KR100372757B1 - 메트릭스 메탈로프로테이나제의 저해제로서의 설폰아미드유도체 - Google Patents

메트릭스 메탈로프로테이나제의 저해제로서의 설폰아미드유도체 Download PDF

Info

Publication number
KR100372757B1
KR100372757B1 KR10-2000-0018327A KR20000018327A KR100372757B1 KR 100372757 B1 KR100372757 B1 KR 100372757B1 KR 20000018327 A KR20000018327 A KR 20000018327A KR 100372757 B1 KR100372757 B1 KR 100372757B1
Authority
KR
South Korea
Prior art keywords
compound
lower alkyl
alkyl
mmp
iii
Prior art date
Application number
KR10-2000-0018327A
Other languages
English (en)
Other versions
KR20010099525A (ko
Inventor
박영준
배혜영
유지욱
채명윤
백상현
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR10-2000-0018327A priority Critical patent/KR100372757B1/ko
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to CN01800873A priority patent/CN1366524A/zh
Priority to EP01922101A priority patent/EP1208092B1/en
Priority to AU48884/01A priority patent/AU4888401A/en
Priority to CA002372352A priority patent/CA2372352A1/en
Priority to PCT/KR2001/000585 priority patent/WO2001077092A1/en
Priority to JP2001575566A priority patent/JP4008708B2/ja
Priority to US10/018,507 priority patent/US6548667B2/en
Priority to AT01922101T priority patent/ATE330601T1/de
Priority to DE60120881T priority patent/DE60120881T2/de
Publication of KR20010099525A publication Critical patent/KR20010099525A/ko
Application granted granted Critical
Publication of KR100372757B1 publication Critical patent/KR100372757B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/60Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
    • C07D277/62Benzothiazoles
    • C07D277/68Benzothiazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2
    • C07D277/70Sulfur atoms
    • C07D277/74Sulfur atoms substituted by carbon atoms

Abstract

본 발명은 신규한 설폰아미드 유도체에 관한 것이다. 본 발명은 메트릭스 메탈로프로테이나제의 저해제로서 유용한 하기 일반식(Ⅰ)의 신규한 설폰아미드 유도체, 그의 약학적으로 허용되는 염 및 이들의 제조방법을 제공한다. 본 발명의 설폰아미드 유도체 화합물은 시험관내(in vitro) 조건에서 MMP의 활성을 선택적으로 억제하는 바, 전기 설폰아미드 유도체를 유효성분으로 하는 MMP 억제제는 MMP의 과발현 및 과도한 활성화에 의해서 유발되는 각종질병의 예방 및 치료에 유용하게 사용될 수 있을 것이다.

Description

메트릭스 메탈로프로테이나제의 저해제로서의 설폰아미드 유도체{Sulfonamide Derivative as a Matrix Metalloproteinase Inhibitor}
본 발명은 신규한 설폰아미드 유도체에 관한 것이다. 좀 더 구체적으로, 본 발명은 메트릭스 메탈로프로테이나제의 저해제로서 유용한 하기 일반식(Ⅰ)의 신규한 설폰아미드 유도체, 그의 약학적으로 허용되는 염 및 이들의 제조방법에 관한 것이다.
메트릭스 메탈로프로테이나제(matrix metalloproteinase, 이하 'MMP'라 함)는 활성부위에 아연(Zn2+)을 함유하고 칼슘(Ca2+) 의존적인 프로테이나제로서, 스트로멜리신, 콜라게나제 및 젤라티나제의 페밀리 등 약 18가지가 알려져 있다. 이들MMP 효소들은 생물학적 조건하에서 결합조직의 단백질 성분 즉, 콜라겐, 라미닌, 프로테오글리칸, 피브로넥틴, 엘라스틴, 젤라틴 등을 분해시켜, 관절조직, 골조직, 결합조직의 성장 및 조직의 리모델링을 야기시킨다. 이들 효소들은 공통적으로 활성부위에 아연을 함유하고 칼슘에 따라 활성이 달라지며, 불활성 전효소의 형태로 분비되어 세포의 외부에서 활성화되고, TIMP(tissue inhibitor of metalloproteinase)라는 천연 저해제와 함께 분비된다.
한편, MMP 억제제는 MMP의 과발현 및 과도한 활성화에 의해서 유발되는 각종질병의 예방 및 치료에 유용하다. 상기 질병의 예로는 류마토이드, 관절골염, 비정상 골흡수증, 골다공증, 치주염, 간질성 신염, 동맥경화증, 폐기종, 경변증, 각막손상, 종양세포의 전이, 침범, 또는 성장, 자가면역질병, 혈관유지, 또는 백혈구의 침범에 의해 유발되는 질병, 동맥혈화를 들 수 있다(참조: Beeley et al., Curr. Opin. Ther. Patents, 4(1):7-16, 1994). 예를 들면, 합성한 MMP 저해제가 난소암의 쥐 모델에서 기질의 리모델링의 저해작용과 함께 생체내(in vivo)에서 항암효과가 있음이 보고되었다(참조: Cancer Res., 53:2087, 1993). 특히, 암세포 성장에 필수적으로 요구되는 신혈관생성(angiogenesis) 단계에서 위의 MMP 효소 중 MMP-2와 MMP-9가 필수적으로 관여함이 알려져 있고(참조: Biochim. Biophys. Acta, 695, 1983), 또한, MMP 효소 중 MMP-1과 MMP-3는 류마티스성 관절염 환자의 활막(synovium)과 연골(cartilage)에서 정상치보다 아주 높은 농도로 발견되어, 상기한 MMP-1/MMP-3가 관절염의 진행에 중요한 역할을 한다고 알려져 있으므로(참조: Arthritis Rheum., 35:35-42, 1992), MMP-1/MMP-2에의 선택성이 관절통증 등의 부작용을 줄이는데 중요한 역할을 할 것으로 여겨지고 있다. 따라서, 최근의 연구는 선택적인 저해제의 개발에 집중되고 있으며, 이러한 MMP 저해제의 설계 및 합성에 대해서는 다각도로 연구되고 있다(참조: J. Enzyme Inhibitor,2:1-22, 1987; Current Medicinal Chemistry,2:743-762, 1995; Progress in Medicinal Chemistry,29:271-334, 1992; Exp. Opin. Ther. Patents,5:1287-1296, 1995; Drug Discovery Today,1:16-26, 1996; Chem. Rev.99:2735-2776, 1999).
일반적으로, MMP 효소들의 활성부위에 아연 금속과 잘 배위하는 작용기를 가지는 화합물은 MMP의 촉매활성을 저해한다. 이와 같은 작용기로는 히드록사믹산(hydroxamic acid), 카르복실산, 포스포린산, 포스핀산, 티올 등이 알려져 있으며, 이러한 작용기를 이용하여 고안되고 합성된 MMP 저해제가 이미 공지되어 있다. 특히, 초기의 저해제로 기질유사체인 펩티드 골격을 가진 여러종의 숙신산 유도체가 합성되었는 바(참조: British Biotech, WO 9925693; Zeneca, WO 9843959, WO 9824759; Abbott, WO 9830551, WO9830541; PU, WO9732846; Roche, WO9901428, EP 897908; GW, WO 9838179; Sankyo, JP 95002797; DuPont, WO 9918074; Ono, WO 9919296; 및, Otsuka, EP 641323), 이러한 기질유사체 저해제들은 모두 Zn-배위기로 히드록사믹산을 가지는 것으로 알려져 있다.
그러나, 전기 저해제들은 펩티드 유도체가 가지는 낮은 경구흡수도 및 MMP-1/MMP-2의 선택성이 낮다는 문제점을 가지고 있다. 전술한 문제점을 해결한 저해제로서 1996년에 비펩타이드성 저해제가 개발되었는데, 이들은 상기 기질 유사체 저해제들과는 구조적으로 완전히 다른데, 예를 들면, 하기와 같은 간단한 설포닐아미노산 유도체임이 보고된 바 있다(참조: USP 5,506,242; J. Med. Chem., 40:2525-2532, 1997).
설포닐아미노산 유도체의 MMP 저해제는 이후에도 다양하게 합성되어 보고되었는 바, 대표적인 예로서는 다음과 같은 화합물이 있다:
상기 저해제들은 비교적 높은 MMP 활성억제 효과를 가지고 있으나, MMP-1/ MMP-2에의 선택성은 별로 높지 않으며(참조: Drugs of the Future, 24(1):16-21, 1999), 부작용으로서 관절통증이 보고되었다(참조: SCRIP, No. 2467, p19, August 27, 1999).
따라서, MMP저해활성과 MMP-1/ MMP-2에의 선택성을 증가시켜, 부작용을 줄일 수 있는 신물질을 개발하여야 할 필요성이 끊임없이 대두되었다.
이에, 본 발명자들은 MMP저해활성과 MMP-1/ MMP-2에의 선택성을 증가시켜 부작용을 줄일 수 있는 신물질을 개발하고자 예의 연구노력한 결과, 새로이 합성된 설폰아미드 유도체가 시험관내(in vitro) 조건에서 MMP의 활성을 선택적으로 억제하는 것을 확인하고, 본 발명을 완성하게 되었다.
결국, 본 발명의 주된 목적은 MMP의 활성을 저해하는 설폰아미드 유도체를 제공하는 것이다.
본 발명의 다른 목적은 전기 유도체의 제조방법을 제공하는 것이다.
본 발명은 MMP의 작용을 억제하는 다음 일반식 (I)의 설폰아미드 유도체 화합물, 그의 이성질체 및 이들의 약학적으로 허용되는 염과 전기 물질들의 제조방법을 제공한다.
상기 식에서,
R1은 X-R4(이때, R4는 C1-12의 알킬, 카보씨클릭 아릴-저급알킬,
C3-7의 씨클로알킬, C3-7의 씨클로알킬-저급알킬, (옥소, 아
미노, 또는 티오)C3-7의 씨클로알킬, (옥소, 아미노, 또는
티오)C3-7의 씨클로알킬-저급알킬, C2-12의 저급알케닐, C2-12
의 저급알키닐, 카보씨클릭아릴, 헤테로씨클릭아릴, 헤테
로씨클릭아릴-저급알킬, 비아릴, 할로저급알킬, 비아릴-
저급알킬아릴알킬, 히드록시-저급알킬, 알콕시알킬, 아실
옥시-저급알킬, 알킬 또는 아릴 (티오, 설피닐, 설포닐)
저급알킬, (아미노, 모노 또는 디 알킬아미노)저급알킬,
아실아미노 저급알킬, (N-저급알킬-피페라지노 또는 N-
카보씨클릭 또는 헤테로씨클릭 아릴-저급알킬피페라지
노)-저급알킬, (모포리노, 티오모포리노, 피페리디노, 피
롤리디노, 피페리딜)-저급알킬이다), 또는 할라이드이며;
R2는 수소, C1-6의 저급알킬이고;
R3는 -OH, -NHOH 또는 OR18(이때, OR18는 C1-6의 저급알킬, t-부
틸, 벤질 또는 씰릴기이다)이며;
X는 S 또는 O이고; 및,
n은 0 내지 3의 정수이다.
특별한 언급이 없는 한, 전기 설폰아미드 화합물의 모든 이성질체들은 본 발명의 범주에 속한다. 예를 들면, 알킬, 알콕시 알켄, 및 알킨의 경우, 이의 직쇄 및 분지쇄는 물론, 비대칭 탄소에 의해서 발생하는 이성체, 예컨대 분지된 알킬 또한 본 발명에 속한다.
본 발명의 약학적으로 허용되는 염에는 산 부가염, 수화물염이 포함된다. 본 발명의 일반식(I)의 화합물은 상응하는 염으로 전환시킬 수 있는데, 알칼리금속의 염(나트륨, 칼륨 등), 알칼리토금속의 염(칼슘, 마그네슘 등), 암모늄염, 약학적 유기아민의 비독성염 및 수용성염이 바람직하다. 본 발명의 일반식(I)의 화합물은 무기산의 염(염산염, 브롬화수소염, 요드화수소염, 황산염, 인산염, 질산염 등), 유기산의 염(아세트산, 락테이트, 타르타레이트, 옥살레이트, 푸마레이트, 글루쿠로네이트 등)의 상응하는 산 부가염으로 전환시킬 수 있는데, 비독성염 및 수용성염이 바람직하다. 본 발명의 일반식(I)의 화합물 및 이의 염은 당업계의 통상적인 방법에 의하여 상응하는 수화물로도 전환시킬 수 있다.
일반식(I)의 본 발명의 화합물 중에서, 씨클릭 아미노산의 구조에서 n의 숫자 및 치환체에 따라 하기 일반식의 각 설포닐아미드 유도체들이 바람직하다.
상기 식에서,
R1, R2, R3, 및 X는 일반식(Ⅰ)에서 이미 정의한 바와
동일하고;
R5는 히드록시, C1-6의 알킬옥시, C3-6카보씨클로알킬옥시,
C3-6카보씨클로알킬저급알킬옥시, C3-6헤테로씨클로알
킬저급알킬옥시, C1-6의 알케닐옥시, C1-6알키닐옥시,
카보씨클릭아릴저급알킬옥시, 헤테로씨클릭아릴저
급알킬옥시, 옥소, (알킬 또는 아릴)히드록시이미
도일, (N-치환된)히드라존, 씨클릭디티오란, 씨클
릭디옥소란, 티올, C1-6의 알킬티오, C3-6카보씨클로
알킬티오, C3-6카보씨클로알킬저급알킬티오, N, S 또
는 O를 포함하는 C3-6헤테로씨클로알킬저급알킬티
오, C1-6의 알케닐티오, C1-6알키닐티오, 카보씨클릭
아릴저급알킬티오, 헤테로씨클릭아릴저급알킬티오,
아실티오이며;
R6및 R7기는 각각 같거나 다른 치환체로 수소, C1-6의 저
급알킬 또는 (치환된)아릴이고;
R9, R10, R11및 R12는 각각 같거나 다른 치환체로 수소,
C1-6의 저급알킬 또는 (치환된)아릴이며;
R13, R14, R15및 R16은 수소, 할라이드, 히드록시, C1-6의 저
급알킬, C1-6의 저급알킬옥시 또는 C1-6의 저급알킬아
미노이고; 및,
Y는 C, N-R17(이때, R17은 수소, C1-6의 저급알킬, 아릴, 카
보씨클릭아릴저급알킬, 아실, 알킬설피닐, 알킬설
포닐, 알킬옥시카보닐, 벤질옥시카보닐, 아릴옥시
카보닐, 알킬아미노카보닐, 아릴아미노카보닐 또는
벤질아미노카보닐이다), O 또는 S이다.
이하에서는, 일반식(Ⅰ)의 화합물의 제조방법을 공정별로 나누어 설명한다. 상기에서 정의한 R1의 물리, 화학적 성질에 따라서 두가지 제조방법 모두 유용하거나, 둘 중 어느 한가지 제조방법으로만 제조가 가능하다.
제조방법 1: R3가 카르복실산(CO2H) 또는 히드록사믹산(CONHOH)인 경우
제조방법 1에 의해서 R1이 주로 방향족 고리가 없거나, 씨클릭알킬기가 아닌단순한 C1-12의 알킬기인 화합물이 제조된다.
제 1공정:
설포닐할라이드(Ⅱ)와 씨클릭 아미노산(Ⅲ)을 유기용매에서 염기의 존재하에 상온 이하의 온도에서 반응시켜 화합물(Ⅳ)을 수득한다: 이때, 출발물질인 설포닐할라이드(II)는 공지된 제조방법을 응용하여 제조한다(참조: USP 4820332, USP 5504098, USP 5985870, USP 5559081, EP 168264, USP 5973148, USP 5962490). 특히, R1이 할라이드인 2-클로로벤즈티아졸설포닐할라이드(II)는 신규한 물질로서, R1기가 2-아릴티오, 2-헤테로아릴티오, 씨클로알킬티오 등의 벤즈티아졸설폰아미드를 제조하기 위한 출발물질로서 사용된다.
다른 출발물질인 씨클릭 아미노산(III)은 하기 일반식으로 표시된다.
상기 식에서,
R2, R3및 n은 일반식(Ⅰ)에서 이미 정의한 바와 동일하다.
전기 씨클릭 아미노산(III) 중, 일반식(IIIa), (IIIb), (IIIc) 또는 (IIId)으로 표시되는 화합물이 바람직한데, 이들 역시 공지된 방법에 따라 제조된다(참조: US 5861,510, US 5753635, WO 97/20824, WO 98/08814, EP 803505, WO 98/08815, WO 98/08825, WO 98/08850, WO 98/50348, EP 878467).
아울러, 유기용매로는 디클로로메탄 또는 디클로로에탄을 사용하고, 적당량의 염기, 바람직하게는 트리에틸아민 또는 N-메틸모포린을 사용한다.
제 2공정:
화합물(Ⅳ)을 알콜 수용액내에서 염기의 존재하에 가수분해하여 화합물(Ⅰ, R3:OH)를 제조한다: 이때, 염기로는 주로 무기염을 사용하는데, 가장 바람직하게는 리튬히드록시드를 사용한다.
제 3공정:
전기 제조한 화합물(Ⅰ, R3:OH)로부터 축합반응에 의하여 화합물(Ⅰ, R3:NHOH)를 추가로 제조할 수도 있다(참조: J. Med. Chem., 40:2525-2532, 1997; J. Med. Chem., 41:640-649, 1998).
제조방법 2: R1이 방향족 고리, 씨클릭알킬, 및 알콕시알킬의 치환체인 경우
제조방법 2에 의해서 R4가 C3-7의 씨클로알킬, (옥소, 아미노, 또는 티오)C3-7의 씨클로알킬, (옥소, 아미노, 또는 티오)C3-7의 씨클로알킬-저급알킬, C2-12의 저급알케닐, C2-12의 저급알키닐, 카보씨클릭아릴, 헤테로씨클릭아릴, 헤테로씨클릭아릴-저급알킬, 비아릴, 할로저급알킬, 비아릴-저급알킬아릴알킬, 히드록시-저급알킬, 알콕시알킬, 아실옥시-저급알킬, 알킬 또는 아릴 (티오, 설피닐 또는 설포닐) 저급알킬, (아미노, 모노 또는 디 알킬아미노)저급알킬, 아실아미노 저급알킬, (N-저급알킬-피페라지노, N-카보씨클릭 또는 헤테로씨클릭 아릴-저급알킬피페라지노)-저급알킬 또는 (모포리노, 티오모포리노, 피페리디노, 피롤리디노 또는 피페리딜)-저급알킬인 화합물이 제조된다.
제 1공정:
설포닐할라이드(Ⅱ, R1:Cl)와 씨클릭 아미노산(Ⅲ)을 유기용매에서 염기의 존재하에 상온 이하의 온도에서 반응시켜 화합물(Ⅴ)을 수득한다: 이때, 설포닐할라이드(Ⅱ, R1:Cl)는 2-클로로벤즈티아졸을 클로로설포닐화하여 수득하며, 전기 제조방법 1의 제 1공정과 동일한 방법으로 화합물(Ⅴ)를 수득한다.
제 2공정:
화합물(Ⅴ)를 유기용매에서 염기의 존재하에 70-80℃로 가열하여 화합물(Ⅵ)를 수득한다: 이때, 유기용매는 바람직하게는 MeCN, THF 또는 DMF을 사용하고, 염기는 바람직하게는 K2CO3또는 NaHCO3을 사용한다.
제 3공정:
전기 제조방법 1의 제 2공정과 동일한 방법으로 화합물(Ⅳ)를 알콜 수용액 내에서 염기의 존재하에 가수분해하여 화합물(Ⅰ, R3:OH)를 제조한다.
제 4공정:
전기 제조방법 1의 제 3공정과 동일한 방법으로, 화합물(Ⅰ, R3:OH)로부터 축합반응에 의하여 화합물(Ⅰ, R3:NHOH)를 추가로 제조할 수도 있다.
한편, 제조방법 1 및 제조방법 2에서 사용된 설포닐할라이드(II)는 다음과 같이 제조된다.
제 1공정:
화합물(Ⅵ)를 유기용매에서 상온 내지 100℃의 온도에서 무기염 또는 유기염을 사용하여 알킬할라이드와 치환반응시켜 화합물(Ⅶ)을 수득한다: 이때, 화합물(Ⅵ)는 바람직하게는 메캅토벤즈티아졸, 메캅토벤즈옥사졸, 히드록시벤즈티아졸, 히드록시벤즈옥사졸, 할로벤즈티아졸 또는 할로벤즈옥사졸을 사용하고, 유기용매는 물 및 물과 혼합가능한 유기용매와의 혼합용매를 사용함이 바람직하다.
제 2공정:
화합물(Ⅶ)을 할로겐화된 유기용매 내에서 가열환류 조건에서 5 내지 10일간 클로로설포닐화하거나, 또는 용매없이 70 내지 150℃에서 12 내지 24시간동안 클로로설포닐화하여, 설포닐할라이드(Ⅱ) 및 설폰산화합물(Ⅷ)을 수득하고, 에틸초산으로 전기 두 수득물을 분리하여 설포닐할라이드(Ⅱ)를 제조한다: 이때, 할로겐화된유기용매는 디클로로메탄, 클로로포름 또는 디클로로에탄을 사용함이 바람직하고, 용매없이 반응할 경우, 반응조건은 온도가 70-150℃까지 가능하나, 주로 100-110℃가 바람직하다. 선택적으로, 분리된 설폰산화합물(Ⅷ)을 용매에서 가열환류 또는 용매없이 가열환류하는 조건에서 할로겐화 시약을 이용하여 설포닐할라이드(Ⅱ)로 제조하는 공정을 포함할 수도 있다. 이때의 유기용매는 바람직하게는 MeCN 또는 디클로로에탄을 사용하며, 할로겐화 시약은 SOCl2, POCl3또는 PCl5을 사용함이 바람직하다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
실시예 1: 2-치환된 6-벤즈티아졸설포닐 클로라이드(II)의 제조
6-벤즈티아졸설포닐 클로라이드(Ⅱ)는 다음의 2-n-부틸티오-6-벤즈티아졸설포닐 클로라이드의 제조방법을 응용하여 제조할 수 있다.
2-머캅토벤즈티아졸(83.4g, 0.5mol)을 100mL의 메탄올에 분산시킨 후, NaOH(24g)을 물 50mL에 용해시킨 용액을 적가하였다. 이어, 2-머캅토벤즈티아졸이완전히 용해된 다음, n-부틸브로마이드(54mL, 0.5mol)를 가하였다. 반응용액을 12시간동안 가열환류시킨 후, 메탄올을 감압제거하고 에틸초산(300mL)을 가하여, 물, 1M K2CO3로 차례로 세척하고 분리된 유기용액에 MgSO4를 가하여 건조시킨 다음, 감압증류하여 순수한 2-n-부틸티오-6-벤즈티아졸을 약 100g(89%) 수득하였다. 더 이상의 정제없이 500mL의 플라스크에 옮긴 후, 0℃로 냉각하고, 클로로설폰산(130g, 2.5당량)을 천천히 적가하였다. 완전히 적가한 후, 반응용액을 약 110℃로 가열하여 24시간 반응시켰다. 출발물질이 완전히 사라지면 반응액을 상온으로 냉각시키고, 얼음물을 가하여 강하게 교반하였다. 고체생성물을 여과하여 수득하고 여과된 고체에 에틸초산(300mL)을 가하여 1시간 정도 교반하였다. 교반후 용해되지 않은 고체를 여과하고, 에틸초산으로 세척하여 2-n-부틸티오-6-벤즈티아졸설폰산(30g)을 수득하였다. 그런 다음, 에틸초산 잔여용액을 활성탄 5g과 MgSO4로 처리하여 약 1시간 동안 교반하고, 활성탄과 MgSO4를 여과하여 제거하고 용매를 감압 건조하여 2-n-부틸티오-6-벤즈티아졸설포닐 클로라이드(약 60g)를 고체상태로 수득하였다. 수득한 고체에 n-헥산(150mL)를 가하여 1시간 교반후 여과하여 순수한 2-n-부틸티오-6-벤즈티아졸설포닐 클로라이드(55g)를 수득하였다. 수득한 2-n-부틸티오-6-벤즈티아졸설폰산(30g)에 SOCl2를 용매 및 시약으로 30mL 가하고, 5시간 가열환류하고 감압건조하여 물로 처리하고 생기는 고체를 여과하여 얻고, 이 고체에 에틸초산(100mL)을 가하여 1시간 정도 교반하였다. 에틸초산 용액을 활성탄 5g과MgSO4로 처리하여, 약 1시간 동안 교반하고 활성탄과 MgSO4를 여과하여 제거한 다음, 용매를 감압 건조하여 2-n-부틸티오-6-벤즈티아졸설포닐 클로라이드(약 30g)를 고체상태로 수득하였다. 수득한 고체를 전기 방법과 동일하게 n-헥산(50mL)으로 정제하여, 순수한 2-n-부틸티오-6-벤즈티아졸설포닐 클로라이드(25g)를 수득하였다. 결과적으로, 두 과정을 통해 약 80g(약 56%) 표제화합물을 제조하였다.
1H NMR(300MHz, CDCl3): δ1.1(t, 3H), 1.5(m, 2H), 1.8(m, 2H), 3.4(t,
2H), 8.0(dd, 2H), 8.45(s, 1H)
실시예 2: 2-n-펜틸티오-6-벤즈티아졸설포닐 클로라이드
1-브로모펜탄을 사용하는 것을 제외하고는, 실시예 1과 동일한 방법으로 표제화합물 2-n-펜틸티오-6-벤즈티아졸설포닐 클로라이드를 제조하였다.
1H NMR(300MHz, CDCl3): δ0.95(t, 3H), 1.4(m, 4H), 1.9(p, 2H), 3.4(t, 2H), 7.9(dd, 2H), 8.3(s, 1H)
실시예 3: 2-n-헥실티오-6-벤즈티아졸설포닐 클로라이드
1-브로모헥산을 사용하는 것을 제외하고는, 실시예 1과 동일한 방법으로 표제화합물 2-n-헥실티오-6-벤즈티아졸설포닐 클로라이드를 제조하였다.
1H NMR(300MHz, CDCl3): δ0.9(t, 3H), 1.35(m, 4H), 1.5(m, 2H), 1.85(p, 2H), 3.4(t, 2H), 8.0(dd, 2H), 8.45(s, 1H)
실시예 4: 2-씨클로헥실메틸티오-6-벤즈티아졸설포닐 클로라이드
씨클로헥실메틸브로마이드를 사용하는 것을 제외하고는, 실시예 1과 동일한 방법으로 표제화합물 2-씨클로헥실메틸티오-6-벤즈티아졸설포닐 클로라이드를 제조하였다.
1H NMR(300MHz, CDCl3): δ1.0(m, 6H), 1.7(m, 3H), 1.9(bd, 2H),
2.1(m, 1H), 3.3(d, 2H), 7.8(dd, 2H), 8.25(s,1H)
실시예 5: 2-클로로-6-벤즈티아졸설포닐 클로라이드
2-클로로-6-벤즈티아졸(1.7g, 10mmol)을 0℃로 냉각한 다음, 클로로설폰산(3.3mL)을 천천히 적가하고, 반응용액을 약 120℃로 가열하여 24시간 동안 반응시켰다. 출발물질이 완전히 소멸된 후, 반응액을 상온으로 냉각하고, 얼음물을 가하여 강하게 교반하였다. 이에, 에틸초산(30mL)를 가하여 추출물을 수득하고, 이를 물로 세척하고 활성탄 5g과 MgSO4로 처리한 다음, 약 1시간 동안 교반하였다. 활성탄과 MgSO4를 여과하여 제거한 다음, 용매를 감압건조하여 2-클로로-6-벤즈티아졸설포닐 클로라이드를 수득하였다. 수득한 화합물을 n-헥산으로 용출시키는 실리카겔상에서 크로마토그라피로 정제하여, 표제화합물 2-클로로-6-벤즈티아졸설포닐 클로라이드(1.88g, 70%)를 액체상태로 제조하였다.
1H NMR(300MHz, CDCl3): δ7.9(d, 1H), 8.0(d, 1H), 8.3(s, 1H)
실시예 6: (2R)-N-[2-(n-펜틸티오벤즈티아졸-6-설포닐)]-2-메틸카르복실피롤리딘
(D)-프롤린메틸 에스테르 염산 염(0.29g, 1.75mmol)을 디클로로메탄 (3mL)에 분산시킨 후, 0℃로 냉각하였다. 트리에틸아민(0.73mL, 3당량)을 가하여 온도를 0℃로 유지하면서, 상기 실시예 2에서 제조한 2-n-펜틸티오-6-벤즈티아졸설포닐 클로라이드(0.35g, 1.0당량)를 디클로로메탄(2mL)에 용해시킨 용액을 적가하였다.출발물질이 소멸된 후(약 5시간), 1N HCl용액으로 유기층을 세척한 다음, MgSO4로 건조하고 감압증류 후, 진공건조하여 (2R)-N-[2-(n-펜틸티오벤즈티아졸-6-설포닐) ]-2-메틸카르복실피롤리딘(0.17g, 23%)을 제조하였다.
1H NMR(300MHz, CDCl3): δ0.93(t, 3H), 1.45(m, 4H), 1.84(m, 3H), 2.0(m, 3H), 3.37(t, 3H), 3.5(m, 1H), 3.7(s, 3H), 4.4(t, 1H), 7.9(m, 2H), 8.3(s, 1H)
실시예 7: (2R)-N-[2-(n-펜틸티오벤즈티아졸-6-설포닐)]-2-피롤리딜카르복실산
상기 실시예 6에서 제조된 (2R)-N-[2-(n-펜틸티오벤즈티아졸-6-설포닐)]-2-메틸카르복실피롤리딘(0.17g, 0.4mmol)을 THF/H2O(2mL/2mL)용매에 용해시킨 후, LiOH(0.083g, 5당량)을 가하여 6시간 동안 가열환류하였다. 반응 후, 용매를 감압증류하고 1N HCl용액으로 산처리한 다음, 에틸초산(10mL)을 가하여 추출물을 수득하였다. 수득한 추출물을 NaCl용액으로 세척한 후, MgSO4로 건조하고 감압증류한 다음, 진공건조하여 표제화합물 (2R)-N-[2-(n-펜틸티오벤즈티아졸-6-설포닐)]-2-피롤리딜카르복실산(160mg, 97%)을 제조하였다.
1H NMR(300MHz, CDCl3): δ0.93(t, 3H), 1.45(m, 4H), 1.82(m, 3H),
1.83(m, 2H), 2.15(m, 1H), 3.3(m, 1H),
3.38(t, 2H), 3.6(m, 1H), 4.35(m, 1H),
7.95(dd, 2H), 8.3(s, 1H)
실시예 8: (2R)-N-[2-(n-헥실티오벤즈티아졸-6-설포닐)]-2-피롤리딜카르복실산
1H NMR(300MHz, CDCl3): δ0.90(t, 3H), 1.33(m, 4H), 1.49(m, 2H), 1.8(m, 3H), 1.87(m, 2H), 2.2(m, 1H), 3.3(q, 1H), 3.38(t, 2H), 3.6(m, 1H), 4.3(m, 1H), 7.95(dd, 2H), 8.3(s, 1H)
실시예 9: (3R)-1,2,3,4-테트라히드로-N-[2-(n-펜틸티오벤즈티아졸-6-설포닐)]-3-이소퀴놀린카르복실산의 제조
공지된 방법(참조: Beil,22(1):506)에 의하여 제조한 (3R)-1,2,3,4-테트라히드로-3-이소퀴놀린카르복실산(0.2g, 1mmol)을 디클로로메탄(3mL)에 분산시킨 후, 0℃로 냉각하였다. 이에, 트리에틸아민(0.4mL, 3당량)을 가하여 온도를 0℃로 유지하면서, 상기 실시예 2에서 제조한 2-n-펜틸티오-6-벤즈티아졸설포닐 클로라이드(0.26g, 1.0당량)를 디클로로메탄(2mL)에 용해시킨 용액을 적가하였다. 출발물질이 소멸된 후(약 5시간), 1N HCl용액으로 처리한 다음, 분리된 유기층을 소금물로 세척하고, MgSO4로 건조하며 감압증류하고 진공건조하여 표제화합물 (3R)-1,2,3,4-테트라히드로-N-[2-(n-펜틸티오벤즈티아졸-6-설포닐)]-3-이소퀴놀린카르복실산(0.3g, 63%)을 제조하였다.
1H NMR(300MHz, CDCl3): δ0.92(t, 3H), 1.4(m, 4H), 1.83(m, 2H), 3.18(d, 2H), 3.35(t, 2H), 4.6(dd, 2H), 5.0(t, 1H), 7.15(m, 4H), 7.83(m, 2H), 8.25(s, 1H)
실시예 10: (±)-1,2,3,4-테트라히드로-N-[2-(n-펜틸티오벤즈티아졸-6-설포닐)]-3-메틸-3-이소퀴놀린카르복실산메틸에스테르의 제조
공지된 방법에 의하여 제조된 (±)-1,2,3,4-테트라히드로-3-메틸-3-이소퀴놀린카르복실산메틸에스테르(0.16g, 0.78mmol)를 디클로로메탄(3mL)에 분산시킨 후, 0℃로 냉각하였다. 이어, 트리에틸아민(0.73mL, 3당량)을 가하여 온도를 0℃로 유지하면서, 전기 실시예 2에서 제조한 2-n-펜틸티오-6-벤즈티아졸설포닐 클로라이드(0.35g, 1.0당량)를 디클로로메탄 (2mL)에 용해시킨 용액을 적가하였다. 출발물질이 소멸된 후(약 5시간), 1N HCl용액으로 유기층을 세척하고, MgSO4로 건조하며 감압증류하고 진공건조하여 표제화합물 (±)-1,2,3,4-테트라히드로-N-[2-(n-펜틸티오벤즈티아졸-6-설포닐)]-3-메틸-3-이소퀴놀린카르복실산메틸에스테르(0.17g, 23%)를 제조하였다.
1H NMR(300MHz, CDCl3): δ0.93(t, 3H), 1.45(m, 4H), 1.58(s, 3H), 1.84(m, 2H), 2.88(d, 1H), 3.25(d, 1H), 3.36(t,
2H), 3.80(s, 3H), 4.4(dd, 2H), 7.2(m,
4H), 7.89(m, 2H), 8.3(s, 1H)
실시예 11: (±)-1,2,3,4-테트라히드로-N-[2-(n-펜틸티오벤즈티아졸-6-설포닐)]-3-메틸-3-이소퀴놀린카르복실산의 제조
(±)-1,2,3,4-테트라히드로-N-[2-(n-펜틸티오벤즈티아졸-6-설포닐)]-3-메틸-3-이소퀴놀린카르복실산메틸에스테르(0.17g, 0.337mmol)를 THF/H2O (2mL/2mL)용매에 용해시킨 후, LiOH(0.071g, 5당량)을 가하여 6시간 동안 가열환류하였다. 이어, 용매를 감압증류하고, 1N HCl용액으로 산처리한 다음, 이에 에틸초산(10mL)을가하여 추출물을 수득하였다. 수득한 추출물을 소금물로 세척한 후, MgSO4로 건조하고 감압증류한 다음, 진공건조하여 표제화합물 (±)-1,2,3,4-테트라히드로-N-[2-(n-펜틸티오벤즈티아졸-6-설포닐)]-3-메틸-3-이소퀴놀린카르복실산(100mg, 60%)을 제조하였다.
1H NMR(300MHz, CDCl3): δ0.93(t, 3H), 1.45(m, 4H), 1.64(s, 3H), 1.84(m, 2H), 2.96(d, 1H), 3.31(d, 1H), 3.37(t,
2H), 4.4(dd, 2H), 7.0(d, 4H), 7.20(m, 3H)
7.91(m, 2H), 8.33(s, 1H)
실시예 12: (3S)-4-(2-씨클로헥실메틸티오벤즈티아졸-6-설포닐)-2,2-디메틸 -테트라히디로-2H-1,4-티아진-3-카르복실산의 제조
공지된 방법(참조: WO 9720824)에 의하여 제조된 (3S)-2,2-디메틸-테트라히디로-2H-1,4-티아진-3-카르복실산(0.93g, 5.31mmol)을 DMF(7mL)에 용해시킨 후, 상온에서 DBU(0.95mL, 1.2당량)을 가하고 1시간 동안 교반한 다음, 디메틸덱실실릴클로라이드(1.15mL, 1.1당량)를 상온에서 가하고, 5시간 동안 교반하였다. 얼음물/헥산:티부틸메틸에테르(7mL:7mL) 용액에 반응물을 가하고 약하게 흔들어 주었다. 유기층을 MgSO4로 건조하고 감압증류한 후, 진공건조하여 (3S)-디메틸덱실실릴-2,2-디메틸-테트라히드로-2H-1,4-티아진-3-카르복실레이트(1.5g)를 액체 상태로 수득하였다. 이를 EDC(15mL)에 용해시킨 후, 0℃로 냉각하고, 이에 N-메틸몰폴린(0.62mL, 1.2당량)을 가한 다음, 30분간 교반하였다. 2-씨클로헥실메틸티오-6-벤즈티아졸설포닐 클로라이드(1.7g, 1당량)를 EDC(5mL)에 용해시킨 후, 상기 반응 혼합물에 적가하였다. 출발물질이 소멸된 후, 에틸초산(10mL)을 가하여 추출물을 수득하고, 추출물을 소금물로 세척한 다음, MgSO4로 건조하고 감압증류하며 진공건조하여, (3S)-4-(2-씨클로헥실메틸티오벤즈티아졸-6-설포닐)-2,2-디메틸-테트라히디로-2H-1,4-티아진-3-카르복실산 디메틸덱실실릴 에스테르를 수득하였다. 전기 수득물을 메탄올(20mL)에 용해시킨 후, 4시간 동안 가열환류하고 용매를 감압증류한 다음, 2N HCl을 사용하여 pH 2로 조절하고 에틸초산으로 추출하였다. 전기 추출물을 MgSO4로 건조하고 감압증류 후, 진공건조하여 수득한 잔류 혼합물을 에틸초산/헥산(1/5)용액으로 용출시키는 실리카겔상에서 크로마토그라피로 정제하여, 표제화합물 (3S)-4-(2-씨클로헥실메틸티오벤즈티아졸-6-설포닐)-2,2-디메틸-테트라히디로-2H-1,4-티아진-3-카르복실산(1.08g, 40%)을 제조하였다.
1H NMR(300MHz, CDCl3): δ1.1(m, 2H), 1.25(m, 4H), 1.37(s, 3H), 1.64(s, 3H), 1.74(m, 3H), 1.9(m, 2H), 2.5(d, 1H), 3.15(m, 1H), 3.21(d, H), 3.7(m, 1H), 4.12(m, 1H), 4.47(s, 1H), 7.74(d, 1H), 7.84(d, 1H),8.2(s, 1H)
실시예 13: (3S)-4-[2-(n-부틸티오벤즈티아졸-6-설포닐)]-2,2-디메틸-테트라히디로-2H-1,4-티아진-3-카르복실산의 제조
1H NMR(300MHz, CDCl3): δ0.98(t, 3H), 1.38(s, 3H), 1.53(m, 2H), 1.65(s, 3H), 1.82(m, 2H), 2.5(d, 1H), 3.15(m,
1H), 3.33(t, 2H), 3.7(m, 1H), 4.1(d, 1H),
4.5(s, 1H), 7.75(d, 1H), 7.87(d, 1H),
8.2(s, 1H)
실시예 14: (3S)-4-[2-(n-헥실티오벤즈티아졸-6-설포닐)]-2,2-디메틸-테트라히디로-2H-1,4-티아진-3-카르복실산의 제조
1H NMR(300MHz, CDCl3): δ0.92(t, 3H), 1.38(m, 4H), 1.39(s, 3H), 1.50(m, 2H), 1.67(s, 3H), 1.82(m, 2H), 2.5(d,
1H), 3.2(m, 1H), 3.31(t, 2H), 3.75(m,
1H), 4.16(d, 1H), 4.5(s, 1H), 7.77(d,
1H), 7.89(d, 1H), 8.22(s, 1H)
실시예 15: (2R)-N-히드록시-1-[2-(n-펜틸티오벤즈티아졸-6-설포닐)]-2-피롤리딜카르복실아미드의 제조
실시예 7에서 제조한 (2R)-N-[2-(n-펜틸티오벤즈티아졸-6-설포닐)]-2-피롤리딜카르복실산(0.16g, 0.39mmol)을 디클로로메탄(2mL)에 용해시키고 0℃로 냉각한 후, 옥살릴클로라이드(0.1mL, 3당량)를 가한 다음, 촉매량의 DMF를 가하여 상온에서 3시간 반응시켰다. 전기 반응물을 감압증류하여 용매를 제거한 다음, 감압건조하여 얻어지는 잔류물을 THF(1mL)에 용해시켰다. 히드록실아민 염산염(0.27g, 10당량) 및 NaHCO3(0.39g, 12당량)을 THF/H2O(2mL/2mL)에 용해시키고 0℃로 냉각하였다. 전기에서 수득한 산 클로라이드/THF용액을 0℃에서 히드록실아민 용액에 천천히 적가하였다. 1시간 후에 용매를 제거한 후, 에틸초산(5mL)으로 추출하고 물 및 0.1N HCl로 세척한 다음, MgSO4로 건조하고 감압증류하며 진공건조하여, 표제화합물 (2R)-N-히드록시-1-[2-(n-펜틸티오벤즈티아졸-6-설포닐)]-2-피롤리딜카르복실아미드(0.14g, 84%)를 제조하였다.
1H NMR(300MHz, CDCl3): δ0.93(t, 3H), 1.43(m, 4H), 1.6(m, 2H), 1.8(m, 4H), 2.2(m, 1H), 3.2(m, 1H), 3.37(t, 2H),3.6(m, 1H), 4.2(d, 1H), 7.94(dd, 2H), 8.3(s, 1H), 9.5(s, 1H)
실시예 16: (2R)-N-히드록시-1-[2-(n-헥실티오벤즈티아졸-6-설포닐)]-2-피롤리딜카르복실아미드의 제조
1H NMR(300MHz, CDCl3): δ0.9(t, 3H), 1.33(m, 4H), 1.45(m, 2H), 1.6(m, 2H), 1.8(m, 3H), 2.2(m, 1H), 3.2(m, 1H), 3.38(t, 2H), 3.6(m, 1H), 4.2(d, 1H), 7.94(dd, 2H), 8.3(s, 1H), 9.5(s, 1H)
실시예 17: (3R)-N-히드록시-1,2,3,4-테트라히드로-2-[2-(n-펜틸티오벤즈티아졸-6-설포닐)]-3-이소퀴놀린카르복실아미드의 제조
실시예 9에서 제조한 (3R)-1,2,3,4-테트라히드로-2-[2-(n-펜틸티오벤즈티아졸-6-설포닐)]-3-이소퀴놀린카르복실산(0.2g, 0.42mmol)을 디클로로메탄(2mL)에 용해시키고 0℃로 냉각하였다. 이에, 옥살릴클로라이드(0.11mL, 3당량)를 가하고, 촉매량의 DMF를 가하여 상온에서 3시간 동안 반응시켰다. 이를 감압증류하여 용매를 제거시킨 다음 감압건조하여 얻어지는 잔류물을 THF(1mL)에 용해시켰다. 히드록실아민 염산염(0.29g, 10당량), NaHCO3(0.42g, 12당량)을 THF/H2O(2mL/2mL)에 용해시키고 0℃로 냉각하였다. 전기 수득한 산 클로라이드/THF용액을 0℃에서 히드록실아민 용액에 천천히 적가하였다. 1시간 후에 용매를 제거한 후, 에틸초산(5mL)으로 추출하고 물 및 0.1N HCl로 세척한 다음, MgSO4로 건조하고 감압증류하며 진공건조하여, (3R)-N-히드록시-1,2,3,4-테트라히드로-2-[2-(n-펜틸티오벤즈티아졸-6-설포닐)]-3-이소퀴놀린카르복실아미드(0.2g, 99%)를 제조하였다.
1H NMR(300MHz, CDCl3): δ0.92(t, 3H), 1.41(m, 4H), 1.8(m, 2H), 2.65(m, 1H), 3.15(m, 1H), 3.35(t, 2H), 4.5(m, 3H), 7.09(m, 4H), 7.8(dd, 2H), 8.16(s, 1H), 9.4(s, 1H)
실시예 18: (±)-N-히드록시-1,2,3,4-테트라히드로-2-[2-(n-펜틸티오벤즈티아졸-6-설포닐)]-3-메틸-3-이소퀴놀린카르복실아미드의 제조
1H NMR(300MHz, CDCl3): δ0.93(t, 3H), 1.40(m, 4H), 1.65(s, 3H), 1.83(m, 2H), 2.85(d, 1H), 3.24(d, 1H), 3.38(t,
2H), 4.42(d, 1H), 4.55(d, 1H), 7.24(m,
4H), 7.87(m, 2H), 8.28(s, 1H), 8.8(s, 1H)
실시예 19: (3S)-N-히드록시-4-(2-씨클로헥실메틸티오벤즈티아졸-6-설포닐) -2,2-디메틸-테트라히디로-2H-1,4-티아진-3-카르복실아미드의 제조
실시예 12에서 제조한 (3S)-4-(2-씨클로헥실메틸티오벤즈티아졸-6-설포닐)-2,2-디메틸-테트라히디로-2H-1,4-티아진-3-카르복실산(0.84g, 1.68mmol)을 디클로로메탄(2mL)에 용해시키고 0℃로 냉각하였다. 이에, 옥살릴클로라이드(0.44mL, 3당량)를 가하고, 촉매량의 DMF를 가하여 상온에서 3시간 반응시켰다. 이를 감압증류하여 용매를 제거시킨 다음, 감압건조하여 얻어지는 잔류물을 THF(1mL)에 용해시켰다. 히드록실아민 염산염(1.17g, 10당량) 및 NaHCO3(1.69g, 12당량)을 THF/H2O(2mL/2mL)에 용해시키고, 0℃로 냉각하였다. 전기에서 수득한 산 클로라이드/THF용액을 0℃에서 히드록실아민 용액에 천천히 적가하였다. 1시간 경과후에 용매를 제거하고, 에틸초산(5mL)으로 추출하고 물 및 0.1N HCl로 세척한 다음, MgSO4로 건조하고 감압증류하며 진공건조함으로써, 표제화합물 (3R)-N-히드록시-1,2,3,4-테트라히드로-2-[2-(n-펜틸티오벤즈티아졸-6-설포닐)]-3-이소퀴놀린카르복실아미드(0.87g, 100%)를 제조하였다.
1H NMR(300MHz, CDCl3): δ1.22(m, 5H), 1.28(s, 3H), 1.58(s, 3H), 1.74(m, 4H), 1.9(d, 2H), 2.45(d, 1H), 3.1(m, 1H), 3.28(d, 2H), 3.8(m, 2H), 4.3(s, 1H),
7.77(d, 1H), 7.87(d, 1H), 8.21(s, 1H),
10.8(s, 1H)
실시예 20: (3S)-N-히드록시-4-[2-(n-부틸티오벤즈티아졸-6-설포닐)]-2,2-디메틸-테트라히디로-2H-1,4-티아진-3-카르복실아미드의 제조
1H NMR(300MHz, CDCl3): δ0.98(t, 3H), 1.29(s, 3H), 1.53(m, 4H), 1.60(s, 3H), 1.83(m, 2H), 2.5(d, 1H), 3.2(m, 2H), 3.38(t, 2H), 4.1(d, 1H), 4.6(s, 1H),
7.1(s, 1H), 7.8(d, 1H), 7.9(d, 1H),
8.23(s, 1H), 9.7(s, 1H)
실시예 21: (3S)-N-히드록시-4-[2-(n-헥실티오벤즈티아졸-6-설포닐)]-2,2-디메틸-테트라히디로-2H-1,4-티아진-3-카르복실아미드의 제조
1H NMR(300MHz, CDCl3): δ0.93(t, 3H), 1.26(s, 3H), 1.35(m, 4H), 1.5(m, 2H), 1.58(s, 3H), 1.9(m, 2H), 2.5(d, 1H), 3.1(m, 1H), 3.37(m, 3H), 3.78(t, 2H), 4.0(d, 1H), 4.53(s, 1H), 7.8(dd, 2H), 8.2(s, 1H), 9.9(s, 1H)
실시예 22: 시험관내에서의 젤라티나제 A(MMP-2)억제
본 검정은 형광합성펩타이드 기질((7-methoxycoumarin-4-acetyl- Pro-Leu-Gly-Leu-β-(2,4-dinitrophenylamino)Ala-Ala-Arg-NH2(Sigma Chem. Co., U.S.A.))을 젤라티나제 A 효소(Boehringer Manneheim cat# 1782916, from human fibrosarcoma cells)가 절단하여 생성되는 형광물질(7-methoxycoumarin-4-acetyl-Pro-Leu-Gly)의 형광량을 측정하여 수행하였다.
형광합성기질을 이용한 효소반응은 96웰 플레이트에 탐색시료와 TNBC 완충용액(25mM Tris-HCl, pH 7.5, 0.1M NaCl, 0.01% Brij-35, 5mM CaCl2), 효소반응 직전 1 mM의 APMA(aminophenylmercuric acetate)로 37℃에서 30분간 활성화시킨 젤라티나제 A 효소(웰내 최종농도: 4.17nM), 및 기질인 형광합성펩타이드(웰내 최종농도: 9.15uM)를 넣어 37℃에서 30분간 반응시킨 후, 웰플레이트 리더가 장착된 형광분석기(spectrofluorimeter, Fmax(molecular device))로 여기(excitation) 328nm,발광(emission) 393nm에서 형광량을 측정하였다. 저해율(%)은 저해제를 넣은 것의 반응전 형광량(A)과 반응후의 형광량(B), 저해제를 넣지 않은 것의 반응전 형광량(C)과 반응후 형광량(D)으로부터 다음과 같이 계산하였다:
실시예 23: 시험관내에서의 젤라티나제 B(MMP-9)억제
젤라티나제 B 효소(Boehringer Manneheim cat# 1758896, From Human blood)를 사용하고, 젤라티나제 B 효소의 농도(웰내 최종농도: 2.715nM) 및 기질인 형광합성펩타이드의 농도(웰내 최종농도: 4.575uM)를 달리하는 것을 제외하고는, 실시예 22와 동일한 방법으로 시험관내에서의 젤라티나제 B(MMP-9)의 저해율을 측정하였다.
실시예 24: 시험관내에서의 콜라게나제(MMP-1)억제
콜라게나제 효소(AngioLab. Co.Ltd)를 사용하고, 콜라게나제 효소의 농도(웰내 최종농도: 2.715nM) 및 기질인 형광합성펩타이드의 농도(웰내 최종농도: 7.25nM)를 달리하는 것을 제외하고는, 실시예 22와 동일한 방법으로 시험관내에서의 콜라게나제(MMP-1)의 저해율을 측정하였다.
번호 R1 R3 X IC50(nM)MMP-2 IC50(nM)MMP-9 IC50(nM)MMP-1
1 n-펜틸티오 OH S 1210 8050
2 n-펜틸티오 NHOH S 5.8 4.2
3 n-헥실티오 OH S 944 14100
4 n-헥실티오 NHOH S 5.6 1
번호 R1 R2 R3 X IC50(nM)MMP-2 IC50(nM)MMP-9 IC50(nM)MMP-1
1 n-펜틸티오 H OH S 380 1290
2 n-펜틸티오 H NHOH S 0.4 0.6
3 n-펜틸티오 CH3 OH S 37460 207257
4 n-펜틸티오 CH3 NHOH S 1000 2052
번호 R1 R9::R10 R3 Y IC50(nM)MMP-2 IC50(nM)MMP-9 IC50(nM)MMP-1
1 n-부틸티오 CH3: CH3 OH S 483 1474
2 n-부틸티오 CH3: CH3 NHOH S 0.4 0.4
3 n-헥실티오 CH3: CH3 OH S 172 795
4 n-헥실티오 CH3: CH3 NHOH S 0.3 0.4 150
5 시클로헥실메틸 CH3: CH3 OH S 46 232
6 시클로헥실메틸 CH3: CH3 NHOH S 0.7 1
7 MeO H : H OH CH2 16100 13400
8 에틸티오 H : H OH CH2 1560 3030
9 에틸티오 H : H NHOH CH2 2.0 9.0
10 n-부틸티오 H : H OH CH2 120 1820
11 n-부틸티오 H : H NHOH CH2 1.3 0.7
12 n-헥실티오 H : H OH CH2 86 2270
13 n-헥실티오 H : H NHOH CH2 1.8 2.8
14 n-헵틸티오 H : H OH CH2 49 2250
15 n-헵틸티오 H : H NHOH CH2 1.7 8.9
16 n-옥틸티오 H : H OH CH2 53 1950
17 n-옥틸티오 H : H NHOH CH2 3.6 21.8
18 시클로헥실메틸 H : H OH CH2 31 680
19 시클로헥실메틸 H : H NHOH CH2 0.5 1.9
이상에서 상세히 설명하고 입증하였듯이, 본 발명은 MMP의 작용을 억제하는 설폰아미드 유도체 화합물, 그의 이성질체 및 이들의 약학적으로 허용되는 염과 전기 물질들의 제조방법을 제공한다. 본 발명의 설폰아미드 유도체 화합물은 시험관내(in vitro) 조건에서 MMP의 활성을 선택적으로 억제하는 바, 전기 설폰아미드 유도체를 유효성분으로 하는 MMP 억제제는 MMP의 과발현 및 과도한 활성화에 의해서 유발되는 각종질병의 예방 및 치료에 유용하게 사용될 수 있을 것이다.

Claims (7)

  1. 하기 일반식(Ⅰ)로 표시되는 화합물, 그의 이성질체 및 이들의 약학적으로 허용되는 염:
    상기 식에서,
    R1은 X-R4(이때, R4는 C1-12의 알킬, C3-7의 카보씨클릭 아릴-C1-6의 저급알킬, C3-7의 씨클로알킬, C3-7의 씨클로알킬-C1-6의 저급알킬, (옥소, 아미노 또는 티오)C3-7의 씨클로알킬, (옥소, 아미노 또는 티오)C3-7의 씨클로알킬-C1-6의 저급알킬, C2-12의 저급알케닐, C2-12의 저급알키닐, C3-7의 카보씨클릭아릴, C3-7의 헤테로씨클릭아릴, C3-7의 헤테로씨클릭아릴-C1-6의 저급알킬, C4-7의 비아릴, C1-6의 할로저급알킬, C4-7의 비아릴-C4-10의 저급알킬아릴알킬, 히드록시-C1-6의 저급알킬, C2-8의 알콕시알킬, C1-5의 아실옥시-C1-6의 저급알킬, C1-6의 알킬 또는 아릴 (티오, 설피닐 또는 설포닐)C1-6의 저급알킬, (아미노, 모노 또는 디 C1-6의 알킬아미노)C1-6의 저급알킬, C1-5의 아실아미노 C1-6의 저급알킬, (N-C1-6의 저급알킬-피페라지노, C3-7의 N-카보씨클릭 또는 헤테로씨클릭아릴-C1-6의 저급알킬피페라지노)-C1-6의 저급알킬 또는 (모포리노, 티오모포리노, 피페리디노, 피롤리디노 또는 피페리딜)C1-6의 저급알킬이다), 또는 할라이드이며;
    R2는 수소 또는 C1-6의 저급알킬이고;
    R3는 -OH, -NHOH 또는 OR18(이때, OR18는 C1-6의 저급알킬, t-부틸, 벤질 또는 C3-9의 씰릴기이다)이며;
    X는 S 또는 O이고; 및,
    n은 0 내지 3의 정수이다.
  2. 삭제
  3. 제 1항에 있어서,
    메트릭스메탈로프로테이나제 저해활성을 나타내는 것을 특징으로 하는
    화합물, 그의 이성질체 및 이들의 약학적으로 허용되는 염.
  4. (ⅰ) 설포닐할라이드(Ⅱ)와 씨클릭 아미노산(Ⅲ)을 극성유기용매에서 유기염기의 존재하에 반응시켜 화합물(Ⅳ)을 수득하는 공정;
    (ⅱ) 화합물(Ⅳ)을 C1-4의 알콜 수용액내에서 무기염기의 존재하에 가수분해하여 화합물(Ⅰ, R3:OH)를 제조하거나, 또는 전기 화합물(Ⅰ, R3:OH)로부터 축합반응에 의하여 화합물(Ⅰ, R3:NHOH)를 제조하는 공정을 추가로 포함하는
    일반식(Ⅰ)의 화합물을 제조하는 방법:
    상기 식에서,
    R1, R2, R3, X 및 n은 일반식(Ⅰ)에서 정의한 바와 동일하다.
  5. 제 4항에 있어서,
    (ⅱ)공정의 염기는 리튬히드록시드인 것을 특징으로 하는
    일반식(Ⅰ)의 화합물을 제조하는 방법.
  6. (ⅰ) 설포닐할라이드(Ⅱ, R1:Cl)와 씨클릭 아미노산(Ⅲ)을 극성유기용매에서 유기염기의 존재하에 반응시켜 화합물(Ⅴ)를 수득하는 공정:
    (ⅱ) 화합물(Ⅴ)를 극성유기용매에서 무기염기의 존재하에 70 내지 80℃로 가열하여 화합물(Ⅳ)를 수득하는 공정;
    (ⅲ) 화합물(Ⅳ)를 C1-4의 알콜 수용액 내에서 무기염기의 존재하에 가수분해하여 화합물(Ⅰ, R3:OH)를 제조하거나, 또는 전기 화합물(Ⅰ, R3:OH)로부터 축합반응에 의하여 화합물(Ⅰ, R3:NHOH)를 제조하는 공정을 추가로 포함하는
    일반식(Ⅰ)의 화합물을 제조하는 방법:
    상기 식에서,
    화합물(Ⅲ)는
    이고(이때, R3는 OH 또는 OR18(이때, OR18
    C1-6의 저급알킬, t-부틸, 벤질 또는 씰릴기이다)); 및,
    R1, R2, R3, X 및 n은 일반식(Ⅰ)에서 정의한 바와 동일하다.
  7. 제 6항에 있어서,
    (ⅲ) 공정의 염기는 리튬히드록시드인 것을 특징으로 하는
    일반식(Ⅰ)의 화합물을 제조하는 방법.
KR10-2000-0018327A 2000-04-07 2000-04-07 메트릭스 메탈로프로테이나제의 저해제로서의 설폰아미드유도체 KR100372757B1 (ko)

Priority Applications (10)

Application Number Priority Date Filing Date Title
KR10-2000-0018327A KR100372757B1 (ko) 2000-04-07 2000-04-07 메트릭스 메탈로프로테이나제의 저해제로서의 설폰아미드유도체
EP01922101A EP1208092B1 (en) 2000-04-07 2001-04-07 Sulfonamide derivative as a matrix metalloproteinase inhibitor
AU48884/01A AU4888401A (en) 2000-04-07 2001-04-07 Sulfonamide derivative as a matrix metalloproteinase inhibitor
CA002372352A CA2372352A1 (en) 2000-04-07 2001-04-07 Sulfonamide derivative as a matrix metalloproteinase inhibitor
CN01800873A CN1366524A (zh) 2000-04-07 2001-04-07 磺胺衍生物作为基质金属蛋白酶抑制剂
PCT/KR2001/000585 WO2001077092A1 (en) 2000-04-07 2001-04-07 Sulfonamide derivative as a matrix metalloproteinase inhibitor
JP2001575566A JP4008708B2 (ja) 2000-04-07 2001-04-07 マトリックスメタロプロテイナーゼの阻害剤としてのスルホンアミド誘導体
US10/018,507 US6548667B2 (en) 2000-04-07 2001-04-07 Sulfonamide derivative as a matrix metalloproteinase inhibitor
AT01922101T ATE330601T1 (de) 2000-04-07 2001-04-07 Sulfonamide als matrix-metalloproteinase inhibitoren
DE60120881T DE60120881T2 (de) 2000-04-07 2001-04-07 Sulfonamide als matrix-metalloproteinase inhibitoren

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0018327A KR100372757B1 (ko) 2000-04-07 2000-04-07 메트릭스 메탈로프로테이나제의 저해제로서의 설폰아미드유도체

Publications (2)

Publication Number Publication Date
KR20010099525A KR20010099525A (ko) 2001-11-09
KR100372757B1 true KR100372757B1 (ko) 2003-02-17

Family

ID=19662661

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0018327A KR100372757B1 (ko) 2000-04-07 2000-04-07 메트릭스 메탈로프로테이나제의 저해제로서의 설폰아미드유도체

Country Status (1)

Country Link
KR (1) KR100372757B1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996033172A1 (en) * 1995-04-20 1996-10-24 Pfizer Inc. Arylsulfonyl hydroxamic acid derivatives as mmp and tnf inhibitors
WO1998008815A1 (en) * 1996-08-28 1998-03-05 The Procter & Gamble Company Substituted cyclic amine metalloprotease inhibitors
JPH10175975A (ja) * 1996-12-17 1998-06-30 Sagami Chem Res Center チアゾール誘導体及び該誘導体を含有する農薬
WO2000058304A1 (fr) * 1999-03-26 2000-10-05 Shionogi & Co., Ltd. Derives sulfonamides heterocycliques

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996033172A1 (en) * 1995-04-20 1996-10-24 Pfizer Inc. Arylsulfonyl hydroxamic acid derivatives as mmp and tnf inhibitors
WO1998008815A1 (en) * 1996-08-28 1998-03-05 The Procter & Gamble Company Substituted cyclic amine metalloprotease inhibitors
JPH10175975A (ja) * 1996-12-17 1998-06-30 Sagami Chem Res Center チアゾール誘導体及び該誘導体を含有する農薬
WO2000058304A1 (fr) * 1999-03-26 2000-10-05 Shionogi & Co., Ltd. Derives sulfonamides heterocycliques

Also Published As

Publication number Publication date
KR20010099525A (ko) 2001-11-09

Similar Documents

Publication Publication Date Title
EP1095936B1 (en) Intermediates useful for the preparation of metallproteinase inhibitors
JP4008708B2 (ja) マトリックスメタロプロテイナーゼの阻害剤としてのスルホンアミド誘導体
ES2236829T3 (es) Acidos beta-sulfonil hidroxamicos como inhibidores de las metaloproteinas de la matriz.
USH1992H1 (en) Metalloproteinase inhibitors, pharmaceutical compositions containing them, and their pharmaceutical uses
AU679474B2 (en) Carboxy-peptidyl derivatives as antidegenerative active agents
WO1998008853A9 (en) Phosphinic acid amides as matrix metalloprotease inhibitors
WO1998008853A1 (en) Phosphinic acid amides as matrix metalloprotease inhibitors
JP2010265276A (ja) ヒトadam−10インヒビター
NO314079B1 (no) Visse cykliske tiosubstituerte acylaminosyreamidderivater
EP1525193B1 (fr) Derives d'acylaminothiazole et leur utilisation comme inhibiteurs de beta-amyloide
JP2003531894A (ja) マトリックスメタロプロテアーゼ阻害剤としてのビフェニルブチル酸誘導体
US6765003B1 (en) 3-Arylsulfonyl-2 (substituted methyl) propanoic acid derivatives as matrix metalloproteinase inhibitors
PL198827B1 (pl) ω-Amidy N-arylosulfonyloaminokwasów, sposób ich wytwarzania, środek farmaceutyczny i zastosowanie ω-amidów N-arylosulfonyloaminokwasów
KR100372757B1 (ko) 메트릭스 메탈로프로테이나제의 저해제로서의 설폰아미드유도체
AU741867B2 (en) Matrix metalloproteinase inhibitors
KR100384693B1 (ko) 메트릭스 메탈로프로테이나제의 저해제로서의 설폰아미드유도체
EP0979816B1 (fr) Nouveaux dérivés d'acide hydroxamique, leur procédé de préparation et les compositions pharmaceutiques qui les contiennent
US20030130506A1 (en) Metalloproteinase inhibitors, pharmaceutical compositions containing them and their pharmaceutical uses, and methods and intermediates useful for their preparation
GB2272441A (en) Substituted N-carboxyalkyldipeptides
KR100405914B1 (ko) 메트릭스 메탈로프로테이나제의 저해제로서의 비페닐부티릭산 유도체
KR100405912B1 (ko) 메트릭스 메탈로프로테이나제의 저해제로서의 설폰아미드유도체
KR19980041978A (ko) 카복실산 유도체, 그의 제조 방법 및 이 화합물을 함유한 치료제
KR100405913B1 (ko) 메트릭스 메탈로프로테이나제의 저해제로서의 비페닐부티릭산 유도체
FR2819253A1 (fr) Nouveaux derives d'acide hydroxamique, leur procede de preparation et les compositions pharmaceutiques qui les contiennent

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120116

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee