JPWO2019150732A1 - Silver oxalate - Google Patents

Silver oxalate Download PDF

Info

Publication number
JPWO2019150732A1
JPWO2019150732A1 JP2019527265A JP2019527265A JPWO2019150732A1 JP WO2019150732 A1 JPWO2019150732 A1 JP WO2019150732A1 JP 2019527265 A JP2019527265 A JP 2019527265A JP 2019527265 A JP2019527265 A JP 2019527265A JP WO2019150732 A1 JPWO2019150732 A1 JP WO2019150732A1
Authority
JP
Japan
Prior art keywords
silver oxalate
silver
oxalate
mol
thermal stability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019527265A
Other languages
Japanese (ja)
Other versions
JP6694115B2 (en
Inventor
貴 室之園
貴 室之園
悠輝 渡辺
悠輝 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsuda Sangyo Co Ltd
Original Assignee
Matsuda Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuda Sangyo Co Ltd filed Critical Matsuda Sangyo Co Ltd
Publication of JPWO2019150732A1 publication Critical patent/JPWO2019150732A1/en
Application granted granted Critical
Publication of JP6694115B2 publication Critical patent/JP6694115B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C55/00Saturated compounds having more than one carboxyl group bound to acyclic carbon atoms
    • C07C55/02Dicarboxylic acids
    • C07C55/06Oxalic acid
    • C07C55/07Salts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic System
    • C07F1/10Silver compounds

Abstract

熱重量測定において、1%重量減温度が190℃以上であることを特徴とするシュウ酸銀。また、示差熱分析において、最大温度が219℃以上であることを特徴とするシュウ酸銀。本発明は、熱安定性に優れたシュウ酸銀を提供することを課題とし、熱安定性を向上させることで、爆発性を低下させ、工業的に利用され易いシュウ酸銀を提供することができる。【選択図】なしSilver oxalate having a 1% weight loss temperature of 190 ° C. or higher in thermogravimetric measurement. Silver oxalate characterized by having a maximum temperature of 219 ° C. or higher in a differential thermal analysis. An object of the present invention is to provide silver oxalate having excellent thermal stability, and by improving thermal stability, reducing explosiveness and providing silver oxalate which is easily used industrially. it can. [Selection diagram] None

Description

本発明は、シュウ酸銀に関する。   The present invention relates to silver oxalate.

銀(Ag)は、特に優れた導電性を有することから、導電性ペーストや導電性インクなどの用途に利用されている。これらの用途に利用する場合には、その用途に適した銀の形態に加工されることとなるが、各種形態の銀を生成する際には、要求される性状に応じた銀化合物が中間体として利用される。   Since silver (Ag) has particularly excellent conductivity, it is used for applications such as conductive pastes and conductive inks. When used in these applications, it will be processed into a silver form suitable for the application, but when producing various forms of silver, a silver compound according to the required properties is an intermediate Used as

たとえば、銀化合物であるシュウ酸銀(Ag)は、銀粒子などを製造する際の前駆体として利用されることが報告されている。シュウ酸銀は、還元剤を要することなく比較的低温で熱分解し、微細な銀粒子を生成することができるという特長を有し、また、このとき放出されるシュウ酸イオン(C 2−)は、二酸化炭素として除去されるため、不純物が残留しないという利点がある。For example, it has been reported that silver oxalate (Ag 2 C 2 O 4 ) which is a silver compound is used as a precursor when producing silver particles and the like. Silver oxalate has a feature that it can be thermally decomposed at a relatively low temperature without requiring a reducing agent to produce fine silver particles, and oxalate ions (C 2 O 4 Since 2- ) is removed as carbon dioxide, there is an advantage that impurities do not remain.

シュウ酸銀に関して、特許文献1には、硝酸銀溶液とシュウ酸カリウムとを混合してシュウ酸銀を製造すること、また、含水率の低く付着性のない取扱い容易なシュウ酸銀を沈殿することが記載されている。また、特許文献2には、シュウ酸銀を、水系や有機系の溶液にシュウ酸銀を懸濁させることで、爆発性を低減させ取扱い性を改善することが記載されている。   Regarding silver oxalate, Patent Literature 1 discloses that silver oxalate is produced by mixing a silver nitrate solution and potassium oxalate, and that silver oxalate having a low water content and having no stickiness and easy to handle is precipitated. Is described. Patent Literature 2 describes that silver oxalate is suspended in an aqueous or organic solution to reduce explosive properties and improve handleability.

特公平6−78271号公報Japanese Patent Publication No. 6-78271 特開2014−118587号公報JP 2014-118587 A

本発明の実施形態は、熱安定性に優れたシュウ酸銀を提供することを目的とする。   An embodiment of the present invention aims to provide silver oxalate having excellent thermal stability.

1)本発明の実施形態に係るシュウ酸銀は、熱重量測定において、1%重量減温度が190℃以上であることを特徴とする。
2)本発明の実施形態に係るシュウ酸銀は、示差熱分析において、最大温度が219℃以上であることを特徴とする。
3)本発明の実施形態に係るシュウ酸銀は、CuKα線を用いた粉末X線回折パターンにおいて、2θが17.2°±3°または28.8°±3°で最大のピーク強度を示すことを特徴とする上記1)又は2)に記載のシュウ酸銀である。
4)本発明の実施形態に係るシュウ酸銀は、CuKα線を用いた粉末X線回折パターンにおいて、2θが17.2°±3°、28.8°±3°、29.8°±3°、32.3°±3°、44.9°±3°および、53.2°±3°のいずれかに、主要なピークを示すことを特徴とする上記1)又は2)に記載のシュウ酸銀である。
1) The silver oxalate according to the embodiment of the present invention has a 1% weight loss temperature of 190 ° C. or more in thermogravimetry.
2) The silver oxalate according to the embodiment of the present invention is characterized by having a maximum temperature of 219 ° C. or higher in differential thermal analysis.
Silver oxalate according to Embodiment 3) The present invention, in the powder X-ray diffraction pattern using Cu K alpha line, 2 [Theta] is the maximum peak intensity at 17.2 ° ± 3 ° or 28.8 ° ± 3 ° The silver oxalate as described in 1) or 2) above,
4) The silver oxalate according to the embodiment of the present invention has a 2θ of 17.2 ° ± 3 °, 28.8 ° ± 3 °, 29.8 ° ± 3 in the powder X-ray diffraction pattern using CuKα ray. (1) or (2), (32.3 ° ± 3 °, 44.9 ° ± 3 °, and 53.2 ° ± 3 °). It is silver oxalate.

本発明の実施形態によれば、熱安定性に優れたシュウ酸銀を製造することができる。   According to the embodiment of the present invention, silver oxalate having excellent thermal stability can be produced.

本発明の実施形態に係るシュウ酸銀のXRDチャートを示す。1 shows an XRD chart of silver oxalate according to an embodiment of the present invention.

シュウ酸銀は、140℃以上で発熱分解を開始し、200℃以上で爆発的に分解するため、その取扱いに注意が必要な材料である。特に、急激な加熱、摩擦、衝撃によって爆発的に分解し、また、その威力も極めて高いことから、製造、保管、使用等において、細心の注意が必要である。このようなことから、シュウ酸銀の熱安定性を向上させて、爆発性を低下させることで、工業的に利用され易いシュウ酸銀が求められる。   Silver oxalate starts exothermic decomposition at 140 ° C. or higher, and explosively decomposes at 200 ° C. or higher. In particular, it decomposes explosively due to rapid heating, friction, and impact, and its power is extremely high. Therefore, careful attention must be paid to production, storage, use, and the like. For these reasons, there is a need for silver oxalate that can be easily used industrially by improving the thermal stability of silver oxalate and reducing the explosiveness.

シュウ酸銀の熱安定性について鋭意研究したところ、シュウ酸銀の合成条件を厳密に制御することによって、熱安定性に優れたシュウ酸銀を製造することができるとの知見が得られた。また、そのような熱安定性に優れたシュウ酸銀は特有の結晶構造を有するとの知見が得られた。本開示は、これらの知見に基づいて、以下の実施形態を提供するものである。   As a result of intensive studies on the thermal stability of silver oxalate, it was found that by strictly controlling the synthesis conditions of silver oxalate, it is possible to produce silver oxalate having excellent thermal stability. Further, it has been found that such silver oxalate having excellent thermal stability has a unique crystal structure. The present disclosure provides the following embodiments based on these findings.

本発明の実施形態に係るシュウ酸銀は、優れた熱安定を有し、熱重量測定(TG)における1%重量減温度が190℃以上と高い値を示すことを特徴とする。市販されているシュウ酸銀の中には140℃で分解するもの、すなわち、1%重量減温度が140℃のものもあることから、本発明の実施形態に係るシュウ酸銀が、熱安定性において格段に優れていることが理解できる。より好ましくは、熱重量測定(TG)における1%重量減温度が200℃以上である。   The silver oxalate according to the embodiment of the present invention has excellent thermal stability, and a 1% weight loss temperature in thermogravimetry (TG) as high as 190 ° C. or more. Since some commercially available silver oxalates decompose at 140 ° C., that is, those having a 1% weight loss temperature of 140 ° C., the silver oxalate according to the embodiment of the present invention has thermal stability. It can be understood that the above is remarkably excellent. More preferably, the 1% weight loss temperature in thermogravimetry (TG) is 200 ° C. or more.

また、本発明の実施形態に係るシュウ酸銀は、示差熱分析(DTA)における最大温度が219℃以上と高い値を示すものである。このように熱への安定性が向上したことにより、工業的に様々な用途において、シュウ酸銀を安全に利用することが可能となるという優れた効果を有する。   Further, the silver oxalate according to the embodiment of the present invention has a high maximum temperature of 219 ° C. or more in differential thermal analysis (DTA). The improved heat stability has an excellent effect that silver oxalate can be used safely in various industrial applications.

また、上述の熱安定性に優れたシュウ酸銀は、特有の結晶構造を有するものであり、具体的には、CuKα線を用いた粉末X線回折(XRD)パターンにおいて、2θが17.2°±3°または、28.8°±3°で最大ピーク強度を示すことを特徴とする。なお、本開示において、±3°とは、XRDのピーク位置のずれ(シフト)を考慮したものである。Further, silver oxalate having excellent thermal stability described above is one having a unique crystal structure, specifically, in the powder X-ray diffraction (XRD) patterns using Cu K alpha line, 2 [Theta] 17. It is characterized by showing a maximum peak intensity at 2 ° ± 3 ° or 28.8 ° ± 3 °. In the present disclosure, ± 3 ° is based on a shift (shift) of the XRD peak position.

また、上述の熱安定性に優れたシュウ酸銀は、CuKα線を用いた粉末X線回折(XRD)パターンにおいて、2θが17.2°±3°、28.8°±3°、29.8°±3°、32.3°±3°、44.9°±3°、および、53.2°±3°、に主要なピークを示すことを特徴とする。ここで「主要なピーク」とは、ピーク強度が大きいものから順に5番目までのピークを意味するものとする。Further, silver oxalate having excellent thermal stability described above, in the powder X-ray diffraction (XRD) patterns using Cu K alpha line, 2 [Theta] is 17.2 ° ± 3 °, 28.8 ° ± 3 °, 29 It is characterized by showing major peaks at 0.8 ° ± 3 °, 32.3 ° ± 3 °, 44.9 ° ± 3 °, and 53.2 ° ± 3 °. Here, the “main peak” means the fifth to fifth peaks in descending order of peak intensity.

次に、本発明の実施形態に係るシュウ酸銀の製造方法について説明する。
まず、硝酸銀を水に溶解して硝酸銀水溶液を調整し、また、シュウ酸・二水和物を水に溶解してシュウ酸水溶液を調整する。このとき、硝酸銀水溶液中の銀濃度は、0.75mol/L以上3mol/L以下とし、シュウ酸水溶液中のシュウ酸濃度は、0.5mol/L以上1mol/L以下とする。これらの濃度が低すぎると熱安定性に優れたシュウ酸銀が析出し難く、一方、これらの濃度が高すぎると、反応中に硝酸銀又はシュウ酸が析出して、シュウ酸銀中に混入し、シュウ酸銀の熱安定性を低下させることがある。好ましくは、硝酸銀水溶液中の銀濃度は2mol/L以上3mol/L以下、シュウ酸水溶液中のシュウ酸濃度は0.5mol/L以上0.8mol/L以下とする。
Next, a method for producing silver oxalate according to an embodiment of the present invention will be described.
First, a silver nitrate aqueous solution is prepared by dissolving silver nitrate in water, and an oxalic acid aqueous solution is prepared by dissolving oxalic acid / dihydrate in water. At this time, the silver concentration in the aqueous silver nitrate solution is 0.75 mol / L or more and 3 mol / L or less, and the oxalic acid concentration in the oxalic acid aqueous solution is 0.5 mol / L or more and 1 mol / L or less. If these concentrations are too low, silver oxalate with excellent thermal stability is difficult to precipitate, while if these concentrations are too high, silver nitrate or oxalic acid precipitates during the reaction and is mixed into silver oxalate. In some cases, the thermal stability of silver oxalate may be reduced. Preferably, the silver concentration in the aqueous silver nitrate solution is 2 mol / L or more and 3 mol / L or less, and the oxalic acid concentration in the oxalic acid aqueous solution is 0.5 mol / L or more and 0.8 mol / L or less.

次に硝酸銀水溶液に、定量ポンプを使用してシュウ酸水溶液を添加し、撹拌しながら混合、合成する。シュウ酸水溶液を滴下したのは、シュウ酸銀に製造設備から銀が混入することを防止するためであり、銀が混入すると、銀が酸化触媒の働きをして、シュウ酸銀の熱安定性に悪影響を与えることがある。また、金属不純物の混入を防ぐために、上記シュウ酸水和物の他、また、シュウ酸無水和物を用いることが好ましい。   Next, an aqueous oxalic acid solution is added to the aqueous silver nitrate solution using a metering pump, and mixed and synthesized with stirring. The aqueous oxalic acid solution was dropped to prevent silver from being mixed into the silver oxalate from the manufacturing equipment. When silver was mixed, the silver acted as an oxidation catalyst and the thermal stability of silver oxalate was reduced. May be adversely affected. In order to prevent metal impurities from being mixed, it is preferable to use oxalic anhydride in addition to the above oxalic hydrate.

熱安定性に優れたシュウ酸銀を作製するためには、合成時の液温および撹拌保持時間が特に重要である。液温が20℃未満であると硝酸銀やシュウ酸の溶解度が低下し、一方、40℃を超えると合成したシュウ酸銀の熱安定性が低下することから、液温は、20〜40℃とすることが好ましい。また、撹拌保持時間は30分以上とするのが好ましく、また、液温によるが、懸濁条件下で長時間反応させると、シュウ酸銀の熱安定性が低下する傾向にあることから、液温が高い場合は、撹拌保持時間は4時間以内とすることが好ましい。   In order to produce silver oxalate having excellent thermal stability, the liquid temperature and the stirring and holding time during synthesis are particularly important. If the liquid temperature is less than 20 ° C, the solubility of silver nitrate or oxalic acid decreases, while if it exceeds 40 ° C, the thermal stability of the synthesized silver oxalate decreases. Is preferred. Further, the stirring and holding time is preferably 30 minutes or more, and although it depends on the liquid temperature, if the reaction is carried out for a long time under suspension conditions, the thermal stability of silver oxalate tends to decrease. When the temperature is high, the stirring and holding time is preferably within 4 hours.

その後、合成した得られたシュウ酸銀を濾過した後、洗浄、乾燥させることにより、熱安定性に優れたシュウ酸銀を作製することができる。   Thereafter, the synthesized silver oxalate is filtered, washed, and dried, whereby silver oxalate having excellent thermal stability can be produced.

次に、本発明の実施例及び比較例について説明する。なお、以下の実施例は、あくまで代表的な例を示しているもので、本発明はこれらの実施例に制限される必要はなく、明細書の記載される技術思想の範囲で解釈されるべきものである。   Next, examples and comparative examples of the present invention will be described. The following embodiments are merely representative examples, and the present invention is not limited to these embodiments and should be interpreted within the scope of the technical idea described in the specification. Things.

(実施例1)
2mol/Lの硝酸銀水溶液500mlに、0.8mol/Lのシュウ酸二水和物水溶液625mlを滴下し、液温30℃で混合し、30分間、撹拌保持した。その後、これを濾過、洗浄した後、乾燥して、シュウ酸銀の結晶150gを得た。次に、得られたシュウ酸銀について、粉末X回折分析(XRD)を行った。その結果を図1に示す。また熱重量分析(TG)及び示差熱分析(DTA)についても行った。以上の結果をまとめたものを表1に示す。表1に示す通り、実施例1のシュウ酸銀は、特有の結晶構造を有し、熱安定性に優れたものであった。
(Example 1)
625 ml of a 0.8 mol / L oxalic acid dihydrate aqueous solution was added dropwise to 500 ml of a 2 mol / L silver nitrate aqueous solution, mixed at a liquid temperature of 30 ° C., and stirred and maintained for 30 minutes. Thereafter, this was filtered, washed, and dried to obtain 150 g of silver oxalate crystals. Next, the obtained silver oxalate was subjected to powder X-ray diffraction analysis (XRD). The result is shown in FIG. Thermogravimetric analysis (TG) and differential thermal analysis (DTA) were also performed. Table 1 summarizes the above results. As shown in Table 1, the silver oxalate of Example 1 had a unique crystal structure and was excellent in thermal stability.

(実施例2)
1mol/Lの硝酸銀水溶液1000mlに、0.8mol/Lのシュウ酸二水和物水溶液625mlを滴下し、液温30℃で混合し、30分間、撹拌保持した。その後、これを濾過、洗浄した後、乾燥して、シュウ酸銀の結晶150gを得た。得られたシュウ酸銀について、粉末X回折分析(XRD)を行った。その結果を図1に示す。また、熱重量分析(TG)及び示差熱分析(DTA)についても行った。以上の結果をまとめたものを表1に示す。表1に示す通り、実施例2のシュウ酸銀は、特有の結晶構造を有し、熱安定性に優れたものであった。
(Example 2)
625 ml of a 0.8 mol / L oxalic acid dihydrate aqueous solution was dropped into 1000 ml of a 1 mol / L silver nitrate aqueous solution, mixed at a liquid temperature of 30 ° C., and stirred and maintained for 30 minutes. Thereafter, this was filtered, washed, and dried to obtain 150 g of silver oxalate crystals. The obtained silver oxalate was subjected to powder X-ray diffraction analysis (XRD). The result is shown in FIG. In addition, thermogravimetric analysis (TG) and differential thermal analysis (DTA) were also performed. Table 1 summarizes the above results. As shown in Table 1, the silver oxalate of Example 2 had a unique crystal structure and was excellent in thermal stability.

(実施例3)
0.75mol/Lの硝酸銀水溶液1333mlに、0.8mol/Lのシュウ酸二水和物水溶液625mlを滴下し、液温30℃で混合し、30分間、撹拌保持した。その後これを濾過、洗浄した後、乾燥して、シュウ酸銀の結晶150gを得た。得られたシュウ酸銀について、粉末X回折分析(XRD)を行った。その結果を図1に示す。また、熱重量分析(TG)及び示差熱分析(DTA)についても行った。以上の結果をまとめたものを表1に示す。表1に示す通り、実施例3のシュウ酸銀は、特有の結晶構造を有し熱安定性に優れたものであった。
(Example 3)
To 1333 ml of a 0.75 mol / L silver nitrate aqueous solution, 625 ml of a 0.8 mol / L oxalic acid dihydrate aqueous solution was dropped, mixed at a liquid temperature of 30 ° C., and kept under stirring for 30 minutes. Thereafter, this was filtered, washed, and dried to obtain 150 g of silver oxalate crystals. The obtained silver oxalate was subjected to powder X-ray diffraction analysis (XRD). The result is shown in FIG. In addition, thermogravimetric analysis (TG) and differential thermal analysis (DTA) were also performed. Table 1 summarizes the above results. As shown in Table 1, the silver oxalate of Example 3 had a unique crystal structure and was excellent in thermal stability.

(実施例4)
0.75mol/Lの硝酸銀水溶液1333mlに、0.5mol/Lのシュウ酸二水和物水溶液1000mlを滴下し、液温30℃で混合し、30分間、撹拌保持した。その後これを濾過、洗浄した後、乾燥して、シュウ酸銀の結晶150gを得た。得られたシュウ酸銀について、粉末X回折分析(XRD)を行った。その結果を図1に示す。また、熱重量分析(TG)及び示差熱分析(DTA)についても行った。以上の結果をまとめたものを表1に示す。表1に示す通り、実施例4のシュウ酸銀は、特有の結晶構造を有し熱安定性に優れたものであった。
(Example 4)
To 1333 ml of a 0.75 mol / L silver nitrate aqueous solution, 1000 ml of a 0.5 mol / L oxalic acid dihydrate aqueous solution was dropped, mixed at a liquid temperature of 30 ° C., and stirred and maintained for 30 minutes. Thereafter, this was filtered, washed, and dried to obtain 150 g of silver oxalate crystals. The obtained silver oxalate was subjected to powder X-ray diffraction analysis (XRD). The result is shown in FIG. In addition, thermogravimetric analysis (TG) and differential thermal analysis (DTA) were also performed. Table 1 summarizes the above results. As shown in Table 1, the silver oxalate of Example 4 had a unique crystal structure and was excellent in thermal stability.

(実施例5)
2mol/Lの硝酸銀水溶液500mlに、0.8mol/Lのシュウ酸二水和物水溶液625mlを滴下し、液温30℃で混合し、24時間、撹拌保持した。その後、これを濾過、洗浄した後、乾燥して、シュウ酸銀の結晶150gを得た。次に、得られたシュウ酸銀について、粉末X回折分析(XRD)を行った。その結果を図1に示す。また熱重量分析(TG)及び示差熱分析(DTA)についても行った。以上の結果をまとめたものを表1に示す。表1に示す通り、実施例5のシュウ酸銀は、特有の結晶構造を有し、熱安定性に優れたものであった。
(Example 5)
625 ml of a 0.8 mol / L oxalic acid dihydrate aqueous solution was added dropwise to 500 ml of a 2 mol / L silver nitrate aqueous solution, mixed at a liquid temperature of 30 ° C., and stirred and maintained for 24 hours. Thereafter, this was filtered, washed, and dried to obtain 150 g of silver oxalate crystals. Next, the obtained silver oxalate was subjected to powder X-ray diffraction analysis (XRD). The result is shown in FIG. Thermogravimetric analysis (TG) and differential thermal analysis (DTA) were also performed. Table 1 summarizes the above results. As shown in Table 1, the silver oxalate of Example 5 had a unique crystal structure and was excellent in thermal stability.

(実施例6)
2mol/Lの硝酸銀水溶液500mlに、0.8mol/Lのシュウ酸二水和物水溶液625mlを滴下し、液温40℃で混合し、4時間、撹拌保持した。その後、これを濾過、洗浄した後、乾燥して、シュウ酸銀の結晶150gを得た。次に、得られたシュウ酸銀について、粉末X回折分析(XRD)を行った。その結果を図1に示す。また熱重量分析(TG)及び示差熱分析(DTA)についても行った。以上の結果をまとめたものを表1に示す。表1に示す通り、実施例6のシュウ酸銀は、特有の結晶構造を有し、熱安定性に優れたものであった。
(Example 6)
625 ml of a 0.8 mol / L oxalic acid dihydrate aqueous solution was added dropwise to 500 ml of a 2 mol / L silver nitrate aqueous solution, mixed at a liquid temperature of 40 ° C., and kept under stirring for 4 hours. Thereafter, this was filtered, washed, and dried to obtain 150 g of silver oxalate crystals. Next, the obtained silver oxalate was subjected to powder X-ray diffraction analysis (XRD). The result is shown in FIG. Thermogravimetric analysis (TG) and differential thermal analysis (DTA) were also performed. Table 1 summarizes the above results. As shown in Table 1, the silver oxalate of Example 6 had a unique crystal structure and was excellent in thermal stability.

(比較例1)
0.5mol/Lの硝酸銀水溶液2000mlに、0.8mol/Lのシュウ酸二水和物水溶液625mlを滴下し、液温30℃で混合し、30分間、撹拌保持した。その後これを濾過、洗浄した後、乾燥して、シュウ酸銀の結晶150gを得た。得られたシュウ酸銀について、粉末X回折分析(XRD)を行った。その結果を図1に示す。また、熱重量分析(TG)及び示差熱分析(DTA)についても行った。以上の結果をまとめたものを表1に示す。表1に示す通り、比較例1のシュウ酸銀は、実施例に比べて熱安定性に劣るものであった。
(Comparative Example 1)
To 2,000 ml of a 0.5 mol / L silver nitrate aqueous solution, 625 ml of a 0.8 mol / L oxalic acid dihydrate aqueous solution was dropped, mixed at a liquid temperature of 30 ° C., and kept under stirring for 30 minutes. Thereafter, this was filtered, washed, and dried to obtain 150 g of silver oxalate crystals. The obtained silver oxalate was subjected to powder X-ray diffraction analysis (XRD). The result is shown in FIG. In addition, thermogravimetric analysis (TG) and differential thermal analysis (DTA) were also performed. Table 1 summarizes the above results. As shown in Table 1, the silver oxalate of Comparative Example 1 was inferior to the Examples in thermal stability.

(比較例2)
0.25mol/Lの硝酸銀水溶液4000mlに、0.8mol/Lのシュウ酸二水和物水溶液625mlを滴下し、液温30℃で混合し、30分間、撹拌保持した。その後これを濾過、洗浄した後、乾燥して、シュウ酸銀の結晶150gを得た。得られたシュウ酸銀について、粉末X回折分析(XRD)を行った。その結果を図1に示す。また、熱重量分析(TG)及び示差熱分析(DTA)についても行った。以上の結果をまとめたものを表1に示す。表1に示す通り、比較例2のシュウ酸銀は、実施例に比べて熱安定性に劣るものであった。
(Comparative Example 2)
625 ml of a 0.8 mol / L oxalic acid dihydrate aqueous solution was dropped into 4000 ml of a 0.25 mol / L silver nitrate aqueous solution, mixed at a liquid temperature of 30 ° C., and stirred and maintained for 30 minutes. Thereafter, this was filtered, washed, and dried to obtain 150 g of silver oxalate crystals. The obtained silver oxalate was subjected to powder X-ray diffraction analysis (XRD). The result is shown in FIG. In addition, thermogravimetric analysis (TG) and differential thermal analysis (DTA) were also performed. Table 1 summarizes the above results. As shown in Table 1, the silver oxalate of Comparative Example 2 was inferior to the Examples in thermal stability.

(比較例3)
0.1mol/Lの硝酸銀水溶液10000mlに、0.8mol/Lのシュウ酸二水和物水溶液625mlを滴下し、液温30℃で混合し、30分間、撹拌保持した。その後、これを濾過、洗浄した後、乾燥して、シュウ酸銀の結晶150gを得た。得られたシュウ酸銀について、粉末X回折分析(XRD)を行った。その結果を図1に示す。また、熱重量分析(TG)及び示差熱分析(DTA)についても行った。以上の結果をまとめたものを表1に示す。表1に示す通り、比較例3のシュウ酸銀は、実施例に比べて熱安定性に劣るものであった。
(Comparative Example 3)
625 ml of a 0.8 mol / L oxalic acid dihydrate aqueous solution was dropped into 10,000 ml of a 0.1 mol / L silver nitrate aqueous solution, mixed at a liquid temperature of 30 ° C., and stirred and maintained for 30 minutes. Thereafter, this was filtered, washed, and dried to obtain 150 g of silver oxalate crystals. The obtained silver oxalate was subjected to powder X-ray diffraction analysis (XRD). The result is shown in FIG. In addition, thermogravimetric analysis (TG) and differential thermal analysis (DTA) were also performed. Table 1 summarizes the above results. As shown in Table 1, the silver oxalate of Comparative Example 3 was inferior to the Examples in thermal stability.

(比較例4)
2mol/Lの硝酸銀水溶液500mlに、0.8mol/Lのシュウ酸二水和物水溶液625mlを滴下し、液温40℃で混合し、8時間、撹拌保持した。その後、これを濾過、洗浄した後、乾燥して、シュウ酸銀の結晶150gを得た。次に、得られたシュウ酸銀について、粉末X回折分析(XRD)を行った。その結果を図1に示す。また熱重量分析(TG)及び示差熱分析(DTA)についても行った。以上の結果をまとめたものを表1に示す。表1に示す通り、比較例4のシュウ酸銀は、実施例に比べて熱安定性に劣るものであった。
(Comparative Example 4)
625 ml of a 0.8 mol / L oxalic acid dihydrate aqueous solution was added dropwise to 500 ml of a 2 mol / L silver nitrate aqueous solution, mixed at a liquid temperature of 40 ° C., and stirred and maintained for 8 hours. Thereafter, this was filtered, washed, and dried to obtain 150 g of silver oxalate crystals. Next, the obtained silver oxalate was subjected to powder X-ray diffraction analysis (XRD). The result is shown in FIG. Thermogravimetric analysis (TG) and differential thermal analysis (DTA) were also performed. Table 1 summarizes the above results. As shown in Table 1, the silver oxalate of Comparative Example 4 was inferior to the Examples in thermal stability.

(比較例5)
2mol/Lの硝酸銀水溶液500mlに、0.8mol/Lのシュウ酸二水和物水溶液625mlを滴下し、液温50℃で混合し、4時間、撹拌保持した。その後、これを濾過、洗浄した後、乾燥して、シュウ酸銀の結晶150gを得た。次に、得られたシュウ酸銀について、粉末X回折分析(XRD)を行った。その結果を図1に示す。また熱重量分析(TG)及び示差熱分析(DTA)についても行った。以上の結果をまとめたものを表1に示す。表1に示す通り、比較例5のシュウ酸銀は、実施例に比べて熱安定性に劣るものであった。
(Comparative Example 5)
625 ml of a 0.8 mol / L oxalic acid dihydrate aqueous solution was dropped into 500 ml of a 2 mol / L silver nitrate aqueous solution, mixed at a liquid temperature of 50 ° C., and stirred and maintained for 4 hours. Thereafter, this was filtered, washed, and dried to obtain 150 g of silver oxalate crystals. Next, the obtained silver oxalate was subjected to powder X-ray diffraction analysis (XRD). The result is shown in FIG. Thermogravimetric analysis (TG) and differential thermal analysis (DTA) were also performed. Table 1 summarizes the above results. As shown in Table 1, the silver oxalate of Comparative Example 5 was inferior to the examples in heat stability.

本発明の実施形態によれば、熱安定性に優れたシュウ酸銀を製造することができる。シュウ酸銀は、銀ナノ粒子の製造における前駆体として有用であり、特に、銀ナノ粒子を用いた導電性ペーストや導電性インクに対して有用である。   According to the embodiment of the present invention, silver oxalate having excellent thermal stability can be produced. Silver oxalate is useful as a precursor in the production of silver nanoparticles, and is particularly useful for conductive pastes and conductive inks using silver nanoparticles.

Claims (4)

熱重量測定において1%重量減温度が190℃以上であることを特徴とするシュウ酸銀。   Silver oxalate having a 1% weight loss temperature of 190 ° C. or higher in thermogravimetry. 示差熱分析において最大温度が219℃以上であることを特徴とするシュウ酸銀。   Silver oxalate having a maximum temperature of 219 ° C. or higher in differential thermal analysis. CuKα線を用いた粉末X線回折パターンにおいて、2θが17.2°±3°または28.8°±3°で最大ピーク強度を示すことを特徴とする請求項1又は2に記載のシュウ酸銀。   The oxalic acid according to claim 1, wherein the oxalic acid according to claim 1, wherein the oxalic acid has a maximum peak intensity at 2θ of 17.2 ° ± 3 ° or 28.8 ° ± 3 ° in a powder X-ray diffraction pattern using CuKα rays. Silver. CuKα線を用いた粉末X線回折パターンにおいて、2θが17.2°±3°、28.8°±3°、29.8°±3°、32.3°±3°、44.9°±3°、および、53.2°±3°のいずれかに、主要なピークを示すことを特徴とする請求項1又は2に記載のシュウ酸銀。   In a powder X-ray diffraction pattern using CuKα ray, 2θ is 17.2 ° ± 3 °, 28.8 ° ± 3 °, 29.8 ° ± 3 °, 32.3 ° ± 3 °, 44.9 °. The silver oxalate according to claim 1, wherein the silver oxalate exhibits a main peak at any of ± 3 ° and 53.2 ° ± 3 °.
JP2019527265A 2018-02-02 2018-11-28 Silver oxalate Active JP6694115B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018016948 2018-02-02
JP2018016948 2018-02-02
PCT/JP2018/043751 WO2019150732A1 (en) 2018-02-02 2018-11-28 Silver oxalate

Publications (2)

Publication Number Publication Date
JPWO2019150732A1 true JPWO2019150732A1 (en) 2020-02-06
JP6694115B2 JP6694115B2 (en) 2020-05-13

Family

ID=67479267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019527265A Active JP6694115B2 (en) 2018-02-02 2018-11-28 Silver oxalate

Country Status (5)

Country Link
JP (1) JP6694115B2 (en)
KR (1) KR102526569B1 (en)
CN (1) CN111556860B (en)
TW (1) TWI741237B (en)
WO (1) WO2019150732A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102708943A (en) * 2012-06-04 2012-10-03 惠州市富济电子材料有限公司 Low-temperature sintered highly-heat-conductive and highly-electric-conductive silver paste, preparation method and sintering method
JP2013016802A (en) * 2011-06-30 2013-01-24 Thales Method of manufacturing device comprising braze produced from metal oxalate
JP2014529875A (en) * 2011-09-06 2014-11-13 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング Conductive materials and processes

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678271A (en) 1992-08-25 1994-03-18 Funai Electric Co Ltd Magnetic recording and reproducing device with tape index function
WO2011126706A2 (en) * 2010-04-09 2011-10-13 Henkel Corporation Printable materials and methods of manufacture thereof
JP5858374B2 (en) * 2010-09-27 2016-02-10 国立大学法人山形大学 Method for producing coated copper fine particles
TWI592234B (en) * 2012-08-07 2017-07-21 Daicel Corp Method for producing silver nano-particles, silver nano-particles and silver paint composition
TWI635918B (en) * 2012-08-07 2018-09-21 大賽璐股份有限公司 Method for manufacturing silver nanoparticles and silver nanoparticles
DE102013207045A1 (en) * 2012-10-05 2014-06-12 Heraeus Precious Metals Gmbh & Co. Kg Process for the preparation of precious metal oxalate complexes
JP6157104B2 (en) * 2012-12-14 2017-07-05 田中貴金属工業株式会社 Silver precursor for producing silver compound, method for producing the same, and method for producing silver compound
CN105085238B (en) * 2015-08-22 2017-02-01 李亚丰 Zirconium oxalate crystal and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013016802A (en) * 2011-06-30 2013-01-24 Thales Method of manufacturing device comprising braze produced from metal oxalate
JP2014529875A (en) * 2011-09-06 2014-11-13 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング Conductive materials and processes
CN102708943A (en) * 2012-06-04 2012-10-03 惠州市富济电子材料有限公司 Low-temperature sintered highly-heat-conductive and highly-electric-conductive silver paste, preparation method and sintering method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KIRYUKHINA, K. ET AL.: "Silver oxalate-based solders: New materials for high thermal conductivity microjoining", SCRIPTA MATERIALIA, vol. 68, no. 8, JPN6019005055, 2013, pages 623 - 626, XP028979399, ISSN: 0004245087, DOI: 10.1016/j.scriptamat.2012.12.018 *
NAVALADIAN, S. ET AL.: "Thermal decomposition as route for silver nanoparticles", NANOSCALE RESEARCH LETTERS, vol. 2, JPN6019005054, 2007, pages 44 - 48, XP055628435, ISSN: 0004245086, DOI: 10.1007/s11671-006-9028-2 *
ZHANG, CHUANFU ET AL.: "Preparation of rod precursor of silver powder", GUIJINSHU(PRECIOUS METALS), vol. 32, no. 3, JPN6019005056, 2011, pages 13 - 18, ISSN: 0004245088 *

Also Published As

Publication number Publication date
CN111556860A (en) 2020-08-18
WO2019150732A1 (en) 2019-08-08
KR102526569B1 (en) 2023-04-26
TW201936560A (en) 2019-09-16
KR20200087856A (en) 2020-07-21
CN111556860B (en) 2023-06-20
TWI741237B (en) 2021-10-01
JP6694115B2 (en) 2020-05-13

Similar Documents

Publication Publication Date Title
JP2011037710A (en) Application of highly pure iron oxide
JP2008013846A (en) Method for producing metal nanoparticle, and metal nanoparticle
Zhou et al. Favorable synergetic effects between CuO and the reactive planes of ceria nanorods
US9982322B2 (en) Solvent-free syntheses of silver products produced thereby
JP2009203484A (en) Method for synthesizing wire-shaped metal particle
JP2015003840A (en) BiVO4 PARTICLE AND PRODUCTION METHOD THEREOF
KR20190075002A (en) Method of preparing rutile titania supported Pd catalyst for synthesis of hydrogen peroxide, and Method of preaparing heydrogen oxide using the Pd catalyst
CN102464355B (en) Preparation method of superfine manganese oxide
JP2012532820A (en) Method for producing and treating nanosized doped zinc oxide particles
JP5015057B2 (en) Catalyst for synthesis of chlorine and method for producing the same, and method for synthesizing chlorine using the catalyst
JPWO2019150732A1 (en) Silver oxalate
RU2410205C2 (en) Method of producing ultra-dispersed metal powder
Bepari et al. Synthesis of nanoscale CuO via precursor method and its application in the catalytic epoxidation of styrene
JP2009213975A (en) Amide dehydration catalyst and method for manufacturing nitrile using the same
Prananto et al. Study of gel growth cobalt (II) oxalate crystals as precursor of Co3O4 nano particles
JP4178398B2 (en) Method for producing rod-shaped silver particles
CN115722239A (en) Method for preparing vanadium-phosphorus-oxygen catalyst with assistance of eutectic solvent and application of vanadium-phosphorus-oxygen catalyst
JP5966719B2 (en) Method for producing trimanganese tetraoxide
CN105731397A (en) A preparing method of a nitrogen carbide material
CN104549255A (en) Palladium-carbon catalyst and preparation method thereof
JP2023149308A (en) Manufacturing method of catalyst
JPH05156324A (en) Production of superfine nickel aggregated powder
Suzuki et al. Prismatic Ta 3 N 5-composed spheres produced by self-sacrificial template-like conversion of Ta particles via Na 2 CO 3 flux
JPH05156325A (en) Production of fine metal powder
CN109622006B (en) Catalyst for preparing low-grade aliphatic amine from ammonia-containing synthesis gas and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190520

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191227

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200416

R150 Certificate of patent or registration of utility model

Ref document number: 6694115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250