JPS63290256A - Manufacture of thin film - Google Patents

Manufacture of thin film

Info

Publication number
JPS63290256A
JPS63290256A JP12420787A JP12420787A JPS63290256A JP S63290256 A JPS63290256 A JP S63290256A JP 12420787 A JP12420787 A JP 12420787A JP 12420787 A JP12420787 A JP 12420787A JP S63290256 A JPS63290256 A JP S63290256A
Authority
JP
Japan
Prior art keywords
target
thin film
partial pressure
substrate
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12420787A
Other languages
Japanese (ja)
Other versions
JPH0768615B2 (en
Inventor
Kunio Tanaka
田中 邦生
Tanejiro Ikeda
池田 種次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12420787A priority Critical patent/JPH0768615B2/en
Publication of JPS63290256A publication Critical patent/JPS63290256A/en
Publication of JPH0768615B2 publication Critical patent/JPH0768615B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To compensate the fluctuations in the composition of a thin film in the course of film formation and to keep the composition of a thin film constant, by raising the partial pressure of a reactant gas and carrying out pre-discharge to form a reactant, in excess, on the surface of a target and then by starting reactive sputtering. CONSTITUTION:The partial pressure of O2 gas 8 as a reactant gas to be supplied together with Ar gas 7 into a chamber 1 of a sputtering device is raised by >=20% and a high voltage is impressed on a target 4 and a backing plate 5 so as to generate glow discharge. By this presputtering, a layer of excess oxide is formed on the surface of the target 4. In this state, a shutter 11 is opened and film formation on the surface of a substrate 2 on a substrate holder 3 is started. Then, the partial pressure of O2 is lowered to a normal value and reactive sputtering is carried out. By this method, a thin oxide film of a fixed composition can be formed on the surface of the substrate 2.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、反応性スパッタリング法を用いた薄11漠の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing a thin film using a reactive sputtering method.

従来の技術 放電ガス中に反応性ガスを混入させる反応性スパッタリ
ング法によシ金属酸化物を形成させたり、さらに反応性
ガスの分圧を制御することにより化合物の組成比を適当
に制御して好ましい物性を引き出す方法が一般に行なわ
れている。
Conventional technology A metal oxide is formed by a reactive sputtering method in which a reactive gas is mixed into the discharge gas, and the composition ratio of the compound is appropriately controlled by controlling the partial pressure of the reactive gas. Methods are commonly used to bring out desirable physical properties.

以下第3図を参照しながら上述した方法による薄膜の製
造方法について説明する。第3図は反応性スパッタリン
グ装置の断面図である。図において、15は内部が排気
可能なチャンバー、16はチャンバー15内に配置され
薄膜が形成される基板、17は基板16を保持し、かつ
自転ないしは公転させる基板ホルダ、18は基板16と
対向して配置された金属ターゲット、19はターゲット
18を保持するバッキングプレートである。また20は
Arガス、21は02ガス、22.23はガス流量を一
定に保つパルプ、24は基板16へのターゲット18か
らのスパッタ粒子の飛着を制御するシャッタである。
The method for manufacturing a thin film using the method described above will be explained below with reference to FIG. FIG. 3 is a cross-sectional view of the reactive sputtering apparatus. In the figure, 15 is a chamber whose inside can be evacuated, 16 is a substrate placed in the chamber 15 and on which a thin film is formed, 17 is a substrate holder that holds the substrate 16 and rotates or revolves around it, and 18 is a substrate that faces the substrate 16. A metal target 19 is a backing plate that holds the target 18. Further, 20 is Ar gas, 21 is 02 gas, 22.23 is pulp that keeps the gas flow rate constant, and 24 is a shutter that controls the adhesion of sputtered particles from target 18 to substrate 16.

次に上記装置の動作を説明する。まず陰極となるターゲ
ット18及びバッキングプレート19に高電圧を印加さ
せ、グロー放【Eを発生させる。この際、ターゲット1
8表面ではアルゴンイオンあるいは酸素イオンによる表
面原子層のスノくツタリングによる除去とターゲット原
子の酸化反応による表面酸化物層の成長が競合する。こ
のとき相対的に酸化反応がスパッタリングより優勢なと
きには、ターゲット18表面が酸化物層でおおわれる割
合が大きいが、逆にスパッタリングの方が酸化反応より
優勢なときには、ターゲット18表面は金属状態のま゛
まである。すなわち、0□ガスの分圧を変化させ酸化速
度を制御することにより、スパッタリングで基板16上
に形成される薄膜を、はぼ酸化物に近い状態から金属に
近い状態まで変化させることが可能となる。また酸素分
圧を適当に制御することによりITO(スズをドープし
た酸化インジウム: Indium Tin 0xid
e)膜の比抵抗及び光学特性を透明電導膜として適した
ものにすることができる。
Next, the operation of the above device will be explained. First, a high voltage is applied to the target 18 serving as a cathode and the backing plate 19 to generate glow emission [E]. At this time, target 1
On the 8 surface, the removal of the surface atomic layer by snobbing by argon ions or oxygen ions competes with the growth of the surface oxide layer by the oxidation reaction of the target atoms. At this time, when the oxidation reaction is relatively more dominant than the sputtering, the surface of the target 18 is covered with a large oxide layer, but on the other hand, when the sputtering is more dominant than the oxidation reaction, the surface of the target 18 remains in a metallic state. There are up to ゛. In other words, by changing the partial pressure of the 0□ gas and controlling the oxidation rate, it is possible to change the thin film formed on the substrate 16 by sputtering from a state close to that of an oxide to a state close to a metal. Become. In addition, by appropriately controlling the oxygen partial pressure, ITO (Indium Tin Oxid)
e) The specific resistance and optical properties of the film can be made suitable as a transparent conductive film.

発明が解決しようとする問題点 しかしながら上記のような構成では、Toのように酸化
しやすい金属をターゲット材料として用いた場合、Te
ターゲットが徐々に酸化し、その結果、薄膜の化学組成
および構成が変化する。この現象はターゲットとして焼
結ターゲットを用いた場合顕著である。
Problems to be Solved by the Invention However, in the above configuration, when a metal that is easily oxidized like To is used as a target material, Te
The target gradually oxidizes, resulting in a change in the chemical composition and composition of the thin film. This phenomenon is remarkable when a sintered target is used as the target.

一般にTeax(0<x<2)などの低酸化′+70薄
膜は、相変化を利用した光記録膜として用いられるが、
上記の酸化反応によりX値が高めに変化することにより
、記録感度が低下し光記録膜として適さなくなる。
Generally, low oxidation '+70 thin films such as Teax (0<x<2) are used as optical recording films that utilize phase change.
As the X value changes to a higher value due to the above oxidation reaction, the recording sensitivity decreases and the film becomes unsuitable as an optical recording film.

酸素分圧及び放電電力を一定にし酸化速度及びスパッタ
リング速度を一定にした場合に形成される薄膜の膜厚の
組成分析結果を第4図に示す。これはオージヱ分析を用
いたものである。図において25はToの組成比、26
は0の組成比、27は基板材料のCの組成比である。こ
の図に示されるように、基板との界面付近でO/T e
比すなわちI値が減少するという現象がみられた。これ
は、シャッタ24を開放して成膜を開始した隙に、ター
ゲット表面の酸化速度とスパッタリング速度のバランス
が一時的にくずれて、酸素が欠乏した膜が初期に形成さ
れ、その後、もとの状態に復帰したためか、あるいは、
基板表面が放電にさらされて形成された薄膜中の酸化物
が分解されたためなどの原因が考えられる。このように
、基板界面から約100人種度の厚さのところまで所定
の組成からのズレが生じた場合、光記録膜の反射率が1
〜3%程度変化し、これも光記録膜として適さなくなる
FIG. 4 shows the results of compositional analysis of the thickness of a thin film formed when the oxygen partial pressure and discharge power are kept constant and the oxidation rate and sputtering rate are kept constant. This uses audio analysis. In the figure, 25 is the composition ratio of To, 26
is the composition ratio of 0, and 27 is the composition ratio of C of the substrate material. As shown in this figure, O/T e near the interface with the substrate
A phenomenon was observed in which the ratio, that is, the I value decreased. This is because when the shutter 24 is opened and film formation begins, the balance between the oxidation rate of the target surface and the sputtering rate is temporarily lost, and an oxygen-deficient film is initially formed, and then the original film is formed. Perhaps because the condition has returned to normal, or
Possible causes include decomposition of oxides in the thin film formed when the substrate surface is exposed to electric discharge. In this way, if a deviation from the predetermined composition occurs up to a thickness of about 100 degrees from the substrate interface, the reflectance of the optical recording film will decrease by 1.
It changes by about 3%, which also makes it unsuitable as an optical recording film.

問題点を解決するための手段 上記問題点を解決するために本発明の薄膜製造方法は、
反応性ガスの分圧を上げて(ブリスパッタ)を行い、タ
ーゲット上に過剰に表面反応層をを形成させてから成膜
を開始するものである。
Means for Solving the Problems In order to solve the above problems, the thin film manufacturing method of the present invention includes:
Film formation is started after increasing the partial pressure of the reactive gas (bliss sputtering) to form an excessive surface reaction layer on the target.

作  用 上記の方法により、反応ガスの分圧を上げてあらかじめ
ブリスパッタを行ない、ターゲット表面に過剰な反応物
を形成して成膜中の薄膜組成の変動を補償し形成薄膜の
組成を二定にする。
Effect: By the above method, the partial pressure of the reactant gas is increased and bliss sputtering is performed in advance to form excess reactants on the target surface to compensate for fluctuations in the thin film composition during film formation and to keep the composition of the formed thin film constant. do.

実施例 以下、本発明の一実施例について図面を参照して説明す
る。第1図は反応性スパッタリング装置の断面図である
。1は内部が排気可能なチャンバー、2はチャンバー1
内に配置され薄膜が形成される基板、3は基板2を保持
しかつ自転ないしは公転させるホルダ、4は基板2と対
向して配置された金属ターゲット、5はターゲット4を
保持するバンキングプレート、6はバッキングプレート
6を冷却する冷却水である。また7はArガス、8は0
2ガス、9,10はガス流量を制御するコントロールパ
ルプ、11は基板2へのターゲット4からのスパッタ粒
子の飛着を制御するシャッタである。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view of a reactive sputtering apparatus. 1 is a chamber whose inside can be evacuated, 2 is a chamber 1
3 is a holder that holds the substrate 2 and rotates or revolves around it; 4 is a metal target that is placed facing the substrate 2; 5 is a banking plate that holds the target 4; 6; is cooling water that cools the backing plate 6. Also, 7 is Ar gas, 8 is 0
2 gases, 9 and 10 are control pulps that control gas flow rates, and 11 is a shutter that controls the flying of sputtered particles from the target 4 onto the substrate 2.

次に動作を説明する。まず、陰極となるターゲット4及
びバッキングプレート6に高電圧を印加し、グロー放電
を発生させる。このときターゲット4表面ではアルゴン
イオンあるいは酸素イオンによる表面原子層のスパッタ
リングによる除去とターゲット原子の酸化反応による狭
面酸化物層の成長が同時に起こる。この際、スパッタリ
ング速度及び酸化速度を変えることによシスノ・:ノタ
リングで形成される薄膜をほぼ酸化物に近い状態から金
属に近い状態まで変化させることが可能となる。
Next, the operation will be explained. First, a high voltage is applied to the target 4 serving as a cathode and the backing plate 6 to generate glow discharge. At this time, on the surface of the target 4, the removal of the surface atomic layer by sputtering using argon ions or oxygen ions and the growth of a narrow-sided oxide layer due to the oxidation reaction of the target atoms occur simultaneously. At this time, by changing the sputtering rate and the oxidation rate, it is possible to change the thin film formed by cysno:notaring from a state close to an oxide to a state close to a metal.

スパッタリング速度を制御する手段として投入電力制御
がまた、酸化速度を変える手段としでへガス分圧すなわ
ちQ2ガス流量制御が用いられる。
Input power control is used as a means for controlling the sputtering rate, and gas partial pressure control, that is, Q2 gas flow rate control, is used as a means for changing the oxidation rate.

これらを適当に制御することにより形成薄膜の組成及び
特性を変えることができる。ターゲット4材料としてT
eを用いた場合、形成薄膜としてToo  (0<!<
2)薄膜が形成される。この薄膜を相変化型の光記録膜
として用いる場合、Teと酸素の比がおおよそ1:1の
ときが最も感度が高くかつ安定であることが報告されて
いる(第28回応用物理学関係連合溝演会子稿集31p
−R−7〜12(1981))。したがって投入電力及
び02ガス流量を適当に制御してToo工膜のX値を1
にする。
By appropriately controlling these, the composition and properties of the formed thin film can be changed. T as target 4 material
When using e, Too (0<!<
2) A thin film is formed. When using this thin film as a phase-change optical recording film, it has been reported that the highest sensitivity and stability are achieved when the ratio of Te and oxygen is approximately 1:1 (28th Union of Applied Physics Mizoenkai manuscript collection 31 pages
-R-7 to 12 (1981)). Therefore, by appropriately controlling the input power and the 02 gas flow rate, the X value of the Too film can be reduced to 1.
Make it.

このときの投入電力は400W、02ガス流量は20S
CCMだった。
The input power at this time was 400W, and the 02 gas flow rate was 20S.
It was CCM.

投入電力を一定にしたま−まo2ガス流量を26SCC
Mにしてブリスパッタを行うとターゲット4表面上に過
剰な酸化物層が形成される。この状態でシャッタ11を
開放して成膜を開始すると、シャッタ移動にともなうタ
ーゲット表面の放電プラズマ状態の変化や、基板へのタ
ーゲット4からの2次電子等の流入により1女化物の分
解が起こり、脱離した酸素はチャンバ1から排気される
。。したがってターゲット表面の過剰な酸化物層は急速
に分解され、成膜開始直後から形成されるTeOx膜は
X値が1と理想的な膜となる。その後、o2ガス流量を
20SCCMに戻してスパッタを続けると、ターゲット
4表面の酸化物層の分解とターゲット自体の酸化が平衡
するため、成膜の全期間を通して一定した組成の薄膜が
安定して得られる。
While the input power is constant, the O2 gas flow rate is 26SCC.
When bliss sputtering is performed with M, an excessive oxide layer is formed on the surface of the target 4. When the shutter 11 is opened to start film formation in this state, the decomposition of the 1-female compound occurs due to changes in the discharge plasma state on the target surface as the shutter moves and secondary electrons flowing into the substrate from the target 4. , the desorbed oxygen is exhausted from chamber 1. . Therefore, the excessive oxide layer on the target surface is rapidly decomposed, and the TeOx film formed immediately after the start of film formation becomes an ideal film with an X value of 1. After that, when the O2 gas flow rate is returned to 20SCCM and sputtering is continued, the decomposition of the oxide layer on the surface of the target 4 and the oxidation of the target itself are balanced, so a thin film with a constant composition can be stably obtained throughout the entire film formation period. It will be done.

このときの膜厚方向の組成分析結果を第2図に示す。こ
れはオージェ分析をしたものである。横軸は薄膜の深さ
方向(人)で、縦軸は組成比である。12はToの組成
比、13は0の組成比、14は基板材料のCの組成比で
ある。
The compositional analysis results in the film thickness direction at this time are shown in FIG. This is an Auger analysis. The horizontal axis is the depth direction (person) of the thin film, and the vertical axis is the composition ratio. 12 is the composition ratio of To, 13 is the composition ratio of 0, and 14 is the composition ratio of C of the substrate material.

第2図から明らかなように本芙施例によれば、従来みら
れた基板との界面付近での薄膜の酸素欠乏はみられず、
薄膜の厚さ方向の全域でToo工のX値が約1と光記録
膜として適した膜の製造が可能となった。
As is clear from FIG. 2, according to this example, oxygen depletion in the thin film near the interface with the substrate, which was observed in the past, was not observed.
It has become possible to manufacture a film suitable as an optical recording film with a Too's X value of about 1 over the entire thickness direction of the thin film.

発明の効果 以上のように本発明の薄膜の製造方法は、反応性ガスの
分圧を上げてブリスパッタを行ない、ターゲット上に過
剰に表面反応物層を形成させてから成膜を開始するもの
であり、本発明の方法により成膜中の薄膜組成の変動を
補償して形成薄膜の組成を一定にすることができる。ま
たこのことにより反応性スパッタ法において安定した組
成および特性の薄膜の製造が可能となり、品質の向上お
よび生産性の向上に大いに役立つものである。
Effects of the Invention As described above, the thin film manufacturing method of the present invention involves increasing the partial pressure of a reactive gas and performing bliss sputtering to form an excessive surface reactant layer on the target before starting film formation. According to the method of the present invention, variations in the composition of the thin film during film formation can be compensated for and the composition of the formed thin film can be made constant. Furthermore, this makes it possible to produce a thin film with stable composition and properties by reactive sputtering, which is of great help in improving quality and productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に用いたスパッタリング装置
の断面図、第2図は本発明の方法を用いて形成した薄膜
の厚さ方向の組成分析結果を示したグラフ、第3図は従
来の方法に用いたスパッタリング装置の断面図、第4図
は従来の方法を用いて形成した薄膜の厚さ方向の組成分
析結果を示したグラフである。 2・・・・・・基板、4・・・・・・ターゲット、9.
10・・・・・・コントロールパルフ、11・・・・・
・シャッタ、12・・・・・・Toの組成比、13・・
・・・・0の組成比。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
2 図 膜表面から9深さくlノ 第4図 膜表面D1うの深さ <A)
FIG. 1 is a cross-sectional view of a sputtering apparatus used in an embodiment of the present invention, FIG. 2 is a graph showing the composition analysis results in the thickness direction of a thin film formed using the method of the present invention, and FIG. FIG. 4, which is a sectional view of a sputtering apparatus used in the conventional method, is a graph showing the compositional analysis results in the thickness direction of a thin film formed using the conventional method. 2...Substrate, 4...Target, 9.
10...Control palf, 11...
・Shutter, 12... Composition ratio of To, 13...
...0 composition ratio. Name of agent: Patent attorney Toshio Nakao and 1 other person
2. Depth of 9 depths from the membrane surface in Figure 4. Depth of membrane surface D1 <A)

Claims (2)

【特許請求の範囲】[Claims] (1)反応性ガスの分圧を上げて予備放電を行ないター
ゲット上に過剰に表面反応物層を形成させ、その後、反
応性スパッタリング法による成膜を開始する薄膜の製造
方法。
(1) A method for producing a thin film in which a preliminary discharge is performed by increasing the partial pressure of a reactive gas to form an excessive surface reactant layer on a target, and then film formation by a reactive sputtering method is started.
(2)酸素ガスの分圧を20%以上増加させてターゲッ
ト上に過剰に表面酸化物層を形成させ、しかる後、反応
性スパッタリング法による成膜を開始し、その後、酸素
ガス分圧を下げて再び反応性スパッタリング法で薄膜を
形成する特許請求の範囲第1項記載の薄膜の製造方法。
(2) Increase the partial pressure of oxygen gas by 20% or more to form an excessive surface oxide layer on the target, then start film formation by reactive sputtering, and then reduce the partial pressure of oxygen gas. 2. The method of manufacturing a thin film according to claim 1, wherein the thin film is formed again by a reactive sputtering method.
JP12420787A 1987-05-21 1987-05-21 Thin film manufacturing method Expired - Lifetime JPH0768615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12420787A JPH0768615B2 (en) 1987-05-21 1987-05-21 Thin film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12420787A JPH0768615B2 (en) 1987-05-21 1987-05-21 Thin film manufacturing method

Publications (2)

Publication Number Publication Date
JPS63290256A true JPS63290256A (en) 1988-11-28
JPH0768615B2 JPH0768615B2 (en) 1995-07-26

Family

ID=14879641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12420787A Expired - Lifetime JPH0768615B2 (en) 1987-05-21 1987-05-21 Thin film manufacturing method

Country Status (1)

Country Link
JP (1) JPH0768615B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04160144A (en) * 1990-10-24 1992-06-03 Nec Corp Production of dielectric film
US7049190B2 (en) 2002-03-15 2006-05-23 Sanyo Electric Co., Ltd. Method for forming ZnO film, method for forming ZnO semiconductor layer, method for fabricating semiconductor device, and semiconductor device
JP2019138971A (en) * 2018-02-07 2019-08-22 凸版印刷株式会社 Reflective photomask blank and reflective photomask

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04160144A (en) * 1990-10-24 1992-06-03 Nec Corp Production of dielectric film
JP2581300B2 (en) * 1990-10-24 1997-02-12 日本電気株式会社 Manufacturing method of dielectric film
US7049190B2 (en) 2002-03-15 2006-05-23 Sanyo Electric Co., Ltd. Method for forming ZnO film, method for forming ZnO semiconductor layer, method for fabricating semiconductor device, and semiconductor device
JP2019138971A (en) * 2018-02-07 2019-08-22 凸版印刷株式会社 Reflective photomask blank and reflective photomask

Also Published As

Publication number Publication date
JPH0768615B2 (en) 1995-07-26

Similar Documents

Publication Publication Date Title
JP2511503B2 (en) Method for forming tungsten film
JP2000160335A (en) Thin film material and thin film formation
JP2829221B2 (en) Method of forming oxide film on metal substrate by thermal plasma evaporation method
JP4164068B2 (en) Controlling the stoichiometry and morphology of silver selenide films in sputter deposition.
JPS63290256A (en) Manufacture of thin film
US4738907A (en) Process for manufacturing a photomask
JPH0874034A (en) Formation of ito transparent conductive film
JPS61292817A (en) Formation of transparent conducting metal oxide film
JP3727693B2 (en) TiN film manufacturing method
JPH01158633A (en) Information recording medium
JPH01309962A (en) Formation of thin film
JPH0314906B2 (en)
JPH10168558A (en) Production of ito transparent electrically conductive film
JPH0756070B2 (en) Sputtering method
JPH05279846A (en) Target for sputtering and formation of sputtered tion film
JPH11286777A (en) Sputtering device and formation of thin film using the same
JPS59170266A (en) Reactive sputtering method under oxidation
JPH05259108A (en) Oxygen-doped titanium nitride film and its manufacture
JP2524179B2 (en) Sputtering method
JPH06212403A (en) Production of in/sn oxide transparent conductive film
JPH05230636A (en) Formation of metallic oxide thin film
JP2507963B2 (en) Method of manufacturing oxide thin film
JPH05294618A (en) Production of oxide thin film
EP1148148A1 (en) Laminate structure and production method therefor
JP2830000B2 (en) Sputtering method and apparatus