KR100766263B1 - 탄성 경계파 장치 - Google Patents

탄성 경계파 장치 Download PDF

Info

Publication number
KR100766263B1
KR100766263B1 KR1020057014610A KR20057014610A KR100766263B1 KR 100766263 B1 KR100766263 B1 KR 100766263B1 KR 1020057014610 A KR1020057014610 A KR 1020057014610A KR 20057014610 A KR20057014610 A KR 20057014610A KR 100766263 B1 KR100766263 B1 KR 100766263B1
Authority
KR
South Korea
Prior art keywords
boundary
electrode
acoustic wave
wave
boundary acoustic
Prior art date
Application number
KR1020057014610A
Other languages
English (en)
Other versions
KR20050107417A (ko
Inventor
하지메 칸도
Original Assignee
가부시키가이샤 무라타 세이사쿠쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 무라타 세이사쿠쇼 filed Critical 가부시키가이샤 무라타 세이사쿠쇼
Publication of KR20050107417A publication Critical patent/KR20050107417A/ko
Application granted granted Critical
Publication of KR100766263B1 publication Critical patent/KR100766263B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/0222Details of interface-acoustic, boundary, pseudo-acoustic or Stonely wave devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Paper (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Soil Working Implements (AREA)
  • Golf Clubs (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

전기기계 결합계수가 크고, 전파손실 및 파워 플로우각(power flow angle)이 작으며, 주파수 온도계수 TCF가 적당한 범위에 있고, 간결한 구조에 의해 간단한 공법으로 제조될 수 있는 SH형의 탄성 경계파를 사용한 탄성 경계파 장치를 제공한다. 압전체의 한 면에 유전체가 적층되어 있으며, 압전체와 유전체 사이의 경계에 전극으로서 IDT 및 반사기가 배치되어 있고, 유전체를 전파하는 느린 횡파(橫波)의 음속 및 압전체를 전파하는 느린 횡파의 음속보다도 SH형 탄성 경계파의 음속을 낮게 하도록, 상기 전극의 두께가 결정되어 있는, 탄성 경계파 장치.
탄성 경계파 장치, 전기기계 결합계수, 주파수 온도계수, 압전체, 유전체

Description

탄성 경계파 장치{Elastic boundary wave device}
본 발명은 SH타입의 탄성 경계파를 이용한 탄성 경계파 장치에 관한 것으로, 보다 상세하게는, 압전체와, 유전체와의 경계에 전극이 배치된 구조의 탄성 경계파 장치에 관한 것이다.
종래, 휴대전화용의 RF필터 및 IF필터, 그리고 VCO용 공진자 및 텔레비전용 VIF필터 등에, 각종 탄성표면파 장치가 사용되고 있다. 탄성표면파 장치는, 매질(媒質) 표면을 전파하는 레일리파나 제 1 누설파 등의 탄성표면파를 이용하고 있다.
탄성표면파는 매질 표면을 전파하기 때문에, 매질의 표면상태의 변화에 민감하다. 따라서, 매질의 탄성표면파 전파면을 보호하기 위해서, 상기 전파면에 면하는 공동(空洞)을 형성한 패키지에 탄성표면파 소자가 기밀 봉지되어 있었다. 이러한 공동을 갖는 패키지가 사용되고 있었기 때문에, 탄성표면파 장치의 비용은 비싸지지 않을 수 없었다. 또한, 패키지의 치수는, 탄성표면파 소자의 치수보다도 대폭으로 커지기 때문에, 탄성표면파 장치는 커지지 않을 수 없었다.
한편, 탄성파 중에는, 상기 탄성표면파 이외에, 고체간의 경계를 전파하는 탄성 경계파가 존재한다.
예를 들면, 문헌 "Piezoelectric Acoustic Boundary Waves Propagating Along the Interface Between SiO2 and LiTaO3" IEEE Trans. Sonics and ultrason., VOL.SU-25, No.6, 1978 IEEE에는, 126°회전 Y판 X전파의 LiTaO3기판상에 IDT가 형성되어 있으며, IDT와 LiTaO3기판상에 SiO2막이 소정의 두께로 형성되어 있는 탄성 경계파 장치가 개시되어 있다. 여기에서는, 스톤리파(Stoneley wave)라고 칭해지고 있는 SV+P형의 탄성 경계파가 전파하는 것이 나타나 있다. 한편, "Piezoelectric Acoustic Boundary Waves Propagating Along the Interface Between SiO2 and LiTaO3" IEEE Trans. Sonics and ultrason., VOL.SU-25, No.6, 1978 IEEE에서는, 상기 SiO2막의 막두께를 1.0λ(λ는 탄성 경계파의 파장)라고 한 경우, 전기기계 결합계수는 2%가 되는 것이 나타나 있다.
탄성 경계파는, 고체간의 경계부분에 에너지가 집중된 상태로 전파한다. 따라서, 상기 LiTaO3기판의 저면 및 SiO2막의 표면에는 에너지가 거의 존재하지 않기 때문에, 기판이나 박막의 표면상태의 변화에 의해 특성이 변화하지 않는다. 따라서, 공동 형성 패키지를 생략할 수 있으며, 탄성파 장치의 사이즈를 저감할 수 있다.
또한, 문헌 "Si/SiO2/LiNbO3구조를 전파하는 고압전성 경계파"(제26회 EM심포지엄, 1997년 5월, pp53∼58)에는, [001]-Si(110)/SiO2/Y컷트 X전파 LiNbO3구조를 전파하는 SH형 경계파가 나타나 있다. 이 SH형 경계파는, 상기 스톤리파와 비교해 서, 전기기계 결합계수 k2가 크다고 하는 특징을 갖는다. 또한, SH형 경계파에 있어서도, 스톤리파의 경우와 마찬가지로, 공동 형성 패키지를 생략할 수 있다. 또한, SH형 경계파는, SH형의 파동이기 때문에, IDT 반사기를 구성하는 스트립의 반사계수가 스톤리파의 경우에 비하여 클 것이 예상된다. 따라서, 예를 들면 공진자나 공진기형 필터를 구성한 경우, SH형 경계파를 이용함으로써, 소형화를 도모할 수 있으며, 또한 보다 급준한 특성이 얻어지는 것이 기대된다.
탄성 경계파 장치에서는, 전기기계 결합계수가 클 것, 전파손실, 파워 플로우각(power flow angle) 및 주파수 온도계수가 작을 것이 요구된다. 탄성 경계파의 전파에 따른 손실, 즉, 전파손실은, 경계파 필터의 삽입손실을 열화시키거나, 경계파 공진자의 공진저항이나 공진주파수에 있어서의 임피던스와 반공진 주파수에 있어서의 임피던스의 임피던스비를 열화시킨다. 따라서, 전파손실은 작을수록 바람직하다.
파워 플로우각은, 경계파의 위상 속도의 방향과, 경계파의 에너지가 진행되는 군속도(群速度;group velocity)의 방향의 차이를 나타내는 각도이다. 파워 플로우각이 큰 경우, IDT를 파워 플로우각에 맞춰 경사시킨 상태로 배치할 필요가 있다. 따라서, 전극 설계가 번잡해진다. 또한, 각도 어긋남에 의한 손실이 발생하기 쉬워진다.
또한, 온도에 의해 경계파 장치의 동작 주파수가 변화하면, 경계파 필터의 경우에는, 실용 가능한 통과대역이나 저지대역이 감소한다. 공진자의 경우에는, 상 기 온도에 의한 동작 주파수의 변화는, 발진회로를 구성한 경우의 이상 발진의 원인이 된다. 그 때문에, 1°당의 주파수 변화량 TCF는 작을수록 바람직하다.
예를 들면, 경계파를 송수신하는 송신용 IDT와 수신용 IDT가 형성되어 있는 영역의 전파방향 외측에 반사기를 배치함으로써, 저손실의 공진기형 필터를 구성할 수 있다. 이 공진기형 필터의 대역폭은, 경계파의 전기기계 결합계수에 의존한다. 전기기계 결합계수 k2가 크면 광대역의 필터를 얻을 수 있고, 작으면 협대역의 필터가 된다. 따라서, 경계파 장치에 사용되는 경계파의 전기기계 결합계수 k2는, 용도에 따라서 적절한 값으로 하는 것이 필요하다. 휴대전화의 RF필터 등을 구성하기 위해서는, 전기기계 결합계수 k2는 5%이상일 것이 요구된다.
그러나, "Piezoelectric Acoustic Boundary Waves Propagating Along the Interface Between SiO2 and LiTaO3" IEEE Trans. Sonics and ultrason., VOL.SU-25, No.6, 1978 IEEE에 나타나 있는 스톤리파를 사용한 탄성 경계파 장치에서는, 전기기계 결합계수는 2%로 작았다.
또한, "Si/SiO2/LiNbO3구조를 전파하는 고압전성 경계파"(제26회 EM심포지엄, 1997년 5월, pp53-58)에 나타나 있는 Si/SiO2/LiNbO3구조에 있어서, 실제로 경계파를 여진(勵振)하기 위해서는, 일본국 특허공개 평10-84247호 공보의 도 1에 나타나 있는 바와 같이, Si/SiO2/IDT/LiNbO3의 복잡한 4층 구조로 할 필요가 있었다. 또한, 최량 조건으로서, 제시된 [001]-Si(110) 방위에서 Si를 실제로 배치하는 경 우, 일본국 특허공개 평10-84247호 공보에 나타나 있는 바와 같이, 난이도가 높은 접합 공법(bonding method)을 사용하지 않으면 안되었다. 통상, 대량생산에 사용되는 3인치이상의 직경의 웨이퍼에서는, 접합 공법에 있어서 웨이퍼를 균질하게 접합하는 것이 곤란하다. 또한, 접합 후에, 칩단위로 절단할 때에, 박리 등의 문제가 발생하기 쉬운 경향에 있었다.
한편, SH형 경계파에서는, 문헌 "압전성 SH타입 경계파에 관한 검토" 전자정보통신학회 기술연구보고 VOL.96, NO.249(US96 45-53) PAGE.21-26 1966에 기재된 바와 같이, 등방체/BGSW기판에 있어서, 등방체와 BGSW기판의 횡파 음속이 가깝고, 또한 밀도비가 작으며, 또 압전성이 강한 조건을 만족시킴으로써, SH형의 경계파가 얻어지는 것이 나타나 있다.
그러나, 이와 같은 조건을 만족시키는 재료는 한정되기 때문에, 경계파에 요구되는 상술한 각종 성능 및 특성을 만족하는 것은 곤란하였다. 예를 들면, "Si/SiO2/LiNbO3구조를 전파하는 고압전성 경계파"(제26회 EM심포지엄 1997년 5월, pp53-58)에 개시되어 있는 [001]-Si(110)/X-LiNbO3구조에서는, 제조시에 난이도가 높은 접합 공법을 사용하지 않으면 안되었다.
본 발명의 목적은, 상술한 종래기술의 현상을 감안하여, 전기기계 결합계수가 크고, 전파손실 및 파워 플로우각(power flow angle)이 작으며, 주파수 온도계수 TCF가 적당한 범위에 있고, 또한 간결한 구조에 의해 간단한 공법으로 제조될 수 있는 SH형의 탄성 경계파를 사용한 탄성 경계파 장치를 제공하는 데 있다.
제1의 발명은, 압전체와, 상기 압전체의 한 면에 적층된 유전체와, 상기 압전체와 유전체 사이의 경계에 배치된 전극을 구비하고, 상기 경계를 전파하는 SH형의 탄성 경계파를 이용한 탄성 경계파 장치에 있어서, 상기 유전체를 전파하는 느린 횡파(橫波)의 음속 및 상기 압전체를 전파하는 느린 횡파의 음속보다도 SH형 탄성 경계파의 음속을 낮게 하도록, 상기 전극의 두께가 결정되어 있는 것을 특징으로 한다.
제2의 발명은, 압전체와, 상기 압전체의 한 면에 적층된 유전체와, 상기 압전체와 유전체 사이의 경계에 배치된 전극을 구비하고, 상기 경계를 전파하는 SH형의 탄성 경계파를 이용한 탄성 경계파 장치에 있어서, 상기 유전체를 전파하는 느린 횡파의 음속 및 상기 압전체를 전파하는 느린 횡파의 음속보다도 SH형 탄성 경계파의 음속을 낮게 하도록, 상기 전극을 구성하는 스트립의 듀티비가 결정되어 있는 것을 특징으로 한다.
본원의 제3의 발명은, LiNbO3를 주성분으로 하는 압전체와, 상기 압전체의 한 면에 적층되어 있는 유전체와, 상기 압전체와 상기 유전체 사이의 경계에 배치된 전극을 구비하고, 상기 경계를 전파하는 SH형의 탄성 경계파를 이용한 탄성 경계파 장치로서, 상기 LiNbO3를 주성분으로 하는 압전체의 오일러각(φ, θ, ψ)의 φ가 -31∼+31°의 범위에 있으며, 또한 θ 및 ψ가, 하기의 표 1의 점 A01∼A13으로 둘러싸여진 범위에 있는 것을 특징으로 하는, 탄성 경계파 장치이다.
ψ(°) θ(°)
A01 0 116
A02 11 118
A03 20 123
A04 25 127
A05 33 140
A06 60 140
A07 65 132
A08 54 112
A09 48 90
A10 43 87
A11 24 90
A12 0 91
A13 0 116
제3의 발명의 어느 특정의 국면에서는, 상기 오일러각의 θ 및 ψ가, 하기의 표 2의 점 D01∼D07로 둘러싸여진 범위에 있는 것을 특징으로 한다.
ψ(°) θ(°)
D01 0 126
D02 13 123
D03 25 112
D04 30 96
D05 29 80
D06 0 80
D07 0 126
제3의 발명의 다른 특정의 국면에서는, 상기 유전체를 전파하는 느린 횡파의 음속 및 상기 압전체를 전파하는 느린 횡파의 음속보다도 SH형 탄성 경계파의 음속을 낮게 하도록, 상기 전극의 두께가 결정되어 있다.
제3의 발명의 또 다른 특정의 국면에서는, 상기 유전체를 전파하는 느린 횡파의 음속 및 상기 압전체를 전파하는 느린 횡파의 음속보다도 SH형 탄성 경계파의 음속을 낮게 하도록, 상기 전극을 구성하는 스트립의 듀티비가 결정되어 있다.
본원의 제4의 발명은, LiNbO3를 주성분으로 하는 압전체와, 상기 압전체의 한 면에 적층되어 있으며, SiO2를 주성분으로 하는 유전체와, 상기 압전체와 유전체 사이의 경계에 배치된 전극을 구비한 탄성 경계파 장치로서, 상기 전극의 밀도를 ρ(kg/㎥), 전극의 막두께를 H(λ), 탄성 경계파의 파장을 λ라고 했을 때에, H>8261.744ρ-1.376이며, 또한 상기 압전체의 오일러각이, (0°, 90°, 0°)∼(0°, 90°, 38°), (0°, 90°, 142°)∼(0°, 90°, 180°), (90°, 90°, 0°)∼(90°, 90°, 36°), (90°, 90°, 140°)∼(90°, 90°, 180°), (0°, 55°, 0°)∼(0°, 134°, 0°), (90°, 51°, 0°)∼(90°, 129°, 0°), (0°, 90°, 0°)∼(180°, 90°, 0°)의 범위인 것을 특징으로 한다.
제4의 발명의 어느 특정의 국면에서는, 상기 압전체의 오일러각은, 하기의 식(A)에 의해, 경계파 특성이 실질상 등가인 오일러각으로 되어 있다.
F(φ, θ, ψ)=F(60°-φ, -θ, ψ)
=F(60°+φ, -θ, 180°-ψ)
=F(φ, 180°+θ, 180°-ψ)
=F(φ, θ, 180°+ψ) ………식(A)
본원의 제5의 발명은, LiNbO3를 주성분으로 하는 압전체와, 상기 압전체의 한 면에 적층되어 있으며, SiO2를 주성분으로 하는 유전체와, 상기 압전체와 유전체 사이의 경계에 배치된 전극을 구비하고, SH형의 탄성 경계파를 이용한 탄성 경계파 장치로서, 상기 전극의 밀도를 ρ(kg/㎥), 전극의 막두께를 H(λ), 탄성 경계파의 파장을 λ라고 했을 때에, H>8261.744ρ-1.376으로 되어 있는 것을 특징으로 한다.
제3∼제5의 발명의 어느 특정의 국면에서는, 상기 전극의 밀도 ρ는, 바람직하게는 ρ>3745kg/㎥의 범위로 된다.
또한, 제3∼제5의 발명의 다른 특정의 국면에서는, 상기 전극의 막두께 H가 하기의 식(1)을 만족시키도록 구성되어 있다.
33000.39050ρ-1.50232<H<88818.90913ρ-1.54998 …식(1)
본원의 제6의 발명의 탄성 경계파 장치에 따르면, SH형 경계파와 스톤리파가 전파하는 경계파 전파구조를 갖는 탄성 경계파 장치에 있어서, SH형 경계파의 음속이, 경계를 형성하는 2개의 매질의 양방의 느린 횡파의 음속보다 저속이고, 또한, 스톤리파의 음속이 2개의 매질의 적어도 한쪽의 느린 횡파의 음속보다 고속인 것을 특징으로 한 탄성 경계파 장치가 제공된다.
제1∼제6의 발명의 탄성 경계파 장치에서는, 바람직하게는, 상기 전극은, Au, Ag, Cu, Al, Fe, Ni, W, Ta, Pt, Mo, Cr, Ti, ZnO 및 ITO 그리고 이들의 도체를 주체로 하는 합금에서 선택된 적어도 1종으로 이루어지는 전극층을 주체로 한다.
또한, 상기 전극은, 상기 전극층과, 상기 전극층을 구성하고 있는 도체 이외의 도체로 이루어지는 적어도 1층의 제 2 전극층을 더 구비하고 있어도 된다.
<발명의 효과>
제1의 발명에 따른 탄성 경계파 장치에서는, 압전체와, 압전체의 한 면에 적층된 유전체와, 압전체와 유전체 사이의 경계에 배치된 전극이 구비되고, 유전체를 전파하는 느린 횡파의 음속 및 압전체를 전파하는 느린 횡파의 음속보다도 SH형의 탄성 경계파의 음속을 낮게 하도록, 전극의 두께가 결정되어 있다.
또한, 본원의 제2의 발명에서는, 압전체와, 압전체의 한 면에 적층된 유전체와, 압전체와 유전체 사이의 경계에 배치된 전극이 구비되어 있으며, 유전체를 전파하는 느린 횡파의 음속 및 압전체를 전파하는 느린 횡파의 음속보다도 SH형의 탄성 경계파의 음속을 낮게 하도록, 전극을 구성하는 스트립의 듀티비가 결정되어 있다.
따라서, 제1, 제2의 발명에 따르면, 상기 전극의 두께 또는 스트립의 듀티비가 상기와 같이 결정되어 있기 때문에, SH형 탄성 경계파가 유전체와 압전체를 전파하는 SH형의 탄성 경계파 장치를 제공하는 것이 가능해진다.
제3의 발명에 따른 탄성 경계파 장치에서는, LiNbO3를 주성분으로 하는 압전체가 사용되고 있으며, 상기 LiNbO3의 오일러각(φ, θ, ψ)의 φ가 -31°∼+31°의 범위이고, 또한 θ 및 ψ가 상술한 표 1의 점 A01∼A13으로 둘러싸여진 범위 내로 되어 있기 때문에, 스톤리파에 의한 스퓨리어스를 효과적으로 억제할 수 있으며, SH형 경계파의 전기기계 결합계수 k2를 크게 할 수 있다.
특히, 오일러각의 θ 및 ψ가, 표 2의 점 D01∼D07로 둘러싸여진 범위 내인 경우에는, SH형 탄성 경계파의 전기기계 결합계수 k2가 10%이상으로 크게 된다.
또한, 제3의 발명에 따른 탄성 경계파 장치에 있어서, 유전체를 전파하는 느린 횡파의 음속 및 압전체를 전파하는 느린 횡파의 음속보다도 SH형의 탄성 경계파의 음속을 낮게 하도록 전극의 두께가 결정되어 있는 경우, 혹은 유전체를 전파하는 느린 횡파의 음속 및 압전체를 전파하는 느린 횡파의 음속보다도 SH형의 탄성 경계파의 음속을 낮게 하도록 전극을 구성하는 스트립의 듀티비가 결정되어 있는 경우에는, SH형 탄성 경계파가 유전체와 압전체와의 경계를 확실하게 전파하는 SH형의 탄성 경계파 장치를 제공할 수 있다.
제4의 발명에 따른 탄성 경계파 장치에서는, LiNbO3를 주성분으로 하는 압전체의 한 면에 SiO2를 주성분으로 하는 유전체가 적층되어 있고, 상기 압전체와 유전체 사이의 경계에 전극이 배치되어 있는 구성에 있어서, H>8261.744ρ-1.376이며, 또한 압전체의 오일러각이 상술한 특정의 범위로 되어 있기 때문에, 경계파를 이용한 경계파 장치이며, 전기기계 결합계수가 큰 탄성 경계파 장치를 제공할 수 있다.
또한, 제4의 발명에 있어서는, 상기 압전체의 오일러각은 식(A)에 의해, 경계파 특성이 실질상 등가인 오일러각으로 되어 있어도 된다.
제5의 발명에서는, LiNbO3를 주성분으로 하는 압전체와, 압전체의 한 면에 적층되어 있으며, SiO2를 주성분으로 하는 유전체와, 압전체와 유전체 사이의 경계에 배치된 전극이 구비되어 있고, 전극의 밀도를 ρ(kg/㎥), 전극의 막두께를 H(λ), 탄성 경계파의 파장을 λ라고 했을 때에, H>8261.744ρ-1.376으로 되어 있기 때문에, 스톤리파에 의한 스퓨리어스를 효과적으로 억압하면서, SH형의 탄성 경계파를 전파시킬 수 있는 탄성 경계파 장치를 제공할 수 있다.
또한, 제3∼제5의 발명에 있어서, 상기 밀도 ρ는, ρ>3745kg/㎥인 경우에는, 전파손실이 0이 되는 전극의 막두께를 작게 하는 것이 가능해진다. 따라서, 전극의 형성이 용이해진다.
또한, 전극막 두께 H가 상술한 식(1)을 만족시키는 경우에는, SH형의 경계파의 주파수 온도계수 TCF를 ±20ppm이하로 작게 할 수 있다.
제6의 발명에 따른 탄성 경계파 장치에서는, SH형 경계파와 스톤리파가 전파하는 경계파 전파구조를 갖는 탄성 경계파 장치에 있어서, SH형 경계파의 음속이, 경계를 형성하는 2개의 매질의 양방의 느린 횡파의 음속보다도 저속이고, 또한 스톤리파의 음속이 2개의 매질의 적어도 한쪽의 느린 횡파의 음속보다도 고속이기 때문에, 스톤리파의 전파손실이 열화하고, 따라서 스톤리파에 의한 스퓨리어스를 억제하여, SH형 경계파를 이용한 탄성 경계파 장치의 주파수 특성을 개선할 수 있다.
본 발명에 있어서, 전극이 Au, Ag, Cu, Al, Fe, Ni, W, Ta, Pt, Mo, Cr, Ti, ZnO 및 ITO 그리고 이들의 금속을 주체로 하는 합금에서 선택된 적어도 1종으로 이루어지는 전극층을 주체로 하는 경우에는, 본 발명에 따라서, SH형의 경계파를 이용한 경계파 장치를 제공할 수 있으며, 상기 전극층을 구성하고 있는 금속 이외의 금속으로 이루어지는 적어도 1층의 제 2 전극층이 더 구비되어 있는 경우에는, 제 2 전극층을 구성하는 금속재료를 선택함으로써, 전극과 유전체 혹은 압전체와의 밀착성을 높이거나, 내전력성을 높이는 것이 가능해진다.
도 1은 본 발명의 한 실시형태에 따른 탄성 경계파 장치를 나타내는 정면 단면도이다.
도 2는 밀도가 다른 전극재료를 사용해서 압전체와 유전체 사이에 전극을 형성한 경우의 음속 V와, 전극의 두께 H/λ와의 관계를 나타내는 도면이다.
도 3은 밀도가 다른 전극재료를 사용해서 압전체와 유전체 사이에 전극을 형성한 경우의 전파손실 α와, 전극의 두께 H/λ와의 관계를 나타내는 도면이다.
도 4는 밀도가 다른 전극재료를 사용해서 압전체와 유전체 사이에 전극을 형성한 경우의 전기기계 결합계수 k2와, 전극의 두께 H/λ와의 관계를 나타내는 도면이다.
도 5는 밀도가 다른 전극재료를 사용해서 압전체와 유전체 사이에 전극을 형성한 경우의 주파수 온도계수 TCF와, 전극의 두께 H/λ와의 관계를 나타내는 도면이다.
도 6은 밀도가 다른 전극재료를 사용해서 압전체와 유전체 사이에 전극을 형성한 경우의 파워 플로우각(power flow angle) PFA와, 전극의 두께 H/λ와의 관계를 나타내는 도면이다.
도 7은 전극재료의 밀도 ρ와 전파손실이 0이 되는 전극막 두께 H(λ)와의 관계를 나타내는 도면이다.
도 8은 전극재료의 밀도 ρ와 TCF가 -20, -10, 0, +10, +20ppm/℃가 되는 전극막 두께 H와의 관계를 나타내는 도면이다.
도 9는 실시예 2에서 시작(試作)된 경계파 공진자의 주파수 특성을 나타내는 도면이다.
도 10은 (φ, 0°, 0°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 φ와, 음속 V와의 관계를 나타내는 도면이다.
도 11은 (φ, 0°, 0°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 φ와, 전기기계 결합계수 k2와의 관계를 나타내는 도면이다.
도 12는 (φ, 0°, 0°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 φ와, 전파손실 α와의 관계를 나타내는 도면이다.
도 13은 (φ, 0°, 0°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 φ와, 주파수 온도계수 TCF와의 관계를 나타내는 도면이다.
도 14는 (φ, 0°, 0°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 φ와, 파워 플로우각 PFA와의 관계를 나타내는 도 면이다.
도 15는 (φ, 0°, 90°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 φ와, 음속 V와의 관계를 나타내는 도면이다.
도 16은 (φ, 0°, 90°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 φ와, 전기기계 결합계수 k2와의 관계를 나타내는 도면이다.
도 17은 (φ, 0°, 90°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 φ와, 전파손실 α와의 관계를 나타내는 도면이다.
도 18은 (φ, 0°, 90°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 φ와, 주파수 온도계수 TCF와의 관계를 나타내는 도면이다.
도 19는 (φ, 0°, 90°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 φ와, 파워 플로우각 PFA와의 관계를 나타내는 도면이다.
도 20은 (φ, 90°, 0°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 φ와, 음속 V와의 관계를 나타내는 도면이다.
도 21은 (φ, 90°, 0°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 φ와, 전기기계 결합계수 k2와의 관계를 나타내는 도면이다.
도 22는 (φ, 90°, 0°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 φ와, 전파손실 α와의 관계를 나타내는 도면이다.
도 23은 (φ, 90°, 0°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 φ와, 주파수 온도계수 TCF와의 관계를 나타내는 도면이다.
도 24는 (φ, 90°, 0°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 φ와, 파워 플로우각 PFA와의 관계를 나타내는 도면이다.
도 25는 (φ, 90°, 90°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 φ와, 음속 V와의 관계를 나타내는 도면이다.
도 26은 (φ, 90°, 90°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 φ와, 전기기계 결합계수 k2와의 관계를 나타내는 도면이다.
도 27은 (φ, 90°, 90°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 φ와, 전파손실 α와의 관계를 나타내는 도면이다.
도 28은 (φ, 90°, 90°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 φ와, 주파수 온도계수 TCF와의 관계를 나타내는 도면이다.
도 29는 (φ, 90°, 90°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 φ와, 파워 플로우각 PFA와의 관계를 나타내는 도면이다.
도 30은 (0°, θ, 0°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 θ와, 음속 V와의 관계를 나타내는 도면이다.
도 31은 (0°, θ, 0°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 θ와, 전기기계 결합계수 k2와의 관계를 나타내는 도면이다.
도 32는 (0°, θ, 0°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 θ와, 전파손실 α와의 관계를 나타내는 도면이다.
도 33은 (0°, θ, 0°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 θ와, 주파수 온도계수 TCF와의 관계를 나타내는 도면이다.
도 34는 (0°, θ, 0°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 θ와, 파워 플로우각 PFA와의 관계를 나타내는 도면이다.
도 35는 (0°, θ, 90°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 θ와, 음속 V와의 관계를 나타내는 도면이다.
도 36은 (0°, θ, 90°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 θ와, 전기기계 결합계수 k2와의 관계를 나타내는 도면이다.
도 37은 (0°, θ, 90°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 θ와, 전파손실 α와의 관계를 나타내는 도면이다.
도 38은 (0°, θ, 90°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 θ와, 주파수 온도계수 TCF와의 관계를 나타내는 도면이다.
도 39는 (0°, θ, 90°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 θ와, 파워 플로우각 PFA와의 관계를 나타내는 도면이다.
도 40은 (90°, θ, 0°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 θ와, 음속 V와의 관계를 나타내는 도면이다.
도 41은 (90°, θ, 0°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 θ와, 전기기계 결합계수 k2와의 관계를 나타내는 도면이다.
도 42는 (90°, θ, 0°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 θ와, 전파손실 α와의 관계를 나타내는 도면이다.
도 43은 (90°, θ, 0°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 θ와, 주파수 온도계수 TCF와의 관계를 나타내는 도면이다.
도 44는 (90°, θ, 0°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 θ와, 파워 플로우각 PFA와의 관계를 나타내는 도면이다.
도 45는 (90°, θ, 90°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 θ와, 음속 V와의 관계를 나타내는 도면이다.
도 46은 (90°, θ, 90°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 θ와, 전기기계 결합계수 k2와의 관계를 나타내는 도면이다.
도 47은 (90°, θ, 90°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 θ와, 전파손실 α와의 관계를 나타내는 도면이다.
도 48은 (90°, θ, 90°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 θ와, 주파수 온도계수 TCF와의 관계를 나타내는 도면이다.
도 49는 (90°, θ, 90°)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 θ와, 파워 플로우각 PFA와의 관계를 나타내는 도면이다.
도 50은 (0°, 0°, ψ)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 ψ와, 음속 V와의 관계를 나타내는 도면이다.
도 51은 (0°, 0°, ψ)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형 성한 구조에 있어서, 오일러각의 ψ와, 전기기계 결합계수 k2와의 관계를 나타내는 도면이다.
도 52는 (0°, 0°, ψ)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 ψ와, 전파손실 α와의 관계를 나타내는 도면이다.
도 53은 (0°, 0°, ψ)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 ψ와, 주파수 온도계수 TCF와의 관계를 나타내는 도면이다.
도 54는 (0°, 0°, ψ)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 ψ와, 파워 플로우각 PFA와의 관계를 나타내는 도면이다.
도 55는 (0°, 90°, ψ)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 ψ와, 음속 V와의 관계를 나타내는 도면이다.
도 56은 (0°, 90°, ψ)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 ψ와, 전기기계 결합계수 k2와의 관계를 나타내는 도면이다.
도 57은 (0°, 90°, ψ)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형 성한 구조에 있어서, 오일러각의 ψ와, 전파손실 α와의 관계를 나타내는 도면이다.
도 58은 (0°, 90°, ψ)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 ψ와, 주파수 온도계수 TCF와의 관계를 나타내는 도면이다.
도 59는 (0°, 90°, ψ)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 ψ와, 파워 플로우각 PFA와의 관계를 나타내는 도면이다.
도 60은 (90°, 0°, ψ)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 ψ와, 음속 V와의 관계를 나타내는 도면이다.
도 61은 (90°, 0°, ψ)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 ψ와, 전기기계 결합계수 k2와의 관계를 나타내는 도면이다.
도 62는 (90°, 0°, ψ)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 ψ와, 전파손실 α와의 관계를 나타내는 도면이다.
도 63은 (90°, 0°, ψ)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 ψ와, 주파수 온도계수 TCF와의 관계를 나타내는 도면이다.
도 64는 (90°, 0°, ψ)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 ψ와, 파워 플로우각 PFA와의 관계를 나타내는 도면이다.
도 65는 (90°, 90°, ψ)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 ψ와, 음속 V와의 관계를 나타내는 도면이다.
도 66은 (90°, 90°, ψ)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 ψ와, 전기기계 결합계수 k2와의 관계를 나타내는 도면이다.
도 67은 (90°, 90°, ψ)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 ψ와, 전파손실 α와의 관계를 나타내는 도면이다.
도 68은 (90°, 90°, ψ)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 ψ와, 주파수 온도계수 TCF와의 관계를 나타내는 도면이다.
도 69는 (90°, 90°, ψ)의 LiNbO3기판상에 Au전극을 형성하고, SiO2막을 형성한 구조에 있어서, 오일러각의 ψ와, 파워 플로우각 PFA와의 관계를 나타내는 도면이다.
도 70은 실시예 6에서 준비된 SH형 경계파 공진자의 전극구조를 나타내는 모식적 평면도이다.
도 71은 실시예 6에 있어서, 오일러각 (0°, 90°, 0°)의 LiNbO3를 사용한 경우의 임피던스 특성을 나타내는 도면이다.
도 72는 실시예 6에 있어서, 오일러각(0°, 105°, 0°)의 LiNbO3를 사용한 경우의 임피던스 특성을 나타내는 도면이다.
도 73은 실시예 6의 탄성 경계파 장치에 있어서의 SH형 경계파의 변위성분 U1, U2, U3의 계산값을 나타내는 도면이다.
도 74는 실시예 7에 있어서, 오일러각(90°, 90°, ψ)의 ψ를 0°∼35°의 범위의 LiNbO3를 사용한 경우의 임피던스 특성을 나타내는 도면이다.
도 75는 실시예 7에 있어서, 오일러각(90°, 90°, ψ)의 ψ와 공진 주파수와 반공진 주파수와의 주파수차 및 임피던스비와의 관계를 나타내는 도면이다.
도 76은 실시예 8에 있어서 SH형 경계파 공진자를 사용해서 구성된 사다리형 필터의 회로구성을 나타내는 도면이다.
도 77은 실시예 4에 있어서, 오일러각(0°, θ, ψ)의 LiNbO3기판상에, 두께 0.06λ의 Au전극을 형성하고, 또한 SiO2막을 형성한 구조에 있어서의, 오일러각의 θ 및 ψ와, SH형 경계파의 전기기계 결합계수 k2와의 관계를 나타내는 도면이다.
도 78은 실시예 4에 있어서, 오일러각(0°, θ, ψ)의 LiNbO3기판상에, 두께 0.06λ의 Au전극을 형성하고, 또한 SiO2막을 형성한 구조에 있어서의, 오일러각의 θ 및 ψ와, 스톤리파의 전기기계 결합계수 k2의 관계를 나타내는 도면이다.
도 79는 실시예 5에 있어서, 오일러각(φ, 105°, 0°)의 LiNbO3기판을 사용한 경우의 오일러각의 φ와 SH형 경계파 및 스톤리파의 음속 V와의 관계를 나타내는 도면이다.
도 80은 실시예 5에 있어서, 오일러각(φ, 105°, 0°)의 LiNbO3기판을 사용한 경우의 오일러각의 φ와 주파수 온도계수 TCF와의 관계를 나타내는 도면이다.
도 81은 실시예 5에 있어서, 오일러각(φ, 105°, 0°)의 LiNbO3기판을 사용한 경우의 오일러각의 φ와 전기기계 결합계수 k2와의 관계를 나타내는 도면이다.
도 82는 실시예 5에 있어서, 오일러각(φ, 105°, 0°)의 LiNbO3기판을 사용한 경우의 오일러각의 φ와 파워 플로우각과의 관계를 나타내는 도면이다.
도 83은 실시예 5에 있어서, 오일러각(0°, 105°, ψ)의 LiNbO3기판을 사용한 경우의 오일러각의 φ와 SH형 경계파 및 스톤리파의 음속 V와의 관계를 나타내는 도면이다.
도 84는 실시예 5에 있어서, 오일러각(0°, 105°, ψ)의 LiNbO3기판을 사용한 경우의 오일러각의 φ와 주파수 온도계수 TCF와의 관계를 나타내는 도면이다.
도 85는 실시예 5에 있어서, 오일러각(0°, 105°, ψ)의 LiNbO3기판을 사용 한 경우의 오일러각의 φ와 전기기계 결합계수 k2와의 관계를 나타내는 도면이다.
도 86은 실시예 5에 있어서, 오일러각(0°, 105°, ψ)의 LiNbO3기판을 사용한 경우의 오일러각의 φ와 파워 플로우각과의 관계를 나타내는 도면이다.
도 87은 실시예 4에 있어서, 오일러각(0°, θ, 0°)의 LiNbO3기판상에, 두께 0.05λ의 Au전극을 형성하고, 또한 SiO2막을 형성한 구조에 있어서의, 오일러각의 θ와 음속 V와의 관계를 나타내는 도면이다.
도 88은 실시예 4에 있어서, 오일러각(0°, θ, 0°)의 LiNbO3기판상에, 두께 0.05λ의 Au전극을 형성하고, 또한 SiO2막을 형성한 구조에 있어서의, 오일러각의 θ와 전기기계 결합계수 k2와의 관계를 나타내는 도면이다.
도 89는 실시예 4에 있어서, 오일러각(0°, θ, 0°)의 LiNbO3기판상에, 두께 0.05λ의 Au전극을 형성하고, 또한 SiO2막을 형성한 구조에 있어서의, 오일러각의 θ와 주파수 온도계수 TCF와의 관계를 나타내는 도면이다.
이하, 도면을 참조하면서, 본 발명의 구체적인 실시예를 설명함으로써, 본 발명을 명백히 한다.
2개의 고체층 사이에 탄성 경계파를 전파시키기 위해서는, 고체층 사이에 경계파의 에너지가 집중되는 조건을 만족시킬 필요가 있다. 그 경우, 상술한 바와 같 이, 등방체와, BGSW기판의 횡파 음속이 가깝고, 또한 밀도비가 작으며, 또 압전성이 강한 재료를 선택하는 방법이 상술한 문헌 "압전성 SH타입 경계파에 관한 검토" 전자정보통신학회 기술연구보고 VOL.96, NO.249(US96 45-53) PAGE.21-26 1966에 개시되어 있다.
그런데, 일반적으로, 고속의 영역과, 저속의 영역이 존재하는 경우, 파동은 음속이 느린 부분에 집중되어 전파한다. 그래서, 본원 발명자는, 2개의 고체층 사이에 배치된 전극재료로서, 밀도가 크고, 저음속인 Au 등의 금속으로 이루어지는 재료를 이용하고, 전극의 두께를 증가시킴으로써, 고체층 사이를 전파하는 경계파의 음속을 저음속화하면, 고체층 사이로의 에너지 집중 조건을 만족시킬 수 있는 것을 발견하고, 본 발명을 이루기에 이르렀다.
종래, 고체 내를 전파하는 벌크파에는, 종파와, 빠른 횡파와, 느린 횡파의 3종류가 있다는 것이 알려져 있으며, 각각, P파, SH파, SV파라고 불리고 있다. 한편, SH파와 SV파 중 어느 하나가 느린 횡파가 되는지는, 기체(基體)의 이방성에 따라 변한다. 이들 3종류의 벌크파 중, 가장 저음속의 벌크파가, 느린 횡파이다. 한편, SiO2와 같이 고체가 등방체인 경우에는, 횡파는 1종만 전파하므로, 이 횡파가 느린 횡파가 된다.
한편, 압전기판 등의 이방성 기체를 전파하는 탄성 경계파에서는, 대부분의 경우에는, P파, SH파 및 SV파의 3개의 변위성분이 결합하면서 전파하며, 주요 성분에 의해 탄성 경계파의 종류가 분류된다. 예를 들면, 상기 스톤리파는 P파와 SV파 가 주체인 탄성 경계파이고, SH형 경계파는 SH성분이 주체인 탄성 경계파이다. 한편, 조건에 따라서는, SH파 성분이나, P파 혹은 SV파 성분이 결합하지 않고 전파하는 일도 있다.
탄성 경계파에서는, 상기 3개의 변위성분이 결합하면서 전파하기 때문에, 예를 들면, SH파보다도 고음속의 탄성 경계파에서는, SH성분과 SV성분이 누설하고, SV파보다도 고음속의 탄성 경계파에서는, SV성분이 누설하게 된다. 이 누설성분이 경계파의 전파손실의 원인이 된다.
그래서, 2개의 고체층의 쌍방의 느린 횡파의 음속보다도, SH형 경계파의 음속을 저속화하면, SH형 경계파의 에너지를, 2개의 고체층 사이에 배치한 전극 부근에 집중시켜서, 전기기계 결합계수 k2가 큰 SH형 경계파를 전파시킬 수 있으며, 전파손실 0의 조건을 얻을 수 있다. 본 발명은 이러한 생각에 기초해서 이루어진 것이다.
그리고, 적어도 한쪽의 고체를 압전체, 다른쪽 고체를 압전체를 포함하는 유전체로 함으로써, 고체 사이에 배치한 전극에 의해 SH형 경계파가 여진된다. 한편, 발명자의 지견(知見)에 따르면, 유전체로서 압전체를 사용하고, 또한, 스퍼터나 CVD 등의 저렴한 성막법(成膜法)에 의해 압전체를 성막한 경우, 압전체의 압전상수가 불안정하게 되어, 불필요한 스퓨리어스 응답을 발생시키므로, 유전체에는 압전성이 없는 재료가 바람직하다.
도 1은, 본 발명의 한 실시형태에 따른 탄성 경계파 장치의 약도적 정면 단 면도이다. 탄성 경계파 장치(1)에서는, 판형상의 압전체(2)의 상면에, 유전체(3)가 적층되어 있다. 압전체(2)와 유전체(3)의 경계에 전극으로서, IDT(4) 및 반사기(5, 6)가 배치되어 있다. 반사기(5, 6)는 IDT(4)의 표면파 전파방향 양측에 배치되어 있으며, 그것에 의해 본 실시형태에서는, 경계파 공진자가 구성되어 있다.
본 실시형태의 탄성 경계파 장치(1)의 특징은, 상기 유전체(3)를 전파하는 느린 횡파의 음속 및 압전체(2)를 전파하는 느린 횡파의 음속보다도 SH형 탄성 경계파의 음속을 낮게 하도록, IDT(4) 및 반사기(5, 6)의 두께가 두껍게 되어 있는 데 있다.
본 실시형태에서는, 전극의 두께가 두껍게 되고, 그것에 의해 SH형 탄성 경계파의 음속이, 압전체(2) 및 유전체(3)를 전파하는 각 느린 횡파의 음속보다도 낮춰져서, 그것에 의해, SH형 경계파의 에너지가 압전체(2)와 유전체(3)의 경계에 집중된다. 따라서, 전기기계 결합계수 k2가 큰 SH형 경계파를, 전파손실이 작은 상태로 전파시킬 수 있다.
한편, 전극의 두께를 두껍게 함으로써 SH형 경계파를 전파시킬 수 있을 뿐만 아니라, 본 발명에서는, 후술하는 바와 같이 전극을 구성하는 스트립의 듀티비를 제어하는 것에 의해서도, SH형 탄성 경계파의 음속을, 압전체(2) 및 유전체(3)를 전파하는 각 느린 횡파의 음속보다도 낮게 하여, SH형 경계파를 경계에 집중시켜서 전파시키는 것도 가능하다.
이하, 구체적인 실험예에 기초해서, 본 발명을 보다 상세하게 설명한다.
[실시예 1]
압전체(2)로서, 오일러각(0°, 90°, 0°) , 즉 Y판 X전파의 LiNbO3기판을 준비하였다. LiNbO3기판에서는, 큰 압전성이 얻어진다. 또한, 유전체(3)를 구성하는 재료로서, SiO2를 사용하였다. SiO2는 박막을 형성하는 것이 용이하며, LiNbO3기판의 음(negative)의 주파수 온도계수 TCF를 상쇄하는 양(positive)의 TCF를 가지므로, 온도특성을 개선할 수 있다.
밀도가 다른 각종 전극재료를 사용해서, 상기 압전체(2)와 유전체(3) 사이에 전극을 형성한 경우의 음속 V, 전기기계 결합계수 k2, 전파손실 α, 주파수 온도계수 TCF 및 파워 플로우각 PFA와, 전극의 두께와의 관계를 구하였다. 결과를 도 2∼도 6에 나타낸다.
도 2∼도 6의 결과는, 문헌 "A method for estimating optimal cuts and propagation directions for excitation and propagation directions for excitation of piezoelectric surface waves"(J.J.Campbell and W.R.Jones, IEEE Trans.Sonics and Ultrason., Vol.SU-15(1968) pp.209-217)에 개시된 방법에 기초해서 계산에 의해 구한 것이다.
한편, 개방 경계의 경우에는, SiO2와 Au, Au와 LiNbO3의 각 경계에 있어서의 변위, 전위, 전속(電束) 밀도의 법선성분 및 상하방향의 응력이 연속이고, SiO2와 LiNbO3의 두께를 무한으로 하며, Au의 비유전율을 1로 해서, 음속과 전파손실을 구 하였다. 또한, 단락 경계의 경우에는, SiO2와 Au 및 Au와 LiNbO3의 각 경계에 있어서의 전위를 0으로 하였다. 또한, 전기기계 결합계수 k2는, 하기의 식(2)에 의해 구하였다.
k2=2×|Vf-V|/Vf …식(2)
한편, Vf는 개방 경계의 음속을 나타낸다.
주파수 온도계수 TCF는, 20℃, 25℃ 및 30℃에 있어서의 위상속도 V로부터, 식(3)에 의해 구하였다.
TCF=V-1(25℃)× [(V(30℃)-V(20℃))/10℃]-αs …식(3)
여기에서, αs는 경계파 전파방향에 있어서의 LiNbO3기판의 선팽창계수이다.
또한, 임의의 오일러각(φ, θ, ψ)에 있어서의 파워 플로우각 PFA는, ψ-0.5°, ψ, ψ+0.5°에 있어서의 위상속도 V로부터, 식(4)에 의해 구하였다.
PFA=tan-1 [V-1(ψ)×(V(ψ+0.5°)-V(ψ-0.5°))] …식 (4)
Y판 X전파의 LiNbO3에 있어서의 종파, 빠른 횡파 및 느린 횡파의 음속은, 각각, 6547, 4752 및 4031m/초이다. 한편, SiO2의 종파, 및 느린 횡파의 음속은, 5960 및 3757m/초이다.
도 2 및 도 3에 따르면, 어떠한 전극재료에 있어서도, SH형 경계파의 음속은, 상기 종파, 빠른 횡파 및 느린 횡파 중 가장 느린 속도인 3757m/초이하가 되는 막두께에 있어서, SH형 경계파의 전파손실 α는 0이 되는 것을 알 수 있다.
도 7은 전극재료의 밀도 ρ와, SH형 경계파의 전파손실이 0이 되는 전극막 두께 H와의 관계를 나타내는 도면이다. 도 7로부터 명백하듯이, 하기의 식(5)의 조건을 만족시킴으로써, 전파손실 α가 0인 SH형 경계파가 얻어지는 것을 알 수 있다.
H(λ)>8261.744ρ-1.376 …식(5)
또한, 이러한 종류의 탄성 경계파 장치를 제조하는 경우, LiNbO3 등의 압전기판상에, 리프트오프(lift-off)나 드라이에칭(dry etching) 등의 포토리소그래피 공법에 의해, IDT 등의 전극이 형성되고, 상기 전극상에 스퍼터나 증착 혹은 CVD 등의 퇴적법에 의한 공법에 의한 SiO2 등으로 이루어지는 유전체막이 형성된다. 이 때문에, IDT의 두께에 기인하는 요철에 의해, 유전체막이 비스듬하게 성장하거나, 막질의 불균일성이 발생하고, 그것에 의해 탄성 경계파 장치의 특성이 열화할 우려가 있다. 이러한 특성의 열화를 피하기 위해서는, 전극의 두께는 가능한 한 얇은 것이 바람직하다.
본원 발명자들의 검토에 따르면, IDT 등의 전극재료의 막두께 H가 0.1λ이상이 되면, 그 요철에 의해, 품질이 양호한 유전체 박막의 형성이 매우 곤란해지기 때문에, 전극막 두께 H는 0.1λ이하로 하는 것이 바람직하다. 따라서, 도 7로부터, 밀도 ρ가 3745kg/㎥이상인 전극재료를 사용하면, 전파손실이 0이 되는, 전극막 두께 H의 두께를 0.1λ로 할 수 있는 것을 알 수 있다.
또한, 도 4로부터 명백하듯이, 상술한 식(5)의 조건을 만족시키는 전극막 두께에 있어서도, 전기기계 결합계수 k2는 10∼38%로 크고 따라서 광대역이며 또한 저손실의 탄성 경계파 장치를 제공할 수 있는 것을 알 수 있다.
또한, 도 5로부터 명백하듯이, 주파수 온도계수 TCF는 대부분의 조건에 있어서 -40∼+40ppm/℃의 범위 내에 있고, 전극막 두께의 조정에 의해, ±20ppm/℃이하, ±10ppm/℃이하, 또한 ±0ppm/℃이하로 할 수 있는 것을 알 수 있다.
도 8은 전극재료의 밀도 ρ와, TCF가 -20, -10, 0, +10 및 +20ppm/℃ 가 되는 전극막 두께 H와의 관계를 나타내는 점과 근사선(近似線)을 나타내는 도면이다. 도 8로부터 명백하듯이, TCF가 -20∼+20ppm/℃로 양호한 범위가 되는 전극막 두께 H는, 하기의 식(6)을 만족시키는 범위이고, 또한 TCF가 -10∼+10ppm/℃로 바람직한 범위가 되는 전극막 두께 H는, 하기의 식(7)을 만족시키는 범위이며, TCF가 0ppm/℃로 최량의 전극막 두께 H는, 식(8)에 나타내는 조건이다.
33000.39050ρ-1.50232<H<88818.90913ρ-1.54998 …식(6)
49889.90887ρ-1.53872<H<112510.78359ρ-1.60019 …식(7)
H=96984.47020ρ-1.59706 …식(8)
또한, 도 6으로부터 명백하듯이, 파워 플로우각 PFA는 어떠한 막두께 H에 있어서도 제로로 양호하다는 것을 알 수 있다.
[실시예 2]
상기 실시예 1에 있어서의 결과에 기초하여, 도 1에 나타내고, 또한 하기의 표 3의 구성의 경계파 공진자를 시작(試作)하였다. 이렇게 해서 얻어진 경계파 공진자의 주파수 특성을 도 9에 나타낸다.
한편, Au와 LiNbO3와의 밀착성을 높이기 위해서, Au와 LiNbO3로 이루어지는 압전체와의 사이에, 두께 0.006λ의 Ti막을 성막하였다.
항목 내용
구성 SiO2/Au/LiNbO3
SiO2 두께 7.5λ
Au 두께 0.035λ
IDT, 반사기 주기 λ 3.2㎛
IDT 구성 정규형 싱글 스트립, 50개, 개구 길이 25λ
반사기 구성 정규형 싱글 스트립, 40개, 개구 길이 25λ
상기 경계파 공진자에서는, 임피던스비, 즉, 반공진점의 임피던스값의 공진점에 있어서의 임피던스값에 대한 비는 45.6dB이고, 공진 주파수와 반공진 주파수와의 주파수차가 8.1%인 양호한 값이 얻어졌다. 또한, 공진자의 주파수 온도계수 TCF는 45ppm/℃였다.
따라서, IDT의 전극지(electrode fingers)의 쌍수가 52쌍, 반사기의 개수가 40개로 적은 스트립수로 양호한 공진특성이 얻어졌기 때문에, IDT나 반사기의 스트립의 반사계수는 높다고 생각된다.
그러나, 도 9에 있어서, 반공진 주파수 근방에 화살표 A로 나타내는 작은 스퓨리어스 응답이 보여졌다. 공진 주파수 부근의 전파특성을 이용하는 용도, 예를 들면, 탄성 경계파 트랩회로에서는 문제가 되지 않으나, 반공진 주파수 부근의 전파특성을 이용하는 사다리형 탄성 경계파 필터나 종결합 공진기형 탄성 경계파 필터에서는 결점이 될 수 있다. 따라서, SH형 탄성 경계파 장치의 적용 범위를 넓혀서, 성능을 보다 한층 개선하기 위해서는, 상기 스퓨리어스 응답을 억제하는 것이 바람직하다.
[실시예 3]
상기 실시예 2에서 발생한 반공진 주파수 근방에 있어서의 스퓨리어스 응답은, SH형 경계파와 마찬가지로, 전극의 두께를 증가시킴으로써, SiO2와, LiNbO3와의 경계에 배치된 전극 근방에 갇혀진 스톤리파의 응답이다. 스톤리파는 SH형의 탄성 경계파보다도 음속이 느린 경우가 많기 때문에, SH형의 경계파의 경우보다도 전극막 두께가 얇은 경우라도, 경계파로서 성립한다.
예를 들면, Y컷트 X전파(오일러각으로 (0°, 90°, 0°))의 LiNbO3기판상에 레일리파나 제 1 누설파 등의 탄성 표면파가 여진하지 않을 정도의 충분히 두꺼운 SiO2막을 형성하고, 또한 LiNbO3기판과 SiO2막 사이에 Au전극을 배치한 경우, SH형의 탄성 경계파는, Au전극의 막두께가 0.0105λ이상이 아니면, 감쇠가 크고, 전파하지 않으나, 스톤리파는 Au전극의 막두께가 0인 경우라도, 감쇠는 0은 아니지만, 전파할 수 있다.
그래서, 스톤리파에 의한 스퓨리어스를 억제하기 위하여, 제 1 실시예에 있어서의 계산방법을 사용해서, LiNbO3기판의 오일러각과, 스톤리파 및 SH형의 탄성 경계파의 음속 V, 전기기계 결합계수 k2, 전파손실 α, 주파수 온도계수 TCF 및 파워 플로우각 PFA와의 관계를 각각 구하였다.
한편, 전제로 한 구조는, LiNbO3기판상에, Au전극을 형성하고, SiO2막을 형성한 구조이다. Au전극의 막두께는 0.07λ로 하고, 오일러각(0°, 0°, ψ), (0°, 90°, ψ), (90°, 0°, ψ), (90°, 90°, ψ), (0°, θ, 0°), (0°, θ, 90°), (90°, θ, 0°), (90°, θ, 90°), (φ, 0°, 0°), (φ, 0°, 90°), (φ, 90°, 0°) 및 (φ, 90°, 90°)이며, ψ, θ, φ는 각각 0°∼180°이다.
도 10∼도 69에 결과를 나타낸다.
한편, 도 10∼도 69에 있어서, 첨자로서 소문자 m이 붙여져 있는 값은, SiO2막과 LiNbO3기판 사이에 금속막을 배치한 단락 경계에 있어서의 계산값을 나타내고, 첨자로서 f가 부여되어 있는 값은, 금속막의 비유전율을 1로 해서 구한 가상적인 개방 경계에 있어서의 계산값이다. 접두문자로서, U2가 붙어져 있는 값은 SH형의 탄성 경계파의 계산값이고, U3가 부여되어 있는 값은 스톤리파의 계산값이다.
스톤리파의 전기기계 결합계수 k2가 2%이하이면, 스톤리파에 의한 스퓨리어스에 기초하는 특성의 열화가 작기 때문에, 비교적 작은 용도에 SH형의 탄성 경계파를 사용한 경계파 장치를 사용할 수 있다. 보다 바람직하게는, 상기 전기기계 결합계수가 1%이하인 것이 바람직하며, 그것에 의해 보다 한층 넓은 용도에 사용할 수 있다. 또한, 더욱 바람직하게는, 스톤리파의 전기기계 결합계수 k2가 0.1%이하이면, 스톤리파의 스퓨리어스의 영향을 거의 받지 않기 때문에, 큰 감쇠량이 요구되는 필터나 약간의 공진 스퓨리어스 응답이 허용되지 않는 고정밀도의 공진자 등에 이용하는 것이 가능해진다.
도 10∼도 69에 있어서, 스톤리파의 전기기계 결합계수 k2가 2%이하가 되는 오일러각은, (0°, 90°, 0°)∼(0°, 90°, 50°), (0°, 90°, 130°)∼(0°, 90°, 180°), (90°, 90°, 0°)∼(90°, 90°, 60°), (90°, 90°, 143°)∼(90°, 90°, 180°), (0°, 84°, 0°)∼(0°, 120°, 0°), (90°, 68°, 90°)∼(90°, 112°, 90°), (0°, 90°, 0°)∼(180°, 90°, 0°)의 범위이고, 스톤리파의 k2가 1%이하가 되는 오일러각은, (90°, 90°, 0°)∼(90°, 90°, 52°), (90°, 90°, 164°)∼(90°, 90°, 180°), (0°, 91°, 0°)∼(0°, 114°, 0°), (90°, 78°, 90°)∼(90°, 102°, 90°), (7°, 90°, 0°)∼(53°, 90°, 0°), (67°, 90°, 0°)∼(113°, 90°, 0°), (127°, 90°, 0°)∼(173°, 90°, 0°)의 범위이며, 스톤리파의 k2가 0.1%이하가 되는 오일러각은, (90°, 90°, 20°)∼(90°, 90°, 40°), (0°, 100°, 0°)∼(0°, 106°, 0°)이다.
상기 오일러각의 범위의 LiNbO3기판을 사용하는 데 있어서도 스퓨리어스 응답이 작거나, 혹은 스퓨리어스가 발생하지 않는 SH형의 탄성 경계파를 사용한 탄성 경계파 장치를 제공할 수 있다.
한편, 도 10∼도 69의 계산 결과의 모든 조건에 있어서, SH형 경계파의 전파손실 U2-αm, U2-αf는 0으로, 양호한 전파특성을 나타내었다.
또한, SH형의 탄성 경계파의 음속 U2-Vm은 3000∼3400m/초 부근에 집중되어 있으며, 컷트각에 의한 변화는 작다는 것을 알 수 있다.
따라서, 전술한 식(5)에 의해, 컷트각을 변경한 경우라도, 전파손실이 0이 되는 전극막 두께 H가 얻어지는 것을 알 수 있다.
또한, SH형의 경계파의 주파수 온도계수 U2-TCFm은, -30∼-39ppm/℃에 집중되어 있으며, 컷트각에 의한 변화는 그다지 크지 않다는 것을 알 수 있다. 따라서, 상술한 식(6)∼(8)에 의해 컷트각을 변경한 경우라도, 주파수 온도계수 TCF가 작아지는 전극막 두께 H를 결정할 수 있다는 것을 알 수 있다.
특히, 오일러각은, (0°, 90°, 0°)∼(0°, 90°, 68°), (0°, 90°, 112°)∼(0°, 90°, 180°), (90°, 90°, 0°)∼(90°, 90°, 77°), (90°, 90°, 120°)∼(90°, 90°, 180°), (0°, 32°, 0°)∼(0°, 137°, 0°), (0°, 120°, 90°)∼(0°, 154°, 90°), (90°, 38°, 0°)∼(90°, 142°, 0°), (90°, 30°, 90°)∼(90°, 48°, 90°), (90°, 132°, 90°)∼(90°, 149°, 90°), (0°, 90°, 0°)∼(180°, 90°, 0°)의 범위에서 U2-TCFm은 -35ppm/℃이상이 되고 있어, 다른 오일러각보다 양호하다.
또한, SH형 경계파의 파워 플로우각 U2-PFAm은, (0°, 0°, 0°)∼(0°, 0°, 180°), (0°, 90°, 0°)∼(0°, 90°, 10°), (0°, 90°, 74°)∼(0°, 90°, 106°), (0°, 90°, 170°)∼(0°, 90°, 180°), (90°, 0°, 0°)∼(90°, 0°, 180°), (90°, 90°, 12°)∼(90°, 90°, 31°), (90°, 90°, 106°)∼(90°, 90°, 117°), (0°, 0°, 0°)∼(0°, 180°, 0°), (0°, 0°, 90°)∼(0°, 180°, 90°), (90°, 0°, 0°)∼(90°, 22°, 0°), (90°, 158°, 0°)∼(90°, 180°, 0°), (90°, 68°, 90°)∼(90°, 112°, 90°), (0°, 0°, 0°)∼(180°, 0°, 0°), (0°, 0°, 90°)∼(180°, 0°, 90°), (0°, 90°, 0°)∼(8°, 90°, 0°), (52°, 90°, 0°)∼(68°, 90°, 0°), (112°, 90°, 0°)∼(128°, 90°, 0°), (172°, 90°, 0°)∼(180°, 90°, 0°), (0°, 90°, 90°)∼(16°, 90°, 90°), (44°, 90°, 90°)∼(76°, 90°, 90°), (104°, 90°, 90°)∼(136°, 90°, 90°), (164°, 90°, 90°)∼(180°, 90°, 90°)의 범위에서 절대값이 1°이하로 양호하다.
또한, SH형 경계파의 전기기계 결합계수 k2는, (0°, 90°, 0°)∼(0°, 90°, 38°), (0°, 90°, 142°)∼(0°, 90°, 180°), (90°, 90°, 0°)∼(90°, 90°, 36°), (90°, 90°, 140°)∼(90°, 90°, 180°), (0°, 55°, 0°)∼(0°, 134°, 0°), (90°, 51°, 0°)∼(90°, 129°, 0°), (0°, 90°, 0°)∼(180°, 90°, 0°)의 범위에서 5%이상으로, RF필터를 구성할 수 있을 정도로 충분히 크고, (0°, 90°, 0°)∼(0°, 90°, 25°), (0°, 90°, 155°)∼(0°, 90°, 180°), (90°, 90°, 0°)∼(90°, 90°, 23°), (90°, 90°, 151°)∼(90°, 90°, 180°), (0°, 67°, 0°)∼(0°, 121°, 0°), (90°, 63°, 0°)∼(90°, 117°, 0°), (0°, 90°, 0°)∼(180°, 90°, 0°)의 범위에서 10%이상으로 더욱 크고 양호하며, (0°, 90°, 0°)∼(0°, 90°, 13°), (0°, 90°, 167°)∼(0°, 90°, 180°), (90°, 90°, 0°)∼(90°, 90°, 11°), (90°, 90°, 162°)∼(90°, 90°, 180°), (0°, 80°, 0°)∼(0°, 110°, 0°), (90°, 75°, 0°)∼(90°, 105°, 0°), (0°, 90°, 0°)∼(180°, 90°, 0°)의 범위에서 15%이상으로 더욱 크고 양호하다.
상기 스톤리파의 k2가 작아지는 오일러각이나, U2-TCFm이 -35ppm/℃이상이 되는 오일러각, 파워 플로우각 U2-PFAm이 1%이하로 양호한 오일러각은, 본 발명자의 지견에 따르면, φ, θ, ψ가 5°정도 범위에서 벗어나 있어도, 동등하게 양호한 특성이 얻어진다. 또한 계산값은 Au전극의 막두께 0.07λ에서의 값이지만, 다른 전극재료여도 동일하다.
[실시예 4]
오일러각(0°, θ, 0°)의 LiNbO3기판상에, 두께 0.05λ의 Au로 이루어지는 전극을 형성하고, Au전극을 덮도록 SiO2막을 형성하여, 탄성 경계파 장치를 구성하였다. 이 탄성 경계파 장치에 있어서, LiNbO3기판상의 오일러각의 θ와, SH형 경계파 및 스톤리파의 음속 V, 전기기계 결합계수 k2 및 주파수 온도계수 TCF와의 관계를 구하였다. 도 87∼도 89에 결과를 나타낸다.
한편, θ=0°∼180°의 전(全) 범위에 있어서, 전파손실 α는 0dB/λ이고, 파워 플로우각 PFA는 0이었다.
도 88로부터 명백하듯이, θ=106°에 있어서, SH형 경계파를 이용하는 경우, 스퓨리어스 응답이 되는 스톤리파의 전기기계 결합계수가 거의 0이 되는 것을 알 수 있다.
다음으로, 오일러각(0°, θ, ψ)의 LiNbO3기판상에, 두께 0.06λ의 Au로 이루어지는 전극을 형성하고, Au로 이루어지는 전극상에 SiO2막을 형성하여, 탄성 경계파 장치를 구성하였다. 여기에서, LiNbO3기판의 오일러각의 θ 및 ψ와, SH형 경계파 및 스톤리파의 음속 V, 전기기계 결합계수 k2, 전파손실 α, 및 주파수 온도계수 TCF와의 관계를 구하였다. SH형 경계파에 대한 결과를 도 77에, 스톤리파에 대한 결과를 도 78에 나타낸다.
한편, 도 77 및 도 78의 전 범위에 있어서, 전파손실 α는 0dB/λ였다. 또한, 음속 V 및 주파수 온도계수 TCF는, 도 87∼도 89에 나타낸 φ=0°의 조건에 대하여 큰 변화는 없었다. 따라서, 도 77 및 도 78에서는 전기기계 결합계수 k2(%)의 결과만이 나타나 있다.
도 78로부터 명백하듯이, 스톤리파의 응답의 전기기계 결합계수 k2는, 하기의 표 4의 점 A01∼A13으로 둘러싸여진 영역에서는 1.5%이하로 작았다. 또한, 하기의 표 5의 점 B01∼B12로 둘러싸여진 영역에서는 1.0%이하, 하기의 표 6의 점 C01∼C08로 둘러싸여진 영역 내에서는 0.5%이하로 보다 작고 양호하였다. 또한, 오일러각(0°, 106°, 0°)에서 스톤리파의 응답의 전기기계 결합계수는 거의 0%였다.
ψ(°) θ(°)
A01 0 116
A02 11 118
A03 20 123
A04 25 127
A05 33 140
A06 60 140
A07 65 132
A08 54 112
A09 48 90
A10 43 87
A11 24 90
A12 0 91
A13 0 116
ψ(°) θ(°)
B01 0 114
B02 11 115
B03 24 120
B04 37 132
B05 42 137
B06 48 137
B07 52 135
B08 55 129
B09 46 99
B10 40 93
B11 0 94
B12 0 114
ψ(°) θ(°)
C01 0 112
C02 11 112
C03 36 116
C04 40 110
C05 36 103
C06 20 99
C07 0 98
C08 0 112
다음으로, 도 77로부터 명백하듯이, SH형 경계파의 전기기계 결합계수 k2는, 하기의 표 9의 점 F01∼F06으로 둘러싸여진 영역 내에서는 2%이상으로 크고, 하기의 표 8의 점 E01∼E07로 둘러싸여진 영역 내에서는 5%이상, 하기의 표 7의 점 D01∼D07로 둘러싸여진 영역 내에서는 10%이상으로 보다 크고 양호하며, 오일러각(0°, 97°, 0°)에서 최대가 되었다.
ψ(°) θ(°)
D01 0 126
D02 13 123
D03 25 112
D04 30 96
D05 29 80
D06 0 80
D07 0 126
ψ(°) θ(°)
E01 0 133
E02 16 129
E03 27 120
E04 37 98
E05 38 80
E06 0 80
E07 0 133
ψ(°) θ(°)
F01 20 140
F02 34 125
F03 44 106
F04 55 80
F05 0 80
F06 20 140
또한, 표 4∼표 9의 조건에 있어서, 전극재료로서 Au를 대신해서, Ag, Cu, Al, Fe, Ni, W, Ta, Pt, Mo, Cr, Ti, ZnO 또는 ITO를 사용한 경우에도 마찬가지로 양호한 특성이 얻어지는 것이 확인되고 있다.
한편, 도 77, 도 78 및 표 4∼표 9에 있어서, ψ를 -ψ로 한 경우나, θ를 θ+180°로 한 경우에 있어서도, 예를 들면, 파워 플로우각의 부호가 양음 반전할 뿐이며, 마찬가지로 양호한 특성이 얻어지는 것을 지적해 둔다.
[실시예 5]
다음으로, 오일러각(φ, 105°, 0°) 및 오일러각(0°, 105°, ψ)의 각LiNbO3기판상에, 두께 0.06λ의 Au로 이루어지는 전극을 형성하고, 다음으로, Au로 이루어지는 전극을 덮도록 SiO2막을 형성하여, 탄성 경계파 장치를 구성하였다. 이 경우, LiNbO3기판의 오일러각의 φ와, ψ와, SH형 경계파 및 스톤리파의 음속 V, 전기기계 결합계수 k2, 전파손실 α, 주파수 온도계수 TCF 및 파워 플로우각 PFA와의 관계를 구하였다. 도 79∼도 82는, 오일러각(φ, 105°, 0°)의 LiNbO3를 사용한 경우의 결과를, 도 83∼도 86은, 오일러각(0°, 105°, ψ)의 LiNbO3기판을 사용한 경우의 결과를 나타낸다. 한편, φ=0°∼90°의 전 범위에 있어서, 전파손실은 0dB/λ이다.
도 79∼도 82로부터 명백하듯이, φ=0°∼31°의 범위에 있어서 스톤리파의 전기기계 결합계수 k2는 1.5%이하로 작고, φ=0°∼26°의 범위에 있어서 스톤리파의 전기기계 결합계수 k2는 1.0%이하로 더욱 작으며, φ=0°∼19°의 범위에 있어서 스톤리파의 전기기계 결합계수 k2는 0.5%이하로 작고, φ=0°에 있어서 스톤리파의 전기기계 결합계수가 거의 0%가 되어, 스톤리파에 의한 스퓨리어스 응답이 작아지는 것을 알 수 있다. 또한, φ=0°∼90°의 범위에 있어서, SH 경계파의 TCF는 -37∼-35ppm/℃로 양호하다.
한편, 오일러각(φ, 105°, 0°)과, 오일러각(-φ, 105°, 0°)의 어떠한 것에 있어서도, 동일한 특성이 얻어지는 것을 지적해 둔다.
또한, 도 83∼도 86으로부터 명백하듯이, ψ=0°∼53°의 범위에 있어서 스톤리파의 전기기계 결합계수 k2는 1.5%이하로 작고, ψ=0°∼47°의 범위에 있어서 스톤리파의 전기기계 결합계수 k2는 1.0%이하로 더욱 작으며, ψ=0°∼38°의 범위에 있어서 스톤리파의 전기기계 결합계수 k2는 0.5%이하로 작고, ψ=0°에 있어서 스톤리파의 전기기계 결합계수가 거의 0%가 되어, 스톤리파에 의한 스퓨리어스 응답이 작아지는 것을 알 수 있다. 또한, ψ=0°∼90°의 범위에 있어서, SH 경계파의 TCF는 -35∼-31ppm/℃로 양호하다.
한편, 오일러각(0°, 105°, ψ)과, 오일러각(0°, 105°, -ψ)의 경우, 예를 들면 파워 플로우각의 부호가 양음 반전할 뿐이며, 동일한 특성이 얻어지는 것을 지적해 둔다.
[실시예 6]
하기의 표 10에 나타내는 조건으로, SH형 경계파 공진자를 구성하였다. 도 70은 본 실시형태의 SH형 경계파 공진자의 전극구조를 나타내는 모식적 평면도이다. 여기에서는, IDT(21)의 양측에 반사기(22, 23)가 배치되어 있다. 오일러각(0°, 90°, 0°)의 LiNbO3를 사용한 경우의 임피던스 특성은 도 71에 나타내는 바와 같다. 임피던스비(공진자의 임피던스의 절대값의 최대와 최소의 비)는 56.8dB, 공진 반공진의 주파수차(공진 주파수와 반공진 주파수의 차의 절대값을 공진 주파수로 나눈 값)는 6.9%였다.
오일러각(0°, 105°, 0°)의 LiNbO3를 사용한 경우의 임피던스 특성은 도 72에 나타내는 바와 같다. 임피던스비는 59.4dB, 공진 반공진의 주파수차는 6.8%, TCF는 31ppm/℃였다.
상기 SH형 경계파의 전기기계 결합계수가 커지는 오일러각의 범위와, 상기 스톤리 스퓨리어스의 전기기계 결합계수가 작아지는 오일러각의 범위와, 상기 SH형 경계파의 주파수 온도계수 TCF가 작아지는 오일러각의 범위와, 상기 SH형 경계파의 파워 플로우각이 작아지는 오일러각의 범위가 되는 LiNbO3를 사용함으로써, 스톤리 스퓨리어스가 발생하지 않는 우수한 공진특성을 갖는 SH형 경계파 공진자를 구성할 수 있다.
이 때의 SH형 경계파의 변위성분 U1, U2, U3의 계산값을 도 73에 나타낸다. 도면과 같이 변위는 경계층인 Au부근에 집중되어 SiO2와 LiNbO3로 스며나오면서 분포한다. 이 때문에, 상기와 같이 전극 두께가 얇은 상태에서는, 고음속인 SiO2와 LiNbO3의 영향을 SH형 경계파가 받기 때문에, SH형 경계파의 음속을 SiO2의 느린 횡파의 음속보다 저속화할 수 없다. 이에 반하여, 전극 두께를 상기 식(5)의 조건에 따라 후막화함으로써, SH형 경계파의 음속을 SiO2의 느린 횡파의 음속보다 저속화할 수 있다.
항목 내용
구성 SiO2/Au/LiNbO3
SiO2 두께
Au 두께 0.055λ
IDT, 반사기 주기 2.2㎛
IDT 구성 정규형 싱글 스트립, 50쌍, 개구 길이 31λ, 교차폭 30λ
반사기 구성 정규형 싱글 스트립, 51개, 개구 길이 31λ
[실시예 7]
종결합 공진기형 필터나 사다리형 필터의 대역폭이나 공진자의 공진 주파수와, 반공진 주파수와의 차를 자유롭게 조정할 수 있다면, 적용 시장이 넓어진다. 종결합 공진기형 필터나 사다리형 필터의 대역폭이나 공진자의 공진 반공진 주파수차는, 전기기계 결합계수 k2에 정비례한다. 상기 도 66에 따르면, 오일러각(90°, 90°, 0°)∼(90°, 90°, 60°), (90°, 90°, 143°)∼(90°, 90°, 180°)의 범위에 있어서, 주응답이 되는 SH 경계파의 전기기계 결합계수 k2가 0.8∼17.8%가 되고, 또한, 스퓨리어스 응답이 되는 스톤리파의 전기기계 결합계수는 2%로 작은 것을 알 수 있다. 그래서, SH형 경계파의 전기기계 결합계수 k2의 조정을 목적으로 해서, 하기의 표 11의 구성으로 SH형 경계파 공진자를 제작하였다. 도 74는 오일러각(90°, 90°, ψ)의 ψ=0°∼35°의 LiNbO3를 사용한 경우의 임피던스 특성을 나타낸다. 도 66에 나타낸 바와 같이 ψ를 0°로부터 35°로 변화시키면 전기기계 결합계수 k2는 17.6%로부터 5.3%로 변화하기 때문에, 공진자의 공진 반공진 주파수차가 감소한다. 도 75는 오일러각(90°, 90°, ψ)의 ψ와, 공진 주파수와 반공진 주파수차와의, 임피던스비의 관계를 나타낸다. 공진 반공진 주파수차는 도 66에 나타낸 k2의 변화와 마찬가지로 ψ를 0°로부터 60°로 하면 감소하는 것을 알 수 있다. 또한, ψ=0∼50°의 범위에서 임피던스비 30dB이상의 양호한 공진특성을 나타내는 것을 확인할 수 있다. 동일한 조건으로 사다리형 필터나 2IDT나 3IDT의 종결합 공진기형 필터를 구성한 경우, 공진자의 공진 반공진 주파수차의 2배가 필터의 대역폭이 되는 것은 주지하는 바와 같다. 따라서, 광대역의 공진자나 필터로부터 협대역의 공진자나 필터까지 넓게 대응 가능하다는 것을 알 수 있다.
항목 내용
구성 SiO2/Au/LiNbO3
SiO2 두께
Au 두께 0.055λ
IDT, 반사기 주기 2.2㎛
IDT 구성 정규형 싱글 스트립, 50쌍, 개구 길이 31λ, 교차폭 30λ
반사기 구성 정규형 싱글 스트립, 51개, 개구 길이 31λ
전극의 막두께 H가 작은 경우에는, 스톤리파 쪽이 SH형의 경계파에 비하여 저속이었으나, 전극막 두께를 증가시키면, SH형 경계파 쪽이 스톤리파보다도 저속으로 되었다. 이것은, SH형 경계파 쪽이, 음속이 느린 경계층으로의 에너지의 집중이 크기 때문이라고 생각된다.
한편, 스톤리파와 SH형의 경계파의 음속이 교체되는 전극막 두께는, LiNbO3기판의 오일러각에 따라 변하지만, 전극막 두께 H=0.01λ∼0.03λ의 범위에서 교체가 발생하였다. 상술한 실시예 2, 4, 5에서 스톤리파에 의한 스퓨리어스 응답이, SH형의 탄성 경계파의 응답보다도 고주파측에 발생한 것은, 이 현상때문이다.
이와 같이, 주응답인 SH형 경계파의 응답보다도 고주파측에 스퓨리어스 응답인 스톤리파의 응답이 배치되는 경우, 스톤리파의 음속은 SH형 경계파보다 고음속이 된다. 이 경우, SH형 경계파의 음속을 경계를 형성하는 2개의 매질의 느린 횡파의 음속보다 느리게, 또한, 스톤리파의 음속을 2개의 매질의 느린 횡파의 적어도 한쪽의 음속보다 빠르게 함으로써, 스톤리파의 전파손실을 증가하여, 스퓨리어스 응답을 억제할 수 있다. 여기에서, IDT를 사용하여 경계파 장치를 구성한 경우의 IDT부를 전파하는 경계파의 음속은, 경계파의 응답 주파수에 IDT의 스트립 주기 λI를 곱함으로써 구해진다.
또한, 전극은 Au, Ag, Cu 또는 Al 이외의 다른 금속, 예를 들면, Fe, Ni, W, Ta, Pt, Mo, Cr, Ti, ZnO 및 ITO 등의 도체막으로 구성되어도 된다. 또한, 밀착성이나 내전력성을 높이기 위하여, Au, Ag, Cu 혹은 Al 또는 이들의 합금으로 이루어지는 전극층에, 또한 Ti, Cr 혹은 NiCr합금 등의 다른 금속재료로 이루어지는 제 2 전극층을 적층해도 된다. 이 경우 제 2 전극층은, 제 1 전극층과 압전체 사이, 혹은 제 1 전극층과 유전체 사이 중 어느 하나, 또는 양방에 배치해도 된다.
또한, 본 발명에 따른 탄성 경계파 장치에서는, 유전체-전극-압전체의 적층구조의 적층방향 외측에 탄성 경계파 장치의 강도를 높이기 위하여, 혹은 부식 가스 등의 침입을 방지하기 위하여 보호층을 형성해도 된다. 경우에 따라서는, 본 발명의 탄성 경계파 장치는, 패키지에 봉입되어도 된다.
한편, 상기 보호층으로서는, 산화티탄, 질화알루미늄, 산화알루미늄 등의 절연성 재료, 혹은 Au, Al 또는 W 등의 금속막, 우레탄, 에폭시, 실리콘 등의 수지에 의해 구성될 수 있다.
또한, 본 발명에서는, 상기 압전체는, 유전체상에 성막된 압전막이어도 된다.
한편, 본 발명에 있어서, 유전체와 압전체의 두께는 상기 계산의 전제가 된 모델과 같이 무한일 필요는 없으며, 탄성 경계파의 에너지가 경계인 전극 부근에 충분히 틀어박히는 두께를 적어도 가지면 되고, 즉, 예를 들면 1λ이상의 두께를 가지면 된다.
[실시예 8]
또한, 유전체/전극/압전체의 경계파 구조의 외측에 상기 보호층을 형성하여, 예를 들면, 보호층/유전체/전극/압전체/보호층으로 한 경우는, 보호층부에도 약간 진동을 새어나오게 함으로써 유전체나 압전체의 두께를 얇게 할 수 있다. 예를 들면, 에폭시/SiO2/Au-IDT/LiNbO3구조의 SH형 경계파 공진자를 사용하여 도 76에 나타내는 회로구성의 사다리형 필터(24)에 있어서, SiO2 두께 1λ일 때의 전송특성의 삽입손실은 1.5dB, 0.71λ일 때는 1.8dB이 되어, SiO2 박화(薄化)에 의해 손실은 열화하지만 실용적인 범위로 들어가는 것을 확인하고 있다. 본 발명에 따른 경계파 장치는, 무거운 재료로 IDT를 구성하기 때문에, 상술한 바와 같이 SH 경계파는 경계층인 Au-IDT근방에 에너지가 집중해서 분포하고, 음향적인 댐핑(damping)이 작은 SiO2로부터 댐핑이 큰 에폭시로 스며나오는 에너지량이 작기 때문에, SiO2를 박화하더라도 손실의 열화가 작다.
한편, 에폭시 두께는 3λ, Au 두께는 0.054λ, LN 두께는 146λ, LiNbO3의 오일러각은 (0°, 105°, 0°)이다. 또한, 사다리형 필터에 사용한 SH형 경계파 공진자는, IDT는 개구 길이 30λ, 50쌍의 정규형 싱글 스트립 구성, 반사기는 50개의 정규형 싱글 스트립 구성, IDT와 반사기 사이의 거리는 인접 스트립의 중심간 거리로 0.5λ, IDT와 반사기의 주기는 동일하며 2.4㎛로 하였다.
또한, 본 발명에 있어서, 전극은, 도파로나 버스바 등을 구성하는 면(面)형상의 전극막이어도 되고, 경계파를 여진하는 IDT나 빗살형 전극이어도 되며, 경계파를 반사하는 반사기여도 된다.
한편, 본 명세서에 있어서, 기판의 절단면과 경계파의 전파방향을 표현하는 오일러각(φ, θ, ψ)은, 문헌 "탄성파소자 기술 핸드북"(일본 학술진흥회 탄성파소자기술 제150위원회, 제1판 제1쇄, 2001년 11월 30일 발행, 549페이지) 기재의 오른손계 오일러각을 사용하였다. 즉, LN의 결정축 X, Y, Z에 대하여, Z축을 축으로 해서 X축을 반시계 둘레로 φ회전하여 Xa축을 얻는다. 다음으로, Xa축을 축으로 해서 Z축을 반시계 둘레로 θ회전하여 Z′축을 얻는다. Xa축을 포함하고, Z′축을 법선으로 하는 면을 기판의 절단면으로 하였다. 그리고, Z′축을 축으로 해서 Xa축을 반시계 둘레로 ψ회전한 축 X′방향을 경계파의 전파방향으로 하였다.
또한, 오일러각의 초기값으로서 제공되는 LiNbO3의 결정축 X, Y, Z는, Z축을 c축과 평행하게 하고, X축을 등가의 3방향의 a축 중 임의의 1개와 평행하게 하며, Y축은 X축과 Z축을 포함하는 면의 법선방향으로 한다.
한편, 본 발명에 있어서의 LiNbO3의 오일러각(φ, θ, ψ)은 결정학적으로 등가이면 된다. 예를 들면, 문헌 7(일본 음향학회지 36권 3호, 1980년, 140∼145페이지)에 따르면, LiNbO3는 삼방정계 3m점군(point group)에 속하는 결정이므로 (A)식이 성립한다.
F(φ, θ, ψ)=F(60°-φ, -θ, ψ)
=F(60°+φ, -θ, 180°-ψ)
=F(φ, 180°+θ, 180°-ψ)
=F(φ, θ, 180°+ψ) …식(A)
여기에서, F는 전기기계 결합계수 k2, 전파손실, TCF, PFA, 내츄럴 일방향성(natural unidirectional property) 등의 임의의 경계파 특성이다. PFA나 내츄럴 일방향성은, 예를 들면 전파방향을 양음 반전해 본 경우, 부합은 변하지만 절대량은 동일하므로 실용상 등가라고 생각된다. 한편, 문헌 7은 표면파에 관한 것이지만, 경계파에 관해서도 결정의 대칭성은 동일하게 취급할 수 있다. 예를 들면, 오일러각(30°, θ, ψ)의 경계파 전파특성은, 오일러각(90°, 180°-θ, 180°-ψ)의 경계파 전파특성과 등가이다.
또한, 본 발명에 있어서 계산에 사용한 전극의 재료상수는 다결정체의 값이지만, 에피택셜막(epitaxial film) 등의 결정체에 있어서도, 막 자체의 결정방위 의존성보다 기판의 결정방위 의존성이 경계파 특성에 대하여 지배적이므로 식(A)로 표현되는 등가의 오일러각의 경우도, 실용상 문제없을 정도로 동등한 경계파 전파특성이 얻어진다.

Claims (14)

  1. 삭제
  2. 삭제
  3. LiNbO3를 주성분으로 하는 압전체와, 상기 압전체의 한 면에 적층되어 있는 유전체와,
    상기 압전체와 상기 유전체 사이의 경계에 배치된 전극을 구비하고, 상기 경 계를 전파하는 SH형의 탄성 경계파를 이용한 탄성 경계파 장치로서,
    상기 LiNbO3를 주성분으로 하는 압전체의 오일러각(φ, θ, ψ)의 φ가 -31∼+31°의 범위에 있고, 또한 θ 및 ψ가, 하기의 표 1의 점 A01∼A13으로 둘러싸여진 범위에 있는 것을 특징으로 하는 탄성 경계파 장치.
    [표 1]
    ψ(°) θ(°) A01 0 116 A02 11 118 A03 20 123 A04 25 127 A05 33 140 A06 60 140 A07 65 132 A08 54 112 A09 48 90 A10 43 87 A11 24 90 A12 0 91 A13 0 116
  4. 제 3 항에 있어서, 상기 오일러각의 θ 및 ψ가, 하기의 표 2의 점 D01∼D07로 둘러싸여진 범위에 있는 탄성 경계파 장치.
    [표 2]
    ψ(°) θ(°) D01 0 126 D02 13 123 D03 25 112 D04 30 96 D05 29 80 D06 0 80 D07 0 126
  5. 제 3 항 또는 제 4 항에 있어서, 상기 유전체를 전파하는 느린 횡파의 음속 및 상기 압전체를 전파하는 느린 횡파의 음속보다도 SH형 탄성 경계파의 음속을 낮게 하도록, 상기 전극의 두께가 결정되어 있는 탄성 경계파 장치.
  6. 제 3 항 또는 제 4 항에 있어서, 상기 유전체를 전파하는 느린 횡파의 음속 및 상기 압전체를 전파하는 느린 횡파의 음속보다도 SH형 탄성 경계파의 음속을 낮게 하도록, 상기 전극을 구성하는 스트립의 듀티비가 결정되어 있는 탄성 경계파 장치.
  7. LiNbO3를 주성분으로 하는 압전체와, 상기 압전체의 한 면에 적층되어 있으며, SiO2를 주성분으로 하는 유전체와, 상기 압전체와 유전체 사이의 경계에 배치된 전극을 구비한 탄성 경계파 장치로서,
    상기 전극의 밀도를 ρ(kg/㎥), 전극의 막두께를 H(λ), 탄성 경계파의 파장을 λ라고 했을 때에, H>8261.744ρ-1.376이며, 또한 상기 압전체의 오일러각이,
    (0°, 90°, 0°)∼(0°, 90°, 38°),
    (0°, 90°, 142°)∼(0°, 90°, 180°),
    (90°, 90°, 0°)∼(90°, 90°, 36°),
    (90°, 90°, 140°)∼(90°, 90°, 180°),
    (0°, 55°, 0°)∼(0°, 134°, 0°),
    (90°, 51°, 0°)∼(90°, 129°, 0°),
    (0°, 90°, 0°)∼(180°, 90°, 0°)
    의 범위인 것을 특징으로 하는 탄성 경계파 장치.
  8. 제 7 항에 있어서, 상기 압전체의 오일러각이, 하기의 식(A)에 의해, 경계파 특성이 실질상 등가인 오일러각으로 되어 있는 것을 특징으로 하는 탄성 경계파 장치.
    F(φ, θ, ψ)=F(60°-φ, -θ, ψ)
    =F(60°+φ, -θ, 180°-ψ)
    =F(φ, 180°+θ, 180°-ψ)
    =F(φ, θ, 180°+ψ) ………식(A)
  9. LiNbO3를 주성분으로 하는 압전체와, 상기 압전체의 한 면에 적층되어 있으며, SiO2를 주성분으로 하는 유전체와, 상기 압전체와 유전체 사이의 경계에 배치된 전극을 구비하고, SH형의 탄성 경계파를 이용한 탄성 경계파 장치로서,
    상기 전극의 밀도를 ρ(kg/㎥), 전극의 막두께를 H(λ), 탄성 경계파의 파장을 λ라고 했을 때에, H>8261.744ρ-1.376으로 되어 있는 것을 특징으로 하는 탄성 경계파 장치.
  10. 제 3 항, 제 7 항 또는 제 9 항 중 어느 한 항에 있어서, 상기 전극의 밀도 ρ는, ρ>3745kg/㎥인 탄성 경계파 장치.
  11. 제 3 항, 제 7 항 또는 제 9 항 중 어느 한 항에 있어서, 상기 전극의 막두께 H가 하기의 식(1)을 만족시키는 탄성 경계파 장치.
    33000.39050ρ-1.50232<H<88818.90913ρ-1.54998 …식(1)
  12. SH형 경계파와 스톤리파(Stoneley wave)가 전파하는 경계파 전파구조를 갖는 탄성 경계파 장치로서, SH형 경계파의 음속이, 경계를 형성하는 2개의 매질의 양방의 느린 횡파의 음속보다 저속이고, 또한, 스톤리파의 음속이 2개의 매질의 적어도 한쪽의 느린 횡파의 음속보다 고속인 것을 특징으로 하는 탄성 경계파 장치.
  13. 제 3 항, 제 7 항 또는 제 9 항 중 어느 한 항에 있어서, 상기 전극이, Au, Ag, Cu, Al, Fe, Ni, W, Ta, Pt, Mo, Cr, Ti, ZnO 및 ITO 그리고 이들의 도체를 주체로 하는 합금에서 선택된 적어도 1종으로 이루어지는 전극층을 주체로 하는 것을 특징으로 하는 탄성 경계파 장치.
  14. 제 13 항에 있어서, 상기 전극이, 상기 전극층과, 상기 전극층을 구성하고 있는 도체 이외의 도체로 이루어지는 적어도 1층의 제 2 전극층을 더 구비하는 탄성 경계파 장치.
KR1020057014610A 2003-02-10 2003-12-16 탄성 경계파 장치 KR100766263B1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003032409 2003-02-10
JPJP-P-2003-00032409 2003-02-10
JP2003171041 2003-06-16
JPJP-P-2003-00171041 2003-06-16
JPJP-P-2003-00369303 2003-10-29
JP2003369303 2003-10-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020077017564A Division KR100851219B1 (ko) 2003-02-10 2003-12-16 탄성 경계파 장치

Publications (2)

Publication Number Publication Date
KR20050107417A KR20050107417A (ko) 2005-11-11
KR100766263B1 true KR100766263B1 (ko) 2007-10-15

Family

ID=32854112

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020057014610A KR100766263B1 (ko) 2003-02-10 2003-12-16 탄성 경계파 장치
KR1020077017564A KR100851219B1 (ko) 2003-02-10 2003-12-16 탄성 경계파 장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020077017564A KR100851219B1 (ko) 2003-02-10 2003-12-16 탄성 경계파 장치

Country Status (8)

Country Link
US (1) US7471027B2 (ko)
EP (4) EP1947763A3 (ko)
JP (1) JP4356613B2 (ko)
KR (2) KR100766263B1 (ko)
AT (1) ATE451752T1 (ko)
AU (1) AU2003289100A1 (ko)
DE (1) DE60330506D1 (ko)
WO (1) WO2004070946A1 (ko)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005099091A1 (ja) 2004-04-08 2005-10-20 Murata Manufacturing Co., Ltd. 弾性境界波フィルタ
DE102004058016B4 (de) 2004-12-01 2014-10-09 Epcos Ag Mit akustischen Oberflächenwellen arbeitendes Bauelement mit hoher Bandbreite
JP4650488B2 (ja) * 2005-04-08 2011-03-16 株式会社村田製作所 弾性波素子
EP1879291A4 (en) * 2005-04-25 2012-02-22 Murata Manufacturing Co ACOUSTIC ONBOARD DEVICE
WO2006123518A1 (ja) * 2005-05-16 2006-11-23 Murata Manufacturing Co., Ltd. 弾性境界波装置
JP4466655B2 (ja) * 2005-05-20 2010-05-26 株式会社村田製作所 弾性境界波装置
JP2008235950A (ja) * 2005-05-26 2008-10-02 Murata Mfg Co Ltd 弾性境界波装置
US7804384B2 (en) * 2005-07-13 2010-09-28 Murata Manufacturing Co., Ltd Acoustic wave filter device utilizing filters having different acoustic wave propagation directions
JPWO2007007476A1 (ja) * 2005-07-13 2009-01-29 株式会社村田製作所 弾性境界波フィルタ装置
WO2007007462A1 (ja) * 2005-07-14 2007-01-18 Murata Manufacturing Co., Ltd. 弾性境界波装置及びその製造方法
JP4001157B2 (ja) * 2005-07-22 2007-10-31 株式会社村田製作所 弾性境界波装置
DE112006003566B4 (de) * 2006-01-06 2013-07-11 Murata Manufacturing Co., Ltd. Elastikwellenfilter
TWI325687B (en) * 2006-02-23 2010-06-01 Murata Manufacturing Co Boundary acoustic wave device and method for producing the same
JP2007267366A (ja) * 2006-02-28 2007-10-11 Fujitsu Media Device Kk 弾性境界波素子、共振器およびフィルタ
JPWO2007099742A1 (ja) * 2006-03-02 2009-07-16 株式会社村田製作所 弾性波装置及びその製造方法
WO2007138840A1 (ja) 2006-05-30 2007-12-06 Murata Manufacturing Co., Ltd. 弾性境界波装置
JP5137828B2 (ja) * 2006-06-16 2013-02-06 株式会社村田製作所 弾性表面波装置
JP5213708B2 (ja) * 2006-06-16 2013-06-19 株式会社村田製作所 弾性表面波装置の製造方法
DE112007002083B4 (de) 2006-09-21 2018-05-30 Murata Manufacturing Co., Ltd. Grenzflächenschallwellenvorrichtung
JP4947055B2 (ja) * 2006-09-25 2012-06-06 株式会社村田製作所 弾性境界波装置
JPWO2008038459A1 (ja) * 2006-09-25 2010-01-28 株式会社村田製作所 弾性境界波フィルタ装置
WO2008038506A1 (fr) * 2006-09-27 2008-04-03 Murata Manufacturing Co., Ltd. Dispositif d'onde acoustique limite
WO2008041404A1 (fr) * 2006-09-29 2008-04-10 Murata Manufacturing Co., Ltd. Dispositif à ondes limites élastiques, et procédé pour sa fabrication
JP4793448B2 (ja) * 2006-10-12 2011-10-12 株式会社村田製作所 弾性境界波装置
JP4826633B2 (ja) * 2006-11-24 2011-11-30 株式会社村田製作所 弾性境界波装置の製造方法及び弾性境界波装置
WO2008078481A1 (ja) 2006-12-25 2008-07-03 Murata Manufacturing Co., Ltd. 弾性境界波装置
WO2008087836A1 (ja) * 2007-01-19 2008-07-24 Murata Manufacturing Co., Ltd. 弾性境界波装置の製造方法
WO2008102577A1 (ja) * 2007-02-19 2008-08-28 Murata Manufacturing Co., Ltd. 弾性表面波センサー装置
JP4811516B2 (ja) * 2007-03-06 2011-11-09 株式会社村田製作所 弾性境界波装置
JP5104031B2 (ja) * 2007-05-22 2012-12-19 株式会社村田製作所 弾性境界波装置及びその製造方法
US8154171B2 (en) * 2007-10-23 2012-04-10 Panasonic Corporation Boundary acoustic wave device
JPWO2009090715A1 (ja) * 2008-01-17 2011-05-26 株式会社村田製作所 弾性表面波装置
JPWO2009119007A1 (ja) * 2008-03-27 2011-07-21 株式会社村田製作所 弾性波フィルタ装置
JP5125728B2 (ja) * 2008-04-28 2013-01-23 パナソニック株式会社 弾性波素子と、これを用いた共振器、フィルタ、及び電子機器
WO2010001522A1 (ja) 2008-06-30 2010-01-07 株式会社村田製作所 帯域阻止フィルタ
JPWO2011030519A1 (ja) 2009-09-11 2013-02-04 パナソニック株式会社 弾性波素子と弾性波素子センサ
US8044553B2 (en) 2010-02-22 2011-10-25 Triquint Semiconductor, Inc. Temperature compensated surface acoustic wave device and method having buried interdigital transducers for providing an improved insertion loss and quality factor
US9852055B2 (en) 2013-02-25 2017-12-26 International Business Machines Corporation Multi-level memory compression
JP6242954B1 (ja) * 2016-07-11 2017-12-06 浜松ホトニクス株式会社 放射線検出器
DE102017111448B4 (de) * 2017-05-24 2022-02-10 RF360 Europe GmbH SAW-Vorrichtung mit unterdrückten Störmodensignalen
DE102019204755A1 (de) 2018-04-18 2019-10-24 Skyworks Solutions, Inc. Akustikwellenvorrichtung mit mehrschichtigem piezoelektrischem substrat
DE102018113624A1 (de) * 2018-06-07 2019-12-12 RF360 Europe GmbH Elektroakustischer Resonator und HF-Filter, das einen elektroakustischen Resonator umfasst
JP2020145567A (ja) * 2019-03-06 2020-09-10 株式会社村田製作所 弾性波装置
KR102205988B1 (ko) * 2019-04-19 2021-01-22 주식회사 아이.티.에프 Saw 필터 패키지 및 그의 제조방법
US11588463B2 (en) * 2020-09-24 2023-02-21 Huawei Technologies Co., Ltd. Surface acoustic wave devices with ultra-thin transducers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4328472A (en) 1980-11-03 1982-05-04 United Technologies Corporation Acoustic guided wave devices
JPH10178331A (ja) * 1996-12-19 1998-06-30 Matsushita Electric Ind Co Ltd 弾性表面波素子
WO1998052279A1 (fr) * 1997-05-12 1998-11-19 Hitachi, Ltd. Dispositif a onde elastique
JP2001085971A (ja) * 1999-09-16 2001-03-30 Sanyo Electric Co Ltd 弾性表面波デバイス用基板および弾性表面波デバイス
JP2002152000A (ja) * 2000-11-14 2002-05-24 Seiko Epson Corp 弾性表面波素子

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US964553A (en) 1909-04-01 1910-07-19 Robert William Ralph Display device.
US4484098A (en) * 1983-12-19 1984-11-20 United Technologies Corporation Environmentally stable lithium niobate acoustic wave devices
DE4132309A1 (de) 1991-09-27 1993-04-01 Siemens Ag Stoneleywellen-bauteil mit nicht-reflektierenden interdigitalwandlern
JP3177946B2 (ja) 1996-02-09 2001-06-18 住友電気工業株式会社 表面弾性波素子
JP3702050B2 (ja) * 1996-09-09 2005-10-05 株式会社東芝 弾性境界波デバイス
US6025363A (en) 1998-11-17 2000-02-15 Giles, Jr.; James A. Composition for suppressing appetite
US6420815B1 (en) 1999-09-16 2002-07-16 Sanyo Electric Co., Ltd. Substrate for surface acoustic wave device and surface acoustic wave device
FR2799906B1 (fr) 1999-10-15 2002-01-25 Pierre Tournois Filtre a ondes acoustiques d'interface notamment pour les liaisons sans fil
JP2001196895A (ja) 2000-01-11 2001-07-19 Seiko Epson Corp 表面弾性波素子
JP3412611B2 (ja) * 2000-09-25 2003-06-03 株式会社村田製作所 弾性表面波装置
JP4604335B2 (ja) 2000-11-01 2011-01-05 凸版印刷株式会社 球状境界波素子
JP3918497B2 (ja) 2000-11-02 2007-05-23 株式会社村田製作所 端面反射型表面波装置
WO2005099091A1 (ja) * 2004-04-08 2005-10-20 Murata Manufacturing Co., Ltd. 弾性境界波フィルタ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4328472A (en) 1980-11-03 1982-05-04 United Technologies Corporation Acoustic guided wave devices
JPH10178331A (ja) * 1996-12-19 1998-06-30 Matsushita Electric Ind Co Ltd 弾性表面波素子
WO1998052279A1 (fr) * 1997-05-12 1998-11-19 Hitachi, Ltd. Dispositif a onde elastique
JP2001085971A (ja) * 1999-09-16 2001-03-30 Sanyo Electric Co Ltd 弾性表面波デバイス用基板および弾性表面波デバイス
JP2002152000A (ja) * 2000-11-14 2002-05-24 Seiko Epson Corp 弾性表面波素子

Also Published As

Publication number Publication date
EP1610460A4 (en) 2006-06-07
JPWO2004070946A1 (ja) 2006-06-01
DE60330506D1 (de) 2010-01-21
KR20050107417A (ko) 2005-11-11
US7471027B2 (en) 2008-12-30
KR20070089884A (ko) 2007-09-03
JP4356613B2 (ja) 2009-11-04
EP1947763A3 (en) 2009-01-14
US20060071579A1 (en) 2006-04-06
AU2003289100A1 (en) 2004-08-30
EP1928089A2 (en) 2008-06-04
EP1610460A1 (en) 2005-12-28
EP1947763A2 (en) 2008-07-23
EP1610460B1 (en) 2009-12-09
EP1928089A3 (en) 2009-01-14
ATE451752T1 (de) 2009-12-15
EP2139110A1 (en) 2009-12-30
WO2004070946A1 (ja) 2004-08-19
KR100851219B1 (ko) 2008-08-07

Similar Documents

Publication Publication Date Title
KR100766263B1 (ko) 탄성 경계파 장치
KR100785242B1 (ko) 탄성 경계파 장치
US7489065B2 (en) Boundary acoustic wave device
JP4894911B2 (ja) 弾性境界波フィルタ
US7315107B2 (en) Surface acoustic wave device
US7323803B2 (en) Boundary acoustic wave device
KR20090130873A (ko) 탄성경계파 장치
CN100586011C (zh) 边界声波器件
Kadota et al. Acoustic Devices (PAW, SAW, and BAW) using Wafer Bonding Technology
Yamanouchi et al. High temperature stable GHz-range low-loss wide band transducers and filter using SiO/sub 2//LiNbO/sub 3/, LiTaO/sub 3
JPWO2008093484A1 (ja) 弾性境界波装置
JPWO2008093532A1 (ja) 弾性境界波装置

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
E601 Decision to refuse application
A107 Divisional application of patent
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]
FPAY Annual fee payment

Payment date: 20120903

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130924

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140923

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150925

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160923

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170922

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180921

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190926

Year of fee payment: 13