JPH01158633A - Information recording medium - Google Patents

Information recording medium

Info

Publication number
JPH01158633A
JPH01158633A JP62317034A JP31703487A JPH01158633A JP H01158633 A JPH01158633 A JP H01158633A JP 62317034 A JP62317034 A JP 62317034A JP 31703487 A JP31703487 A JP 31703487A JP H01158633 A JPH01158633 A JP H01158633A
Authority
JP
Japan
Prior art keywords
recording
film
recording film
information recording
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62317034A
Other languages
Japanese (ja)
Inventor
Hideki Okawa
秀樹 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62317034A priority Critical patent/JPH01158633A/en
Publication of JPH01158633A publication Critical patent/JPH01158633A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To provide an information recording medium with which are simultaneously and compatibly provided with two characteristics; oxidation resistance and recording sensitivity by laminating and forming recording films which are different in crystallization temp. from each other on a substrate. CONSTITUTION:The recording film having the relatively high crystallization temp. and the recording film having the relatively low crystallization temp. are laminated and formed on a substrate in the case of forming the amorphous recording films contg. carbon, hydrogen and a metal, metalloid or semiconductor element and having the crystallization temp. thereon. The recording film having the relatively low crystallization temp. contributes to the improvement of the recording sensitivity and the recording film having the relatively high crystallization temp. to the improvement of the oxidation resistance and, therefore, the resultant information recording medium is capable of simultaneously maintaining the two characteristics; the recording sensitivity and oxidation resistance. Te, Se, Bi, Ge, Sb, Sn, Pb, Ga, In or Ag is usable as the metal element. Sputtering vapor deposition is executed in an atmosphere consisting of gaseous alkane, gaseous alkene or gaseous alkyne and rare gas in the case of forming the recording film by sputtering.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、高感度でかつ長寿命の情報記録媒体に関する
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a highly sensitive and long-life information recording medium.

(従来の技術) アルカンガス、アルケンガス又はアルキンガスのような
炭化水素ガスとArのような希ガスとの混合雰囲気中で
Teその他の金属、半金属又は半導体(以下「金属等」
と呼ぶ)をスパッタ蒸着すると、基板上に堆積した情報
記録膜は、X線回折によっても特定指数面からの回折ピ
ークが認められないアモルファスであることが知られて
いる。
(Prior Art) In a mixed atmosphere of a hydrocarbon gas such as alkane gas, alkene gas, or alkyne gas and a rare gas such as Ar, Te and other metals, semimetals, or semiconductors (hereinafter referred to as "metals, etc.")
It is known that when an information recording film (referred to as 1) is sputter-deposited on a substrate, the information recording film deposited on the substrate is an amorphous film in which no diffraction peak from a specific index plane is observed even by X-ray diffraction.

これはTeクラスタが炭化水素マトリクス中に分散して
、Teの凝集がマトリクスによって阻害されているため
である。CH4ガス中でTeをスパッタしたときには、
X線小角散乱法から、約3゜人の大きさのTeクラスタ
が炭化水素マトリクス中に分散していることが分ってい
る。以下このような記録膜を、代表してrTe−C膜」
と呼ぶ。
This is because the Te clusters are dispersed in the hydrocarbon matrix and the aggregation of Te is inhibited by the matrix. When Te is sputtered in CH4 gas,
From small-angle X-ray scattering, it has been found that Te clusters of about 3 degrees in size are dispersed in the hydrocarbon matrix. Hereinafter, such a recording film will be referred to as rTe-C film.
It is called.

Te−C膜は、本来は結晶状態で存在する金属等又はそ
の合金が、非常に細かく30〜50人の大きさで、炭素
及び水素中に分散しているため、記録膜全体としてみる
と一定の結晶指数面をもたない。分散質としての金属等
は様々な結晶指数面を有するが、これがランダムに配置
しているために、X線回折で調べても特定の位置(回折
角度)に回折ピークが生じないのである。Te−C膜は
、金属等の単体やその合金膜に比べて、一般に電気伝導
度が悪いが、耐酸化性にはすぐれているという特色があ
る。
Te-C film is made of metals or their alloys that originally exist in a crystalline state, which are dispersed in carbon and hydrogen in extremely fine particles the size of 30 to 50 people, so the recording film as a whole is constant. It has no crystalline index plane. Metals and the like as dispersoids have various crystalline index planes, but because these planes are arranged randomly, no diffraction peak occurs at a specific position (diffraction angle) even when examined by X-ray diffraction. A Te-C film generally has poorer electrical conductivity than a single metal or its alloy film, but is characterized by excellent oxidation resistance.

金属等の酸化反応は複雑であり、温度、湿度、気体雰囲
気(空気、CO2等)等によって反応が異なる。湿度の
影響の少ないか又はほとんど無視し得る状態での酸化は
、通常「乾食」と呼ばれるが、その反応メカニズムは湿
食と呼ばれる水溶液中の金属等の腐蝕反応と全く同様に
、酸化反応と還元反応が同時に同一表面で進行すると説
明されている。
The oxidation reaction of metals and the like is complex, and the reaction varies depending on temperature, humidity, gas atmosphere (air, CO2, etc.), and the like. Oxidation under conditions where the influence of humidity is small or almost negligible is usually called "dry corrosion," but the reaction mechanism is an oxidation reaction that is exactly the same as the corrosion reaction of metals in an aqueous solution called wet corrosion. It is explained that the reduction reaction proceeds simultaneously on the same surface.

金属Mを例にとると、金属原子は酸化時に、結晶格子に
おいて下記(1)式に従って金属イオンと電子に解離す
る。
Taking metal M as an example, during oxidation, metal atoms dissociate into metal ions and electrons in the crystal lattice according to the following formula (1).

M→M”十ne−・・・・・・・・・・・・(1)従っ
てこの電子を何らかの形で消費しなければ、金属表面の
近傍には、正と負の電荷をもった電気二重層が生じるの
みである。
M→M”10ne−・・・・・・・・・・・・・・・(1) Therefore, unless these electrons are consumed in some way, there will be electricity with positive and negative charges near the metal surface. Only a double layer forms.

しかし、このとき下記(2)の還元反応が同時に進行す
ると、(1)で生じたne″″が消費される。
However, if the reduction reaction (2) below proceeds simultaneously at this time, ne'' produced in (1) is consumed.

0□+ne−→20− + (n−2)e−・・・・・
・・・・(2) (1)と(2)の反応をまとめると、次の(3)式とな
り、酸化物が生成する。
0□+ne−→20− + (n−2)e−・・・・
...(2) The reactions of (1) and (2) are summarized as the following equation (3), and an oxide is produced.

M+024 (M(−”02 )+(n−2)e−・・
・・・・(3) そのためには(1)で生ずるne=は、ただちに還元反
応が生ずる場所まで移動しなければならない。
M+024 (M(-"02)+(n-2)e-...
...(3) For that purpose, ne= generated in (1) must immediately move to a place where a reduction reaction occurs.

しかし、電気伝導度がよい金属と金属の間に、Te−C
膜のように炭素や水素のような不導体が存在すると電子
が移動できないため、連続的に酸化反応が進行していく
ことはない。従ってTe−C膜の表面に、たまたま金属
等やその合金が露出していたとしても、その下地方向や
横方向への酸化の進行は阻止される。これがTe−C膜
が耐酸化性に優れていることの理由である。長期間酸化
されないということは、長期間安定に一定の書込み能力
を有する、即ち寿命が長いということであり、これは追
記型の光記録媒体としては必要不可欠な要件である。
However, between metals with good electrical conductivity, Te-C
When a nonconductor such as carbon or hydrogen is present in a film, electrons cannot move, so oxidation reactions do not proceed continuously. Therefore, even if a metal or its alloy happens to be exposed on the surface of the Te--C film, oxidation is prevented from proceeding in the underlying direction or in the lateral direction. This is the reason why the Te-C film has excellent oxidation resistance. The fact that it is not oxidized for a long period of time means that it has a constant writing ability over a long period of time, that is, it has a long life, and this is an essential requirement for a write-once optical recording medium.

ところでTe−C膜は、前述のようにアモルファスであ
るため、結晶化温度が存在する。Te−C膜の酸化のな
い状態における結晶化プロセスを調べるため、N2気流
中で昇温し、示差走査熱分析を行ったところ、Te−C
膜の結晶化温度は、Teが多いほど低温側に位置し、T
eが減少するほど高温側にシフトすることが見い出され
た。
By the way, since the Te-C film is amorphous as described above, there is a crystallization temperature. In order to investigate the crystallization process of the Te-C film in a non-oxidized state, the temperature was raised in a N2 stream and differential scanning calorimetry was performed.
The crystallization temperature of the film is located on the lower temperature side as the amount of Te increases;
It has been found that as e decreases, the temperature shifts to the higher temperature side.

(発明が解決しようとする問題点) ところでレーザ光等の光によってヒートモード記録をす
る場合には、Teの多い方が光の吸収率が大きくなるた
め、感度も向上する。しかし記録膜中の炭素及び水素は
減少するため、前述の耐酸化性は悪化する。
(Problems to be Solved by the Invention) By the way, when heat mode recording is performed using light such as a laser beam, the more Te there is, the higher the light absorption rate becomes, and the sensitivity also improves. However, since carbon and hydrogen in the recording film decrease, the above-mentioned oxidation resistance deteriorates.

炭素、水素及び金属等を含む記録膜が酸化される場合に
は、膜中の金属等同士が凝集して結晶化が起っている。
When a recording film containing carbon, hydrogen, metals, etc. is oxidized, the metals, etc. in the film aggregate and crystallize.

従って耐酸化性能を維持していくためには、記録膜をで
きるだけ長くアモルファス状態に保つ必要がある。即ち
結晶化温度ができるだけ高い方がよい。しかし上に述べ
た通り、結晶化温度の高いものはTeが少ないため、光
記録の感度が低下する。
Therefore, in order to maintain oxidation resistance, it is necessary to maintain the recording film in an amorphous state for as long as possible. That is, it is better that the crystallization temperature is as high as possible. However, as mentioned above, materials with a high crystallization temperature have less Te, so the sensitivity of optical recording decreases.

従来は、基板上に単層の記録膜を積層していたが、これ
では常に一定の結晶化温度をしか得ることができないた
め、結晶化温度の高いものにすれば記録感度が低下し、
他方結晶化温度の低いものにすれば耐酸化性が低下して
、2つの特性(記録感度と耐酸化性)を両立することは
困難であった。
Conventionally, a single-layer recording film was laminated on a substrate, but this only allowed a constant crystallization temperature, so if a film with a high crystallization temperature was used, the recording sensitivity would decrease.
On the other hand, if the crystallization temperature is lowered, the oxidation resistance decreases, making it difficult to achieve both of the two characteristics (recording sensitivity and oxidation resistance).

[発明の構成コ (問題点を解決するための手段) 本発明は上記問題点を解決するために、基板、並びに炭
素、水素及び金属、半金属又は半導体元素を含む、結晶
化温度を有するアモルファス状態の記録膜からなる情報
記録媒体において、基板上に互いに結晶化温度が異なる
記録膜を積層したことを特徴とする情報記録媒体を提供
する。
[Structure of the Invention (Means for Solving the Problems)] In order to solve the above problems, the present invention provides a substrate, and an amorphous material having a crystallization temperature containing carbon, hydrogen, and a metal, semimetal, or semiconductor element. The present invention provides an information recording medium consisting of a state recording film, characterized in that recording films having different crystallization temperatures are stacked on a substrate.

(作用) 本発明によれば、従来と同一の膜厚の記録膜において、
互いに結晶化温度の異なる、即ち相対的に結晶化温度が
高い記録膜と低い記録膜を積層する。すると前述のよう
に結晶化温度の相対的に低い記録膜は記録感度を向上さ
せ、結晶化温度の相対的に高い記録膜は耐酸化性の向上
に寄与するため、記録感度と耐酸化性の2つの特性を同
時に良好に保つことができる。
(Function) According to the present invention, in a recording film having the same thickness as the conventional one,
A recording film having a crystallization temperature different from each other, that is, a recording film having a relatively high crystallization temperature and a recording film having a relatively low crystallization temperature are laminated. Then, as mentioned above, a recording film with a relatively low crystallization temperature improves recording sensitivity, and a recording film with a relatively high crystallization temperature contributes to improving oxidation resistance, so the relationship between recording sensitivity and oxidation resistance is Two characteristics can be maintained well at the same time.

(実施例) 以下添附図面を参照して、本発明の詳細な説明する。(Example) The present invention will be described in detail below with reference to the accompanying drawings.

実施例1 第1図に示した真空排気装置において、真空チェンバ1
を常圧から0.5mTorrまでは油回転ポンプ2で減
圧した後、切替弁20をクライオポンプ3側にし、クラ
イオポンプ3を用いて5X10−6Torr以下に排気
する。次いでメタンガス4を20 S CCMとアルゴ
ンガス5を5SCCM、それぞれマスフローコントロー
ラ6及び7を通してチェンバ1内に導入する。
Example 1 In the vacuum evacuation apparatus shown in FIG.
After reducing the pressure from normal pressure to 0.5 mTorr using the oil rotary pump 2, the switching valve 20 is set to the cryopump 3 side, and the cryopump 3 is used to exhaust the pressure to 5×10 −6 Torr or less. Then, 20 SCCM of methane gas 4 and 5 SCCM of argon gas 5 are introduced into the chamber 1 through mass flow controllers 6 and 7, respectively.

次いでイオンゲージ(図示せず)で測定しながら、チェ
ンバ1内の圧力が5 X 10’ Torrになるよう
に排気量を制御する。圧力がこの値になったらさらに5
分間、圧力変動をイオンゲージで測定する。変化がなけ
れば下に磁石(図示せず)を配置したTe(直径5イン
チ)カソード8に、直流スパッタ電源9から100Wの
電力を投入してグロー放電を発生させ、いわゆるマグネ
トロン方式のスパッタリングでPC(ポリカーボネート
)基板11上に第1層12を成膜する。放電は直流に限
らず、13.56MHzの高周波(RF)でもよい。な
お半導体をターゲットとする場合には直流電源ではなく
、高周波電源を用いる。
Next, while measuring with an ion gauge (not shown), the exhaust amount is controlled so that the pressure inside the chamber 1 becomes 5×10' Torr. When the pressure reaches this value, add 5 more
Measure pressure fluctuations for minutes with an ion gauge. If there is no change, a glow discharge is generated by applying 100 W of power from a DC sputtering power source 9 to a Te (5 inch diameter) cathode 8 with a magnet (not shown) placed below it, and the PC is sputtered using the so-called magnetron method sputtering. A first layer 12 is deposited on a (polycarbonate) substrate 11 . The discharge is not limited to direct current, and may be 13.56 MHz radio frequency (RF). Note that when targeting semiconductors, a high frequency power source is used instead of a DC power source.

基板11は、第1層12と第2層13の成膜中は50 
rprAで回転17させ、全面にわったって均一に成膜
されるようにした。基板としては、PCの他ポリメチル
メタクリレート(PMMA)等の有機樹脂や5i02(
石英ガラス)も用いることができる。成膜中には基板1
1の加熱は行わなかった。
During the deposition of the first layer 12 and second layer 13, the substrate 11 is
The rprA was rotated 17 times to ensure that the film was formed uniformly over the entire surface. In addition to PC, the substrate can be made of organic resin such as polymethyl methacrylate (PMMA) or 5i02 (
quartz glass) can also be used. During film formation, the substrate 1
No heating was performed in step 1.

第1層12を形成した後、直ちにクライオポンプ3によ
って5X10  Torr以下に排気した。
Immediately after forming the first layer 12, the temperature was evacuated to 5×10 Torr or less using the cryopump 3.

この圧力になったらメタンガス4を208CCM。When this pressure is reached, add methane gas 4 to 208 CCM.

アルゴンガス5をIO3CCMフローさせ、第1層の場
合と同様にして再度放電する。こうして第1層12上に
第2層13を積層した。
Argon gas 5 is caused to flow through IO3CCM, and discharge is performed again in the same manner as in the case of the first layer. In this way, the second layer 13 was laminated on the first layer 12.

記録膜(第1層と第2層の膜厚の和)厚は250人とし
た。第1層の結晶化温度は130℃、第2層のそれは1
20℃であった。
The thickness of the recording film (the sum of the thicknesses of the first layer and the second layer) was 250. The crystallization temperature of the first layer is 130℃, that of the second layer is 1
The temperature was 20°C.

放電終了後は窒素10でチェンバ1内をリークして大気
圧に戻し、結晶化温度の相異なるTe−C膜が積層され
たPC基板15を取出す。
After the discharge is completed, the inside of the chamber 1 is leaked with nitrogen 10 to return it to atmospheric pressure, and the PC board 15 on which Te--C films having different crystallization temperatures are laminated is taken out.

光デイスク用の記録媒体として用いる場合には、予め基
板上に案内溝(プリグループ)の形成された円板状の基
板を用いる。
When used as a recording medium for an optical disk, a disk-shaped substrate on which guide grooves (pre-groups) are formed in advance is used.

実施例2〜4 実施例1と同様の方法によって、第1層と第2層の膜厚
の和を250人とし、第1層と第2層の結晶化温度がそ
れぞれ110℃と100℃、115℃と110℃、並び
に120℃と115℃の2層の記録膜を積層した情報記
録媒体を形成した。
Examples 2 to 4 By the same method as in Example 1, the sum of the thicknesses of the first layer and the second layer was 250, and the crystallization temperatures of the first layer and the second layer were 110°C and 100°C, respectively. An information recording medium was formed by laminating two recording films at 115° C. and 110° C. and 120° C. and 115° C.

第2図に実施例1〜4の成膜した案内溝付きpc基板を
180 Orpmで回転させ、波長83゜runの半導
体レーザで書込んだ場合の変調度を示す。
FIG. 2 shows the degree of modulation when the PC substrates with guide grooves on which the films of Examples 1 to 4 were formed were rotated at 180 Orpm and written with a semiconductor laser having a wavelength of 83° run.

パルス幅は60 n5ecとした。比較のため、膜厚2
50人のTe−C単層の記録膜(結晶化温度140℃)
に書込んだ結果(比較例1)も同時に示した。本発明の
記録膜(実施例1〜4)の方が高感度であることが分る
The pulse width was 60 n5ec. For comparison, film thickness 2
50 Te-C single layer recording film (crystallization temperature 140℃)
The results written in (Comparative Example 1) are also shown at the same time. It can be seen that the recording films of the present invention (Examples 1 to 4) have higher sensitivity.

第3図には本発明の2層の記録膜(実施例1〜4)と第
2図に示した比較例1の記録膜、さらに同一の厚さのT
e単層膜(比較例2)の高温高湿下における寿命テスト
(加速テスト)の結果を示す。条件は65℃−90%と
した。
FIG. 3 shows the two-layer recording film of the present invention (Examples 1 to 4) and the recording film of Comparative Example 1 shown in FIG.
e The results of a life test (accelerated test) of a single layer film (Comparative Example 2) under high temperature and high humidity are shown. The conditions were 65°C-90%.

寿命のモニターパラメータとして記録膜面の反射率(波
長830 r++uにおける分光反射率)を、初期値を
1に規格化して示した。
The reflectance of the recording film surface (spectral reflectance at a wavelength of 830 r++u) was normalized to an initial value of 1 and shown as a monitoring parameter for the life span.

これをみると、Te膜(比較例2)はわずか数日で急激
な変化があるが、本発明の記録膜(実施例1〜4)はほ
とんど変化していない。比較した王者のうちでは比較例
1が最寿命であったが、第2図に示した光記録の書込み
感度は悪く、二律相反の関係となっている。従って本発
明による記録膜か、記録感度及び寿命を総合的に判断し
て最も優れていることが分る。
Looking at this, it can be seen that the Te film (Comparative Example 2) undergoes a rapid change in just a few days, but the recording film of the present invention (Examples 1 to 4) shows almost no change. Although Comparative Example 1 had the longest lifespan among the champions compared, the writing sensitivity of the optical recording shown in FIG. 2 was poor, resulting in an antinomian relationship. Therefore, it can be seen that the recording film according to the present invention is the most excellent in terms of recording sensitivity and lifespan.

なお上記実施例では炭化水素ガスとして、アルカンガス
(メタンガス)を用いたが、エチレンガスなどのアルケ
ンガス、アセチレンなどのアルキンガスを用いてもよい
Although alkane gas (methane gas) was used as the hydrocarbon gas in the above embodiment, an alkene gas such as ethylene gas or an alkyne gas such as acetylene may also be used.

また本実施例においては、金属等としてTeを用いたが
、Se、Bi、G e SS b % S n s P
 b sGa、In又はAgも用いることができる。
Further, in this example, Te was used as the metal etc., but Se, Bi, G e SS b % S n s P
b sGa, In or Ag can also be used.

[発明の効果] 以上説明したように本発明によれば、光記録特性として
の高感度と長寿命の両長所を兼ね備えた情報記録媒体を
得ることができる。
[Effects of the Invention] As explained above, according to the present invention, it is possible to obtain an information recording medium that has both the advantages of high sensitivity and long life as optical recording characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る真空成膜装置を示す図
、第2図は本発明の一実施例の記録感度を示すグラフ図
、及び第3図は本発明の一実施例の加速テストの結果を
示すグラフ図である。 1・・・・・・真空チェンバ、4・・・・・・メタンガ
ス、5・・・・・・アルゴンガス、8・・・・・・Te
ターゲット。 出願人代理人 弁理士 鈴江武彦 第1図 f夜−2+し一ザ ハ1ワー l¥2図 ヤσ5丈1代 第3図
FIG. 1 is a diagram showing a vacuum film forming apparatus according to an embodiment of the present invention, FIG. 2 is a graph diagram showing recording sensitivity of an embodiment of the present invention, and FIG. 3 is a diagram showing a recording sensitivity of an embodiment of the present invention. FIG. 3 is a graph diagram showing the results of an acceleration test. 1... Vacuum chamber, 4... Methane gas, 5... Argon gas, 8... Te
target. Applicant's agent Patent attorney Takehiko Suzue Figure 1 f Night - 2 + Shiichiza Ha 1 War l ¥ 2 Figure Ya σ5 Jyo 1 Generation Figure 3

Claims (5)

【特許請求の範囲】[Claims] (1)基板、並びに炭素、水素及び金属、半金属又は半
導体元素を含む、結晶化温度を有するアモルファス状態
の記録膜からなる情報記録媒体において、基板上に互い
に結晶化温度が異なる記録膜を積層したことを特徴とす
る情報記録媒体。
(1) In an information recording medium consisting of a substrate and an amorphous recording film containing carbon, hydrogen, and a metal, semimetal, or semiconductor element and having a crystallization temperature, recording films having different crystallization temperatures are laminated on the substrate. An information recording medium characterized by:
(2)前記金属元素は、Te、Se、Bi、Ge、Sb
、Sn、Pb、Ga、In又はAgである特許請求の範
囲第1項記載の情報記録媒体。
(2) The metal element is Te, Se, Bi, Ge, Sb
, Sn, Pb, Ga, In, or Ag.
(3)前記記録膜は、アルカンガス、アルケンガス又は
アルキンガス、及び希ガスからなる雰囲気中で金属、半
金属又は半導体元素をスパッタ蒸着して形成する特許請
求の範囲第1項記載の情報記録媒体。
(3) Information recording according to claim 1, wherein the recording film is formed by sputter deposition of a metal, metalloid, or semiconductor element in an atmosphere consisting of an alkane gas, an alkene gas, an alkyne gas, and a rare gas. Medium.
(4)前記記録膜は、ヒートモード方式による記録膜で
ある特許請求の範囲第1項記載の情報記録媒体。
(4) The information recording medium according to claim 1, wherein the recording film is a heat mode recording film.
(5)前記互いに異なる結晶化温度が100℃以上と2
00℃以下である特許請求の範囲第1項記載の情報記録
媒体。
(5) The mutually different crystallization temperatures are 100°C or more;
The information recording medium according to claim 1, which has a temperature of 00°C or lower.
JP62317034A 1987-12-15 1987-12-15 Information recording medium Pending JPH01158633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62317034A JPH01158633A (en) 1987-12-15 1987-12-15 Information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62317034A JPH01158633A (en) 1987-12-15 1987-12-15 Information recording medium

Publications (1)

Publication Number Publication Date
JPH01158633A true JPH01158633A (en) 1989-06-21

Family

ID=18083685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62317034A Pending JPH01158633A (en) 1987-12-15 1987-12-15 Information recording medium

Country Status (1)

Country Link
JP (1) JPH01158633A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0936605A1 (en) * 1998-02-10 1999-08-18 Sony Corporation Optical recording medium and manufacturing method thereof
US6996055B2 (en) 2002-04-30 2006-02-07 Tdk Corporation Optical recording medium and method for optically recording data in the same
US7141289B2 (en) 2003-08-25 2006-11-28 Tdk Corporation Optical information recording medium
US7157128B2 (en) 2003-07-23 2007-01-02 Tdk Corporation Optical information recording medium
US7231649B2 (en) 2002-05-31 2007-06-12 Tdk Corporation Optical recording medium and method for optically recording data in the same
US7321481B2 (en) 2002-07-04 2008-01-22 Tdk Corporation Optical recording medium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0936605A1 (en) * 1998-02-10 1999-08-18 Sony Corporation Optical recording medium and manufacturing method thereof
US6996055B2 (en) 2002-04-30 2006-02-07 Tdk Corporation Optical recording medium and method for optically recording data in the same
US7231649B2 (en) 2002-05-31 2007-06-12 Tdk Corporation Optical recording medium and method for optically recording data in the same
US7321481B2 (en) 2002-07-04 2008-01-22 Tdk Corporation Optical recording medium
US7157128B2 (en) 2003-07-23 2007-01-02 Tdk Corporation Optical information recording medium
US7141289B2 (en) 2003-08-25 2006-11-28 Tdk Corporation Optical information recording medium

Similar Documents

Publication Publication Date Title
US7635440B2 (en) Sputtering target, thin film for optical information recording medium and process for producing the same
Pawlewicz et al. Recent developments in reactively sputtered optical thin films
US5589040A (en) Process for producing optical recording medium sputtering method and sputtering target
JPH01158633A (en) Information recording medium
EP0059096B1 (en) An information recording material
JPH02171286A (en) Information recording medium
US5863661A (en) Method of enhancing the c-axis perpendicular orientation of barium hexaferrite thin films and barium hexaferrite thin film recording media produced thereby
US6746776B1 (en) Laminated structure, and manufacturing method thereof
JP3255682B2 (en) Aluminum film adherend
US6190763B1 (en) Magnetooptic thin film, magnetoopic record medium
JPH0444812B2 (en)
JPH0793807A (en) Information recording medium and its production
JPS6323235A (en) Optical information recording carrier
JPH0768615B2 (en) Thin film manufacturing method
JPS6323242A (en) Production of optical type information recording carrier
JPH06127134A (en) Information record medium
JPH01249489A (en) Information recording medium
JPH0530195B2 (en)
JPH06267053A (en) Magnetic recording medium and manufacture thereof
JPS62154241A (en) Medium for optical recording
JPH02171287A (en) Information recording medium
JPS63182188A (en) Optical recording medium
JPH09320135A (en) Production of magnetic-optical recording medium
Aita Low-temperature film growth of the oxides of zinc, aluminum, and vanadium (and related systems, oxides of gold and germanium, nitrides of aluminum and tungsten) by reactive sputter deposition. Final report, 1 July 1984-31 December 1987
JPH05274728A (en) Production of garnet type oxide magneto-optical recording medium