JPWO2016158401A1 - 画像符号化装置および方法 - Google Patents

画像符号化装置および方法 Download PDF

Info

Publication number
JPWO2016158401A1
JPWO2016158401A1 JP2017509528A JP2017509528A JPWO2016158401A1 JP WO2016158401 A1 JPWO2016158401 A1 JP WO2016158401A1 JP 2017509528 A JP2017509528 A JP 2017509528A JP 2017509528 A JP2017509528 A JP 2017509528A JP WO2016158401 A1 JPWO2016158401 A1 JP WO2016158401A1
Authority
JP
Japan
Prior art keywords
encoding
image
budget
unit
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017509528A
Other languages
English (en)
Inventor
小川 一哉
一哉 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of JPWO2016158401A1 publication Critical patent/JPWO2016158401A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/156Availability of hardware or computational resources, e.g. encoding based on power-saving criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/107Selection of coding mode or of prediction mode between spatial and temporal predictive coding, e.g. picture refresh
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/109Selection of coding mode or of prediction mode among a plurality of temporal predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/115Selection of the code volume for a coding unit prior to coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/117Filters, e.g. for pre-processing or post-processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/119Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/12Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/13Adaptive entropy coding, e.g. adaptive variable length coding [AVLC] or context adaptive binary arithmetic coding [CABAC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/164Feedback from the receiver or from the transmission channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/523Motion estimation or motion compensation with sub-pixel accuracy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/57Motion estimation characterised by a search window with variable size or shape
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/85Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
    • H04N19/86Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression involving reduction of coding artifacts, e.g. of blockiness

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

本開示は、画像データの転送を長時間安定して行うことができるようにする画像符号化装置および方法に関する。バジェット判定部は、発電量情報、電池残量情報、および通信可能帯域情報を入力として、符号化処理制御のもととなる電力・帯域バジェット情報を生成し、生成した電力・帯域バジェット情報を符号化制御部に供給する。符号化制御部は、バジェット判定部からの電力・帯域バジェット情報から画像符号化方式や符号化パラメータ・モードを生成し、画像符号化方式や符号化パラメータ・モードが含まれる圧縮制御情報を、画像圧縮装置に供給する。本開示は、例えば、符号化を行うカメラシステムに適用することができる。

Description

本開示は画像符号化装置および方法に関し、特に、画像データの転送を長時間安定して行うことができるようにした画像符号化装置および方法に関する。
どんな場所にでも設置できて、映像データを取得可能なIoT(Internet of Things)時代のカメラシステムとして、発電装置と無線通信部を備え、電力経路や有線の通信経路を必要としないカメラシステムが提案されている。
例えば、特許文献1においては、発電装置と無線通信機能を備える撮像装置において平均発電量に応じて画像の撮影範囲、撮影頻度、圧縮率を変化させることで長期間にわたって撮影を継続可能な装置が提案されている。
特開2011−228884号公報
しかしながら、この提案においては、撮影の継続と引き換えに、画像の範囲や撮影頻度、画質が低下してしまっていた。
本開示は、このような状況に鑑みてなされたものであり、画像データの転送を長時間安定して行うことができるものである。
本開示の一側面の画像符号化装置は、画像データの符号化処理を行い、符号化データを生成する符号化部と、電力に関する電力情報に応じて、前記符号化処理を制御する符号化制御部と、前記符号化部により生成された符号化データを伝送する伝送部とを備える。
前記電力情報は、発電されている発電量を示す情報および蓄電されている電池の残量情報の少なくとも1つの情報を含むことができる。
前記符号化制御部は、前記符号化処理に用いられる符号化方式を切り替えることができる。
前記符号化制御部は、前記符号化処理に用いられる符号化方式のイントラ予測とインター予測を切り替えることができる。
前記符号化制御部は、前記符号化処理に用いられる符号化制御パラメータを切り替えることができる。
前記符号化制御部は、インター予測を適用している場合、前記符号化制御パラメータとして、片方向予測モードと両方向予測モードとを切り替えることができる。
前記符号化制御部は、インター予測を適用している場合、前記符号化制御パラメータとして、参照面の数を切り替えることができる。
前記符号化制御部は、インター予測を適用している場合、前記符号化制御パラメータとして、動き予測の探索範囲の大きさを切り替えることができる。
前記符号化制御部は、前記符号化制御パラメータとして、デブロックフィルタの適用の有無を切り替えることができる。
前記符号化制御部は、前記符号化制御パラメータとして、デブロックフィルタおよび適応オフセットフィルタの少なくとも1つの適用の有無を切り替えることができる。
前記符号化制御部は、前記符号化制御パラメータとして、可変長符号化処理を、CABAC(Context-Adaptive Binary Arithmetic Coding)とCAVLC(Context-Adaptive Variable Length Coding)との間で切り替えることができる。
前記符号化制御部は、前記符号化制御パラメータとして、予測ブロックサイズの下限を切り替えることができる。
前記伝送部は、無線により前記符号化部により生成された符号化データを伝送し、前記符号化制御部は、前記伝送部による通信可能帯域を示す情報に応じて、前記符号化処理を制御することができる。
本開示の一側面の画像符号化方法は、画像符号化装置が、画像データの符号化処理を行い、符号化データを生成し、電力に関する電力情報に応じて、前記符号化処理を制御し、生成された符号化データを伝送する。
本開示の一側面においては、画像データの符号化処理が行われて、符号化データが生成され、電力に関する電力情報に応じて、前記符号化処理が制御される。そして、生成された符号化データが伝送される。
なお、上述の画像符号化装置は、独立した画像処理装置であっても良いし、1つの画像符号化装置を構成している内部ブロックであってもよい。
本開示の一側面によれば、画像を符号化することができる。特に、画像データの転送を長時間安定して行うことができる。
なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本技術を適用するカメラシステムの構成例を示すブロック図である。 バジェット判定・符号化制御部の構成例を示すブロック図である。 画像圧縮装置の構成例を示すブロック図である。 カメラシステムの処理について説明するフローチャートである。 バジェット判定処理について説明するフローチャートである。 電力バジェット情報の例を示す図である。 電力帯域バジェット情報の例を示す図である。 符号化制御部の符号化制御処理について説明するフローチャートである。 画像圧縮装置の符号化処理を説明するフローチャートである。 画像圧縮装置の符号化処理を説明するフローチャートである。 符号化制御処理の他の例を説明するフローチャートである。 符号化制御処理のさらに他の例を説明するフローチャートである。 バジェット判定処理の他の例を説明するフローチャートである。 電力バジェット情報の例を示す図である。 電力帯域バジェット情報の例を示す図である。 図13のバジェット判定処理を行った場合の符号化制御処理について説明するフローチャートである。 バジェット判定処理のさらに他の例について説明するフローチャートである。 図17のバジェット判定処理を行った場合の符号化制御処理について説明するフローチャートである。 バジェット判定処理のさらに他の例について説明するフローチャートである。 帯域バジェット情報の例を示す図である。 図19のバジェット判定処理を行った場合の符号化制御処理について説明するフローチャートである。 本技術を適用するカメラシステムの他の構成例を示すブロック図である。 本技術を適用するカメラシステムの他の構成例を示すブロック図である。 本技術を適用するカメラシステムの他の構成例を示すブロック図である。 コンピュータのハードウエアの構成例を示すブロック図である。
以下、本開示を実施するための形態(以下実施の形態とする)について説明する。なお、説明は以下の順序で行う。
1.第1の実施の形態(カメラシステム)
2.第2の実施の形態(カメラシステム)
3.第3の実施の形態(カメラシステム)
4.第4の実施の形態(カメラシステム)
5.第5の実施の形態(コンピュータ)
<1.第1の実施の形態>
(カメラシステムの構成例)
図1は、本技術を適用するカメラシステムの構成例を示すブロック図である。
カメラシステム100は、発電装置101、蓄電装置102、撮像装置103、画像処理装置104、画像圧縮装置105、無線伝送装置106、およびバジェット判定・符号化制御部107を含むように構成されている。
発電装置101は、燃料や振動、光などの自然エネルギーから電力を生成する装置である。例えば、発電装置101は、太陽パネルや、振動から電力を生成する装置や、圧力から電力を生成する装置や、熱から電力を生成する装置や、電磁波から電力を発生する装置などであってもよい。
発電装置101からの電力は、蓄電装置102に送信される。また、発電装置101は、発電量に関する情報である発電量情報を、バジェット判定・符号化制御部107に供給する。
蓄電装置102は、発電装置101により発電された電力を蓄える。蓄電装置102は、電池残量を示す情報である電池残量情報を、バジェット判定・符号化制御部107に供給する。
撮像装置103は、例えば、CMOS(Complementary Metal Oxide Semiconductor)固体撮像装置や、CCD(Charge Coupled Device)固体撮像装置、A/D変換装置などからなり、被写体を撮像することにより、画像データを取得する。撮像装置103は、取得した画像データを、画像処理装置104に出力する。
画像処理装置104は、撮像装置103からの画像データに対して、画素の補正や色の補正、歪みの補正など、画像圧縮以外の画像処理を行い、画像処理後の画像データを、画像圧縮装置105に出力する。
画像圧縮装置105は、バジェット判定・符号化制御部107からの圧縮制御情報を用いて、画像処理装置104からの画像データに対して、画像符号化アルゴリズムに基づいて、符号化処理(圧縮処理)を行う。画像符号化アルゴリズムとしては、例えば、JPEG、MPEG、H.246/AVC(以下、H.264と称する)、H.265/HEVC(High Efficiency Video Coding)(以下、H.265と称する)などが挙げられる。画像圧縮装置105は、符号化によりデータ量が削減されたデータを、無線伝送装置106に出力する。
無線伝送装置106は、画像圧縮装置105からの符号化データを受け取り、アンテナ108を介して、無線で伝送を行う。また、無線伝送装置106は、通信可能帯域が記された通信可能帯域情報を、バジェット判定・符号化制御部107に供給する。
バジェット判定・符号化制御部107は、発電装置101の発電量情報、蓄電装置102の電池残量情報、および無線伝送装置106の通信可能帯域情報を入力として、画像圧縮装置105の符号化処理制御のための情報を生成する。バジェット判定・符号化制御部107は、例えば、CPUやCPU上で動作するプログラムであってもよい。
バジェット判定・符号化制御部107は、図2に示されるように、バジェット判定部111および符号化制御部112により構成される。バジェット判定部111は、発電量情報および電池残量情報を少なくとも1つ含む電力に関する電力情報、並びに通信可能帯域情報を入力として、符号化処理制御のもととなる電力・帯域バジェット情報を生成し、生成した電力・帯域バジェット情報を符号化制御部112に供給する。符号化制御部112は、バジェット判定部111からの電力・帯域バジェット情報から画像符号化方式や符号化パラメータ・モードを生成し、画像符号化方式や符号化パラメータ・モードが含まれる圧縮制御情報を、画像圧縮装置105に供給する。すなわち、符号化制御部112は、バジェット判定部111からの電力・帯域バジェット情報に応じて、画像圧縮装置105を制御し、画像符号化方式や符号化パラメータ・モードを切り替えさせる。
(画像圧縮装置の構成例)
図3は、画像圧縮装置の構成例を示すブロック図である。なお、図3の例においては、一例として、画像符号化方式がH.265である場合の例が示されている。
MPEG2又はH.264などの旧来の画像符号化方式では、符号化処理は、マクロブロックと呼ばれる処理単位で実行される。マクロブロックは、16×16画素の均一なサイズを有するブロックである。これに対し、H.265では、符号化処理は、符号化単位(CU:Coding Unit)と呼ばれる処理単位で実行される。CUは、最大符号化単位(LCU:Largest Coding Unit)を再帰的に分割することにより形成される、可変的なサイズを有するブロックである。選択可能なCUの最大サイズは、64×64画素である。選択可能なCUの最小サイズは、8×8画素である。最小サイズのCUは、(SCU:Smallest Coding Unit)と呼ばれる。
このように、可変的なサイズを有するCUが採用される結果、H.265では、画像の内容に応じて画質及び符号化効率を適応的に調整することが可能である。予測符号化のための予測処理は、予測単位(PU:Prediction Unit)と呼ばれる処理単位で実行される。PUは、CUをいくつかの分割パターンのうちの1つで分割することにより形成される。さらに、直交変換処理は、変換単位(TU:Transform Unit)と呼ばれる処理単位で実行される。TUは、CU又はPUをある深さまで分割することにより形成される。
CUのブロック分割は、1つのブロックの4(=2×2)個のサブブロックへの分割を再帰的に繰り返すことにより行われ、結果として四分木(Quad-Tree)状のツリー構造が形成される。1つの四分木の全体をCTB(Coding Tree Block)といい、CTBに対応する論理的な単位をCTU(Coding Tree Unit)という。
PUは、イントラ予測及びインター予測を含む予測処理の処理単位である。PUは、CUをいくつかの分割パターンのうちの1つで分割することにより形成される。TUは、直交変換処理の処理単位である。TUは、CU(イントラCUについては、CU内の各PU)をある深さまで分割することにより形成される。上述したCU、PU及びTUといったブロックを画像に設定するためにどのようなブロック分割を行うかは、典型的には、符号化効率を左右するコストの比較に基づいて決定される。このPUのサイズなどが符号化制御部112により符号化制御パラメータとして設定されて制御される。
図3の例においては、画像圧縮装置105は、画面並べ替えバッファ132、演算部133、直交変換部134、量子化部135、可逆符号化部136、蓄積バッファ137、逆量子化部138、逆直交変換部139、および加算部140を有する。また、画像圧縮装置105は、フィルタ141、フレームメモリ144、スイッチ145、イントラ予測部146、動き予測・補償部147、予測画像選択部148、およびレート制御部149を有する。
図3の画像圧縮装置105において、画像処理装置104からの画像データは、画面並べ替えバッファ132に出力されて記憶される。
画面並べ替えバッファ132は、記憶した表示の順番のフレーム単位の画像を、GOP構造に応じて、符号化のための順番に並べ替える。画面並べ替えバッファ132は、並べ替え後の画像を、演算部133、イントラ予測部146、および動き予測・補償部147に出力する。
演算部133は、画面並べ替えバッファ132から供給される画像から、予測画像選択部148から供給される予測画像を減算することにより符号化を行う。演算部133は、その結果得られる画像を、残差情報(差分)として直交変換部134に出力する。なお、予測画像選択部148から予測画像が供給されない場合、演算部133は、画面並べ替えバッファ132から読み出された画像をそのまま残差情報として直交変換部134に出力する。
直交変換部134は、TU単位で、演算部133からの残差情報に対して直交変換処理を行う。直交変換部134は、直交変換処理後の直交変換処理結果を量子化部135に供給する。
量子化部135は、直交変換部134から供給される直交変換処理結果を量子化する。量子化部135は、量子化の結果得られる量子化値を可逆符号化部136に供給する。
可逆符号化部136は、最適イントラ予測モードを示す情報(以下、イントラ予測モード情報という)をイントラ予測部146から取得する。また、可逆符号化部136は、最適インター予測モードを示す情報(以下、インター予測モード情報という)、動きベクトル、参照画像を特定する情報などを動き予測・補償部147から取得する。また、可逆符号化部136は、フィルタ141からオフセットフィルタに関するオフセットフィルタ情報を取得する。
可逆符号化部136は、量子化部135から供給される量子化値に対して、可変長符号化や算術符号化などの可逆符号化を行う。
また、可逆符号化部136は、イントラ予測モード情報、または、インター予測モード情報、動きベクトル、および参照画像を特定する情報、並びにオフセットフィルタ情報などを、符号化に関する符号化情報として可逆符号化する。可逆符号化部136は、可逆符号化された符号化情報と量子化値を、符号化データとして蓄積バッファ137に供給し、蓄積させる。
なお、可逆符号化された符号化情報は、可逆符号化された量子化値のヘッダ情報(例えばスライスヘッダ)とされてもよい。
蓄積バッファ137は、可逆符号化部136から供給される符号化データを、一時的に記憶する。また、蓄積バッファ137は、記憶している符号化データを、符号化ストリームとして、無線伝送装置106に供給する。
また、量子化部135より出力された量子化値は、逆量子化部138にも入力される。逆量子化部138は、量子化値を逆量子化する。逆量子化部138は、逆量化の結果得られる直交変換処理結果を逆直交変換部139に供給する。
逆直交変換部139は、TU単位で、逆量子化部138から供給される直交変換処理結果に対して逆直交変換処理を行う。逆直交変換の方式としては、例えば、IDCT(逆離散コサイン変換)とIDST(逆離散サイン変換)がある。逆直交変換部139は、逆直交変換処理の結果得られる残差情報を加算部140に供給する。
加算部140は、逆直交変換部139から供給される残差情報と、予測画像選択部148から供給される予測画像を加算し、復号を行う。加算部140は、復号された画像をフィルタ141とフレームメモリ144に供給する。
フィルタ141は、加算部140から供給される復号された画像に対して、フィルタ処理を行う。具体的には、フィルタ141は、デブロックフィルタ処理と適応オフセットフィルタ(SAO(Sample adaptive offset))処理を順に行う。フィルタ141は、フィルタ処理後の符号化済みのピクチャをフレームメモリ144に供給する。また、フィルタ141は、行われた適応オフセットフィルタ処理の種類とオフセットを示す情報を、オフセットフィルタ情報として可逆符号化部136に供給する。これらのフィルタの有無などが符号化制御部112により符号化制御パラメータとして設定されて制御される。
フレームメモリ144は、フィルタ141から供給される画像と、加算部140から供給される画像を蓄積する。フレームメモリ144に蓄積されたフィルタ処理が行われていない画像のうちのPU(Prediction Unit)に隣接する画像は、周辺画像としてスイッチ145を介してイントラ予測部146に供給される。一方、フレームメモリ144に蓄積されたフィルタ処理が行われた画像は、参照画像としてスイッチ145を介して動き予測・補償部147に出力される。
イントラ予測部146は、PU単位で、フレームメモリ144からスイッチ145を介して読み出された周辺画像を用いて、候補となる全てのイントラ予測モードのイントラ予測処理を行う。
また、イントラ予測部146は、画面並べ替えバッファ132から読み出された画像と、イントラ予測処理の結果生成される予測画像とに基づき、モードテーブル設定部50から供給される情報が示す使用可能であるイントラ予測モードに対してコスト関数値(詳細は後述する)を算出する。そして、イントラ予測部146は、コスト関数値が最小となるイントラ予測モードを、最適イントラ予測モードに決定する。
ところで、H.264そしてH.265において、より高い符号化効率を達成するには、適切な予測モードの選択が重要である。
かかる選択方式の例として、JM (Joint Model) と呼ばれるAVCの参照ソフトウエア (http://iphome.hhi.de/suehring/tml/index.htm において公開されている) に実装されている方法を挙げることが出来る。
JMにおいては、以下に述べる、High Complexity Modeと、Low Complexity Modeの2通りのモード判定方法を選択することが可能である。どちらも、それぞれの予測モードModeに関するコスト関数値を算出し、これを最小にする予測モードを当該ブロック乃至マクロブロックに対する最適モードとして選択する。
High Complexity Modeにおけるコスト関数は、以下の式(1)のように示される。
Figure 2016158401
ここで、Ωは、当該ブロック乃至マクロブロックを符号化するための候補モードの全体集合、Dは、当該予測モードで符号化した場合の、復号画像と入力画像の差分エネルギーである。λは、量子化パラメータの関数として与えられるLagrange未定乗数である。Rは、直交変換係数を含んだ、当該モードで符号化した場合の総符号量である。
つまり、High Complexity Modeでの符号化を行うには、上記パラメータD及びRを算出するため、全ての候補モードにより、一度、仮エンコード処理を行う必要があり、より高い演算量を要する。
Low Complexity Modeにおけるコスト関数は、以下の式(2)のように示される。
Figure 2016158401
ここで、Dは、High Complexity Modeの場合と異なり、予測画像と入力画像の差分エネルギーとなる。Qp2Quant(QP)は、量子化パラメータQpの関数として与えられ、HeaderBitは、直交変換係数を含まない、動きベクトルや、モードといった、Headerに属する情報に関する符号量である。
すなわち、Low Complexity Modeにおいては、それぞれの候補モードに関して、予測処理を行う必要があるが、復号画像までは必要ないため、符号化処理まで行う必要はない。このため、High Complexity Modeより低い演算量での実現が可能である。
イントラ予測部146は、最適イントラ予測モードで生成された予測画像、および、対応するコスト関数値を、予測画像選択部148に供給する。イントラ予測部146は、予測画像選択部148から最適イントラ予測モードで生成された予測画像の選択が通知された場合、イントラ予測モード情報を可逆符号化部136に供給する。なお、イントラ予測モードとはPUのサイズ、予測方向などを表すモードである。
動き予測・補償部147は、インター予測モードの動き予測・補償処理を行う。具体的には、動き予測・補償部147は、画面並べ替えバッファ132から供給される画像と、フレームメモリ144からスイッチ145を介して読み出される参照画像に基づいて、インター予測モードの動きベクトルをPU単位で検出する。そして、動き予測・補償部147は、その動きベクトルに基づいてPU単位で参照画像に補償処理を施し、予測画像を生成する。例えば、この動きベクトルの探索範囲や、動きベクトルの精度、参照面の枚数などが符号化制御部112により符号化制御パラメータとして設定されて制御される。
このとき、動き予測・補償部147は、画面並べ替えバッファ132から供給される画像と予測画像とに基づいて、すべてのインター予測モードに対してコスト関数値を算出し、コスト関数値が最小となるインター予測モードを最適インター予測モードに決定する。そして、動き予測・補償部147は、最適インター予測モードのコスト関数値と、対応する予測画像を予測画像選択部148に供給する。また、動き予測・補償部147は、予測画像選択部148から最適インター予測モードで生成された予測画像の選択が通知された場合、インター予測モード情報、対応する動きベクトル、参照画像を特定する情報などを可逆符号化部136に出力する。なお、インター予測モードとは、PUのサイズなどを表すモードである。
予測画像選択部148は、イントラ予測部146および動き予測・補償部147から供給されるコスト関数値に基づいて、最適イントラ予測モードと最適インター予測モードのうちの、対応するコスト関数値が小さい方を、最適予測モードに決定する。そして、予測画像選択部148は、最適予測モードの予測画像を、演算部133および加算部140に供給する。また、予測画像選択部148は、最適予測モードの予測画像の選択をイントラ予測部146または動き予測・補償部147に通知する。
レート制御部149は、蓄積バッファ137に蓄積された符号化データに基づいて、オーバーフローあるいはアンダーフローが発生しないように、量子化部135の量子化動作のレートを制御する。
次に、図4のフローチャートを参照して、カメラシステム100の処理について説明する。
ステップS101において、発電装置101は、発電し、電力を蓄電装置102に出力する。このとき、発電装置101は、発電量に関する情報である発電量情報を、バジェット判定・符号化制御部107に供給する。
ステップS102において、蓄電装置102は、発電装置101により発電された電力を蓄える。蓄電装置102は、電池残量を示す情報である電池残量情報を、バジェット判定・符号化制御部107に供給する。
ステップS103において、撮像装置103は、被写体を撮像し、撮像により得られた画像データを、画像処理装置104に出力する。ステップS104において、画像処理装置104は、撮像装置103からの画像データに対して、画素の補正や色の補正、歪みの補正など、画像圧縮以外の画像処理を行い、画像処理後の画像データを、画像圧縮装置105に出力する。
ステップS105において、バジェット判定部111は、バジェット判定処理を行う。このバジェット判定処理は、図5を参照して後述されるが、ステップS105の処理により、いまの電力の状況と無線通信の状況が分類される。そして、分類された電力帯域バジェット情報が符号化制御部112に供給される。
ステップS106において、符号化制御部112は、バジェット判定部111からの電力・帯域バジェット情報をもとに、符号化制御処理を行う。この符号化制御処理は、図6を参照して後述されるが、ステップS106の処理により、画像符号化方式や符号化パラメータ・モードが生成され、画像符号化方式や符号化パラメータ・モードが含まれる圧縮制御情報が、画像圧縮装置105に供給される。
ステップS107において、画像圧縮装置105は、符号化処理(画像圧縮処理)を行う。この符号化処理は、図7を参照して後述されるが、ステップS107の処理により、圧縮制御情報に基づいて符号化処理が行われ、画像処理後の画像データが、無線伝送装置106に出力される。
ステップS108において、無線伝送装置106は、画像圧縮装置105からの符号化データを受け取り、アンテナ108を介して、無線で伝送を行う。
次に、図5を参照して、図4のステップS105のバジェット判定処理について説明する。
ステップS111において、バジェット判定部111は、発電装置101からの発電量情報に基づいて、発電量分類処理を行う。すなわち、バジェット判定部111は、発電装置101からの発電量情報から、閾値を使って、発電量が多いか少ないかに分類する。
ステップS112において、バジェット判定部111は、蓄電装置102の電池残量情報に基づいて、蓄電量分類処理を行う。すなわち、バジェット判定部111は、蓄電装置102の電池残量情報から、閾値を使って、蓄電池の残量が多いか少ないかに分類する。
ステップS113において、バジェット判定部111は、電力バジェット判定を行い、電力バジェット情報を、図6に示されるように、例えば、High/Middle/Lowに分類する。
図6は、電力バジェット情報の例を示している。図6の例においては、電池残量が大きくて、発電量が大きいと、電力バジェットが、Highであることが示され、電池残量が大きくて、発電量が小さいと、電力バジェットが、Middleであることが示されている。また、電池残量が小さくて、発電量が大きいと、電力バジェットが、Middleであることが示され、電池残量が小さくて、発電量が小さいと、電力バジェットが、Lowであることが示されている。
ステップS114において、バジェット判定部111は、無線伝送装置106からの通信可能帯域情報に基づいて、通信可能帯域分類判定処理を行う。すなわち、バジェット判定部111は、無線伝送装置106からの通信可能帯域情報を、閾値などを利用して、帯域が多いか少ないかに分類する。
ステップS115において、バジェット判定部111は、通信電力バジェット判定を行い、電力帯域バジェット情報を、例えば、図7に示される6種類に分類する。
図7は、電力帯域バジェット情報を示している。図7の例においては、通信可能帯域が大きくて、電力バジェットがHighであると、電力帯域バジェットが、H_Hであることが示され、通信可能帯域が小さくて、電力バジェットがLowであると、電力帯域バジェットが、L_Hであることが示されている。また、通信可能帯域が大きくて、電力バジェットがMiddleであると、電力帯域バジェットが、H_Mであることが示され、通信可能帯域が小さくて、電力バジェットがMiddleであると、電力帯域バジェットが、L_Mであることが示されている。さらに、通信可能帯域が大きくて、電力バジェットがLowであると、電力帯域バジェットが、H_Lであることが示され、通信可能帯域が小さくて、電力バジェットが小さいと、電力帯域バジェットが、L_Lであることが示されている。
そして、バジェット判定部111は、この分類を示す電力・帯域バジェット情報を符号化制御部112に供給し、バジェット判定処理を終了する。
次に、図8のフローチャートを参照して、図4のステップS106の符号化制御処理について説明する。
ステップS121において、符号化制御部112は、バジェット判定部111からの電力・帯域バジェット情報に基づいて、帯域バジェットが大きいか否かを判定する。ステップS151において、帯域バジェットが大きいと判定された場合(例えば、6種類の分類で、H_*の場合)、処理は、ステップS122に進む。ステップS122において、符号化制御部112は、使用する符号化方式を、イントラ符号化方式であるJPEG方式に設定する。なお、イントラ符号化方式であれば、MotionJPEGなどのJPEG以外でもよい。
ステップS121において、帯域バジェットが小さいと判定された場合(例えば、6種類の分類で、L_*の場合)、処理は、ステップS123に進む。ステップS123において、符号化制御部112は、使用する符号化方式を、イントラより圧縮率の高いインター予測可能な符号化方式であるH.264方式に設定する。なお、インター予測可能な符号化方式であれば、H.264方式以外にも、MPEG2,MPEG4,VP8,VP9,H.265方式としてもよい。
ステップS124において、符号化制御部112は、バジェット判定部111からの電力・帯域バジェット情報に基づいて、インター予測に使用する参照面の枚数を決定するため、電力バジェットがHighか否かを判定する。ステップS124において、電力バジェットがHighであると判定された場合、処理は、ステップS125に進む。ステップS125において、符号化制御部112は、インター予測で利用できる参照面を2枚に設定し、双方向予測を使用できるようにする。
ステップS124において、電力バジェットがHighではないと判定された場合、処理は、ステップS126に進む。ステップS126において、バジェット判定部111からの電力・帯域バジェット情報に基づいて、インター予測に使用する参照面の枚数を決定するため、電力バジェットがMiddleか否かを判定する。
ステップS126において、電力バジェットがMiddleであると判定された場合、処理は、ステップS127に進む。ステップS127において、符号化制御部112は、インター予測で利用できる参照面を1枚に設定し、双方向予測を使用できるようにする。
ステップS126において、電力バジェットがMiddleではない、すなわち、Lowであると判定された場合、処理は、ステップS128に進む。ステップS128において、符号化制御部112は、インター予測で利用できる参照面を1枚に設定し、双方向予測は使用できないが、片方向予測を使用できるようにする。これにより、符号化処理における消費電力が抑えられる。
ステップS122、ステップS125、S127、およびS128の後、処理は、ステップS129に進む。ステップS129において、符号化制御部112は、目標ビットレートを、通信可能帯域以下の値で設定する。
このように算出された画像符号化方式や符号化パラメータ・モードは、圧縮制御情報として、画像圧縮装置105に供給される。そして、画像圧縮装置105においては、この圧縮制御情報に従った符号化処理が行われる。
なお、H.264方式の場合、上述した切り替え処理に代えて(または、加えて)、可変長符号化処理を、CABAC(Context-Adaptive Binary Arithmetic Coding)とCAVLC(Context-Adaptive Variable Length Coding)との間で切り替えるようにしてもよい。CABACは、1bitずつ確率テーブルを更新しながら符号化・復号する必要があるため、並列化に向きにくい演算構造となっている。すなわちスループット(単位時間あたりの処理性能)を上げるためには高速で回路を動作させる必要がある。演算自体も複雑であり、電力もかかる。その代わり、符号化効率は、CAVLCよりも高い。
一方、CAVLCは、テーブルルックアップ型の演算構造のため、並列化させやすく処理内容も比較的単純であり、低電力の処理になる。その代わり、符号化効率はCABACより劣る。以上のことから、電力バジェットがHigh(電力がたくさん使える=クロック周波数をあげてもよい)場合は、CABACを使って、そうではない場合は、CAVLCを使うように切り替えられる。
(画像圧縮装置の処理の説明)
図9および図10は、図1の画像圧縮装置105の符号化処理を説明するフローチャートである。なお、この符号化処理は、符号化制御部112からの圧縮制御情報に基づいて行われる。また、図9および図10においては、一例として、H.265符号化方式が行われる例について説明する。
画像処理装置104からの画像データは、画面並べ替えバッファ132に出力されて記憶される。
図9のステップS131において、画像圧縮装置105の画面並べ替えバッファ132(図3)は、記憶した表示の順番のフレームの画像を、GOP構造に応じて、符号化のための順番に並べ替える。画面並べ替えバッファ132は、並べ替え後のフレーム単位の画像を、演算部133、イントラ予測部146、および動き予測・補償部147に供給する。
ステップS132において、イントラ予測部146は、PU単位で、イントラ予測モードのイントラ予測処理を行う。すなわち、イントラ予測部146は、画面並べ替えバッファ132から読み出された画像と、イントラ予測処理の結果生成される予測画像とに基づいて、すべてのイントラ予測モードに対してコスト関数値を算出する。そして、イントラ予測部146は、コスト関数値が最小となるイントラ予測モードを、最適イントラ予測モードに決定する。イントラ予測部146は、最適イントラ予測モードで生成された予測画像、および、対応するコスト関数値を、予測画像選択部148に供給する。
また、動き予測・補償部147は、ステップS133においてPU単位で、インター予測モードの動き予測・補償処理を行う。また、動き予測・補償部147は、画面並べ替えバッファ132から供給される画像と予測画像とに基づいて、すべてのインター予測モードに対してコスト関数値を算出し、コスト関数値が最小となるインター予測モードを最適インター予測モードに決定する。そして、動き予測・補償部147は、最適インター予測モードのコスト関数値と、対応する予測画像を予測画像選択部148に供給する。なお、H.265でイントラのみとされている場合には、ステップS133の処理は省略される。すなわち、不必要な処理がなされないので、消費電力が抑えられる効果がある。また、ここで、この動きベクトルの探索範囲や、動きベクトルの精度、参照面の枚数などが符号化制御部112により符号化制御パラメータとして設定されて制御されている場合には、その制御に従ってインター予測が行われる。
ステップS134において、予測画像選択部148は、イントラ予測部146および動き予測・補償部147から供給されるコスト関数値に基づいて、最適イントラ予測モードと最適インター予測モードのうちのコスト関数値が最小となる方を、最適予測モードに決定する。そして、予測画像選択部148は、最適予測モードの予測画像を、演算部133および加算部140に供給する。
ステップS135において、予測画像選択部148は、最適予測モードが最適インター予測モードであるかどうかを判定する。ステップS135で最適予測モードが最適インター予測モードであると判定された場合、予測画像選択部148は、最適インター予測モードで生成された予測画像の選択を動き予測・補償部147に通知する。
そして、ステップS136において、動き予測・補償部147は、インター予測モード情報、動きベクトル、および参照画像を特定する情報を可逆符号化部136に供給し、処理をステップS138に進める。
一方、ステップS136で最適予測モードが最適インター予測モードではないと判定された場合、即ち最適予測モードが最適イントラ予測モードである場合、予測画像選択部148は、最適イントラ予測モードで生成された予測画像の選択をイントラ予測部146に通知する。そして、ステップS137において、イントラ予測部146は、イントラ予測モード情報を可逆符号化部136に供給し、処理をステップS138に進める。
ステップS138において、演算部133は、画面並べ替えバッファ132から供給される画像から、予測画像選択部148から供給される予測画像を減算することにより符号化を行う。演算部133は、その結果得られる画像を、残差情報として直交変換部134に出力する。
ステップS139において、直交変換部134は、TU単位で、残差情報に対して直交変換処理を行う。直交変換部134は、直交変換処理後の直交変換処理結果を量子化部135に供給する。
ステップS140において、量子化部135は、直交変換部134から供給される直交変換処理結果を量子化する。量子化部135は、量子化の結果得られる量子化値を可逆符号化部136と逆量子化部138に供給する。
ステップS141において、逆量子化部138は、量子化部135からの量子化値に対して逆量子化を行う。逆量子化部138は、逆量化の結果得られる直交変換処理結果を逆直交変換部139に供給する。
ステップS142において、逆直交変換部139は、TU単位で、逆量子化部138から供給される直交変換処理結果に対して逆直交変換処理を行う。逆直交変換部139は、逆直交変換処理の結果得られる残差情報を加算部140に供給する。
ステップS143において、加算部140は、逆直交変換部139から供給される残差情報と、予測画像選択部148から供給される予測画像を加算し、復号を行う。加算部140は、復号された画像をフィルタ141とフレームメモリ144に供給する。
ステップS144において、フィルタ141は、加算部140から供給される復号された画像に対して、デブロックフィルタ処理を行う。
ステップS145において、フィルタ141は、デブロックフィルタ後の画像に対して、適応オフセットフィルタ処理を行う。フィルタ141は、その結果得られる画像をフレームメモリ144に供給する。また、フィルタ141は、LCUごとに、オフセットフィルタ情報を可逆符号化部136に供給する。これらのフィルタの有無などが符号化制御部112により符号化制御パラメータとして設定されて制御される。したがって、デブロックフィルタが適用されない場合、ステップS144の処理は省略され、適用オフセットフィルタが適用されない場合、ステップS145の処理が省略される。これにより、符号化処理にかかる消費電力が抑えられる。
ステップS146において、フレームメモリ144は、フィルタ141から供給される画像と加算部140から供給される画像を蓄積する。フレームメモリ144に蓄積されたフィルタ処理が行われていない画像のうちのPUに隣接する画像は、周辺画像としてスイッチ145を介してイントラ予測部146に供給される。一方、フレームメモリ144に蓄積されたフィルタ処理が行われた画像は、参照画像としてスイッチ145を介して動き予測・補償部147に出力される。
ステップS147において、可逆符号化部136は、イントラ予測モード情報、または、インター予測モード情報、動きベクトル、および参照画像を特定する情報、並びにオフセットフィルタ情報などを、符号化情報として可逆符号化する。
ステップS148において、可逆符号化部136は、量子化部135から供給される量子化値を可逆符号化する。そして、可逆符号化部136は、ステップS147の処理で可逆符号化された符号化情報と可逆符号化された量子化値から、符号化データを生成し、蓄積バッファ137に供給する。
ステップS149において、蓄積バッファ137は、可逆符号化部136から供給される符号化データを、一時的に蓄積する。
ステップS150において、レート制御部149は、蓄積バッファ137に蓄積された符号化データに基づいて、オーバーフローあるいはアンダーフローが発生しないように、量子化部135の量子化動作のレートを制御する。そして、符号化処理は終了される。
なお、符号化制御処理については、様々なバリエーションが考えられる。
次に、図11のフローチャートを参照して、図4のステップS106の符号化制御処理の他の例を説明する。
ステップS161において、符号化制御部112は、バジェット判定部111からの電力・帯域バジェット情報に基づいて、帯域バジェットが大きいか否かを判定する。ステップS161において、帯域バジェットが大きいと判定された場合、処理は、ステップS162に進む。ステップS162において、符号化制御部112は、使用する符号化方式を、H.264のイントラピクチャのみに設定する。なお、インター予測可能な符号化方式のイントラピクチャであれば、H.264方式以外にも、MPEG2,MPEG4,VP8,VP9,H.265方式のイントラピクチャとしてもよい。
ステップS161において、帯域バジェットが小さいと判定された場合、処理は、ステップS163に進む。ステップS163において、符号化制御部112は、使用する符号化方式を、イントラより圧縮率の高いインター予測可能な符号化方式であるH.264方式に設定する。なお、インター予測可能な符号化方式であれば、H.264方式以外にも、MPEG2,MPEG4,VP8,VP9,H.265方式としてもよい。
ステップS164において、符号化制御部112は、バジェット判定部111からの電力・帯域バジェット情報に基づいて、インター予測における動き予測の探索範囲を決定するため、電力バジェットがHighか否かを判定する。ステップS164において、電力バジェットがHighであると判定された場合、処理は、ステップS165に進む。符号化制御部112は、ステップS165において、インター予測における動き予測の探索範囲を大きく設定し、ステップS166において、デブロックフィルタを使用するようにする。
ステップS164において、電力バジェットがHighではないと判定された場合、処理は、ステップS167に進む。ステップS167において、バジェット判定部111からの電力・帯域バジェット情報に基づいて、インター予測における動き予測の探索範囲を決定するため、電力バジェットがMiddleか否かを判定する。
ステップS167において、電力バジェットがMiddleであると判定された場合、処理は、ステップS168に進む。符号化制御部112は、ステップS168において、インター予測における動き予測の探索範囲を中程度に設定し、ステップS169において、デブロックフィルタを使用するようにする。
ステップS167において、電力バジェットがMiddleではない、すなわち、Lowであると判定された場合、処理は、ステップS170に進む。符号化制御部112は、ステップS170において、インター予測における動き予測の探索範囲を小さく設定し、ステップS171において、デブロックフィルタを非使用とする。このようにすることで、符号化処理にかかる使用電力が抑えられる。
ステップS162、ステップS166、ステップS169、およびS171の後、処理は、ステップS172に進む。ステップS172において、符号化制御部112は、目標ビットレートを、通信可能帯域以下の値で設定する。
このように算出された画像符号化方式や符号化パラメータ・モードは、圧縮制御情報として、画像圧縮装置105に供給される。そして、画像圧縮装置105においては、この圧縮制御情報に従った符号化処理が行われる。
次に、図12のフローチャートを参照して、図4のステップS106の符号化制御処理のさらに他の例を説明する。
ステップS181において、符号化制御部112は、バジェット判定部111からの電力・帯域バジェット情報に基づいて、帯域バジェットが大きいか否かを判定する。ステップS181において、帯域バジェットが大きいと判定された場合、処理は、ステップS182に進む。ステップS182において、符号化制御部112は、使用する符号化方式を、H.265のイントラピクチャのみに設定する。
ステップS183において、符号化制御部112は、バジェット判定部111からの電力・帯域バジェット情報に基づいて、電力バジェットがHighか否かを判定する。ステップS183において、電力バジェットがHighであると判定された場合、処理は、ステップS184に進む。符号化制御部112は、ステップS184において、デブロックフィルタを使用し、ステップS185において、適応オフセットフィルタを使用するようにする。
ステップS183において、電力バジェットがHighではないと判定された場合、処理は、ステップS186に進む。ステップS186において、バジェット判定部111からの電力・帯域バジェット情報に基づいて、電力バジェットがMiddleか否かを判定する。
ステップS186において、電力バジェットがMiddleであると判定された場合、処理は、ステップS187に進む。符号化制御部112は、ステップS187において、デブロックフィルタを使用し、ステップS188において、適応オフセットフィルタを未使用とするようにする。
ステップS186において、電力バジェットがMiddleではない、すなわち、Lowであると判定された場合、処理は、ステップS189に進む。符号化制御部112は、ステップS189において、デブロックフィルタを未使用とし、ステップS190において、デブロックフィルタを非使用とする。これにより、符号化処理にかかる消費電力を抑えることができる。
ステップS181において、帯域バジェットが小さいと判定された場合、処理は、ステップS191に進む。ステップS191において、符号化制御部112は、使用する符号化方式を、イントラより圧縮率の高いインター予測可能な符号化方式であるH.265方式に設定する。
ステップS192において、符号化制御部112は、バジェット判定部111からの電力・帯域バジェット情報に基づいて、インター予測における動き予測の探索範囲を決定するため、電力バジェットがHighか否かを判定する。ステップS192において、電力バジェットがHighであると判定された場合、処理は、ステップS193に進む。符号化制御部112は、ステップS193において、インター予測における動き予測の探索範囲を大きく設定し、ステップS194において、デブロックフィルタを使用するようにし、ステップS195において、適応オフセットフィルタを使用するようにする。
ステップS192において、電力バジェットがHighではないと判定された場合、処理は、ステップS196に進む。ステップS196において、バジェット判定部111からの電力・帯域バジェット情報に基づいて、インター予測における動き予測の探索範囲を決定するため、電力バジェットがMiddleか否かを判定する。
ステップS196において、電力バジェットがMiddleであると判定された場合、処理は、ステップS197に進む。符号化制御部112は、ステップS197において、インター予測における動き予測の探索範囲を中程度に設定し、ステップS198において、デブロックフィルタを使用するようにし、ステップS199において、適応オフセットフィルタを未使用とする。これにより、highの場合より、符号化処理にかかる消費電力を抑えることができる。
ステップS196において、電力バジェットがMiddleではない、すなわち、Lowであると判定された場合、処理は、ステップS200に進む。符号化制御部112は、ステップS200において、インター予測における動き予測の探索範囲を小さく設定し、ステップS201において、デブロックフィルタを非使用とし、ステップS202において、適応オフセットフィルタを非使用とする。これにより、Middleの場合より、符号化処理にかかる消費電力を抑えることができる。
ステップS185、ステップS188、ステップS190、ステップS195、ステップS199、およびS202の後、処理は、ステップS203に進む。ステップS203において、符号化制御部112は、目標ビットレートを、通信可能帯域以下の値で設定する。
このように算出された画像符号化方式や符号化パラメータ・モードは、圧縮制御情報として、画像圧縮装置105に供給される。そして、画像圧縮装置105においては、この圧縮制御情報に従った符号化処理が行われる。
ここで、バジェット判定における他の判定例としては、電力バジェットを蓄電量の残量情報のみで判定する例も考えられる。例えば、後述するカメラシステム200のように、自然エネルギーによる発電装置を備えていなシステムにおいては、蓄電池もしくは一次電池の残量のみで電力バジェットを判定する。
このようなバジェット判定処理の例として、次に、図13のフローチャートを参照して、図4のステップS105におけるバジェット判定処理の他の例について説明する。
ステップS211において、バジェット判定部111は、蓄電装置102の電池残量情報に基づいて、蓄電量分類処理を行う。すなわち、バジェット判定部111は、蓄電装置102の電池残量情報から、閾値を使って、蓄電池の残量が多いか少ないかに分類する。
ステップS212において、バジェット判定部111は、電力バジェット判定を行い、電力バジェット情報を、例えば、High /Lowに分類する。
図14は、電力バジェット情報の例を示している。図14の例においては、電池残量が大きくいと、電力バジェットが、Highであることが示され、電池残量が小さいと、電力バジェットが、電力バジェットが、Lowであることが示されている。
ステップS213において、バジェット判定部111は、無線伝送装置106からの通信可能帯域情報に基づいて、通信可能帯域分類判定処理を行う。すなわち、バジェット判定部111は、無線伝送装置106からの通信可能帯域情報を、閾値などを利用して、帯域が多いか少ないかに分類する。
ステップS214において、バジェット判定部111は、通信電力バジェット判定を行い、電力帯域バジェット情報を、例えば、図15に示されるように4種類に分類する。
図15は、電力帯域バジェット情報の例を示している。図15の例においては、通信可能帯域が大きくて、電力バジェットがHighであると、電力帯域バジェットが、H_Hであることが示され、通信可能帯域が小さくて、電力バジェットがLowであると、電力帯域バジェットが、L_Hであることが示されている。また、電力バジェット判定テーブルにおいては、通信可能帯域が大きくて、電力バジェットがLowであると、電力帯域バジェットが、H_Lであることが示され、通信可能帯域が小さくて、電力バジェットが小さいと、電力帯域バジェットが、L_Lであることが示されている。
そして、バジェット判定部111は、この分類を示す電力・帯域バジェット情報を符号化制御部112に供給し、バジェット判定処理を終了する。
次に、図16のフローチャートを参照して、図13のバジェット判定処理を行った場合の図4のステップS106の符号化制御処理について説明する。
ステップS241において、符号化制御部112は、バジェット判定部111からの電力・帯域バジェット情報に基づいて、帯域バジェットが大きいか否かを判定する。ステップS241において、帯域バジェットが大きいと判定された場合、処理は、ステップS242に進む。ステップS242において、符号化制御部112は、使用する符号化方式を、H.265のイントラピクチャのみに設定する。
ステップS241において、帯域バジェットが小さいと判定された場合、処理は、ステップS243に進む。ステップS243において、符号化制御部112は、使用する符号化方式を、イントラより圧縮率の高いインター予測可能な符号化方式であるH.265方式に設定する。
ステップS244において、符号化制御部112は、バジェット判定部111からの電力・帯域バジェット情報に基づいて、電力バジェットがHighか否かを判定する。ステップS244において、電力バジェットがHighであると判定された場合、処理は、ステップS245に進む。符号化制御部112は、ステップS245において、PUサイズの制限をなしに設定する。
ステップS244において、電力バジェットがHighではないと判定された場合、処理は、ステップS246に進む。符号化制御部112は、ステップS246において、PUサイズは16×16以上とするように、PUサイズの制限を加える。これにより、PUサイズが細かくなってしまうことを防ぐことができるので、Highの場合より符号化処理の消費電力が抑えられる。
ステップS242、ステップS245、およびS246の後、処理は、ステップS247に進む。ステップS247において、符号化制御部112は、目標ビットレートを、通信可能帯域以下の値で設定する。
このように算出された画像符号化方式や符号化パラメータ・モードは、圧縮制御情報として、画像圧縮装置105に供給される。そして、画像圧縮装置105においては、この圧縮制御情報に従った符号化処理が行われる。
また、ここで、バジェット判定におけるさらに他の判定例としては、バジェットを、電力バジェットのみ、もしくは、帯域バジェットのみで判定する例も考えられる。例えば、後述するカメラシステム300のように、電源は、有線の電力網から供給されるが、データ伝送は無線のシステム、あるいは、カメラシステム400のように、電源は、自然エネルギーによる発電装置によるが、データ伝送は、有線のシステムなどに適用することができる。
電力バジェットのみで判定するバジェット判定処理の例として、次に、図17のフローチャートを参照して、図4のステップS105におけるバジェット判定処理のさらに他の例について説明する。
ステップS251において、バジェット判定部111は、発電装置101からの発電量情報に基づいて、発電量分類処理を行う。すなわち、バジェット判定部111は、発電装置101からの発電量情報から、閾値を使って、発電量が多いか少ないかに分類する。
ステップS252において、バジェット判定部111は、蓄電装置102の電池残量情報に基づいて、蓄電量分類処理を行う。すなわち、バジェット判定部111は、蓄電装置102の電池残量情報から、閾値を使って、蓄電池の残量が多いか少ないかに分類する。
ステップS253において、バジェット判定部111は、電力バジェット判定を行い、電力バジェット情報を、例えば、High/Middle/Lowに分類する。そして、バジェット判定部111は、この分類を示す電力バジェット情報を符号化制御部112に供給し、バジェット判定処理を終了する。
次に、図18のフローチャートを参照して、図17のバジェット判定処理を行った場合の図4のステップS106の符号化制御処理について説明する。
ステップS261において、符号化制御部112は、バジェット判定部111からの電力バジェット情報に基づいて、電力バジェットがHighであるか否かを判定する。ステップS261において、電力バジェットがHighであると判定された場合、処理は、ステップS262に進む。ステップS262において、符号化制御部112は、使用する符号化方式を、H.265に設定する。
ステップS263において、符号化制御部112は、インター予測で利用できる参照面を2枚に設定し、双方向予測を使用できるようにする。
符号化制御部112は、ステップS264において、インター予測の動き探索の範囲を大きく設定し、ステップS265において、動き予測で探索する動きベクトルの精度を小数精度(1/2もしくは1/4)に設定し、小数精度ベクトルを利用可能とする。
ステップS244において、電力バジェットがHighではないと判定された場合、処理は、ステップS266に進む。ステップS266において、バジェット判定部111からの電力バジェット情報に基づいて、電力バジェットがMiddleか否かを判定する。
ステップS266において、電力バジェットがMiddleであると判定された場合、処理は、ステップS267に進む。符号化制御部112は、ステップS267において、使用する符号化方式をH.265に設定し、ステップS268において、インター予測で利用できる参照面を1枚に設定し、双方向予測を使用できるようにする。符号化制御部112は、ステップS269において、インター予測における動き予測の探索範囲を小さく設定し、ステップS270において、動き予測で探索する動きベクトルの精度を整数精度に設定し、整数精度ベクトルのみを利用可能とする。これにより、highの場合より符号化処理にかかる消費電力を抑えることができる。
ステップS266において、電力バジェットがMiddleではない、すなわち、Lowであると判定された場合、処理は、ステップS271に進む。符号化制御部112は、ステップS271において、符号化方式を、JPEGに設定する。これにより、Middleの場合より符号化処理にかかる消費電力を抑えることができる。
ステップS265、ステップS270、およびS271の後、処理は、ステップS272に進む。ステップS272において、符号化制御部112は、目標ビットレートを、通信可能帯域以下の値で設定する。
このように算出された画像符号化方式や符号化パラメータ・モードは、圧縮制御情報として、画像圧縮装置105に供給される。そして、画像圧縮装置105においては、この圧縮制御情報に従った符号化処理が行われる。
通信バジェットのみで判定するバジェット判定処理の例として、次に、図19のフローチャートを参照して、図4のステップS105におけるバジェット判定処理のさらに他の例について説明する。
ステップS281において、バジェット判定部111は、無線伝送装置106からの通信可能帯域情報に基づいて、通信可能帯域分類バジェット判定処理を行う。すなわち、バジェット判定部111は、無線伝送装置106からの通信可能帯域情報を、閾値などを利用して、図20に示されるように、High/Lowに分類する。
図20は、帯域バジェット情報の例を示している。図20の例においては、使用可能帯域が大きい場合、帯域バジェットがHighであることが示され、使用可能帯域が小さい場合、帯域バジェットがLowであることが示されている。
そして、バジェット判定部111は、この分類を示す帯域バジェット情報を符号化制御部112に供給し、バジェット判定処理を終了する。
次に、図21のフローチャートを参照して、図19のバジェット判定処理を行った場合の図4のステップS106の符号化制御処理について説明する。
符号化制御部112は、バジェット判定部111からの帯域バジェット情報に基づいて、帯域バジェットが大きいか否かを判定する。ステップS301において、帯域バジェットが大きいと判定された場合、処理は、ステップS302に進む。ステップS302において、符号化制御部112は、使用する符号化方式を、イントラ符号化方式であるJPEG方式に設定する。なお、イントラ符号化方式であれば、MotionJPEGなどのJPEG以外でもよい。
一方、ステップS301において、帯域バジェットが小さいと判定された場合、処理は、ステップS303に進む。ステップS303において、符号化制御部112は、使用する符号化方式を、イントラより圧縮率の高いインター予測可能な符号化方式であるH.265方式に設定する。なお、インター予測可能な符号化方式であれば、H.265方式以外にも、MPEG2,MPEG4,VP8,VP9,H.264方式としてもよい。
ステップS302、およびステップS303の後、処理は、ステップS304に進む。ステップS304において、符号化制御部112は、目標ビットレートを、通信可能帯域以下の値で設定する。
以上のように、本技術によれば、使用可能な電力および通信可能帯域の少なくとも一方が変化するカメラシステムにおいて、符号化方式や符号化制御パラメータを変更して(切り替えて)、圧縮率を変更したり、符号化データを小さくしたり、消費電力を抑えることができる。これにより、長時間安定して高品位な画像データを転送することができる。また、画像の解像度や更新頻度を下げずに長時間安定して高品位な画像データを転送することができる。
<2.第2の実施の形態>
(カメラシステムの構成例)
図22は、本技術を適用するカメラシステムの他の構成例を示すブロック図である。
カメラシステム200は、撮像装置103、画像処理装置104、画像圧縮装置105、無線伝送装置106、およびバジェット判定・符号化制御部107を備える点は、図1のカメラシステム100と共通している。カメラシステム200は、発電装置101が除かれた点と、蓄電装置102が蓄電装置(一次電池)201と入れ替わった点が、図1のカメラシステム100と異なっている。
すなわち、蓄電装置(一次電池)201は、蓄電池または一次電池で構成されており、電池残量を示す情報である電池残量情報を、バジェット判定・符号化制御部107に供給する。
したがって、バジェット判定・符号化制御部107は、自然エネルギーによる発電装置を備えておらず、図13を参照して上述したように、蓄電装置(一次電池)201からの電池残量情報のみで電力バジェットを判定する。また、図16を参照して上述したように、符号化制御処理を行う。
なお、それ以外の処理は、上述したカメラシステム100と同様の処理を行うので、その詳細な説明は省略される。
<3.第3の実施の形態>
(カメラシステムの構成例)
図23は、本技術を適用するカメラシステムの他の構成例を示すブロック図である。
カメラシステム200は、撮像装置103、画像処理装置104、画像圧縮装置105、無線伝送装置106、およびバジェット判定・符号化制御部107を備える点は、図1のカメラシステム100と共通している。カメラシステム200は、発電装置101が除かれた点と、蓄電装置102が電源回路301と入れ替わった点が、図1のカメラシステム100と異なっている。
すなわち、電源回路301は、有線電力を入力し、電力をカメラシステム200に供給する。なお、電源回路301は、電池残量を示す情報である電池残量情報を、バジェット判定・符号化制御部107に供給しない。
したがって、バジェット判定・符号化制御部107は、図19を参照して上述したように、通信バジェットのみで判定するバジェット判定を行う。また、図20を参照して上述したように、符号化制御処理を行う。
なお、それ以外の処理は、上述したカメラシステム100と同様の処理を行うので、その詳細な説明は省略される。
<4.第4の実施の形態>
(カメラシステムの構成例)
図24は、本技術を適用するカメラシステムの他の構成例を示すブロック図である。
カメラシステム300は、発電装置101、蓄電装置102、撮像装置103、画像処理装置104、画像圧縮装置105、およびバジェット判定・符号化制御部107を備える点は、図1のカメラシステム100と共通している。カメラシステム200は、無線伝送装置106が伝送装置401と入れ替わった点が、図1のカメラシステム100と異なっている。
すなわち、伝送装置401は、画像圧縮装置105からの符号化データを受け取り、アンテナ108を介して、有線で伝送を行う。なお、伝送装置401は、通信可能帯域情報を、バジェット判定・符号化制御部107に供給しない。
したがって、バジェット判定・符号化制御部107は、図21を参照して上述したように、電力バジェットのみで判定するバジェット判定を行う。また、図22を参照して上述したように、符号化制御処理を行う。
なお、それ以外の処理は、上述したカメラシステム100と同様の処理を行うので、その詳細な説明は省略される。
上記説明においては、発電装置101、蓄電装置102、および無線伝送装置106を少なくとも1つ備えるカメラシステムの例を説明したが、本技術は、カメラシステムなどの撮像装置に限らず、発電装置や蓄電装置、および無線伝送装置の少なくとも1つを備え、符号化処理を行う画像処理装置や情報処理装置にも適用される。
また、本技術は、発電装置や蓄電装置、および無線伝送装置を備えた装置から情報を受けて、上述したバジェット判定、符号化制御処理のみをまとめて行い、符号化制御情報を、インターネットを介して転送するようなクラウドシステムなどのサーバなどにも適用することができる。
<5.第5の実施の形態>
(本開示を適用したコンピュータの説明)
上述した一連の処理は、ハードウエアにより実行することもできるし、ソフトウエアにより実行することもできる。一連の処理をソフトウエアにより実行する場合には、そのフトウエアを構成するプログラムが、コンピュータにインストールされる。ここで、コンピュータには、専用のハードウエアに組み込まれているコンピュータや、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどが含まれる。
図25は、上述した一連の処理をプログラムにより実行するコンピュータのハードウエアの構成例を示すブロック図である。
コンピュータにおいて、CPU(Central Processing Unit)601,ROM(Read Only Memory)602,RAM(Random Access Memory)603は、バス604により相互に接続されている。
バス604には、さらに、入出力インタフェース605が接続されている。入出力インタフェース605には、入力部606、出力部607、記憶部608、通信部609、及びドライブ610が接続されている。
入力部606は、キーボード、マウス、マイクロホンなどよりなる。出力部607は、ディスプレイ、スピーカなどよりなる。記憶部608は、ハードディスクや不揮発性のメモリなどよりなる。通信部609は、ネットワークインタフェースなどよりなる。ドライブ610は、磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリなどのリムーバブルメディア211を駆動する。
以上のように構成されるコンピュータでは、CPU601が、例えば、記憶部608に記憶されているプログラムを、入出力インタフェース605及びバス604を介して、RAM603にロードして実行することにより、上述した一連の処理が行われる。
コンピュータ(CPU601)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブルメディア611に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。
コンピュータでは、プログラムは、リムーバブルメディア611をドライブ610に装着することにより、入出力インタフェース605を介して、記憶部608にインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、通信部609で受信し、記憶部608にインストールすることができる。その他、プログラムは、ROM602や記憶部608に、あらかじめインストールしておくことができる。
なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
また、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
本明細書に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。
本開示の実施の形態は、上述した実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。
例えば、本開示は、1つの機能を、ネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。
さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。
以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示はかかる例に限定されない。本開示の属する技術の分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
なお、本技術は以下のような構成も取ることができる。
(1) 画像データの符号化処理を行い、符号化データを生成する符号化部と、
電力に関する電力情報に応じて、前記符号化処理を制御する符号化制御部と、
前記符号化部により生成された符号化データを伝送する伝送部と
を備える画像符号化装置。
(2) 前記電力情報は、発電されている発電量を示す情報および蓄電されている電池の残量情報の少なくとも1つの情報を含む
前記(1)に記載の画像符号化装置。
(3) 前記符号化制御部は、前記符号化処理に用いられる符号化方式を切り替える
前記(1)または(2)に記載の画像符号化装置。
(4) 前記符号化制御部は、前記符号化処理に用いられる符号化方式のイントラ予測とインター予測を切り替える
前記(1)乃至(3)のいずれかに記載の画像符号化装置。
(5) 前記符号化制御部は、前記符号化処理に用いられる符号化制御パラメータを切り替える
前記(1)乃至(4)のいずれかに記載の画像符号化装置。
(6) 前記符号化制御部は、インター予測を適用している場合、前記符号化制御パラメータとして、片方向予測モードと両方向予測モードとを切り替える
前記(5)に記載の画像符号化装置。
(7) 前記符号化制御部は、インター予測を適用している場合、前記符号化制御パラメータとして、参照面の数を切り替える
前記(5)または(6)に記載の画像符号化装置。
(8) 前記符号化制御部は、インター予測を適用している場合、前記符号化制御パラメータとして、動き予測の探索範囲の大きさを切り替える
前記(5)乃至(7)のいずれかに記載の画像符号化装置。
(9) 前記符号化制御部は、インター予測を適用している場合、前記符号化制御パラメータとして、動き予測で探索される動きベクトルの精度を切り替える
前記(5)乃至(8)のいずれかに記載の画像符号化装置。
(10) 前記符号化制御部は、前記符号化制御パラメータとして、デブロックフィルタの適用の有無を切り替える
前記(5)乃至(9)のいずれかに記載の画像符号化装置。
(11) 前記符号化制御部は、前記符号化制御パラメータとして、デブロックフィルタおよび適応オフセットフィルタの少なくとも1つの適用の有無を切り替える
前記(5)乃至(10)のいずれかに記載の画像符号化装置。
(12) 前記符号化制御部は、前記符号化制御パラメータとして、可変長符号化処理を、CABAC(Context-Adaptive Binary Arithmetic Coding)とCAVLC(Context-Adaptive Variable Length Coding)との間で切り替える
前記(5)乃至(11)のいずれかに記載の画像符号化装置。
(13) 前記符号化制御部は、前記符号化制御パラメータとして、予測ブロックサイズの下限を切り替える
前記(5)乃至(12)のいずれかに記載の画像符号化装置。
(14) 前記伝送部は、無線により前記符号化部により生成された符号化データを伝送し、
前記符号化制御部は、前記伝送部による通信可能帯域を示す情報に応じて、前記符号化処理を制御する
前記(1)乃至(13)のいずれかに記載の画像符号化装置。
(15) 画像符号化装置が、
画像データの符号化処理を行い、符号化データを生成し、
電力情報に応じて、前記符号化処理を制御し、
生成された符号化データを伝送する
画像符号化方法。
100 カメラシステム, 101 発電装置, 102 蓄電装置, 103 撮像装置, 104 画像処理装置, 105 画像圧縮装置, 106 無線伝送装置, 107 バジェット判定・符号化制御部, 111 バジェット判定部, 112 符号化制御部, 200 カメラシステム, 201 蓄電装置(一次蓄電), 300 カメラシステム, 301 電源回路, 400 カメラシステム, 401 伝送装置

Claims (15)

  1. 画像データの符号化処理を行い、符号化データを生成する符号化部と、
    電力に関する電力情報に応じて、前記符号化処理を制御する符号化制御部と、
    前記符号化部により生成された符号化データを伝送する伝送部と
    を備える画像符号化装置。
  2. 前記電力情報は、発電されている発電量を示す情報および蓄電されている電池の残量情報の少なくとも1つの情報を含む
    請求項1に記載の画像符号化装置。
  3. 前記符号化制御部は、前記符号化処理に用いられる符号化方式を切り替える
    請求項1に記載の画像符号化装置。
  4. 前記符号化制御部は、前記符号化処理に用いられる符号化方式のイントラ予測とインター予測を切り替える
    請求項3に記載の画像符号化装置。
  5. 前記符号化制御部は、前記符号化処理に用いられる符号化制御パラメータを切り替える
    請求項1に記載の画像符号化装置。
  6. 前記符号化制御部は、インター予測を適用している場合、前記符号化制御パラメータとして、片方向予測モードと両方向予測モードとを切り替える
    請求項5に記載の画像符号化装置。
  7. 前記符号化制御部は、インター予測を適用している場合、前記符号化制御パラメータとして、参照面の数を切り替える
    請求項5に記載の画像符号化装置。
  8. 前記符号化制御部は、インター予測を適用している場合、前記符号化制御パラメータとして、動き予測の探索範囲の大きさを切り替える
    請求項5に記載の画像符号化装置。
  9. 前記符号化制御部は、インター予測を適用している場合、前記符号化制御パラメータとして、動き予測で探索される動きベクトルの精度を切り替える
    請求項5に記載の画像符号化装置。
  10. 前記符号化制御部は、前記符号化制御パラメータとして、デブロックフィルタの適用の有無を切り替える
    請求項5に記載の画像符号化装置。
  11. 前記符号化制御部は、前記符号化制御パラメータとして、デブロックフィルタおよび適応オフセットフィルタの少なくとも1つの適用の有無を切り替える
    請求項5に記載の画像符号化装置。
  12. 前記符号化制御部は、前記符号化制御パラメータとして、可変長符号化処理を、CABAC(Context-Adaptive Binary Arithmetic Coding)とCAVLC(Context-Adaptive Variable Length Coding)との間で切り替える
    請求項5に記載の画像符号化装置。
  13. 前記符号化制御部は、前記符号化制御パラメータとして、予測ブロックサイズの下限を切り替える
    請求項5に記載の画像符号化装置。
  14. 前記伝送部は、無線により前記符号化部により生成された符号化データを伝送し、
    前記符号化制御部は、前記伝送部による通信可能帯域を示す情報に応じて、前記符号化処理を制御する
    請求項1に記載の画像符号化装置。
  15. 画像符号化装置が、
    画像データの符号化処理を行い、符号化データを生成し、
    電力情報に応じて、前記符号化処理を制御し、
    生成された符号化データを伝送する
    画像符号化方法。
JP2017509528A 2015-03-30 2016-03-16 画像符号化装置および方法 Pending JPWO2016158401A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015068152 2015-03-30
JP2015068152 2015-03-30
PCT/JP2016/058266 WO2016158401A1 (ja) 2015-03-30 2016-03-16 画像符号化装置および方法

Publications (1)

Publication Number Publication Date
JPWO2016158401A1 true JPWO2016158401A1 (ja) 2018-01-25

Family

ID=57004492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017509528A Pending JPWO2016158401A1 (ja) 2015-03-30 2016-03-16 画像符号化装置および方法

Country Status (3)

Country Link
US (1) US20180054617A1 (ja)
JP (1) JPWO2016158401A1 (ja)
WO (1) WO2016158401A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6878965B2 (ja) * 2017-03-07 2021-06-02 株式会社リコー 情報処理装置、情報処理装置の制御方法、及びプログラム

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996027987A1 (en) * 1995-03-08 1996-09-12 Hitachi, Ltd. Portable terminal for multimedia communication
JP2003199002A (ja) * 2001-12-27 2003-07-11 Sharp Corp 情報記録装置
WO2005076629A1 (ja) * 2004-02-09 2005-08-18 Sanyo Electric Co., Ltd 画像符号化装置及び方法、画像復号化装置及び方法、及び撮像装置
JP2006203724A (ja) * 2005-01-24 2006-08-03 Toshiba Corp 画像圧縮装置及び画像圧縮方法
JP2006270751A (ja) * 2005-03-25 2006-10-05 Casio Comput Co Ltd 動画記録装置および動画記録処理プログラム
JP2008078969A (ja) * 2006-09-21 2008-04-03 Victor Co Of Japan Ltd 動画像符号化記録装置
JP2008160402A (ja) * 2006-12-22 2008-07-10 Canon Inc 符号化装置及び方法並びに画像符号化装置
JP2009055560A (ja) * 2007-08-29 2009-03-12 Sony Ericsson Mobilecommunications Japan Inc 携帯機器および撮像画像データの記録方法
JP2014082639A (ja) * 2012-10-16 2014-05-08 Canon Inc 画像符号化装置およびその方法
JP2014116681A (ja) * 2012-12-06 2014-06-26 Nippon Hoso Kyokai <Nhk> データ伝送装置
JP2014236264A (ja) * 2013-05-31 2014-12-15 ソニー株式会社 画像処理装置、画像処理方法及びプログラム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7804435B2 (en) * 2006-08-31 2010-09-28 Ati Technologies Ulc Video decoder with reduced power consumption and method thereof
US9001899B2 (en) * 2006-09-15 2015-04-07 Freescale Semiconductor, Inc. Video information processing system with selective chroma deblock filtering
KR101683291B1 (ko) * 2010-05-14 2016-12-06 엘지전자 주식회사 디스플레이 장치 및 그의 제어 방법
US20120195356A1 (en) * 2011-01-31 2012-08-02 Apple Inc. Resource usage control for real time video encoding
US20150181208A1 (en) * 2013-12-20 2015-06-25 Qualcomm Incorporated Thermal and power management with video coding

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996027987A1 (en) * 1995-03-08 1996-09-12 Hitachi, Ltd. Portable terminal for multimedia communication
JP2003199002A (ja) * 2001-12-27 2003-07-11 Sharp Corp 情報記録装置
WO2005076629A1 (ja) * 2004-02-09 2005-08-18 Sanyo Electric Co., Ltd 画像符号化装置及び方法、画像復号化装置及び方法、及び撮像装置
JP2006203724A (ja) * 2005-01-24 2006-08-03 Toshiba Corp 画像圧縮装置及び画像圧縮方法
JP2006270751A (ja) * 2005-03-25 2006-10-05 Casio Comput Co Ltd 動画記録装置および動画記録処理プログラム
JP2008078969A (ja) * 2006-09-21 2008-04-03 Victor Co Of Japan Ltd 動画像符号化記録装置
JP2008160402A (ja) * 2006-12-22 2008-07-10 Canon Inc 符号化装置及び方法並びに画像符号化装置
JP2009055560A (ja) * 2007-08-29 2009-03-12 Sony Ericsson Mobilecommunications Japan Inc 携帯機器および撮像画像データの記録方法
JP2014082639A (ja) * 2012-10-16 2014-05-08 Canon Inc 画像符号化装置およびその方法
JP2014116681A (ja) * 2012-12-06 2014-06-26 Nippon Hoso Kyokai <Nhk> データ伝送装置
JP2014236264A (ja) * 2013-05-31 2014-12-15 ソニー株式会社 画像処理装置、画像処理方法及びプログラム

Also Published As

Publication number Publication date
US20180054617A1 (en) 2018-02-22
WO2016158401A1 (ja) 2016-10-06

Similar Documents

Publication Publication Date Title
JP4937741B2 (ja) 映像符号化方法及び装置、映像復号方法及び装置、それらのプログラムおよびそれらプログラムを記録した記録媒体
RU2611992C2 (ru) Повышение пропускной способности для кодирования уровня коэффициентов cabac
CN109379512B (zh) 图像拾取元件、成像装置及成像方法
KR20220008265A (ko) 비디오 코딩을 위한 제로-아웃 패턴들에 기초한 저 주파수 비 분리가능 변환 시그널링
EP3560199A1 (en) Low-complexity sign prediction for video coding
US9571849B2 (en) Coding of residual data in predictive compression
US8768080B2 (en) Coding of residual data in predictive compression
CN112913250B (zh) 编码器、解码器及对任意ctu尺寸使用ibc搜索范围优化的对应方法
AU2020235622B2 (en) Coefficient domain block differential pulse-code modulation in video coding
WO2017165509A1 (en) Constrained block-level optimization and signaling for video coding tools
WO2011007719A1 (ja) 画像処理装置および方法
JP2017118582A (ja) 映像復号化方法
WO2014087861A1 (ja) 画像処理装置、画像処理方法、およびプログラム
KR20210104891A (ko) Vvc에서의 컬러 변환을 위한 방법 및 장치
KR101646072B1 (ko) 동영상 데이터 암호화 장치 및 방법
JP2023517467A (ja) ビデオ圧縮のための低複雑度適応量子化
TW201919398A (zh) 視頻數據解碼方法及裝置
JP2019521550A (ja) ビデオデータに関係する構文要素を表す一連の2値シンボルをコンテキスト適応型2値算術符号化するための方法及び装置
WO2016194380A1 (ja) 動画像符号化装置、動画像符号化方法および動画像符号化プログラムを記憶する記録媒体
WO2016158401A1 (ja) 画像符号化装置および方法
CN111901593B (zh) 一种图像划分方法、装置及设备
KR20210126940A (ko) 3차원 영상 생성을 위한 2차원 영상의 부호화 및 복호화 장치
JP2016184844A (ja) 画像処理装置および方法
WO2019148320A1 (en) Video data encoding
CN116998150A (zh) 视频编解码中网格量化的状态转换

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190815

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200227