KR102432060B1 - 산화 탄소 나노 입자, 이의 제조 방법, 이를 포함하는 유무기 복합체 및 상기 유무기 복합체의 제조 방법 - Google Patents

산화 탄소 나노 입자, 이의 제조 방법, 이를 포함하는 유무기 복합체 및 상기 유무기 복합체의 제조 방법 Download PDF

Info

Publication number
KR102432060B1
KR102432060B1 KR1020140185951A KR20140185951A KR102432060B1 KR 102432060 B1 KR102432060 B1 KR 102432060B1 KR 1020140185951 A KR1020140185951 A KR 1020140185951A KR 20140185951 A KR20140185951 A KR 20140185951A KR 102432060 B1 KR102432060 B1 KR 102432060B1
Authority
KR
South Korea
Prior art keywords
carbon
oxide nanoparticles
organic
carbon oxide
solvent
Prior art date
Application number
KR1020140185951A
Other languages
English (en)
Other versions
KR20160076136A (ko
Inventor
이승현
김석주
Original Assignee
솔브레인 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 솔브레인 주식회사 filed Critical 솔브레인 주식회사
Priority to KR1020140185951A priority Critical patent/KR102432060B1/ko
Priority to CN201580069353.XA priority patent/CN107108216A/zh
Priority to US15/539,121 priority patent/US20170349439A1/en
Priority to PCT/KR2015/008341 priority patent/WO2016104908A1/ko
Priority to JP2017533903A priority patent/JP2018508442A/ja
Priority to EP15873436.8A priority patent/EP3239101A4/en
Publication of KR20160076136A publication Critical patent/KR20160076136A/ko
Application granted granted Critical
Publication of KR102432060B1 publication Critical patent/KR102432060B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives

Abstract

본 발명은 산화 탄소 나노 입자, 이의 제조 방법, 이를 포함하는 유무기 복합체 및 상기 유무기 복합체의 제조 방법에 관한 것으로서, 상기 산화 탄소 나노 입자는 나노 크기의 산화된 탄소의 구상 입자로서, X선 원소 분석(X-ray Photoelectron Spectroscopy, XPS)에 의한 탄소/산소 원소 비율(C/O atomic ratio) 1 내지 9이고, X선 원소 분석시 가장 큰 산소 분율이 C-O(OH) 결합에서 관찰된다.
상기 산화 탄소 나노 입자는 흑연 또는 카본 블랙과 같은 재래식 탄소 소재보다 물성이 뛰어나면서 제조 공정이 경제적이고 친환경이다. 또한, 상기 산화 탄소 나노 입자는 유무기 복합체의 충진 물질로 적용이 가능하며, 이에 적용시 친환경적이고, 경제적이며, 분산성이 우수하고, 기능화 등의 후처리 없이 바로 사용 가능하다.

Description

산화 탄소 나노 입자, 이의 제조 방법, 이를 포함하는 유무기 복합체 및 상기 유무기 복합체의 제조 방법{OXIDIZED CARBON NANO-PARTICLE, METHOD FOR PREPARING THE SAME, ORGANIC-INORGANIC COMPLEX COMPRISING THE SAME, AND METHOD FOR PREPARING THE ORGANIC-INORGANIC COMPLEX}
본 발명은 산화 탄소 나노 입자, 이의 제조 방법, 이를 포함하는 유무기 복합체 및 상기 유무기 복합체의 제조 방법에 관한 것으로서, 보다 상세하게는 유무기 복합체의 충진 물질로 적용이 가능하며, 이에 적용시 친환경적이고, 경제적이며, 분산성이 우수하고, 기능화 등의 후처리 없이 바로 사용 가능한 산화 탄소 나노 입자, 이의 제조 방법, 이를 포함하는 유무기 복합체 및 상기 유무기 복합체의 제조 방법에 관한 것이다.
탄소 소재 산업은 최근 가장 이슈가 되고 있는 에너지 효율화, 환경 보호 및 고도 물 처리산업 등 저탄소 녹색성장 관련 산업분야에서 수요가 확대되고 있으며, 이와 동시에 수요 산업의 융복합과 니즈에 맞춰 소재분야 융복합화가 꾸준히 요구되고 있는 실정이다.
이에 따라, 탄소 소재 자체의 응용기술 뿐만 아니라 주변 기술 기반이 급속히 발전하면서 탄소 소재의 융복합 촉진은 소재 산업에 큰 활력소가 될 것으로 기대되며, 전후방 산업 기술혁신에 새로운 패러다임의 핵심 역할로서 탄소소재가 고부가가치 창출의 원천이 될 것으로 기대 된다.
이른바 6대 탄소 물질로 알려진 인조흑연, 그래핀, 탄소 섬유, 탄소 나노 튜브, 활성 탄소, 카본 블랙 등은 산업계에 널리 사용되고 있으나, 실질적으로 그래핀, 탄소 나노 튜브는 제조하는 프로세스가 환경적 및 경제적이지 못하여 융복합화 적용에 어려움이 있다.
상기 흑연, 카본 블랙과 같은 재래식 탄소 소재보다 물성이 뛰어나면서 제조공정이 경제적이고 친환경적으로 이루어지고 복합소재화 할 수 있는 차세대 물질의 개발이 요구된다.
한편, 플라스틱의 방대한 응용성에 근간하여 보다 강한 기계적 강도를 갖는 플라스틱 소재를 개발하기 위한 노력이 이어져왔다.
대표적으로 복합 재료의 형태를 나타내는 콤포지트 및 콤파운드가 대표적인 예이다. 근래에 들어 복합 재료의 특성을 보다 향상시키기 위해 나노 복합 재료의 개발이 활발하다. 나노 고분자 복합 재료중 그래핀, 탄소 나노 튜브 등을 기반으로 하는 연구가 대표적이나 충진물로 적용되는 그래핀, 탄소 나노 튜브는 가격이 비싸고 분산성이 원활하지 못한 단점을 갖고 있다. 나노 고분자 복합 재료에 적용할 수 있는 친환경적, 경제적, 우수한 분산성, 기능화 등의 후처리 없이 바로 사용 가능한 충진물질의 개발이 요구된다.
본 발명의 목적은 흑연 또는 카본 블랙과 같은 재래식 탄소 소재보다 물성이 뛰어나면서 제조 공정이 경제적이고 친환경이며, 유무기 복합체의 충진 물질로 적용이 가능하고, 이에 적용시 친환경적이고, 경제적이며, 분산성이 우수하고, 기능화 등의 후처리 없이 바로 사용 가능한 산화 탄소 나노 입자 및 이의 제조 방법을 제공하는 것이다.
본 발명의 다른 목적은 상기 산화 탄소 나노 입자를 포함하는 유무기 복합체 및 이의 제조 방법을 제공하는 것이다.
본 발명의 일 실시예에 따르면, 나노 크기의 산화된 탄소의 구상 입자로서, X선 원소 분석(X-ray Photoelectron Spectroscopy, XPS)에 의한 탄소/산소 원소 비율(C/O atomic ratio) 1 내지 9이고, X선 원소 분석시 가장 큰 산소 분율이 C-O(OH) 결합에서 관찰되는 산화 탄소 나노 입자를 제공한다.
상기 산화 탄소 나노 입자는 X선 원소 분석시 C-C 결합, C-O(OH) 결합, C-O-C 결합, C=O 결합 및 O=C-OH 결합이 관찰될 수 있다.
상기 산화 탄소 나노 입자는 X선 원소 분석시 C-O(OH) 결합의 분율이 C-O-C 결합의 분율 보다 더 클 수 있다.
상기 산화 탄소 나노 입자는 X선 원소 분석시 C-O(OH) 결합의 분율과 C-O-C 결합의 분율이 1:1 내지 6:1일 수 있다.
상기 산화 탄소 나노 입자는 BET 비표면적(specific surface area)이 50 내지 1500m2/g일 수 있다.
상기 산화 탄소 나노 입자는 라만 분석에 의한 결함피크/탄소피크 신호감도비율(ID/IG intensity ratio)이 0.004 내지 1일 수 잇다.
상기 산화 탄소 나노 입자는 입자 크기가 1 내지 3000nm이고, 종횡 비율이 0.8 내지 1.2일 수 있다.
본 발명의 다른 일 실시예에 따르면, 탄소 전구체를 용매에 용해시켜 원료 용액을 제조하는 단계, 그리고 상기 원료 용액에 염화암모늄(ammo-nium chloride) 촉매를 투입한 후 가열하여 반응시키는 단계를 포함하는 산화 탄소 나노 입자의 제조 방법을 제공한다.
상기 탄소 전구체는 글루코스(glucose), 프록토오스(fructose), 스타치(starch), 셀룰로오스(cellulose) 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나일 수 있다.
상기 용매는 물 또는 에틸렌글리콜(ethylene glycol)일 수 있다.
상기 탄소 전구체는 상기 용매 100 중량부에 대하여 0.1 내지 50중량부로 용해시키는 것일 수 있다.
상기 반응시키는 단계는 밀폐 용기 내에서 이루어지며, 상기 촉매를 투입한 원료 용액을 100 내지 300℃으로 승온시켜, 상기 용매가 2 내지 30bar의 증기압 갖도록 하여 1분 내지 60분 동안 반응시키는 것일 수 있다.
상기 촉매는 상기 원료 용액을 20 내지 100℃로 승온한 후 투입하는 것일 수 있다.
상기 촉매는 상기 용매 100 중량부에 대하여 0.001 내지 1중량부로 투입하는 것일 수 있다.
본 발명의 또 다른 일 실시예에 따르면, 고분자 수지를 포함하는 고분자 매트릭스, 그리고 상기 고분자 매트릭스에 분산된 제1항에 따른 산화 탄소 나노 입자를 포함하는 유무기 복합체를 제공한다.
상기 고분자 수지는 에폭시, 폴리에스테르(PE), 폴리우레탄(PU), 폴리술폰(PSF), 폴리이미드(PI), 폴리아마이드(PA), 폴리카보네이트(PC), 폴리프로필렌(PP), 아크릴로니트릴-부타디엔-스티렌 공중합체(ABS), 폴리비닐리돈 플루오라이드(PVDF), 폴리테트라플루오로에틸렌(PTFE), 셀룰로오스 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나일 수 있다.
상기 유무기 복합체는 상기 고분자 매트릭스 100 중량부에 대하여 상기 산화 탄소 나노 입자를 0.1 내지 10 중량부로 포함할 수 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 산화 탄소 나노 입자를 용매에 용해시켜 산화 탄소 나노 입자 분산액을 제조하는 단계, 그리고 상기 산화 탄소 나노 입자 분산액에 고분자 수지를 첨가하고 용해시켜 고분자 분산액을 제조하는 단계를 포함하는 유무기 복합체의 제조 방법을 제공한다.
상기 용매는 N-메틸-2-피롤리돈(NMP, N-Methyl-2-pyrrolidone), 디메틸피롤리돈(DMP, dimethylpyrrolidone), 디메틸포름아마이드(DMF, dimethylformamide), 디메틸아세트아마이드(DMAc, dimethylacetamide), 디메틸 술폭사이드(DMSO, dimethyl sulfoxide) 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나일 수 있다.
상기 산화 탄소 나노 입자 분산액을 제조하는 단계는 0.5 내지 5 시간 동안 초음파 처리하여 상기 산화 탄소 나노 입자를 상기 용매에 분산시키는 것일 수 있다.
상기 산화 탄소 나노 입자는 상기 용매 100 중량부에 대하여 0.01 내지 10 중량부를 용해시키고, 상기 고분자 수지는 상기 용매 100 중량부에 대하여 1 내지 90중량부를 첨가하는 것일 수 있다.
본 발명의 산화 탄소 나노 입자는 흑연 또는 카본 블랙과 같은 재래식 탄소 소재보다 물성이 뛰어나면서 제조 공정이 경제적이고 친환경이다. 또한, 상기 산화 탄소 나노 입자는 유무기 복합체의 충진 물질로 적용이 가능하며, 이에 적용시 친환경적이고, 경제적이며, 분산성이 우수하고, 기능화 등의 후처리 없이 바로 사용 가능하다.
본 발명의 유무기 복합체는 보다 강한 기계적 강도를 갖는다.
도 1은 제조예 1에서 제조된 산화 탄소 나노 입자(OCN, oxidized carbon nano-particle)의 적외선 분광 분석 결과를 나타내는 그래프이다.
도 2 및 도 3은 각각 제조예 1에서 제조된 산화 탄소 나노 입자 및 시중에 판매되는 산화 그래핀를 X선 원소 분석(X-ray Photoelectron Spectroscopy, XPS)한 결과를 나타내는 그래프이다.
도 4 및 도 5는 상기 제조예 1에서 제조된 산화 탄소 나노 입자(OCN, oxidized carbon nano-particle)를 주사전자현미경(SEM)으로 관찰한 사진이고, 각각 배율이 1nm 및 1.00㎛이다.
도 6은 제조예 1에서 제조된 산화 탄소 나노 입자(OCN, oxidized carbon nano-particle)를 라만 분석한 결과를 나타내는 그래프이다.
도 7은 제조예 3에서 제조된 유무기 복합체 필름의 기계적 강도를 나타내는 그래프이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
본 명세서에 기재된 용어 나노란 나노 스케일을 의미하며, 1 ㎛ 이하의 크기를 포함한다.
본 발명의 일 실시예에 따른 산화 탄소 나노 입자는 나노 크기의 산화된 탄소의 구상 입자이다.
따라서, 상기 산화 탄소 나노 입자는 산화 그래핀과는 상이한 물질로서, 상기 산화 그래핀은 탄소 원자가 벌집 모양의 육각형 형태로 연결된 2차원 평면 구조를 이루는 물질인 그래핀의 산화물을 가리키는 것이다.
상기 산화 탄소 나노 입자는 입자 크기가 1 내지 3000nm일 수 있고, 바람직하게 10 내지 600nm일 수 있다. 상기 산화 탄소 나노 입자의 크기가 상기 범위 내인 경우 분산이 유리하고 넓은 비표면적에 기인하여 유기 재료와의 접촉면적이 넓어 기계적 강도 향상에 유리하다.
상기 산화 탄소 나노 입자는 구상 입자로서 종횡 비율이 0.8 내지 1.2일 수 있고, 보다 자세히 0.9 내지 1.1일 수 있다. 상기 산화 탄소 나노 입자는 하기 본 발명의 산화 탄소 나노 입자의 제조 방법에 의하여 제조하면 구상 형태를 가지게 되며, 이에 따라 상기와 같은 종횡 비율을 가질 수 있다. 또한, 상기 산화 그래핀의 종횡 비율이 1.1을 초과한다는 점에서 상기 산화 탄소 나노 입자는 상기 산화 그래핀과 상이하다.
상기 산화 탄소 나노 입자는 X선 원소 분석(X-ray Photoelectron Spectroscopy, XPS)에 의한 탄소/산소 원소 비율(C/O atomic ratio) 1 내지 9이고, 바람직하게 2 내지 9이다. 상기 탄소/산소 원소 비율이 상기 범위 내인 경우 n-메틸피롤리돈(NMP)와 같은 유기 용매에 분산이 용이하여 유무기 복합체 등의 제조에 적합하다.
또한, 상기 산화 탄소 나노 입자는 X선 원소 분석시 C-C 결합, C-O(OH) 결합, C-O-C 결합, C=O 결합 및 O=C-OH 결합이 관찰되며, 그 중에서 가장 큰 산소 분율이 C-O(OH) 결합에서 관찰된다. 반면, 상기 산화 그래핀의 경우 X선 원소 분석시 C-C 결합, C-O(OH) 결합, C-O-C 결합, C=O 결합 및 O=C-OH 결합이 동일하게 관찰되나, 그 중에서 가장 큰 산소 분율이 C-O-C 결합에서 관찰된다는 점에서 상기 산화 탄소 나노 입자와 상이하다.
구체적으로, 상기 산화 탄소 나노 입자는 X선 원소 분석시 C-O(OH) 결합의 분율과 C-O-C 결합의 분율이 1:1 내지 6:1일 수 있고, 바람직하게 2:1 내지 4:1일 수 있다. 상기 C-O(OH) 결합의 분율과 C-O-C 결합의 분율이 상기 범위 내인 경우 n-메틸피롤리돈(NMP)와 같은 유기 용매에 분산이 용이하여 유무기 복합체 등의 제조에 적합하다.
상기 산화 탄소 나노 입자는 BET 비표면적(specific surface area)이 50 내지 1500m2/g일 수 있고, 바람직하게 100 내지 700m2/g일 수 있다. 상기 산화 탄소 나노 입자의 BET 비표면적 상기 범위 내인 경우 유무기 복합체 제조를 위하여 유기 용매 등에 분산시 상기 산화 탄소 나노 입자의 함량에 따라 점도가 증가되는바, 상기 비표면적 범위 내에서 유무기 복합체 제조에 적합하다.
상기 산화 탄소 나노 입자는 라만 분석에 의한 결함피크/탄소피크 신호감도비율(ID/IG intensity ratio)이 0.004 내지 1일 수 있고, 바람직하게 0.01 내지 0.5일 수 있다. 상기 결함피크/탄소피크 신호감도비율이 상기 범위 내인 경우 NMP 등의 유기 용매와의 상용성이 적절하고 유무기 복합체를 제조하였을 경우 유기 재료와의 상호 작용할 수 있는 적절한 화학적 그룹을 포함한다.
본 발명의 다른 일 실시예에 따른 산화 탄소 나노 입자의 제조 방법은 탄소 전구체를 용매에 용해시켜 원료 용액을 제조하는 단계, 그리고 상기 원료 용액에 염화암모늄(ammonium chloride) 촉매를 투입한 후 가열하여 반응시키는 단계를 포함한다.
상기 탄소 전구체는 글루코스(glucose), 프록토오스(fructose), 스타치(starch), 셀룰로오스(cellulose) 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나일 수 있고, 바람직하게 글루코스를 사용할 수 있다.
상기 용매는 물 또는 에틸렌글리콜(ethylene glycol)일 수 있다.
상기 탄소 전구체는 상기 용매 100 중량부에 대하여 0.1 내지 50중량부로 용해시킬 수 있고, 바람직하게 1 내지 30 중량부로 용해시킬 수 있다. 상기 탄소 전구체의 함량이 상기 용매 100 중량부에 대하여 0.1 중량부 미만인 경우 합성되는 산화 탄소 나노 입자의 양이 희박하므로 생산성적인 측면에서 바람직하지 않을 수 있고, 50 중량부를 초과하는 경우 거대 입자가 합성될 수 있고 전구체의 용해가 원활하지 않을 수 있다.
구체적으로, 상기 반응시키는 단계는 밀폐 용기 내에서 이루어지며, 상기 촉매를 투입한 원료 용액을 100 내지 300℃으로 승온시켜, 상기 용매가 2 내지 30bar의 증기압 갖도록 하여 1분 내지 60분 동안 반응시킬 수 있다.
상기 승온 온도가 100℃ 미만인 경우 반응이 전개되지 않을 수 있고, 300℃를 초과하는 경우 산화 형태의 화학 작용기가 가혹한 반응 온도로 인하여 모두 환원되어 환원 탄소 나노 입자로 얻어질 수 있다. 상기 용매의 증기압이 2bar 미만인 경우 반응 개시가 되지 않을 수 있고, 30bar를 초과하는 경우 가혹한 반응 조건으로 인하여 거대 입자화될 수 있다. 또한, 상기 반응 시간이 1분 미만인 경우 반응이 원활히 이루어지지 못하여 입자 형성, 수율 등이 저하될 수 있고, 60분을 초과하는 경우 과반응을 통하여 입자 거대화 및 산화 형태의 화학 작용기의 환원을 초래하여 환원 탄소 나노입자로 탄소/산소분율이 변화될 수 있다.
상기 염화암모늄 촉매는 상기 원료 용액을 20 내지 100℃, 바람직하게 40 내지 80℃로 승온한 후 투입할 수 있다. 상기 염화암모늄 촉매를 상기 온도 범위로 승온한 후 투입하는 경우 균일한 크기의 입자가 합성될 수 있다.
상기 촉매는 상기 용매 100 중량부에 대하여 0.001 내지 1중량부로 투입할 수 있고, 바람직하게 0.05 내지 0.5 중량부로 투입할 수 있다. 상기 촉매의 함량이 상기 용매 100 중량부에 대하여 0.001 중량부 미만인 경우 반응 속도 촉진이 희박하다는 점에서 바람직하지 않고, 1 중량부를 초과하는 경우 거대 입자화 및 불순물로 작용할 수 있다는 점에서 바람직하지 않다.
본 발명의 또 다른 일 실시예에 따른 유무기 복합체는 고분자 수지를 포함하는 고분자 매트릭스, 그리고 상기 고분자 매트릭스에 분산된 상기 산화 탄소 나노 입자를 포함한다.
상기 고분자 매트릭스에 분산된 상기 산화 탄소 나노 입자는 상기 고분자 수지의 고분자 사슬 보다 큰 크기를 가지며, 상기 고분자 사슬과 뒤엉켜서 충진제로서 1차 강도 신장 역할을 하고, 상기 산화 탄소 나노 입자 표면에 존재하는 하이드록시 그룹과 카르복시 그룹의 수소 결합을 통해 2차 강도 신장 역할을 한다. 이에 따라, 일반적인 건조형 폴리우레탄 수지의 기계적 강도(tensile strength)는 65MPa이나, 상기 유무기 복합체는 밀도가 향상되고 기계적 강도가 10 내지 30% 향상된다.
상기 고분자 수지는 에폭시, 폴리에스테르(PE), 폴리우레탄(PU), 폴리술폰(PSF), 폴리이미드(PI), 폴리아마이드(PA), 폴리카보네이트(PC), 폴리프로필렌(PP), 아크릴로니트릴-부타디엔-스티렌 공중합체(ABS), 폴리비닐리돈 플루오라이드(PVDF), 폴리테트라플루오로에틸렌(PTFE), 셀룰로오스 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나일 수 있다.
상기 유무기 복합체는 상기 고분자 매트릭스 100 중량부에 대하여 상기 산화 탄소 나노 입자를 0.1 내지 10 중량부로 포함할 수 있고, 바람직하게 0.2 내지 3 중량부로 포함할 수 있다. 상기 산화 탄소 나노 입자의 함량이 상기 고분자 매트릭스 100 중량부에 대하여 0.1 중량부 미만이면 기계적 강도 증가 효과가 희박할 수 있고, 10 중량부를 초과하면 고형분의 함량이 지나치게 높아서 용액으로 풀리지 않고 진흙처럼 뭉치는 분산 및 점도 문제가 있을 수 있다.
본 발명의 또 다른 일 실시예에 따른 유무기 복합체의 제조 방법은 상기 산화 탄소 나노 입자를 용매에 용해시켜 산화 탄소 나노 입자 분산액을 제조하는 단계, 그리고 상기 산화 탄소 나노 입자 분산액에 고분자 수지를 첨가하고 용해시켜 고분자 분산액을 제조하는 단계를 포함한다.
상기 용매는 N-메틸-2-피롤리돈(NMP, N-Methyl-2-pyrrolidone), 디메틸피롤리돈(DMP, dimethylpyrrolidone), 디메틸포름아마이드(DMF, dimethylformamide), 디메틸아세트아마이드(DMAc, dimethylacetamide), 디메틸 술폭사이드(DMSO, dimethyl sulfoxide) 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나일 수 있다.
상기 산화 탄소 나노 입자 분산액을 제조하는 단계는 0.5 내지 5 시간 동안 250 내지 1500W 세기로 초음파(Sonics 1500W 초음파 분산기) 처리하여 상기 산화 탄소 나노 입자를 상기 용매에 분산시킬 수 있다. 상기 상기 산화 탄소 나노 입자를 상기 용매에 분산시킬 때 초음파 처리하여 분산시키는 경우 산화 탄소 나노 입자들을 1차 입자 상태로 분산하는데 유리하다.
상기 산화 탄소 나노 입자는 상기 용매 100 중량부에 대하여 0.01 내지 10 중량부, 바람직하게 0.1 내지 5 중량부를 용해시킬 수 있다. 상기 산화 탄소 나노 입자를 상기 용매 100 중량부에 대하여 0.01 중량부 미만으로 용해시키면 유무기 복합체의 기계적 강도 향상이 미약할 수 있고, 10 중량부를 초과하여 용해시키면 습윤 분산되지 못하고 찰흙처럼 제조되어 유무기 복합체의 점도가 문제될 수 있다.
상기 고분자 수지는 상기 용매 100 중량부에 대하여 1 내지 90중량부, 바람직하게 10 내지 70 중량부를 용해시킬 수 있다. 상기 고분자 수지를 상기 용매 100 중량부에 대하여 1 중량부 미만으로 용해시키면 유무기 복합체를 필름 및 성형물로 제작할 경우 가공성에 문제가 있을 수 있고, 90 중량부를 초과하여 용해시키면 작업성에 문제가 있을 수 있다.
상기 유무기 복합체는 일반적으로 알려진 방법에 따라 필름 등의 다양한 형태로 제조될 수 있다. 일 예로, 상기 유무기 복합체를 테플론 몰드에 넣고 건조시켜 필름 형태로 제조할 수 있고, 상기 직접 적인 몰딩 이외도 지지 기판 위에 스핀코팅, 스프레이코팅, 슬릿다이코팅, 플로어코팅, 롤코팅, 닥터블레이드코팅 등을 통해 막을 형성할 수도 있다.
상기와 같이 필름 형태로 제조된 유무기 복합체는 0.1 내지 100㎛의 두께로 형성되어 단독 또는 층-층(layer-by-layer)으로 제조될 수 있다.
또한, 상기 유무기 복합체는 사출 성형 또는 캘린더를 통한 압출 등의 방법로 필름 또는 3차원적인 구조물 형태로 제조될 수도 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
[ 제조예 ]
( 제조예 1: 산화 탄소 나노 입자의 제조)
글루코스(glucose)를 물 100 중량부에 2.5 중량부로 용해시켰다. 이렇게 제조된 원료 용액을 밀폐 압력 용기에 넣고 80℃로 승온시켰다. 상기 원료 용액에 0.001 중량부로 염화암모늄(ammo-nium chloride)을 첨가한 후, 160℃까지 분당 2℃ 승온시켜 30분 동안 반응시켰다. 상기 물은 상기 밀폐 압력 용기 내에서 상기 승온 온도에 따라 8bar의 증기압을 나타내었다.
반응 종료 후, 반응 용액을 원심 분리기에 투입하여 5,000rpm에서 30분간 회전시켜 산화 탄소 나노 입자를 침전시켜 분리 및 세정하였다. 이 과정을 3회 반복 후 40℃에서 진공 건조시켜 고상 분말을 얻었다.
( 제조예 2: 유무기 복합체의 제조)
상기 제조예 1에서 제조된 산화 탄소 나노 입자 0.5 중량부를 NMP 용매 100 중량부에 60분간 초음파 처리를 하여 분산시켰다. 여기에 폴리우레탄(SONGSTOMER P-3175A)를 상기 용매 100 중량부에 대하여 50 중량부를 첨가하여 용해시켜 눈에 보이지 않는 밝은 또는 짙은 갈색의 콜로이드 상태의 유무기 복합체 분산액을 제조하였다.
( 제조예 3: 유무기 복합체 필름의 제조)
상기 제조예 2에서 제조된 유무기 복합체 분산액을 이 용액을 5x5cm2 테프론 몰드에 넣어 60℃에서 1 시간 동안 건조시켜 유무기 복합체 필름을 제조하였다.
[ 실험예 1: 산화 탄소 나노 입자의 특성 분석]
( 실험예 1-1: 산화 탄소 나노 입자의 적외선 분광 분석)
상기 제조예 1에서 제조된 산화 탄소 나노 입자(OCN, oxidized carbon nano-particle) 및 시중에 판매되는 산화 그래핀(Grapheneol사 GO bucky paper 제품)를 적외선 분광 분석기(Bruker사 Vertex70제품)로 분석하였고, 그 결과를 도 1에 나타내었다.
상기 도 1은 적외선 분광 분석을 통해 파수 500에서 4000까지 측정한 스펙트럼으로 빨간색 실선은 산화 탄소 나노 입자의 스펙트럼이고, 검정색 실선은 산화 그래핀의 스펙트럼이다. 대표적인 화학적 관능기로는 파수 1700 부근의 카르복실기와 파수 3200에서 3600의 넓은 띠로 나타나는 하이드록시 그룹이 적외선 분광 분석을 통해 관찰되었다.
상기 도 1을 참고하면, 상기 산화 탄소 나노 입자는 직경 1nm 내지 500㎛의 크기를 갖는 구상의 입자 물질로 탄소 대비 산소를 10 원자% 이상 함유하는 것을 특징으로 하며, 구상의 표면에 카르복실기(-COOH), 하이드록실기(-OH), 에폭시기(-O-) 등을 포함하고 있음을 알 수 있다.
( 실험예 1-2: 산화 탄소 나노 입자의 X선 원소 분석)
상기 제조예 1에서 제조된 산화 탄소 나노 입자(OCN, oxidized carbon nano-particle) 및 시중에 판매되는 산화 그래핀(Grapheneol사 GO bucky paper 제품)를 X선 원소 분석(X-ray Photoelectron Spectroscopy, XPS)하였고, 그 결과를 각각 도 2 및 도 3에 나타내었다.
상기 도 2 및 도 3을 참고하면, 상기 산화 탄소 나노 입자와 상기 산화 그래핀은 C-C 결합, C-O(OH) 결합, C-O-C 결합, C=O 결합 및 O=C-OH 결합을 가짐을 알 수 있고, 상기 산화 탄소 나노 입자의 경우 C-O(OH) 결합의 분율이 C-O-C 결합의 분율 보다 더 크나, 상기 산화 그래핀의 경우 C-O-C 결합의 분율이 C-O(OH) 결합의 분율 보다 더 큼을 알 수 있다.
( 실험예 1-3: 산화 탄소 나노 입자의 주사전자현미경 관찰)
상기 제조예 1에서 제조된 산화 탄소 나노 입자(OCN, oxidized carbon nano-particle)를 주사전자현미경(SEM)으로 관찰하였고, 그 결과를 도 4 및 도 5에 나타내었다.
상기 도 4 및 도 5를 참고하면, 상기 산화 탄소 나노 입자는 나노 크기의 구상 입자로서, 입자 크기가 1 내지 3000nm이고, 종횡 비율이 0.9 내지 1.1임을 알 수 있다.
( 실험예 1-4: 산화 탄소 나노 입자의 주사전자현미경 관찰)
상기 제조예 1에서 제조된 산화 탄소 나노 입자(OCN, oxidized carbon nano-particle)를 라만 분석하였고, 그 결과를 도 6에 나타내었다.
상기 도 6을 참고하면, 상기 산화 탄소 나노 입자는 라만 분석에 의한 결함피크/탄소피크 신호감도비율(ID/IG intensity ratio)이 0.004 내지 0.7임을 알 수 있다.
[ 실험예 2: 유무기 복합체의 특성 분석]
상기 제조예 3에서 제조된 유무기 복합체 필름은 두께 3 내지 5㎛의 필름 형태로 기계적 강도 측정을 위해 시편 제작기인 도그본(dog-bone)으로 시편을 찍어내어 만능 시험기(UTM, universal testing machine)으로 기계적 강도(tensile strength)를 측정하였다.
도 7에서 검은색 선은 순수한 폴리우레탄 필름의 기계적 강도를 나타내고, 붉은색 선, 파란색 선, 녹색 선 및 분홍색 선은 각각 산화 탄소 나노 입자를 유무기 복합체 전체 중량에 대하여 각각 0.5 중량%, 1 중량%, 2 중량% 및 3 중량%로 포함하는 유무기 복합체 필름의 기계적 강도를 나타낸다.
상기 도 7을 참고하면, 상기 순수한 폴리우레탄 필름은 strain, 4.5mm/mm 에서 61MPa의 측정값을 보이고, 상기 유무기 복합체 필름은 strain, 5.3mm/mm에서 72MPa의 값을 나타내어, 상기 유무기 복합체 필름이 기계적 강도가 약 17% 향상됨을 알 수 있다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.

Claims (21)

  1. 삭제
  2. 삭제
  3. 삭제
  4. 삭제
  5. 삭제
  6. 삭제
  7. 삭제
  8. 탄소 전구체를 용매에 용해시켜 원료 용액을 제조하는 단계, 그리고
    상기 원료 용액에 염화암모늄(ammo-nium chloride) 촉매를 투입한 후 가열하여 반응시키는 단계
    를 포함하되,
    상기 반응시키는 단계는 밀폐 용기 내에서 이루어지며, 상기 촉매를 투입한 원료 용액을 100 내지 300℃으로 승온시켜, 상기 용매가 2 내지 30bar의 증기압 갖도록 하여 1분 내지 60분 동안 반응시키는 것인 산화 탄소 나노 입자의 제조 방법.
  9. 제8항에 있어서,
    상기 탄소 전구체는 글루코스(glucose), 프록토오스(fructose), 스타치(starch), 셀룰로오스(cellulose) 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나인 것인 산화 탄소 나노 입자의 제조 방법.
  10. 제8항에 있어서,
    상기 용매는 물 또는 에틸렌글리콜(ethylene glycol)인 것인 산화 탄소 나노 자의 제조 방법.
  11. 제8항에 있어서,
    상기 탄소 전구체는 상기 용매 100 중량부에 대하여 0.1 내지 50중량부로 용해시키는 것인 산화 탄소 나노 입자의 제조 방법.
  12. 삭제
  13. 제8항에 있어서,
    상기 촉매는 상기 원료 용액을 20 내지 100℃로 승온한 후 투입하는 것인 산화 탄소 나노 입자의 제조 방법.
  14. 제8항에 있어서,
    상기 촉매는 상기 용매 100 중량부에 대하여 0.001 내지 1중량부로 투입하는 것인 산화 탄소 나노 입자의 제조 방법.
  15. 삭제
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
  21. 삭제
KR1020140185951A 2014-12-22 2014-12-22 산화 탄소 나노 입자, 이의 제조 방법, 이를 포함하는 유무기 복합체 및 상기 유무기 복합체의 제조 방법 KR102432060B1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020140185951A KR102432060B1 (ko) 2014-12-22 2014-12-22 산화 탄소 나노 입자, 이의 제조 방법, 이를 포함하는 유무기 복합체 및 상기 유무기 복합체의 제조 방법
CN201580069353.XA CN107108216A (zh) 2014-12-22 2015-08-10 氧化碳纳米粒子及其制备方法、包含该氧化碳纳米粒子的有机无机复合体及其制备方法
US15/539,121 US20170349439A1 (en) 2014-12-22 2015-08-10 Oxidized carbon nanoparticles, method for producing same, organic/inorganic composite comprising same, and method for producing organic/inorganic composite
PCT/KR2015/008341 WO2016104908A1 (ko) 2014-12-22 2015-08-10 산화 탄소 나노 입자, 이의 제조 방법, 이를 포함하는 유무기 복합체 및 상기 유무기 복합체의 제조 방법
JP2017533903A JP2018508442A (ja) 2014-12-22 2015-08-10 酸化炭素ナノ粒子、その製造方法、それを含む有機/無機複合体およびその有機/無機複合体の製造方法
EP15873436.8A EP3239101A4 (en) 2014-12-22 2015-08-10 Oxidized carbon nanoparticles, method for producing same, organic/inorganic composite comprising same, and method for producing organic/inorganic composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140185951A KR102432060B1 (ko) 2014-12-22 2014-12-22 산화 탄소 나노 입자, 이의 제조 방법, 이를 포함하는 유무기 복합체 및 상기 유무기 복합체의 제조 방법

Publications (2)

Publication Number Publication Date
KR20160076136A KR20160076136A (ko) 2016-06-30
KR102432060B1 true KR102432060B1 (ko) 2022-08-16

Family

ID=56150897

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140185951A KR102432060B1 (ko) 2014-12-22 2014-12-22 산화 탄소 나노 입자, 이의 제조 방법, 이를 포함하는 유무기 복합체 및 상기 유무기 복합체의 제조 방법

Country Status (6)

Country Link
US (1) US20170349439A1 (ko)
EP (1) EP3239101A4 (ko)
JP (1) JP2018508442A (ko)
KR (1) KR102432060B1 (ko)
CN (1) CN107108216A (ko)
WO (1) WO2016104908A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108310456B (zh) * 2018-04-13 2020-04-07 昆明理工大学 一种氧化石墨烯/纳米羟基磷灰石复合硅胶改性多孔支架材料的制备方法
CN111208100B (zh) * 2020-01-14 2023-03-24 信阳师范学院 氧化碳纳米颗粒纸芯片的制备方法及其在汞离子检测中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002507956A (ja) 1997-06-24 2002-03-12 マテリアルズ アンド エレクトロケミカル リサーチ(エムイーアール)コーポレイション 炭素複合体
WO2003029496A1 (en) 2001-09-28 2003-04-10 Ucar Carbon Company Inc. Sugar additive blend useful as a binder or impregnant for carbon products

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5882726A (en) * 1996-01-02 1999-03-16 Msnw, Inc. Low-temperature densification of carbon fiber preforms by impregnation and pyrolysis of sugars
EP1288160B1 (en) * 2000-04-27 2008-03-12 Institute of Physics Chinese Academy of Sciences Pyrolyzed hard carbon material, preparation and its applications
CN101717540A (zh) * 2009-12-16 2010-06-02 沈阳建筑大学 一种碳纳米管/聚合物复合材料的混杂制备方法
US9440858B2 (en) * 2011-03-15 2016-09-13 University Of Kentucky Research Foudation Carbon particles
JP2012201878A (ja) * 2011-03-28 2012-10-22 Vision Development Co Ltd ダイヤモンド含有複合樹脂組成物、及びその製造方法
JP5775366B2 (ja) * 2011-06-06 2015-09-09 積水化学工業株式会社 炭素質材料−ポリマー複合材料の製造方法
CN105600776B (zh) * 2011-08-18 2018-03-30 株式会社半导体能源研究所 形成石墨烯及氧化石墨烯盐的方法、以及氧化石墨烯盐
CN102418164B (zh) * 2011-11-16 2013-12-04 上海工程技术大学 一种抗静电聚砜酰胺/碳纳米管复合材料及其制备方法
KR101627016B1 (ko) * 2013-05-13 2016-06-02 주식회사 엘지화학 고분산성 탄소나노구조체와 그 제조방법 및 고분산성 탄소나노구조체를 포함하는 고분자 복합체
CN103803527B (zh) * 2014-01-27 2015-09-16 浙江大学 一种多孔碳的制备方法及其产品
CN104150465A (zh) * 2014-08-11 2014-11-19 常州大学 制备中空碳球的方法
KR102235450B1 (ko) * 2014-12-22 2021-04-02 솔브레인 주식회사 유무기 복합체 및 이를 포함하는 수처리 필터

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002507956A (ja) 1997-06-24 2002-03-12 マテリアルズ アンド エレクトロケミカル リサーチ(エムイーアール)コーポレイション 炭素複合体
WO2003029496A1 (en) 2001-09-28 2003-04-10 Ucar Carbon Company Inc. Sugar additive blend useful as a binder or impregnant for carbon products

Also Published As

Publication number Publication date
CN107108216A (zh) 2017-08-29
WO2016104908A1 (ko) 2016-06-30
KR20160076136A (ko) 2016-06-30
US20170349439A1 (en) 2017-12-07
EP3239101A1 (en) 2017-11-01
JP2018508442A (ja) 2018-03-29
EP3239101A4 (en) 2018-03-07

Similar Documents

Publication Publication Date Title
Harito et al. Polymer nanocomposites having a high filler content: synthesis, structures, properties, and applications
Kabiri et al. Nanocrystalline cellulose acetate (NCCA)/graphene oxide (GO) nanocomposites with enhanced mechanical properties and barrier against water vapor
Wang et al. Novel application of graphene oxide to improve hydrophilicity and mechanical strength of aramid nanofiber hybrid membrane
Xu et al. In situ polymerization approach to graphene-reinforced nylon-6 composites
Chang et al. Functionalization of multi-walled carbon nanotubes with non-reactive polymers through an ozone-mediated process for the preparation of a wide range of high performance polymer/carbon nanotube composites
JP6908050B2 (ja) スラリー、複合樹脂材料および成形体の製造方法
Wang et al. Polymeric carbon nanocomposites from multiwalled carbon nanotubes functionalized with segmented polyurethane
KR101927203B1 (ko) rGO가 코팅된 PVA/dGO 복합체 섬유 및 이의 제조방법
US11613464B2 (en) Modified boron nitride nanotubes and solutions thereof
Maio et al. Synthesis of a fluorinated graphene oxide–silica nanohybrid: Improving oxygen affinity
Zotti et al. Polymer nanocomposites based on Graphite Nanoplatelets and amphiphilic graphene platelets
CN109790347A (zh) 浆料以及复合树脂材料和成型体的制造方法
Mallakpour et al. Optical, mechanical, and thermal behavior of poly (vinyl alcohol) composite films embedded with biosafe and optically active poly (amide–imide)-ZnO quantum dot nanocomposite as a novel reinforcement
KR101477015B1 (ko) 폴리도파민이 코팅된 탄소나노튜브의 제조방법 및 그에 의하여 제조된 폴리도파민이 코팅된 탄소나노튜브
KR102432060B1 (ko) 산화 탄소 나노 입자, 이의 제조 방법, 이를 포함하는 유무기 복합체 및 상기 유무기 복합체의 제조 방법
Altay et al. Facile synthesis of CuS nanoparticles deposited on polymer nanocomposite foam and their effects on microstructural and optical properties
KR102235450B1 (ko) 유무기 복합체 및 이를 포함하는 수처리 필터
Li et al. Low-loading oxidized multi-walled carbon nanotube grafted waterborne polyurethane composites with ultrahigh mechanical properties improvement
Cao et al. The effects of surface modifications of multiwalled carbon nanotubes on their dispersibility in different solvents and poly (ether ether ketone)
KR102429719B1 (ko) 환원 탄소 나노 입자 및 이의 제조 방법
Abdolmaleki et al. Microwave-assisted treatment of MWCNTs with vitamin B2: study on morphology, tensile and thermal behaviors of poly (vinyl alcohol) based nanocomposites
Mallakpour et al. Preparation and characterization of reinforced poly (vinyl alcohol) films by a nanostructured, chiral, L-leucine based poly (amide-imide)/ZrO2 nanocomposite through a green method
KR20150071965A (ko) 폴리도파민/메톡시폴리에틸렌글리콜 유도체가 코팅된 탄소나노튜브 및 그 제조방법
Padinhattayil et al. PVA/GO-ZnO hybrid nanocomposites: Synthesis
JP2015074855A (ja) ポリビニルアルコール系コンポジット繊維およびその製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant