KR0135269B1 - 스티렌계 혼성중합체의 제조방법 - Google Patents

스티렌계 혼성중합체의 제조방법

Info

Publication number
KR0135269B1
KR0135269B1 KR1019920005026A KR920005026A KR0135269B1 KR 0135269 B1 KR0135269 B1 KR 0135269B1 KR 1019920005026 A KR1019920005026 A KR 1019920005026A KR 920005026 A KR920005026 A KR 920005026A KR 0135269 B1 KR0135269 B1 KR 0135269B1
Authority
KR
South Korea
Prior art keywords
group
carbon atoms
titanium
monomer
producing
Prior art date
Application number
KR1019920005026A
Other languages
English (en)
Other versions
KR920018092A (ko
Inventor
도시노리 타자끼
노리오 도모쓰
마사히꼬 구라모또
Original Assignee
이데미쓰 쇼스께
이데미쓰 고산 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이데미쓰 쇼스께, 이데미쓰 고산 가부시끼가이샤 filed Critical 이데미쓰 쇼스께
Publication of KR920018092A publication Critical patent/KR920018092A/ko
Application granted granted Critical
Publication of KR0135269B1 publication Critical patent/KR0135269B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/06Hydrocarbons
    • C08F12/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/602Component covered by group C08F4/60 with an organo-aluminium compound

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Polymerization Catalysts (AREA)

Abstract

(a) 스티렌계모노머 및 (b) 올레핀계모노머 또는 디엔계모노머를 (A) 천이금속화합물 및 (B) 양이온과 복수의 기가 금속에 결합한 음이온으로 된 배위 착화합물 또는 (C) 유기알루미늄화합물을 주성분으로 하는 촉매의 존재하에 스티렌계 혼성중합체를 제조하는 방법으로 얻어지는 스티렌계 혼성중합체는 내열성 및 기계적 강도가 우수하고, 여러 가지 성형품 원료로 효과적이다.

Description

스티렌계 혼성중합체의 제조방법
본 발명은 스티렌계 혼성중합체의 제조방법에 관하여, 상세하게는 특정의 고활성 촉매를 사용하여 스티렌계모노머와 올레핀계 또는 디엔계모노머로 된 스티렌계 혼성중합체를 좋은 효율로 제조하는 방법에 관한 것이다.
종래부터 라디칼 중합법 등으로 제조되는 스티렌계 중합체는 그 입체구조가 아탁틱구조를 갖고 있고, 여러 가지 성형법, 예컨대, 사출성형, 중공성형, 진공성형, 주입성형 등의 방법으로 다양한 형상의 것으로 성형되어 가정전기기구, 사무기기, 가정용품, 포장용기, 완구, 가구, 합성지, 기타 산업자재 등으로 폭 넓게 사용되고 있다.
그러나, 이러한 아탁틱구조의 스티렌계 중합체는 내열성, 내약품성이 약한 결점이 있다.
본 발명자들은, 앞서 신디오탁티서티(syndiotacticity)가 높은 스티렌계 중합체를 개발하는데 성공한 바 있다(일본국 특개소 62-104818호 공보,62-187708호공보,63-179906호 공보, 63-241009호 공보 등).
이러한 신디오탁틱 구조를 갖는 스티렌계 중합체는 종래의 아탁틱 폴리스티렌과는 다른 녹는점을 갖고 있고, 또한 지금까지 알려져 있는 아이소탁틱 폴리스티렌보다도 더 높은 녹는점을 갖기 때문에 내열성 수지로서 여러 방면에 사용이 기대되고 있다.
상기 중합체는 특히 신디오탁틱 폴리스티렌은 유리전이온도 90∼100℃, 녹는점 250∼275℃의 중합체로, 사출성형온도를 높게 성정하지 않으면, 그 특성을 유지할 수 없게되는 문제가 있고, 또한 고온 금형에서 성형한 성형품은 유연성을 개선할 필요가 남게된다.
그러나, 본 발명자들은 최근에 이르러, 신디오탁틱 구조의 스티렌계 중합체의 성질개선, 특히 유리전이온도의 저하, 내충격성의 개선, 다른 열가소성수지나 무기충전제와의 접착성, 사용성의 개선(즉, 젖음성의 개선)을 도모하는 것으로서, 스티렌-올레핀계 혼성중합체 또는 스티렌-디엔계 혼성중합체를 좋은 효율로 제조하는 데 성공했다(일본국 특개평 3-7705호 공보 및 2-258811호 공보).
이들 혼성중합체는, 물성적으로는 여러 가지 면에서 개량된 것이나, 그 제조에 있어서 천이금속화합물(특히 티탄화합물)과 알킬알루미녹산(특히 메틸알루미녹산)으로 돈 촉매가 사용되고 있다. 그러나, 이 촉매는 그 원료인 트리메틸알루미늄이 값이 비쌀 뿐만 아니라. 메틸알루미녹산을 티탄화합물에 대하여 상당히 과잉량으로 사용해야한다. 그 때문에, 촉매비용이 매우 높게됨과 동시에 촉매 사용량이 많기 때문에 그 잔류량도 증대하고 탈화처리의 부담이 크게된다.
그래서 본 발명자들은 고가이면서 사용량이 많은 알루미녹산을 사용하지 않고, 새로운 촉매계를 사용하여 각종 물성이 우수한 스티렌-올레틸계 혼성중합체나 스티렌-디엔계 혼성중합체를 제조하고자 예의 연구를 거듭했다.
그 결과 상기 알루미녹산 대신에 양이온과 복수의 기가 금속에 결합한 음이온으로 된 배위 착화합물을 사용하여 목적을 달성할 수 있다는 것을 알아냈다. 본 발명은 이러한 점에 기초하여 완성한 것이다.
즉, 본 발명은 (a) 스티렌계모노머 및 (b) 올레핀계모노머 또는 디엔계모노머를 (A) 천이금속화합물 및 (B) 양이온과 복수의 기가 금속게 결함한 음이온으로 된 배위 착화합물을 주성분으로 하는 촉매의 존재하에 혼성중합시키는 것을 특징으로 하는 스티렌계 혼성중합체의 제조방법을 제공하는 것이다.
본 발명의 방법에서는 상기와 같이,
(a) 스티렌계모노머 및 (b) 올레핀계모노머 또는 디엔계모노머를 혼성중합시킨다.
여기서 원료모노머인 (a) 스티렌계모노머로서는 일반식(Ⅰ),
상기 일반식(Ⅰ)에서 R1은 수소원자, 할로겐원자(예를 들면, 염소, 브롬, 불소, 요오드)또는 탄소수 20이하, 바람직하게는 탄소수 1∼10의 탄화수소기(예를들면, 메틸기, 에틸기, 프로필기, 부틸기, 펜틸기 및 헥실기 드의 포화탄화수소기(특히 알킬기)또는 비닐기 등의 불포화탄화수소기), m은 1∼3의 정수를 나타내고, m이 2또는 3인 경우에는 각 R1은 같거나 달라도 좋다.
또한 일반식(Ⅰ)으로 표시되는 스티렌계모노머의 구체적인 예를 들자면 스티알킬스티렌(p-메틸스티렌, m-메틸스티렌, o-메틸스티렌, 2,4-디메틸스티렌, 2,5-디메틸스티렌, 3,4-디케틸스티렌, 3,5-디메틸스티렌, p-에틸스티렌, m-에틸스티렌, p-t-부틸스티렌, p-디비닐벤젠 및 m-디비닐벤젠), 할로겐화스티렌류(p-클로로스티렌, m-클로로스티렌, o-클로로스티렌, p-브로모스티렌, m-브로모스틸렌, o-브로모스티렌, 2,6,9-트리브로모스티렌, p-플루오로스티렌, m-플루오로스티렌 및 o-플루오로스티렌)등이 있다.
한편, 원료모노머인 (b) 성분은 올레핀게모노머 또는 디엔계모노머이다. 여기서 올레핀계모노머로서 는 일반식(Ⅱ),
상기 일반식(Ⅱ)에서 R2는 수소원자 또는 탄소수 20이하, 바람직하게는 수소원자 또는 탄소수 1∼10의 포화탄화수소로 된 것이다. 일반식(Ⅱ)의 구체적인 예로는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 3-메틸부텐-1, 1-헥센, 3-메틸펜텐, 1,4-메틸펜텐-1, 1-옥텐 및 1-데센 등의 올레핀이 사용되나, 이 가운데 에틸렌, 프로필렌, 1-부텐, 1-헥센 및 이들의 혼합물이 바람직하다. 보다 더 바람직한 것은 에틸렌, 프로필렌 또는 이들의 혼합물이다.
또한 원료모노머인 (b)성분으로서 디엔계모노머는 특별히 한정되지는 않으나, 큰 공액 곧은 사슬형 디엔계모노머, 비공액 곧은 사슬형 디엔계모노머, 공액고리형 디엔계모노머 및 비공액고리형 디엔계모노머로 나눌수 있다.
이 가운데 공액 곧은 사슬형 디엔계모노머에 대해서는 일반식(Ⅲ),
(식 중에서 R3및 R4는 각각 수소원자, 알킬기, 아릴기 또는 할로겐원자를 나타내며, R5는 수소원자 또는 탄소수 6이하의 포화탄화수소기를 나타낸다.)로 표시되는 화합물, 구체적으로는 1,3-부타디엔이나 이소프렌, 1,3-펜타디엔 등의 알킬치환 부타디엔류, 1-또는 2-아릴-1,3-부타디엔, 1-또는 2-페닐-1,3-부타디엔, 2-페닐-3-메틸-1,3-부타디엔 등의 아릴치환 부타디엔류, 2-클로로-1,3-부타디엔, 2-플루오로-1,3-부타디엔 등의 할로겐이 치환된 부타디엔 등이 있고, 비공액 곧은 사슬형 디엔계모노머로서는 1,4-펜타디엔, 1.5-헥사디엔, 1,7-옥타디엔을 들 수 있고, 또 공액고리형 디엔계모노머로서는 1,3-시클로헥사디엔, 1,3-시클로옥타디엔 등이 있다. 또한 비공액 고리형 디엔계모노머에 대하여는 2,5-노르보닐나디엔, 5-에틸리덴노르보넨, 1,5-시클로헥사디엔, 5-비닐노르보넨 등이 있다. 이 가운데 공액 곧은 사슬형 디엔계모노머 및 비공액 고리형디엔게모노머를 사용하는 것이 바람직하다.
본 발명의 방법으로 제조되는 혼성중합체에 있어서는 상기 디엔계모노머가 중합하여 디엔계 반복단위가 구성되나, 이 디엔계 반복단위는 예를 들면, 상기 일반식(Ⅲ)의 공액 곧은 사슬형 디엔계모노머로 구성된 경우에는, 일반식(Ⅳ)
로 표시되는 1,2-중합형태 및 일반식(V),
로 표시되는 1,4-중합형태가 있다.
중합체에서는 1,2-중합형태로부터는 이 디엔계 반복단위가 신디오탁틱구조, 아이소탁틱구조, 아탁틱구조의 어느 하나 또는 이들의 혼합 존재한 것으로 되며, 또한 1,4-중합형태에서는 시스형, 트란스형의 것이 얻어지고, 또 비공액 고리형 디엔게모노머의 중합에서는 트란스 고리형의 입체구조가 있다. 더구나 본 발명의 방법으로 제조되는 혼성중합체에서는 스티렌계 고리의 신디오탁티서티가 높은 것이면 디엔계 반복단위는어떤 입체구조여도 지장이 없다.
본 발명의 방법에서는 상기(a),(b)모노머를 (A)천이금속화합물 및 상기(B)배위 착화합물을 주성분으로 하는 촉매의 존재하에서 혼성중합시킨다.
여기서, 촉매인(A)천이금속화합물은 각종의 것이 사용가능하나, 통상의 주기율표 제3∼6족 금속의 화합물 및 란탄계 금속의 화합물을 들 수 있고 그 가운데 제4족 금속(티탄, 지르코늄, 하프늄, 바나듐 등)의 화합물이 바람직하다. 티탄 화합물로서는 여러 가지 것이 있으나 예를 들면 일반식(Ⅵ),
TiR6 aR7 bR8 cR9 4-(a+b+c)(Ⅵ)
또는 일반식(Ⅶ),
TiR6 dR7 eR8 3-(d+e)(Ⅶ)
(식 중에서, R6,R7,R8및 R9는 각각 수소원자, 탄소수 1∼20의 알킬기, 탄소수 1∼20의 알콕시기, 탄소수 6∼20의 알릴기, 알킬아릴기, 아릴알킬기, 탄소수1∼20의 아실옥시기, 시클로펜타디에닐기, 치환된 시크로펜타디에닐기, 인데닐기 또는 할로겐원자를 나타낸다. a,b,c는 각각 0∼4의 정수를 나타내고, d,e는 각각 0∼3의 정수를 나타낸다.)로 표시되는 티탄화합물 및 티탄킬레이트화합물로 된 군에서 선택된 1종 이상의 화합물이다.
상기 일반식(Ⅵ)또는 (Ⅶ)중의 R6,R7,R8및 R9는 각각 수소원자, 탄소수 1∼20의 알킬기(구체적으로는 메틸기, 에틸기, 프로필기, 부틸기, 아밀기, 이소아밀기, 이소부틸기, 옥틸기. 2-에틸헥실기 등), 탄소수 1∼20의 알콕시기(구체적으로는 메톡시기, 에톡시기, 프로폭시기, 부톡시기, 아밀옥시기, 헥실옥시기, 2-에틸핵실옥시기 등), 탄소수 6∼20의 알릴기, 알킬아릴기, 아릴알킬기(구체적으로는 페닐기, 톨릴기, 크실릴기, 벤질기 등), 탄소수 1∼20의 아실옥시기(구체적으로는 메틸시클로펜타디에닐기. 1,3-디메틸시클로펜타디에닐기, 펜타메틸시클로 펜타디에닐기 등), 인데닐기 또는 할로겐원자(구체적으로는 염소, 브롬, 요오드, 불소)를 나타낸다. 이들 R6, R7, R8및 R9는 같거나 달라도 좋다. 또한 a.b.c는 각각 0∼4의 정수를 나타내고, d,e는 각각 0∼3의 정수를 나타낸다.
또한 바람직한 티탄호합물로서는 일반식(Ⅷ),
TiRXYZ(Ⅷ)
(식 중에서, R은 시클로펜타디에닐기, 치환된 시클로펜타디에닐기 또는 인데닐기를 나타내고, X,Y 및 Z는 각각 독립적으로 수소원자, 1∼12의 알킬기, 탄소수1∼12의 알콕시키, 탄소수 6∼10의 아릴기, 탄소수 6∼20의 아릴옥시기, 탄소수6∼20의 알릴알킬기 또는 할로겐 원자를 나타낸다.)로 표시되는 티탄 화합물이 있다.
이 식 중의 R로 표시되는 시클로펜타디에닐기는, 예를 들면, 탄소수 1∼6의 알킬기로 1개 이상 치환된 시클로펜타디에닐기, 구체적으로는 메틸시클로펜타디에닐기, 1,3-디메틸시클로펜타디에닐기, 1,2,4-트리메틸시클로펜타디에닐기, 1,2,3,4-테트라메틸시클로펜타디에닐기, 펜타메틸시클로펜타디에닐기 등이다. 또한 X,Y및 Z는 각각 독립적으로 수소원자, 탄소수 1∼12의 알킬기(메틸기, 에틸기, 프로필기, n-부틸기, 이소부틸기, 아밀기, 이소아밀기, 옥틸기, 2-에틸헥실기 등), 탄소수 1∼12의 알콕시기(메톡시기, 에톡시기, 프로폭시기, 부톡시기, 아밀옥시기, 헥실옥시기, 옥틸옥시기, 2-에틸헥실옥시기 등), 탄소수 6∼20의 아릴기(구체적으로는 페닐기, 나프틸기 등, 탄소수 6∼20의 아릴옥시기(구체적으로는 페녹시기등), 탄소수 6∼20의 아릴알킬기(구체적으로는 벤질기)또는 할로겐 원자(구체적으로는 염소, 브롬, 요오드, 또는 불소)를 나타낸다. 이와 같은 일반식(Ⅷ)로 표시되는 탄화합물의 구체적인 예로서는, 시클로펜타디에닐트리메틸티탄, 시클로펜타디에닐트리에틸티탄, 시클로펜타디에닐트리프로필티탄, 시클로펜타디에닐트리부틸티탄, 메틸시클로펜타디에닐트리메탄티탄, 1,3-디메틸시클로펜타디에닐트리메틸티탄, 펜타메틸시클로펜타디에닐트리메틸티탄, 펜타메틸시클로펜타디에닐트리에틸티탄, 펜타메틸시클로펜타디에닐트리프로필티탄, 펜타메틸시클로펜타디에닐트리부틸티탄, 시클로펜타디에틸메틸티탄디클로라이드, 시클로펜타디에닐에틸티탄디클로라이드, 펜타메틸시클로헵타디에닐에틸티탄디클로라이드, 시클로펜타디에닐디메틸티타모노클로라이드, 시클로펜타디에닐디에틸티탄모노클로라이드, 시클로펜타디에닐티탄 트리메톡사이드, 시클로펜타디에닐티탄트리에톡사이드, 시클로펜타디에닐티탄트리부톡사이드, 시클로펜타디에닐티탄트리페녹사이드, 펜타메틸시클로펜타디에닐티탄트리메톡사이드, 펜타메틸시클로펜타디에닐티탄트리에톡사이드, 펜타메틸시클로펜타디에닐티탄트리프로폭사이드, 펜타메틸시클로펜타디에닐티탄트리부톡사이드, 펜타메틸시클로펜타디에닐티탄트리페녹사이드, 시클로펜타디에닐티탄트리클로라이드, 펜타메틸시클로펜타디에닐디메톡시티탄클로라이드, 펜타메틸시클로펜타디에닐메톡시티탄디클로라이드, 시클로페나디에닐트리메틸티탄, 펜타메틸시클로펜타디에닐트리벤질티탄, 펜타메틸시클로페나디매틸디에톡시티탄, 인데닐티탄트리클로라이드, 인데닐티탄트리메톡사이드, 인데닐티탄트리에톡사이드, 인데닐트리메틸티탄, 인데닐트리벤질티탄 등을 들 수 있다.
이들 타탄화합물 가운데, 할로겐원자를 함유하지 않은 화합물이 적합하며, 특히 상술한 바와같이 π전자계 배위자를 1개 갖는 티탄화합물이 바람직하다.
또한, 티탄호합물로서는 일반식(Ⅸ)
(식 중에서, R10, R11은 각각 할로겐원자, 탄소수 1∼20의 알콕시기, 아실옥시기를 나타내고, k는 2∼20을 나타낸다.)로 표시되는 축합티탄화합물을 사용하여도 좋다.
또한 상기 티탄화합물은 에스테르, 에테르 또는 포스핀 등과 착물을 현성한 것을 사용해도 좋다.
상기 일반식(Ⅶ)로 표시되는 3가 티탄호합물은, 전형적으로는 3염화티탄 등의 3할로겐화티탄, 시클로펜타디에닐티타늄디클로라이드 등의 시클로펜타디에닐티탄화합물을 들 수 있고, 그 외에 4가 티탄화합물을 환원하여 얻어지는 것을 들 수 있다. 이들 3가 티탄호합물은 에스테르, 에테르나 포스핀 등과 착물을 형성한 것을 사용해도 좋다.
또한 천이금속화합물로서의 지르코늄화합물로서는, 테트라벤질지르코늄, 지르코늄테트라에톡사이드, 지르코늄테트라부톡사이드, 비스인데닐지르코늄디클로라이드, 트리이소프로폭시지프코늄클로라이드, 지르코늄벤질디클로라이드, 트리부톡시지르코늄클로라이드 등이 있고, 하프늄화합물은 테트라벤질하프늄, 하프늄테트라 에톡사이드, 하프륨테트라부톡사이드 등이 있고, 또 바나듐화합물은 바나딜비스아세틸아세토네이트, 바나딜트리아세틸아세토네이트, 트리에톡시바나딜, 트리프로폭시바나딜 등이 있다.
이들 천이금속화합물 가운데에서 티탄화합물이 특히 적합하다. 그외 (A)성분인 천이금속화합물에 대해서는 공액 π전자를 갖는 배위자를 2개 갖는 천이금속화합물, 예를 들면 일반식(X),
M1R12R13R14R15 (Ⅰ)
(식 중에서, M1은 티탄, 지르코늄 또는 하프늄을 나타내고, R12및 R13은 각각 시클로펜타디에닐기, 인데닐기 또는 플로오레닐기를 나타내며, R14및 R15는 각각 수소, 할로겐, 탄소수 1∼20의 탄화수소기, 탄소수 1∼20의 알콕시기, 아미노기 또는 탄소수 1∼20의 티오알콕시기를 나타낸다. 단, R12및 R13은 탄소수 1∼5의 탄화수소기, 탄소수 1∼20및 규소수 1∼5의 알킬실릴기 또는 탄소수 1∼20 및 게르마늄수 1∼5의 게르마늄함유 탄화수소기에 의해 가교되어 있어도 좋다.)로 표시되는 천이 금속화합물로 된 군에서 선택된 1종류 이상의 화합물이 있다.
상기 일반식(X)중의 R12, R13은 시클로펜타디에닐기, 치환된 시클로펜타디에닐기(구체적으로는 메틸시클로펜타디에닐기, 1,3-디메틸시클로펜타디에닐기, 1,2,4-트리메틸시클로펜타디에닐기, 1,2,3,4-테트라메틸시클로펜타디에닐기, 펜타메틸시클로펜타디에닐기, 트리메틸실릴시클로펜타디에닐기, 1,3-디(트리메틸실릴)시클로펜타디에닐기, 1,2,4-트리 (트리메틸실릴)시클로펜타디에닐기, 1,3-디(트리메틸실릴)시클로펜타디에닐기, 1,2,4-트리(트리메틸실릴)시클로펜타디에닐기, t-부틸시클로펜타디에닐기, 1,3-디(t-부틸)시클로펜타디에닐기, 1,2,4-트리(t-부틸)시클로펜타디엔리기 등, 인데닐기, 치환된 인데닐기(구체적으로는 메틸인데닐기, 디메틸인데닐기, 트리메틸인데닐기 등), 플루오레닐기 또는 치환된 플루오레닐기(예를 들면, 메틸플루오레닐기)를 나타내고, R12, R13은 같거나 달라도 좋고, 또 R12및 R13이 탄소수 1∼5의 알킬리덴기(구체적으로는 메틴기, 에틸리덴기, 프로필리딘기, 디메틸 카르빌기 등)또는 탄소수 1∼20 및 규소수 1∼5의 알킬실릴기(구체적으로는 디메틸실릴기, 디에틸실실기, 디벤질실릴기 등)에 의해 가교된 구조의 것이어도 좋다. 한편, R14,R15는 상술한 바와 같으나, 보다 상세하게는 각각 독립적으로 수소, 탄소수 1∼20의 알킬기(메틸기, 에틸기, 프로필기, n-부틸기, 이소부틸기, 아밀기, 이소아밀기, 옥틸기, 2-에틸헥실기 등), 탄소수 6∼20의 아릴기(구체적으로는 페닐기, 나프틸기 등), 탄소수 7∼20의 알릴알킬기(구체적으로는 벤질기 등), 탄소수 1∼20의 알콕시기(구체적으로는 메톡시기, 에톡시기, 프로폭시기, 부톡시기, 아밀옥시기, 헥실옥시기, 옥틸옥시기, 2-에틸헥실옥시기 등), 탄소수 6 ∼20의 아릴옥시기(구체적으로는 페녹시기 등), 또는 아미노기나 탄소수 1∼20의 티오알콕시기를 나타낸다.
이와 같은 일반식(X)으로 표시되는 천이금속화합물의 구체적인 예로서는, 비스시클로펜타디에닐디에틸티탄, 비스시클로펜타디에닐티탄디에틸, 비스시클로펜타디에닐티탄디프로필, 비스시클로펜타디에닐티탄디부틸, 비스(메틸시클로펜타디에닐)티탄디메틸, 비스(t-부틸시크로펜타디에닐)티탄디메틸, 비스(1,3-디메틸시클로펜타디에닐)타탄디메틸, 비스(1,3-t-부틸시클로펜타디에닐)티탄디메틸, 비스(1,2,4-트리메틸시클로펜타디에닐)티탄디메틸, 비스(1,2,3,4-테트라시클로펜타디에닐)티탄디메틸, 비스펜타메틸시클로펜타디에닐티탄디메틸, 비스(트리메틸실릴시클로펜타디에닐)티탄디메틸, 비스(1,3-디(트리메틸실릴)시클로펜타디에닐)티탄디메틸, 비스(1,2,4-트리((트리케틸실릴)시클로펜타디에닐)티탄디메틸, 비스인데닐티탄디메틸, 비스플루오레닐티탄디메틸, 메틸렌빗그시클로펜타디에닐티탄디메틸, 에틸레덴비스시클로펜타디에닐티탄디메틸, 메틸렌비스(2,3,4,5-테트라메틸시클로펜타디에닐)티탄디메틸, 에틸렌비스(2,3,4,5-테트라시클로펜타디에닐)티탄디메틸, 디메틸실릴비스(2,3,4,5-테트라메틸시클로펜타디에닐)티탄디메틸, 메틸렌비스인데닐티탄디메틸, 에틸리덴비스인데닐티탄디메틸, 디메틸실릴비스인데닐티탄디메틸, 메틸렌비스플루오레닐, 티탄디메틸, 에틸리덴비스플루오레닐티탄디메틸, 디메틸실릴비스플루오레닐티탄디메틸, 메틸렌(t-부틸시클로펜타디에닐)(시클로펜타디에틸)티탄디메틸, 메틸렌(시클로펜타디에닐)(인데닐)티탄디메틸, 에틸리덴(시클로펜타디에닐)(인데닐)티탄디메틸, 디메틸실릴(시클로펜타디에닐)(인데닐)티탄메틸, 메틸렌(시클로펜타디에닐)(플루오레닐)티탄디메틸, 에틸리덴(시클로펜타디에닐)(플루오레닐)티탄메틸, 디메틸실릴(시클로펜타디에닐) (플루오레닐)티탄디메틸, 메틸렌(인데닐)(플루오레닐)티탄디메틸, 에틸리덴(인데닐)(플루오레닐)티탄디메틸, 디메틸실릴(인데닐)(플루오레닐)티탄디메틸, 비스시클로펜타디에닐티탄디벤질, 비스(t-부틸시클로펜타디엔릴)티탄디벤질, 비스(메틸시클로펜타디에닐)티탄디벤질, 비스(1,3-디메틸시클로펜타디에닐)티탄디벤질, 비스(1,2,4-트리메틸시클로펜타디에닐)티탄디벤질, 비스(1,2,3,4-테트라메틸시클로펜타디에닐)티탄디벤질, 비스(트리메틸실릴시클로펜타디에닐)티탄디벤질, 비스(1,3-디-(트리메틸실릴)시클로펜타디에닐)티탄디벤질, 비스(1,2.4-트리(트리메틸실릴)시클로펜타디엔릴)티탄디벤질, 비스시크인데닐티탄디벤질, 비스플루오레닐티탄디벤질, 메틸렌비스시클로펜타디에닐티탄디벤질, 에틸덴비스시클로펜타디에닐티탄디벤질, 에틸렌비스(2,3,4,5-테트라메틸시클로펜타디에닐)티탄디벤질, 에틸리덴비스(2,3,4,5-테트라메틸시클로펜타디에닐)티탄디벤질, 디메틸실릴비스(2,3,4,5-테트라메틸시클로펜타디에닐)티탄디벤질, 메틸렌비스인데닐티탄디벤질, 에틸리덴비스인데닐티탄디벤질, 디메틸실릴비스인데틸티탄디벤질, 메틸렌비스플루오레닐티탄디벤질, 에틸리덴비스플루오레닐티탄디벤질, 디메틸실릴 비스플루오레닐티탄디벤질, 메틸렌(시클로펜타디에닐)(인데닐)티탄디벤질, 에틸리덴(시클로펜타디에닐)(인데닐)티탄디벤질, 디메틸실릴(시클로펜타디에닐)(인데닐)티탄디벤질, 메틸렌(시클로펜타디에닐)(플루오레닐)티탄디벤질, 에틸리덴(시클로펜타디에닐)(플루오렌닐)티탄디벤질, 디메틸실린(시클로펜타디에닐)(플루오레닐)티탄디벤질, 메틸렌(인데닐)(플루오레닐)티탄디벤질, 비스시클 로펜타디에닐티탄디메톡사이드, 비스시클로펜타디에닐티탄디에톡사이드, 비스시클로펜타디에닐티탄디프로폭사이드, 비스시클로펜타디에닐티탄디부톡사이드, 비스시클로펜타디에닐티탄디페녹사이드, 비스(메틸시클로펜타디에닐)티탄디메톡사이드, 비스(1,3-디메틸시클로펜타디에닐)티탄디메톡사이드, 비스(1,2,4-트리메틸시클로펜타디에닐)티탄디메톡사이드, 비스(1,2,3,4-테트라메틸시클로펜타디에닐)티탄디메톡사이드, 비스(1,2,4-트리(트리메틸실릴)시클로펜타디에닐)티탄디메톡사이드, 비스인데닐티탄디메톡사이드, 비스플루오레닐티탄디메톡사이드, 메틸렌비스시클로펜타디에닐티탄디메톡사이드, 에틸리덴비스시클로펜타디에닐티탄디메톡사이드, 메틸렌비스(2,3,45,-테트라메틸시클로펜타디엔릴)티탄디메톡사이드, 에틸리덴비스(2,3,4,5-테트라메틸시클로펜타디에닐)티탄메톡사이드, 디메틸실릴비스(2,3,4,5-테트라메틸시클로펜타디에닐)티탄디메톡사이드, 메틸렌비스인데닐티탄디메톡사이드, 메틸렌비스(메틸인데닐)티탄디메톡사이드, 에틸리덴비스인데닐티탄디메톡사이드, 디메틸실릴비스인데닐티탄디메톡사이드, 메틸렌비스플루오레닐티탄디메톡사이드, 에틸리데비스플루오레닐티탄디메톡사이드, 디메틸실릴비스플루오레닐티탄디메톡사이드, 메틸렌(시클로펜타디에닐)(인데닐)티탄디메톡사이드, 에틸리덴(시클로펜타디에닐) (인데닐)티탄디메톡사이드, 디메틸실릴(시클로펜타디에닐)(인데닐)티탄디메톡사이드, 메틸렌(시클로펜 타디에닐)(플루오레닐)티탄디메톡사이드, 에틸리덴(시클로펜타디에닐)(플루오래날)티탄디메톡사이드, 디메틸실릴(시클로펜타디에닐)(플루오레닐)티탄디메톡사이드, 메틸렌(인데닐)(플루오레닐)티탄디메톡사이드, 이소프로필리덴(시클로펜타디에닐)(플루오레닐)티탄디메톡사이드를 들 수 있다.
또한 지르코늄화합물로서는 에틸리텐비스시클로펜타디에닐지르코늄디클로라이드, 에틸리덴비스시클로펜타디에닐지르코늄디메톡사이드, 디메틸실릴비스시클로펜타디에닐지르코늄디메톡사이드, 이소프로필리덴(시클로펜타디에닐)(플루오레닐)지르코늄디클로라이드 등이 있고, 또 하프늄화합물로서는 에틸리덴비스시클로펜타디에닐하프늄디메톡사이드, 디메틸실릴비스시클로펜타디에닐하프늄디메톡사이드 등이 있다. 이들 중에서도 특히, 티탄화합물이 바람직하다.
또한 이들 조합외에 2,2'-티오비스(4-메틸-6-t-부틸페닐)티탄디이소프로폭사이드, 2,2'-티오비스(4-메틸-6-t부틸페닐)티탄디메톡사이드 등의 2자리 배위형 착물이어도 좋다.
한편, 촉매(B)성분인 양이온과 복수의 기가 금소게 결합한 음이온으로 돈 배위 착화합물로서는, 각종의 것이 있다. 예를 들면, 하기 일반식(Xl)또는 (XⅡ)로 표시되는 화합물을 바람직하게 사용할 수 있다.
([L1-H]g+)h([M2X1X2…Xn](n-p)--)1(Xl)
또는
([L2]g+)h([M3X1X2…Xn)(n-p)--)1(ⅩⅡ)
(단, L2는 후술하는 M4, T1, T2, T5또는 T3 3C이다.)
[식(Xl),(Xl)중, L1은 루이스염기, M2및 M3는 각각 주기율표의 5족∼15족으로부터 선택되는 금속, M4는 주기율표의 8족∼12족으로부터 선택되는 금속, M5는 주기율표의 8족∼10족으로부터 선택되는 금속, X1∼Xn는 각각 수소원자, 디알킬아미노기 알콕시기, 아릴옥시기, 탄소수 1∼20의 알킬기, 탄소수 6∼20의 아릴기, 알킬아릴기, 아릴알킬기, 치환된 알킬기, 치환된 아릴기, 유기메탈로이드기 또는 할로겐 원자를 나타내고, T1및 T2는 각각 시클로펜타디에닐기, 치환된 시클로펜타디에닐기, 인데닐기 또는 플루오레닐기, T3은 알킬기를 나타낸다. P는 M2,M3의 원자가로 1∼7의 정수, n은 2∼8의 정수, g는 L1-H,L2의 이온가수로 1∼7의 정수, h는 1이상의 정수, i=hXg/(n-p)임].
M2및 M2의 구체적인 예로서는 B, A1, Si, P, As, Sb등, M4의 구체적인 예로서는 Ag, Cu등, M5의 구체적인 예로서는 Fe, Co, Ni등을 들 수 있다.
X1-Xn의 구체적인 예로서는, 예를 들면, 디알킬아미노기로서 디메틸아미노기, 디에틸아미노기, 알콕시기로서 메톡시기, 에톡시기, n-부톡시기, 아릴옥시기로서 페녹시기, 2,6-디메틸페녹시기, 나프틸옥시기, 탄소수 1∼20의 알킬길로서 메틸기, 에틸기, n-프로필기, i-프로필기, n-부틸기, n-옥틸기, 2-에틸헥실기, 탄소수 6∼20의 알릴기, 알킬아릴기 또는 아릴알킬기로서 페닐기, p-톨릴기, 벤질기, 펜타플루오로페닐기, 3,5-디(트리플루오로메틸)페닐기, 4-t-부틸페닐기, 2,6-디메틸페닐기, 3,5-디메틸페닐기, 2,4-디메틸페닐기, 1,2-디메틸페닐기, 할로겐으로서 F, C1, Br, I, 유기메탈로이드기로서 펜타메틸안티몬기, 트리메틸실릴기, 트리메틸게프밀기, 디페닐알루민기, 디시클로헥실안티몬기, 디페닐붕소기를 들 수 있다.
T1및 T2의 치환된 시클로펜타디에닐기의 구체적인 예로서는, 메티리클로펜타디에닐기, 부틸시클로펜타디에닐기, 펜타메틸시클로펜타디엔리기를 들 수 있다. 일반식(Xl), (XⅡ)의 화합물중에서, 구체적으로는 하기의 것을 특히 적합히 사용할 수 있다. 예를 들면, 일반식(Xl)의 호합물로서는 테트라페닐붕산 트리에틸암모늄, 테트라페닐붕산 트리(n-부틸)암모늄, 테트라페닐붕산 리메틸암모륨, 테트라(펜타플루오로페닐)붕산 트리에틸암모늄, 테트라(펜타플루오로페닐)붕산 트리(n-부틸)암모늄, 헥사플루오로비소산 프리에틸암모늄 등을 들 수 있다. 또한, 예를 들면 일반식(XX)의 화합물로서는 테트라(펜타플루오로페닐)붕산 피리디늄, 테트라(펜타플루오로페닐)붕산 피롤리늄, 테트라(펜타플루오로페닐)붕산 N, N-디메틸아닐리늄, 테트라(펜타플루오로페닐)붕산 메틸디페닐암모늄, 테트라페닐붕산 페로세늄, 테트라(펜타플루오로페닐)붕산 디메틸페로세늄, 테트라(펜타플루오로페닐)붕산 페로세늄, 테트라(펜타플루오로페닐)붕산 데카메틸페로세늄, 테트라(펜타플루오로페닐)붕산아세틸페로세늄, 테트라(펜타플루오로페닐)붕산 포르밀페로세늄, 테트라(펜타플루오로페닐)붕산 시아노페로세늄, 테트라페닐붕산은, 테트라(펜타플루오로페닐)붕산은, 테트라페닐붕산 트리틸, 테트라(펜타플루오로페닐)붕산 트리틸, 헥사플루오로비소산은, 헥사플루오로안티몬산은, 테트라플루오로붕산은 등을 들 수 있다.
본 발명의 방법에서는, 촉매성분으로서, 상기(A),(B)성분외에 다시 필요에 따라 다른 촉매성분, 예를 들면, (C)육알루미늄 화합물 등을 가할 수 있다. 이(C)유기알루미늄 화합물로서는, 일반식(XⅢ),
R16 jA1(OR17)XHYX'Z(XⅢ)
(식 중에서, R16및 R17은 각각 독립적으로 탄소수 1∼8, 바람직하게는 탄소수 1∼4의 알킬기를 나타내고, X'는 할로겐을 나타내며, j는 0j3, X는 0X3, y는 0y3, z는 0z3이며, j+x+y+z ++3임.)으로 표시되는 유기 알루미늄 화합물이며, 이것을 가하여 활성이 더 향상된다. 전기한 일반식(XⅢ)로 표시되는 유기알루미늄 화합물로서는 다음 것을 예시할 수 있다.
y=z=0의 경우에 상당하는 것은 일반식,
R16 jA1 (OR17)3-j
(식 중에서, R16및 R17은 전기와 같으며, j는 바람직하게는 1.5j3의 수임.)로 표시된다.
x=y=0의 경우에 상당하는 것은 일반식,
R16 JA1H3-j(식 중에서, R16은 전기와 같으며, j는 바람직하게는 2j3임.)으로 표시된다.
y=0의 경우에 상당하는 것은 일반식,
R16 jA1(OR17)XX'Z
(식 중에서, R16,R17및 X'은 전기와 같으며, 0j3, 0x, 0z3으로, j+x+z=3임.)으로 표시된다. 전기한 일반식(XⅢ)으로 표시되는 유기알루미늄 화합물에 있어서, y=z=0이고, j=3의 화합물은, 예를 들면, 트리메틸알루미늄, 트리에틸알루미늄, 트리부틸알루미늄 등의 트리알킬알루미늄 또는 이들의 조합으로부터 선택 된다.
y=z=0이고, 1.5j3인 경우는, 디에틸알루미늄 에톡사이드, 디부틸알루미늄 부톡사이드 등의 디알킬알루미늄 알콕사이드, 에틸알루미늄 세스키에톡사이드, 부틸알루미늄 세스키부톡사이드 등의 알킬알루미늄 세스키알콕사이드외 R16 2.5A1(OR17)0.5등으로 표시되는 평균 조성을 갖는 부분적으로 알콕시화 된 알킬알루미늄을 들 수 있다. X=y=0의 경우에 상당하는 화합물의 예는 디에틸알루미늄 클로라이드, 디부틸 알루미늄 클로라이드, 디에틸알루미늄 브로마이드 등과 같은 디알킬 알루미늄 할로게나이드(j=2), 에틸알루미툼 세스티클로라이드, 부틸알루미늄 세스키클로라이드, 에틸알루미늄 세스키브로마이드와같은 알킬알루미늄 세스키할로게나이드(j=1.5), 에틸알루미늄 디클로라이드, 프로필알루미늄 디클로리이드, 부틸알루미늄 디브로마이드 등과 같은 알킬알루미늄 할로게나이드(j=1)등의 부분적으로 할로겐화 된 알킬알루미늄이다. x=z=0인 경우에 상단하는 혼합물의 예는, 디에틸알루미늄 하이드라이드, 디부틸알루미늄 하이드라이드 등의 디알킬알루미늄 하이드라이드(j=2), 에틸알루미늄 하이드라이드, 프로필알루미늄 하이드라이드 등의 알킬알루미늄 디하이드라이드(j=1)등의 부분적으로 수소화 된 알킬 알루미늄이다. y=0인경우에 상당하는 화합물의 예는 에틸알루미늄 에톡시클로라이드, 부틸알루미늄 부톡시클로라이드, 에틸알루미늄 에톡시브로마이드(j=x=z=1)등의 부분적으로 알콕시화 및 할로겐화 된 알킬알루미늄이다. 이들 중에서도 특히 적합한 것은, 트리이소 부틸알루미늄, 트리이소부틸알루미늄 하이드라이드이다.
이상과 같이 본 발명의 방법에서 사용하는 촉매는, 상기 (A) 및 (B)성분을 중성분으로 하는 것, 또는 여기에 (C)성분을 가한 것을 주성분으로 하는 것이면 좋으나, 상기외에 다시 필요에 따라 다른 촉매 성분을 가할 수도 있다. 이 촉매의 각 성분을 반응계에 첨가하는 방법은, 여러 가지이며 특별히 한정되지 않는다. 예를 들면, (1)각 성분을 따로따로 가하여 전술한 원료모노머와 접촉시키는 방법, (2) (A)성분과 (B) 성분의 반응생성물을 반응계에 가하여 전술한 원료모노머와 접촉시키는 방법, (3)(A), (B)및 (C)성분중 어느 것이든 2개의 성분의 반응생성물에 나머지 성분을 가하여 전술한 원료모노머와 접촉시키는 방법(보다 구체적으로는 (A)성분과 (B)성부의 방응생성물에(C)성분을 가한 것을 원모노머와 접촉시키는 방법, 또는 (A)성분과(C)성분의 방응생성물에(B)성분을 가한 것을, 원료모노머와 접촉시키는 방법), (4)(A),(B)및 (C)성분의 반응생성물을 반응계에 가하여 전술한 원료모노머와 접촉시키는 방법 등이 있다.
또한, 여기서 (A)성분과 (B)성분의 반응생성물은 미리 분리, 정제된 것이어도 좋다. 상기 촉매에서, (A)성분 및 (B)성분의 배합비율은, 각종 조건에 따라 다르며 일률적으로 정할 수는 없으나 통산(A)성분 : (B)성분=0.1 : 1∼1 : 0.1(몰비)이다. 또한, (C)성분을 사용하는 경우는(A)성분 : (C)성분=1 : 0.1-1 : 1000(몰비), 바람직하게는 1 : 0.1∼1 : 200이다.
본 발명의 방법에서는, 상기 촉매의 존재하에 전술한 (a)스티렌게모노머 및(b)올레핀계모노머 또는 디엔계모노머를 혼성중합한다. 이 혼성중합은 괴상중합, 용액중합 또는 현탁중합 등 여러 방법을 사용할 수 있다.
혼성중합에서 사용할 수 있는 용매로서는 편탄, 헥산, 헵탄, 데칸 등의 지방족탄화수소, 시클로헥산 등의 지방족고리탄화수소 또는 벤젠, 톨루엔, 크실렌 등의 방향족탄화수소 등이 있다. 또한, 중합온도는 특별히 제한은 없으나, 통상 0∼100℃, 바람직하게는 10∼80℃이다. 중합시간은 통상 5분∼24시간이며, 바람직하게는 1시간 이상이다.
또한, 얻어지는 스티렌계 혼성중합체의 분자량을 조절하는 데는 수소의 존재하에 혼성중합 반응시키는 것이 효과적이다.
본 발명의 방법으로 얻어지는 스티렌계 혼성중합체는, 스티렌계 반복단위 사슬의 신디오탁티서티가 높은 것이나, 중합 후 필요에 따라 염산등을 함유한 세정액으로 탈호 처리하고, 다시 세정, 감압건조를 거쳐 메틸에틸케톤 등의 용매로 세정하여 가용분을 제거하여, 신디오탁티서티가 매우 큰 고순도의 스티렌계 혼성중합체를 얻을 수 있다.
이와 같이하여 얻어진 스티렌계 혼성중합체는, (a)스티렌계모노머에서 유래하는 1종 또는 2종 이상의 반복단위(반복단위a)및 (b)올레핀계모노머 또는 디엔계모노머에 유래하는 1종 또는 2종 이상의 반복단위(반복단위b)로 된 것이다. 따라서, 본 발명의 방법에 따르면 이들의 2원, 3원 또는 4원 혼성중합체의 합성이 가능하다. 이 스티렌계 혼성중합체에 있어서, 상기의 반복단위 b의 함유비율은 원료모노머의 사용비에 따라 적절히 선정되나, 통상 반복단위b 가 올레핀계모노머에 유래하는 단위인 경우에는 혼성중합에의 0.1∼99.9중량%, 바람직하게는 1∼99중량%, 보다 바람직하게는 5∼95중략%의 범위이다. 이 반복단위 b의 함유비율이 0.1중량%미만이면 유리전이온도의 저하 및 내충격성의 개량등의 개선 효과가 충분히 달성되지 않는다. 또한 99.9중량%를 넘으면 신디오탁틱 구조의 스티렌계 중합체의 특징인 내열성이 나타나지 않는다.
한편, 반복단위 b가 디엔계모노머에 우래하는 단위인 경우에는, 이 반복단위b는 혼성중합체-전체의 0.1∼50중량%, 바람직하게는 1.0∼20중량%의 범위이다. 이 반복단위가 b가 0.1중량%미만이면, 유리전이 온도의 저하나 유연성의 개량 등의 본발명의 목적으로 하는 개선 효과가 충분히 달성되지 않는다. 또한, 50중량%를 넘으면 결정화가 저해되고, 신디오탁틱구조의 스티렌계 중합체의 특징인 내약품성이 훼손됨과 동시에, 깨지게 되고 통상의 디엔계 중합체와 같은 물성의 결점이 생긴다.
본 발명의 방법으로 제조된 스티렌계 혼성중합체는 일반적으로 중량평균분자량 10,000∼3,000,000, 바람직하게는 100,000∼1,500,000인 것이며, 본 발명의 방법으로 얻어지는 혼성중합체의 분자량은 일반적으로 1,2,4-트리클로로벤젠용액(온도135℃)에서 측정한 극한점도가 0.07∼20dl/g의 것이며, 바람직하게는 0.3∼10dl/g의 것이다. 극한 점도가 0.07dl/g미만이면 역학적 물성이 낮고 실용화 되지 못한다. 또한 극한점도가 20을 넘으면 통상의 용융성형이 곤란하게 된다.
또한, 상기 스티렌계 혼성중합체는 여러 가지 인체구조의 것이 있을 수 있으나, 특히 반복단위 a, 즉 스티렌계 반복단위의 사슬이 고도의 신디오탁틱 구조를 갖는 것이다.
여기서 스티렌계 중합체에서의 고도의 신디오탁틱구조란, 입체화학구조가 고도의 신디오탁틱구조, 즉 탄소-탄소원자 결합으로 형성되는 주사슬에 대하여 결사슬인 페닐기나 치환된 페닐기가 서로 반대 방향으로 위치하는 입체구조를 갖는것이며, 그 탁티서티는 탄소등위원소에 의한 핵자기 공명법(13C- NMR)에 의해 정량된다.13C-NMR에 의해 측정되는 탁티서티는 연속하는 복수개의 구성단위의 존재비율, 예를 들면 2개의 영우는 다이아드, 3개의 경우는 트리아드, 5개의경우는 펜타드로 나타낼 수 있는 바, 본 발명에서 말하는 고도의 신디오탁틱 구조를 갖는 스티렌계 혼성중합체란, 스티렌계 반복단위의 사슬에서, 통상의 라세미 다이아드로 75%이상, 바람직하게는 85%이상, 또는 타세미 펜타드로30%이상, 바람직하게는 50%이상의 신디오탁티서티를 갖는 것을 나타낸다.
그러나, 치환기의 종류나 반복단위 a의 함유비율에 따라 신디오탁티서티의 정도는 약간 변동한다. 이하에서 본 발명을 실시예를 통해 좀더 상세히 설명한다.
실시예 1
(1) 촉매의 합성
테트라(펜타플루오로페닐)붕산 페로세늄의 제조.
브로모펜타블루오로벤젠(152mmol)과 부틸리툼(153mmo1)로 제조한 펜타플루오로페닐리튬을 45mmol의 3염화붕소와 헥산중에서 반응시켜 트리(펜타플루오로페닐)붕소를 백색고체로서 얻었다. 이어서, 이트리(펜타플루오로페닐)붕소(41mmol)와 펜타플루오로페닐리튬(41mmol)을 반응시켜 라튬테트라(펜타 플루오로페닐)붕소를 백색고체로 분리해 냈다.
한편, 페로센(3.4g, 20.0mmol)과 진한 황산 40ml을 릴온에서 1시간 반응시키면 진한 감색용액이 얻어졌다. 이것을 1l의 물에서 교반하면서 얻어진 진한 청색 수용액을 앞서 합성한 리튬테트라(펜타플루오레닐)붕소(13.7g, 20.0mmol) 500ml수용액에 가했다. 침전한 담청색 침전을 여과하고, 물 500ml로 5회 세정하고 감압건조하여 목적생서물(테트라(펜타플루오레닐)붕산페로세늄)14.7g을 얻었다.
(2) 스티렌-에틸렌 혼성중합체의 제조.
내용량1.01의 교반기 부착반응용기에 톨루엔 20ml, 스티렌모노머 180ml및 트리이소부틸암모늄 20mmol을 가하고, 중합온도 60℃에서 30분간 교반했다. 또한 상기(1)에서 합성한 테트라(펜타플루오레닐)붕소페로세늄을 33μmol을 첨가했다. 이어서, 펜타메틸시클로펜타디엔리티타늄트리벤질을 티탄원자로서 33μmoll을 첨가했다. 또한 에틸렌모노머를 전용라인에 의해 반응용기내에 도입하고, 반응용기내의 압력을 8.0kg/cmG까지 상승시켰다. 그 후 교반하에 60℃에서 1시간 중합시켰다. 중합종료 후 미반응 가스를 탈압하고 메탄올을 주입하여 반응을 정지시켰다.
다시 메탄올과 혼합액을 가하여 촉매성분을 분해했다. 여기서 얻어진 스티렌-에틸렌 혼성중합체의 수득량은 95g이며, 중합활성은 60.1kg/g Ti, 1.76kg/g A1이었다. 또한 1,2,4-트리클로로벤젠용액중 135℃로 측정한 극한 점도는 2.20dl/g이었다.
이 스티렌계 혼성중합체를 충분히 건조한 후, 시차주사열량측정(DSC)시료에 10mg을 넣고 50℃부터 300℃로 20℃/min의 속도로 승온한 후, 300℃에서 5분간 유지하고, 다시 300℃에서 50℃로 20℃/min으로 온도를 내렸다. 이 시료를 다시 50℃에서 300℃로 20℃/min의 속도로 승혼할 때의 흡열 형태를 관찰했다. 그 결과, 이 혼성중합체의 용해온도는 264℃이었다. 상기 스티렌계 혼성중합체를 1,2.4-트리클로로벤젠용액중 135℃로 측정한 결과, 방향족 시그널이 145.1ppm, 145.9ppm에서 관찰되었다. 이것으로부터 스티렌사슬은 신디오탁틱 구조라는 것이 확인되었다. 또한 29.5ppm에서 에틸렌시그널을 갖고, 혼성중합체의 에틸렌사슬의 함유율은 6.2중량%이었다.
비교예 1
실시예 1-(2)에서, 촉매성분인 트리이소부틸알루미늄, 테트라(펜타플루오레닐)붕소페로세늄, 팬타메틸시클로펜타디에닐티타늄트리벤질을 사용하지 않고, 톨루엔, 스티렌모노머를 투입후, 촉매성분으로서 메틸알루미녹산을 알루미늄원자로서 10mmol 가하고, 60℃에서 30분간 교반한 후 펜타메틸시클로펜타 디에닐티타늄트리메톡사이드를 0.05mmol를 첨가하여, 이하 실시예 1-(2)와 같이 4시간 혼성중합시켰다.
혼성중합체의 수량은 10.3g이고, 중합활성은 4.3kg/g Ti.0.038kg/g A1이었다.
실시예 2
스틸렌-에틸렌-프로필렌 3원 혼성중합체의 제조.
아르곤 치환환 내용량 1.01의 교반기 부착반응용기에 톨루엔 400ml, 스티렌 모노머 70ml 및 트리이소부틸알루미늄 1mmol을 넣고 30분간 교반했다. 이 반응용기에 실시예 1-(1)에서 합성한 테트라(펜타플루오로페닐)붕소페로세늄 15μmol을 첨가했다. 이어서, 펜타메틸시클로펜타디에닐티타늄트리벤질을 티탄원자로서 16μmol을 첨가하고, 다시 프로필렌모노머를 전용라인으로부터 반응용기내에 도입하고 충분히 반응용기내를 프로필렌모노머로 치환한 후, 반응용기내의 압력을 4.5kg/cm'G까지 상승시켰다. 이어서 프로필렌모노머 전용라인을 차단한 후 에틸렌모노머를 전용라인으로부터 반응용기에 도입하고 9.0kg/cm'G까지 가압하였다. 그 후, 교반하에 50℃에서 4시간 동안 중합시켰다. 중합종료후, 미반응한 가스를 탈압하고 메탄올을 주입하여 반응을 정지시켰다.
얻어진 스티렌계 혼성중합체의 수득량은 30.1g이고, 중합활성은 39.3kg/g Ti, 1.12kg/g A1이었다. 얻어진 혼성중합체의 적외선흡수(IR)스펙트럼의 측정결과로부터 에틸렌, 프로필렌 구조에 기인하는 720,1150,1378cm-1에서 흡수가 확인되고, 또13C-NMR스펙트럼분석(용매 1,2,4-트리클로로벤젠)으로부터 스티렌사슬의 신디오탁틱구조에 기인하는 145.2ppm에서 흡수가 확인되었다.
실시예 1-(2)와 같이 열분석한 결과, 260.1℃에서 용해온도가 확인되고, 극한 점도는 1.19dl/g이었다.
1H-NMR으로부터 구한 혼성중합체중의 스티렌/에틸렌/프로필렌의 조성은 각각 55.2몰%, 25.0몰%, 19.8몰%이었다.
비교예 2
실시예 2에서 촉매 성분인 트리이소뷜알루미늄, 테트라(펜타플루오로페닐)붕소페로세늄 및 펜타메틸시클로펜타디에닐티타늄트리벤질 대신에 트리이소부틸알루미늄 5mmol과 메틸알루미녹산 5mmol을 가하고, 30분간 교반한 후, 펜타시클로펜타디엔리티타늄트리메톡사이드를 50μmol을 첨가하고 이하 실시 예 2와 같이 중합하였다.
얻어진 혼성중합체의 수득량은 4.32g이고, 혼성중합활성은 1.80kg/g Ti,0.016kg/g A1이었다.
본 발명의 방법에 따르면 고활성이면서도 비교적 값비싼 촉매를 사용하기 때문에 스티렌계 혼성중합체의 제조에 있어서 촉매사용량을 줄일 수 있음과 동시에 얻어지는 혼성중합체중의 잔유 촉매량이 줄어들 수 있기 때문에, 탈회공정이 불필요내지 간략화될 수 있다.
따라서, 본 발명의 방법에 따르면 촉매 비용의 절감과 함께 스티렌계 혼성중합체의 효율적인 제조가 가능하고 더구나 얻어지는 스티렌계 혼성중합체는 그 입체구조가 고도의 신디오탁틱 구조를 갖는 것이기 때문에, 내열성 및 기계적 강도가 우수한 수지로 되어, 각종 성형품의 소재로서 유효하게 이용된다.

Claims (15)

  1. (a)스티렌계 모노머 및 (b)올레핀계 모노머 또는 디엔계 모노머를 일반식(Ⅷ)으로 표현되는 (A) 티타늄화합물,
    TiRXYZ(Ⅷ)
    (식 중에서, R은 시클로펜타디에닐기, 치환된 시클로펜타디에닐기 또는 인데닐기를 나타내고, X, Y 및 Z는 각각 독립적으로 수소원자, 1∼12의 알킬기, 탄소수 1∼12의 알콕시기, 탄소수 6∼20의 아릴기, 탄소수 1∼12의 알콕시기, 탄소수 6∼20의 아릴기, 탄소수 6∼20의 아릴옥시기, 탄소수 6∼20의 아릴알킬기 또는 할로겐 원자를 나타낸다.)및 (B) 양이온과 복수의 기가 금속에 결합한 음이온으로 된 배위착화합물을 주성분으로 하는 촉매의 성분하에 혼성중합시키는 것을 특징으로 하는 10,000-3,000,000의 중량평균분자량을 갖는 스티렌계 혼성중합체의 제조방법.
  2. 제1항에 있어서, 올레핀계 모노머가 하기 일반식으로 표시되는 1 이상의 화합물인 스티렌계 혼성 중합체의 제조방법.
    상기식에서, R2는 수소원자 또는 탄소수 1∼10의 포화탄화수소기이다.
  3. 제1항에 있어서, 올레핀계모노머가 에틸렌, 프로필렌 또는 이들의 혼합물인 스티렌계 혼성중합체의 제조방법.
  4. 제1항에 있어서, 디엔계모노머가 하기 일반식으로 표시되는 1이상의 공액 곧은 사슬 디엔계 화합물인 스티렌계 혼성중합체의 제조방법.
    상기식에서, R3및 R4는 각각 수소원자, 알킬기, 아릴기 또는 할로겐원자를 나타내며, R5는 수소원자 또는 탄소수 1∼6의 포화탄화수소기를 나타낸다.
  5. 제1항에 있어서, 디엔계모너머가 비공액 고리형 디엔계 모노머로부터 선택된 1종 이상의 화합물인 스티렌계 혼성중합체의 제조방법.
  6. 제1항에 있어서, 촉매가(A) 성분 및 (B) 성분의 반응생성물인 스티렌계 혼성중합체 제조방법.
  7. 제1항에 있어서, 얻어지는 스티렌계 혼성중합체가 스티렌계 반복단위 사슬의 입체규칙성에서 신디오탁틱 구조를 갖는 것인 스티렌계 혼성중합체의 제조방법.
  8. (a)스티렌계 모노머 및 (b)올레핀계 모노머 또는 디엔계 모노머를 일반식(Ⅷ)으로 표현되는 (A) 티타늄화합물.
    TiRXYZ(Ⅷ)
    (식 중에서, R은 시클로펜타디에닐기, 치환된 시클로펜타디에닐기 또는 인테닐기를 나타내고, X, Y 및 Z는 각각 독립적으로 수소원자, 탄소수 1∼12의 알킬기, 탄소수 1∼12의 알콕시기, 탄소수 6∼20의 아릴기, 탄소수 1∼12이 알콕시기, 탄소수 6∼20의 아릴옥시기, 탄소수 6∼20의 아릴알킬기 또는 할로겐 원자를 나타낸다.), (B)양이온과 복수의 기가 금속에 결합한 음이온으로 된 배위 착화합물 및 (C)유기알루미늄 화합물을 주성분으로 하는 촉매의 촉매하에 혼성중합시키는 것을 특징으로 하는 10,000∼3,000,000의 중량평균분자량을 갖는 스티렌계 혼성중합체의 제조방법.
  9. 제8항에 있어서, 올레핀계 모노머가 하기 일반식으로 표시되는 1 이상의 화합물인 스티렌계 혼성 중합체의 제조방법.
    상기 식에서, R2는 수소원자 또는 탄소수 1∼10의 포화탄화수소기이다.
  10. 제8항에 있어서, 올리핀계 모노머가 에틸렌, 프로필렌 또는 이들의 혼합물인 스티렌계 혼성중합체의 제조방법.
  11. 제8항에 있어서, 디엔계모노머가 하기 일반식으로 표시되는 1 이상의 공액 곧은 사슬 디엔계 화합물인 스티렌계 혼성중합체의 제조방법.
    상기식에서 R3및 R4는 각각 수소원자, 알킬기, 아릴기 또는 할로겐원자를 나타내며, R5는 수소원자 또는 탄소수 1∼6의 포화탄화수소기를 나타낸다.
  12. 제8항에 있어서, 디엔계 모노머가 비공액 고리형 디엔계모노머로부터 선택된 1종 이상의 화합물인 스티렌계 혼성중합체의 제조방법.
  13. 제8항에 있어서, 촉매가 (A)성분, (B)성분 및 (C)성분중의 2성분의 반응생성물에 나머지 1성분을 가하여 된 것인 스티렌계 혼성중합체 제조방법.
  14. 제8항에 있어서, 촉매가 (A)성분, (B)성분 및 (C)성분의 반응생성물인 스티렌계 혼성중합체의 제조방법.
  15. 제8항에 있어서, 얻어지는 스티렌계 혼성중합체가, 스티렌계 반복단위 사슬의 입체규칙성에서 신디오탁틱 구조를 갖는 것인 스티렌계 혼성중합체의 제조방법.
KR1019920005026A 1991-03-28 1992-03-27 스티렌계 혼성중합체의 제조방법 KR0135269B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP91-87301 1991-03-28
JP3087301A JP2927566B2 (ja) 1991-03-28 1991-03-28 スチレン系共重合体の製造方法

Publications (2)

Publication Number Publication Date
KR920018092A KR920018092A (ko) 1992-10-21
KR0135269B1 true KR0135269B1 (ko) 1998-04-23

Family

ID=13911006

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019920005026A KR0135269B1 (ko) 1991-03-28 1992-03-27 스티렌계 혼성중합체의 제조방법

Country Status (5)

Country Link
EP (1) EP0505973B1 (ko)
JP (1) JP2927566B2 (ko)
KR (1) KR0135269B1 (ko)
AT (1) ATE156146T1 (ko)
DE (1) DE69221180T2 (ko)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0667359B1 (en) * 1992-10-28 2004-03-31 Idemitsu Kosan Company Limited Olefin copolymers and process for producing the same
EP0604962A1 (en) * 1992-12-28 1994-07-06 Tosoh Akzo Corporation Method of producing tris(pentafluorophenyl)borane using pentafluorophenyl alkyli metal salt prepared from pentafluorobenzene
JP3189175B2 (ja) * 1993-07-02 2001-07-16 出光興産株式会社 芳香族ビニル化合物共重合体の製造方法
US6008307A (en) * 1994-04-28 1999-12-28 Exxon Chemical Patents Inc Process for producing olefin polymers using cationic catalysts
US6291389B1 (en) 1994-04-28 2001-09-18 Exxonmobil Chemical Patents Inc. Cationic polymerization catalysts
DE19509785A1 (de) * 1995-03-17 1996-09-19 Basf Ag Verfahren zur Herstellung von Polymerisaten von vinylaromatischen Verbindungen unter Druck in Gegenwart von leicht flüchtigen Kohlenwasserstoffen
TW442507B (en) * 1997-10-24 2001-06-23 Idemitsu Petrochemical Co Ethylene copolymer and aromatic vinyl graft copolymer and method for producing the same
FR2781417B1 (fr) * 1998-07-22 2000-09-08 Dassault Automatismes Dispositif d'impression thermique d'une bande de papier enroulee, notamment pour terminal de paiement portable avec ou sans fil
US6617410B2 (en) 1999-02-11 2003-09-09 Basell Polyolefine Gmbh Propylene copolymers containing styrene units
ITSA990005A1 (it) * 1999-02-11 2000-08-11 Univ Degli Studi Salerno Copolimeri a base di propilene contenenti unita' stireniche
KR100455843B1 (ko) * 2001-11-30 2004-11-06 삼성토탈 주식회사 스티렌계 공중합체 및 그 제조방법
KR100455844B1 (ko) * 2001-11-30 2004-11-06 삼성토탈 주식회사 스티렌계 공중합체 및 그 제조방법
KR100455842B1 (ko) * 2001-11-30 2004-11-06 삼성토탈 주식회사 스티렌계 공중합체 및 그 제조방법
KR100501398B1 (ko) * 2003-01-15 2005-07-18 삼성토탈 주식회사 긴가지를 갖는 α-올레핀/환상올레핀/디엔 공중합체 및 그제조방법
KR101271395B1 (ko) * 2009-12-21 2013-06-05 에스케이종합화학 주식회사 메탈로센 촉매를 이용한 에틸렌과 알파-올레핀의 공중합체를 제조하는 방법
CN112194758B (zh) * 2020-09-11 2022-05-31 青岛科技大学 一种异戊二烯-苯乙烯共聚物及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1276748C (en) * 1985-07-29 1990-11-20 Michitake Uoi Styrene polymers
IL85097A (en) * 1987-01-30 1992-02-16 Exxon Chemical Patents Inc Catalysts based on derivatives of a bis(cyclopentadienyl)group ivb metal compound,their preparation and their use in polymerization processes
PL276385A1 (en) * 1987-01-30 1989-07-24 Exxon Chemical Patents Inc Method for polymerization of olefines,diolefins and acetylene unsaturated compounds
EP0417313B1 (en) * 1989-03-20 1995-11-29 Idemitsu Kosan Company Limited Styrenic copolymer and production thereof
NZ235032A (en) * 1989-08-31 1993-04-28 Dow Chemical Co Constrained geometry complexes of titanium, zirconium or hafnium comprising a substituted cyclopentadiene ligand; use as olefin polymerisation catalyst component
CA2024830A1 (en) * 1989-09-29 1991-03-30 Richard E. Campbell, Jr. Process for preparation of syndiotactic vinyl aromatic polymers
JP2939354B2 (ja) * 1991-03-26 1999-08-25 出光興産株式会社 スチレン系重合体の製造方法及びその触媒

Also Published As

Publication number Publication date
DE69221180D1 (de) 1997-09-04
JP2927566B2 (ja) 1999-07-28
EP0505973B1 (en) 1997-07-30
ATE156146T1 (de) 1997-08-15
KR920018092A (ko) 1992-10-21
DE69221180T2 (de) 1997-12-04
EP0505973A2 (en) 1992-09-30
JPH04300904A (ja) 1992-10-23
EP0505973A3 (en) 1992-12-23

Similar Documents

Publication Publication Date Title
US5369196A (en) Production process of olefin based polymers
US5444134A (en) Process for producing olefin based polymers and olefin polymerization catalyst
KR0135269B1 (ko) 스티렌계 혼성중합체의 제조방법
US6057410A (en) Polymeric ligands, polymeric metallocenes, catalyst systems, preparation, and use
AU6727698A (en) Supported catalyst system, method for the production and use thereof in olefin polymerization
JPH05186527A (ja) スチレン系重合体の製造方法及びその触媒
JP3189175B2 (ja) 芳香族ビニル化合物共重合体の製造方法
KR0135271B1 (ko) 스티렌계 중합체의 제조방법 및 그 촉매
JPH04296306A (ja) スチレン系重合体の製造方法及びその触媒
KR100440482B1 (ko) 새로운 다중핵 반쪽 메탈로센 촉매
JPH05320248A (ja) エチレン系重合体組成物の製造方法
JP3217416B2 (ja) オレフィン系重合体の製造方法
JP3115944B2 (ja) 化学変性スチレン系重合体及びその製造方法
KR100349979B1 (ko) 스티렌계 중합용 다중금속 메탈로센 촉매 및 이를 이용한스티렌계 중합체의 제조방법
JP3433431B2 (ja) エチレン系共重合体及びその製造方法
JP3487448B2 (ja) スチレン系重合体の製造方法
JP3501408B2 (ja) エチレン系共重合体の製造方法
JP3237193B2 (ja) スチレン系ブロック共重合体及びその製造方法
JPH0687937A (ja) スチレン系ブロック共重合体の製造方法
KR100497172B1 (ko) 양쪽 메탈로센 유도체 화합물을 리간드로 가진 다중핵반쪽 메탈로센 촉매 및 이를 이용한 스티렌 중합체의제조방법
JPH04300906A (ja) スチレン系共重合体の製造方法
KR100503359B1 (ko) 스티렌 중합체 제조용 메탈로센 촉매 및 이를 이용한스티렌 중합체의 제조방법
JP3501410B2 (ja) エチレン系共重合体の製造方法
JP2977932B2 (ja) スチレン系共重合体の製造方法
JPH0597927A (ja) スチレン系重合体および共重合体の製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20011123

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee