JPH05156325A - Production of fine metal powder - Google Patents

Production of fine metal powder

Info

Publication number
JPH05156325A
JPH05156325A JP3324524A JP32452491A JPH05156325A JP H05156325 A JPH05156325 A JP H05156325A JP 3324524 A JP3324524 A JP 3324524A JP 32452491 A JP32452491 A JP 32452491A JP H05156325 A JPH05156325 A JP H05156325A
Authority
JP
Japan
Prior art keywords
oxalate
palladium
copper
nickel
metal powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3324524A
Other languages
Japanese (ja)
Inventor
Toshio Hidaka
敏雄 日高
Takamasa Kawakami
殷正 川上
Akira Makinose
暁 牧之瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP3324524A priority Critical patent/JPH05156325A/en
Priority to US07/862,218 priority patent/US5250101A/en
Priority to EP92303131A priority patent/EP0508757A1/en
Publication of JPH05156325A publication Critical patent/JPH05156325A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce the fine copper or nickel powder having specified specific surface and aggregated particle diameter at low temp. by thermally decomposing copper oxalate or nickel oxalate in vacuum or in a nonoxidizing atmosphere at a specified temp. in the presence of palladium. CONSTITUTION:Copper oxalate or nickel oxalate is thermally decomposed in the presence of palladium in vacuum or in a nonoxidizing atmosphere at <=400 deg.C or preferably at 200-360 deg.C at the heating rate of 0.5 to 20 deg.C/min. Copper oxalate or nickel oxalate is preferably used as its anhydride. Meanwhile, the amt. of palladium to be incorporated into the oxalate crystal is preferably controlled to 100 to 4000ppm, and palladium oxalate is used as the palladium source. A copper or nickel powder having 5 to 30m<2>/g specified surface and <=10mum aggregated particle diameter is easily obtained in this way.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、蓚酸銅又は蓚酸ニッケ
ルを熱分解して銅またはニッケル粉を製造する方法の改
良法に関し、より低温でより微細で比表面積の大きな、
凝集粒子径が10μm以下である銅またはニッケル粉の製
造法である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved method for producing copper or nickel powder by thermally decomposing copper oxalate or nickel oxalate, which is finer at a lower temperature and has a large specific surface area.
This is a method for producing copper or nickel powder having an aggregate particle size of 10 μm or less.

【0002】[0002]

【従来の技術】銅またはニッケルの微粉は、電解法、ア
トマイズ法、機械的粉砕、熱分解法などが知られ、主に
粉末冶金、超硬合金のバインダー、導電性フィラーなど
の用途に用いられている。これら方法は、粒子径がまた
かなり大きく、生産性や経済性に問題があった。
2. Description of the Related Art Fine powder of copper or nickel is known to be electrolyzed, atomized, mechanically crushed, pyrolyzed, etc., and is mainly used for powder metallurgy, cemented carbide binder, conductive filler, etc. ing. These methods have a considerably large particle size and have problems in productivity and economy.

【0003】一方、蓚酸塩などの熱分解によって各種金
属粉を製造する方法は簡便で、工業的規模においても実
施可能であり、比表面積の大きな或いは一次粒子径の小
さい微細金属粉が得られることが知られている。しか
し、この熱分解によって得られる金属粉は多孔質であっ
たり、凝集性が大きく、熱分解温度も比較的高温を必要
とするものであった。
On the other hand, the method for producing various metal powders by thermal decomposition of oxalate is simple and can be carried out on an industrial scale, and fine metal powders having a large specific surface area or a small primary particle diameter can be obtained. It has been known. However, the metal powder obtained by this thermal decomposition is porous, has a large cohesive property, and requires a relatively high thermal decomposition temperature.

【0004】[0004]

【発明が解決しようとする課題】本発明者等はこのよう
な事情に鑑み、蓚酸銅または蓚酸ニッケルの熱分解にお
いて、より低温でより微細な、凝集性のより小さい粒子
径の比較的揃った銅またはニッケル粉の製造法について
鋭意検討した結果、パラジウムを共存させる方法を見出
し本発明を完成させた。
In view of such circumstances, the present inventors have found that in the thermal decomposition of copper oxalate or nickel oxalate, finer particles having a smaller cohesiveness at a lower temperature are relatively uniform. As a result of extensive studies on a method for producing copper or nickel powder, a method for coexisting palladium was found and the present invention was completed.

【0005】[0005]

【課題を解決するための手段】すなわち、本発明は、蓚
酸銅又は蓚酸ニッケルをパラジウムの存在下、減圧下或
いは非酸化性雰囲気下、 400℃以下の温度範囲において
0.5〜20℃/minの昇温速度で熱分解し、比表面積が 5〜
30 m2/g 、凝集粒子径が10μm以下の銅又はニッケル粉
を得ることを特徴とする微細金属粉の製造法であり、該
蓚酸銅又は蓚酸ニッケルが無水塩であること、該パラジ
ウムが該蓚酸銅又は蓚酸ニッケルに対して重量基準で 1
00〜4,000ppmであることからなる微細金属粉の製造法で
ある。
Means for Solving the Problems That is, according to the present invention, copper oxalate or nickel oxalate is present in the presence of palladium under reduced pressure or in a non-oxidizing atmosphere in a temperature range of 400 ° C. or lower.
Pyrolyzes at a temperature rising rate of 0.5 to 20 ° C / min and has a specific surface area of 5 to
30 m 2 / g, a method for producing a fine metal powder characterized by obtaining a copper or nickel powder having an aggregate particle diameter of 10 μm or less, wherein the copper oxalate or nickel oxalate is an anhydrous salt, and the palladium is 1 by weight for copper oxalate or nickel oxalate
This is a method for producing fine metal powder, which consists of 00 to 4,000 ppm.

【0006】以下、本発明について説明する。本発明の
蓚酸銅とは、無水蓚酸銅、蓚酸銅水和物或いはこれらの
混合物などであるが、凝集性の小さな銅粉を得るために
は、無水蓚酸銅が特に好ましい。また、蓚酸ニッケルと
は、無水蓚酸ニッケル、蓚酸ニッケル水和物或いはこれ
らの混合物などであるが、実質的に水を含まない条件下
に製造された無水蓚酸ニッケルが特に好ましい。
The present invention will be described below. The copper oxalate of the present invention is anhydrous copper oxalate, copper oxalate hydrate or a mixture thereof, and anhydrous copper oxalate is particularly preferable in order to obtain a copper powder having a small cohesive property. The nickel oxalate is anhydrous nickel oxalate, nickel oxalate hydrate, or a mixture thereof, and the anhydrous nickel oxalate produced under the condition of substantially free of water is particularly preferable.

【0007】熱分解にあたってパラジウムを共存させ
る。このパラジウムは、通常、パラジウム塩の形で使用
する。パラジウム塩としては、塩化パラジウム、酢酸パ
ラジウム、硝酸パラジウム、硫酸パラジウムなどが挙げ
られ、ハロゲン、硫黄、その他の不純物を残留させない
面からは酢酸パラジウムなどの比較的低温で分解する有
機酸塩が好適である。
Palladium coexists in the thermal decomposition. This palladium is usually used in the form of a palladium salt. Examples of the palladium salt include palladium chloride, palladium acetate, palladium nitrate, palladium sulfate, and the like. From the viewpoint of not leaving halogen, sulfur, and other impurities, an organic acid salt such as palladium acetate that decomposes at a relatively low temperature is preferable. is there.

【0008】上記において、パラジウムを共存させる方
法としては、機械的に混合して分散或いは付着させる方
法、本発明の蓚酸塩の製造工程中にパラジウム塩を添加
し、結晶中にパラジウムが内包されたものとして用いる
方法が挙げられる。より少量のパラジウムでより良好な
熱分解特性、より微細な金属粉を得る面から、結晶中に
パラジウムを含有させるのが好ましく、好適にはパラジ
ウムを重量で 100〜4,000 ppm の範囲で含む金属の蓚酸
塩結晶が好ましい。
In the above, as a method of coexisting palladium, a method of mechanically mixing and dispersing or adhering, and a palladium salt was added during the production process of the oxalate of the present invention, the palladium was included in the crystal. The method used as a thing is mentioned. From the viewpoint of obtaining a better thermal decomposition property with a smaller amount of palladium and obtaining a finer metal powder, it is preferable to include palladium in the crystal, and preferably a metal containing palladium in a range of 100 to 4,000 ppm by weight is used. Oxalate crystals are preferred.

【0009】本発明の金属の蓚酸塩の熱分解は、非酸化
性雰囲気中或いは減圧下に、昇温速度 0.5〜20℃/min
で、保持温度 400℃以下、好ましくは 200〜360 ℃の範
囲である。金属超微粉の一次粒子径、凝集粒子径は、熱
分解条件の影響を受ける。昇温速度が20℃/minを超える
場合には、一次粒子径、凝集粒子径ともに不揃いでより
大きなものとなるので好ましくない。
The thermal decomposition of the metal oxalate of the present invention is carried out in a non-oxidizing atmosphere or under reduced pressure at a temperature rising rate of 0.5 to 20 ° C./min.
The holding temperature is 400 ° C or lower, preferably 200 to 360 ° C. The primary particle diameter and agglomerated particle diameter of the ultrafine metal powder are affected by the pyrolysis conditions. When the rate of temperature increase exceeds 20 ° C./min, both the primary particle diameter and the aggregate particle diameter become uneven and larger, which is not preferable.

【0010】また、熱分解雰囲気は、得られる金属超微
粉の粒子径などに大きな影響を与えないので、操作が容
易な常圧付近の非酸化性雰囲気が好ましい。また減圧雰
囲気の場合、30mmHg以下の圧力範囲を保つのが好まし
い。以上の方法による本発明の微細金属粉は、通常、凝
集粒子径10μm以下、比表面積 5〜30m2/gの銅またはニ
ッケル粉である。
Further, since the thermal decomposition atmosphere does not greatly affect the particle size of the obtained ultrafine metal powder, a non-oxidizing atmosphere in the vicinity of normal pressure is preferable because it is easy to operate. In the case of a reduced pressure atmosphere, it is preferable to keep the pressure range of 30 mmHg or less. The fine metal powder of the present invention obtained by the above method is usually a copper or nickel powder having an aggregate particle diameter of 10 μm or less and a specific surface area of 5 to 30 m 2 / g.

【0011】この微細金属粉は、空気中での安定的な取
扱いのためには徐酸化(=表面に極めて薄い緻密な酸化
膜を形成する方法)などを施して用いるのが好ましい。
また、特に不純物の含有量の少ないものが必要な場合に
は該金属粉を水、有機溶媒酸またはアルカリ溶液等を用
いて洗浄を行う工程、機械的に開催する工程、水素又は
ヒドラジン等をもちいる気相の還元工程を摘要すること
によって不純物を低減したものとすることが好ましい。
The fine metal powder is preferably subjected to gradual oxidation (= method of forming an extremely thin and dense oxide film on the surface) and the like for stable handling in air.
Further, particularly when a material having a low content of impurities is required, it has a step of washing the metal powder with water, an organic solvent acid or alkali solution, a step of mechanically holding, hydrogen or hydrazine. It is preferable to reduce impurities by requiring a gas-phase reduction step.

【0012】[0012]

【実施例】以下, 実施例などによって本発明をさらに具
体的に説明する。 実施例1 市販の蓚酸ニッケル・2水和物 5g に酢酸パラジウム
0.01g(900ppm)を添加し、乳鉢で十分に混合した。これ
を減圧乾燥機中に入れ、1mmHg の減圧下に速度 2℃/min
で 260℃まで昇温し、30分間保持した。ついで室温まで
冷却した後、1.5gの粉末を取り出した。この粉体をX線
分析したところ、金属ニッケルであり、BET 法による比
表面積は 23 m2/g、レーザー方式による凝集粒子径は 6
μmであった。
EXAMPLES The present invention will be described in more detail with reference to the following examples. Example 1 Commercially available nickel oxalate dihydrate (5 g) and palladium acetate
0.01 g (900 ppm) was added and mixed well in a mortar. Place this in a vacuum dryer and apply a pressure of 1 mmHg at a speed of 2 ° C / min.
The temperature was raised to 260 ° C. and held for 30 minutes. Then, after cooling to room temperature, 1.5 g of powder was taken out. An X-ray analysis of this powder revealed that it was metallic nickel and had a specific surface area of 23 m 2 / g by the BET method and an aggregate particle size of 6 by the laser method.
was μm.

【0013】比較例1 実施例1において、酢酸パラジウムを使用せず、保持温
度を 300℃とする他は同様とした。この結果、凝集粒子
径 12 μm、比表面積 10 m2/gのニッケル粉末1.4g を
得た。
Comparative Example 1 The same procedure as in Example 1 was carried out except that palladium acetate was not used and the holding temperature was 300 ° C. As a result, 1.4 g of nickel powder having an aggregate particle diameter of 12 μm and a specific surface area of 10 m 2 / g was obtained.

【0014】実施例2 市販の蓚酸銅・1/2 水和物 5g に酢酸パラジウム 0.01g
を添加し、乳鉢で十分に混合した。この混合物を使用す
る他は実施例1と同様にした。この結果、凝集粒子径 9
μm、比表面積 7 m2/gの銅粉末 1.8g を得た。
Example 2 0.01 g of palladium acetate was added to 5 g of commercially available copper oxalate / 1/2 hydrate.
Was added and mixed well in a mortar. Same as Example 1 but using this mixture. As a result, the aggregate particle size 9
1.8 g of copper powder having a particle size of 7 μm and a specific surface area of 7 m 2 / g was obtained.

【0015】実施例3 蓚酸のエタノール溶液に新しい水酸化ニッケル(II)を加
えて、エタノール還流下に反応を行った蓚酸ニッケル 5
g に、酢酸パラジウム 0.01gを添加し、乳鉢で十分に混
合した。この混合物を使用する他は実施例1と同様にし
た。この結果、凝集粒子径 1.2μm、比表面積 24 m2/g
のニッケル粉を得た。
Example 3 Nickel oxalate prepared by adding new nickel (II) hydroxide to an ethanol solution of oxalic acid and carrying out a reaction under reflux of ethanol.
0.01 g of palladium acetate was added to g and mixed well in a mortar. Same as Example 1 but using this mixture. As a result, aggregate particle size 1.2 μm, specific surface area 24 m 2 / g
Of nickel powder was obtained.

【0016】[0016]

【発明の効果】以上、発明の詳細な説明、実施例、比較
例から明瞭なように、本発明の金属の蓚酸塩にパラジウ
ムを共存させて熱分解する銅またはニッケル粉の製造法
によれば、より低温で、凝集性が小さい微粉が容易に製
造可能であり、工業的に実用的な新規方法を提供するも
のでありその意義は極めて大きいものである。
As is clear from the detailed description of the invention, the examples and the comparative examples above, according to the method for producing copper or nickel powder in which palladium is coexisted in the metal oxalate of the present invention for thermal decomposition. The present invention provides a novel industrially practical method that can easily produce fine powder having a low coagulability at a lower temperature, and its significance is extremely great.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 蓚酸銅又は蓚酸ニッケルをパラジウムの
存在下、減圧下或いは非酸化性雰囲気下、 400℃以下の
温度範囲において 0.5〜20℃/minの昇温速度で熱分解
し、比表面積が 5〜30 m2/g 、凝集粒子径が10μm以下
の銅又はニッケル粉を得ることを特徴とする微細金属粉
の製造法
1. A specific surface area is obtained by thermally decomposing copper oxalate or nickel oxalate in the presence of palladium under reduced pressure or in a non-oxidizing atmosphere at a temperature rising rate of 0.5 to 20 ° C./min in a temperature range of 400 ° C. or less. A method for producing fine metal powder, characterized in that copper or nickel powder having an aggregate particle diameter of 5 to 30 m 2 / g and an aggregate particle diameter of 10 μm or less is obtained.
【請求項2】 該蓚酸銅又は蓚酸ニッケルが無水塩であ
る請求項1記載の微細金属粉の製造法
2. The method for producing fine metal powder according to claim 1, wherein the copper oxalate or nickel oxalate is an anhydrous salt.
【請求項3】 該パラジウムが該蓚酸銅又は蓚酸ニッケ
ルに対して重量基準で 100〜4,000ppmである請求項1ま
たは2記載の微細金属粉の製造法
3. The method for producing a fine metal powder according to claim 1, wherein the palladium is 100 to 4,000 ppm on a weight basis with respect to the copper oxalate or the nickel oxalate.
JP3324524A 1991-04-08 1991-12-09 Production of fine metal powder Pending JPH05156325A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3324524A JPH05156325A (en) 1991-12-09 1991-12-09 Production of fine metal powder
US07/862,218 US5250101A (en) 1991-04-08 1992-04-02 Process for the production of fine powder
EP92303131A EP0508757A1 (en) 1991-04-08 1992-04-08 Process for the production of fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3324524A JPH05156325A (en) 1991-12-09 1991-12-09 Production of fine metal powder

Publications (1)

Publication Number Publication Date
JPH05156325A true JPH05156325A (en) 1993-06-22

Family

ID=18166765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3324524A Pending JPH05156325A (en) 1991-04-08 1991-12-09 Production of fine metal powder

Country Status (1)

Country Link
JP (1) JPH05156325A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011037150A1 (en) * 2009-09-24 2011-03-31 住友金属鉱山株式会社 Nickel powder and production method thereof
JP2012072418A (en) * 2010-09-27 2012-04-12 Yamagata Univ Fine coated copper particles and method for producing the same
JP2016033260A (en) * 2015-09-18 2016-03-10 国立大学法人山形大学 Composite compound, and suspension

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011037150A1 (en) * 2009-09-24 2011-03-31 住友金属鉱山株式会社 Nickel powder and production method thereof
JPWO2011037150A1 (en) * 2009-09-24 2013-02-21 住友金属鉱山株式会社 Nickel fine powder and method for producing the same
JP5626217B2 (en) * 2009-09-24 2014-11-19 住友金属鉱山株式会社 Nickel fine powder and method for producing the same
JP2012072418A (en) * 2010-09-27 2012-04-12 Yamagata Univ Fine coated copper particles and method for producing the same
JP2016033260A (en) * 2015-09-18 2016-03-10 国立大学法人山形大学 Composite compound, and suspension

Similar Documents

Publication Publication Date Title
US5250101A (en) Process for the production of fine powder
KR100427005B1 (en) Spheroidally Agglomerated Basic Cobalt(II) Carbonate and Spheroidally Agglomerated Cobalt(II) Hydroxide, Process for Their Production and Their Use
WO2004020128A1 (en) Metallic nickel powder and method for production thereof
JP2003129102A (en) Powder of platinum and platinum alloy with high surface area and low chlorine content, and process for preparing the same
JPH04231406A (en) Preparation of metal powder
US6869461B2 (en) Fine powder of metallic copper and process for producing the same
US3332887A (en) Catalyst for the production of olefinic oxides
JPH10265812A (en) Production of superfine silver particle
JPH0557324B2 (en)
JPH05156325A (en) Production of fine metal powder
JPH03100109A (en) Manufacture of fine copper powder
US5658395A (en) Method of preparing powders for hard materials from APT and soluble cobalt salts
US2678259A (en) Chlorine production by oxidizing hydrogen chloride employing unglowed chromic oxide catalyst material
JPH05156326A (en) Production of fine silver powder
JP2834199B2 (en) Method for producing ultrafine tungsten particles
JPH05156324A (en) Production of superfine nickel aggregated powder
JPH075308B2 (en) Method for producing zinc oxide
JPH0565511A (en) Production of superfine powder of cobalt
Glavee et al. Preparation of magnetic fine particles by borohydride reduction
JPH0693316A (en) Production of extremely fine copper powder
JP6694115B2 (en) Silver oxalate
JPH05105922A (en) Production of fine nickel powder
JPH0676609B2 (en) Method for producing fine copper powder
JPH0524810A (en) Production of aluminum nitride powder
JPS62188709A (en) Production of pulverized spherical silver powder