for converting a recreational vehicle
US7760197B2 (en) 2005-10-31 2010-07-20 Hewlett-Packard Development Company, L.P. Fabry-perot interferometric MEMS electromagnetic wave modulator with zero-electric field
JP2007167998A (ja) 2005-12-20 2007-07-05 Toshiba Corp 梁構造を有する装置、および半導体装置
US7417746B2 (en) 2005-12-29 2008-08-26 Xerox Corporation Fabry-perot tunable filter systems and methods
US7652814B2 (en) 2006-01-27 2010-01-26 Qualcomm Mems Technologies, Inc. MEMS device with integrated optical element
US7550810B2 (en) 2006-02-23 2009-06-23 Qualcomm Mems Technologies, Inc. MEMS device having a layer movable at asymmetric rates
WO2007110928A1 (ja) 2006-03-28 2007-10-04 Fujitsu Limited 可動素子
US7477440B1 (en) 2006-04-06 2009-01-13 Miradia Inc. Reflective spatial light modulator having dual layer electrodes and method of fabricating same
US7649671B2 (en) 2006-06-01 2010-01-19 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device with electrostatic actuation and release
US7321457B2 (en) 2006-06-01 2008-01-22 Qualcomm Incorporated Process and structure for fabrication of MEMS device having isolated edge posts
US7876489B2 (en) 2006-06-05 2011-01-25 Pixtronix, Inc. Display apparatus with optical cavities
US7385744B2 (en) 2006-06-28 2008-06-10 Qualcomm Mems Technologies, Inc. Support structure for free-standing MEMS device and methods for forming the same
US7835061B2 (en) 2006-06-28 2010-11-16 Qualcomm Mems Technologies, Inc. Support structures for free-standing electromechanical devices
US7527998B2 (en) 2006-06-30 2009-05-05 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
US7593189B2 (en) 2006-06-30 2009-09-22 Seagate Technology Llc Head gimbal assembly to reduce slider distortion due to thermal stress
US7566664B2 (en) 2006-08-02 2009-07-28 Qualcomm Mems Technologies, Inc. Selective etching of MEMS using gaseous halides and reactive co-etchants
TWI331231B (en) 2006-08-04 2010-10-01 Au Optronics Corp Color filter and frbricating method thereof
DE102006039071B4 (de) 2006-08-09 2012-04-19 Universität Kassel Optisches Filter und Verfahren zu seiner Herstellung
US7629197B2 (en) 2006-10-18 2009-12-08 Qualcomm Mems Technologies, Inc. Spatial light modulator
US20080121270A1 (en) 2006-11-28 2008-05-29 General Electric Company Photovoltaic roof tile system
US7535621B2 (en) 2006-12-27 2009-05-19 Qualcomm Mems Technologies, Inc. Aluminum fluoride films for microelectromechanical system applications
US8115987B2 (en) 2007-02-01 2012-02-14 Qualcomm Mems Technologies, Inc. Modulating the intensity of light from an interferometric reflector
US7742220B2 (en) 2007-03-28 2010-06-22 Qualcomm Mems Technologies, Inc. Microelectromechanical device and method utilizing conducting layers separated by stops
US7715085B2 (en) 2007-05-09 2010-05-11 Qualcomm Mems Technologies, Inc. Electromechanical system having a dielectric movable membrane and a mirror
US7643202B2 (en) 2007-05-09 2010-01-05 Qualcomm Mems Technologies, Inc. Microelectromechanical system having a dielectric movable membrane and a mirror
US7643199B2 (en) 2007-06-19 2010-01-05 Qualcomm Mems Technologies, Inc. High aperture-ratio top-reflective AM-iMod displays
US7782517B2 (en) 2007-06-21 2010-08-24 Qualcomm Mems Technologies, Inc. Infrared and dual mode displays
US7569488B2 (en) 2007-06-22 2009-08-04 Qualcomm Mems Technologies, Inc. Methods of making a MEMS device by monitoring a process parameter
US7630121B2 (en) 2007-07-02 2009-12-08 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
KR20100066452A (ko) 2007-07-31 2010-06-17 퀄컴 엠이엠스 테크놀로지스, 인크. 간섭계 변조기의 색 변이를 증강시키는 장치
US7773286B2 (en) 2007-09-14 2010-08-10 Qualcomm Mems Technologies, Inc. Periodic dimple array
US7847999B2 (en) 2007-09-14 2010-12-07 Qualcomm Mems Technologies, Inc. Interferometric modulator display devices
KR20100084518A (ko) 2007-09-17 2010-07-26 퀄컴 엠이엠스 테크놀로지스, 인크. 반투명/반투과반사형 광 간섭계 변조기 장치
US20090078316A1 (en) 2007-09-24 2009-03-26 Qualcomm Incorporated Interferometric photovoltaic cell
US8058549B2 (en) 2007-10-19 2011-11-15 Qualcomm Mems Technologies, Inc. Photovoltaic devices with integrated color interferometric film stacks
KR20100103467A (ko) 2007-10-23 2010-09-27 퀄컴 엠이엠스 테크놀로지스, 인크. 조절가능하게 투과성인 mems―기반 장치
US20090293955A1 (en) 2007-11-07 2009-12-03 Qualcomm Incorporated Photovoltaics with interferometric masks
US7729036B2 (en) 2007-11-12 2010-06-01 Qualcomm Mems Technologies, Inc. Capacitive MEMS device with programmable offset voltage control
US8941631B2 (en) 2007-11-16 2015-01-27 Qualcomm Mems Technologies, Inc. Simultaneous light collection and illumination on an active display
US7715079B2 (en) * 2007-12-07 2010-05-11 Qualcomm Mems Technologies, Inc. MEMS devices requiring no mechanical support
BRPI0821371A2 (pt) 2007-12-21 2015-06-16 Qualcomm Mems Technologies Inc Dispositivos fotovoltaicos e respectivo método de fabrico
US8164821B2 (en) 2008-02-22 2012-04-24 Qualcomm Mems Technologies, Inc. Microelectromechanical device with thermal expansion balancing layer or stiffening layer
US7944604B2 (en) 2008-03-07 2011-05-17 Qualcomm Mems Technologies, Inc. Interferometric modulator in transmission mode
US7612933B2 (en) 2008-03-27 2009-11-03 Qualcomm Mems Technologies, Inc. Microelectromechanical device with spacing layer
US7898723B2 (en) 2008-04-02 2011-03-01 Qualcomm Mems Technologies, Inc. Microelectromechanical systems display element with photovoltaic structure
US7969638B2 (en) 2008-04-10 2011-06-28 Qualcomm Mems Technologies, Inc. Device having thin black mask and method of fabricating the same
US7746539B2 (en) 2008-06-25 2010-06-29 Qualcomm Mems Technologies, Inc. Method for packing a display device and the device obtained thereof
US8023167B2 (en) 2008-06-25 2011-09-20 Qualcomm Mems Technologies, Inc. Backlight displays
US7768690B2 (en) 2008-06-25 2010-08-03 Qualcomm Mems Technologies, Inc. Backlight displays
US7859740B2 (en) 2008-07-11 2010-12-28 Qualcomm Mems Technologies, Inc. Stiction mitigation with integrated mech micro-cantilevers through vertical stress gradient control
US7855826B2 (en) 2008-08-12 2010-12-21 Qualcomm Mems Technologies, Inc. Method and apparatus to reduce or eliminate stiction and image retention in interferometric modulator devices
US8358266B2 (en) 2008-09-02 2013-01-22 Qualcomm Mems Technologies, Inc. Light turning device with prismatic light turning features
US20100051089A1 (en) 2008-09-02 2010-03-04 Qualcomm Mems Technologies, Inc. Light collection device with prismatic light turning features
US20100096011A1 (en) 2008-10-16 2010-04-22 Qualcomm Mems Technologies, Inc. High efficiency interferometric color filters for photovoltaic modules
WO2010044901A1 (en) 2008-10-16 2010-04-22 Qualcomm Mems Technologies, Inc. Monolithic imod color enhanced photovoltaic cell
US8270056B2 (en) 2009-03-23 2012-09-18 Qualcomm Mems Technologies, Inc. Display device with openings between sub-pixels and method of making same
JP5281479B2 (ja) 2009-05-18 2013-09-04 日本電信電話株式会社 カメラ運動・物体形状復元方法、カメラ運動・物体形状復元装置、カメラ運動・物体形状復元プログラム及びこのプログラムを記録した記録媒体
US7990604B2 (en) 2009-06-15 2011-08-02 Qualcomm Mems Technologies, Inc. Analog interferometric modulator
US8270062B2 (en) 2009-09-17 2012-09-18 Qualcomm Mems Technologies, Inc. Display device with at least one movable stop element
US7999995B2 (en) 2009-09-28 2011-08-16 Sharp Laboratories Of America, Inc. Full color range interferometric modulation
US8488228B2 (en) 2009-09-28 2013-07-16 Qualcomm Mems Technologies, Inc. Interferometric display with interferometric reflector
US20110169724A1 (en) 2010-01-08 2011-07-14 Qualcomm Mems Technologies, Inc. Interferometric pixel with patterned mechanical layer
KR20130097190A (ko) 2010-08-17 2013-09-02 퀄컴 엠이엠에스 테크놀로지스, 인크. 간섭 디스플레이 장치에서의 전하 중성 전극의 작동 및 교정

Also Published As

Publication number Publication date
WO2012024238A1 (en) 2012-02-23
TW201214002A (en) 2012-04-01
US8797632B2 (en) 2014-08-05
EP2606485A1 (en) 2013-06-26
JP2013544370A (ja) 2013-12-12
US20120044237A1 (en) 2012-02-23
CN103109315A (zh) 2013-05-15

Similar Documents

Publication Publication Date Title
TWI497110B (zh) 類比干涉調變器
KR20130097190A (ko) 간섭 디스플레이 장치에서의 전하 중성 전극의 작동 및 교정
KR101649972B1 (ko) Imod 디스플레이를 위한 유전체 강화된 미러
KR20130091763A (ko) 간섭 디스플레이 장치에서의 전하 중성 전극의 작동 및 교정
TW201319886A (zh) 與顯示器資料更新整合之觸碰感測
KR20130130756A (ko) 전기기계식 간섭 변조기 디바이스
KR20130038231A (ko) 디스플레이의 리프레시 레이트의 증가를 가능하게 하기 위한 라인 승산
KR20130100232A (ko) 전기 기계 디바이스의 기계층 및 그 형성 방법
KR20130106383A (ko) 간섭 디스플레이 장치
KR20140089572A (ko) 전기 기계 시스템들 반사성 디스플레이 디바이스에 대한 매칭층 박막들
TWI589927B (zh) 用於驅動一顯示元件之設備、用於定位可相對於一顯示器中之一或多個固定導電層移動之一可移動導電層之方法、用於驅動包含一可移動導電層及一或多個固定導電層之一顯示器之設備及用於定位可相對於一顯示器中之一或多個固定導電層移動之一可移動導電層之電腦程式產品
US20130135325A1 (en) Systems, devices, and methods for driving an analog interferometric modulator
KR20140027324A (ko) 기계층 및 기계층을 제조하는 방법들
US20130100090A1 (en) Electromechanical systems variable capacitance device
KR20140026407A (ko) 비활성 더미 화소들
US20130135184A1 (en) Encapsulated arrays of electromechanical systems devices
US20130100065A1 (en) Electromechanical systems variable capacitance device
JP2014515836A (ja) ピクセルビア(pixelvia)およびそれを形成する方法
JP2014512554A (ja) 機械層を支持するための装置および方法
US8786592B2 (en) Methods and systems for energy recovery in a display
KR20140106636A (ko) 디스플레이를 위한 구동 방식
WO2013106145A2 (en) Electromechanical systems variable capacitance assembly

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid