KR20070099644A - 수소 발생 장치 및 방법 - Google Patents

수소 발생 장치 및 방법 Download PDF

Info

Publication number
KR20070099644A
KR20070099644A KR1020077018208A KR20077018208A KR20070099644A KR 20070099644 A KR20070099644 A KR 20070099644A KR 1020077018208 A KR1020077018208 A KR 1020077018208A KR 20077018208 A KR20077018208 A KR 20077018208A KR 20070099644 A KR20070099644 A KR 20070099644A
Authority
KR
South Korea
Prior art keywords
gas
reformer
hydrocarbon
heat exchanger
reforming
Prior art date
Application number
KR1020077018208A
Other languages
English (en)
Other versions
KR101241848B1 (ko
Inventor
히사나오 조
히데아키 마츠다
히데시 아카사카
가즈오 미치타니
Original Assignee
에어 워터 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에어 워터 가부시키가이샤 filed Critical 에어 워터 가부시키가이샤
Publication of KR20070099644A publication Critical patent/KR20070099644A/ko
Application granted granted Critical
Publication of KR101241848B1 publication Critical patent/KR101241848B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • C01B2203/0844Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel the non-combustive exothermic reaction being another reforming reaction as defined in groups C01B2203/02 - C01B2203/0294
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • C01B2203/1294Evaporation by heat exchange with hot process stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/82Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

에너지 효율이 우수하고, 설비 비용도 절감할 수 있는 수소 발생 장치를 제공한다. 탄화수소계 가스를 개질하여 수소 리치인 개질가스를 생성하는 수소 발생 장치로서, 상기 탄화수소계 가스를 산소와 함께 촉매와 접촉 반응시켜 탄화수소가스의 연소와 개질을 하는 개질기(1)와, 상기 개질기(1)의 하류측에 설치된 개질가스로(25)에 있어서 개질가스와 탄화수소계 가스의 열 교환을 하여 상기 개질기(1)에 도입하는 탄화수소계 가스를 가열하는 제 1 열 교환기(3)를 구비함으로써, 개질에 필요한 열에너지를 버너 등에 의해서 외부로부터 공급하지 않고서, 연소와 개질을 하여 얻어진 개질가스의 열에 의해서 개질기(1)에 도입하는 원료가스를 가열하기 때문에, 에너지 효율이 좋아진다. 또한, 개질기(1)에 버너를 설치할 필요가 없어져, 개질기(1) 자체의 구조가 단순화하여, 내열성이나 내압성을 갖게 하는 구조도 단순화하기 때문에, 설비 비용도 절감할 수 있다.
개질가스, 개질기, 열 교환기, 수소 발생 장치

Description

수소 발생 장치 및 방법{Apparatus and method for hydrogen generation}
본 발명은, 천연가스, 프로판 가스, 가솔린, 나프타, 등유, 메탄올, 바이오가스 등의 탄화수소계 화합물 가스와 물 및 공기 또는 산소를 원료로 하여, 연료전지 등의 수소 이용 기기에 대하여 수소를 공급하기 위한 수소 발생 장치 및 방법에 관한 것이다.
화석연료에 대체되는 에너지원의 유력후보의 하나로서, 수소가 주목되고 있지만, 그 유효 이용을 위해서는 수소 파이프라인 등의 사회 인프라의 정비가 필요하게 되고 있다. 그 하나의 방법으로서, 천연가스, 그 외 화석연료, 알콜 등을 현재 이미 구축되어 있는 운송, 반송 등의 인프라를 이용하여, 수소를 필요로 하는 장소에서 그 연료를 개질하여 수소를 발생시키는 방법이 검토되고 있다.
상기와 같은 수소 발생 장치로서, 예를 들면 하기의 특허문헌 1에 나타내는 것이 개시되어 있다. 이 수소 발생 장치는, 탄화수소가스와 수증기의 혼합가스를 원료로 하여 개질기에 도입하고, 촉매에 의한 개질 반응에 의해서 얻어진 수소 리치인(rich) 개질가스로부터 수소가스를 분리 정제하는 것이다. 이 수소 발생 장치는, 개질 반응이 흡열 반응이기 때문에, 개질기에 버너를 구비하고, 개질 반응에 필요한 열에너지를 외부로부터 공급하고 있다.
특허문헌 1 일본 공개특허공보 2002-53307호
발명의 개시
발명이 해결하고자 하는 과제
그렇지만, 상기 특허문헌 1의 수소 발생 장치에서는, 개질기 주위에 버너를 구비한 가열화로를 설치할 필요가 있기 때문에, 개질기 자체의 구조가 복잡하게 됨 과 동시에, 내열성이나 내압성을 갖게 하는 구조도 복잡하게 되어, 설비 비용이 비싸게 되는데다가, 보수에도 시간과 비용을 요하는 문제가 있다. 또한, 개질 반응에 필요한 열에너지를 외부로부터 공급하는 것이기 때문에, 열효율도 나쁘고, 에너지 비용도 비싸게 되고, 또한 질소산화물이나 유황산화물이 발생한다는 문제가 있다.
본 발명은, 이러한 문제를 해결하기 위해서 이루어진 것으로, 에너지 효율이 우수한 동시에, 설비 비용도 절감할 수 있는 수소 발생 장치 및 방법을 제공하는 것을 목적으로 한다.
과제를 해결하기 위한 수단
상기 목적을 달성하기 위해서, 본 발명의 수소 발생 장치는, 탄화수소계 가스를 개질하여 수소 리치인 개질가스를 생성하는 수소 발생 장치로서, 상기 탄화수소계 가스를 산소와 함께 촉매와 접촉 반응시켜 탄화수소가스의 연소와 개질을 하는 개질기와, 상기 개질기의 하류측에 설치된 개질가스로에서 개질가스와 탄화수소계 가스의 열 교환을 하여 상기 개질기에 도입하는 탄화수소계 가스를 가열하는 제 1 열 교환기를 구비한 것을 요지로 한다.
또한, 상기 목적을 달성하기 위해서, 본 발명의 수소 발생 방법은, 탄화수소계 가스를 개질하여 수소 리치인 개질가스를 생성하는 수소 발생 방법으로서, 상기 탄화수소계 가스를 산소와 함께 촉매와 접촉 반응시켜 탄화수소가스의 연소와 개질을 하는 개질 공정과, 상기 개질 공정의 하류측에 있어서, 개질가스와 탄화수소계 가스의 열 교환을 하여 상기 개질 공정에 도입하는 탄화수소계 가스를 가열하는 주 열교환 공정을 포함하는 것을 요지로 한다.
발명의 효과
본 발명은, 개질기에 있어서 상기 탄화수소계 가스를 산소와 함께 촉매와 접촉 반응시켜 탄화수소가스의 연소와 개질을 하고, 이 개질기의 하류측에 설치된 개질가스로에 있어서 개질가스와 원료가스의 열 교환을 하여 개질기에 도입하는 원료가스를 가열한다. 이와 같이, 개질에 필요한 열에너지를 버너 등에 의해서 외부로부터 공급하는 것은 아니며, 연소와 개질하여 얻어진 개질가스의 열에 의해서 개질기에 도입하는 원료가스를 가열하기 때문에, 에너지 효율이 극히 좋아진다. 또한, 개질기 주위에 버너를 구비한 가열 화로를 설치할 필요가 없어져, 개질기 자체의 구조가 단순화되고, 내열성이나 내압성을 갖게 하는 구조도 단순화되기 때문에, 설비 비용도 절감할 수 있다.
본 발명에 있어서, 상기 제 1 열 교환기는, 원료가스로서 탄화수소계 가스와 수증기의 혼합가스를 가열하는 것인 경우에는, 가열하기 위해서 비교적 큰 열에너지를 요하는 탄화수소가스와 수증기를 제 1 열 교환기에서 가열하고 나서 개질기에 도입하기 때문에, 원료가스를 개질기 입구에 필요한 가스 온도로 상승시킬 수 있다.
본 발명에 있어서, 상기 개질가스로의 제 1 열 교환기보다도 하류측에 있어서, 개질가스와 수증기가 되는 물과의 열 교환을 하여 상기 물을 가열하는 제 3 열 교환기와, 상기 가열된 물을 수증기로 하는 수증기 발생장치를 구비하고 있는 경우에는, 제 1 열 교환기에 있어서의 원료가스와의 열 교환으로, 어느 정도 온도가 저하된 개질가스를, 또한 제 3 열 교환기로 물과 열 교환함으로써, 에너지 효율을 더욱 향상시킬 수 있다.
본 발명에 있어서, 상기 개질가스로의 제 1 열 교환기보다도 하류측에 있어서, 개질가스와 탄화수소계 가스의 열 교환을 하여 탄화수소계 가스를 가열하는 제 2 열 교환기를 구비하고 있는 경우에는, 제 1 열 교환기에 있어서의 원료가스와의 열 교환으로, 어느 정도 온도가 저하된 개질가스를, 또한 제 2 열 교환기에서 탄화수소계 가스와 열 교환함으로써, 에너지 효율을 더욱 향상시킬 수 있다.
본 발명에 있어서, 상기 개질가스 중의 불순물을 흡착하는 흡착장치를 구비하고, 상기 흡착장치가 가압 진공 압력 변동 흡착장치(Pressure Swing Adsorption Apparatus)인 경우에는, 가압 진공 압력 변동 흡착장치는 가압상태에서 개질가스 중의 불순물을 흡착하여, 진공상태에서 흡착한 불순물의 탈착을 하기 때문에, 탈착을 대기압에서 행하는 가압 압력 변동식의 흡착장치와 비교하여, 탈착 후에 흡착재에 잔존하는 불순물이 현저하게 적어진다. 이 때문에, 탈착 종료 후의 제품 수소 가스 퍼지(purge)에 있어서 퍼지 가스량을 대폭 감소시킬 수 있고, 퍼지가스를 오프 가스로서 배출하는 양을 감소시킬 수 있다. 또한, 진공상태에서 탈착을 하기 때문에, 흡착재로의 불순물의 흡착량도 늘어나고, 그 만큼 흡착재의 충전량을 감소시킬 수 있는 결과, 퍼지가스량을 더욱 삭감하고, 오프 가스량을 감소시키는 것이 가능하게 된다. 또한, 흡착재의 충전량을 감소시키지 않은 경우, 1회의 흡착에서의 불순물의 흡착량을 늘릴 수 있는 결과, 압력 변동의 주기를 연장하고, 시간당의 퍼지 회수를 감소시킴으로써, 오프 가스량을 감소시킬 수 있다. 본 발명에서는 오프 가스를 연소처리할 수 있는 개질기 가열용의 버너를 구비하고 있지 않기 때문에, 오프 가스량을 감소시킴으로써 처리 효율을 향상시키는 효과가 극히 현저하다.
본 발명에 있어서, 상기 개질기에서는 Rh수식 (Ni-CeO2)-Pt 촉매를 사용함으로써, 탄화수소의 연소 반응과 개질 반응을 동일한 반응영역 내에서 동시에 행하도록 되어 있는 경우에는, 발열 반응인 연소 반응과 흡열 반응인 개질 반응을 동일한 반응영역 내에서 동시에 행함으로써, 연소 반응에서 발생한 열에너지를 개질 반응의 열원으로서 이용할 수 있기 때문에, 극히 에너지 효율이 좋아진다. 또한, 상기 반응영역에서는 발열 반응과 흡열 반응이 동시에 발생하기 때문에 열적인 중화가 생기고, 예를 들면, 개질기 내에 촉매연소 반응을 단독으로 행하는 영역을 설치하는 경우와 비교하여, 반응영역의 온도 상승이 상당히 억제되고, 개질기에 사용하는 내열재료의 선정이나 개질기 자체의 내열구조를 그다지 고온 사양의 것으로 하지 않아도 좋기 때문에, 설비 비용도 절감할 수 있다.
도 1은 본 발명이 적용되는 수소 발생 장치의 일 실시예를 도시하는 도면이다.
도 2는 본 발명이 적용되는 개질기의 일 실시예를 도시하는 단면도이다.
도 3은 상기 개질기의 제 2 예를 도시하는 단면도이다.
도 4는 상기 개질기의 제 3 예를 도시하는 단면도이다.
부호의 설명
1: 개질기 2: 원료 히터
3: 제 1 열 교환기 4: CO 변성기
5: 흡착장치 6: 스팀 히터
7: 탈황기 8: 예열 히터
9: 제 2 열 교환기 10: 원료가스 공급로
11: 제 3 열 교환기 12: 순수장치
13: 순수펌프 14: 제 4 열 교환기
15: 제 5 열 교환기 16: 순수 히터
17: 제 6 열 교환기 18: 기액 분리기
19: 압축기 20a: 제 1 흡착탑
20b: 제 2 흡착탑 21: 진공펌프
22: 천연가스 공급로 23: 물 공급로
23a: 스팀 공급로 24: 산소 공급로
25: 개질가스로 26: 변성가스로
27: 배수로 29: 제품가스로
31: 개질촉매 32: 촉매 시트
32a: 유통구멍 33: 외측 케이스
34: 내통 35: 도입통
36a: 플랜지 36b: 플랜지
36c: 플랜지 37: 단열공간
38: 지지받이통 39: 쟁반형 부재
40: 소정 빈틈 41: 연소촉매
42: 개질촉매
발명을 실시하기 위한 최량의 형태
다음으로, 본 발명을 실시하기 위한 최선의 형태를 설명한다.
도 1은, 본 발명이 적용되는 수소 발생 장치의 일례를 도시하는 구성도이다.
이 수소 발생 장치는, 탄화수소계 가스를 개질하여 수소 리치인 개질가스를 생성하는 수소 발생 장치이다. 상기 원료가스는, 일반적으로 프로판 가스나 도시가스와 같은 사회 인프라로서 공급되어 있는 탄화수소계 가스를 비롯하여, 천연가스, 메탄 등의 탄화수소계 가스를 사용할 수 있다. 이하의 설명에서는, 탄화수소계 가스로서 천연가스를 사용한 예를 설명한다.
이 수소 발생 장치는, 천연가스와 수증기와 산소를 원료가스로서 도입하여 천연가스의 개질을 하는 개질기(1)와, 상기 개질기(1)로부터 배출된 개질가스를 CO 변성하는 CO 변성기(4)와, CO 변성된 개질가스 중의 불순물을 흡착하는 흡착장치(5)를 구비하고 있다.
또한, 상기 수소 발생 장치는, 상기 개질기(1)에 공급하는 천연가스를 유통시키는 천연 가스 공급로(22)와, 개질기(1)에 도입하는 수증기를 발생시키기 위한 물을 공급하여 유통시키는 물공급로(23)와, 상기 개질기(1)에 산소를 도입하는 산소 공급로(24)를 구비하고 있다. 상기 물공급로(23)에는, 공급된 물을 수증기로 하는 스팀 히터(6)가 설치되어 있다.
상기 스팀 히터(6)로부터 수증기를 공급하는 스팀 공급로(23a)와 천연 가스 공급로(22)는, 원료가스 공급로(10)에 합류하고 있고, 또한 이 원료가스 공급로(10)에는 산소 공급로(24)가 합류하고 있다. 그리고, 상기 원료가스 공급로(10)가 개질기(1)에 접속되고, 천연가스와 수증기와 산소와의 혼합가스를 원료가스로 하여 개질기(1)에 도입하도록 되어 있다.
상기 개질기(1)에서 개질된 개질가스는, 개질가스로(25)를 유통하여 CO 변성기(4)에 도입되고, 상기 CO 변성기(4)에서 변성된 개질가스는, 변성가스로(26)를 유통하여 흡착장치(5)에 도입되도록 되어 있다. 흡착장치(5)에서 불순물이 흡착 제거된 수소가스는, 제품가스로(29)로부터 소정의 수소가스 사용 설비에 공급되도록 되어 있다.
상기 개질기(1)는, 상기 천연가스를 산소 및 수증기와 함께 개질촉매와 접촉 반응시켜 천연가스의 연소와 개질을 하는 것이다. 구체적으로는, 상기 개질기(1) 에는, Rh수식 (Ni-CeO2)-Pt 촉매가 사용되고, 이 1종류의 촉매에 의해, 탄화수소의 연소 반응과 개질 반응을 동일한 반응영역 내에서 동시에 행하도록 되어 있다.
상기 개질기(1)는, 도 2에 도시하는 바와 같이, 내통(34)과 외측 케이스(33)의 이중구조로 되어 있고, 상기 내통(34)의 내부에 개질촉매(31)가 배치되고, 내통(34)내의 1개의 반응영역에서 탄화수소의 연소 반응과 개질 반응을 동일한 반응영역 내에서 동시에 행하도록 되어 있다.
이와 같이, 발열 반응인 연소 반응과 흡열 반응인 개질 반응을 동일한 반응영역 내에서 동시에 행함으로써, 연소 반응에서 발생한 열에너지를 개질 반응의 열원으로서 이용할 수 있기 때문에, 극히 에너지 효율이 좋아진다. 또한, 상기 반응영역에서는 발열 반응과 흡열 반응이 동시에 발생하기 때문에 열적인 중화가 일어나고, 예를 들면, 개질기(1)내에 촉매연소 반응을 단독으로 행하는 영역을 형성하는 경우와 비교하여, 반응영역의 온도 상승이 상당히 억제되고, 개질기(1)에 사용하는 내열재료의 선정이나 개질기(1) 자체의 내열구조를 그다지 고온 사양의 것으로 하지 않아도 좋아지기 때문에, 설비 비용도 절감할 수 있다. 또, 개질기(1)의 상세에 대해서는 후술한다.
상기 개질기(1)의 하류측에서 개질기(1)와 CO 변성기(4)를 접속하는 개질가스로(25)에는, 개질가스와 원료가스 공급로(10)를 유통하는 원료가스의 열 교환을 하여 상기 개질기(1)에 도입하는 원료가스를 가열하는 제 1 열 교환기(3)가 설치되어 있다. 이 제 1 열 교환기(3)는, 원료가스로서 천연가스와 수증기의 혼합가스를 가열한다.
이와 같이, 개질에 필요한 열에너지를 버너 등에 의해서 외부로부터 공급하는 것은 아니고, 연소와 개질을 하여 얻어진 개질가스의 열에 의해서 개질기(1)에 도입하는 원료가스를 가열하기 때문에, 극히 에너지 효율이 좋아진다. 또한, 개질기(1) 주위에 버너를 구비한 가열화로를 설치할 필요가 없어져, 개질기(1) 자체의 구조가 단순화하고, 내열성이나 내압성을 갖게 하는 구조도 단순화하기 때문에 설비 비용도 절감할 수 있다.
또한, 상기 제 1 열 교환기(3)에서는, 탄화수소계 가스와 수증기의 혼합가스를 가열하기 위해서, 비교적 큰 열에너지를 요하는 탄화수소가스와 수증기를 제 1 열 교환기(3)에서 가열하고나서 개질기(1)에 도입하기 때문에, 원료가스를 개질기(1) 입구에 필요한 가스온도로 상승시킬 수 있다.
또한, 상기 제 1 열 교환기(3)를 후술하는 다른 열 교환기보다도 가장 개질기(1)에 가까운 상류측에 배치하고 있다. 이로써, 개질기(1)에 도입하기 직전에서 가장 고온으로 가열해야 하는 원료가스가, 가장 상류측의 제 1 열 교환기(3)에서 가열되기 때문에, 원료가스를 충분히 고온으로 하고나서 개질기(1)에 도입할 수 있고, 원료가스를 개질기(1) 입구에 필요한 가스 온도로 상승시킬 수 있다.
상기 원료가스 공급로(10)에는, 개질기(1)에 도입하는 원료가스를 가열하는 원료 히터(2)가 설치되어 있다. 이로써, 수소 발생 장치의 가동 초기에 있어서, 개질기(1)가 충분히 온도 상승하고 있지 않고, 제 1 열 교환기(3)에서의 원료가스의 가열을 충분히 행할 수 없는 단계에, 상기 원료 히터(2)에 의해서 원료가스를 가열할 수 있고, 장치의 가동 초기에 있어서도, 개질기(1)내의 승온 부족으로부터 개질 반응이 저하하는 것을 방지하여 충분한 개질 반응을 보장할 수 있다.
상기 개질가스로(25)의 제 1 열 교환기(3)보다도 하류측에는, 천연 가스 공급로(22)를 유통하는 천연가스와 개질가스의 열 교환을 하여 천연가스를 가열하는 제 2 열 교환기(9)가 설치되어 있다. 이렇게 함으로써, 제 1 열 교환기(3)에 있어서의 원료가스와의 열 교환으로, 어느 정도 온도가 저하된 개질가스의 열을, 또한 제 2 열 교환기(9)에서 천연가스와 열 교환함으로써, 에너지 효율을 더욱 향상시킬 수 있다.
또한, 상기 개질가스로(25)의 제 1 열 교환기(3)보다도 하류측에서 상기 제 2 열 교환기(9)보다도 하류측에는, 수증기가 되는 물공급로(23)를 유통하는 물과 개질가스의 열 교환을 하여 상기 물을 가열하는 제 3 열 교환기(11)가 설치되어 있다. 이렇게 함으로써, 제 1 열 교환기(3)에 있어서의 원료가스와의 열 교환과, 제 2 열 교환기(9)에 의한 천연가스와의 열 교환으로, 어느 정도 온도가 저하된 개질가스의 열을, 또한 제 3 열 교환기(11)에서 물과 열 교환함으로써, 에너지 효율을 더욱 향상시킬 수 있다.
상기 천연 가스 공급로(22)의 제 2 열 교환기(9)보다도 하류측에는, 제 2 열 교환기(9)에서 가열된 천연가스를 더욱 예열하는 예열 히터(8)와, 예열 히터(8)에서 예열된 천연가스로부터 유황 첨가물을 제거하는 탈황기(7)가 설치되어 있다. 또, 상기 탈황기(7)로서는, 특히 한정하지 않으며, 흡착재에 물리흡착하는 것이어도 좋고, 물을 첨가하여 황을 제거(수첨탈황;水添脫黃)하는 것도 좋다.
또한, 상기 물공급로(23)의 제 3 열 교환기(11)보다도 하류측에는, 상기 제 3 열 교환기(11)에서 가열된 물을 수증기로 하는 스팀 히터(수증기 발생장치; 6)가 설치되어 있다. 그리고, 스팀 히터(6)로부터 연장되는 스팀 공급로(23a)의 선단과 탈황기(7)로부터 연장되는 천연가스 공급로(2)의 선단이 원료가스 공급로(10)에 합류하여 제 1 열 교환기(3)에 접속되고 있다.
또한, 상기 물공급로(23)에는, 공급된 수도물을 순수로 하는 순수장치(12)와, 상기 순수장치(12)로부터 배출된 순수를 압송하는 순수펌프(13)를 설치할 수 있다. 또한, 상기 천연 가스 공급로(22)에는, 공급원으로부터 공급된 천연가스를 압송하기 위한 압축기(19)가 설치되어 있다.
또한, 상기 CO 변성기(4)로부터 배출된 개질가스를 유통시키는 변성가스로(26)에는, 순수펌프(13)에서 압송되어 물공급로(23)를 유통하는 물과, 변성가스로(26)를 유통하는 개질가스와의 사이에서 열 교환을 하여 상기 물을 가열하는 제 4 열 교환기(14) 및 제 5 열 교환기(15)가 설치되어 있다.
상기 물공급로(23)에는, 제 5 열 교환기(15)의 하류측에서 제 4 열 교환기(14)의 상류측에, 순수를 가열하는 순수 히터(16)가 설치되어 있다. 그리고, 순수펌프(13)에서 보내진 물은, 제 5 열 교환기(15), 순수 히터(16), 제 4 열 교환기(14)에서 예열된 후, 상기 제 3 열 교환기(11)에 도입되도록 되어 있다.
또한, 상기 변성가스로(26)에는, 상기 제 4 열 교환기(14), 제 5 열 교환기(15)보다도 더 하류측에, 압축기(19)에서 압축되어 보내지는 천연가스와, 변성가스로(26)를 유통하는 개질가스와의 사이에서 열 교환을 하여 상기 천연가스를 가열 하는 제 6 열 교환기(17)가 설치되어 있다. 그리고, 압축기(19)에서 보내진 천연가스는, 제 6 열 교환기(17)에서 예열된 후, 상기 제 2 열 교환기(9)에 도입되도록 되어 있다.
이와 같이, CO 변성기(4)로부터 배출되는 개질가스의 열을 이용하여 공급된 물 및 천연가스를 예열하도록 되어 있기 때문에, 열효율이 더욱 좋아진다.
상기 변성가스로(26)의 상기 제 6 열 교환기(17)보다도 더 하류측에는, 개질가스 중에 잔류한 수증기를 분리 제거하는 기액 분리기(18)가 설치되어 있다. 기액 분리기(18)에서 분리 제거된 물은 배수로(27)로부터 배수된다.
상기 기액 분리기(18)의 하류측에는, 상기 개질가스 중의 불순물인 CO나 CO2를 흡착하는 흡착장치(5)가 설치되어 있다.
상기 흡착장치는, 각각 흡착재가 충전된 제 1 흡착탑(20a)과 제 2 흡착탑(20b)이 병렬로 존재하는 압력 변동식의 흡착장치이고, 한쪽의 흡착탑을 고기압상태로 하여 개질가스를 유통시켜 흡착재에 불순물을 흡착시키고 있는 동안, 다른쪽의 흡착탑을 진공펌프(21)에서 진공빼냄으로써 흡착재에 흡착된 불순가스를 탈착하는 진공 탈착을 하는 가압 진공 압력 변동식의 흡착장치이다. 또, 도시한 예는 흡착탑이 2개이지만, 흡착탑은 3개 이상이어도 좋다.
이와 같이, 가압 진공 압력 변동식의 흡착장치(5)는, 가압상태에서 개질가스 중의 불순물을 흡착하여, 진공상태에서 흡착한 불순물의 탈착을 하기 때문에, 탈착을 대기압에서 행하는 가압 압력 변동식의 흡착장치와 비교하여, 탈착 후에 흡착재 에 잔존하는 불순물이 현저하게 적어진다. 이 때문에, 탈착 종료 후의 제품 수소 가스 퍼지에 있어서 퍼지가스량을 대폭 감소시킬 수 있고, 퍼지가스를 오프 가스로서 배출하는 양을 감소시킬 수 있다. 또한, 진공상태에서 탈착을 하기 때문에, 흡착재로의 불순물의 흡착량도 늘어나고, 그 만큼 흡착재의 충전량을 감소시킬 수 있는 결과, 퍼지가스량을 더욱 감소시키고, 오프 가스량을 감소시킬 수 있게 된다. 또한, 흡착재의 충전량을 감소시키지 않는 경우, 1회의 흡착에서의 불순물의 흡착량을 늘릴 수 있는 결과, 압력 변동의 주기를 연장하고, 시간당의 퍼지 회수를 감소시킴으로써, 오프 가스량을 감소시킬 수 있다. 본 발명에서는 오프 가스를 연소처리할 수 있는 개질기 가열용 버너를 구비하고 있지 않기 때문에, 오프 가스량을 감소시킴으로써 처리 효율을 향상시키는 효과가 극히 현저하다.
여기에서, 상기 개질기(1)에 관해서 상세하게 설명한다.
상기 개질기(1)는, 도 2에 도시하는 바와 같이, 상류단에서 도입된 원료가스를 개질하여 하류단에 개질가스를 배출하는 내통(34)과, 상기 내통(34)과 소정의 단열공간(37)을 사이를 둔 상태에서 내통(34)을 수용하는 외측 케이스(33)를 구비하고, 내통(34)과 외측 케이스(33)의 이중 구조로 되어 있고, 상기 내통(34)의 내부에 개질촉매(31)가 배치되어 있다. 또, 도시한 상측이 상류측이고, 하측이 하류측이다.
상기 외측 케이스(33)는, 바닥이 있는 통모양으로 상단부의 둘레 가장자리에는 쟁반형의 플랜지(36a)가 돌출되어 형성되어 있다. 또한, 상기 플랜지(36a)의 상측에는, 마찬가지로 쟁반형의 플랜지(36b)가 배치되고, 이 플랜지(36b)에는, 통 형의 도입통(35)이 외측 케이스와 대략 동심이 되도록 배치되어 있다.
상기 도입통(35)은, 외측 케이스(33)보다도 소직경으로 내부에 수용된 내통(34)과 대략 같은 직경으로 설정되어 있고, 플랜지(36b)에 접합되어 고정되고, 플랜지(36b)보다도 상류측으로 돌출하고 있다. 상기 도입통(35)의 상류측의 단부개구는 플랜지(36c)로 덮여 있고, 이 플랜지(36c)에 원료가스 공급로(10)가 접속되고, 도입통(35)의 내부공간에 천연가스와 수증기와 산소의 혼합가스인 원료가스가 공급되도록 되어 있다.
한편, 상기 외측 케이스의 바닥부에는, 개질가스를 유통시키는 개질가스로(25)가 접속되어 있고, 이 개질가스로(25)에, 제 1 열 교환기(3), 제 2 열 교환기(9)가 설치되어 있다(제 3 열 교환기(11)는 도시하지 않음).
또한, 상기 외측 케이스의 바닥부에는, 내통(34)이 끼워져 삽입하는 지지받이통(38)이 내부방향을 향하여 돌출하도록 설치되어 있다. 이 지지받이통(38)의 상부에는, 다수의 유통구멍(32a)이 천공되어 촉매(31)가 재치되는 촉매 시트(32)가 설치되어 있다.
그리고, 상기 내통(34)은, 원료가스의 상류단에 있어서 외측 케이스(33)에 대하여 고정되어 있다. 즉, 내통(34)의 상류측의 단부는, 도입통(35)의 하류단에 용접되어 접합되어 고정되어 있다. 이 상태에서, 상기 촉매 시트(32)상에 촉매(31)가 재치되고, 내통(34)의 상기 고정단과 반대측의 하류단이 지지받이통(38)에 외측에서 끼워져서 삽입되고 있다.
이 상태에서 상기 내통(34)과 촉매 시트(32) 및 지지받이통(38)은 고정되어 있지 않고, 내통(34)은 촉매 시트(32) 및 지지받이통(38)에 대하여 슬라이딩할 수 있게 되고 있다. 또한, 내통(34)의 고정단과 반대측의 하류단은 외측 케이스(33)와의 사이에 소정 빈틈(40)을 갖고 외측 케이스(33)에 고정되어 있지 않다.
또한, 상기 내통(34)과 외측 케이스(33) 사이의 단열공간(37)에는, 도시하지 않은 단열재가 충전되어 있다.
상기 외측 케이스(33), 도입통(35), 플랜지(36a, 36b, 36c)는, 내압구조를 갖게 하기 위해서 소정의 압력에 견딜 수 있는 두께를 갖는 스테인리스재로 구성되어 있다. 한편, 내통(34)에는, 개질 반응의 고온에 견딜 수 있도록 인코넬(inconel) 등의 내열합금이 사용된다. 이 때, 외측 케이스(33)가 내압구조이기 때문에, 내통(34)은 내압 설계를 할 필요가 없기 때문에, 외측 케이스(33) 등을 구성하는 부재보다 약한 판압으로 설정된다.
이러한 구조에 의해, 상기 개질기(1)에서는, 원료가스 공급로(10)로부터 공급된 원료가스를 내통(34)내에서 촉매(31)와 접촉시켜서 개질하여, 얻어진 개질가스를 내통(34)으로부터 유통구멍(32a), 지지받이통(38)을 통과시켜서 개질가스로(25)에 보내도록 되어 있다.
상기 촉매(31)로서는, Rh수식 (Ni-CeO2)-Pt 촉매가 사용되고, 이 1종류의 촉매에 의해, 탄화수소의 연소 반응과 개질 반응을, 내통(34)내의 1개의 반응영역에서 탄화수소의 연소 반응과 개질 반응을 동일한 반응영역 내에서 동시에 행하도록 되어 있다.
상기 개질기(1)는, 내부에 촉매가 배치되어 상류단으로부터 도입된 원료가스를 개질하여 하류단에 개질가스를 배출하는 내통(34)과, 상기 내통(34)과 소정의 단열공간(37)을 사이를 막은 상태에서 내통(34)을 수용하는 외측 케이스(33)를 구비하고 있기 때문에, 개질가스가 유통하여 내통(34)의 내부가 고온이 되었다고 해도, 단열공간(37)을 개재하여 외측 케이스(33)가 존재하기 때문에, 내통(34)과 비교하여 외측 케이스(33)는 그다지 고온으로 되지 않는다. 따라서, 내통(34)에만 고온내구성이 있는 재료를 사용하고, 외측 케이스(33)에는 스테인리스 등의 비교적 저가인 재료를 사용하는 것이 가능해져, 설비 비용을 대폭 억제하는 것이 가능해진다. 또한, 외측 케이스(33)를 내압구조로 함으로써 내통(34)의 내압성을 고려할 필요가 없어지기 때문에, 비교적 고가의 고온 내구 재료로 형성되는 내통(34)의 두께를 저감하는 것이 가능해지기 때문에, 설비 비용을 한층 더 억제하는 것이 가능해진다.
더욱이, 상기 내통(34)은, 원료가스의 상류단에 있어서 외측 케이스(33)에 대하여 고정되고, 그 고정단과 반대측의 단부는 외측 케이스(33)와의 사이에 소정 빈틈(40)을 갖고 외측 케이스(33)에 고정되어 있지 않기 때문에, 내통(34)이 고온으로 되어 열 팽창하고, 온도 상승이 억제된 외측 케이스(33)와의 사이에서 크게 열팽창의 차가 생겼다고 해도, 내통(34)과 외측 케이스(33)의 열 팽창차는, 외측 케이스(33)와 내통(34) 사이의 상기 소정 빈틈(40)으로 흡수된다. 따라서, 고온이 되는 내통(34)과 비교적 저온의 외측 케이스(33) 사이의 응력 집중이 생기는 경우가 없고, 종래 문제가 되었던 가동정지의 반복으로 크리프(creep) 피로 파괴를 발 생하는 경우가 없어진다.
또한, 상기 개질기(1)에서는 상기 내통(34)의 고정단이 상류단이기 때문에, 내통(34)의 고정단에서의 접합부의 손상을 미연에 방지할 수 있다. 즉, 외측 케이스(33)에 대하여 고정된 내통(34)의 고정단과 반대측의 단부가 상류단이며, 원료가스가 흘렀을 때에 상기 단부와 외측 케이스(33) 사이의 소정 빈틈(40)의 부분에서 원료가스의 흐름이 흐트러져, 내통(34) 자체에 진동은 발생하고, 고정단에 응력이 가해져 그 접합부가 손상하기 쉽지만, 상기 고정단을 상류단으로 하여 상기 소정 빈틈(40)을 하류측에 배치함으로써, 원료가스의 흐름을 원활하게 하여 내통(34)의 진동을 방지하여, 고정단에 가해지는 응력을 대폭 저감하고 그 접합부의 손상이 방지된다.
더욱이, 상기 개질기(1)에서는, 상기 외측 케이스(33)에 설치된 지지받이통(38)이, 상기 내통(34)의 고정단과 반대측의 단부에 있어서 내통(34)과 끼워져 삽입하여 내통(34)의 상기 단부의 어긋남을 방지하는 어긋남 방지부재로서 기능한다. 이 때문에, 내통(34)의 고정단에서의 접합부의 손상을 미연에 방지할 수 있다. 즉, 외측 케이스(33)에 대하여 고정된 내통(34)의 고정단과 반대측의 단부가 자유단으로 되어 있으면, 개질기(1) 자체에 외력이 가해진 경우에 내통(34) 자체가 진동하여, 고정단에 큰 응력이 가해지고, 그 접합부가 손상되기 쉽지만, 상기 고정단과 반대측의 단부에 끼워져 삽입하는 지지받이통(38; 어긋남 방지부재)을 설치함으로써, 개질기(1)에 외력이 가해졌다고 해도, 내통(34)의 진동이 방지되고, 고정단에 가해지는 응력을 대폭 저감하고, 그 접합부의 손상을 방지할 수 있다.
또, 상술한 예에서는, 상기 내통(34)의 고정단을 상류단으로 한 경우를 설명하였지만, 상기 내통(34)은, 원료가스의 상류단과 하류단 중 어느 일단측에 있어서 외측 케이스(33)에 대하여 고정되어 있으면, 본 발명에 포함하는 취지이다.
도 3은, 본 발명이 적용되는 개질기(1)의 제 2 예이다. 이 예에서는, 내통(34)의 내부에 용접으로 촉매 시트(32)가 고정되고 촉매(31)가 재치되어 있다. 또한, 외측 케이스(33)가 통형으로 형성되고, 내통(34)의 하류단이 제 1 열 교환기(3)내에 크게 개구하고 있다. 그리고, 외측 케이스(33)의 하류단 근처의 부분에는, 내측을 향하여 돌출하는 쟁반형 부재(39)가 장착되어 있고, 이 쟁반형 부재(39)가 어긋남 방지부재로서 기능하고 있다. 그 이외는 상기 제 1 예와 같고, 같은 부분에는 같은 부호를 붙이고 있다.
상기 수소 발생 장치에 의해, 예를 들면, 다음과 같이 하여 수소의 발생이 행하여진다.
즉, 원료로서 공급된 천연가스는, 압축기(19)에서 압축되어 천연 가스 공급로(22)를 유통하는 과정에서, 제 6 열 교환기(17)에서 변성가스로(26)를 유통하는 개질가스와 열 교환되어 가열되고, 제 2 열 교환기(9)에서 개질가스로(25)를 유통하는 개질가스와 열 교환되어 가열된다. 더욱이, 예열히터(8)에서 가열되어 탈황기(7)에서 유황 첨가물이 제거되어 원료가스 공급로(10)에 도입된다.
한편, 원료로서 공급된 수도물은, 순수장치(12)에서 순수로 하고 나서 순수펌프(13)에서 압송되어 물공급로(23)를 유통한다. 그 과정에서, 제 5 열 교환기(15), 제 4 열 교환기(14)에서 변성가스로(26)를 유통하는 개질가스와 열 교환되 어 가열되고, 순수 히터(16)에서도 가열되고, 또한, 제 3 열 교환기(11)에서 개질가스로(25)를 유통하는 개질가스와 열 교환되어 가열되고, 스팀 히터(6)에서 스팀화되어 스팀 공급로(23a)를 지나서 원료가스 공급로(10)에 도입된다.
원료가스 공급로(10)에 도입된 천연가스와 수증기는, 원료가스로를 유통하는 동안에 혼합가스가 되고, 제 1 열 교환기(3)에서 개질가스로(25)를 유통하는 개질가스와 열 교환되어 가열된다. 이 원료가스 공급로(10)에는, 또한 산소 공급로(24)에 공급된 산소가 도입되고, 천연가스와 수증기와 산소의 혼합가스가 원료가스로서 개질기(1)에 공급된다.
개질기(1)에서는, Rh수식 (Ni-CeO2)-Pt 촉매에 의해, 탄화수소의 연소 반응과 개질 반응을, 내통(34)내의 1개의 반응영역으로 탄화수소의 연소 반응과 개질 반응 과 같은 반응영역 내에서 동시에 행하여진다.
즉, 탄화수소의 일부를 완전연소시켜 탄화수소를 CO와 H2O로 변환시키는 연소 반응과, 이 연소 반응에 의해 생성한 CO2 및 H2O의 각각을 더욱 나머지의 탄화수소와 반응시켜 H2와 CO로 변환시키는 개질 반응을, 상기 촉매 상에서 진행시켜, 탄화수소를 H2와 CO로 변환시키는 것이다.
예를 들면, 탄화수소가 메탄인 경우를 예로 들어 설명하면, 그 반응은 전체로서 하기의 식(1)과 같이 나타내어지지만, 실제는 식(2) 내지 식(4)와 같이, 연소 반응에서 생성한 CO2와 H2O가 더욱 CH4과 개질 반응을 일으켜 CO와 H2로 변환한다는 순차 반응으로 되어 있다.
CH4+2O2 →4CO+8H2 (1)
CH4+2O2 →CO2+2H2O (2)
CH4+ CO2 →2CO+2H2 (3)
2CH4+2H2O →2CO+6H2 (4)
상기 CH4와 O2의 접촉 반응에 있어서는, 또한 시스템(系)에 CO2나 2H2O를 공급할 수도 있다. 이 경우는, CO2나 2H2O의 공급량에 알맞은 O2의 공급량을 감소시킬 수 있다.
반응온도는 350 내지 800℃, 특히 400 내지 750℃ 정도가 적당하다. 반응온도는 CH4과 O2의 반응에 의해서 일부 보충되지만, 부족분은 외부 가열하는 것이 된다. 반응온도가 너무 낮을 때는 CH4의 개질 반응 자체가 원활하게 진행하지 않고, 한편 반응온도가 너무 높을 때는, 열에너지적으로 불리하게 되는 데다가, CH4의 열분해에 의한 카본의 석출이 발생하는 경향이 있다. 반응압력은 통상은 가압조건이 채용되지만, 상압이라도 좋다.
이 개질 공정에 의해서 얻어지는 개질가스의 조성은, 드라이 베이스로 대략70%H2+15%CO+15%CO2, 잔여부는 불순물이다. 이 개질 공정은, 촉매상의 발열 반응이고, 출구 부분의 개질가스의 온도는, 약 700 내지 800℃ 정도이다.
상기 Rh수식 (Ni-CeO2)-Pt 촉매는, 예를 들면, 적당한 공극율을 갖는 알루미나 담체 표면에 Rh를 담지시키고, 이어서 Pt를 담지시키고, 또한 Ni와 CeO2를 동시담지시킴으로써 얻어진다. 단, 담체의 재질이나 형상의 선택, 피복물 형성의 유무 또는 그 재질의 선택은, 여러가지 변화가 가능하다.
Rh의 담지는, Rh의 수용성염의 수용액을 함침 후, 건조, 소성, 수소 환원함으로써 행하여진다. 또한, Pt의 담지는, Pt의 수용성염의 수용액을 함침 후, 건조, 소성, 수소 환원함으로써 행하여진다. Ni 및 CeO2의 동시 담지는, Ni의 수용성염 및 Ce의 수용성염의 혼합수용액을 함침 후, 건조, 소성, 수소 환원함으로써 행하여진다.
위에 예시한 순서에 따라, 목적으로 하는 Rh수식 (Ni-CeO2)-Pt 촉매가 얻어진다. 각 성분의 조성은 중량비로, Rh:Ni:CeO2:Pt=(0.05-0.5):(3.0-10.0):(2.0-8.0):(0.3-5.0), 바람직하게는, Rh:Ni:CeO2:Pt=(0.1-0.4):(4.0-9.0):(2.0-5.0): (0.3-3.0)에 설정하는 것이 바람직하다.
또, 상기에 있어서의 각 단계에서의 수소 환원 처리를 생략하고, 실제의 사용 시에 촉매(31)를 고온에서 수소 환원하여 사용할 수도 있다. 각 단계에서 수소환원처리를 하였을 때도, 또한 사용 시에 촉매(31)를 고온에서 수소 환원하여 사용할 수 있다.
상기 CO 변성기(4)에서는, 개질가스 중의 CO를 CO2로 변성하는 CO 변성공정 이 행하여진다.
즉, 개질가스에 포함되는 약 15%의 CO 중 약 10수%의 CO와 스팀(H2O)을 하기의 반응식과 같이 반응시켜 CO2와 H2로 변성한다. 이 CO 변성공정을 거침으로써, 개질가스의 조성은, 드라이 베이스로 대략 77%H2+22%CO2+1%CO+잔여부 불순물이 된다.
CO+H2O →CO2+H2
또, 필요에 따라서, 상기 CO 변성기(4)의 하류측에, CO 변성공정을 거쳐서 잔류한 CO를 산화시켜 CO2로 하는 CO 선택산화기를 설치하여도 좋다. 즉, CO와 공기 중의 O2를 하기의 반응식과 같이 반응시켜 CO2로 한다. 이 CO 선택산화에 의해, 잔류하는 CO분은 lOppm 이하가 되고, 개질가스의 조성은, 대략 77%H2+23%CO2+잔여부 불순물이 되어, 연료전지 등의 수소가스 이용 설비에 대하여 공급된다.
2CO+O2 →2CO2
또한, 상술한 예에서는, 개질촉매로서 Rh수식 (Ni-CeO2)-Pt 촉매를 사용한 예를 나타내었지만, 탄화수소의 연소 반응과 개질 반응을 동일한 반응영역 내에서 동시에 행할 수 있는 것이면, 다른 촉매를 사용할 수도 있다.
이상과 같이, 상기 수소 발생 장치 및 방법은, 발열 반응인 연소 반응과 흡열 반응인 개질 반응을 동일한 반응영역 내에서 동시에 행함으로써, 연소 반응에서 발생한 열에너지를 개질 반응의 열원으로서 이용할 수 있기 때문에, 극히 에너지 효율이 좋아진다. 더욱이, 상기 반응영역에서는 발열 반응과 흡열 반응이 동시에 발생하기 때문에 열적인 중화가 일어나고, 예를 들면, 개질기(1)내에 촉매연소 반응을 단독으로 행하는 영역을 설치하는 경우와 비교하여, 반응영역의 온도 상승이 상당히 억제되고, 개질기(1)에 사용하는 내열재료의 선정이나 개질기(1) 자체의 내열구조를 그다지 고온 사양인 것으로 하지 않아도 되기 때문에, 설비 비용도 절감할 수 있다.
또한, 상기 개질기(1)는, 개질가스가 유통하여 내통(34)의 내부가 고온이 되었다고 해도, 단열공간(37)을 개재하여 외측 케이스(33)가 존재하기 때문에, 내통(34)과 비교하여 외측 케이스(33)는 그다지 고온이 되지 않는다. 따라서, 내통(34)에만 고온 내구성이 있는 재료를 사용하여, 외측 케이스(33)에는 스테인리스등의 비교적 저가인 재료를 사용하는 것이 가능해져, 설비 비용을 대폭 억제하는 것이 가능해진다. 또한, 외측 케이스(33)를 내압구조로 함으로써 내통(34)의 내압성을 고려할 필요가 없어지기 때문에, 비교적 고가의 고온 내구 재료로 형성되는 내통(34)의 두께를 저감시키는 것이 가능해지기 때문에, 설비 비용을 한층 더 억제하는 것이 가능해진다. 더욱이, 내통(34)이 고온으로 되어 열팽창하여, 온도 상승이 억제된 외측 케이스(33)와의 사이에서 크게 열팽창의 차가 생겼다고 해도, 내통(34)과 외측 케이스(33)의 열팽창차는, 외측 케이스(33)와 내통(34)과의 사이의 상기 소정 빈틈(40)으로 흡수된다. 따라서, 고온이 되는 내통(34)과 비교적 저온의 외측 케이스(33)와의 사이의 응력 집중이 생기는 경우가 없고, 종래 문제로 되 어 있었던 기동정지의 반복으로 크리프 피로 파괴를 발생하는 경우가 없어진다.
도 4는, 본 발명이 적용되는 개질기(1)의 제 3 예이다. 이 예는, 소위 오토 서멀(thermal) 방식의 개질을 하는 것이며, 상술한 Rh수식 (Ni-CeO2)-Pt 촉매 등에 의해, 탄화수소의 연소 반응과 개질 반응을 동일한 반응영역 내에서 동시에 하는 것은 아니고, 촉매로서 원료가스의 상류측에 연소촉매(41)가 배치되고, 그 하류측에 개질촉매(42)가 배치되어 있다.
이 개질기(1)에서는, 개질촉매(42)에서의 개질 반응에 필요한 열에너지는, 원료가스를 연소촉매(41)에 의해서 연소한 연소에너지에 의해서 보충되도록 되어 있다.
원료가스로서, 예를 들면, 메탄을 사용하여, 이 메탄의 일부를 양논비 이하에서 연소시킨 경우, 연료가스는 이하의 반응이 된다.
CH4+1/2O2=2H2+CO···(1)
CH4+2O2= CO2+2H2O···(2)
이 때의 반응은 발열 반응이고, 연료전지로 필요로 되는 수소가 발생한다는 이점이 있다.
원료가스의 일부가 연소촉매로 부분 연소되어 식(1) 및 식(2)의 반응에 의해 수소가 발생하는 과정에서, 식(2)의 반응에서 발생한 증기는, 나머지의 원료가스와 반응하여, 다음식의 개질 반응에 의해, 수소가 발생한다.
CH4+ H2O=3H2+ CO···(3)
즉, 개질촉매에 있어서 증기와 나머지의 원료가스가 반응하면, 수소 리치인 개질가스가 생성되게 된다.
그 이외는, 상술한 실시예와 같으며 같은 작용 효과를 나타낸다.
본 발명은, 가정용 연료 전지용의 수소 발생 장치에 적용될 수 있을 뿐만 아니라, 자동차용, 플랜트(plant)용 그 밖의 연료전지용의 수소 발생 장치에도 적용할 수 있고, 연료전지 이외의 수소가스 이용 설비에 대하여 수소가스를 공급하기 위한 수소 발생 장치에도 적용할 수 있다.

Claims (6)

  1. 탄화수소계 가스를 개질하여 수소 리치인 개질가스를 생성하는 수소 발생 장치로서,
    상기 탄화수소계 가스를 수증기 및 산소와 함께 촉매와 접촉 반응시켜 탄화수소가스의 연소 반응과 개질 반응을 동일한 반응영역 내에서 행하는 개질기와,
    상기 개질기의 하류측에 설치된 개질가스로에 있어서 개질가스와 탄화수소계 가스의 열 교환을 하여 상기 개질기에 도입하는 탄화수소계 가스를 가열하는 제 1 열 교환기를 구비하고,
    상기 제 1 열 교환기에 원료가스로서 탄화수소계 가스와 수증기와의 혼합가스를 도입하여 가열하고, 상기 제 1 열 교환기에서 가열되어 나온 혼합가스에 산소를 합류시켜서 개질기에 도입하도록 한 것을 특징으로 하는 수소 발생 장치.
  2. 제 1 항에 있어서,
    상기 제 1 열 교환기 이외의 열 교환기를, 상기 제 1 열 교환기보다도 개질가스의 하류측에 배치한 수소 발생 장치.
  3. 제 2 항에 있어서,
    상기 개질가스로의 제 1 열 교환기보다도 하류측에 있어서, 개질가스와 수증기가 되는 물과의 열 교환을 하여 상기 물을 가열하는 제 3 열 교환기와, 상기 가 열된 물을 수증기로 하는 수증기 발생장치를 구비하고 있는 수소 발생 장치.
  4. 제 3 항에 있어서,
    상기 개질가스로의 제 1 열 교환기보다도 하류측에 있어서, 개질가스와 탄화수소계 가스와의 열 교환을 하여 탄화수소계 가스를 가열하는 제 2 열 교환기를 구비하고 있는 수소 발생 장치.
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
    상기 개질가스 중의 불순물을 흡착하는 흡착장치를 구비하고, 상기 흡착장치가 가압 진공 압력 변동 흡착장치인 수소 발생 장치.
  6. 탄화수소계 가스를 개질하여 수소 리치인 개질가스를 생성하는 수소 발생 방법으로서,
    상기 탄화수소계 가스를 수증기 및 산소와 함께 촉매와 접촉 반응시켜 탄화수소가스의 연소 반응과 개질 반응을 동일한 반응영역 내에서 행하는 개질 공정과,
    상기 개질 공정의 하류측에서, 개질가스와 탄화수소계 가스의 열 교환을 하여 상기 개질 공정에 도입하는 탄화수소계 가스를 가열하는 주 열교환 공정을 포함하고,
    상기 주 열교환 공정에서 원료가스로서 탄화수소계 가스와 수증기와의 혼합가스를 도입하여 가열하고, 상기 주 열교환 공정에서 가열되어 나오는 혼합가스에 산소를 합류시켜서 개질기에 도입하도록 한 것을 특징으로 하는 수소 발생 방법.
KR1020077018208A 2005-01-28 2006-01-25 수소 발생 장치 및 방법 KR101241848B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2005-00020910 2005-01-28
JP2005020910A JP5165832B2 (ja) 2005-01-28 2005-01-28 水素発生装置および方法
PCT/JP2006/301608 WO2006080544A1 (ja) 2005-01-28 2006-01-25 水素発生装置および方法

Publications (2)

Publication Number Publication Date
KR20070099644A true KR20070099644A (ko) 2007-10-09
KR101241848B1 KR101241848B1 (ko) 2013-03-11

Family

ID=36740558

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020077018208A KR101241848B1 (ko) 2005-01-28 2006-01-25 수소 발생 장치 및 방법

Country Status (5)

Country Link
JP (1) JP5165832B2 (ko)
KR (1) KR101241848B1 (ko)
CN (1) CN101111452B (ko)
TW (1) TWI394710B (ko)
WO (1) WO2006080544A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102094646B1 (ko) 2019-10-14 2020-03-30 주식회사 트리신 수소탈황을 구비한 고효율 스팀 리포밍 수소 제조 장치

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5400425B2 (ja) * 2009-03-03 2014-01-29 Jx日鉱日石エネルギー株式会社 水素製造装置及び燃料電池システム
KR101394346B1 (ko) * 2012-02-29 2014-05-14 성균관대학교산학협력단 수소 생산용 개질부를 구비하는 열광전변환장치
KR101487835B1 (ko) 2014-03-13 2015-01-30 성균관대학교산학협력단 수소 생산용 개질부를 구비하는 열광전변환장치
CN104609368B (zh) * 2015-01-30 2016-06-22 山东益丰生化环保股份有限公司 一种将石油炼厂解析废气转化成制氢工艺原料气的方法
CN104609369B (zh) * 2015-01-30 2015-11-18 山东益丰生化环保股份有限公司 一种将石油炼厂解析废气转化成制氢工艺原料气的方法
CN106556668B (zh) * 2015-09-30 2020-07-10 中国石油化工股份有限公司 移动式烃类蒸汽转化制氢催化剂测试平台及测试方法
TWI617508B (zh) * 2016-11-21 2018-03-11 Huang Heng Xin 沼氣觸媒熱電共生機及其操作方法
JP6944349B2 (ja) * 2017-11-09 2021-10-06 エア・ウォーター株式会社 水素発生装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4909808A (en) * 1987-10-14 1990-03-20 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Steam reformer with catalytic combustor
JPH05253436A (ja) * 1992-03-16 1993-10-05 Mitsui Eng & Shipbuild Co Ltd Ch4を含まないcoガスの製造方法
JP2001151502A (ja) * 1999-11-26 2001-06-05 Daikin Ind Ltd 燃料改質装置
US6485853B1 (en) * 2000-06-27 2002-11-26 General Motors Corporation Fuel cell system having thermally integrated, isothermal co-cleansing subsystem
JP2002050386A (ja) * 2000-08-04 2002-02-15 Babcock Hitachi Kk 燃料電池用水素製造装置
JP4968984B2 (ja) * 2001-01-12 2012-07-04 三洋電機株式会社 燃料電池用改質装置
JP2002274805A (ja) * 2001-01-12 2002-09-25 Toyota Motor Corp 改質原料を冷媒として利用した熱交換器を有する改質器の制御
JP2002293510A (ja) * 2001-03-28 2002-10-09 Osaka Gas Co Ltd 一酸化炭素転化器
JP2003103171A (ja) * 2001-09-28 2003-04-08 Nippon Oil Corp オートサーマルリフォーミング用触媒および方法、水素製造装置ならびに燃料電池システム
JP2003212508A (ja) * 2002-01-24 2003-07-30 Honda Motor Co Ltd 改質システムの水供給制御方法
US20030192251A1 (en) * 2002-04-12 2003-10-16 Edlund David J. Steam reforming fuel processor
JP4175921B2 (ja) * 2003-03-12 2008-11-05 東京瓦斯株式会社 水素製造装置における熱回収システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102094646B1 (ko) 2019-10-14 2020-03-30 주식회사 트리신 수소탈황을 구비한 고효율 스팀 리포밍 수소 제조 장치

Also Published As

Publication number Publication date
JP5165832B2 (ja) 2013-03-21
KR101241848B1 (ko) 2013-03-11
TW200633926A (en) 2006-10-01
CN101111452A (zh) 2008-01-23
WO2006080544A1 (ja) 2006-08-03
CN101111452B (zh) 2012-09-05
TWI394710B (zh) 2013-05-01
JP2006206382A (ja) 2006-08-10

Similar Documents

Publication Publication Date Title
KR101241848B1 (ko) 수소 발생 장치 및 방법
US9012098B2 (en) Hydrogen production apparatus and fuel cell system
US11654414B2 (en) Hydrogen reforming system
US20080219901A1 (en) Cylindrical Steam Reformer Having Integrated Heat Exchanger
JP2006206383A (ja) 炭化水素系ガスの改質器
CN111344249B (zh) 氢产生装置
KR100286620B1 (ko) 수증기개질형 수소생산방법 및 수소생산장치
JP5963848B2 (ja) 非触媒性の復熱式改質装置
CN101155753B (zh) 再利用收集的co2制备氢气的燃烧装置
TW202408660A (zh) 方法
US8671695B2 (en) Process for the production of hydrogen with total recovery of CO2 and reduction of unconverted methane
WO2023089570A1 (en) Apparatus for hydrogen production
US20070033873A1 (en) Hydrogen gas generator
JP2017113746A (ja) 放射状の非触媒性の回収改質装置
JP2005214013A (ja) メタン含有ガスを供給ガスとした発電システム
WO2005077822A1 (ja) 燃料改質装置及び該燃料改質装置の起動方法
JP2009263199A (ja) 一酸化炭素ガス発生装置および方法
JP2003277015A (ja) 排熱を熱源として灯油または軽油を改質する装置及び方法
JP2017152313A (ja) 燃料電池複合発電システム及びその運転方法
US20060032137A1 (en) Catalyst coated heat exchanger
JP2009269793A (ja) 一酸化炭素ガス発生装置および方法
JPWO2015012302A1 (ja) 木炭水性ガスの製造方法と装置、並びに同製造方法及び装置を使用した燃料電池発電システム
JP2008037708A (ja) 水素発生装置および方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160218

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170220

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180219

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20200218

Year of fee payment: 8