JPH06212403A - Production of in/sn oxide transparent conductive film - Google Patents

Production of in/sn oxide transparent conductive film

Info

Publication number
JPH06212403A
JPH06212403A JP564493A JP564493A JPH06212403A JP H06212403 A JPH06212403 A JP H06212403A JP 564493 A JP564493 A JP 564493A JP 564493 A JP564493 A JP 564493A JP H06212403 A JPH06212403 A JP H06212403A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
substrate
oxidized
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP564493A
Other languages
Japanese (ja)
Inventor
Hirobumi Ogawa
博文 小川
Kenji Samejima
賢二 鮫島
Tetsuya Oshima
徹也 大島
Kazuyuki Nagatsuma
一之 長妻
Tadaaki Hirai
忠明 平井
Masanao Yamamoto
昌直 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP564493A priority Critical patent/JPH06212403A/en
Publication of JPH06212403A publication Critical patent/JPH06212403A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PURPOSE:To obtain a good-quality transparent conductive film having high conductivity and transmittance, without any fine-particle deposit and excellent in smoothness with good productivity. CONSTITUTION:A rotary vapor deposition device having a rotary disk 9 with a substrate 10 placed on the cicumference, the In vaporization source 1 and Sn vaporization source 2 opposed to the circumference of the disk 9 and a vaporization rate detector 11 opposed to the respective vaporization sources is used, and In and Sn are alternately deposited on the heated substrate 10 in an oxygen-contg. atmosphere while controlling the vaporization rates of In and Sn so that the amts. of In and Sn to be deposited are specified and oxidized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は酸化In−Sn系透明導
電膜の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a transparent conductive film of In--Sn oxide.

【0002】[0002]

【従来の技術】従来、光センサ,一次元ラインセンサ,
撮像デバイス等の受光デバイス用透明導電膜として、酸
化インジウムを主体とする透明導電膜が広く用いられて
いる。また、透明導電膜の導電率を高めるには、Snを
ドーピングすることが有効で、一般に、次の方法が知ら
れている。
2. Description of the Related Art Conventionally, an optical sensor, a one-dimensional line sensor,
As a transparent conductive film for a light receiving device such as an imaging device, a transparent conductive film mainly containing indium oxide is widely used. Further, doping Sn is effective for increasing the conductivity of the transparent conductive film, and the following method is generally known.

【0003】(1) 高周波スパッタリング法により、ア
ルゴンまたは酸素雰囲気中で、基板上に、In23とS
nO2 の焼結体から成るターゲットを蒸着させて、酸化
インジウムを主体とする透明導電膜を得る方法。
(1) In 2 O 3 and S are deposited on a substrate by an RF sputtering method in an argon or oxygen atmosphere.
A method of depositing a target made of a sintered body of nO 2 to obtain a transparent conductive film mainly composed of indium oxide.

【0004】(2) 電子ビーム蒸着法により、酸素雰囲
気中で、加熱基板上にIn23とSnO2 から成る焼結
体を蒸着して、酸化インジウムを主体とする透明導電膜
を得る方法。
(2) A method of obtaining a transparent conductive film mainly composed of indium oxide by depositing a sintered body of In 2 O 3 and SnO 2 on a heating substrate in an oxygen atmosphere by electron beam vapor deposition. .

【0005】(3) 電子ビーム蒸着法により、酸素雰囲
気中で、加熱基板上にIn−Sn系合金を蒸着した後、
酸素ガス雰囲気中で加熱処理して、酸化インジウムを主
体とする透明導電膜を得る方法。
(3) After depositing an In-Sn alloy on a heating substrate in an oxygen atmosphere by an electron beam evaporation method,
A method of obtaining a transparent conductive film containing indium oxide as a main component by heat treatment in an oxygen gas atmosphere.

【0006】(4) 抵抗加熱蒸着法により、酸素雰囲気
中で、加熱基板上にIn−Sn系合金を蒸着して、酸化
インジウムを主体とする透明導電膜を得る方法。
(4) A method of vapor-depositing an In-Sn alloy on a heating substrate in an oxygen atmosphere by a resistance heating vapor deposition method to obtain a transparent conductive film mainly containing indium oxide.

【0007】この方法に関しては、例えば、アール シ
ー エー レビュー ボリューム32 ジューン 28
9〜296頁(RCA Review,Vol.32,Jun,28
9〜296頁(1971)),応用物理,第49巻,第1
号,2〜16頁(1980)に記載されている。
Regarding this method, for example, ARCA Review Volume 32 June 28
9-296 (RCA Review, Vol. 32, Jun, 28
9-296 (1971)), Applied Physics, Volume 49, Volume 1
No., pp. 2-16 (1980).

【0008】[0008]

【発明が解決しようとする課題】上記従来技術のうち、
(1),(2),(3)の方法では、微粒子状の欠陥が発生
し易く、また、(4)の方法では、微粒子状の欠陥は発
生しにくいが、必ずしも充分な導電性が得難い等の欠点
があった。
Of the above-mentioned conventional techniques,
With the methods (1), (2) and (3), fine particle defects are likely to occur, and with the method (4), fine particle defects are less likely to occur, but it is not always possible to obtain sufficient conductivity. There were drawbacks such as.

【0009】本発明の目的は、上記問題点を解決し得る
製造方法を提供することにある。また、本発明の他の目
的は、上記問題を解決し得る製造方法により、低抵抗,
高透過率で、微粒子状付着物のない平滑な透明導電膜を
安定に提供することにある。
An object of the present invention is to provide a manufacturing method capable of solving the above problems. Another object of the present invention is to provide a low resistance by a manufacturing method that can solve the above problems.
The object is to stably provide a smooth transparent conductive film having a high transmittance and no particulate adhered matter.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、酸素を含有するガス雰囲気中で、加熱保
持された基板上に、InとSnをそれぞれ別々のボート
から蒸着させる。
In order to achieve the above object, the present invention deposits In and Sn from separate boats on a substrate which is heated and held in a gas atmosphere containing oxygen.

【0011】また、円周部に沿って基板を配備した回転
円板と、回転円板の円周部に対向して設置されたInと
Snの蒸発源と、個々の蒸発源に対抗して設けられた蒸
発速度検出器とを有する回転蒸着装置を用いて、Inと
Snの蒸着量がそれぞれ所定の値になるようにInとS
nの蒸発速度を制御しつつ、加熱保持された基板上に、
酸素を含有するガス雰囲気中で、InとSnを交互に蒸
着,酸化させる。
Further, the rotary disk having the substrate arranged along the circumference thereof, the evaporation sources of In and Sn installed so as to face the circumference of the rotation disk, and the individual evaporation sources are opposed to each other. Using a rotary vapor deposition apparatus having an evaporation rate detector provided, In and S are adjusted so that the vapor deposition amounts of In and Sn become predetermined values, respectively.
While controlling the evaporation rate of n,
In and Sn are alternately deposited and oxidized in a gas atmosphere containing oxygen.

【0012】[0012]

【作用】発明者らは、従来技術における微粒子状欠陥の
発生、ならびに導電率低下の要因を詳細に調査検討し
た。その結果、蒸発源にIn23とSnO2 から成る焼
結体を用いると、膜形成中に蒸発源から焼結体の微少破
片が飛来して基板に付着し、微粒子状欠陥となること、
また蒸発源にIn−Sn系合金を用いる場合には、In
とSnの蒸気圧が2桁以上異なるため、均一組成の蒸着
膜が得難いことが判明した。
The present inventors have investigated in detail the factors of the generation of fine particle defects and the decrease in conductivity in the prior art. As a result, when a sintered body composed of In 2 O 3 and SnO 2 is used as the evaporation source, minute fragments of the sintered body fly from the evaporation source during film formation and adhere to the substrate, resulting in fine particle defects. ,
When using an In—Sn alloy as the evaporation source, In
It was found that it was difficult to obtain a vapor-deposited film having a uniform composition because the vapor pressures of Sn and Sn differed by two digits or more.

【0013】本発明では、InとSnを、酸素雰囲気中
でそれぞれ別々のボートから蒸発させ、それぞれInと
Snの蒸発速度を個別に制御する。そのために、本方法
では、従来の抵抗加熱蒸着法では実現できなかったSn
の精密添加量制御が容易に出来るようになり、その結
果、微粒子状欠陥のない高導電率の透明導電膜が得られ
る。
In the present invention, In and Sn are evaporated from different boats in an oxygen atmosphere, and the evaporation rates of In and Sn are individually controlled. Therefore, in this method, Sn which cannot be realized by the conventional resistance heating vapor deposition method is used.
It becomes possible to easily control the precise addition amount of the, and as a result, it is possible to obtain a transparent conductive film having a high conductivity and free of fine particle defects.

【0014】以下、本発明の具体的方法を図面を用いて
説明する。
A specific method of the present invention will be described below with reference to the drawings.

【0015】図1(a)は、本発明に使用した真空蒸着
装置の説明図を示す一例である。図中の1、および2は
蒸着ボート、3,4は蒸発源材料、5は電流端子、6は
シールド、7はシャッタ、8は回転軸、9は回転円板、
10は基板、11は膜厚モニタ、12はヒータ、13は
回転モータ、14はベルジャ、15はバルブ、16は酸
素導入バルブである。図1(b)は回転円板9の上面図
である。
FIG. 1A is an example showing a diagram of a vacuum vapor deposition apparatus used in the present invention. In the figure, 1 and 2 are vapor deposition boats, 3 and 4 are evaporation source materials, 5 is a current terminal, 6 is a shield, 7 is a shutter, 8 is a rotating shaft, 9 is a rotating disk,
Reference numeral 10 is a substrate, 11 is a film thickness monitor, 12 is a heater, 13 is a rotary motor, 14 is a bell jar, 15 is a valve, and 16 is an oxygen introduction valve. FIG. 1B is a top view of the rotary disc 9.

【0016】図1(a)の蒸着ボート1、および2にI
nとSnをそれぞれ別々に充填し、回転円板9に基板1
0を配置し、蒸着装置内を高真空に排気する。次に酸素
ガスを導入して蒸着装置内を所定の圧力に保持しつつ、
回転円板9を定速度で回転させ、基板10をヒータ12
により所定の温度に加熱保持する。次に、蒸着ボート
1、および2にそれぞれ別々の電源から通電し、Inお
よびSnを加熱溶解蒸発せしめ、それぞれのボートから
の蒸発量が一定になるように制御する。安定な蒸発量が
得られるようになったら、シャッタ7を開き、回転円板
上の各加熱基板にInとSnを交互に蒸着し、酸化しつ
つ多重積層することによりInとSnの酸化物からなる
透明導電膜を得る。この場合、InおよびSnの蒸発量
は、シャッタの開閉とは無関係に、常に膜厚モニタ11
を用いて、InとSnの蒸発速度がそれぞれ所定の値に
なるように制御する。従って、本方法によれば、基板に
所定量のInとSnの超薄層を交互に多重積層蒸着する
ので、蒸着膜内の組成比が制御でき、Snの充分なドー
ピング効果を再現性よく得ることができる。
In the vapor deposition boats 1 and 2 shown in FIG.
n and Sn are separately filled, and the rotating disk 9 is filled with the substrate 1
0 is arranged and the inside of the vapor deposition apparatus is evacuated to high vacuum. Next, while maintaining a predetermined pressure in the vapor deposition apparatus by introducing oxygen gas,
The rotating disk 9 is rotated at a constant speed, and the substrate 10 is heated by the heater 12.
Is heated and maintained at a predetermined temperature. Next, the vapor deposition boats 1 and 2 are energized from different power sources to heat and dissolve and vaporize In and Sn, and the vaporization amounts from the respective boats are controlled to be constant. When a stable evaporation amount can be obtained, the shutter 7 is opened, In and Sn are alternately deposited on each heating substrate on the rotating disk, and the oxides of In and Sn are stacked by oxidizing and multiply-stacking. To obtain a transparent conductive film. In this case, the evaporation amounts of In and Sn are always measured regardless of whether the shutter is opened or closed.
Is used to control the evaporation rates of In and Sn so that they are each at a predetermined value. Therefore, according to the present method, a predetermined amount of ultra-thin layers of In and Sn are alternately deposited in multiple layers, so that the composition ratio in the deposited film can be controlled and a sufficient Sn doping effect can be obtained with good reproducibility. be able to.

【0017】本発明に用いる蒸着ボートは、蒸着源材
料、ならびに雰囲気ガスと反応しあわない材料であるこ
とが重要である。このような目的には、例えば、中心部
に蒸発源材料を充填するための窪みを有する傍熱型の硬
質セラミックボートが使用できる。ボートを加熱するに
は、例えば、ボートの側面から貫通した孔にPt−Rh
合金からなる金属線を通し、金属線に通電すればよい。
金属線は必ずしもPt−Rhである必要はなく、Pt,
Irないしはそれらの合金でもよい。
It is important that the vapor deposition boat used in the present invention is a vapor deposition source material and a material that does not react with atmospheric gas. For this purpose, for example, an indirectly heated hard ceramic boat having a recess for filling the evaporation source material in the center can be used. In order to heat the boat, for example, Pt-Rh is formed in a hole penetrating from the side of the boat.
A metal wire made of an alloy may be passed through to energize the metal wire.
The metal wire does not necessarily have to be Pt-Rh, but Pt,
Ir or alloys thereof may be used.

【0018】以上、蒸発源材料がInとSnの2者の場
合について述べたが、本発明によれば、2者に限られる
わけではなく、Snの他に、更にSb,Cd,Zn,T
i等を微量追加ドーピングすることもできる。この場合
には、ドーパントの数に応じてボートならびに膜厚モニ
タの数を増やせばよい。
The case where the evaporation source materials are In and Sn has been described above. However, according to the present invention, the number of evaporation source materials is not limited to two, and in addition to Sn, Sb, Cd, Zn and T may be further added.
A small amount of additional doping such as i can also be performed. In this case, the number of boats and film thickness monitors may be increased according to the number of dopants.

【0019】また、蒸着時の雰囲気ガスとしては酸素に
限られるわけではなく、例えば、水蒸気,炭酸ガス、な
いしはこれらの混合ガスでもよい。
The atmosphere gas at the time of vapor deposition is not limited to oxygen, and may be, for example, water vapor, carbon dioxide gas, or a mixed gas thereof.

【0020】図2は、図1の真空蒸着装置を用いて、基
板温度200℃,酸素ガス5.0mTorr,堆積速度1n
m/min の条件下で作成した酸化In−Sn系薄膜の比
抵抗および透過率と全重量に対するSnの添加量との関
係を示す特性図である。
FIG. 2 shows the substrate temperature of 200 ° C., oxygen gas of 5.0 mTorr, and deposition rate of 1 n using the vacuum vapor deposition apparatus of FIG.
FIG. 3 is a characteristic diagram showing the relationship between the specific resistance and the transmittance of an oxidized In—Sn thin film formed under the condition of m / min, and the added amount of Sn with respect to the total weight.

【0021】Snの含有量が1〜10%領域では、比抵
抗,透過率とも良好で、また膜表面の平滑性が極めて良
く、微粒子状の面欠陥もない。例えば、Sn蒸着量5%
で形成した薄膜は、比抵抗約0.3mΩ・cm,可視光での
透過率90%以上で、良好な透明導電性を示す。Snの
含有量を1%以下にすると、抵抗値のばらつきが大きく
なって再現性が悪く、一方、10%以上では、抵抗値が
急激に大きくなる。
When the Sn content is in the range of 1 to 10%, both the specific resistance and the transmittance are good, the smoothness of the film surface is very good, and there are no fine surface defects. For example, Sn deposition amount 5%
The thin film formed in 1) has a specific resistance of about 0.3 mΩ · cm and a visible light transmittance of 90% or more, and exhibits excellent transparent conductivity. When the Sn content is 1% or less, the variation in resistance value becomes large and the reproducibility is poor, while when it is 10% or more, the resistance value sharply increases.

【0022】図3は、図1の真空蒸着装置を用いて、酸
素ガス圧5.0mTorr,堆積速度1nm/min ,Snの
添加量5%の条件下で作成した酸化In−Sn系薄膜の
比抵抗および透過率と作成時の基板温度の関係を示す特
性図である。基板温度が80〜300℃の領域では、比
抵抗,透過率とも良好で、また膜表面の平滑性が極めて
良く、微粒子状の面欠陥もない。例えば、基板温度20
0℃で形成した薄膜は、比抵抗0.3mΩ・cm,可視光で
の透過率90%以上で、良好な透明導電性を示す。基板
温度が80℃以下では、透過率が悪くなり抵抗値も急激
に大きくなり、一方、300℃以上では、薄膜の結晶性
が進むため、膜表面の凹凸が大きくなって平滑性が悪く
なる。
FIG. 3 shows the ratio of the oxidized In--Sn thin film prepared by using the vacuum deposition apparatus of FIG. 1 under the conditions of oxygen gas pressure of 5.0 mTorr, deposition rate of 1 nm / min, and addition amount of Sn of 5%. It is a characteristic view which shows the relationship between resistance and the transmittance | permeability, and the substrate temperature at the time of preparation. In the region where the substrate temperature is 80 to 300 ° C., both the specific resistance and the transmittance are good, the smoothness of the film surface is very good, and there are no fine surface defects. For example, the substrate temperature 20
The thin film formed at 0 ° C. has a specific resistance of 0.3 mΩ · cm and a visible light transmittance of 90% or more, and exhibits excellent transparent conductivity. When the substrate temperature is 80 ° C. or lower, the transmittance is deteriorated and the resistance value is rapidly increased. On the other hand, when the substrate temperature is 300 ° C. or higher, the crystallinity of the thin film progresses, resulting in large irregularities on the film surface and poor smoothness.

【0023】図4は、図1の真空蒸着装置を用いて、基
板温度200℃,堆積速度1nm/min ,Snの添加量
5%の条件下で作成した酸化In−Sn系薄膜の比抵抗
および透過率と作成時の酸素ガス圧との関係を示す特性
図である。酸素ガス圧0.5〜50mTorrの領域では、
比抵抗,透過率とも良好で、また膜表面の平滑性が極め
て良く、微粒子状の面欠陥もない。例えば、酸素ガス圧
5mTorrで形成した薄膜は、比抵抗0.3mΩ・cm,可視
光での透過率90%以上の良好な透明導電性を示す。酸
素ガス圧が0.5mTorr 以下では、透過率が悪く、抵抗
値も急激に大きくなり、一方、50mTorr以上では、微
粒子状の面欠陥が発生し、抵抗値も大きくなる。
FIG. 4 shows the specific resistance and the resistivity of the oxidized In-Sn thin film prepared by using the vacuum vapor deposition apparatus of FIG. 1 under the conditions of the substrate temperature of 200 ° C., the deposition rate of 1 nm / min, and the addition amount of Sn of 5%. It is a characteristic view which shows the relationship between a transmittance | permeability and the oxygen gas pressure at the time of preparation. In the oxygen gas pressure range of 0.5 to 50 mTorr,
The specific resistance and the transmittance are good, the smoothness of the film surface is very good, and there are no fine surface defects. For example, a thin film formed at an oxygen gas pressure of 5 mTorr has a good specific resistance of 0.3 mΩ · cm and a good transparent conductivity with a visible light transmittance of 90% or more. When the oxygen gas pressure is 0.5 mTorr or less, the transmittance is poor and the resistance value sharply increases. On the other hand, when the oxygen gas pressure is 50 mTorr or more, fine particle-shaped surface defects occur and the resistance value also increases.

【0024】図5は図1の真空蒸着装置を用いて、基板
温度200℃,酸素ガス5.0mTorr,Snの含有量5%
の条件下で作成した酸化In−Sn系薄膜の比抵抗およ
び透過率と作成時の堆積速度の関係を示す特性図であ
る。堆積速度が10nm/min以下の領域では、比抵
抗,透過率とも良好で、また膜表面の平滑性が極めて良
く、微粒子状の面欠陥もない。堆積速度1nm/min で
形成した薄膜は、比抵抗0.3mΩ・cm,可視光での透過
率90%以上の良好な透明導電性を示す。堆積速度が
0.1nm/min以下では生産性が悪く、一方、10nm
/min 以上では、透過率が急激に悪くなり、抵抗値も大
きくなる。
FIG. 5 shows the substrate temperature of 200 ° C., oxygen gas of 5.0 mTorr, and Sn content of 5% by using the vacuum vapor deposition apparatus of FIG.
FIG. 3 is a characteristic diagram showing the relationship between the resistivity and transmittance of an oxidized In—Sn thin film formed under the conditions described above and the deposition rate at the time of preparation. In the region where the deposition rate is 10 nm / min or less, both the specific resistance and the transmittance are good, the smoothness of the film surface is extremely good, and there are no surface defects in the form of fine particles. The thin film formed at a deposition rate of 1 nm / min shows good transparent conductivity with a specific resistance of 0.3 mΩ · cm and a visible light transmittance of 90% or more. When the deposition rate is 0.1 nm / min or less, the productivity is poor, while 10 nm
Above / min, the transmittance sharply deteriorates and the resistance value also increases.

【0025】このことから、本発明のInとSnをそれ
ぞれ別々の蒸着ボートから蒸発させて酸化In−Sn系
導電性薄膜を形成する方法では、Snの添加量1〜10
%,基板温度80〜300℃,酸素ガス圧0.5mTorr
〜50mTorr,堆積速度0.1〜10nm/min の範囲
が好適で、この場合、比抵抗,透過率とも良好で、ま
た、膜表面の平滑性が極めて良く、微粒子状の面欠陥も
ない等の、高品質の酸化In−Sn系透明導電膜が再現
性よく得られる。また、本方法で形成した薄膜の厚みは
40nm以下が望ましく、それ以上では、薄膜の結晶性
が進み、膜表面の凹凸が大きくなって平滑性が悪くなる
恐れがある。
Therefore, in the method of the present invention for vaporizing In and Sn from different vapor deposition boats to form an oxidized In--Sn conductive thin film, the addition amount of Sn is 1 to 10.
%, Substrate temperature 80 to 300 ° C., oxygen gas pressure 0.5 mTorr
The range of -50 mTorr and the deposition rate of 0.1-10 nm / min is suitable. In this case, the specific resistance and the transmittance are good, and the smoothness of the film surface is very good, and there are no fine surface defects. A high quality In—Sn oxide transparent conductive film is obtained with good reproducibility. Further, the thickness of the thin film formed by this method is preferably 40 nm or less, and if it is more than 40 nm, the crystallinity of the thin film may be advanced and the unevenness of the film surface may become large to deteriorate the smoothness.

【0026】また、本発明による透明導電膜を撮像管の
ターゲット電極に使用すれば、例えば、従来技術のスパ
ッタリング法による酸化インジウム系透明導電膜を用い
た撮像管に比べて、暗電流,白点状の画面欠陥が少な
く、より高い電圧を印加して動作させることが可能とな
り、より高感度の撮像管が実現できる。
Further, when the transparent conductive film according to the present invention is used as a target electrode of an image pickup tube, dark current and white dots are higher than those of an image pickup tube using an indium oxide type transparent conductive film formed by a conventional sputtering method. The number of screen defects is small, it is possible to operate by applying a higher voltage, and an image pickup tube with higher sensitivity can be realized.

【0027】本発明による透明導電膜は上述のような撮
像管だけでなく、透光性基板と透明導電膜と光導電膜と
を含む受光デバイス、例えば、光センサ,ラインセン
サ,二次元センサ,固体撮像素子等の透明導電膜に使用
しても、撮像管の場合と同様に、暗電流,局所的画像欠
陥の少ない良好な受光デバイスが実現できる。
The transparent conductive film according to the present invention is not limited to the above-mentioned image pickup tube, but also a light receiving device including a transparent substrate, a transparent conductive film and a photoconductive film, for example, an optical sensor, a line sensor, a two-dimensional sensor, Even when it is used for a transparent conductive film such as a solid-state image pickup device, a good light-receiving device with few dark currents and local image defects can be realized as in the case of an image pickup tube.

【0028】[0028]

【実施例】以下、本発明の具体的実施例について説明す
る。
EXAMPLES Specific examples of the present invention will be described below.

【0029】〈実施例1〉図1(a)の蒸着ボート1、
および2の一方の蒸着ボートにInからなる蒸発源材料
を充填し、他方の蒸着ボートにSnからなる蒸発源材料
を充填する。次に、基板10を回転円板9に配置し、蒸
着装置内を真空度2nTorr以下に排気し、回転円板を毎
分50回転の一定速度で回転させ、バルブ15と酸素導
入バルブ16の開口率を調整して蒸着装置内の圧力を5
mTorrに保持し、基板を200℃に加熱保持する。次
に、基板温度ならびに蒸着装置内の圧力を定常状態に保
ちつつ、In用ボートとSn用ボートの両者にそれぞれ
別々の電源から電流を通じて、膜厚モニタ11により、
InとSnの蒸発速度が95対5になるように制御す
る。この場合、InとSnの蒸発速度は、あらかじめ、
それぞれの膜厚モニタの蒸発速度指示値と実際に基板に
堆積するIn、ないしはSnの蒸着量の関係を個別に調
べておき、得られた構成曲線に従って設定する。本実施
例では、InとSnの全堆積速度が1nm/min になる
ように、それぞれInとSnの蒸発速度を設定する。両
者の蒸発速度が安定したところで、両ボート上のシャッ
タ7を同時に開き、約25分間で、厚み25nmの酸化
In−Sn系透明導電膜を形成した。得られた薄膜の比
抵抗は0.3mΩ・cm,可視光での透過率は90%以上
で、膜表面の平滑性が極めて良く、微粒子状の面欠陥も
観測されなかった。また、膜の組成を分析したところ、
Snの含有量はほぼ5重量%であった。
<Embodiment 1> The vapor deposition boat 1 shown in FIG.
One of the evaporation boats 2 and 2 is filled with the evaporation source material made of In, and the other evaporation boat is filled with the evaporation source material made of Sn. Next, the substrate 10 is placed on the rotary disk 9, the inside of the vapor deposition apparatus is evacuated to a vacuum degree of 2 nTorr or less, the rotary disk is rotated at a constant speed of 50 rpm, and the valve 15 and the oxygen introduction valve 16 are opened. Adjust the rate to adjust the pressure in the vapor deposition equipment to 5
Hold at mTorr and heat the substrate to 200 ° C. Next, while keeping the substrate temperature and the pressure in the vapor deposition apparatus in a steady state, current is supplied to each of the In boat and the Sn boat from different power sources, and the film thickness monitor 11
The evaporation rate of In and Sn is controlled to be 95: 5. In this case, the evaporation rates of In and Sn are
The relationship between the evaporation rate instruction value of each film thickness monitor and the vapor deposition amount of In or Sn actually deposited on the substrate is individually investigated and set according to the obtained constitution curve. In this embodiment, the evaporation rates of In and Sn are set so that the total deposition rate of In and Sn is 1 nm / min. When the evaporation rate of both was stable, the shutters 7 on both boats were simultaneously opened, and the oxidized In—Sn-based transparent conductive film having a thickness of 25 nm was formed in about 25 minutes. The specific resistance of the obtained thin film was 0.3 mΩcm, the visible light transmittance was 90% or more, the smoothness of the film surface was very good, and no fine surface defect was observed. Also, when the composition of the film was analyzed,
The Sn content was approximately 5% by weight.

【0030】〈実施例2〉図6は、撮像管のターゲット
部の概略断面図である。まず初めに、透光性ガラス基板
17の上に、ターゲット18として、実施例1と同じ方
法で酸化In−Sn系透明導電膜を形成する。その上に
別の真空蒸着装置で、正孔注入阻止層19として、膜厚
20nmの酸化セリウム薄膜を形成する。次に、光導電
膜20として、膜厚2μmの非晶質Se膜を形成し、そ
の上に、不活性ガス雰囲気中での蒸着法により、電子ビ
ームラディング層21として、膜厚100nmの多孔質
Sb23膜を形成する。以上により得られた蒸着基板を
撮像管ターゲットとして、電子銃を内蔵した撮像管匡体
に、蒸着面が電子銃と対向するようにして組み込み、内
部を真空封止して、図6の光導電形撮像管を得た。光導
電形撮像管をカメラに装着して特性を測定した結果、従
来技術による透明導電膜を使用して作成した撮像管で起
こりやすい暗電流の増加や、モニタ上の白点状画面欠陥
が大幅に改善され、より高い電圧での動作が可能とな
り、ターゲット電圧を240Vにしたところ、非晶質S
e光導電膜内で光キャリアのアバランシェ増倍が生じ
て、画期的な高感度特性が得られた。
<Embodiment 2> FIG. 6 is a schematic sectional view of a target portion of an image pickup tube. First, an oxidized In—Sn-based transparent conductive film is formed as a target 18 on the transparent glass substrate 17 by the same method as in the first embodiment. A cerium oxide thin film having a film thickness of 20 nm is formed thereon as a hole injection blocking layer 19 by another vacuum vapor deposition device. Next, an amorphous Se film having a film thickness of 2 μm is formed as the photoconductive film 20, and a porous film having a film thickness of 100 nm is formed as the electron beam rudging layer 21 on the amorphous Se film by vapor deposition in an inert gas atmosphere. An Sb 2 S 3 film is formed. The vapor deposition substrate obtained as described above is used as an image pickup tube target and incorporated in an image pickup tube housing containing an electron gun so that the vapor deposition surface faces the electron gun, and the inside is vacuum-sealed. An image pickup tube was obtained. As a result of mounting the photoconductive type image pickup tube on the camera and measuring the characteristics, an increase in dark current, which is likely to occur in the image pickup tube made by using the conventional transparent conductive film, and white dot-shaped screen defects on the monitor are significantly increased. It is possible to operate at higher voltage, and when the target voltage is 240V, amorphous S
e Avalanche multiplication of photocarriers occurred in the photoconductive film, and epoch-making high sensitivity characteristics were obtained.

【0031】[0031]

【発明の効果】本発明によれば、酸化In−Sn系薄膜
中のSn含有量を高精度で制御できるので、高導電率,
高透過率で、微粒子状付着物のない平滑性に優れた良質
の透明導電膜を再現性良く得ることができ、本発明の透
明導電膜を撮像管等の受光デバイスに使用すれば、従来
にない高性能デバイス特性が実現できる。
According to the present invention, since the Sn content in the oxidized In--Sn thin film can be controlled with high accuracy, high conductivity,
It is possible to obtain a high-quality transparent conductive film having a high transmittance and excellent in smoothness with no particulate adhered matter with good reproducibility. It can realize high performance device characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施するための真空蒸着装置の説明
図。
FIG. 1 is an explanatory diagram of a vacuum vapor deposition device for carrying out the present invention.

【図2】本発明で得られた酸化In−Sn系薄膜の比抵
抗および透過率とSnの含有量との関係を示す特性図。
FIG. 2 is a characteristic diagram showing the relationship between the specific resistance and the transmittance of the oxidized In—Sn based thin film obtained in the present invention and the Sn content.

【図3】本発明で得られた酸化In−Sn系薄膜の比抵
抗および透過率と蒸着時の基板温度との関係を示す特性
図。
FIG. 3 is a characteristic diagram showing the relationship between the specific resistance and the transmittance of the oxidized In—Sn-based thin film obtained by the present invention and the substrate temperature during vapor deposition.

【図4】本発明で得られた酸化In−Sn系薄膜の比抵
抗および透過率と蒸着時の酸素ガス圧との関係を示す特
性図。
FIG. 4 is a characteristic diagram showing the relationship between the specific resistance and the transmittance of the oxidized In—Sn-based thin film obtained by the present invention and the oxygen gas pressure during vapor deposition.

【図5】本発明で得られた酸化In−Sn系薄膜の比抵
抗および透過率と蒸着時の堆積速度との関係を示す特性
図。
FIG. 5 is a characteristic diagram showing the relationship between the specific resistance and the transmittance of the oxidized In—Sn-based thin film obtained by the present invention and the deposition rate during vapor deposition.

【図6】撮像管のターゲット部の断面図。FIG. 6 is a sectional view of a target portion of the image pickup tube.

【符号の説明】[Explanation of symbols]

1…蒸着ボート、2…蒸着ボート、3…蒸発源材料、4
…蒸発源材料、5…電流端子、6…シールド、7…シャ
ッタ、8…回転軸、9…回転円板、10…基板、11…
膜厚モニタ、12…ヒータ、13…回転モータ、14…
ベルジャ、15…バルブ、16…酸素導入バルブ。
1 ... evaporation boat, 2 ... evaporation boat, 3 ... evaporation source material, 4
... evaporation source material, 5 ... current terminal, 6 ... shield, 7 ... shutter, 8 ... rotating shaft, 9 ... rotating disc, 10 ... substrate, 11 ...
Film thickness monitor, 12 ... Heater, 13 ... Rotation motor, 14 ...
Bell jar, 15 ... Valve, 16 ... Oxygen introduction valve.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長妻 一之 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 平井 忠明 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 山本 昌直 千葉県茂原市早野3300番地 株式会社日立 製作所電子デバイス事業部内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kazuyuki Nagatsuma 1-280, Higashi Koikekubo, Kokubunji City, Tokyo, Central Research Laboratory, Hitachi, Ltd. (72) Inventor Tadaaki Hirai 1-280, Higashi Koikekubo, Kokubunji, Tokyo Hitachi Ltd. (72) Inventor Masanao Yamamoto 3300, Hayano, Mobara-shi, Chiba Hitachi, Ltd. Electronic Device Division

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】酸素を含有するガス雰囲気中で、InとS
nをそれぞれ別々のボートから蒸発させ、加熱保持され
た基板上に、所定量のInとSnを、連続して蒸着し、
酸化させることを特徴とする酸化In−Sn系透明導電
膜の製造方法。
1. In and S in a gas atmosphere containing oxygen.
n is evaporated from different boats, and a predetermined amount of In and Sn are continuously vapor-deposited on the heated and held substrate,
A method of manufacturing an oxidized In-Sn-based transparent conductive film, which comprises oxidizing.
【請求項2】酸素を含有するガス雰囲気中で、加熱保持
された基板上に、所定量のInとSnを、それぞれ別々
のボートから交互に複数回繰返し蒸着し、酸化させるこ
とを特徴とする酸化In−Sn系透明導電膜の製造方
法。
2. A predetermined amount of In and Sn are alternately and repeatedly vapor-deposited a plurality of times on a substrate heated and held in a gas atmosphere containing oxygen to oxidize the substrate. A manufacturing method of an oxide In-Sn type transparent conductive film.
【請求項3】請求項2において、少なくとも、円周部に
沿って基板を配備した回転円板と、前記回転円板の円周
部に対向して設置されたInとSnの蒸発源と、個々の
蒸発源に対抗して設けられた蒸発速度検出器とを有する
回転蒸着装置を用いて、酸素を含有するガス雰囲気中で
前記回転円板を一定速度で回転させ、InとSnの蒸着
量がそれぞれ所定の値になるようにInとSnの蒸発速
度を制御しつつ、加熱保持された基板上に、InとSn
を交互に蒸着し、酸化させる酸化In−Sn系透明導電
膜の製造方法。
3. The rotating disc having a substrate arranged along at least a circumferential portion thereof, and an evaporation source of In and Sn, which is installed so as to face the circumferential portion of the rotating disc. Using a rotary vapor deposition apparatus having an evaporation rate detector provided so as to oppose each evaporation source, the rotary disk is rotated at a constant speed in a gas atmosphere containing oxygen to deposit In and Sn. While controlling the evaporation rates of In and Sn so that the respective values become predetermined values,
A method of manufacturing an oxidized In—Sn-based transparent conductive film in which the oxides are alternately deposited and oxidized.
【請求項4】請求項1,2または3において、基板温度
が80℃以上,300℃以下である酸化In−Sn系透
明導電膜の製造方法。
4. The method for producing an In—Sn oxide transparent conductive film according to claim 1, wherein the substrate temperature is 80 ° C. or higher and 300 ° C. or lower.
【請求項5】請求項1,2または3において、酸素を含
有するガス雰囲気の圧力が、0.5mTorr以上,50mT
orr以下である酸化In−Sn系透明導電膜の製造方
法。
5. The pressure according to claim 1, wherein the gas atmosphere containing oxygen has a pressure of 0.5 mTorr or more and 50 mT.
A method for producing an In—Sn oxide transparent conductive film having an orr or less.
【請求項6】請求項1,2または3において、基板への
InとSnの蒸着量が、重量比で99:1以上,9:1
以下である酸化In−Sn系透明導電膜の製造方法。
6. The deposition amount of In and Sn on a substrate according to claim 1, 2 or 3, wherein the weight ratio is 99: 1 or more and 9: 1.
The following is a method for producing an In-Sn oxide transparent conductive film.
【請求項7】請求項1,2または3において、前記透明
導電膜の堆積速度が0.1nm/ min以上,10nm/
min以下である酸化In−Sn系透明導電膜の製造方
法。
7. The deposition rate of the transparent conductive film according to claim 1, 2 or 3, wherein the deposition rate is 0.1 nm / min or more and 10 nm / min.
A method for producing an oxidized In-Sn-based transparent conductive film having a density of min or less.
【請求項8】透光性基板と酸化In−Sn系透明導電膜
と光導電膜とを含む撮像管において、前記透明導電膜を
製造する工程が、請求項1,2,3,4,5,6または
7の製造方法からなる光導電形撮像管の製造方法。
8. An image pickup tube including a transparent substrate, an oxidized In—Sn-based transparent conductive film, and a photoconductive film, wherein the step of manufacturing the transparent conductive film comprises: , 6 or 7 for manufacturing a photoconductive type image pickup tube.
JP564493A 1993-01-18 1993-01-18 Production of in/sn oxide transparent conductive film Pending JPH06212403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP564493A JPH06212403A (en) 1993-01-18 1993-01-18 Production of in/sn oxide transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP564493A JPH06212403A (en) 1993-01-18 1993-01-18 Production of in/sn oxide transparent conductive film

Publications (1)

Publication Number Publication Date
JPH06212403A true JPH06212403A (en) 1994-08-02

Family

ID=11616846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP564493A Pending JPH06212403A (en) 1993-01-18 1993-01-18 Production of in/sn oxide transparent conductive film

Country Status (1)

Country Link
JP (1) JPH06212403A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100967413B1 (en) * 2008-01-21 2010-07-01 연세대학교 산학협력단 ITO conducting layer, method for deposition thereof and apparatus for depositing the same
JP2010225517A (en) * 2009-03-25 2010-10-07 Hitachi Zosen Corp Method for forming transparent conductive film to interior of tube body
CN104651796A (en) * 2013-11-19 2015-05-27 北京北方微电子基地设备工艺研究中心有限责任公司 Resistance adjustment method of ITO thin film
WO2016190429A1 (en) * 2015-05-27 2016-12-01 株式会社アルバック Optical thin film manufacturing method and optical film manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100967413B1 (en) * 2008-01-21 2010-07-01 연세대학교 산학협력단 ITO conducting layer, method for deposition thereof and apparatus for depositing the same
JP2010225517A (en) * 2009-03-25 2010-10-07 Hitachi Zosen Corp Method for forming transparent conductive film to interior of tube body
CN104651796A (en) * 2013-11-19 2015-05-27 北京北方微电子基地设备工艺研究中心有限责任公司 Resistance adjustment method of ITO thin film
CN104651796B (en) * 2013-11-19 2017-06-06 北京北方微电子基地设备工艺研究中心有限责任公司 The resistance adjustment method of ito thin film
WO2016190429A1 (en) * 2015-05-27 2016-12-01 株式会社アルバック Optical thin film manufacturing method and optical film manufacturing method
CN107614738A (en) * 2015-05-27 2018-01-19 株式会社爱发科 Method for production of optical film, blooming piece manufacture method
JPWO2016190429A1 (en) * 2015-05-27 2018-02-22 株式会社アルバック Optical thin film manufacturing method, optical film manufacturing method

Similar Documents

Publication Publication Date Title
Randhawa et al. SnO2 films prepared by activated reactive evaporation
JPH06158308A (en) Target for sputtering for indium-tin oxide film and its production
FR2803854A1 (en) Improving optical separation of needle-like phosphor layers formed on substrate comprises controlling vaporization so that phosphor layer is deposited on substrate in reduced thickness
US4675092A (en) Method of producing thin film electroluminescent structures
Igasaki et al. Some properties of Al-doped ZnO transparent conducting films prepared by RF reactive sputtering
JPH06212403A (en) Production of in/sn oxide transparent conductive film
JP2006503977A (en) Controlling the stoichiometry and morphology of silver selenide films in sputter deposition.
US5473456A (en) Method for growing transparent conductive gallium-indium-oxide films by sputtering
US4376795A (en) Method of producing image sensor
JP2000222944A (en) Substrate with ito transparent conductive film, and method of depositing ito transparent conductive film
JPH08158041A (en) Production of transparent conductive film and device therefor
JPH055895B2 (en)
JP2686266B2 (en) Manufacturing method of light receiving element
JPH05263219A (en) Production of copper indium selenide thin film
Amanullah et al. Characterization of isochronally and isothermally annealed indium tin oxide thin films
JPH0419650B2 (en)
KR900001141B1 (en) Mafnetic recording medium and its producing method there of
JP3206760B2 (en) K cell for vacuum evaporation
US3967151A (en) Sustained conductivity device comprising a plurality of Schottky barriers
JP3831433B2 (en) Transparent conductive film and method for producing the same
JPH0950771A (en) Image pickup device and manufacture thereof
JP2507963B2 (en) Method of manufacturing oxide thin film
JPH0444812B2 (en)
JPS58197607A (en) Method of forming transparent conductive film
JPS59203223A (en) Thin metallic film type magnetic recording medium