KR101783447B1 - 고용량 음극을 포함하는 이차전지 및 그 제조 방법 - Google Patents

고용량 음극을 포함하는 이차전지 및 그 제조 방법 Download PDF

Info

Publication number
KR101783447B1
KR101783447B1 KR1020150015891A KR20150015891A KR101783447B1 KR 101783447 B1 KR101783447 B1 KR 101783447B1 KR 1020150015891 A KR1020150015891 A KR 1020150015891A KR 20150015891 A KR20150015891 A KR 20150015891A KR 101783447 B1 KR101783447 B1 KR 101783447B1
Authority
KR
South Korea
Prior art keywords
negative electrode
lithium
secondary battery
active material
negative
Prior art date
Application number
KR1020150015891A
Other languages
English (en)
Other versions
KR20160094652A (ko
Inventor
김경호
김채아
송주용
이혜연
하회진
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020150015891A priority Critical patent/KR101783447B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2017515095A priority patent/JP6604635B2/ja
Priority to CN201680002863.XA priority patent/CN106716682B/zh
Priority to PL16746787T priority patent/PL3179544T3/pl
Priority to BR112017005881A priority patent/BR112017005881B8/pt
Priority to EP16746787.7A priority patent/EP3179544B1/en
Priority to PCT/KR2016/000917 priority patent/WO2016126046A1/ko
Priority to US15/513,056 priority patent/US10581073B2/en
Priority to TW105102859A priority patent/TWI630751B/zh
Publication of KR20160094652A publication Critical patent/KR20160094652A/ko
Application granted granted Critical
Publication of KR101783447B1 publication Critical patent/KR101783447B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • H01M4/0461Electrochemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/5835Comprising fluorine or fluoride salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

본 발명은 둘 이상의 음극판들로 구성된 음극을 포함하고 있는 이차전지로서,
상기 각각의 음극판들은,
음극 활물질이 도포되어 있는 음극 집전체부에 전리튬화(pre-lithiation) 반응을 통해 형성된 리튬 부산물 층을 포함하며,
상기 음극 집전체부의 일측 단부로부터 연장되어 있고 음극 활물질이 도포되어 있지 않은 무지부로 구성된 음극 탭부에 무기물 층이 형성되어 있으며,
상기 음극판들의 음극 탭부들이 하나의 음극리드와 전기적으로 결합되어 음극단자를 형성하고 있는 것을 특징으로 하는 이차전지 및 이의 제조 방법을 제공한다.

Description

고용량 음극을 포함하는 이차전지 및 그 제조 방법 {Secondary Battery Comprising Anode with High Capacity and Manufacturing Method thereof}
본 발명은 고용량 음극을 포함하는 이차전지 및 그 제조 방법에 관한 것으로, 상세하게는 전리튬화(pre-lithiation)된 음극 집전체 및 무기물 층이 형성되어 있는 음극 탭부를 구비한 음극을 포함하여 고용량을 제공하므로 수명 특성 및 레이트 특성이 향상될 뿐만 하니라, 생산 효율이 향상된 이차전지 및 그 제조 방법에 관한 것이다.
다양한 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차전지 중 높은 에너지 밀도와 전압을 가지고, 사이클 수명이 길며, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
이러한 리튬 이차전지는 양극 활물질로서, 층상 결정구조의 리튬 함유 코발트 산화물(LiCoO2), 층상 결정구조의 LiMnO2, 스피넬 결정구조의 LiMn2O4 등의 리튬 함유 망간 산화물과, 리튬 함유 니켈 산화물(LiNiO2)을 일반적으로 사용한다. 또한, 음극 활물질로서 탄소계 물질이 주로 사용되며, 최근에는 고용량 이차전지의 수요 증가로 탄소계 물질보다 10배 이상의 유효 용량을 가지는 규소계 물질, 규소 산화계 물질과 혼합 사용이 고려되고 있다.
그러나, 리튬 이차전지는 다양한 문제점들을 내포하고 있는 바, 그 중의 일부는 음극의 제조 및 작동 특성과 관련한 문제점들이다.
예를 들어, 탄소계 음극 활물질은 초기 충방전 과정(활성화 과정)에서 음극 활물질의 표면에 고체 전해질 계면(solid electrolyte interface: SEI) 층(layer)이 형성되는 바, 그로 인해 초기 비가역 현상이 유발됨은 물론, 계속적인 충방전 과정에서 SEI 층의 붕괴 및 재생 과정에서 전해액이 고갈되어 전지 용량이 감소하는 문제점을 가지고 있다.
더욱이, 규소계 물질은 고용량을 나타내지만, 사이클이 진행됨에 따라 부피 팽창률이 300% 이상이 되어 저항 증가 및 전해액 부반응 증가로 이어질 수 있는 바 전극구조 손상 등 SEI 층의 형성에 따른 문제점이 심화될 수 있다.
규소 산화계 물질은 규소계 물질에 비해 부피 팽창률이 낮고 내구수명 특성도 우수해서 사용을 고려할 수 있지만, 이 역시 충전 시에 SEI 층 형성과 활물질 내의 산소로 인한 Li2O으로 초기 비가역이 크다는 문제점을 가지고 있다.
이러한 문제점을 해결하기 위하여, 규소 산화계 물질에 전리튬화(pre-lithiation)를 시도하여 큰 비가역 용량의 원인이 되는 규소 산화계 물질에 있는 산소를 리튬 산화물로 변경시키는 방법에 대한 연구가 활발히 진행되고 있다. 이러한 방법은 규소 산화계 물질의 초기 비가역을 줄여서 수명을 향상시킬 수 있지만, 리튬 소스를 규소 산화계 물질에 전리튬화를 시키는 과정에서 부산물이 많이 발생하고 리튬 산화물이 거의 규소 산화계 물질의 표면에만 생성되기 때문에 비가역을 줄이는데 한계가 있다.
최근에는, 이러한 문제점을 해결하기 위하여 리튬 소스가 있는 용액에 음극 전극을 넣고 전류를 인가하여 전리튬화(pre-lithiation) 반응을 시킴으로써 초기 비가역을 완전히 낮추어 사이클 특성을 향상시키려는 시도가 있었다. 그러나, 전류를 인가하여 음극에 리튬층을 형성할 경우, 음극 활물질이 코팅되지 않는 음극의 무지부에도 리튬 부산물이 생성되는 문제로 인하여 음극의 무지부와 음극리드간의 용접이 어려지는 바 셀 제작이 불가능한 문제점이 있었다.
따라서, 이러한 문제점을 해결하면서도 고에너지 밀도를 가지는 이차전지를 제작할 수 있는 기술에 대한 필요성이 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 발명은 고용량을 제공하는 음극 활물질을 사용하면서도, 상기 음극 활물질의 사용에 따른 비가역 현상을 최소화하기 위하여, 전리튬화(pre-lithiation)된 음극 집전체를 구비하여 수명 특성 및 레이트 특성이 향상된 이차전지 및 그 제조 방법을 제공하는 데 있다.
또한, 본 발명은 무기물 층이 형성되어 있는 음극 탭부를 사용하여 음극리드와 전기적 결합을 용이하게 하여 생산 효율이 크게 향상된 이차전지 및 그 제조 방법을 제공하는데 있다.
따라서, 본 발명은 둘 이상의 음극판들로 구성된 음극을 포함하고 있는 이차전지로서,
상기 각각의 음극판들은,
음극 활물질이 도포되어 있는 음극 집전체부에 전리튬화(pre-lithiation) 반응을 통해 형성된 리튬 부산물 층을 포함하며,
상기 음극 집전체부의 일측 단부로부터 연장되어 있고 음극 활물질이 도포되어 있지 않은 무지부로 구성된 음극 탭부에 무기물 층이 형성되어 있으며,
상기 음극판들의 음극 탭부들이 하나의 음극리드와 전기적으로 결합되어 음극단자를 형성하고 있는 것을 특징으로 하는 이차전지를 제공한다.
앞서 설명한 바와 같이, 고용량 음극 활물질을 사용하는 경우, SEI 층 형성에 따라 음극의 비가역 현상이 심해질 수 있다. 이를 해결하기 위하여 전리튬화 반응을 통해 리튬을 미리 넣어주어 비가역 현상을 방지할 수 있지만, 이 경우, 음극 활물질이 코팅되지 않은 음극 탭의 표면에도 리튬 부산물층이 형성되어 음극 탭들과 음극리드의 결합을 어렵게 하는 바 이차전지의 제작이 불가능한 문제가 있다.
이에 본 발명의 발명자들은 음극 판의 음극 탭부에 무기물 층을 미리 형성할 경우, 리튬계 용매 내에서 전리튬화 반응을 진행하여도 무기물이 코팅되어 있는 부분은 저항이 높아서 전류가 잘 흐르지 않기 때문에 리튬 석출이 어려워 리튬 부산물 층이 형성되지 않는 것을 확인하였다.
따라서, 본 발명은 음극 판의 음극 탭부에 무기물 층을 미리 형성하여, 음극 판의 음극 활물질이 도포되어 있는 음극 유지부에만 전리튬화 반응을 시켜서, 음극 탭들과 음극리드의 결합력을 향상시킴으로써 이차전지의 생산 효율뿐 아니라, 수명 특성 및 레이트 특성이 향상된 이차전지를 제공할 수 있다.
본 발명에서 상기 음극 활물질은 규소계 물질로, 예를 들어, 규소(Si), 규소의 합금, SiB4, SiB6, Mg2Si, Ni2Si, TiSi2, MoSi2, CoSi2, NiSi2, CaSi2, CrSi2, Cu5Si, FeSi2, MnSi2, NbSi2, TaSi2, VSi2, WSi2, ZnSi2, SiC, Si3N4, Si2N2O, SiOv(0.5≤v≤1.2), 및 LiSiO로 이루어진 군에서 선택되는 하나 이상을 포함할 수 있고, 상세하게는, SiOv(0.5≤v≤1.2)을 포함할 수 있으며, 더욱 상세하게는, 상기 규소계 물질 중에서 부피 팽창이 가장 적고 사이클 특성이 우수한 SiO를 포함할 수 있다.
이러한 SiO를 음극 활물질로 사용할 경우 활물질 내 산소로 인하여 비가역 현상이 증가하고 사이클 진행시 급격한 용량 감소가 발행할 수 있지만, 본 발명은 전리튬화 반응을 통해 활물질 내 산소와 리튬이 미리 반응시킨 리튬 산화물을 생성함으로써 비가역 현상을 줄이고 사이클 진행시 용량 감소를 줄일 수 있다.
상기 음극 활물질은 앞서 설명한 규소계 물질 외에 탄소계 재료를 추가로 더 포함할 수 있다.
상기 탄소계 재료는, 당업계에서 사용되는 것이라면 제한이 없으나, 예를 들어, 흑연, 인조 흑연, MCMB(MesoCarbon MicroBead), 탄소 섬유(Carbon fiber) 및 카본 블랙 아세틸렌 블랙, 케첸블랙으로 이루어진 군에서 선택되는 하나 이상일 수 있고, 상세하게는 흑연일 수 있다.
음극 활물질이 규소계 물질 및 탄소계 재료를 포함하는 경우, 음극 활물질 전체 중량을 기준으로 규소계 물질은 80 중량% 이하일 수 있고, 상세하게는 50 중량% 이하일 수 있으며, 더욱 상세하게는 30 중량% 이하, 좀 더 상세하게는 15 중량% 이하의 값을 가질 수 있다. 규소계 물질을 탄소계 재료와 혼합하여 사용하는 경우 규소계 재료의 양이 지나치게 적을 경우 소망하는 용량 향상의 효과를 기대할 수 없고, 규소계 재료의 양이 지나치게 많을 경우 탄소계 물질 대비 부피팽창이 심해져 문제가 생길 수 있어 바람직하지 않다.
본 발명에서 음극 활물질이 도포되어 있는 음극 집전체부에 형성되는 리튬 부산물은, 리튬을 포함하는 물질로서 예를 들어, Li와 같은 리튬 금속, Li2O 또는 Li2O와 같은 리튬 산화물, LiCl와 같은 리튬 염화물, LiCl4와 같은 무기 화합물로 이루어진 군에서 선택되는 하나 이상일 수 있고, 상세하게는 Li2O일 수 있다.
상기 리튬 부산층의 두께는, 전리튬화 반응 조건에 따라 달라질 수 있으나, 0.01 ㎛ 내지 1 ㎛의 범위 내에 있을 수 있고, 상세하게는 0.05 ㎛ 내지 0.5 ㎛일 수 있고, 더욱 상세하게는 0.1 ㎛ 내지 0.3 ㎛일 수 있다.
리튬 부산층의 두께가 0.01 ㎛ 미만일 경우 음극 전극의 전리튬화가 거의 이루어지지 않기 때문에 음극 활물질의 비가역 현상을 충분히 방지할 수 없어 소망하는 효과를 얻을 수 없어 바람직하지 않고, 리튬 부산층의 두께가 1 ㎛을 초과할 경우, 오히려 음극 전극의 내부 저항이 커져 바람직하지 않다.
또한, 음극 활물질이 도포되어 있지 않은 무지부로 구성된 음극 탭부에 형성되는 무기물은 SiO2, TiO2, Al2O3, ZrO2, SnO2, CeO2, MgO, CaO, ZnO, Y2O3, Pb(Zr,Ti)O3(PZT), Pb1-xLaxZr1-yTiyO3(0<x<1, 0<y<1)(PLZT), PB(Mg3Nb2/3)O3-PbTiO3(PMN-PT)(0<y<1), BaTiO3, hafnia(HfO2), SrTiO3, 및 이들의 둘 이상의 혼합물로 이루어진 군에서 선택되는 하나 이상일 수 있다.
경우에 따라서는, 본 발명의 효과를 손상시키지 않는 범위 내에서, 상기 무기물은 고분자 수지, 즉, 폴리에틸렌, 폴리프로필렌, 폴리에테르이미드, 폴리아세탈, 폴리술폰, 폴리에테르에테르케톤, 폴리에스테르, 폴리아미드, 에틸렌-비닐 아세테이트 공중합체, 폴리스티렌, 폴리테트라플루오로에틸렌, 폴리실록산, 폴리이미드, 이들의 임의적 공중합체, 및 이들의 임의적 혼합물에서 선택되는 하나 이상을 혼합하여 사용할 수 있다.
상기 무기물 층의 두께는 1 ㎚ 내지 10 ㎛의 범위 내에 있을 수 있고, 상세하게는 10 ㎚ 내지 5 ㎛일 수 있으며, 더욱 상세하게는 100 ㎚ 내지 2 ㎛일 수 있다.
무기물 층의 두께가 1 ㎚ 미만일 경우, 무기물의 양이 충분하지 않아 전리튬화 반응 시 리튬 부산물 층이 음극 탭부에 형성될 수 있고, 10 ㎛의 범위를 초과할 경우, 오히려 음극 탭부들과 음극리드간의 용접이 어려워 전기적 연결이 어려울 수 있어 바람직하지 않다.
상기 무지부로 구성된 음극 탭부에 형성되는 무기물 층은, 상세하게는 음극 탭부 전체에 형성될 수 있다.
.본 발명은 상기 이차전지의 제조 방법으로,
(a) 금속 시트 상에 음극 탭부에 대응하는 부위를 제외한 음극 집전체부에 음극 활물질을 도포한 후, 음극 활물질이 도포되지 않은 무지부로 구성된 음극 탭부에 무기물을 코팅하는 과정;
(b) 상기 과정(a)에서 제조된 금속 시트를 리튬계 용매에 넣은 후 전류를 인가하여 전리튬화(pre-lithiation)하는 과정;
(c) 상기 과정(b)에서 제조된 금속 시트를 음극 집전체부 및 음극 탭부를 포함하는 음극판의 형태로 재단하는 과정; 및
(d) 상기 과정(c)에서 제조된 음극판을 둘 이상 적층한 후, 음극 탭부들을 음극리드와 전기적으로 결합하여 음극 단자를 형성하는 과정;을 제공한다.
상기 과정(a)에서 금속 시트는 생산성의 향상을 위해 다수의 음극을 재단할 수 있도록 폭과 길이 방향으로 연장되어 있을 수 있고, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있으며, 상세하게는 구리가 사용될 수 있다.
상기 과정(b)는 예를 들어, 두 개의 마주보고 있는 롤들 사이에 금속 시트를 게재하여 리튬계 용매를 담지하고 있는 챔버를 통과하도록 이동시킴으로써 진행할 수 있다.
상기 리튬계 용매는, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, 및 Li3PO4-Li2S-SiS2로 이루어진 군에서 선택되는 하나 또는 둘 이상의 혼합물일 수 있으나, 상기 언급된 물질에 한정되는 것은 아니다.
상기 전리튬화 반응은 10 mA 내지 10 A의 전류를, 0.1 시간 내지 12 시간 동안 인가하여 진행할 수 있으며, 상세하게는 100 mA 내지 5 A의 전류를, 1 시간 내지 10 시간 동안 인가하여 진행할 수 있다.
전리튬화 반응에서 전류의 크기나 시간 조건은 소망하는 전리튬화를을 형성하기 위한 최적의 조건으로, 상기 범위를 벗어날 경우 전리튬화가 거의 이루어지지 않거나 리튬 부산물 층의 두께가 두꺼워 저항이 증가하고 시간이 오래 걸려서 생산성이 떨어질 수 있어, 바람직하지 않다.
상기 과정(b)에서 리튬계 용매 내에서 전리튬화 반응을 진행하여도 과정(a)에서 무기물을 도포한 음극 탭부는 저항이 높아서 전류가 잘 흐르지 않기 때문에 리튬 부산물 층이 형성되기 어렵다.
따라서, 과정(c)의 음극 집전체부는 전리튬화 반응을 통해 형성된 리튬 부산물 층을 포함할 수 있다.
또한, 상기 과정(b)와 과정(c) 사이에, 섭씨 30도 내지 섭씨 100도, 및 6 시간 내지 12시간의 조건 하, 상세하게는 섭씨 40도 내지 섭씨 100도, 및 6 시간 내지 10시간의 조건 하에서 금속 시트를 안정화하는 과정을 더 포함할 수 있다.
금속 시트의 전리튬화 반응 후 상기 조건에서 안정화하는 단계를 추가로 포함할 경우, 금속 시트에서 음극 활물질이 도포된 음극 집전체 상에 리튬 산화물 층이 충분히 형성될 수 있다.
상기 과정(d)에서, 음극 활물질이 도포되지 않은 음극 탭부는 이미 무기물 층이 형성되어 있어 전리튬화 반응에 따른 리튬 부산물 층의 생성을 방지할 수 있는 바, 음극 탭들과 음극리드의 결합을 용접에 의해 용이하게 달성할 수 있다.
일반적으로, 레이저 용접은 용접면의 표면상태에 따라 용접이 균일하지 않고, 저항 용접은 높은 결합력을 제공하지만 높은 열로 인하여 접합부의 변형이 크다. 이에, 본 발명에서는 마찰열을 이용하여 용접하기 때문에 접합부 표면의 변형이 적고 용접면의 표면상태에 상관없이 균일하게 용접되는 초음파 용접으로 수행할 수 있다.
이러한 초음파 용접에 의한 결합은 대략 20 KHz정도의 초음파에 의해 발생된 고주파 진동을 이용하여 음극탭과 음극탭 사이 및 음극탭과 음극리드 사이의 경계면에서 진동에너지가 마찰에 의해 열에너지로 변환되면서 급속히 용접이 이루어지는 원리로서, 진동에 수반되는 마찰에 의해 접합면 코팅층의 국부적 소성 변형에 의해 새로 노출된 전극탭 표면끼리 밀착이 이루어지고, 마찰열에 의한 국부적 온도 상승에 의해 원자의 확산 및 재결정이 촉진되어 견고한 압점부가 형성될 수 있다.
또한, 음극 탭부에 무기물 층이 형성되어 있어도, 초음파를 인가하면서 발생되는 마찰열로 인하여 음극 리드와 용이하게 용접이 될 수 있다.
이러한 이차전지는 하나의 예에서 리튬 이차전지일 수 있지만, 이들만으로 한정되지 않는다.
리튬 이차전지는 양극 집전체 상에 양극 활물질, 도전재 및 바인더의 혼합물을 도포한 후 건조 및 프레싱하여 제조되는 양극과, 동일한 방법을 사용하여 제조되는 음극을 포함하며, 이 경우, 필요에 따라서는 상기 혼합물에 충진제를 더 첨가기도 한다.
상기 양극 집전체는 일반적으로 3 ~ 500 ㎛의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테리인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
상기 양극 활물질로서 리튬 니켈 산화물(LiNiO2) 화학식 Li1+xMn2-xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; LiNixMn2-xO4 (x = 0.01 ~ 0.6 임)등과 같은 스피넬 구조의 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 포함할 수 있다.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합제 등을 들 수 있다.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합제; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
상기 음극 집전체는 앞서 설명한 바와 일반적으로 3 ~ 500 ㎛의 두께로 만들어진다
이러한 리튬 이차전지는 양극과 음극 사이에 분리막이 개재된 구조의 전극조립체에 리튬염 함유 전해액이 함침되어 있는 구조로 이루어질 수 있다.
상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
상기 리튬염 함유 전해액은 비수계 용매 및 리튬염으로 이루어져 있으며, 상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
비수계 용매로는 당업계에 알려진 것이라면 제한이 없으나, 예를 들어, 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 부틸렌 카보네이트(BC), 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 에틸 메틸 카보네이트(EMC) 메틸 프로피오네이트(MP) 및 에틸 프로피오네이트(EP)로 이루어진 군에서 선택되는 하나 이상일 수 있다.
또한, 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, PRS(Propene sultone) 등을 더 포함시킬 수 있다.
하나의 바람직한 예에서, LiPF6, LiClO4, LiBF4, LiN(SO2CF3)2 등의 리튬염을, 고유전성 용매인에 첨가하여 리튬염 함유 비수계 전해질을 제조할 수 있다.
본 발명은 또한, 상기 이차전지를 전원으로 포함하는 디바이스를 제공하는 바, 상기 디바이스는 휴대폰, 휴대용 컴퓨터, 스마트폰, 태플릿 PC, 스마트 패드, 넷북, LEV(Light Electronic Vehicle), 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 및 전력저장장치 등으로부터 선택되는 것일 수 있다.
이들 디바이스의 구조 및 그것의 제작 방법은 당업계에 공지되어 있으므로, 본 명세서에서는 그에 대한 자세한 설명은 생략한다.
본 발명에 따른 이차전지는 고용량 음극 활물질을 사용하면서도, 전리튬화 반응을 통해 비가역 현상을 최소화할 수 있으므로 수명 특성 및 레이트 특성이 향상될 수 있다.
또한, 음극 탭부에 무기물 층을 미리 형성한 후, 리튬계 용매 내에서 전리튬화 반응을 진행하는 과정을 포함하여 제조되어 상기 음극 탭부에는 리튬 부산물 층이 형성될 수 없는 바, 음극 탭들과 음극리드를 용이하게 전기적으로 결합시킬 수 있어 생산 효율이 향상될 수 있다.
도 1은 실험예 2에서 실시예 1, 비교예 1 및 2에 따른 리튬 이차전지들의 수명 특성을 측정하여 측정하여 결과를 나타낸 그래프이다;
이하, 본 발명의 실시예를 참조하여 설명하지만, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범주가 이들만으로 한정되는 것은 아니다.
<실시예 1>
1-1) 음극판의 제조
구리 시트 상에, 음극 활물질(SiO:흑연이 중량비로 30 : 70) 92 중량%, 도전재로 Super-P 3 중량%, 바인더로 SBR 3.5 중량%, 증점제로 CMC 1.5 중량%를 용제인 H2O에 첨가하여 제조한 음극 슬러리를 음극 탭부에 대응하는 부위를 제외한 음극 집전체부에 50 μm 두께로 도포한 후 압착한 다음, 상기 음극 합제가 도포되지 않은 무지부로 구성된 음극 탭부에 Al2O3가 0.2 ㎛의 두께를 가지도록 코팅하였다.
이러한 구리 시트를 LiCl 염과 1M LiPF6의 리튬염을 함유한 EC/EMC
계 비수성 전해액에 넣은 후 100 mA의 전류를 1 시간 동안 인가하여 구리 시트를 비가역 용량에 해당하는 만큼 전리튬화(pre-lithiation) 반응을 시켰다.
그 후, 상기 금속 시트를 음극 코팅부 및 음극 탭부를 포함하는 음극판의 형태로 재단하였다.
1-2. 양극판의 제조
양극 활물질로 Li(Ni0.8Mn0.1Co0.1)O2를 사용하였고, Li(Ni0.8Mn0.1Co0.1)O2 94 중량%, Super-P(도전재) 3.5 중량%, PVdF(바인더) 2.5 중량%를 용제인 NMP에 첨가하여 제조한 양극 슬러리를 80 μm 두께로 알루미늄 호일 상에 도포한 후 압착 및 건조하는 과정을 포함하여 양극을 제조하였다.
1-3. 리튬 이차전지의 제조
상기에서 제조된 양극판과 음극판 사이에 다공성 분리막(셀가드TM)을 위치시키고, 양극탭 및 음극탭들을 모아서 정렬시킨 후, 초음파 용접을 하여 각각 양극 리드 및 음극리드와 결합시킨 다음, 1M LiPF6의 리튬염을 함유한 EC/EMC계 비수성 전해액을 넣어서 리튬 이차전지를 제조하였다.
<비교예 1>
음극판의 제조에서 음극 무지부에 무기물을 코팅하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
<비교예 2>
음극판의 제조에서 전리튬화 반응을 진행하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
<실험예 1>
실시예 1, 비교예 1 및 2의 리튬 이차 전지들에 대해 레이트 특성을 측정하였다. 레이트 특성은 25 ℃온도에서 2.5V ~ 4.3V 전압 범위로 충방전하는데 충전은 0.1C 정전류/정전압(CC/CV) 충전 방식으로 67.5 mA까지 충전하고 방전은 0.1C, 0.5C, 1C 정전류(CC) 방전 방식으로 2.5V의 컷-오프 조건으로 방전하여 실험을 진행하였다. 이를 0.1C 방전용량 대비 0.5C, 1C의 방전 용량 효율로 표 1에 나타내었다.
0.1C 방전효율 0.5C 방전효율 2C 방전효율
실시예 1 100% 91.2% 81.3%
비교예 1 100% 70.8% 37.7%
비교예 2 100% 89.5% 73.9%
표 1에 따르면, 음극 무지부에 무기물을 코팅하고 전리튬화를 처리한 실시예 1의 전지의 경우, 음극 무지부에 무기물을 코팅하지 않고 전리튬화를 처리한 비교예 1의 전지보다 레이트 성능이 우수한 것을 확인할 수 있다. 이는 음극 무지부에 무기물을 코팅하지 않을 경우 전리튬화 반응 시에 발생한 리튬 부산물로 인하여 음극 리드와 용접이 되지 않거나 음극 리드와 접촉저항이 커서 레이트 성능이 떨어지기 때문이다.
<실험예 2>
실시예 1, 비교예 1 및 2의 리튬 이차 전지들에 대해 수명 특성을 측정하였다. 수명 특성은 25 ℃ 온도 조건에서 0.5C 및 4.3V의 정전류/정전압(CC/CV) 충전 방식으로 67.5 mA까지 충전하고 0.5C 및 2.5V의 컷-오프 조건에서 정전류(CC) 방전 방식으로 방전하는 것을 1 사이클로 하여, 100 사이클까지 수행하였다. 그 결과를 도 1에 나타내었다.
도 1에 따르면, 음극 무지부에 무기물을 코팅하고 전리튬화를 처리한 실시예 1의 전지의 경우, 음극 무지부에 무기물을 코팅하지 않고 전리튬화를 처리한 비교예 1의 전지와 음극에 전리튬화 반응을 진행하지 않은 비교예 2의 전지에 비해 사이클 수명이 우수한 것을 확인할 수 있다.
이는 음극 무지부에 무기물을 코팅하지 않은 비교예 1의 전지의 경우, 음극 리드에서 저항이 높고 리튬 부산물로 인한 부반응으로 인하여 사이클 수명이 떨어지기 때문이고, 음극에 전리튬화 반응을 진행하지 않은 비교예 2의 전지의 경우에는 비가역 용량이 높고 부피 팽창이 커서 Li이 많이 소모되기 때문에 사이클 수명이 떨어지기 때문이다.

Claims (17)

  1. 둘 이상의 음극판들로 구성된 음극을 포함하고 있는 이차전지로서,
    상기 음극판들은 각각,
    음극 활물질이 도포되어 있는 유지부인 음극 집전체부; 및
    상기 음극 집전체부의 일측 단부로부터 연장되어 있고 음극 활물질이 도포되어 있지 않은 무지부로 구성된 것이되, 무기물 층이 형성되어 있는 음극 탭부;
    를 포함하고,
    상기 유지부에만 전리튬화(pre-lithiation) 반응을 통해 형성된 리튬 부산물 층을 포함하며,
    상기 음극판들에서, 상기 무기물 층이 형성되어 있는 음극 탭부들이 하나의 음극리드와 전기적으로 결합되어 음극단자를 형성하고 있는 것을 특징으로 하는 이차전지.
  2. 제 1 항에 있어서, 상기 음극 활물질은 규소(Si), 규소의 합금, SiB4, SiB6, Mg2Si, Ni2Si, TiSi2, MoSi2, CoSi2, NiSi2, CaSi2, CrSi2, Cu5Si, FeSi2, MnSi2, NbSi2, TaSi2, VSi2, WSi2, ZnSi2, SiC, Si3N4, Si2N2O, SiOv(0.5≤v≤1.2), 및 LiSiO로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 특징으로 하는 이차전지.
  3. 제 1 항에 있어서, 상기 음극 활물질은 SiOv(0.5≤v≤1.2)을 포함하는 것을 특징으로 하는 이차전지.
  4. 제 1 항에 있어서, 상기 리튬 부산물은 Li, Li2O, LiCl, 및 LiClO4로 이루어진 군에서 선택되는 하나 이상인 것을 특징으로 하는 이차전지.
  5. 제 1 항에 있어서, 상기 리튬 부산물 층의 두께는 0.01 ㎛ 내지 1 ㎛의 범위 내에 있는 것을 특징으로 하는 이차전지.
  6. 제 1 항에 있어서, 상기 무기물은 SiO2, TiO2, Al2O3, ZrO2, SnO2, CeO2, MgO, CaO, ZnO, Y2O3, Pb(Zr,Ti)O3(PZT), Pb1-xLaxZr1-yTiyO3(0<x<1, 0<y<1)(PLZT), PB(Mg3Nb2/3)O3-PbTiO3(PMN-PT)(0<y<1), BaTiO3, hafnia(HfO2), SrTiO3, 및 이들의 둘 이상의 혼합물로 이루어진 군에서 선택되는 하나 이상인 것을 특징으로 하는 이차전지.
  7. 제 1 항에 있어서, 상기 무기물 층의 두께는 1 ㎚ 내지 10 ㎛의 범위 내에 있는 것을 특징으로 하는 이차전지.
  8. 제 1 항에 따른 이차전지의 제조 방법으로,
    (a) 금속 시트 상에 음극 탭부에 대응하는 부위를 제외한 음극 집전체부에 음극 활물질을 도포한 후, 음극 활물질이 도포되지 않은 무지부로 구성된 음극 탭부에 무기물을 코팅하는 과정;
    (b) 상기 과정(a)에서 제조된 금속 시트를 리튬계 용매에 넣은 후 전류를 인가하여 전리튬화(pre-lithiation)하는 과정;
    (c) 상기 과정(b)에서 제조된 금속 시트를 음극 집전체부 및 음극 탭부를 포함하는 음극판의 형태로 재단하는 과정; 및
    (d) 상기 과정(c)에서 제조된 음극판을 둘 이상 적층한 후, 음극 탭부들을 음극리드와 전기적으로 결합하여 음극 단자를 형성하는 과정;
    을 포함하는 것을 특징으로 하는 이차전지의 제조 방법.
  9. 제 8 항에 있어서, 상기 과정(b)에서 리튬계 용매는, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, 및 Li3PO4-Li2S-SiS2로 이루어진 군에서 선택되는 하나 이상인 것을 특징으로 하는 이차전지의 제조 방법.
  10. 제 8 항에 있어서, 상기 과정(b)에서 10 mA 내지 10 A의 전류를 인가하는 것을 특징으로 하는 이차전지의 제조 방법.
  11. 제 8 항에 있어서, 상기 과정(b)에서 전류를 0.1 시간 내지 12 시간 동안 인가하는 것을 특징으로 하는 이차전지의 제조 방법.
  12. 제 8 항에 있어서, 상기 과정(c)의 음극 집전체부는 전리튬화(pre-lithiation) 반응을 통해 형성된 리튬 부산물 층을 포함하는 것을 특징으로 하는 이차전지의 제조 방법.
  13. 제 8 항에 있어서, 상기 과정(b)와 과정(c) 사이에, 섭씨 30도 내지 섭씨 100도, 및 6 시간 내지 12시간의 조건 하에서 금속 시트를 안정화하는 과정을 더 포함하는 것을 특징으로 하는 이차전지의 제조 방법.
  14. 제 8 항에 있어서, 상기 과정(d)에서, 음극 탭들과 음극리드의 결합은 용접에 의해 수행되는 것을 특징으로 하는 이차전지의 제조 방법.
  15. 제 14 항에 있어서, 상기 용접은 초음파 용접인 것을 특징으로 하는 이차전지의 제조 방법.
  16. 제 1 항에 따른 이차전지를 전원으로 포함하는 것을 특징으로 하는 디바이스.
  17. 제 16 항에 있어서, 상기 디바이스는 휴대폰, 휴대용 컴퓨터, 스마트폰, 스마트 패드, 넷북, 웨어러블 전자기기, LEV(Light Electronic Vehicle), 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 및 전력저장장치로부터 선택되는 하나 이상인 것을 특징으로 하는 디바이스.
KR1020150015891A 2015-02-02 2015-02-02 고용량 음극을 포함하는 이차전지 및 그 제조 방법 KR101783447B1 (ko)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020150015891A KR101783447B1 (ko) 2015-02-02 2015-02-02 고용량 음극을 포함하는 이차전지 및 그 제조 방법
CN201680002863.XA CN106716682B (zh) 2015-02-02 2016-01-28 包含高容量负极的二次电池及其制造方法
PL16746787T PL3179544T3 (pl) 2015-02-02 2016-01-28 Bateria akumulatorowa zawierająca elektrodę ujemną o dużej pojemności i sposób jej wytwarzania
BR112017005881A BR112017005881B8 (pt) 2015-02-02 2016-01-28 Bateria secundária compreendendo eletrodo negativo de alta capacidade e método de fabricação da mesma
JP2017515095A JP6604635B2 (ja) 2015-02-02 2016-01-28 高容量の負極を含む二次電池の製造方法
EP16746787.7A EP3179544B1 (en) 2015-02-02 2016-01-28 Secondary battery including high-capacity negative electrode and manufacturing method the same
PCT/KR2016/000917 WO2016126046A1 (ko) 2015-02-02 2016-01-28 고용량 음극을 포함하는 이차전지 및 그 제조 방법
US15/513,056 US10581073B2 (en) 2015-02-02 2016-01-28 Secondary battery including high-capacity negative electrode and method of manufacturing the same
TW105102859A TWI630751B (zh) 2015-02-02 2016-01-29 包括高容量負極之二次電池及製造彼之方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150015891A KR101783447B1 (ko) 2015-02-02 2015-02-02 고용량 음극을 포함하는 이차전지 및 그 제조 방법

Publications (2)

Publication Number Publication Date
KR20160094652A KR20160094652A (ko) 2016-08-10
KR101783447B1 true KR101783447B1 (ko) 2017-10-23

Family

ID=56564328

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150015891A KR101783447B1 (ko) 2015-02-02 2015-02-02 고용량 음극을 포함하는 이차전지 및 그 제조 방법

Country Status (9)

Country Link
US (1) US10581073B2 (ko)
EP (1) EP3179544B1 (ko)
JP (1) JP6604635B2 (ko)
KR (1) KR101783447B1 (ko)
CN (1) CN106716682B (ko)
BR (1) BR112017005881B8 (ko)
PL (1) PL3179544T3 (ko)
TW (1) TWI630751B (ko)
WO (1) WO2016126046A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11848437B2 (en) 2017-12-20 2023-12-19 Lg Energy Solution, Ltd. Negative electrode for lithium secondary battery, method for manufacturing the same, and lithium secondary battery including the same

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101984727B1 (ko) 2016-11-21 2019-05-31 주식회사 엘지화학 전극 및 이를 포함하는 리튬 이차 전지
KR102268077B1 (ko) * 2017-07-12 2021-06-23 주식회사 엘지에너지솔루션 리튬 이차전지 및 이의 제조 방법
KR102327179B1 (ko) 2017-08-10 2021-11-16 주식회사 엘지에너지솔루션 리튬금속과 무기물 복합박막 제조방법 및 이를 이용한 리튬 이차전지 음극의 전리튬화 방법
KR102264691B1 (ko) 2017-08-11 2021-06-15 (주)엘지에너지솔루션 리튬금속과 무기물 복합층을 이용한 전리튬화
CN108232096B (zh) * 2018-01-02 2021-04-09 惠州亿纬锂能股份有限公司 一种电池负极耳及电池
KR102362887B1 (ko) 2018-01-03 2022-02-14 주식회사 엘지에너지솔루션 리튬이차전지용 음극의 전리튬화 방법 및 이에 사용되는 리튬 메탈 적층체
WO2019147082A1 (ko) 2018-01-26 2019-08-01 주식회사 엘지화학 리튬 이차전지용 음극 및 상기 음극을 포함하는 리튬 이온 이차 전지
WO2019172661A1 (ko) 2018-03-07 2019-09-12 주식회사 엘지화학 음극의 제조 방법
KR102509113B1 (ko) 2018-03-20 2023-03-09 주식회사 엘지에너지솔루션 음극의 제조방법 및 이로부터 제조된 음극
WO2020055183A1 (ko) * 2018-09-12 2020-03-19 주식회사 엘지화학 리튬 이차전지용 음극 및 리튬 이차전지의 제조방법
KR102598178B1 (ko) * 2018-10-10 2023-11-03 주식회사 엘지에너지솔루션 리튬 이차전지용 음극의 제조방법
KR102598189B1 (ko) * 2018-10-26 2023-11-03 주식회사 엘지에너지솔루션 리튬 이차전지용 음극의 제조방법
JP7074027B2 (ja) * 2018-11-12 2022-05-24 トヨタ自動車株式会社 負極
CN111224162A (zh) * 2018-11-26 2020-06-02 中国科学院大连化学物理研究所 一种金属离子电池负极预金属化的方法
KR102530195B1 (ko) * 2019-01-18 2023-05-10 주식회사 엘지에너지솔루션 이차전지용 음극의 제조방법
KR102586822B1 (ko) * 2019-01-25 2023-10-11 주식회사 엘지에너지솔루션 이차전지용 음극의 제조방법
KR20200129907A (ko) * 2019-05-10 2020-11-18 주식회사 엘지화학 음극의 제조방법
CN113659111B (zh) * 2019-05-31 2023-01-06 宁德时代新能源科技股份有限公司 负极极片、电芯、锂离子电池、电子产品及电动车辆
KR102398577B1 (ko) * 2019-12-20 2022-05-13 재단법인 포항산업과학연구원 리튬 이차 전지용 음극의 제조 방법과 이에 따라 제조된 음극 및 이를 포함하는 리튬 이차 전지
KR102406390B1 (ko) * 2019-12-20 2022-06-07 주식회사 포스코 리튬 금속 음극의 제조 방법, 이에 따라 제조된 리튬 금속 음극, 및 이를 포함하는 리튬 이차 전지

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0752727B1 (en) * 1995-07-03 1999-12-01 General Motors Corporation Method for manufacturing lithium-deactivated carbon anodes
JPH10308212A (ja) 1997-05-06 1998-11-17 Ricoh Co Ltd 2次電池用電極板処理装置
KR100291067B1 (ko) * 1998-05-27 2001-06-01 박호군 카본전극의전리튬화방법과이를이용한리튬이차전지제조방법
US20050130043A1 (en) 2003-07-29 2005-06-16 Yuan Gao Lithium metal dispersion in electrodes
KR100868256B1 (ko) 2004-12-16 2008-11-11 주식회사 엘지화학 안전성이 향상된 스택형 발전소자의 파우치형 이차전지
JP2009043624A (ja) 2007-08-09 2009-02-26 Panasonic Corp 非水電解液およびそれを用いた非水電解液二次電池
JP2010160983A (ja) * 2009-01-08 2010-07-22 Nissan Motor Co Ltd 非水電解液二次電池およびその電極
JP2011060520A (ja) 2009-09-08 2011-03-24 Nissan Motor Co Ltd リチウムイオン二次電池およびその製造方法
US9490464B2 (en) 2010-10-01 2016-11-08 Samsung Sdi Co., Ltd. Secondary battery
US9166222B2 (en) * 2010-11-02 2015-10-20 Envia Systems, Inc. Lithium ion batteries with supplemental lithium
DE102010044008A1 (de) * 2010-11-16 2012-05-16 Varta Micro Innovation Gmbh Lithium-Ionen-Zelle mit verbessertem Alterungsverhalten
US9601228B2 (en) 2011-05-16 2017-03-21 Envia Systems, Inc. Silicon oxide based high capacity anode materials for lithium ion batteries
EP3358046B1 (en) 2011-12-01 2019-09-11 Nanoscale Components, Inc. Method for lithiating anodes
US9349542B2 (en) * 2011-12-21 2016-05-24 Nanotek Instruments, Inc. Stacks of internally connected surface-mediated cells and methods of operating same
US20140335400A1 (en) 2012-02-24 2014-11-13 Amita Technologies Inc Ltd. Lithium battery
US9985286B2 (en) 2012-11-13 2018-05-29 Nec Corporation Negative electrode active material, method for manufacturing same, and lithium secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11848437B2 (en) 2017-12-20 2023-12-19 Lg Energy Solution, Ltd. Negative electrode for lithium secondary battery, method for manufacturing the same, and lithium secondary battery including the same

Also Published As

Publication number Publication date
CN106716682B (zh) 2019-12-03
BR112017005881B1 (pt) 2021-07-20
EP3179544A4 (en) 2018-01-17
WO2016126046A1 (ko) 2016-08-11
US10581073B2 (en) 2020-03-03
TW201703323A (zh) 2017-01-16
JP2018503932A (ja) 2018-02-08
US20170338480A1 (en) 2017-11-23
TWI630751B (zh) 2018-07-21
EP3179544A1 (en) 2017-06-14
CN106716682A (zh) 2017-05-24
EP3179544B1 (en) 2019-12-25
BR112017005881B8 (pt) 2023-03-21
PL3179544T3 (pl) 2020-06-29
BR112017005881A2 (ko) 2018-06-26
KR20160094652A (ko) 2016-08-10
JP6604635B2 (ja) 2019-11-13

Similar Documents

Publication Publication Date Title
KR101783447B1 (ko) 고용량 음극을 포함하는 이차전지 및 그 제조 방법
KR101820445B1 (ko) 규소계 물질을 포함하는 다층 구조의 음극 및 이를 포함하는 이차전지
KR102160701B1 (ko) 천공 구조의 집전체를 포함하는 전극, 이를 포함하는 리튬 이차전지
US9099721B2 (en) High-power lithium secondary battery
US20200020921A1 (en) Secondary battery
KR101540618B1 (ko) 이차전지용 전극 및 그것의 제조 방법
KR101569056B1 (ko) 규소계 화합물을 포함하는 이차전지
KR102390657B1 (ko) 절연필름을 포함하는 전극 조립체, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
KR20130117718A (ko) 다층구조 전극 및 그 제조방법
KR101481993B1 (ko) 시안기를 포함하는 화합물을 포함하는 전극 및 이를 포함하는 리튬이차전지
KR20130117689A (ko) 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극
KR20220034064A (ko) 절연필름을 포함하는 전극 조립체, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
KR101608631B1 (ko) 우드메탈로 이루어진 전극 단자를 포함하는 리튬 이차전지
KR20130116028A (ko) 전극의 제조방법 및 이를 사용하여 제조되는 전극
KR102198496B1 (ko) 전기 용량 증대와 용접 기능성 향상이 동시에 구현 가능한 전극의 제조 방법
KR20170113458A (ko) 안전성이 개선된 양극 및 이를 포함하는 리튬이차전지
KR20070106815A (ko) 흡열성 무기물로 표면 처리되어 안전성이 향상된 이차전지
KR20080058967A (ko) 과충전 안전성이 향상된 이차전지
KR101499588B1 (ko) 이차전지용 전극 및 이의 제조방법
KR20080009354A (ko) 방열에 의해 안전성이 향상된 원통형 이차전지
KR20130116027A (ko) 전극의 제조방법 및 이를 사용하여 제조되는 전극
KR101636451B1 (ko) 로딩량이 다른 활물질층을 포함하고 있는 젤리-롤
KR101326082B1 (ko) 낮은 저항과 우수한 제조 공정성의 전극 탭을 포함하는 이차전지
KR20100016705A (ko) 내구성 및 안전성이 향상된 전지
KR20130116026A (ko) 전극의 제조방법 및 이를 사용하여 제조되는 전극

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant