KR102509113B1 - 음극의 제조방법 및 이로부터 제조된 음극 - Google Patents

음극의 제조방법 및 이로부터 제조된 음극 Download PDF

Info

Publication number
KR102509113B1
KR102509113B1 KR1020180032219A KR20180032219A KR102509113B1 KR 102509113 B1 KR102509113 B1 KR 102509113B1 KR 1020180032219 A KR1020180032219 A KR 1020180032219A KR 20180032219 A KR20180032219 A KR 20180032219A KR 102509113 B1 KR102509113 B1 KR 102509113B1
Authority
KR
South Korea
Prior art keywords
negative electrode
metal foil
lithium metal
lithium
secondary battery
Prior art date
Application number
KR1020180032219A
Other languages
English (en)
Other versions
KR20190110346A (ko
Inventor
채오병
우상욱
김제영
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to KR1020180032219A priority Critical patent/KR102509113B1/ko
Priority to EP19771006.4A priority patent/EP3675246B1/en
Priority to CN201980006893.1A priority patent/CN111527627B/zh
Priority to PL19771006T priority patent/PL3675246T3/pl
Priority to US16/641,843 priority patent/US11515526B2/en
Priority to PCT/KR2019/003266 priority patent/WO2019182361A1/ko
Publication of KR20190110346A publication Critical patent/KR20190110346A/ko
Application granted granted Critical
Publication of KR102509113B1 publication Critical patent/KR102509113B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명은 (S1) 음극활물질, 도전재, 바인더 및 용매를 포함하는 음극 슬러리를 집전체의 적어도 일면에 코팅하고, 건조 및 압연하여 음극 활물질층을 형성함으로써 예비 음극을 준비하는 단계; (S2) 상기 예비 음극의 음극 활물질층 표면에 리튬 금속 포일을 패턴 형태로 코팅하는 단계; (S3) 상기 리튬 금속 포일이 패턴 코팅된 예비 음극을 리튬 금속 포일 패턴이 중심부에 위치하면서 10% 이상 내지 100% 미만의 면적을 차지하는 크기로 타발한 후, 전해액에 함침시켜 전리튬화된 음극을 제조하는 단계; 및 (S4) 상기 단계(iii)에서 제조된 음극을 양극 및 세퍼레이터와 함께 조립하는 단계를 포함하는 리튬 이차전지의 제조방법, 및 이로부터 제조된 리튬 이차전지를 제공한다.

Description

음극의 제조방법 및 이로부터 제조된 음극{Method for Preparing Anode and Anode Prepared Therefrom}
본 발명은 음극의 제조방법에 관한 것으로, 보다 상세하게는 음극의 초기 효율을 향상시킬 수 있는 전리튬화된 음극의 제조방법에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차 전지의 수요가 급격히 증가하고 있다. 이러한 이차 전지 중 높은 에너지 밀도와 전압을 갖고 사이클 수명이 길며, 방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
리튬 이차전지는 양극, 음극, 상기 양극과 음극의 사이에 개재되어 이들을 분리하는 세퍼레이터, 및 상기 양극 및 음극과 전기화학적으로 소통하는 전해액을 포함한다.
이러한 리튬 이차전지는 통상적으로 양극에는 LiCoO2, LiMn2O4 등과 같이 리튬이 삽입되어 있는 화합물을 사용하고, 음극에는 탄소계, Si계 등의 리튬이 삽입되어 있는 않는 물질을 사용하여 제조되며, 충전시에는 양극에 삽입된 리튬 이온이 전해액을 통해 음극으로 이동하고, 방전시에는 다시 리튬 이온이 음극에서 양극으로 이동하게 된다. 충전 반응시 양극에서 음극으로 이동하는 리튬은 전해액과 반응하여 음극의 표면에 일종의 보호막(passivation film)인 SEI(solid electrolyte interface)를 형성하게 된다. 이 SEI는 음극과 전해액의 반응에 요구되는 전자의 이동을 억제하여 전해질의 분해반응을 방지함으로써 음극의 구조를 안정화시킬 수 있는 한편, 비가역적 반응이기 때문에 리튬이온의 소모를 가져온다. 즉, SEI의 형성으로 소비된 리튬은 이어지는 방전 과정에서 양극으로 돌아가지 않아 전지의 용량을 감소시키며, 이러한 현상을 비가역 용량(irreversible capacity)라고 한다. 또한, 이차전지의 양극 및 음극의 충방전 효율이 완전히 100%가 아니기 때문에 싸이클 수가 진행됨에 따라 리튬 이온의 소모가 발생하게 되어 전극용량의 감소를 일으키므로, 결국 싸이클 수명이 저하하게 된다. 특히, 음극으로 고용량을 목적으로 Si계 재료를 사용하는 경우, 초기 비가역 용량이 높아 리튬 고갈로 인한 초기 효율이 낮은 문제점이 더욱 대두되고 있다.
이에, 음극의 초기 비가역을 줄이는 기술로서 전리튬화(pre-lithiation), 즉 전지를 제조하기 전에 음극의 비가역 반응을 미리 수행하거나 리튬을 음극에 미리 약간 충전시켜 초기 가역성을 확보함으로써 전지의 용량 및 전기화학 성능을 향상시키는 방법이 시도되고 있다.
예컨대, 상기 전리튬화는 음극재 또는 이를 포함하는 음극층에 리튬 금속을 증착 또는 파우더 코팅 등의 방식으로 부착하고, 이로부터 제조된 음극과 양극 그리고 그 사이에 세퍼레이터를 개재시켜 전지 셀을 조립한 후 전해액을 주입하는 방식으로 이루어지고 있다. 이와 같이, 셀 조립후 전해액을 주입하는 경우 음극층에 부착된 리튬 금속과 전해액의 반응으로 리튬이 이온화되어 음극층으로 삽입되고, 리튬 금속에서 리튬 이온이 빠져나간 자리는 셀 내부에서 빈 공간으로 남게 된다. 이로 인해, 셀을 구성하는 양극/세퍼레이터/음극의 들뜸 현상이 초래되어 충방전이 원활하지 않게 된다.
또한, 전리튬화에 사용되고 있는 리튬 금속은 고가이므로 이를 음극 전체에 부착하는 경우 경제적으로 불리할 뿐만 아니라, 잉여 리튬으로 인해 전리튬화시에 전해액의 환원 반응이 증가하여 전해액을 과다 소모하고 부산물에 의해 전기화학적 부작용을 유발할 수 있다.
따라서, 본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 본 발명의 한 목적은 리튬 이차전지의 제조시에 음극의 비가역 용량을 보상하기 위한 전리튬화 공정을 리튬 금속의 낭비 없는 경제적인 방식으로 수행하고, 전지 제조후 양극/세퍼레이터/음극 간의 접촉성을 개선할 수 있는 방법을 제공하는 것이다.
본 발명의 다른 목적은 상기 방법으로 제조된 리튬 이차전지를 제공하는 것이다.
본 발명의 일 측면에 따르면, (S1) 음극활물질, 도전재, 바인더 및 용매를 포함하는 음극 슬러리를 집전체의 적어도 일면에 코팅하고, 건조 및 압연하여 음극 활물질층을 형성함으로써 예비 음극을 준비하는 단계; (S2) 상기 예비 음극의 음극 활물질층 표면에 리튬 금속 포일을 패턴 형태로 코팅하는 단계; (S3) 상기 리튬 금속 포일이 패턴 코팅된 예비 음극을 리튬 금속 포일 패턴이 중심부에 위치하면서 10% 이상 내지 100% 미만의 면적을 차지하는 크기로 타발한 후, 전해액에 함침시켜 전리튬화된 음극을 제조하는 단계; 및 (S4) 상기 단계(S3)에서 제조된 음극을 양극 및 세퍼레이터와 함께 조립하는 단계를 포함하는, 리튬 이차전지의 제조방법이 제공된다.
상기 단계 (S3)에서, 상기 예비 음극의 타발은 패턴이 중심부에 위치하면서 10% 내지 70%의 면적을 차지하는 크기로 수행될 수 있다.
상기 타발된 예비 음극에서, 상기 리튬 금속 포일 패턴의 폭 (또는 길이)과 상기 리튬 금속 포일 패턴이 형성되지 않은 무지부의 폭 (또는 길이)의 비율은 99:1 내지 10:90의 범위일 수 있다.
상기 단계(S2)에서, 상기 패턴 코팅은 10 내지 200 ℃의 온도 및 0.2 내지 30 kN/cm의 선압 조건하에 압착 방식으로 수행될 수 있다.
상기 단계(S3)에서, 상기 전해액 함침은 2 내지 48 시간 동안 수행될 수 있다.
상기 단계(S3)에서, 전해액 함침 후 전리튬화된 음극을 세척 및 건조하는 단계가 추가로 포함될 수 있다.
상기 전해액은 리튬염 및 유기용매를 포함할 수 있다.
상기 음극 활물질층은 활물질로서 Si계 물질, Sn계 물질, 탄소계 물질, 또는 이들 중 2 이상의 혼합물을 포함할 수 있다.
본 발명의 다른 일면에 따르면, 전술한 바와 같은 제조방법으로 제조된 리튬 이차전지가 제공된다.
상기 리튬 이차전지의 초기 효율 및 용량 유지율이 각각 80% 이상이고, 충방전 이후에 음극과 분리막 사이의 1㎛ 이상 이격된 면적이 음극 전체 면적의 5% 이하일 수 있다.
본 발명의 일 측면에 따르면, 리튬 이차전지의 제조시에 음극 활물질층 표면에 리튬 금속 포일을 패턴 코팅한 후 타발하여 전해액에 침지시키는 방식으로 전리튬화를 미리 수행한 음극을 양극 및 세퍼레이트와 함께 조립함으로써, 상기 리튬 금속이 모두 전리튬화에 사용되어 리튬 금속의 낭비 없이 초기 가역성을 확보할 수 있고, 전지 조립후 발생되는 양극/세퍼레이터/음극 사이의 들뜸 현상을 최소화할 수 있다.
본 명세서에 첨부되는 다음의 도면은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1a 내지 도 1d는 본 발명의 일 실시형태에 따른 리튬 이차전지의 제조 과정을 개략적으로 보여주는 것이다.
도 2는 본 발명의 실시예 1 내지 2에 따른 타발 공정 및 전해액 함침을 거쳐 전리튬화된 음극을 나타낸 것이다.
도 3a 및 도 3b는 비교예 1에 따른 리튬 금속 포일의 전체 코팅 후 타발 공정, 및 전해액 함침을 거쳐 전리튬화된 음극을 나타낸 것이다.
이하, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 일 실시형태는 리튬 이차전지의 제조방법에 관한 것으로, 도 1은 본 발명의 일 실시형태에 따른 리튬 이차전지의 제조 과정을 개략적으로 나타낸 것이다.
먼저, 도 1a에 도시된 바와 같이, 집전체(12) 적어도 일면에 음극활물질층(14)을 형성하여 예비 음극을 준비한다(S1).
상기 예비 음극의 음극활물질층(14)은 음극활물질, 도전재 및 바인더를 용매에 분산시켜 얻은 음극 슬러리를 집전체(12)의 적어도 일면에 코팅한 후, 건조 및 압연함으로써 형성될 수 있다.
상기 음극활물질은 Si계 물질, Sn계 물질, 탄소계 물질, 또는 이들 중 2 이상의 혼합물을 포함할 수 있다.
이러한 경우에, 상기 탄소계 물질은 결정질 인조 흑연, 결정질 천연 흑연, 비정질 하드카본, 저결정질 소프트카본, 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 수퍼 P, 그래핀 (graphene), 및 섬유상 탄소로 이루어진 군으로부터 선택되는 하나 이상일 수 있으며, 바람직하게는 결정질 인조 흑연, 및/또는 결정질 천연 흑연일 수 있다. 상기 Si계 물질은 Si, SiO, SiO2 등이 있을 수 있고, 상기 Sn계 물질은 Sn, SnO, SnO2 등이 있을 수 있다.
상기 음극 활물질은, 상기 물질들 외에, 예를 들어, LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1-xMe’yOz (Me: Mn, Fe, Pb, Ge; Me’: Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료; 티타늄 산화물; 리튬 티타늄 산화물 등을 사용할 수 있다.
상기 음극 활물질은 음극 슬러리의 전체 중량을 기준으로 80 중량% 내지 99중량%로 포함될 수 있다.
상기 바인더는 도전재와 활물질, 또는 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 슬러리 조성물 전체 중량을 기준으로 0.1 내지 20 중량%로 포함된다. 이러한 바인더의 예로는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HEP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVDF), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 스티렌 부타디엔 고무(SBR) 등을 들 수 있다. 상기 카르복시메틸셀룰로오스(CMC)는 슬러리의 점도를 조절하는 증점제로 사용될 수도 있다.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 않으며, 예를 들어, 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 플루오로카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. 상기 도전재는 음극 슬러리 조성물의 전체 중량을 기준으로 0.1 내지 20 중량%로 첨가될 수 있다.
상기 용매는 물 또는 NMP(N-methyl-2-pyrrolidone) 등의 유기용매를 포함할 수 있으며, 상기 음극 슬러리가 음극 활물질, 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 음극 슬러리 중의 고형분 농도가 50 내지 95 중량%, 바람직하게 70 내지 90 중량%가 되도록 포함될 수 있다.
상기 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되지 않으며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 상기 집전체의 두께는 특별히 제한되지는 않으나, 통상적으로 적용되는 3 내지 500 ㎛의 두께를 가질 수 있다.
또한, 상기 음극 슬러리의 코팅 방법은 당해 분야에서 통상적으로 사용되는 방법이라면 특별히 한정되지 않는다. 예컨대, 슬롯 다이를 이용한 코팅법이 사용될 수도 있고, 그 이외에도 메이어 바 코팅법, 그라비아 코팅법, 침지 코팅법, 분무 코팅법 등이 사용될 수 있다.
다음, 도 1b에 도시된 바와 같이, 상기 예비 음극의 음극 활물질층(14) 표면에 리튬 금속 포일(16)을 패턴 형태로 코팅한다(S2). 이때, 상기 예비 음극은 롤-투-롤(roll to roll) 방식으로 공급될 수 있다.
상기 패턴 코팅은 리튬 금속 포일을 원하는 패턴 크기로 절단한 후, 음극 활물질층의 표면에 일정한 간격으로 올려 놓고 압착하여 수행될 수 있다. 이때, 압착은 음극 활물질층과 리튬 금속 포일 사이의 접착력을 고려하여, 10 내지 200 ℃의 온도 및 0.2 내지 30 kN/cm의 선압 조건으로 수행될 수 있다. 또한, 상기 리튬 금속 포일은 5 내지 200 ㎛의 두께를 가질 수 있으나, 이에 국한되지는 않는다.
이러한 패턴 코팅을 수행하는 경우, 음극 상에 리튬 금속이 패턴 코팅된 부분 사용할 수 있어 고가인 리튬 금속의 낭비를 방지할 수 있다. 또한, 기존과 같이 음극 전체에 리튬 금속이 부착했을 때 잉여 리튬으로 인해 전리튬화시에 전해액의 환원 반응이 증가하여 전해액을 과다 소모하고 부산물에 의해 전기화학적 부작용을 유발하는 문제점을 극복할 수 있다.
이어서, 도 1c에 도시된 바와 같이, 상기 리튬 금속 포일이 패턴 코팅된 예비 음극을 리튬 금속 포일 패턴이 중심부에 위치하는 형태 및 크기로 타발한 후 전해액에 함침시켜, 전리튬화된 음극(10)을 제조한다(S3).
본 발명에 따르면, 리튬 금속 포일 패턴이 음극 활물질층의 중심부에 위치하면서 소정의 면적만을 차지하도록 타발한다. 이때, 타발은 컷팅 다이(cutting die) 및 이와 마주보도록 위치한 칼날을 구비한 컷팅 장치를 이용하여 수직 가압의 방식으로 이루어지면서, 리튬 금속 포일 패턴이 중심부에 위치하면서 타발된 부분의 10% 이상 내지 100% 미만, 바람직하게는 10% 내지 70%, 더욱 바람직하게는 10 내지 30%의 면적을 차지하도록 수행될 수 있다. 즉, 타발시에 리튬 금속 포일 패턴은 컷팅 장치의 칼날에 닿지 않아야 한다. 그 결과, 타발된 예비 음극에서 상기 리튬 금속 포일 패턴의 폭 (또는 길이)과 상기 리튬 금속 포일 패턴이 형성되지 않은 무지부의 폭 (또는 길이)의 비율이 99:1 내지 10:90의 범위를 만족할 수 있다.
이러한 방식으로 리튬 금속 패턴이 중심부에 포함된 음극 부분을 타발하여 전리튬화를 수행하는 경우, 버려지는 리튬 금속이 없게 될 뿐만 아니라 타발시에 리튬 금속 포일이 집전체 쪽으로 밀려 내려가는 현상이 없어 셀 성능 저하를 방지할 수 있다.
반면에, 상기 리튬 금속 포일 패턴이 타발된 부분의 100%를 차지하는 경우, 예컨대 리튬 금속 포일이 음극 활물질층 상에 전체 코팅된 음극을 원하는 크기로 타발하는 경우, 타발된 부분의 바깥쪽 영역에 도포된 리튬 금속은 상당량 버려지게 되어 경제적인 측면에서 불리하다. 또한, 타발 과정에서 리튬 금속 포일의 일부분이 타발 장치의 칼날에 닿아 집전체까지 밀려 내려갈 수 있으며, 이 경우 전해액 함침시에 집전체에 붙어있는 리튬 금속은 전리튬화에 사용되지 않고 금속 형태로 존재하게 되어 전지의 충방전 동안에 부반응을 유발할 수 있다.
한편, 타발된 각각의 음극 부분에서, 리튬 금속 포일 패턴의 면적이 10% 미만인 경우에는 음극의 충분한 전리튬화를 달성하기 어렵다.
상기 단계 (S3)에서, 상기 타발된 예비 음극을 전해액에 함침시키는 동안, 패턴 코팅된 리튬 금속 포일은 전해액과 반응하여 리튬이 이온화되고, 생성된 리튬 이온은 음극층으로 삽입되는 전리튬화가 일어나고, 그에 따라 리튬 금속 포일은 사라지게 된다. 즉, 본 발명에 따르면 음극의 전리튬화 과정이 전지 조립전에 이루어짐으로써, 전지 조립후에 전지 구성요소간의 들뜸 현상 없이 양호한 접촉을 유지할 수 있다.
따라서, 기존 전리튬화 방식에서 전지 조립후 전해액을 주입하였을 때, 리튬 금속과 전해액의 반응으로 리튬 이온화후 빠져 나간 자리가 들뜨게 되어 충방전을 저해하는 단점을 극복할 수 있다.
상기 전해액 함침은 음극 전체의 균일하고 안정된 전리튬화를 위해, 상온에서 2 내지 48 시간 동안 수행되는 것이 유리하다.
상기 전해액은 전해질로서 리튬염 및 이를 용해시키기 위한 유기용매를 포함한다.
상기 리튬염은 이차전지용 전해액에 통상적으로 사용되는 것들이면 제한 없이 사용될 수 있으며, 예를 들어, 상기 리튬염의 음이온으로는 F-, Cl-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택되는 1종을 사용할 수 있다.
상기 전해액에 포함되는 유기 용매로는 통상적으로 사용되는 것들이면 제한 없이 사용될 수 있으며, 대표적으로 프로필렌 카보네이트, 에틸렌 카보네이트, 디에틸카보네이트, 디메틸카보네이트, 에틸메틸카보네이트, 메틸프로필카보네이트, 디프로필카보네이트, 디메틸술폭사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 비닐렌카보네이트, 술포란, 감마-부티로락톤, 프로필렌설파이트 및 테트라하이드로퓨란으로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다.
전리튬화된 음극(10)을 제조한 후, 도 2d에 도시한 바와 같이, 상기 음극(10), 양극(20), 그리고 그 사이에 세퍼레이터(30)를 개재하여 전극 조립체(100)를 형성한다(S4).
상기 양극은 양극 활물질, 도전재, 바인더 및 용매를 혼합하여 슬러리를 제조한 후 이를 금속 집전체에 직접 코팅하거나, 별도의 지지체상에 캐스팅하고 이 지지체로부터 박리시킨 양극 활물질 필름을 금속 집전체에 라미네이션하여 양극을 제조할 수 있다.
양극에 사용되는 활물질로는 LiCoO2, LiNiO2, LiMn2O4, LiCoPO4, LiFePO4 및 LiNi1-x-y-zCoxM1yM2zO2(M1 및 M2는 서로 독립적으로 Al, Ni, Co, Fe, Mn, V, Cr, Ti, W, Ta, Mg 및 Mo로 이루어진 군으로부터 선택된 어느 하나이고, x, y 및 z는 서로 독립적으로 산화물 조성 원소들의 원자 분율로서 0=x<0.5, 0≤=y<0.5, 0=z<0.5, 0<x+y+z= 1임)로 이루어진 군으로부터 선택된 어느 하나의 활물질 입자 또는 이들 중 2종 이상의 혼합물을 포함할 수 있다.
한편, 도전재, 바인더 및 용매는 상기 음극 제조시에 사용된 것과 동일하게 사용될 수 있다.
상기 세퍼레이터는 종래 세퍼레이터로 사용되는 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독 또는 이들을 적층하여 사용할 수 있다. 또한, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용될 수 있다. 상기 세퍼레이터는 세퍼레이터 표면에 세라믹 물질이 얇게 코팅된 안정성 강화 세퍼레이터(SRS, safety reinforced separator)을 포함할 수 있다. 이외에도 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 제한되는 것은 아니다.
이후, 상기 전극 조립체를 예를 들어, 파우치, 원통형 전지 케이스 또는 각형 전지 케이스에 넣은 다음, 전해질을 주입하면 리튬 이차전지가 완성될 수 있다. 또는 상기 전극 조립체를 적층한 다음, 이를 전해액에 함침시키고, 얻어진 결과물을 전지 케이스에 넣어 밀봉하면 리튬 이차전지가 완성될 수 있다.
본 발명의 리튬 이차전지는 전술한 바와 같은 전리튬화된 음극을 포함함에 따라, 음극의 비가역 용량이 보상되어 우수한 초기 효율 및 용량 유지율, 예컨대 80% 이상의 초기 효율 및 용량 유지율을 만족할 수 있다. 또한, 본 발명의 리튬 이차전지는 전리튬화의 진행으로 발생되는 양극/세퍼레이터/음극 사이의 들뜸 현상이 최소화되어, 충방전 이후에 전극 조립체를 해체하여 접합된 음극과 분리막의 두께를 측정했을 때 음극과 분리막 사이의 1㎛ 이상 이격된 면적이 음극 전체 면적의 5% 이하를 만족할 수 있다.
본 발명의 일 실시예에 따르면, 상기 리튬 이차전지는 스택형, 권취형, 스택 앤 폴딩형 또는 케이블형일 수 있다.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다. 상기 중대형 디바이스의 바람직한 예로는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 전력 저장용 시스템 등을 들 수 있으며, 특히 고출력이 요구되는 영역인 하이브리드 전기자동차 및 신재생 에너지 저장용 배터리 등에 유용하게 사용될 수 있다.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
<실시예 1 내지 2 및 비교예 1 내지 4: 리튬 이차전지의 제조>
실시예 1
단계 1
음극 활물질로서 흑연 및 SiO(7:3)의 혼합물 92 중량%, 카본블랙(Denka black, 도전재) 3중량%, SBR(바인더) 3.5 중량%, 및 CMC(증점제) 1.5 중량%를 용매인 물에 첨가하여 음극 슬러리를 수득하였다. 상기 슬러리를 구리 집전체의 일면에 코팅하고, 건조 및 압연하여 음극 활물질층을 형성함으로써 예비 음극을 제조하였다.
단계 2
상기 예비 음극의 활물질층 위에 40㎛ 두께의 리튬 금속 포일을 가로 1㎝ 및 세로 2㎝의 크기로 절단하여 일정한 간격으로 올려 놓고, 상온에서 5 kN/cm의 선압으로 압착하였다.
단계 3
상기 리튬 금속 포일-부착된 예비 음극을 리튬 금속 포일이 포함된 부분을 중심으로 셀 사이즈에 맞게 타발하였다. 이때, 타발된 예비 음극의 리튬 금속 포일의 면적은 타발된 면적의 12%였다. 이어서, 타발된 예비 음극을 에틸렌 카보네이트(EC), 에틸메틸 카보네이트(DEC)를 50:50의 부피비로 혼합한 용매에 1M LiPF6가 용해된 전해액에 함침시켰다. 24시간 후, 상기 음극을 꺼내어 DMC로 세척 및 건조하여 전리튬화된 음극을 제조하였다.
단계 4
상기 전리튬화된 음극과, 양극으로 사용된 LiCoO2 전극 사이에 폴리올레핀 세퍼레이터를 개재시킨 후, 에틸렌 카보네이트(EC), 에틸메틸 카보네이트(DEC)를 50:50의 부피비로 혼합한 용매에 1M LiPF6가 용해된 전해액을 주입하여 코인형 양쪽 전지를 제조하였다.
실시예 2:
단계 1
음극 활물질로서 흑연 및 SiO(7:3)의 혼합물 92 중량%, 카본블랙(Denka black, 도전재) 3중량%, SBR(바인더) 3.5 중량%, 및 CMC(증점제) 1.5 중량%를 용매인 물에 첨가하여 음극 슬러리를 수득하였다. 상기 슬러리를 구리 집전체의 일면에 코팅하고, 건조 및 압연하여 음극 활물질층을 형성함으로써 예비 음극을 제조하였다.
단계 2
상기 예비 음극의 활물질층 위에 20㎛ 두께의 리튬 금속 포일을 가로 2㎝ 및 세로 2㎝의 크기로 절단하여 일정한 간격으로 올려 놓고, 상온에서 5 kN/cm의 선압으로 압착하였다.
단계 3
상기 리튬 금속 포일-부착된 예비 음극을 리튬 금속 포일이 포함된 부분을 중심으로 셀 사이즈에 맞게 타발하였다. 이때, 타발된 예비 음극의 리튬 금속 포일의 면적은 타발된 면적의 24%였다. 이어서, 타발된 예비 음극을 에틸렌 카보네이트(EC), 에틸메틸 카보네이트(DEC)를 50:50의 부피비로 혼합한 용매에 1M LiPF6가 용해된 전해액에 함침시켰다. 24시간 후, 상기 음극을 꺼내어 DMC로 세척 및 건조하여 전리튬화된 음극을 제조하였다.
단계 4
상기 전리튬화된 음극과, 양극으로 사용된 LiCoO2 전극 사이에 폴리올레핀 세퍼레이터를 개재시킨 후, 에틸렌 카보네이트(EC), 에틸메틸 카보네이트(DEC)를 50:50의 부피비로 혼합한 용매에 1M LiPF6가 용해된 전해액을 주입하여 코인형 양쪽 전지를 제조하였다.
비교예 1
단계 1
음극 활물질로서 흑연 및 SiO(7:3)의 혼합물 92 중량%, 카본블랙(Denka black, 도전재) 3중량%, SBR(바인더) 3.5 중량%, 및 CMC(증점제) 1.5 중량%를 용매인 물에 첨가하여 음극 슬러리를 수득하였다. 상기 슬러리를 구리 집전체의 일면에 코팅하고, 건조 및 압연하여 음극 활물질층을 형성함으로써 예비 음극을 제조하였다.
단계 2
상기 예비 음극의 활물질층 위에 5㎛ 두께의 리튬 금속 포일을 음극 활물질층 전체에 도포한 후, 상온에서 5 kN/cm의 선압으로 압착하였다.
단계 3
상기 리튬 금속 포일-부착된 예비 음극을 셀 사이즈에 맞게 타발한 후, 에틸렌 카보네이트(EC), 에틸메틸 카보네이트(DEC)를 50:50의 부피비로 혼합한 용매에 1M LiPF6가 용해된 전해액에 함침시켰다. 24시간 후, 상기 음극을 꺼내어 DMC로 세척 및 건조하여 전리튬화된 음극을 제조하였다.
단계 4
상기 전리튬화된 음극과, 양극으로 사용된 LiCoO2 전극 사이에 폴리올레핀 세퍼레이터를 개재시킨 후, 에틸렌 카보네이트(EC), 에틸메틸 카보네이트(DEC)를 50:50의 부피비로 혼합한 용매에 1M LiPF6가 용해된 전해액을 주입하여 코인형 양쪽 전지를 제조하였다.
비교예 2:
단계 1
음극 활물질로서 흑연 및 SiO(7:3)의 혼합물 92 중량%, 카본블랙(Denka black, 도전재) 3중량%, SBR(바인더) 3.5 중량%, 및 CMC(증점제) 1.5 중량%를 용매인 물에 첨가하여 음극 슬러리를 수득하였다. 상기 슬러리를 구리 집전체의 일면에 코팅하고, 건조 및 압연하여 음극 활물질층을 형성함으로써 예비 음극을 제조하였다.
단계 2
상기 예비 음극의 활물질층 위에 100㎛ 두께의 리튬 금속 포일을 가로 0.4㎝ 및 세로 2㎝의 크기로 절단하여 일정한 간격으로 올려 놓고, 상온에서 5 kN/cm의 선압으로 압착하였다.
단계 3
상기 리튬 금속 포일-부착된 예비 음극을 리튬 금속 포일이 포함된 부분을 중심으로 셀 사이즈에 맞게 타발하였다. 이때, 타발된 예비 음극의 리튬 금속 포일의 면적은 타발된 면적의 5%였다. 이어서, 타발된 예비 음극을 에틸렌 카보네이트(EC), 에틸메틸 카보네이트(DEC)를 50:50의 부피비로 혼합한 용매에 1M LiPF6가 용해된 전해액에 함침시켰다. 24시간 후, 상기 음극을 꺼내어 DMC로 세척 및 건조하여 전리튬화된 음극을 제조하였다.
단계 4
상기 전리튬화된 음극과, 양극으로 사용된 LiCoO2 전극 사이에 폴리올레핀 세퍼레이터를 개재시킨 후, 에틸렌 카보네이트(EC), 에틸메틸 카보네이트(DEC)를 50:50의 부피비로 혼합한 용매에 1M LiPF6가 용해된 전해액을 주입하여 코인형 양쪽 전지를 제조하였다.
비교예 3:
실시예 1의 단계 3을 수행하지 않는 것을 제외하고는 실시예 1과 동일한 과정을 수행하여, 코인형 양쪽 전지를 제조하였다.
비교예 4:
음극 활물질로서 흑연 및 SiO(7:3)의 혼합물 92 중량%, 카본블랙(Denka black, 도전재) 3중량%, SBR(바인더) 3.5 중량%, 및 CMC(증점제) 1.5 중량%를 용매인 물에 첨가하여 음극 슬러리를 수득하였다. 상기 슬러리를 구리 집전체의 일면에 코팅하고, 건조 및 압연하여 음극 활물질층을 형성함으로써 음극을 제조하였다.
상기 음극과 양극으로 사용된 LiCoO2 전극 사이에 폴리올레핀 세퍼레이터를 개재시킨 후, 에틸렌 카보네이트(EC), 에틸메틸 카보네이트(DEC)를 50:50의 부피비로 혼합한 용매에 1M LiPF6가 용해된 전해액을 주입하여 코인형 양쪽 전지를 제조하였다.
실험예 1: 충방전에 따른 수명특성 평가
실시예 1 내지 2 및 비교예 1 내지 4에서 제조된 전지에 대해서 전기화학 충방전기를 이용하여 충방전을 수행하였다. 이때, 충전은 4.2V의 전압까지 0.1C-rate의 전류밀도로 전류를 가하여 수행되었으며, 방전은 같은 전류밀도로 2.5V의 전압까지 수행되었다. 이러한 충방전을 100회 실시한 후, 초기 효율(%) 및 용량 유지율(%)를 다음과 같이 산찰하여, 그 값을 하기 표 1에 나타내었다.
초기 효율(%) = (1회 사이클의 방전 용량 / 1회 사이클의 충전 용량)×100
용량 유지율(%) = (100회 사이클후의 방전 용량 / 1회 사이클의 방전 용량)×100
실험예 2: 음극과 분리막 사이의 들뜸 평가
실시예 1 내지 2, 및 비교예 1 내지 4에서 제조된 전지에 대해서 들뜸 정도를 평가하기 위해 조립된 셀을 해체하고 양극을 제거한 후 음극과 분리막이 접합되어 있는 상태를 얻었다. 상기의 접합된 음극과 분리막을 비접촉식 레이저 두께 측정기를 사용하여 두께를 측정하고, 접촉식 틱 두께 측정기를 사용하여 두께를 측정한 후, 그 차이가 1㎛ 이상이 되는 면적을 음극의 총면적의 백분율로 계산하여 표 1에 나타내었다.
실시예 1 실시예 2 비교예 1 비교예 2 비교예 3 비교예 4
타발된 예비 음극에서 리튬 금속 포일이 차지하는 면적(%) 12 24 100 5 12 0
초기 효율(%) 83.4 85.7 78.2 75.5 76.1 72.7
용량 유지율(%) 84 86 77 75 72 71
음극과 분리막 사이의 들뜸 면적(%) 2 1 2 2 14 1
표 1에서 볼 수 있는 바와 같이, 실시예 1 내지 2에 따라 리튬 금속 포일 패턴이 10% 이상 내지 100% 미만의 면적을 차지하는 크기로 타발한 후, 전해액에 함침시켜 전리튬화된 음극을 포함하는 전지는 비교예 1 내지 4에 비해 우수한 초기 효율 및 용량 유지율을 나타내며, 동시에 음극과 분리막 사이의 들뜸 수준도 낮았다.
보다 구체적인 비교를 위해, 도 2에 실시예 1 내지 2에 따른 타발 공정 및 전해액 함침을 거쳐 전리튬화된 음극을 나타내었고, 도 3a 및 도 3b에는 비교예 1에 따른 리튬 금속 포일의 전체 코팅 후 타발 공정, 및 전해액 함침을 거쳐 전리튬화된 음극을 나타내었다.
도 2에서 볼 수 있는 바와 같이, 실시예 1 내지 2에 따라 리튬 금속 포일 패턴(16a)이 음극 활물질층(14a)의 중심부에 위치하면서 소정의 면적을 차지하도록 타발한 후 전해액 함침을 수행한 경우, 리튬 금속 포일이 타발시에 칼날과 만나지 않아 집전체(12a)로 밀려 내려가지 않으므로 전지의 성능 저하가 없었던 것으로 여겨진다. 또한, 사용된 리튬 금속 포일을 전부 음극의 전리튬화에 이용할 수 있는 점에서 경제적으로 유리하다.
반면에, 도 3a 및 도 3b에서 볼 수 있는 바와 같이, 리튬 금속 포일(16b)이 음극 활물질층(14b) 상에 전체 코팅된 음극을 원하는 크기로 타발한 후 전해액 함침을 수행하는 경우, 타발된 부분의 바깥쪽 영역에 도포된 리튬 금속은 상당량 버려지게 된다. 또한, 타발 과정에서 리튬 금속 포일의 일부분이 타발용 칼날에 닿아 집전체(12b)까지 밀려 내려감에 따라, 전해액 함침시에 집전체에 붙어있는 리튬 금속은 전리튬화에 사용되지 않고 금속 형태로 존재하게 된다. 이러한 음극을 포함하는 전지는 충방전 동안에 부반응이 일어나게 되며, 이로 인해 초기 효율 및 용량 유지율이 떨어진 것으로 여겨진다.
한편, 비교예 2의 경우에는 타발된 각각의 음극 부분에서 차지하는 리튬 금속 포일 패턴의 면적이 10% 미만이어서, 음극의 충분한 전리튬화가 이루어지지 않은 것으로 여겨진다. 비교예 3의 경우에는 전지 조립후 전해액을 주입하여 전리튬화를 유도하였기 때문에, 리튬 금속이 이온화되어 음극으로 삽입된 후 남아있는 리튬 금속의 자리(빈공간)에 들뜸 현상이 발생하였고, 이로 인해 저항이 증가하여 원활한 충방전이 이루어지지 않아, 전지 성능이 다소 떨어진 것으로 판단된다. 그리고, 비교예 4의 경우에는 음극의 전리튬화 공정이 이루어지지 않아, 초기 효율 및 용량 유지율이 가장 저조하였다.

Claims (11)

  1. (S1) 음극활물질, 도전재, 바인더 및 용매를 포함하는 음극 슬러리를 집전체의 적어도 일면에 코팅하고, 건조 및 압연하여 음극 활물질층을 형성함으로써 예비 음극을 준비하는 단계;
    (S2) 상기 예비 음극의 음극 활물질층 표면에 리튬 금속 포일을 패턴 형태로 코팅하는 단계;
    (S3) 상기 리튬 금속 포일이 패턴 코팅된 예비 음극을 리튬 금속 포일 패턴이 중심부에 위치하면서 10% 내지 70%의 면적을 차지하는 크기로 타발한 후, 타발된 예비 음극을 전해액에 함침시켜 전리튬화된 음극을 제조하는 단계; 및
    (S4) 상기 단계(S3)에서 제조된 음극을 양극 및 세퍼레이터와 함께 조립하는 단계를 포함하고,
    상기 단계(S2)에서 코팅된 상기 리튬 금속 포일의 패턴은 서로 이격되어 형성되는, 리튬 이차전지의 제조방법.
  2. 제1항에 있어서,
    상기 단계 (S3)에서, 상기 예비 음극의 타발은 리튬 금속 포일 패턴이 중심부에 위치하면서 10% 내지 30%의 면적을 차지하는 크기로 수행되는 리튬 이차전지의 제조방법.
  3. 제1항에 있어서,
    상기 타발된 예비 음극에서, 상기 리튬 금속 포일 패턴의 폭과 상기 리튬 금속 포일 패턴이 형성되지 않은 무지부의 폭의 비율이 99:1 내지 10: 90인 리튬 이차전지의 제조방법.
  4. 제1항에 있어서,
    상기 타발된 예비 음극에서, 상기 리튬 금속 포일 패턴의 길이와 상기 리튬 금속 포일 패턴이 형성되지 않은 무지부의 길이의 비율이 99:1 내지 10: 90인 리튬 이차전지의 제조방법.
  5. 제1항에 있어서,
    상기 단계(S2)에서, 상기 패턴 코팅은 10 내지 200 ℃의 온도 및 0.2 내지 30 kN/cm의 선압 조건하에 압착 방식으로 수행되는 리튬 이차전지의 제조방법.
  6. 제1항에 있어서,
    상기 단계(S3)에서, 상기 전해액 함침은 2 내지 48 시간 동안 수행되는 리튬 이차전지의 제조방법.
  7. 제1항에 있어서,
    상기 단계(S3)에서, 전해액 함침 후 전리튬화된 음극을 세척 및 건조하는 단계를 추가로 포함하는 리튬 이차전지의 제조방법.
  8. 제1항에 있어서,
    상기 전해액은 리튬염 및 유기용매를 포함하는 리튬 이차전지의 제조방법.
  9. 제1항에 있어서,
    상기 음극 활물질층은 활물질로서 Si계 물질, Sn계 물질, 탄소계 물질, 또는 이들 중 2 이상의 혼합물을 포함하는 리튬 이차전지의 제조방법.
  10. 제1항 내지 제9항 중 어느 한 항에 따른 제조방법으로 제조된 리튬 이차전지.
  11. 제10항에 있어서,
    상기 리튬 이차전지의 초기 효율 및 용량 유지율이 각각 80% 이상이고, 충방전 이후에 음극과 분리막 사이의 1㎛ 이상 이격된 면적이 음극 전체 면적의 5% 이하인 리튬 이차전지.
KR1020180032219A 2018-03-20 2018-03-20 음극의 제조방법 및 이로부터 제조된 음극 KR102509113B1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020180032219A KR102509113B1 (ko) 2018-03-20 2018-03-20 음극의 제조방법 및 이로부터 제조된 음극
EP19771006.4A EP3675246B1 (en) 2018-03-20 2019-03-20 Method for manufacturing negative electrode and negative electrode obtained therefrom
CN201980006893.1A CN111527627B (zh) 2018-03-20 2019-03-20 制造负极的方法以及由此获得的负极
PL19771006T PL3675246T3 (pl) 2018-03-20 2019-03-20 Sposób wytwarzania elektrody ujemnej i otrzymana z niego elektroda ujemna
US16/641,843 US11515526B2 (en) 2018-03-20 2019-03-20 Method for manufacturing negative electrode and negative electrode obtained therefrom
PCT/KR2019/003266 WO2019182361A1 (ko) 2018-03-20 2019-03-20 음극의 제조방법 및 이로부터 제조된 음극

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180032219A KR102509113B1 (ko) 2018-03-20 2018-03-20 음극의 제조방법 및 이로부터 제조된 음극

Publications (2)

Publication Number Publication Date
KR20190110346A KR20190110346A (ko) 2019-09-30
KR102509113B1 true KR102509113B1 (ko) 2023-03-09

Family

ID=67987408

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180032219A KR102509113B1 (ko) 2018-03-20 2018-03-20 음극의 제조방법 및 이로부터 제조된 음극

Country Status (6)

Country Link
US (1) US11515526B2 (ko)
EP (1) EP3675246B1 (ko)
KR (1) KR102509113B1 (ko)
CN (1) CN111527627B (ko)
PL (1) PL3675246T3 (ko)
WO (1) WO2019182361A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111384405B (zh) * 2018-12-28 2021-11-09 宁德时代新能源科技股份有限公司 电极组件以及锂离子电池
CN110828778B (zh) * 2019-10-30 2022-04-12 复阳固态储能科技(溧阳)有限公司 一种三明治结构预锂化负极及锂离子电池

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3528855B2 (ja) * 1992-10-28 2004-05-24 株式会社ユアサコーポレーション 負極集電体及びその製造方法
KR19980702606A (ko) 1995-03-06 1998-08-05 무네유키 가코우 비수성 이차전지
JP4893495B2 (ja) 1995-03-06 2012-03-07 宇部興産株式会社 非水二次電池
KR100439350B1 (ko) 2001-09-14 2004-07-07 주식회사 엠에프에스컴퍼니 밴드형 리튬금속 음극의 연속 제조방법과 리튬금속 음극을이용한 리튬 폴리머 2차 전지 및 그의 제조방법
US20050130043A1 (en) 2003-07-29 2005-06-16 Yuan Gao Lithium metal dispersion in electrodes
KR100582557B1 (ko) 2004-11-25 2006-05-22 한국전자통신연구원 표면 패터닝된 음극 집전체로 이루어지는 리튬금속 고분자이차전지용 음극 및 그 제조 방법
KR101397415B1 (ko) * 2011-02-11 2014-05-20 한양대학교 산학협력단 리튬화된 금속 탄소 복합체 전극의 제조 방법, 이에 의하여 제조된 리튬화된 금속 탄소 복합체 전극 및 이를 포함하는 전기화학소자
KR101820463B1 (ko) 2013-07-30 2018-01-19 주식회사 엘지화학 음극 전극의 전리튬화 방법
CN105493317A (zh) 2013-09-27 2016-04-13 三洋电机株式会社 非水电解质二次电池用负极
KR102533760B1 (ko) 2014-01-27 2023-05-17 한양대학교 산학협력단 리튬화된 비정질 규소산화물 전극의 제조방법, 이에 의하여 제조된 리튬화된 비정질 규소산화물 전극 및 이를 포함하는 리튬황전지
US10002717B2 (en) * 2014-10-30 2018-06-19 General Capacitor, Llc High performance lithium-ion capacitor laminate cells
KR101783447B1 (ko) 2015-02-02 2017-10-23 주식회사 엘지화학 고용량 음극을 포함하는 이차전지 및 그 제조 방법
KR102003297B1 (ko) 2015-07-29 2019-07-24 주식회사 엘지화학 패터닝 리튬전극과 그 제조방법 및 이를 이용한 리튬 이차전지
KR20230150411A (ko) 2015-08-20 2023-10-30 주식회사 윌러스표준기술연구소 트리거 정보를 이용하는 무선 통신 방법 및 무선 통신 단말
US10833324B2 (en) 2015-08-25 2020-11-10 Licap Technologies, Inc. Electrodes with controlled amount of lithium attached and method of making same
CN105702943B (zh) 2016-01-30 2018-10-19 山西大学 一种锂离子电池负极材料补锂方法
US10755867B2 (en) 2016-04-18 2020-08-25 Florida State University Research Foundation, Inc Method of negative electrode pre-lithiation for lithium-ion capacitors
KR101998194B1 (ko) 2016-06-13 2019-07-09 주식회사 엘지화학 전극 제조 장치 및 방법
KR20180001229A (ko) 2016-06-27 2018-01-04 삼성에스디아이 주식회사 이차 전지의 제조 방법 및 이를 이용한 이차 전지
TW201826607A (zh) * 2016-09-08 2018-07-16 日商麥克賽爾控股股份有限公司 鋰離子二次電池及其製造方法
US11329312B2 (en) * 2017-04-03 2022-05-10 Lg Energy Solution, Ltd. Pre-lithiation apparatus, method of producing negative electrode unit and negative electrode unit

Also Published As

Publication number Publication date
US11515526B2 (en) 2022-11-29
CN111527627B (zh) 2023-05-30
US20210159491A1 (en) 2021-05-27
EP3675246A4 (en) 2020-12-09
PL3675246T3 (pl) 2022-04-11
WO2019182361A1 (ko) 2019-09-26
KR20190110346A (ko) 2019-09-30
CN111527627A (zh) 2020-08-11
EP3675246A1 (en) 2020-07-01
EP3675246B1 (en) 2022-01-26

Similar Documents

Publication Publication Date Title
KR102293359B1 (ko) 리튬 이차전지용 음극 활물질 및 이의 제조방법
KR101558774B1 (ko) 다층의 활물질층을 포함하는 리튬 이차전지
KR102417200B1 (ko) 리튬 이차전지용 음극, 이의 제조방법 및 상기 리튬 이차전지용 음극을 포함하는 리튬 이차전지
EP1851814B1 (en) Secondary battery of improved lithium ion mobility and cell capacity
KR102378583B1 (ko) 리튬-함유 복합체의 코팅층을 구비한 세퍼레이터, 이를 포함하는 리튬 이차전지 및 상기 이차전지의 제조방법
KR102308943B1 (ko) 이중층 구조의 활물질층을 포함하는 음극, 이의 제조방법 및 이를 포함하는 이차전지
KR20190064462A (ko) 이중층 구조의 활물질층을 구비한 양극 및 이를 포함하는 리튬이차전지
JP2007273183A (ja) 負極及び二次電池
KR20190007296A (ko) 리튬 이차전지 및 이의 제조 방법
KR20180127189A (ko) 리튬 이차전지용 음극의 제조방법
KR101742609B1 (ko) 리튬 이차 전지용 전극 및 이를 포함하는 리튬 이차 전지
KR20190026627A (ko) 플렉시블 전지의 제조방법 및 이로부터 제조된 플렉시블 전지
KR102279003B1 (ko) 리튬 이차전지용 음극의 제조방법
KR102335318B1 (ko) 리튬 이차전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR102509113B1 (ko) 음극의 제조방법 및 이로부터 제조된 음극
KR102367371B1 (ko) 음극 및 이를 포함하는 리튬 이차전지
KR102172153B1 (ko) 용량 및 안전성이 개선된 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
KR102631899B1 (ko) Si계 음극을 포함하는 리튬 이차전지 및 그의 제조방법
KR102534215B1 (ko) Si계 음극을 포함하는 리튬 이차전지
KR102587972B1 (ko) 음극의 제조방법 및 이로부터 제조된 음극
KR20160079508A (ko) 리튬 이차전지
KR101756938B1 (ko) 음극 활물질 조성물 및 이를 포함하는 리튬 이차전지
KR102475433B1 (ko) 음극, 이의 제조 방법 및 이를 포함하는 리튬 이차전지
KR102571151B1 (ko) 리튬 이차전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR102621786B1 (ko) Si계 음극 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant